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1. Introduction 

Titanium alloy Ti6Al4V is the single largest user in aerospace industries due to its strength to weight ratio, high 

temperature and corrosion resistance. Ti6Al4V alloys are used in jet engine parts, aero frames etc. As the titanium alloy 

Ti6Al4V has the low thermal conductivity which leads to increase in temperature and tool wear during machining in dry 

condition. When the conventional machining puts its limit for high strength material, then non-traditional machining 

process come into picture to mitigate the difficulties of machining. Out of the various non-traditional machining 

processes, electro-discharge machining (EDM) is one of them. Many researchers have been carried out the investigation 

during machining on EDM with various high strength materials. S Tiwari conducted an experiment to find out the effect 

of different process parameters on over cut [1]. The tool material and work piece material are selected as copper and 

medium carbon steel respectively with positive polarity of electrode. The over cut in electro-discharge machining process 

were calculated by taking the process parameter as peak current, pulse on time and pulse off time from different process 

parameters like peak current, gap voltage, pulse on time, pulse off time, current density etc. For machining of hard 

materials, EDM is suggested over traditional machining process due to less tool wear and more machining time [2]. 

Chatter and vibration during machining can be avoided because of a gap of approx. 0.025 to 0.05 mm is maintained 

between tool and work piece. Sidhu et al. [3] have investigated effect of rotary tool on EDM performance. The acting 

forces are not present also. The debris from the machining gap can be removed by whirl condition and centrifugal force 

applied by rotary tool electrode which gives the greater flushing condition and enhances the MRR, TWR and surface 

finish. The debris are got rid of from machining gap by the applied magnetic field which results in improved surface 

finish and better surface quality. The high input discharge energy may impute high valued current which gives deep 
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craters, greater MRR and poor surface finish. The MRR and TWR decrease with increase in pulse on time from 50 µs to 

150 µs because of inefficient flushing of debris by machining. Smart et al. [4] have studied the design and development 

of rotary tool setup with variable speed arrangement for EDM also investigated the effect of EDM machine parameters 

on MRR, surface finish and ware rate of electrode. With increasing rotary speed of EDM tool the surface roughness 

increases and electrode ware rate decreases. For higher MRR the pulse off time and pulse on time to be restricted to 

25𝜇𝑠  and 50𝜇𝑠  respectively. To machining of Titanium and its alloys as a continuous operation, straight grade 

(WC/Co) cemented carbides are considered to be most suitable commercially available tool material [5]. 

Flank wear, crater wear, notch wear, chipping and catastrophic failure are considered to be the important failures 

during machining of titanium alloys. The appropriate employment of coolants and chemically active cutting fluids at the 

time of machining operations increase the life of the cutting tool and shrink the cutting force between the tool and 

workpiece. The feature size as small as 25𝜇𝑚 may be attained by successful utilization of micro EDM for the fabrication 

biocompatible micro device [6]. If the work piece is vibrated ultrasonically the surface roughness is reduced to 20-40%. 

For the rapid fabrication of greater precision prototype this method is extremely worthy due to the total fabrication process 

takes time (including setup and tooling) approximately 4 hours. Use of micro EDM for making biocompatible device for 

bio experiments signifies due to the small feature size and greater surface finish. Successful selection of trained neutral 

network model and optimized input conditions, greater MRR and Ra may be achieved [7-8]. Patil et al. [9] have studied 

using combination of dimensional analysis and non-linear estimation method in the modelling of WEDM of difficult-to-

cut MMCs. Pulse on-time and thermo-physical properties such as coefficient of thermal expansion, thermal diffusivity 

and melting point temperature are remarkably influence MRR. The RSM and the semi-empirical model is found to be 

more than 99%, the matter such as wire performance, gap status and surface integrity of the machined components may 

be disclosed by it The wire electro-discharge machining of A6061/Al2O3P composite with varying volume fractions of 

10% and 22% was experimented by Patil et al. [10] by using Taguchi’s method. Volume fraction of ceramic 

reinforcement, pulse on-time, off-time, and servo reference voltage influence cutting speed, surface finish, kerf width 

remarkably. By utilization of higher flushing pressures, correct pulse off-times, and suitable value of servo reference 

voltage wire breakages can be minimized. Pulse off-time, servo voltage, on-time, and open circuit voltage are 

significantly influencing the wire shifting which decays the machined surface.  

Assarzadeh et al. [11] have investigated Statistical modelling and optimization of process parameters in electro-

discharge machining of cobalt-bonded tungsten carbide composite (WC/6%Co). The MRR, TWR and Ra are mostly 

influenced by discharged current, duty cycle, pulse on time and their interactions and the discharge energy has the ability 

to melt and vaporize the work surface faster. Morgan et al have illustrated the potential of electro discharge micro-

machining, micro-cutting or micro-grinding tool to fabricate conductive and non-conductive materials [12]. For a wide 

range of tool geometries and materials a variable depth of cut micro-grinding technique is found to be the best micro-

machining parameters. Better geometric accuracy, surface finish and MRR for micro-cutting and micro-grinding for 

engineered materials can be achieved by optimizing process parameters (e.g. feed rates, depths-of-cut, etc.) and tool 

parameters (e.g. dimensions, flutes, rake angles). Employing micro-EDM micro tools can be formed from polycrystalline 

diamond which may be utilized efficiently in machining of glass in ductile form [13-18]. The grooves in soda-lime glass 

and pockets in ultra-low expansion glass are made by micro machining utilizing PCD tools with conical tips. 

Many articles are published, and research works are done on machinability of Titanium alloys specifically on 

Ti6Al4V. But very less research work is done on Electro Discharge Machining of Ti6Al4V by using copper electrode by 

steady and rotary movement of electrodes. More study has to be carried out to optimize the performance in Rotary EDM 

on Ti-6Al-4V. In this study, the machining performance of Ti-6Al-4V has been analyzed using the copper electrode in 

both stationary and rotary mode of machining. 

 

2. Experimental Details 

2.1 Selection of Tool Material   

For machining of Titanium alloy Ti6Al4V in electro-discharge machine, copper has been chosen as the tool material. 

Copper is selected as a tool material as it has following characteristics: High electrical conductivity, sufficiently high 

melting point and easily available [19]. The tool diameter is taken as 10mm. 

 

2.2 Selection of Work Piece Material   
For this experimentation, Titanium alloy Ti6Al4V has been selected as a work piece material which having the 

following composition as shown in Table 1. 

 

Table 1 - Composition of Ti 6Al 4V 

Symbol Ti Al V C O N H 

Element Titanium Aluminium Vanadium Carbon Oxygen Nitrogen Hydrogen 

% by 

weight 

90.0 6.0 4.0 <0.1 <0.2 <0.05 <0.125 
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2.3 Experimental Setup  

Die-sinking type Electric Discharge Machine (Model: GF+ Agie Charmilles ED005 with servo-head) is used for 

experimentation. The copper electrode is connected with positive polarity to conduct the experiments. Commercial grade 

EDM oil (specific gravity= 0.763) was used as dielectric fluid. The pulse discharge current was applied in various steps 

in positive mode [20]. Fig.1 portrays the EDM experimental setup with stationary and rotary electrodes.  In this study 

three set of experiments have been conducted according to the design of experiment and average value of the responses 

are shown in the Table 3.  

 

    

Fig. 1 - Experimental setup of Electric Discharge Machining (a) with stationary copper electrode; (b) with rotary 

copper electrode 

 

2.4 Experimentation and Data Collection 

According to the Box-Behnken response surface design [21], the experiments are performed in three levels of process 

parameters such as current, pulse-on time and voltage to obtain material removal rate (MRR), tool wear rate (TWR) and 

surface roughness (Ra). This particular design involves 15 number of experiments. According to the previous literatures 

on EDM of titanium alloys, it has been observed that the above three process parameters have significant influence on 

MRR, TWR and Ra. Thus, the levels of these parameters are selected carefully keeping an eye on previous literatures and 

trial experiments. These process parameters with their levels, notations and units are displayed in Table 2. MRR and 

TWR are measured by following weight loss approach. For measuring of these two responses experimentally, a precision 

electronic balance weight machine is employed which has an accuracy of 1 mg. These two responses are computed by 

measuring the weight loss of workpiece before and after the experiment. (Eq. 1) and tool (Eq. 2), respectively. 

 

w

if

t

WW
MRR




        (1) 

 

t

if

t

TT
TWR




         (2) 

 

Where Wf and Wi are weights of workpiece before and after machining respectively. Tf and Ti are the weights of tool 

before and after machining respectively. t is the machining time. The density of Ti6Al4V titanium alloy is ρw = 4.41×10-

3 g/mm3 and density of copper electrode is ρt = 8.92 ×10-3 g/mm3. The measurement of SR (Ra) is performed with portable 

style type profilometer, Talysurf (Model: Taylor Hobson, Surtronic 3+), with parameters like cut-off length, Lc = 4 mm, 

sample length, Ls = 0.8mm and filter = 2CR ISO. These process parameters with their levels, notations and units are 

displayed in Table 2. The measured responses are provided in this Table 3.  

 

Table 2 - Control factors and their selected levels 

Control Factor Levels 

 1 2 3 Units 

A: Current 10 15 20 Amp 

B: Ton 100 150 200 sec 

C: Voltage 20 25 30 Volt 

 

a b 
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Table 3 - Experimental data during machining of Ti6Al4V using stationary copper electrode 

Test run 
Current 

(A) 

Ton 

(B) 

Voltage 

(C) 

MRR 

(mm3/h) 

TWR 

(mm3/h) 

Ra 

(µm) 

1 10 200 25 38.6 5.7 8.99 

2 10 150 20 169.3 6.5 2.50 

3 15 150 25 58.7 25.4 3.55 

4 15 100 30 29.1 12.2 2.40 

5 20 100 25 126.6 11.7 7.19 

6 20 150 30 115.1 9.5 2.52 

7 20 150 20 126.0 6.2 4.51 

8 15 200 30 6.1 1.8 5.55 

9 10 100 25 83.3 6.0 3.45 

10 15 150 25 58.7 25.4 3.55 

11 20 200 25 46.7 6.0 5.86 

12 15 150 25 58.7 25.4 3.55 

13 10 150 30 20.3 3.2 3.90 

14 15 200 20 46.7 9.2 4.81 

15 15 100 20 148.3 4.9 3.74 

 

3. Methodology 

3.1 Grey Relational Analysis: 

Grey Relational Analysis (GRA) is one of the most widely used statistical measurement technique in grey theory 

which analyses the uncertain and insufficient correlation between the key factor and other input parameters in a system 

[20-22]. Moreover, this technique has the ability to convert the multi-response optimization problem to single response 

optimization problem using few steps. In the present work, the RSM design of experiment with GRA is discussed. The 

steps of the GRA process was executed through the following steps: 

1. Normalising the performance measure results like MRR, TWR and SR for all the 15 numbers of experimental runs to 

avoid large variances in the data set.  

2. Computing the individual Grey Relational Coefficient (GRC) to showcase the correlation between the required and 

real experimental results. 

3. Calculating the overall Grey Relational Grade (GRG) by taking average of the three GRCs. 

4. Performing Analysis of Variance (ANOVA) statistical method on GRG and the input factors to uncover their effects 

on the performance measures. 

5. Finally, the optimum parametric levels are selected where the desired responses are obtained. 

In the current EDM experimentation, the desired values of MRR is “higher-the-better (HB)” criteria where as it is 

“lower-the-better (LB)” for TWR and SR. In this analysis, the normalization of MRR where the HB criterion was used 

expressed by Eq. (3), and when LB criterion was used on TWR and SR then, the normalization can be calculated as Eq. 

(4).  
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Where 
 kx

i

*

 and 
 ky

i  are the normalized and experimented data for ith experimental run using kth response. The 

smallest and largest values of 
 ky

i  for kth response are represented as min
 ky

i  and max
 ky

i  respectively.  

After pre-processing of the experimental data, the individual GRC (
 k

i


) for kth response in the ith experimental 

run can be expressed as Eq. (5). It demonstrates the degree of relationship between ideal value i.e.
 ky

0  and the 

observed value i.e.
 ky

i  
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Where 
 k

i0


 is the difference of absolute values between 
 ky

0  and 
 ky

i . max


, min
 are treated as the 

global maximum and minimum values of the different output factors dataset. The distinguishing factor (


) represents 

the weight of each response, and it varies between 0 to 1. This factor is usually selected by the decision makers using 

their own judgement and intelligence. If all the responses are given equal weightage then, 
33.0

 is preferred without 

any hesitation. After calculation of individual GRCs, the overall GRG (


) can be expressed using the Eq. (6).  
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The magnitude of GRG reflects the degree of close relationship between 
 ky

0  and 
 ky

i , or it is standard 

deviation of the ith experimental data from the reference data sets. The parameter combination relates to the higher GRG 

is the favourable one.  

 

3.2 Firefly Algorithm 

The firefly algorithm (FA) has been developed to address all types optimization related manufacturing problems 

successfully. As every metaheuristic algorithm have some restrictions, the FA has certain limitations on providing best 

solutions in few cases/problems [25]. In order to overcome these limitations and improvisation of results, the 

hybridization of various optimization methods has been gaining popularity in recent years. Xin-She Yang [26] has 

developed this nature inspired algorithm inspired from the rhythmic flashing behaviour of fireflies. This flashing 

characteristics of the tropical fireflies is due to the bioluminescence process. This flash works mainly for the two reasons 

i.e. to attract mating partners and to remain alert from the possible threat of potential prey. The degree of attraction of the 

fireflies is according to the intensity of flash lights. This light intensity (I) reduces when the distance between the two 

fireflies’ increases. It can be represented as: 

 

2
1

r
I 

               (7) 

 

Meanwhile, the attraction among the fireflies may be local or global according to the degree of absorption coefficient. 

The fireflies are further divided into subgroups based upon their light intensity. Thus, the neighboring fireflies swarm 

around locally. This algorithm provides efficient solution in case of multimodal optimization problem.  

The FA follows the three principles such as: 

1. The nature of all fireflies are unisex, and at a time, single firefly is pulled towards to other brighter fireflies 

irrespective of their sex. 

2. The degree of attractiveness of the fireflies is directly proportional to the brightness of the fireflies, and it also 

decreases if the distance between two fireflies’ increases. Thus, the less flashing fireflies will attract towards the brighter 

fireflies. The fireflies will move randomly if there is a tie between their flashing characteristics.  

3. The objective function is the brightness of the fireflies. 

It is a population based algorithm which can provide global optimum solution. In the current EDM problem, the 

objective function is acquired from the regression modelling of GRG. The fireflies represent the input factors, and they 

are randomly distributed over the defined search domain.  

In order to get most accurate solution, the relationship between light intensity (I) and distance between fireflies (r) 

is modified, and it is represented in Eq. (8) 
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      (8) 

 

Where 0
I

 is the light intensity, γ is the light absorption coefficient which controls the increase or decrease of light 

intensity 

The attractiveness (β) can be evaluated by a decreasing distance (r) function due to their degree of absorption of light 

in the medium as presented in Eq. (9)  
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Where β0 is the initial attractiveness value at r=0.  

The Cartesian or Euclidean distance between two fireflies like i and j at positions xi and xj can be represented as in 

Eq. (10). 
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      (10) 

 

Where xi,k and xj,k are the kth components of the spatial coordinate xi and xj of the ith and jth fireflies respectively, and 

d is the number of dimensions. 

The movement of ith firefly towards the brighter jth firefly can be determined from the Eq. (11).  
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The first term of the equation indicates present position of the firefly i. second term stands for attractiveness of the 

adjacent fireflies, and the last term denotes free random movement of a firefly when no brighter firefly is present. In most 

of the situations, the randomization parameter (α) is considered between 0 to 1. Likewise, the light absorption coefficient 

(γ) is selected between 0.1 to 10. 

 

4. Results and Discussions 

4.1 Experimental Data Analysis During Machining of Titanium Alloy Ti6Al4V Using 

Stationary Electrode 

Table 3 represents the data obtained from EDM experimentation. One of the objectives of this study is to determine 

a single parametric combination which will provide a compromised solution i.e. higher MRR and lower TWR and SR. 

ANOVA technique is employed in this study to substantiate the significance of process parameters on the responses. 

Thus, from this study, the most influencing parameter can be identified. A higher mean result consistently depicts a 

superior quality characteristic. Consequently, the domains of input factors which confirms the best mean result is chosen 

as optimum level. In this investigation, it is feasible to separate the impact of each EDM factors at various levels by 

averaging the mean results. Figs. 2, 3 and 4 address the main effects plot for MRR, TWR and SR individually. For a wide 

range of quality characteristics (i.e. LB or HB), the higher mean result is always preferred. It demonstrates that the 

changes of MRR, TWR and SR are more modest around the preferred target. 

 

 

Fig. 2 - Main effect plots for MRR 

 

ANOVA results are appeared in Tables 4, 5 and 6 for MRR, TWR and SR. This investigation has been performed 

with the assistance of statistical programming bundle MINITAB. It uses a hypothesis named as P-value (i.e. probability 

of significance). It is processed based on the determined F-value. At that point, this P-value is contrasted with alpha-
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level. When the P-value is under 0.05, it may be induced that the particular factor remarkably affects the quality 

characteristics at a confidence interval of 95%. The interaction effect among the process parameters is ignored in the 

current study.  

From Table 4, it tends to be deduced that the impact of current is seemed to be insignificant as its P-value is more 

than 0.05. Nonetheless, the most impelling parameter is the voltage followed by pulse-on time. These two elements have 

beneficial outcome on the MRR. In the meantime, ANOVA results of TWR in Table 5 uncovers that each factor 

essentially influence the response. It implies that the test domain is reasonable to catch the vigorous deviation in the 

process parameter combinations. Similarly, the ANOVA aftereffects of SR introduced in Table 6 explored the most 

affecting parameter as the pulse-on time. 

 

4.1.1 Data Analysis and Results by Grey Relational Technique 

The normalized experimental results are attained first to eliminate the enormous differences in the data collection 

set. The normalized outcomes for MRR, TWR and SR are determined by utilizing Eq. (2) and (3), and they have been 

outfitted in Table 7. For TWR and SR, lower-the-better (LB) and for MRR, higher-the-better (HB) conditions have been 

chosen. Quality loss estimates (Δ0i) identified with different quality characteristics have been given in Table 8. 

 

 

Fig. 3 - Main effect plots for TWR 

 

 

Fig. 4 - Main effect plots for SR 
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Table 4 - Analysis of variance results for MRR 

Source DF Adj SS Adj MS F-Value P-Value 

Current 2 5250.6 2625.30 3.17 0.097 

Ton 2 8895.0 4447.48 5.37 0.033 

Voltage 2 13764.6 6882.28 8.31 0.011 

Error 8 6622.2 827.77     

Total 14 34772.3       

 

Table 5 - Analysis of variance results for TWR 

Source DF Adj SS Adj MS F-Value P-Value 

Current 2 341.654 170.827 18.93 0.001 

Ton 2 296.970 148.485 16.45 0.001 

Voltage 2 346.516 173.258 19.20 0.001 

Error 8 72.205 9.026     

Total 14 931.249       

 

Table 6 - Analysis of variance results for SR 

Source DF Adj SS Adj MS F-Value P-Value 

Current 2 4.0904 2.0452 1.04 0.397 

Ton 2 20.7798 10.3899 5.28 0.035 

Voltage 2 5.6726 2.8363 1.44 0.292 

Error 8 15.7539 1.9692     

Total 14 47.3862       

 

Table 7 - Normalized results of each quality characteristics 

Experiment No. MRR  TWR SR 

Ideal sequence 1.0000 1.0000 1.0000 

1 0.1991 0.8347 0.0000 

2 1.0000 0.8008 0.9848 

3 0.3223 0.0000 0.8255 

4 0.1409 0.5593 1.0000 

5 0.7384 0.5805 0.2731 

6 0.6679 0.6737 0.9818 

7 0.7347 0.8136 0.6798 

8 0.0000 1.0000 0.5220 

9 0.4730 0.8220 0.8407 

10 0.3223 0.0000 0.8255 

11 0.2488 0.8220 0.4750 

12 0.3223 0.0000 0.8255 

13 0.0870 0.9407 0.7724 

14 0.2488 0.6864 0.6343 

15 0.8713 0.8686 0.7967 

 

Table 8 - Computation of Δ0i for each output 

Experiment No. MRR  TWR SR 

Ideal sequence 1.0000 1.0000 1.0000 

1 0.8009 0.1653 1.0000 

2 0.0000 0.1992 0.0152 

3 0.6777 1.0000 0.1745 

4 0.8591 0.4407 0.0000 

5 0.2616 0.4195 0.7269 

6 0.3321 0.3263 0.0182 

7 0.2653 0.1864 0.3202 

8 1.0000 0.0000 0.4780 

9 0.5270 0.1780 0.1593 

10 0.6777 1.0000 0.1745 

11 0.7512 0.1780 0.5250 
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12 0.6777 1.0000 0.1745 

13 0.9130 0.0593 0.2276 

14 0.7512 0.3136 0.3657 

15 0.1287 0.1314 0.2033 

 

The Eq. 6 has been used to figure out individual GRC for each quality characteristics, and this information are 

outfitted in Table 9. In this investigation, the weightage of each response is thought to be equivalent. Consequently, the 

distinguishing factor (


) has been taken as 0.33. These GRCs have been collected to assess the overall GRG utilizing 

Eq. 6. It addresses the multi-quality highlights of EDM attributes with the presumption that every quality is equally 

significant. The overall GRG is also introduced in Table 10. 

ANOVA analysis of GRG in Table 11 has uncovered that voltage is the most affecting parameter. Current and pulse-

on time are discovered to be unimportant parameters as their P-values are more than 0.05. In the current investigation, 

the multi-modal optimization issue has been changed over to a single-modal optimization issue utilizing the GRA. The 

regression modelling is likewise done to uncover the correlation between input parameters and overall GRG. In this 

study, the R2 is 0.9571 and adjusted R2 is found to be 0.9129. The R2 demonstrates that the model can clarify the difference 

in GRG up to 95.71%, and the adjusted R2 represents the number of predictors in the regression model. The regression 

equation is introduced in Eq. 12. 

 

Table 9 - Individual GRC of each performance (with ψ=0.33) 

Experiment No. MRR (ξ1)  TWR (ξ2) SR (ξ3) 

Ideal sequence 1.0000 1.0000 1.0000 

1 0.2918 0.6663 0.2481 

2 1.0000 0.6236 0.9560 

3 0.3275 0.2481 0.6541 

4 0.2775 0.4282 1.0000 

5 0.5578 0.4403 0.3122 

6 0.4984 0.5028 0.9477 

7 0.5543 0.6390 0.5076 

8 0.2481 1.0000 0.4084 

9 0.3851 0.6496 0.6744 

10 0.3275 0.2481 0.6541 

11 0.3052 0.6496 0.3859 

12 0.3275 0.2481 0.6541 

13 0.2655 0.8476 0.5918 

14 0.3052 0.5128 0.4743 

15 0.7195 0.7153 0.6187 

 

Table 10 - Evaluation of overall GRG 

Experiment No. Overall grey relational grade (γ) 

1 0.4021 

2 0.8599 

3 0.4099 

4 0.5686 

5 0.4368 

6 0.6497 

7 0.5670 

8 0.5522 

9 0.5697 

10 0.4099 

11 0.4469 

12 0.4099 

13 0.5683 

14 0.4308 

15 0.6845 
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Table 11 - Analysis of variance results for overall GRG 

Source DF Adj SS Adj MS F-Value P-Value 

Current 2 0.033739 0.016869 2.04 0.193 

Ton 2 0.024999 0.012499 1.51 0.278 

Voltage 2 0.115954 0.057977 7.00 0.017 

Error 8 0.066243 0.008280     

Total 14 0.238457       

 

GRG =  8.319 −  0.2214 A −  0.00678 B −  0.4433 C +  0.003123 A2 −  0.000010 B2 +  
0.006929 C2 + 0.000178 A × B +  0.003743 A × C +  0.000237 B × C                                         (12) 

                              

4.1.2 Data Analysis and Results by Firefly Algorithm 

Firefly Algorithm is a metaheuristic procedure, and it is executed in the current investigation utilizing the MATLAB 

programming software. This algorithm is tried with different population sizes and emphases for getting the ideal solution 

of GRG with the optimal parametric conditions. As the current study includes a quadratic regression model subsequently, 

it is a perplexing situation. The population size of 25 fireflies and 40 iterations are utilized in this calculation to get ideal 

parametric combination, and there is no much change in the convergence nature of the solution. The optimal parametric 

combination and the ideal solution is accomplished at 30th iteration as outlined in Fig. 5. 

 

 

Fig. 5 - Overall GRG convergence plot using FA 

 

4.1.3 Confirmatory Test Results 

In the wake of getting the ideal process parametric settings from the main effects plot, the subsequent stage is to 

foresee and check the improvement of performance measure results utilizing this condition. Table 12 depicts the 

correlation results of the predicted GRG with their related experimental values by utilizing the ideal EDM machining 

conditions. There is a decent arrangement between these two outcomes has been noticed. This implies that the RSM 

technique and the GRA coupled FA hybrid methodology corresponding to manufacturing process optimization have been 

effectively applied to this intricate problem. 

 

Table 12 - GRA coupled FA confirmation test results 

 
Initial Machining 

Parameters 

Optimal Machining 

Parameters 

  Prediction Experiment 

Level A1B1C2 A2B3C2 A2B3C2 

MRR 83.3 72.4 72.6 

TWR 6 4.2 4.3 

SR 3.45 9.3 9.4 

Overall grey 

relational grade 
0.33 0.31 0.56 

Improvement in Overall grey relational grade = 0.23 
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4.2 Experimental Data Analysis During Machining of Titanium Alloy Ti6Al4V Using Rotary 

Tool Electrode  

The experimentation was carried out in a die sinking electro-discharge machine, Agiecharmiles FORM S-350, 

manufactured by GF machining solutions, Switzerland. In this case, the same copper tool is connected with negative 

polarity and the tool rotation was fixed at100 rpm for all set of experiments. A suitable fixture was used to handle the 

work material as shown in Fig.2(b). In this experimentation, same input parameters as well as same levels of input 

parameters are chosen. The experimental results of machining on Ti6Al4V using rotary electrode copper are shown in 

Table 13. 

 

4.2.1 Data Analysis and Results by Grey Relational Technique 

The experimental results are analysed as like the previous section. By using Grey relational analysis, the overall grey 

relational grade has been found out for all three responses (MRR, TWR and Surface roughness) as shown in the Table 

14. ANOVA analysis results of the overall grey relational grade is presented in Table 15. It has revealed that voltage is 

the most influencing factor. Current and pulse-on time are found to be insignificant factors as their P-values are more 

than 0.05.  

The regression model equation for the rotary electrode mode is presented in Eq. 13.  

 

GRG = 0.4689 + 0.0389 A + 0.0056 B + 0.0852 C - 0.0199 A2  

+ 0.0567 B2 - 0.0711 C2- 0.0695 A×B + 0.0225 A×C + 0.0177 B×C  (13) 

 

Table 13 - Observation data with rotary copper electrode on extruded Ti6-Al-4V work material 

Sl. no. Ip(A) Ton(µs) V MRR 

(mm3/h) 

EWR   

(mm3/h) 

Ra(µm) 

1 10 200 25 57.3 8.072 3.405 

2 10 150 20 28 5.381 2.274 
3 15 150 25 46.7 4.691 3.09 

4 15 100 30 53.3 5.381 3.11 

5 20 100 25 60 13.45 3.599 

6 20 150 30 122.7 21.52 3.608 

7 20 150 20 101.3 10.76 3.334 

8 15 200 30 48 5.381 3.131 

9 10 100 25 121.3 21.52 3.626 

10 15 150 25 70.7 10.76 3.722 

11 20 200 25 56 2.691 3.794 

12 15 150 25 240 23.22 2.644 

13 10 150 30 218.7 24.22 3.358 

14 15 200 20 24 3.691 2.546 

15 15 100 20 85.3 10.76 4.098 

 

Table 14 - Evaluation of overall grey relational grade 

Experiment No. Overall grey relational grade (γ) 

1 0.399006 

2 0.658994 

3 0.491416 

4 0.473421 

5 0.331252 

6 0.320952 

7 0.389955 

8 0.469559 

9 0.319069 

10 0.352712 

11 0.520963 

12 0.625470 

13 0.458359 

14 0.604497 

15 0.343922 
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Table 15 - ANOVA analysis results for overall grey relational grade 

Source DF Adj SS Adj MS F-Value P-Value 

Current 2 0.01358 0.006789 0.71 0.518 

Ton 2 0.01212 0.006062 0.64 0.553 

Voltage 2 0.07679 0.038393 4.53 0.041 

Error 8 0.07606 0.009508   

Total 14 0.1809    

 

4.2.2 Data Analysis and Results by Firefly Algorithm 

Like previous section 5.1.2, the firefly algorithm is utilized to find out the optimal parametric combination.  In this 

case also, population size of 25 fireflies and 40 iterations are utilized in this calculation to get ideal parametric 

combination. It has been found that convergence is achieved at 35th iteration as shown in the Fig.6. 

 

4.2.3 Confirmatory Test Results 

After getting the optimal parameter settings from the main effects plot, the next step is to predict and verify the 

enhancement of performance characteristics using this condition. Table 16 shows the comparison results of the predicted 

GRG with their corresponding experimental values by using the optimal machining conditions. There is a good agreement 

between these two results has been observed. This signifies that the RSM method and the GRA coupled FA hybrid 

approach in relation to product/process optimization have been successfully applied to this complex problem. It has been 

found that the overall grey relational grade improves as 0.44. 

 

 

Fig. 6 - Overall GRG convergence plot using FA 

 

Table 16 - Confirmation test results for GRA coupled FA 

 
Initial machining 

parameters 

Optimal machining 

parameters 

  Prediction Experiment 

Level A1B3C2 A2B3C2 A2B3C2 

MRR 57.3 61.4 62.4 

TWR 8.072 7.8 7.2 

SR 3.405 2.9 2.3 

Overall grey 

relational grade 
0.39 0.43 0.83 

Improvement in Overall grey relational grade = 0.44 

 

4.2.4 Scanning Electron Micrographs 

To check the surface integrity of machined surface scanning electron microscope (Model: Zeiss-Supra 55) is used. 

SEM micrographs have been taken in the optimized parametric setting in both stationary and rotary EDM process. It is 

observed that surface texture in rotary mode is finer than stationary mode as shown in the Fig.7a &7b. Furthermore, it 

has been found that stationary tool EDM has a greater crater size as compared to rotary tool EDM because debris of spark 

area is effectively cleaned.  
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a 

 

b 

 

Fig. 7 - (a) Scanning electron micrograph showing stationary tool EDMed work piece at optimized parametric 

setting; (b) rotary tool EDMed work piece at optimized parametric setting 

 

5. Conclusions 

Major conclusions of this experiment can be summarised as follows: 

 The optimal parametric settings are uncovered by the RSM DOE procedure to accomplish acceptable features 

of EDM test that yields outputs like MRR, TWR and SR. The voltage followed by pulse-on time are the two 

significant elements which impact MRR. Each input factor is significant in TWR investigation. Similarly, pulse-

on time is the most impacting parameter which influence the SR result. RSM strategy is an effective 

manufacturing process optimization method which can give significant outcomes in a limited number of test 

runs. 

 The MRR, TWR and SR quality characteristics are combined together to a single response by GRA technique. 

The quadratic regression modelling between the GRG and the input parameter shows 0.9571 R2 value. Thus, it 

explains the variance in GRG up to 95.71%.  

 This work uncovers the exactness and quick convergence offered by FA. As this EDM experimentation is a 

multi-modal problem, a novel optimization method is recommended in the current research work by pairing the 

GRA with FA. In this method, an optimal solution is reached with 40 iterations, and the ideal quality attributes 

is acquired. 

 Rotary Electrode in EDM on Ti6Al4V improves machining performance. MRR, TWR and surface finish.  
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