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Abstract

Real-world facility planning problems often require to tackle simultaneously network connec-

tivity and zonal requirements, in order to guarantee an equitable provision of services and an

efficient flow of goods, people and information among the facilities. Nonetheless, such chal-

lenges have not been addressed jointly so far. In this paper we explore the introduction of ad-

vanced network connectivity features and spatial-related requirements within Covering Location

Problems. We adopt a broad modelling perspective, accounting for structural and economic as-

pects of connectivity features, while allowing the choice for one or more facilities to serve the

facility networks as depots, and containing the maximal distance between any active facility and

such depot(s). A novel class of Multi-objective Covering Location problems are proposed, util-

ising Mixed Integer Linear Programming as a modelling tool. Aiming at obtaining efficiently

the arising Pareto Sets and providing actionable decision-making support throughout real plan-

ning processes, we adapt to our problem the robust variant of the AUGMEnted ε-CONstraint

method (AUGMECON-R). Furthermore, we exploit the mathematical properties of the proposed

problems to design tailored Matheuristic algorithms which boost the scalability of the solution

method, with particular reference to the case of multiple depots. By conducting a comprehensive

computational study on benchmark instances, we provide a thorough proof of concept for the

novel problems, highlighting the challenging nature of the advanced connectivity features and

the scalability of the proposed Matheuristics. From a managerial standpoint, the suitability of

the proposed work in responding effectively to the motivating needs is showcased.

Keywords: Covering Location, Networks, Multi-objective, Matheuristic, Augmented

ε-constraint.

1. Introduction

The integration of spatial and connectivity modelling features within classic Location Anal-

ysis problems allows for extending their practical impact and tackling in a more accurate manner

many classes of decision-making problems occurring in both the private and public sectors (Ko

et al., 2015). The aim of the present research is to enable the use of optimisation-based decision
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support methods for those real-world situations that require to optimally locate a set of facili-

ties whilst coping with advanced network connectivity features and zonal requirements arising

from specific administrative, managerial, and operational needs. Some natural examples of such

situations take place for instance in the field of Healthcare Management: e.g. the adoption of

location models is meant to support an optimal design of large scale vaccination campaigns or

to efficiently organise a massive collection of medical samples from a large population for anal-

yses. In the former case, in order to meet the immunisation demand of a given community, it

is necessary to install one or more vaccination centres for each administrative district; addition-

ally, each active centre needs to be provided with an efficient and prompt supply of vaccines

(Shukla et al., 2022). As witnessed during the recent Covid-19 pandemic, such a provision poses

a number of daunting challenges in terms of cold supply chain management: indeed, most of the

adopted vaccines require very low conservation temperatures, making it paramount to contain

the trip length - and hence the travel time - from the logistics depots to the vaccination centres.

In the latter case instead, due to the specimens perishable nature, to ensure valid mass screening

it is not only necessary to install one or more sample collection units within each administrative

district, but also to guarantee a timely and quick delivery of samples to one or more facilities

equipped as analyses laboratory. Even in Waste Management, the location of facilities providing

fundamental public services has to be designed addressing zonal requirements and guaranteeing

suitable connectivity of the resulting network of facilities. For instance, this is the case for the

location of Household Waste Recycling Centres, which provide a reuse and recycling service to

the residents of municipal districts (WRAP, 2018a,b). These centres receive large quantities of

selected materials that cannot be collected by the door-to-door system, and, once sorted, the col-

lected waste is shipped to end points (e.g. landfills and incinerators) via trucks. When it comes

to transport hazardous waste, it is of paramount importance to limit the trip length to the final

destinations, given the dangerous nature of the materials and the fact that transport generally

takes place on public roads, highways and railways (EPA, 2022).

Indeed, in all these examples the zones are intended as administrative districts or municipal-

ities; this choice is instrumental at addressing all those real-world problems arising, for instance,

when public authorities, such as local or regional councils and territorial authorities, need to cope

with the optimal design of public facilities networks, securing as much as possible equity and

quality in the service provision across different municipalities, counties or district councils.

These examples showcase the potential benefits deriving from integrating classic Covering

Location problems with joint zonal requirements and advanced connectivity features while lo-

cating a set of facilities and selecting among them special nodes serving as depots. More in

general, spatial equity and zonal distribution represent major concerns to address when locating

either desirable or obnoxious facilities in widespread areas characterised by local and regional

divisions, including health districts, counties, and neighbourhoods. Disregarding these types of

constraints might result for instance in solutions that favour urban areas and those with a high

demographic density to the disadvantage of rural areas (Chukwusa et al., 2019).

Before proceeding with an overview of related literature, we would like to clarify that in the

rest of the paper, the terms located and active will be used as synonyms when referring to in-

stalled facilities. In the extant literature, spatial-related requirements have been addressed only

for a restricted subclass of Location problems: in their seminal paper Revelle and Elzinga (1989)

formulated the p-median problem in which the reference area is divided in non-overlapping zones

and, for each zone, at least one facility has to be located. Also, in their model, each active facility

is enabled to cover only the demand points lying in the corresponding zone. By contrast, demand

can be covered by the nearest active facility - independently on the zone - in the m-median and
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m-center problems defined in Berman et al. (1991). In addition, they addressed the case of over-

lapping and not contiguous zones. Instead, Church (1990) modelled a variant of the p-median

problem in which regional requirements are employed to limit the number of facilities in each

zone. Later on, Gerrard and Church (1994) addressed this same problem with a Multi-objective

formulation, so as to detect a trade-off between efficiency and equity. Additionally, Gerrard

and Church (1995) generalised the problem in Church (1990) by considering overlapping zones,

while Murray and Gerrard (1997) also included capacities for facilities in order to encompass

workload balance.

On the other hand, connectivity features in Facility Location are utilised to enable efficient

flows of goods, people or information across the set of located facilities. Typically, this is ob-

tained through constraints that refer to distance-based properties within located facilities: e.g.

a threshold on the Euclidean distance between two facilities is adopted as a tool to improve the

quality of the overall connections in Cherkesly et al. (2019). Additionally, the description of Cov-

ering and Median Location problems with interconnected facilities is formalised in that paper.

Indeed, connectivity features in Location typically resort to utilising specific graph topologies;

in this regard, a reference paper is the work of Demaine et al. (2009) on the design of a tree-

structure linking forest fire-fighters. Later on, the same environment was employed in Romich

et al. (2015) to define a connected placement of sensors. More recently, Blanco and Gázquez

(2021) analysed different topological structures for the continuous Maximal Covering Location

Problem with interconnected facilities.

However, in the scientific literature, connectivity features in Facility Location have been

addressed primarily either by considering the distances between allocated demand and located

facility or from routing-related and structural standpoints, whilst seeking to minimise service

and/or installation costs. Nonetheless, the exploration of spatial-related requirements and con-

nectivity constraints occurred so far only for a limited range of Location problems and no con-

tributions have yet considered them jointly. Additionally, our analysis of the literature revealed

the following gaps.

G1. There exists an evident lack of a joint perspective accounting for the structural, economic

and operational aspects of connectivity features in Facility Location.

G2. In connectivity features, no measure has yet been introduced to contain the maximal dis-

tance, in the network connecting located facilities, between each located facility and the

one acting as root of the network.

G3. The typical assumptions made on the network connecting active facilities seem too restric-

tive as these rely on one single predetermined facility acting as root node and feeding all

the located facilities.

With these considerations in mind and aiming at representing and addressing realistic and promi-

nent challenges, in this paper we incorporate zonal requirements and advanced connectivity fea-

tures into a multiple objective framework for a key class of Location problems. In particular,

with reference to the highlighted gaps, mathematical modelling features are introduced to:

1. embed interconnection costs among the objective functions;

2. extend the range of criteria considered to assess the quality of facility interconnection;

3. allow for the selection of single or multiple nodes (i.e. facilities) acting as root(s) (i.e.

depots or distribution centres) for the underlying network of active facilities.

3
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Two original problems are introduced and mathematically characterised: the Multi-objective

Covering Location Problem with Zonal Requirements and Shortest Path Tree of Active Facilities

(MoCLP-ZSPT), and the Multi-objective Covering Location Problem with Zonal Requirements

and Shortest Path Forest of Active Facilities (MoCLP-ZSPF). In both cases, the aim is to de-

termine an optimal location of facilities with one facility being active within each zone, while

guaranteeing the minimisation of the overall costs and the limitation of the maximum length of

any path from root to destination in the underlying network of active facilities. Additionally,

the MoCLP-ZSPT entails the choice of one root, while multiple roots can be installed in the

MoCLP-ZSPF. Figure 1 shows a feasible solution for an instance of the MoCLP-ZSPT.

Root facility (depot/distr. centre)

Facility site with a located facility

Facility site without a located facility

Covered demand node

Not covered demand node

Edge connecting two located facilities

Figure 1: Region partitioned in zone; the figure shows the shortest path tree connecting a set of active facilities (blue

triangles) and depicts in green the demand nodes covered by these facilities.

Specific contributions of the present work are:

• the definition of two novel Multi-objective problems, to introduce and concurrently repre-

sent advanced network connectivity features and zonal requirements for the set of located

facilities within Covering Location problems;

• a complexity characterisation of the proposed problems along with mathematical formula-

tions based on Multi-objective Mixed Integer Linear Programming (MILP) models;

• the adoption and tailored implementation of the robust version of the Augmented ε-constraint

framework (AUGMECON-R) (Nikas et al., 2020), as a tool for an exact yet efficient ex-

ploration of the Pareto Set for medium sized instances;

• an original Heuristics exploiting the mathematical properties of the considered problems

to obtain good quality approximations of the nadir points;

• original tailored Matheuristic algorithms exploiting the mathematical properties of the con-

sidered problems to boost the scalability of the solution approach, thus allowing to tackle

large size instances and particular configurations;

• a thorough computational experimentation conducted on benchmark instances aimed at:

providing a proof of concept of the proposed models, detecting which problem features

result most challenging and exploring the scalability of the solution approaches;
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• the optimal design of connected networks of located facilities providing maximal coverage

for demand of services while accounting for economic, strategic and operational aspects

of the interconnections.

In order to foster a smooth and progressive understanding of the novel problem setting, along

with its modelling features, we first introduce the MoCLP-ZSPT, namely the version of the prob-

lem where only one root (depot or distribution centre) is encompassed. In Section 2 we detail

the problem and propose a MILP formulation, whilst Section 3 outlines the proposed solution

frameworks and Section 4 presents the computational experiments, along with a thorough anal-

ysis of the obtained results. The more general and convoluted MoCLP-ZSPF is then presented

in Section 5 providing a mathematical formulation, detailing the ad-hoc designed Matheuristic

procedure for this problem and reporting the related computational experiments. Conclusions

and future lines of research are given in Section 6.

2. The Multi-objective Covering Location Problem with Zonal Requirements and Shortest

Path Tree of Active Facilities

The aim of this Section is to introduce the Multi-objective Covering Location Problem with

Zonal Requirements and Shortest Path Tree of Active Facilities (MoCLP-ZSPT). Specifically, in

Section 2.1 we provide a description as well as a complexity characterisation of the problem,

while in Section 2.2 a Multi-objective MILP formulation is presented.

2.1. Problem Description

Given a region divided into K non-overlapping zones, a set of facilities has to be located in

order to satisfy demand of service for that region. Formally, let G = (N, E) be an undirected

graph, with N = I ∪ J, and I ∩ J = ∅, where I denotes the set of demand nodes and J denotes the

set of facility sites or candidates. Differently from the related literature where the root is a fixed

candidate (see e.g. Cherkesly et al. (2019)), we assume that each facility site can potentially play

the role of root within the network of active facilities, with the roots being defined as follows.

Definition 1. A root facility is a special (active) facility which is tasked to serve as a depot for

active facilities or to feed them as a distribution centre. Accordingly, in the following the terms

root and depot are used as synonyms. Note that with this definition the root facility only provides

an additional service to the network of facilities. This means that, from a demand perspective,

all facilities are of the same type.

Additionally, let {Ck}k=1...K denote the partition of the set of nodes induced by the non-

overlapping zones, and suppose that each subset contains at least one demand node and one

candidate, as stated in (1):

∪̇k≤KCk = N, and Ck ∩ I , ∅, Ck ∩ J , ∅ ∀k ≤ K. (1)

Besides, E = EIJ ∪ EJ where EIJ = I × J contains all the edges defining potential assignment of

demands to facilities, while EJ ⊂ J× J contains all the edges connecting two distinct candidates.

It is worth emphasising how this leads to the subgraph GJ = (J, EJ) being complete.

We assume that each edge [ j, v] ∈ EJ is labelled with a non-negative cost c jv and that these

labels verify the triangular inequality which is a quite common hypothesis in the literature on

Location Problems (Laporte et al., 2019).

5
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Let d : EIJ 7→ R
+ denote the (e.g. Euclidean) distance function; namely d([i, j]) = di j denotes

the distance from demand node i ∈ I to candidate j ∈ J; then the set of candidates which can

cover the demand in i is Ni = { j ∈ J | di j ≤ S }, where S is the coverage radius, i.e. the distance

beyond which a demand node is considered uncovered. Additionally, let h : I 7→ R
+ be the

demand function, e.g. hi is the number of users to serve at node i, and let s : J 7→ R
+ be the

non-negative facility activation cost function. Table 1 summarizes the introduced notations.

Table 1: Summary of notations for the description of the MoCLP-ZSPT.

I set of demand nodes di j distance between nodes i ∈ I and j ∈ J

J set of facility sites Ni set of candidates able to cover demand in i ∈ I

EIJ set of edges connecting nodes of I and J hi value of demand at node i ∈ I

EJ set of edges connecting distinct nodes of J s j activation cost for facility j ∈ J

c jv non-negative cost label for [ j, v] ∈ EJ Ck subset of nodes corresponding to kth zone

S coverage radius K number of zones

The MoCLP-ZSPT is based on the following set of decisions:

• selecting exactly one facility to be located for each zone;

• choosing the root among the located facilities (cf. Definition 1);

• selecting a tree stemming from the above root and connecting all the located facilities.

The decision-making process is driven by the pursuit of the following multiple objectives:

1. maximisation of the covered demand;

2. minimisation of the overall service costs, including the costs of installing the facilities and

those for connecting each active facility to the root;

3. minimisation of the maximum length of any path, in terms of connection costs, from the

selected root to any leaf (i.e. active facility) in the tree.

It is worthwhile highlighting the novelty and relevance of entailing the choice of the root node

in the decision-making process, given its impact on the structural aspects of the interconnection

of facilities and the related economic costs. Furthermore, in the extant literature no contributions

cope with the length of paths from the prescribed root to the active facilities, although this clearly

affects the performance in sending flows of goods or information along the network of active fa-

cilities. By contrast, in the MoCLP-ZSPT we bridge this gap by containing the maximum length

of paths from the root to the active facilities. In particular, since the optimisation of service costs

and maximum path length is aimed at enhancing the above mentioned network performance, we

assume that there is no extra cost to pay when a facility also serves as a depot/distribution centre

for the network of active facilities. Indeed, this assumption leads to the root choice having an

economic impact in terms of connection costs.

Lemma 1. The MoCLP-ZSPT is NP-hard.

Proof. Suppose that K = 1, namely the region is not partitioned; then, since the root needs not

be an active facility, only the advanced connectivity features need to be addressed.

Let us assume that the edge labels c and the facility activation cost function are both null.

With these hypotheses, the choice of the single facility to activate (because K = 1) and the one

6
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of the root do not affect the objectives 2. and 3. listed above. Namely, the decision-making

process reduces to selecting the facility which maximises the covered demand. Therefore, the

MoCLP-ZSPT reduces to a Maximal Covering Location Problem (MCLP) with p = 1. Then,

MoCLP-ZSPT is NP-hard since otherwise the MCLP would be tractable, while it is well-known

that this problem is NP-hard (Megiddo et al., 1983).

2.2. Arc-Flow Multi-objective MILP Formulation

In this Section, we detail a mathematical formulation for the MoCLP-ZSPT; in particular,

the proposed MILP model relies on the use of flow variables (Landete and Marı́n, 2014) since,

as reported in Cherkesly et al. (2019) they allow to obtain a more compact formulation of the

tree-structure requirements. At this purpose, we consider the natural orientation of the edges in

EJ , obtained by splitting each [i, j] ∈ E j in two anti-parallel arcs (i, j) and ( j, i). Then, denoting

with AJ the corresponding set of arcs, the cost function c is easily extended on AJ by symmetry,

letting c((v, j)) = c(( j, v)) = c([v, j]). Additionally, ∀ j ∈ J let FS ( j) = {v ∈ J : ∃( j, v) ∈ AJ}
denote the forward star of node j, and BS ( j) = {v ∈ J : ∃(v, j) ∈ AJ} denote its backward star.

The following variables are adopted to formulate the MoCLP-ZSPT:

1. binary facility location variables x j such that x j = 1 if a facility is located in j, ∀ j ∈ J, ;

2. binary demand coverage variables yi, such that yi = 1 if demand node i is covered, ∀i ∈ I;

3. binary root selection variables z j, such that z j = 1 if facility in j serves as root, ∀ j ∈ J;

4. binary edge activation variables ei j, with ei j = 1 if edge [i, j] connects active facilities i

and j, ∀[i, j] ∈ EJ;

5. non-negative flow variables f v
i j

defined ∀(i, j) ∈ AJ and ∀v ∈ J, denoting the amount of

flow sent from root to facility in v through arc (i, j) ∈ AJ .

It is worth emphasising that the MoCLP-ZSPT is intrinsically a Multi-objective problem,

given the inherently conflicting nature of the goals to be pursued in it, namely: maximisation

of demand coverage, minimisation of service costs, and minimisation of maximum path length.

Thus, the model encompasses three objective functions:

1. FDC =
∑

i∈I hiyi, representing the demand coverage;

2. FS C =
∑

v∈J

∑

(i, j)∈AJ
ci j f v

i j
+
∑

j∈J s jx j, denoting the overall service costs, obtained by sum-

ming up the interconnection costs, namely the cost of the shortest path tree of active facil-

ities w.r.t. the cost function c, and the facility activation costs;

3. FPL = maxv∈J

[

∑

(i, j)∈AJ
ci j f v

i j

]

, constituting the maximum length of any feasible path.

Indeed, the minimisation of FPL would yield a min-max objective function, which we linearised

by introducing: one additional non-negative real variable P to minimise, and additional con-

straints
∑

(i, j)∈AJ
ci j f v

i j
≤ P, defined ∀v ∈ J.

The resulting Multi-objective MIP is given by (2) where (2a) maximises the covered demand,

(2b) minimises the overall costs, and (2c) minimises the maximum length of any solution path.

(MoCLP-ZSPT) max FDC (2a)

min FS C (2b)

7
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min FPL (2c)

subject to
∑

j∈J

z j = 1 (2d)

z j ≤ x j, ∀ j ∈ J (2e)
∑

j∈Ni

x j ≥ yi, ∀i ∈ I (2f)

∑

j∈J∩Ck

x j = 1, ∀k = 1 . . .K (2g)

ei j ≤ xi, ∀[i, j] ∈ EJ (2h)

ei j ≤ x j, ∀[i, j] ∈ EJ (2i)

f v
i j + f v

ji ≤ ei j, ∀[i, j] ∈ EJ ,∀v ∈ J (2j)

f v
i j ≤ 1 − zv, ∀(i, j) ∈ AJ ,∀v ∈ J (2k)

f v
ji≤ 1 − zi, ∀i, j, v ∈ J, j , i (2l)

f v
i j ≤ xv, ∀(i, j) ∈ AJ ,∀v ∈ J (2m)

f v
vi≤ 1 − xv, ∀i, v ∈ J, i , v (2n)

∑

j∈FS (i)

f v
i j −

∑

j∈BS (i)

f v
ji =















(zi − 1)xv if i = v,

zi xv otherwise.
∀i, v ∈ J (2o)

∑

j∈FS (i)

f v
i j≤ xv, ∀i, v ∈ J (2p)

∑

j∈BS (i)

f v
ji≤ xv, ∀i, v ∈ J (2q)

∑

[i, j]∈EJ

ei j =
∑

j∈J

x j − 1, (2r)

x j, z j ∈ {0, 1}, ∀ j ∈ J (2s)

yi ∈ {0, 1}, ∀i ∈ I (2t)

ei j ∈ {0, 1}, ∀[i, j] ∈ EJ (2u)

f v
i j ≥ 0. ∀(i, j) ∈ AJ ,∀v ∈ J (2v)

Constraints (2d)-(2e) state that exactly one active facility is located as root of the shortest path

tree. Constraints (2f) ensure that a node i ∈ I is covered only if at least one facility is located in

a candidate in Ni, while (2g) state that exactly one facility is located within each zone. (2h)-(2n)

are the activation constraints; namely, (2h)-(2i) state that both ends of any active edge of EJ are

active facilities; (2j) couple the f variables with the corresponding e ones stating that: flow can

be sent only along activated edges, and each edge can be traversed only in one direction. Finally,

(2k)-(2l) couple the f variables with the z ones, stating that no flow can be sent to the facility

designated to be the root of the shortest path tree, and that no flow can enter the root facility.

Similarly, Constraints (2m)-(2n) couple the f variables with the x ones and state that flow can be

sent only to a located facility, and that no flow can leave the destination node. Then, (2o) are the

typical flow-balancing constraints, stating that in each solution path the unit flow can be sent only

from the root node to the destination node. Additionally, (2p)-(2q) ensure that in each solution

path, flow can not make sub-tour on active edges (which are actually the only possible sub-tour

due to constraints (2r), which define the dimension of the tree. (2s)-(2u) are binary constraints

for the x, y, z and e variables, and (2v) are the non-negativity constraints for the flow variables.

Remark 1. Though in principle the root needs not be an active facility, for the purpose of this

paper, we always assume that this is the case. Anyway, when the root represents a distribution

8
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centre rather than a depot, it might be functional to let it coincide with a candidate rather than an

active facility, by replacing (2e) with z j ≤ 1− x j, ∀ j ∈ J, and (2r) with
∑

[i, j]∈EJ
ei j =

∑

j∈J x j.

Remark 2. Zonal requirements refer to a partition of the area for administrative, managerial and

operational aspects of service provision, thus only affecting location and connection of facilities.

Constraints (2g) do not pose any condition on the coverage of demand for a given zone: demand

node i ∈ Cl ∩ I might be covered by a facility located in zone Cp with l , p, l, p ≤ K. As such,

we are assuming that a demand node can be covered by a facility located within the coverage

radius in any zone. Different assumptions can be introduced for specific applications where a

more restrictive setting is needed.

Notably, non linear Constraints (2o) can be linearised by modelling each product zixv with

a non-negative variable kiv, ∀i, v ∈ J (Fortet, 1959) and including Constraints (3) in the model

(Glover and Woolsey, 1974), thus adopting the so-called standard linearisation (Mallach, 2020).

kiv ≤ zi, kiv ≤ xv, kiv ≥ zi + xv − 1. (3)

With this linearisation, a Multi-objective MILP formulation is effectively obtained for the

MoCLP-ZSPT. In particular, the resulting model encompasses: |I| + (|J|2 + 3|J|)/2 binary vari-

ables, |J|3 + 1 continuous variables, and 3 + |I| + K + 9(|J|2 + |J|3)/2 linear constraints.

3. Computing Pareto Optimal Solutions

In Section 2.2 we highlighted that the nature of the MoCLP-ZSPT is inherently Multi-

objective as it contemplates different and possibly conflicting managerial perspectives of the

organisation or department installing the facilities and the one operating the service. Therefore,

to enable optimal decision-making, an accurate representation (or even a complete identification)

and analysis of the Pareto optimal solutions is needed. Namely, Pareto optimal (or efficient/non-

dominated) solutions are those solutions of the problem for which it is not possible to improve

strictly in one objective function without worsening at least one of the others. In the following

we will refer to the set of all these solutions as the Pareto Set (Mavrotas, 2009).

At this purpose, we propose a twofold contribution to the solution process: firstly, we adapt

the robust version of the Augmented ε-constraint generation method, i.e. AUGMECON-R (Nikas

et al., 2020) as an efficient framework to explore the corresponding Pareto Sets. As a second con-

tribution we exploit the mathematical properties of the introduced problems to design a tailored

Matheuristic algorithm which is integrated within the AUGMECON-R scheme to boost scala-

bility of such solution method. Section 3.1 briefly outlines the framework of AUGMECON-R,

while Section 3.2 gives a thorough description of the proposed Matheuristics.

3.1. AUGMECON-R Framework for the MoCLP-ZSPT

The Augmented ε-constraint method has proven to be effective when the target problem

includes discrete variables in which case the size of the Pareto Set is finite (Mavrotas, 2009), as

for the MoCLP-ZSPT. It produces (an approximation of) Pareto Sets for a given Multi-objective

Problem (MOP) by iteratively solving - exactly or heuristically - a single-objective optimisation

problem (SOP), obtained from the MOP.

In particular, the improved version, namely AUGMECON2 (Mavrotas and Florios, 2013),

avoids the resolution of redundant SOPs by leveraging the information on the slack/surplus vari-

ables featured in the formulation of the SOP. Recently, Nikas et al. (2020) designed a robust

9
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variant called AUGMECON-R, effectively addressing some of AUGMECON2 weaknesses. Its

paradigm is implemented through an integer (p − 1)-dimensional array flag, with p being the

number of objective functions, which is initialised with zero values. At each iteration: if the

corresponding flag value is zero the SOP is solved; otherwise a number of jumps equal to the

value of the flag within the loop used to vary the ε values of the second objective function - in

terms of priority - is performed (Nikas et al., 2020).

To adapt the framework of AUGMECON-R for the MoCLP-ZSPT, we devised a formulation

of the SOP by assuming that the maximisation of the covered demand FDC has the highest priority

among the three objective functions, while the minimisation of the overall service costs FS C is

prioritised to that of FPL. This choice depicts a real-world scenario occurring, for instance, in

the public sector with government agencies funding the installation of the service, and being

particularly concerned with minimising general dissatisfaction. Furthermore, as to have that

all the objective functions must be minimised, thus simplifying the interpretation of the output

solutions, we replaced function FDC with −FDC .

3.2. Matheuristics for the MoCLP-ZSPT

The SOPs featured in the AUGMECON-R framework are generally solved through an exact

solver. However, this approach might become impractical as the size of the instances increases,

given the inherent complexity of the MoCLP-ZSPT. Consequently, we exploited the mathemat-

ical properties of the problem and designed a Matheuristic approach called AugStarExplore.

Specifically, the SOPs are solved with the StarExplore Matheuristic procedure, based on a

straightforward property of the metric graphs. At this purpose, recall that a weighted undirected

complete graph is said to be metric when its cost function verifies the triangular inequality. As

observed in Khuller et al. (1995), in such graphs, a shortest path tree w.r.t. a given cost function

and rooted in a fixed node r can be computed in linear time; indeed, the star graph centred in r

is a shortest path tree. Exploiting the fact that the subgraph GJ in MoCLP-ZSPT is metric, we

designed the AugStarExplore Matheuristics, whose pseudo-code is given in Algorithm 1.

Among the input parameters of this procedure, α, ω, β, γ and τ, regulate the functioning

of the StarExplore procedure. In particular: the parameter γ denotes the (minimum) number

of iterations performed during each call to the StarExplore procedure; α and ω are used in a

pseudo-randomised procedure; β is used to compute the slack variables and τ is a threshold value

on the number of solutions inserted in the pool. Further details on the usage of these parameters

are given in the following.

Once that upper and lower bounds for the cost and the path length objective functions have

been computed (Line 2), the corresponding ranges are obtained as their difference (Line 3). In

particular, these bounds can be computed from the payoff table obtained with the lexicographic

approach (Mavrotas and Florios, 2013) or by approximation (Tautenhain et al., 2019). In partic-

ular, while there is no guarantee on the quality of the bounds obtained with a generic approxima-

tion approach, using the lexicographic method results in overestimating the nadir points (Ehrgott

and Tenfelde-Podehl, 2003); therefore a larger grid is obtained, without affecting the quality of

the (approximations of) Pareto Sets produced (Mavrotas and Florios, 2013).

Given the ranges, a set of fractional values for the facility variables x j is obtained (Line

10) by solving the continuous relaxation of the Maximal Covering Location problem featuring

Zonal constraints (2g). Then, at each iteration of the AUGMECON-R scheme, the StarExplore

heuristics is invoked (Line 15); its pseudo-code is given in Algorithm 2.

This procedure receives as inputs: the problem instance, the set of fractional values for the

facilities variables x̂, the ε values, and the parameters α, ω, β, γ and τ. Then, at each iteration, x̂ is

10
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Algorithm 1 AugStarExplore Procedure

1: procedure AugStarExplore((G, {Ck}k≤K , c, d, {Ni}i∈I , h, s), qS C , qPL, α, ω, β, γ, τ)

2: Compute upper bounds (UB) and lower bounds (LB) for FS C and FPL.

3: Set rS C = UBFS C
− LBFS C

and rPL = UBFPL
− LBFPL

. ▷ Ranges (Mavrotas, 2009)

4: Set stepPL = rPL/(qPL − 1) and stepS C = rS C/(qS C − 1).

5: Set q = 0, g = 0 and Pareto S et = ∅.
6: State bS C = 0, bPL = 0, S S C = 0 and S PL = 0. ▷ Bypass coefficients and slack variables

7: for q < qPL and g < qS C do

8: f lag[q, g] = 0.

9: endfor

10: x̂ = sol. of the continuous relaxation of MCLP featuring constraints (2g).

11: while q < qPL do

12: while g < qS C do

13: if f lag[q, g] == 0 then

14: εPL = UBFPL
− q ∗ stepPL and εS C = UBFS C

− g ∗ stepS C

15: Pareto S et, S S C , S PL = StarExplore((G, {Ck}k≤K , c, d, {Ni}i∈I , h, s), x̂, εPL, εS C , α, ω, β, γ, τ)

16: bS C = ⌊S S C/stepS C⌋ and bPL = ⌊S PL/stepPL⌋
17: Update the flag matrix using bypass coefficients. ▷ See Nikas et al. (2020)

18: g = g + 1

19: else

20: g = g + f lag[q, g]

21: endif

22: end while

23: q = q + 1

24: end while

25: return Pareto S et ▷ Pareto Set (approximation)

26: end procedure

used to fix a set of active facilities (one per zone) according to the Pseudo-RandomisedRounding

procedure detailed in Algorithm 3. In particular, unlike standard randomised rounding (Ragha-

van and Tompson, 1987), the threshold value adopted to check whether a facility has to be located

is a convex combination of ω and x̂ through α. This choice is intended to ensure that the explo-

ration is guided by the covered demand objective function and at the same time that it features

sufficient diversification.

Then, each active facility is set as root in turn, and a star-graph centred in it (i.e. a shortest

path tree) is computed. It is noteworthy that there are as many star-graphs as there are zones. For

each star-graph, if the corresponding solution verifies the current ε constraints (Line 11, Algo-

rithm 2), the procedure checks whether it is repeated or dominated by any previously computed

solution (Line 12); if not, it is inserted in the pool. Indeed the algorithm counts the solutions

inserted in the pool (Line 15) to determine if the exploration of a region of the grid is promising.

Additionally, for each feasible solution, the max and min slack variables found so far are up-

dated (Lines 17-18). Then, at the end of the γ iterations, if the SOP is not infeasible and at least τ

solutions have been added to the pool, with τ given as input (Line 24), then γ additional iterations

are performed (Line 25). Finally, the slack variables are obtained as a convex combination of the

max and min values detected during the iterations, using the input parameter β (Line 27).

Remark 3. The estimated running time of the AugStarExplore procedure is the sum of that for

the resolution of the continuous relaxation of the MCLP with zonal constraints on Line 10 (Al-

gorithm 1), which is linear in |N |, and qS C ∗ qPL times that of the StarExplore heuristics (Al-

gorithm 2) used to solve the SOP at each iteration.

As for the latter, the running time of the pseudo-randomised rounding procedure is O(|J|).

11
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Algorithm 2 StarExplore Procedure

1: procedure StarExplore((G, {Ck}k≤K , c, d, {Ni}i∈I , h, s), x̂, εPL, εS C , α, ω, β, γ, τ)

2: Set S S C = 0 and S PL = 0. ▷ Slack variables

3: Set S max
S C
= 0 and S max

PL
= 0. ▷Minimum slack variables

4: Set S min
S C
= INT MAX and S min

PL
= INT MAX. ▷Maximum slack variables

5: Set good sol = 0, in f eas sol = 0 and insert = FALSE.

6: Set f acilities = ∅ and Pareto S et = ∅.
7: for iter = 1 to γ do

8: f acilities = Pseudo-RandomisedRounding({Ck}k≤K , x̂, α, ω) ▷ Activation of facilities

9: Compute all the possible star-graphs centred in j ∈ f acilities.

10: for each star-graph ẑ do

11: if F ẑ
S C
≤ εS C and F ẑ

PL
≤ εPL then ▷ The solution is feasible

12: insert = CheckPool(ẑ, Pareto S et) ▷ Check for dominated/repeated solution

13: if insert == TRUE then

14: Pareto S et = Pareto S et ∪ {ẑ}
15: good sol = good sol + 1.

16: endif

17: S min
S C
= min(S min

S C
, εS C − FS C) and S max

S C
= max(S max

S C
, εS C − FS C)

18: S min
PL
= min(S min

PL
, εPL − FPL) and S max

PL
= max(S max

PL
, εPL − FPL)

19: else

20: in f eas sol = in f eas sol + 1

21: endif

22: endfor

23: endfor

24: if in f eas sol < K ∗ γ and good sol ≥ τ then ▷ SOP feasible and exploration promising.

25: Repeat Lines 7-18. ▷ γ extra iterations are performed

26: endif

27: S S C = β ∗ S max
S C
+ (1 − β) ∗ S min

S C
and S PL = β ∗ S max

PL
+ (1 − β) ∗ S min

PL
28: return Pareto S et, S S C , S PL

29: end procedure

Algorithm 3 Pseudo-RandomisedRounding Procedure

1: procedure Pseudo-RandomisedRounding({Ck}k≤K , x̂, α, ω)

2: Set f acilities = ∅.
3: for each zone Ck do

4: active = FALSE.

5: while active == FALSE do

6: for each candidate j in the zone Ck do

7: p = rand(0, 1). ▷ Random number in [0, 1]

8: if p ≥ α ∗ ω + (1 − α) ∗ x̂[ j] then

9: f acilities = f acilities ∪ { j} ▷ Locate facility in j

10: active = TRUE.

11: endif

12: endfor

13: endwhile

14: endfor

15: return facilities

16: end procedure

12
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Then, the one for computing K star-graphs (one for each zone) on Line 9 amounts to K ∗ O(K),

since according to Khuller et al. (1995) the single computation has linear time. Finally the pool

checking on Line 12 performs O(K2) comparisons. To sum up, the expected running time of a

single call to the StarExplore heuristics is 2γ ∗ O(|J| + K2). The worst case occurs when the

grid of ε values is defined with unitary step and no jump is performed, since AugStarExplore

invokes the StarExplore heuristics rS C ∗ rPL times. In this case, it is straightforward to observe

that the expected running time is O
(

γ ∗ rS C ∗ rPL ∗ (|J| + K2)
)

.

4. Computational Experiments for the MoCLP-ZSPT

The scope of the numerical experiments presented in this Section is threefold: checking the

validity of the proposed model, detecting which instance features pose challenges to its solution

and exploring performance and scalability of the AugStarExplore Matheuristics.

All the algorithms were implemented with Python 3.8.10 as programming language, while

for the lexicographic method (adopted to obtain the payoff tables) we used the built-in function of

the library IBM® Decision Optimization CPLEX® Modeling for Python. The SOPs were solved

with ILOG CPLEX® (version 20.1) solver. The experiments were run on a server equipped with

two Intel Xeon Gold 6246R 3.4ghz CPUs, 512GB Ram and Ubuntu Server 20.04. LTS.

Section 4.1 proposes a proof of concept for the MoCLP-ZSPT; then, Section 4.2 details the

data-sets used in the experiments, while Section 4.3 describes the tuning of the parameters fea-

tured in both the solution approaches. Finally, Section 4.4 details the evaluation metrics adopted

in the analysis of the results, which are in Sections 4.5 and Section 4.6. In particular, in these

last two Sections we will refer to the Pareto Set approximations obtained with a heuristic use of

AUGMECON-R as Exact Pareto Set approximations.

4.1. Numerical Example for the MoCLP-ZSPT

The example problem consists of 10 facility sites and 18 demand nodes, partitioned in 5

subsets: J = {1, 2, . . . 10}, I = {11, 12, . . . 28} and K = 5. The resulting MILP model comprises:

83 binary variables, 1001 continuous variables, and 4976 linear constraints.

Euclidean distances between demand nodes and facility sites are reported in Table 2, while

edge labels are shown in Table 3; finally the distance S defining the coverage radius is equal to

3. Thus, for instance, N11 = {1, 2, 3} and N23 = {7}. To generate the Pareto Set for a MOP, the

AUGMECON-R method requires all the objective functions coefficients to be integer; thus, the

s (facility activation cost) and the c coefficients are multiplied by 10.

Table 2: Euclidean distances between demand nodes (i) and facility sites ( j).

❍
❍
i
j

1 2 3 4 5 6 7 8 9 10 ❍
❍
i
j

1 2 3 4 5 6 7 8 9 10

11 1.4 1.7 2.7 5 6.8 10.7 8.8 6.2 4.5 6.2 20 8.5 9 6.7 4.3 3.2 1.7 1.3 5.4 7.4 9.3

12 3.2 1.3 1.4 4.2 5.2 9.2 8 6.6 5.7 8 21 9.3 9.3 7.2 5.3 3 1.2 3.3 7 8.8 10.9

13 1.9 3 1.3 2.4 4.7 8.4 6.1 4.1 3.2 5.5 22 10.1 10.7 8.7 6.1 5 1.7 2.5 6.6 8.7 10.5

14 1.9 4.1 3 2.9 5.5 8.7 6.2 3.2 1.7 3.9 23 8.9 10.1 8 5.2 5.3 3.7 1.6 4.5 7 8.4

15 3.7 3.9 1.6 1.4 2.8 6.6 5 4.4 4.6 6.9 24 7 8.4 6.4 3.6 4.7 4.9 1.8 2.5 4.8 6.5

16 7.9 7.7 5.7 3.9 1.5 2.8 3.5 6.2 7.8 10 25 3.9 5.8 4.2 2.3 5 7.3 4.5 1.2 2 4.1

17 6 6.6 4.3 1.9 1.3 4 2.5 4.3 5.8 7.7 26 4.5 6.8 5.7 4.5 7.2 9.2 6.1 1.9 1.3 2

18 5.7 7 4.7 1.9 3 4.7 2.2 2.6 4.4 6.6 27 3.8 6.5 6 5.8 8.5 11.1 8.3 4 2 1

19 6.7 7.5 5.2 2.5 2.4 3.5 1.5 3.9 5.7 7.8 28 2 5 4.5 4.8 7.4 10.5 7.9 4 1.7 2.8

13
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Table 3: Cost labels for edges between distinct facilities.

Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost Edge Cost

[1, 2] 3 [1, 7] 0 [2, 4] 4 [2, 9] 1.5 [3, 7] 0 [4, 6] 5 [5, 6] 3.5 [6, 7] 3.5 [7, 9] 4

[1, 3] 0 [1, 8] 2.1 [2, 5] 2.5 [2, 10] 0 [3, 8] 2.1 [4, 7] 7 [5, 7] 5 [6, 8] 2 [7, 10] 3

[1, 4] 7 [1, 9] 4 [2, 6] 1 [3, 4] 7 [3, 9] 4 [4, 8] 5 [5, 8] 5.5 [6, 9] 2.5 [8, 9] 4.5

[1, 5] 5 [1, 10] 3 [2, 7] 3 [3, 5] 5 [3, 10] 3 [4, 9] 4 [5, 9] 2 [6, 10] 1 [8, 10] 3

[1, 6] 3.5 [2, 3] 3 [2, 8] 3 [3, 6] 3.5 [4, 5] 2 [4, 10] 4 [5, 10] 2.5 [7, 8] 2.1 [9, 10] 1.5

The payoff table is given in Table 4: ranges values are rS C = 125 and rPL = 20, while we

chose qS C = qPL = 20, yielding to discretisation steps equal to 6 and 1, respectively. Therefore,

the ε values vary as εS C = 445 − n ∗ 6 and εPL = 50 − m for n,m = 0, 1, . . . 20.

Table 4: Payoff table obtained with lexicographic optimisation.

−FDC FS C FPL

min−FDC −113 431 50

min FS C −109 320 40

min FPL −113 445 30

AUGMECON-R approximates the Pareto Set with five efficient solutions, whose details are

reported in Table 5: for instance, in the first solution f 10
(10,3)

= f 10
(3,7)
= f 10

(10,5)
= f 10

(10,8)
= 1 while

the remaining flow variables are null. Figure 2 depicts the second solution.

Table 5: Efficient solutions found by AUGMECON-R. Those marked with asterisk cover all demand nodes except 23.

Active Facilities Root Edges min−FDC min FS C min FPL

3, 5, 7, 8, 10 10 [10,3], [3,7], [10,5], [10,8] −113 44.5 3.0

3, 5, 7, 8, 10 3 [3,5], [3,7], [3,8], [3,10] −113 43.1 5.0

3, 4, 6, 8, 10 10 [10,3], [10,4], [10,6], [10,8] −109(∗) 32.0 4.0

3, 5, 7, 8, 10 10 [10,3], [10,7], [10,5], [10,8] −113 44.5 3.0

3, 5, 6, 8, 10 10 [10,3], [10,5], [10,6], [10,8] −109(∗) 34.5 3.0

4.2. Instances

The experiments were conducted on two sets of benchmark instances adapted from the liter-

ature on Location Problems with interconnected facilities and Clustered Shortest Path Problems,

as detailed in the following. Specifically, in the first case, the instances were obtained by fixing

the cardinality of the zones and partitioning the set of nodes accordingly, in order to investigate

the scenario in which the zones have regular density. For the second set, on the other hand, the

original partition of the instances was used in order to explore the characteristics of the problem

in relation to different topologies and types of partitioning.

1. The first data-set consists of Uncapacitated p-median problem instances from OR-Library

(Beasley, 1990) sized 100 to 600 nodes, used by Cherkesly et al. (2019) in their com-

putational experiments. In order to define the zones, we partitioned the set of nodes by

fixing the cardinality of each zone to 25 and 50 respectively, thus obtaining two classes

of instances. Next, we generated three families of problems for each class, selecting the

14
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Figure 2: Solution 2. Active facilities shown in blue, the root facility in red, and covered demand nodes in green. Demand

values and facility activation costs in square brackets; FS C = 43.1 and FPL = 5.

candidates as a percentage q of the nodes in each zone, with q = 0.10, 0.15, 0.20 for the

instances of size 100 and q = 0.10, 0.15 for the remaining ones. In this way, we obtained

82 instances whose characteristics are summarised in Table 6.

Table 6: Characteristics of the pmed data-set.

Size Nodes Demands Candidates Zones Tot. Problems

small 100 80-92 20-8 2, 4 30

medium 200 172-184 28-16 4, 8 20

medium 300 258-276 42-24 6, 12 20

large 400 344-368 56-32 8, 16 4

large 500 430-460 70-40 10, 20 4

large 600 516-552 84-48 12, 24 4

Since, in Cherkesly et al. (2019) no activation costs for facilities nor demand values were

assigned, we defined these coefficients as random integers in the set {1, 2, . . . , 100} for each

demand node, and in the set {100, 101, . . . , 200} for each candidate.

To obtain labels verifying the triangular inequality, we defined an appropriate scaling of

the costs for the edges in GJ , and added missing edges with random integer cost between

1 and the maximum edge cost. Then, we solved an All-pairs Shortest Path Problem on GJ

and set c jv as the cost of the shortest path from j to v, for all j, v ∈ J. Costs of the original

instances were set as distance values, with missing di j values chosen as random integers in

{1, 2, . . . , 100}, and S chosen as the maximum distance divided by 5.

2. The second data-set consists of a subset of the High-R instances of Type 1, 5 and 6 used by

Ferone et al. (2022) for the Resource Constrained Clustered Shortest Path Tree Problem.

They are complete graphs whose costs verify the triangular inequality, and for which the

set of nodes is partitioned in subsets called clusters. As reported in Mestria (2016) these
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clusters are defined through: k-means (Type 1 networks), geometric centres (Type 5 net-

works), and grouping in quadrilaterals (Type 6 networks).

We defined two families of problems for each Type as for the pmed data-set, with q =

0.15, 0.20: we obtained 52 instances whose characteristics are summarised in Table 7.

Table 7: Characteristics of the RC-CluSPT data-set.

Type Demands Candidates Zones Tot. Problems

1 38-81 11-28 5, 10 14

5 44-99 11-29 5, 10 16

6 39-88 9-26 2, 4, 6, 9 22

Node resource values of the original instance were used as demand values and facility

activation costs, while resource values of arcs were used as distance values. The value of

S was chosen as the maximum distance divided by 5.

4.3. Tuning of Parameters

This Section presents the calibration of the parameters featured in the solution frameworks

adopted to approximate the Pareto Sets of the MoCLP-ZSPT. Namely, for AUGMECON-R

method we needed to tune the number of grid-points (qS C and qPL) and the coefficient δ featured

in the SOP objective function, as reported in Section 4.3.1. Instead, details on the calibration of

the parameters featured in the AugStarExplore Matheuristics are given Section 4.3.2. They are: α

and ω used in the Pseudo-RandomisedRounding procedure; β used to combine the slack vari-

ables; the number γ of repetitions of the exploration phase; the threshold value τ on the number

of solutions inserted in the pool.

4.3.1. Calibration of parameters for AUGMECON-R Method

We considered a sample set consisting of ≈ 20% of the pmed instances of small and medium

sizes. Indeed such a choice relies on the fact that, comprising a greater number of candidates

if compared to the RC-CluSPT ones, the pmed instances feature potentially wider ranges, thus

making the exact computation of the Pareto Sets significantly time consuming. Moreover, a

preliminary experimentation revealed that the computational times on the large instances were

extremely prohibitive, therefore only those sized up to 300 nodes were considered. The instances

were chosen at random but with one representative for each possible configuration of size, cardi-

nality of zones and percentage of candidates per zone.

A preliminary experimentation revealed that by adopting a unitary step to define the grid of ε

values, at most 1100 single-objective problems were solved on the considered sample set; thus,

we set the number of grid-points on each side of the grid as ⌊ √p⌋, with p ∈ {100, 200, . . . , 1024}.
Mavrotas and Florios (2013) suggested to select δ from {10−6, 10−5, 10−4, 10−3}. The calibrated

parameters and their respective set of values are reported in Table 8.

Table 8: Configuration parameters for AUGMECON-R obtained in the tuning phase.

Parameter Set of values Selected

δ {10−6, 10−5, 10−4, 10−3} 10−3

grid-pts {100, 196, 289, 400, 484, 484

576, 676, 784, 900, 1024}
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Interestingly enough, the experimentation revealed that the lowest average times are relative

to δ = 10−3, as depicted in Figure 3(a). Additionally, the average times grow almost linearly

with the number of grid-points until it equals 576 and then from 676 grid-points, for any value

of the parameter δ. In fact, as the number of grid-points increases, potentially a greater number

of SOPs have to be solved. Indeed, AUGMECON-R has a critical behaviour on two 300 sized

instances, which affects the trend of the average values. Namely, the times for the configurations

with 576 grid-points doubles and quadruples those relative to 676 grid-points, respectively since

on the latter the method performs a higher number of jumps.

(a) Average time in seconds for each value of the parameter δ

as the number of grid-points is increased from 100 to 1024.

(b) Ratios between the average absolute increase of the solu-

tions number and the average absolute increase of time when

increasing grid-points from 100 to each remaining value.

Figure 3: Representation of data relative to the tuning of AUGMECON-R parameters.

However, we conducted a further analysis with a twofold objective: to detect the values of

the parameters which would provide the fairest compromise between number of Pareto optimal

solutions and computation time; to assess more in depth the impact of increasing the number

of grid-points both on times and in terms of efficient solutions determined. At this purpose, we

computed the average avg(∆S ol) (respect. avg(∆time)) of the differences between the number of

efficient solutions (respect. times) obtained with g and 100 grid-points, with g > 100. Clearly, the

ratio avg(∆(S ol))/avg(∆time) grows when either avg(∆S ol) increases or avg(∆time) decreases,

with the value of the other average remaining almost the same. Consequently, the greater this

ratio, the better the performance of AUGMECON-R in terms of cardinality of the Pareto Set

approximation and relative computational effort. The analysis of these values confirmed that the

best choice for the parameter δ is 10−3, as depicted in Figure 3(b); additionally, the best ratios

are obtained when the number of grid-points is either 196 or 484. Actually, comparing this

information with the trend of the average times in Figure 3(a), it comes with no surprise that the

highest values corresponds to 196 grid-points, since the average times are lower. Nevertheless,

the choice of this value for the parameter could result in a rather dense representation of the

Pareto Set for larger instances. Therefore we chose grid-pts = 484 and δ = 10−3.

4.3.2. Calibration of parameters for the AugStarExplore Matheuristic

In order to determine the optimal method configuration based on the specific characteristics

of the data-set, we conducted the calibration of the Matheuristic’s five parameters by differenti-

ation. That is, in addition to the sample set considered in the Section 4.3.1, we chose ≈ 20% of

the RC-CluSPT instances, at random but with at least one representative for each possible con-

figuration of Type and number of zones. The experiments were conducted with unitary step and
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a time limit of 900 seconds for each test problem of the pmed sample set and of 500 seconds for

each test problem of the RC-CluSPT sample set. The calibrated parameters and their respective

set of values, for each data-set, are reported in Table 9.

Table 9: Configuration parameters for AugStarExplore obtained in the tuning phase.

Parameter Set of values Selected

pmed RC-CluSPT

α {0.25, 0.50, 0.75} 0.75 0.75

ω {0.20, 0.40, 0.60} 0.60 0.60

β {0.25, 0.50, 0.75} 0.25 0.25

γ {10, 30, 50, 100} 50 100

τ {1, 3, 5} 1 5

To select the optimal combination of parameters for each data-set, we compared the ap-

proximation of the Pareto Set obtained with AugStarExplore with the one produced with the

AUGMECON-R approach. In more details, we chose the combination corresponding to the min-

imum value average percentage of heuristic solutions that are dominated by at least one solution

obtained with the exact approach used heuristically.

It is worth emphasising that for both parameters used in the convex combinations, i.e. α

and β, the set of possible values was chosen as {0.25, 0.5, 0.75} thus excluding extreme cases

0 and 1. This choice relies on the fact that α = 0 would yield a fixing only guided by the

covered demand objective function, which does not guarantee an exhaustive diversification; by

contrast α = 1 would yield a total random fixing, thus ignoring the priority given to the covered

demand objective function. Analogously, β = 0 would render the bypass coefficients in the

AUGMECON-R framework ineffective because as few jumps as possible would be performed.

Instead, with β = 1 a potentially poorer approximation of the Pareto Set would be obtained.

4.4. Evaluation Metrics

To assess the efficiency of the Pareto Set representations obtained with the Matheuristics and

the (heuristic use of) AUGMECON-R method, we considered the following evaluation metrics.

1. The Overall Non-dominated Vector Generation, that is the number of non-dominated so-

lutions obtained with the considered approach.

2. The number µ of non-dominated solutions of one of the two approaches that are actually

dominated by the other.

3. The Overall Pareto Spread of the Pareto Set approximation S, computed as follows:

OPS (S) =
|max(−FDC(s)) −min(−FDC(s))|

|FDC(sI ) − FDC(sN )|
× |max FS C(s) −min FS C(s)|

|FS C(sN ) − FS C(sI )|
× |max FPL(s) −min FPL(s)|

|FPL(sN ) − FPL(sI )|

Max and min values of the objective functions are obtained with reference to the Pareto

Set approximation; instead, sI and sN denote (approximations of) the ideal and nadir points

which are obtained from the payoff table. The larger OPS value, the better it is.
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4. The Spacing of the Pareto Set S approximation, computed as follows:

S P(S) =

√

√

√

1

|S| − 1

|S|
∑

i=1

(d̄ − di)2

where di = min(si,s j)∈S,si,s j
||(−FDC(si), FS C(si), FPL(si)) − (−FDC(s j), FS C(s j), FPL(s j))||1

and d̄ is the mean of the di. The smaller S P(S), the higher is the diversification of S.

In particular, 1. and 2. are cardinality indicators, 3. is a spread indicator measuring the portion

of the Pareto Set covered by an approximation; finally, 4. is a distribution indicator that measures

the quality of the distribution of points on the Pareto Set approximation (Audet et al., 2021).

4.5. Numerical Results for the pmed data-set

In this Section we report and analyse the aggregated results relative to the experimentation

conducted on the pmed instances. In particular, the payoff tables relative to instances sized 100

and 200 nodes were obtained with the lexicographic optimisation. Instead, the computational

times of this approach on the instances sized 300 nodes or more appeared too prohibitive; there-

fore, to obtain upper and lower bounds for cost and path length functions, we used two heuristic

approaches, one adapted from the literature (Tautenhain et al., 2019) and the other based on

the StarExplore framework. Section 4.5.1 details these methods, while Section 4.5.2 presents

AUGMECON-R results on small and medium instances; then Section 4.5.3 compares them with

those obtained by the AugStarExplore Matheuristics. Finally, Section 4.5.4 details the results

relative to AugStarExplore on the large pmed instances.

4.5.1. Heuristic Methods to compute the Payoff Table

The first approach we adopted to approximate the payoff tables consists in optimising each

objective function in turn by solving the mathematical model of the MoCLP-ZSPT featuring

only one objective function (Tautenhain et al., 2019). However, the resulting bounds might be

of poor quality (Isermann and Steuer, 1988). Therefore, we devised a heuristic procedure which

produces payoff tables featuring only non-dominated solutions, thus providing overestimates for

the nadir points (cf. (Ehrgott and Tenfelde-Podehl, 2003)).

Specifically, our original method exploits the mathematical properties of the MoCLP-ZSPT,

being based on the adaptation of the γ iterations of the StarExplore procedure (cf. Algorithm 2,

Lines 7-15): these operations are performed thrice, each time starting from a vector x̂ obtained

by using a criterion based on the optimisation of one of the objective functions in turn. In this

way, a more diversified exploration of the efficient set is obtained. The pseudo-code is given in

Algorithm 4, while the three criteria are detailed in the following.

MaxCovering Criterion: x̂ is obtained by solving the continuous relaxation of MCLP featur-

ing constraints (2g).

ServiceCost Criterion: each node j ∈ J is used as root and the star-graph centred in it is

computed by connecting j with î = argmini∈Ck∩J(c ji + si) for all the zones Ck except the

one containing j. Denoted with S C j the service cost of the star-graph centred in j and

computed minS C = min j∈J S C j, the vector x̂ is obtained by assigning to each candidate j

the value minS C
S C j

.
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PathLength Criterion: each node j ∈ J is used as root and the star-graph centred in it is

computed by connecting j with î = argmini∈Ck∩J(c ji) for all the zones Ck except the one

containing j. Denoted with PL j the maximum cost in the star-graph centred in j (i.e. the

path length) and computed minPL = min j∈J PL j, the vector x̂ is obtained by assigning to

each candidate j the value minPL
PL j

.

Algorithm 4 Heuristic Payoff Procedure

1: procedure Heuristic Payoff((G, {Ck}k≤K , c, d, {Ni}i∈I , h, s), α, ω, γ)

2: Set f acilities = ∅, Pool = ∅, i, j = 0.

3: for i < 3 and j < 3 do

4: payo f f [i, j] = 0

5: endfor

6: x̂ = MaxCovering Criterion

7: for iter = 1 to γ do

8: f acilities = Pseudo-RandomisedRounding({Ck}k≤K , x̂, α, ω) ▷ Activation of facilities

9: Compute all the possible star-graphs centred in j ∈ f acilities.

10: for each star-graph ẑ do

11: insert = CheckPool(ẑ, Pool) ▷ Check for dominated/repeated solution

12: if insert == TRUE then

13: Pool = Pool ∪ {ẑ}
14: endif

15: endfor

16: endfor

17: x̂ = ServiceCost Criterion

18: Repeat Lines 7-13.

19: x̂ = PathLength Criterion

20: Repeat Lines 7-13.

21: Compute zDC ∈ argmaxPool(FDC), zS C ∈ argminPool(FS C), and zPL ∈ argminPool(FPL).

22: Fill the columns of payo f f with objective function values relative to zDC , zS C , zPL.

23: return payo f f .

24: end procedure

In the experiments we implemented this procedure by using a time limit which depends on the

number cb of possible combinations of active facilities over the set J, i.e. cb =
∏K

k=1 |Ck ∩ J|.
Specifically, the time limit is set as max

{

300,min{7200, 0.6 ∗ 0.01 ∗ cb}
}

seconds, in order to

ensure that the procedure runs at least 5 minutes and at most 2 hours, and that at least 1% of cb

is explored.

Remark 4. In the following, we will refer to the payoff tables obtained with the method adapted

from the literature as “approximated”, and to the ones obtained with our heuristics as “heuristic”.

4.5.2. Exact Pareto Set Approximations for small and medium sized instances

Results are given in Tables 10 and 11 which report the number of: nodes, tested instances

(Nr.), demand nodes (Dem.), facility sites (Cand.), and zones (Zones), and the percentage of

candidates in each zone (q). Additionally, column “avg(Pay-L)” contains the average time in

seconds to obtain the payoff table with the lexicographic approach, while column “avg(AUG-

R)” reports the average computational time of the AUGMECON-R method. Finally, the average

number of: non-dominated solutions (avg(Sol.)), grid-points explored (avg(gp)), jumps for by-

pass (avg(J-byp)) and for infeasibility (avg(J-inf)) are given.
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Table 10: Aggregated numerical results of the AUGMECON-R method on the small pmed instances.

Nodes Nr. q Dem. Cand. Zones avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

100 5 0.10 90 10 2 0.64s 6.29s 4.80 95.80 386.60 1.60

100 5 0.15 86 14 2 1.53s 10.55s 4.00 74.00 253.80 55.00

100 5 0.20 80 20 2 4.42s 46.71s 9.20 110.20 347.80 26.00

100 5 0.10 92 8 4 0.66s 6.90s 4.00 69.40 246.00 10.20

100 5 0.15 88 12 4 2.28s 37.68s 8.60 123.20 300.00 34.40

100 5 0.20 80 20 4 19.77s 219.77s 14.60 155.20 307.40 21.40

On the small instances, as the number of candidates increases, the average times for both the

lexicographic optimisation and AUGMECON-R increase; such an outcome is in accordance with

the fact that for the MoCLP-ZSPT the number of variables and linear constraints are O(|J|3). In

particular, the trend of AUGMECON-R average times depends on the greater number of grid-

points explored on average. However, the performance of the methods is also affected by the

number of zones growing: at this purpose, it is sufficient to note that the ratio between the

average times for instances with 20 candidates and 4 zones and those with 20 candidates and

2 zones is 4.5 and 4.7 respectively. This is because a higher number of zones implies a higher

number of candidates to connect, therefore a significant effort is needed to address the advanced

connectivity features. Additionally, the statistics on the objective function values revealed that,

as expected, the best average values of −FDC are relative to instances with more zones, which

allows the activation of more facilities. However, this is at the expense of the overall costs, and

consequently of the maximum length of any path from the selected root, which increase.

Table 11: Aggregated numerical results of the AUGMECON-R method on the pmed instances of size 200.

Nodes Nr. q Dem. Cand. Zones avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

200 5 0.10 180 20 4 30.72s 309.18s 16.00 159.40 222.20 80.40

200 5 0.15 172 28 4 284.14s 2287.91s 19.80 189.80 231.20 58.60

200 5 0.10 184 16 8 17.28s 162.32s 23.00 172.40 201.40 39.80

200 5 0.15 176 24 8 389.86s 1862.99s 26.40 208.60 203.80 10.00

Table 12: Aggregated numerical results of the AUGMECON-R method on the pmed instances of size 300.

Nr. q Dem. Cand. Zones Approximated Payoff Tables Heuristic Payoff Tables

avg(Pay-A) avg(AUG-R) avg(Sol.) avg(gp) avg(Pay-H) avg(AUG-R) avg(Sol.) avg(gp)

5 0.10 270 30 6 1065.08s 4019.46s 18.80 194.80 300.06s 7432.66s 30.40 237.00

5 0.15 258 42 6 11471.07s 29320.71s 27.20 225.80 300.02s 48647.14s 41.20 256.00

5 0.10 276 24 12 298.96s 542.91s 7.00 124.40 300.19s 1239.26s 19.25 138.75

5 0.15 264 36 12 8503.98s 14131.53s 17.20 213.60 318.88s 30937.31s 48.00 262.60

The results relative to medium instances are reported in Table 12, where column “avg(Pay-

A)” refers to average computational times of the approximation approach adapted from the litera-

ture (Tautenhain et al., 2019), while column “avg(Pay-H)” reports those relative to our heuristics.

As observed for the small instances, also on the medium problems the increase in the number of

candidates and zones results in higher average computational times. Notably, as the size of the

instances grows, the MoCLP-ZSPT becomes more challenging, as highlighted by the average

computational times of the approximated computation of the payoff table (cf. Table 12).

In particular, the Pareto Set approximations relative to the heuristic payoff tables feature more

solutions; such an outcome relies on the characteristics of the grids explored by AUGMECON-
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R. In fact, these results suggest that the approximated payoff tables provide poorer bounds than

those obtained with the heuristic ones, thus resulting in wider ranges. Consequently, with the

same number of grid-points, the discretization step is greater with the former ranges, thus pro-

viding less dense grids. It is worthwhile mentioning that the average computational times of

AUGMECON-R are greater when using the heuristic payoff tables since an increased number of

grid-points is explored.

Table 13 reports the values of the adopted evaluation metrics (cf. Section 4.4): column

“avg(µ)” is the average number of solutions that are dominated by at least one solution belonging

to the other approximation; “avg(OPS)” is the average Overall Pareto Spread, and “avg(SP)”

denotes the average Spacing of the corresponding Pareto Set approximation. Finally, the average

number of solutions shared by the two methods is reported in the column “avg(sh.)”.

Table 13: Comparison of the aggregated evaluation metrics relative to AUGMECON-R and the medium pmed instances

with 300 nodes.

Nodes q Zones Approximated Payoff Tables Heuristic Payoff Tables

avg(Sol.) avg(µ) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(µ) avg(OPS) avg(SP)

300 0.10 6 18.80 1.00 0.05 54.78 13.40 30.40 0.20 0.66 55.22

300 0.15 6 27.00 1.80 0.10 75.06 14.00 41.20 0.60 1.38 63.52

300 0.10 12 7.00 0.60 0.02 87.92 2.60 17.00 0.20 0.96 35.25

300 0.15 12 17.00 0.20 0.05 54.48 10.00 48.00 0.40 0.91 28.45

These data reveal that the heuristic payoff tables led to better Pareto Sets approximations

also in terms of spread and distribution indicators. Indeed, on instances with 6 zones the two

approximations share on average 41% of solutions; the average percentage decreases to 17% on

the remaining problems.

Finally, the statistics for the objective function values, confirm the trend already observed on

the small pmed instances. It is noteworthy that considering the instances with the same number of

zones, as the number of candidates increases, the average values of both FS C , and FPL objective

functions decrease, as there are generally more possibilities to efficiently address the advanced

connectivity features.

4.5.3. Exact vs Heuristic Pareto Set Approximations for small and medium sized instances

The experiments with the AugStarExplore Matheuristics were conducted with a unitary step

and defining a time limit of 600 seconds for every 100 nodes (e.g. time limit is 1200s and 1800s

on medium instances). Results are given in Tables 14 and 15 which report, for each solution

approach, the values of the considered evaluation metrics as in Table 13.

Table 14: Comparison of the aggregated evaluation metrics relative to the small pmed instances.

Nodes q Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(µ) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(µ) avg(OPS) avg(SP)

100 0.10 2 4.80 0.40 0.88 54.03 4.40 5.20 0.00 1.00 52.03

100 0.15 2 4.00 0.20 0.95 132.03 3.60 4.60 0.20 1.02 123.73

100 0.20 2 8.80 0.00 1.03 62.46 8.80 9.60 0.00 1.05 58.82

100 0.10 4 4.00 0.00 0.89 53.47 3.80 4.20 0.20 1.02 55.83

100 0.15 4 8.40 0.00 0.82 69.82 7.00 11.00 1.40 1.29 76.22

100 0.20 4 14.60 0.00 1.06 66.26 13.80 21.00 0.80 1.31 49.44
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These results show that as the numbers of candidates and zones increases, both the ap-

proaches detect a larger number of non-dominated solutions. As already observed, this outcome

relies on the greater number of choices to efficiently tackle the connectivity features. Addition-

ally, the heuristic approximation of the Pareto Set contains on average more solutions than the

exact one. A closer look at the average number of common solutions shows that, on average,

92% of the exact solutions are also found by the heuristics. Indeed, on the small pmed instances,

the average percentage of heuristic solutions dominated by the exact ones is at most 12.92%.

As concerns the remaining indicators, the results show that the Matheuristic approximation is

able cover a greater portion of the Pareto Set, being its average OPS values bigger. Instead,

the diversification of the exact approximation appears better on the instances with 4 zones and

q = 0.10, 0.15. Overall, these results prove that the quality of the heuristic approximations of the

Pareto Set obtained are remarkable.

Table 15: Comparison of the aggregated evaluation metrics relative to the medium pmed instances sized 200 nodes.

Nodes q Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(µ) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(µ) avg(OPS) avg(SP)

200 0.10 4 16.00 0.20 1.24 80.03 14.60 17.60 1.40 1.30 75.45

200 0.15 4 19.40 0.20 1.09 75.77 16.20 24.00 2.20 1.24 80.70

200 0.10 8 22.80 0.00 1.15 36.14 21.60 25.20 1.20 1.24 36.60

200 0.15 8 25.60 0.40 0.85 50.57 23.60 38.00 1.20 1.11 40.29

On the pmed instances sized 200 nodes we can draw conclusions similar to those relative to

the small ones as concerns the average number of solutions and µ values, with the percentage

of common solutions being ≈ 91%. In particular, as the number of zones doubles, the average

number of heuristic solutions dominated by the exact ones decreases: in terms of percentage, it

is at most equal to 8.68% when there are 4 zones, and to 5.06% in case of 8 zones. Also on

these instances the Matheuristic approximation covers a greater portion of the Pareto Set, though

the exact approximation is slightly better diversified on the instances with 4 (8) zones and 15%

(10%) of candidates among nodes.

Table 16 compares the Pareto Set Approximations obtained on the pmed instances with 300

nodes when the payoff tables are either approximated or heuristic.

Table 16: Comparison of the aggregated evaluation metrics for medium pmed instances with 300 nodes.

Nodes q Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(µ) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(µ) avg(OPS) avg(SP)

Approximated Payoff Tables

300 0.10 6 18.80 0.20 0.05 54.78 15.20 57.00 2.00 0.11 48.36

300 0.15 6 27.00 0.00 0.10 75.06 9.40 82.60 37.20 0.16 50.49

300 0.10 12 7.00 0.00 0.01 78.71 5.00 37.00 8.80 0.03 40.15

300 0.15 12 17.00 0.00 0.06 63.69 3.20 69.20 27.80 0.09 34.22

Heuristic Payoff Tables

300 0.10 6 30.40 0.00 0.66 55.22 26.60 53.40 2.20 1.23 59.34

300 0.15 6 41.20 0.00 1.38 63.52 12.60 81.60 46.80 2.02 49.29

300 0.10 12 17.00 0.00 0.96 35.25 15.80 23.00 3.40 1.31 51.25

300 0.15 12 48.00 0.00 0.91 28.45 28.00 64.80 16.20 1.12 24.05

The scalability of the Matheuristics emerged from these data: it finds on average ≈ 4.3

(resp. ≈ 1.9) times the number of solutions detected by the AUGMECON-R method in less than
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half of its average computational time by using approximated (resp. heuristic) payoff tables.

Moreover, on average only the 27.7% of these solutions are dominated by those obtained with

the AUGMECON-R. Additionally, the average values of the spread indicators confirm that as

the size of the instances increases, the heuristic Pareto Sets approximation is richer and better

diversified. In particular, the one obtained with heuristic payoff tables is characteristic by better

average values of the Overall Pareto Spread. This outcome confirms that defining the grid from

tighter ranges enables the Matheuristics to perform a more exhaustive exploration of the feasible

region. At this purpose, it is worthwhile noticing that there’s a higher percentage of shared

solutions between heuristic and exact approximations relative to approximated payoff tables for

instances with less zones; this trend is reversed for those problems with more zones.

Finally, we further analysed the heuristic Pareto Set approximations: as reported in Table 17

we considered the (average) percentage of solutions shared between the two heuristic approxi-

mations and those of mutually dominated solutions. As it might be anticipated, a high percentage

of the solutions found with the heuristic payoff tables are also determined in the other case, and

yet the remaining solutions obtained from approximated payoff tables turn out to be dominated

by those obtained with the heuristic ones. This means that, although with reduced cardinalities,

the approximations obtained with the heuristic payoff tables are of better quality.

Table 17: Comparison of the percentage of shared and dominated solutions for AugStarExplore Matheuristics relative

to medium pmed instances with 300 nodes when payoff tables are computed either by approximation or heuristically.

Nodes q Zones Approx. Payoff Tables Heuristic Payoff Tables

avg(%sh.) avg(%µ) avg(%sh.) avg(%µ)

300 0.10 6 88.40 0.00 78.82 5.68

300 0.15 6 47.33 6.17 45.78 35.26

300 0.10 12 98.78 0.00 60.89 0.00

300 0.15 12 29.08 1.95 31.83 57.26

4.5.4. Heuristic Pareto Set Approximations for large sized instances

The results obtained with AugStarExplore on medium instances were encouraging, suggest-

ing considerable scalability of the method and good quality of the Pareto Set approximations

provided. Consequently, we conducted further experiments on the large pmed instances, for the

resolution of which the exact approach (though used heuristically) would present prohibitive

computational times, as evidenced by the times involved in the approximated computation of the

payoff tables. The results are given in Table 18.

On the instances sized 400 nodes, more solutions are found as the number of zones increases.

This trend is reversed on the remaining instances, suggesting that a greater time limit could allow

for a more thorough exploration of the Pareto Set, given that as the number of zones increases, so

do active facilities to connect and the number of possible shortest path trees. However, adopting

the proposed heuristics to compute the payoff tables and thus the ranges, yields to better Pareto

Sets approximations with respect to all the evaluation metrics. In fact, a lower percentage of

solutions are non-dominated and spread and distribution indicators show how more profitable

Pareto Set approximations are detected.

It is worth noting that in less than an hour, the algorithm is able to provide an average of 51.5

efficient solutions to the decision maker, which are sufficiently diversified. This result represents

a considerable support to the decision-making process in view of the fact that AUGMECON-R

provides a Pareto Set approximation in 3.3 hours on instances sized 300 nodes.
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Table 18: Comparison of the numerical results of the Matheuristic on the large pmed instances.

Nodes q Dem. Cand. Zones Approximated Payoff Tables Heuristic Payoff Tables

Sol. µ OPS SP sh. Sol. µ OPS SP

400 0.10 360 40 8 51.00 38.00 0.06 41.14 10.00 34.00 0.00 1.06 47.11

400 0.15 344 56 8 46.00 33.00 0.09 34.32 10.00 56.00 0.00 1.93 45.74

400 0.10 368 32 16 87.00 11.00 0.48 24.50 53.00 73.00 2.00 0.99 20.11

400 0.15 352 48 16 84.00 76.00 0.02 41.90 3.00 103.00 3.00 0.90 18.86

500 0.10 450 50 10 61.00 39.00 0.24 51.86 10.00 71.00 11.00 1.18 38.03

500 0.15 430 70 10 54.00 29.00 0.32 36.43 6.00 53.00 19.00 0.89 77.94

500 0.10 460 40 20 33.00 33.00 0.01 35.61 0.00 38.00 0.00 2.40 25.71

500 0.15 440 60 20 36.00 35.00 0.04 42.63 0.00 32.00 0.00 3.88 43.67

600 0.10 540 60 12 68.00 61.00 0.05 38.66 2.00 32.00 1.00 0.94 29.10

600 0.15 516 84 12 58.00 43.00 0.11 85.52 3.00 72.00 12.00 0.97 34.83

600 0.10 552 48 24 16.00 16.00 0.17 45.15 0.00 12.00 0.00 1.13 38.54

600 0.15 528 72 24 24.00 23.00 0.06 38.16 0.00 38.00 1.00 1.06 27.10

4.6. Numerical Results for the RC-CluSPT data-set

In this Section we report and analyse the aggregated results relative to the experimentation

conducted on the RC-CluSPT instances. For all the test problems, the payoff tables were ob-

tained with the lexicographic approach. Specifically, Section 4.6.1 deals with the results of the

AUGMECON-R method, while Section 4.6.2 details the comparison between the results ob-

tained by AUGMECON-R and the AugStarExplore Matheuristics on these instances.

4.6.1. Exact Pareto Set Computation

Preliminary tests revealed that the ranges of the FS C and FPL objective function are not

too extended, if compared to those of the pmed instances; therefore we set the discretisation step

equal to 1 to define the grid-points. It must be underlined that with this choice of the discretisation

step, AUGMECON-R performs a complete exploration of the Pareto Set.

Results are given in Table 19 which reports, for each the instance Type the same informa-

tion given in Table 14. These results show that also on this data-set the increase in the num-

ber of candidates affects the average computational times of both lexicographic approach and

AUGMECON-R. However, this trend for the latter method, on instances with same Type and

number of zones relies on the greater number of grid-points explored.

In particular, on Type 1 instances - whose zones are defined with k-means method - and on

Type 5 instances - whose zones are identified through geometric centres -, the average computa-

tional times are affected by the doubling of the number of zones. This is due to the reduced zone

density, if compared to the Type 6 instances, which renders connectivity features particularly

challenging. Notably, on Type 1 instances with 10 zones and q = 15% the average computational

times of the lexicographic optimisation are greater than that of AUGMECON-R method since the

latter explores a smaller number of grid-points on these problems. Moreover, the reduced num-

ber of candidates for the Type 6 instances - whose zones are defined through quadrilaterals -

yields to decreased average computational times, when the number of zones passes from 2 to

4. Additionally, the statistics for the objective function values confirmed the trend observed on

the pmed data-set; namely, as the number of zones increases, on average −FDC values decrease

as there is a greater number of active facilities, though this negatively impacts on the remaining

functions, mainly on FS C .
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Table 19: Aggregated numerical results of the AUGMECON-R method on the RC-CluSPT data-set.

avg(Nodes) Nr. q avg(Dem.) avg(Cand.) Zones avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

Type 1

65.00 5 0.15 52.60 12.40 5 2.74s 132.59s 10.00 335.40 695.40 112.00

65.00 5 0.20 48.60 16.40 5 11.49s 607.86s 18.40 576.60 1208.80 525.60

99.50 2 0.15 80.00 19.50 10 481.04s 113.85s 5.00 85.50 11.50 150.00

99.50 2 0.20 72.50 27.00 10 45.50s 6034.33s 19.00 560.00 200.00 272.00

Type 5

80.00 6 0.15 65.50 14.50 5 9.80s 426.57s 12.33 370.50 569.33 239.67

80.00 6 0.20 60.83 19.17 5 51.64s 445.27s 12.33 258.00 503.50 356.83

105.00 2 0.15 84.50 20.50 10 105.62s 1175.53s 18.00 371.00 321.50 156.50

105.00 2 0.20 78.50 26.50 10 1037.03s 4846.66s 21.50 488.00 675.50 320.00

Type 6

105.00 1 0.15 88.00 17.00 2 2.95s 91.52s 8.00 353.00 2371.00 147.00

105.00 1 0.20 83.00 22.00 2 6.37s 192.61s 16.00 373.00 2107.00 0.00

63.75 4 0.15 52.25 11.50 4 2.04s 66.20s 6.00 244.25 565.25 129.00

63.75 4 0.20 48.75 15.00 4 5.76s 339.65s 15.00 423.75 761.25 238.50

73.00 2 0.15 59.50 13.50 6 2.47s 120.06s 11.50 275.00 846.00 136.00

73.00 2 0.20 55.00 18.00 6 12.57s 870.18s 26.00 638.50 1156.50 136.00

80.75 4 0.15 64.25 16.50 9 11.57s 323.34s 12.25 304.50 632.00 104.25

80.75 4 0.20 58.75 22.00 9 121.64s 1825.73s 23.50 392.25 529.25 139.75

4.6.2. Exact Pareto Sets vs Heuristic Pareto Set Approximations

The experiments with the AugStarExplore Matheuristics were conducted considering a uni-

tary step and the parameter setting obtained in the calibration (Section 4.3.2), and using 500

seconds as time limit. Results are given in Table 20 with the same format adopted in Table 14.

Similarly to what was observed for the pmed, the Matheuristics is able to determine a number

of solutions on this data-set that grows with the number of candidates and zones. However, the

heuristic approximation of the Pareto Set contains on average only 80% of the exact solutions.

The average percentage of heuristic solutions dominated by the exact ones is greater on the Type

6 instances (≈ 20.11%). This outcome relies on the higher zone density of these problems which

might lead to a greater number of solutions to explore; consequently the Matheuristics hardly

succeeds in improving the pool of solutions found within the allocated time limit. As concerns

the remaining indicators, the results show that the Matheuristic approximation of the Pareto Set

has on average the same Overall Pareto Spread of the complete Pareto Set, given by the exact,

though it is slightly less diversified. It is worth emphasising, however, that this approximation

of the Pareto Set is obtained with a time limit of 500 seconds, which is approximately half the

average time taken by the AUGMECON-R to calculate the Pareto Set on these instances.

5. The Case with Multiple Roots: the Shortest Path Forest of Active Facilities

As highlighted in Sections 1 and 2, both economic and operational aspects of interconnecting

the active facilities can be accounted for by determining where to install the depot (i.e. the root),

and by constructing a shortest path tree rooted in it and connecting these sites.

Indeed, specific real-world scenarios, e.g. those characterised by a significant number of

active facilities to connect, may necessitate the presence of multiple roots to ensure that the ef-

ficiency of connections is preserved. Therefore, we considered a variant of the MoCLP-ZSPT

in which, a predetermined number of roots has to be installed. This led us to the definition of

a novel Multi-objective problem: the Multi-objective Covering Location Problem with Zonal

Requirements and Shortest Path Forest of Active Facilities (MoCLP-ZSPF). Similarly to the
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Table 20: Comparison of the aggregated evaluation metrics relative to the RC-CluSPT instances.

avg(Nodes) q Zones AUGMECON-R AugStarExplore

avg(Sol.) avg(µ) avg(OPS) avg(SP) avg(sh.) avg(Sol.) avg(µ) avg(OPS) avg(SP)

Type 1

65.00 0.15 5 10.00 0.00 1.00 75.82 7.80 9.80 2.00 1.00 77.76

65.00 0.20 5 18.40 0.00 1.60 70.37 14.40 18.20 3.60 1.57 71.84

99.50 0.15 10 5.00 0.00 2.00 85.22 4.50 5.00 0.50 2.00 85.22

99.50 0.20 10 19.00 0.50 0.50 22.39 14.00 19.50 3.50 0.50 58.24

Type 5

80.00 0.15 5 12.33 0.00 1.10 117.01 10.17 12.33 2.00 1.10 117.81

80.00 0.20 5 12.33 0.00 2.77 162.87 10.50 12.67 1.83 2.77 160.64

105.00 0.15 10 18.00 0.00 0.69 40.16 16.50 19.50 1.50 1.27 83.54

105.00 0.20 10 21.50 0.00 1.54 40.12 19.00 20.50 1.50 1.54 40.05

Type 6

105.00 0.15 2 8.00 0.00 1.00 676.58 6.00 8.00 2.00 1.00 676.58

105.00 0.20 2 16.00 0.00 1.00 58.11 15.00 15.00 0.00 1.00 77.28

63.75 0.15 4 6.00 0.00 1.00 73.78 4.50 6.00 1.50 1.00 73.78

63.75 0.20 4 15.00 0.00 1.48 41.46 11.50 15.00 3.50 1.48 41.38

73.00 0.15 6 11.50 0.00 1.06 50.24 7.00 11.50 3.50 1.06 51.13

73.00 0.20 6 26.00 0.00 1.17 43.06 20.50 29.50 4.50 1.19 35.11

80.75 0.15 9 11.25 0.00 1.08 43.19 9.00 11.50 2.50 1.08 38.44

80.75 0.20 9 24.50 0.00 1.15 32.13 20.25 25.00 3.75 1.08 30.02

MoCLP-ZSPT, its decision-making process involves the selection of R facilities that serve as

roots of as many shortest path trees connecting active facilities.

Lemma 2. The MoCLP-ZSPF is NP-hard.

Proof. Letting R = 1, the MoCLP-ZSPF reduces to the MoCLP-ZSPT. Thus, the MoCLP-ZSPF

is NP-hard since otherwise the MoCLP-ZSPT would be tractable (Lemma 1).

A mathematical formulation of the MoCLP-ZSPF is detailed in Section 5.1 while the adapta-

tion of the AugStarExplore Matheuristics is described in Section 5.2. Finally, Section 5.3 presents

and analyses the experimentation we conducted.

5.1. Arc-Flow Multi-objective MILP Formulation

The proposed MILP model relies again on flow variables, though they present four indices

this time, since both the origin and destination of flows have to be considered. Specifically, the

proposed model relies on the use of facility location, demand coverage, root selection and edge

activation variables (cf. Section 2.2), and of the following variables:

1. non-negative flow variables f uv
i j

defined ∀u, v ∈ J, u , v, ∀(i, j) ∈ AJ , denoting the flow

sent from facility in u to facility in v through arc (i, j);

2. binary assignment variables tuv defined ∀u, v ∈ J, u , v, such that tuv = 1 if facility in v is

directly connected with facility in u.

The definition of overall service costs and maximum path length objective functions is updated

as follows. The former is FS C =
∑

u,v∈J
u,v

∑

(i, j)∈AJ
ci j f uv

i j
+
∑

j∈J s jx j, where the first term is the inter-

connection costs, i.e. the shortest path forest cost; the latter is FPL = maxv∈J

∑

u∈J

[

∑

(i, j)∈AJ
ci j f uv

i j

]

.

Indeed, the min-max objective function resulting from minimising FPL is linearised similarly

to what we did in Section 2.2. Thus, the resulting Multi-objective MILP is given by (4) in which
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(4a) accounts for covered demand maximisation, (4b) denotes the overall costs minimisation,

and (4c) represents the minimisation of the maximum length of any solution path.

(MoCLP-ZSPF) max FDC (4a)

min FS C (4b)

min FPL (4c)

subject to

Constraints (2e)-(2i)
∑

j∈J

z j = R, (4d)

tuv ≤ zu, ∀u, v ∈ J, u , v (4e)

tuv ≤ xv, ∀u, v ∈ J, u , v (4f)

zv + tuv ≤ 1, ∀u, v ∈ J, u , v (4g)
∑

v∈J∖{u}
tuv ≥ zu, ∀u ∈ J (4h)

∑

u∈J∖{v}
tuv = xv − zv, ∀v ∈ J (4i)

f uv
i j ≤ tuv, ∀(i, j) ∈ AJ ,∀u, v ∈ J, u , v (4j)

f uv
i j + f uv

ji ≤ ei j, ∀[i, j] ∈ EJ ,∀u, v ∈ J, u , v (4k)

∑

j∈FS (i)

f uv
i j −

∑

j∈BS (i)

f uv
ji =



























tuv if i = u,

−tuv if i = v,

0, otherwise.

∀i, u, v ∈ J, u , v (4l)

∑

[i, j]∈EJ

ei j =
∑

j∈J

x j − R, (4m)

Constraints (2s)-(2u)

tuv ∈ {0, 1}, ∀u, v ∈ J, u , v (4n)

f uv
i j ≥ 0. ∀(i, j) ∈ AJ ,∀u, v ∈ J, u , v (4o)

Constraints (2e)-(2i) are adopted to state that the roots are chosen among active facilities,

along with coverage and location rule and the activation conditions for the edge variables. Con-

straints (4d) states that R active facilities have to be set as roots. Then (4e)-(4j) are the assign-

ment constraints: (4e)-(4f) state that any active facility can be linked only to any root facility;

(4g) ensure that an active facility is either a root itself or is linked with a root facility, while (4h)

ensure that each root has at least an active facility assigned to it. (4i) state that each active and

non-root facility is assigned to exactly one root facility, and (4j) force the flow to be sent only

from coupled root-destination facilities. Constraints (4k) are the activation constraints (cf.(2h)-

(2j)). Similarly, (4l) are the typical flow-balancing constraints, and Constraints (4m) define the

dimension of the shortest path forest. Finally, binary constraints for the x, z, y, e and t variables,

and non-negativity constraints for the continuous ones are stated. In particular, the model (4)

encompasses: |I| + (3|J|2 + |J|)/2 binary variables, [|J|(|J| − 1)]2 + 1 continuous variables, and

3 + |I| + K + 11|J|2/2 − 4|J|3 + 5|J|4/2 linear constraints.

5.1.1. Numerical Example for the MoCLP-ZSPF

Considering the same example problem of Section 4.1, the aim of this subsection is to provide

a proof of concept for model (4). In particular, the MILP model comprises: 173 binary variables,

8101 continuous variables, and 21576 linear constraints. We set S = 3 and assumed that two

roots have to be chosen, i.e. R = 2. The relative payoff table is reported in Table 21.
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Table 21: Payoff table obtained with lexicographic optimisation.

−FDC FS C FPL

min−FDC -113 376 25

min FS C -109 281 40

min FPL -109 370 20

We chose qS C = qPL = 20 yielding to discretisation steps equal to 4 and 1, respectively.

AUGMECON-R found eight efficient solutions. In particular, comparing the objective function

values in Table 22 with those in Table 5 it emerges that, as expected, adding a new root yields the

reduction of the maximum values of both FS C and FPL. For example the first solution activates

facilities in 3, 5, 7, 8, 10 and places the roots in facilities 3 and 5. Also f 3
(3,7)
= f 3

(5,10)
= f 8

(8,7)
= 1,

and t37 = t38 = t510 = 1 while the remaining f and t variables are null.

Table 22: Solutions found by AUGMECON-R. Those marked with asterisk cover all demand nodes except 23.

Active Facilities Roots Edges min−FDC min FS C min FPL Active Facilities Roots Edges min−FDC min FS C min FPL

3, 5, 7, 8, 10 3, 5 [3,7], [7,8], [5,10] -113 37.6 2.5 3, 4, 6, 8, 10 3, 10 [3,8], [4,10], [6,10] −109(∗) 28.1 4.0

3, 5, 6, 8, 10 8, 10 [3,8], [5,10], [6,10] −109(∗) 30.6 2.5 3, 5, 6, 8, 10 3, 10 [3,8], [5,10], [6,10] −109(∗) 30.6 2.5

3, 5, 7, 8, 10 3, 5 [3,7], [3,8], [5,10] -113 37.6 2.5 3, 5, 7, 8, 10 5, 7 [7,3], [7,8], [5,10] -113 37.6 2.5

3, 5, 6, 8, 9 8, 9 [9,5], [8,3], [8,6] −109(∗) 33.1 2.1 2, 5, 6, 8, 9 5, 6 [5,9], [6,8], [6,2] −109(∗) 37.0 2.0
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Figure 4: Solution 2 (right). Active facilities shown in blue while root facilities in red, and covered demand nodes in

green. FS C = 30.6 and FPL = 2.5.

5.2. Designing a Matheuristics for the MoCLP-ZSPF

This Section details the Matheuristics AugForestExplore, devised to approximate the Pareto

Set for the MoCLP-ZSPF. Actually, the logic behind this approach is similar to that of the

AugStarExplore algorithm detailed in Section 3.2: it adopts a tailored heuristic procedure, called

ForestExplore, to solve the SOPs at each iteration of the AUGMECON-R scheme.
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At this purpose, it receives as input the same parameters of AugStarExplore, and the param-

eters α, ω, β, γ and τ have the same role as in the StarExplore procedure. Once that a set

of fractional values for the facility variables x j is obtained from the continuous relaxation of

the Maximal Covering Location problem featuring Zonal constraints (2g), at each iteration the

ForestExplore heuristics is invoked, whose pseudo-code is given in Algorithm 5.

After the initialisation operations (Lines 2-6), a set of K active facilities is defined through the

pseudo-randomised rounding procedure detailed in Algorithm 3 (Line 8). Then, each possible

combination of R active facilities is used as roots to compute a forest (Line 10). At this purpose,

the GetForest function (Algorithm 6) is invoked which, following the k-means logic, assigns

each non-root facility to the closest root. Actually, this is the best assignment that can be made

from a Pareto optimality perspective, for functions FS C and FPL, as stated in Lemma 3. It is

noteworthy that the number of possible forests is
(

K

R

)

.

Later on, if the forest obtained with GetForest presents at least an isolated root, then all

these roots are processed sequentially by repeatedly invoking the function FixForest (Line

14) detailed in Algorithm 7. This function evaluates the differential contributions related to

switching a non-root facility from the root it has been assigned to and the isolated root currently

processed. Indeed, switches are possible only from roots with at least two assigned nodes, to

avoid creating new isolated roots (Line 6, Algorithm 7). Then, following a minimum criterion,

a switch occurs whenever it makes the smallest contribution to either the cost or the path length

objective function. Indeed, as many new forests are created as there are possible switches. Then

these forests are explored (Lines 18-29, Algorithm 5): for each of them, if the corresponding

solution verifies the current ε constraints (Line 19), the procedure checks whether it is repeated

or dominated by any previously computed solution (Line 21); if not, it is inserted in the pool.

The procedure counts the solutions inserted in the pool (Line 24) and updates max and min slack

variables found (Lines 26-27) analogously to Algorithm 2. If the exploration of the region of the

grid is promising, γ additional iterations are performed (Line 36). Finally, the slack variables are

obtained as in Algorithm 2.

Lemma 3. The procedure GetForest (Algorithm 6) defines a Pareto optimal assignment of

active facilities to roots, for the overall service costs objective function and the maximum path

length objective function. That is, there does not exist a different assignment which improves the

values of functions FS C and FPL obtained with this procedure.

Proof. Given the vector x̄ of facility variables obtained with Pseudo-RandomisedRounding

procedure (cf. Algorithm 3), let f̄ be the vector of flow variables relative to the assignment

obtained with GetForest procedure. Let us assume that there exists a different assignment

of non-root active facilities in x̄ to roots such that, given the corresponding vector f̄ ′ of flow

variables,
(

FS C( f̄ ′, x̄), FPL( f̄ ′)
)

dominates
(

FS C( f̄ , x̄), FPL( f̄ )
)

. Namely, it holds that:

FS C( f̄ ′, x̄) ≤ FS C( f̄ , x̄) and FPL( f̄ ′) ≤ FPL( f̄ ),

with at least one strict inequality. However, this outcome is only possible if there exists at least

one path from a root r ∈ J to an active (non-root) facility j ∈ J, relative to the assignment f̄ ′,
whose cost is less than that of the path from r to j in the assignment f̄ , i.e. cr j. Nonetheless, the

triangular inequality for the cost function c ensures that such a path could not exist.

Remark 5. Similar to what was observed in Section 3.2, the running time of the AugForest-

Explore procedure is determined by the qS C ∗ qPL calls to the ForestExplore heuristics (cf.

Algorithm 5). Therefore it is necessary to estimate its running time.
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Algorithm 5 ForestExplore Procedure

1: procedure ForestExplore((G, {Ck}k≤K , c, d, {Ni}i∈I , h, s,R), x̂, εPL, εS C , α, ω, β, γ, τ)

2: Set S S C = 0 and S PL = 0. ▷ Slack variables

3: Set S max
S C
= 0 and S max

PL
= 0. ▷Minimum slack variables

4: Set S min
S C
= INT MAX and S min

PL
= INT MAX. ▷Maximum slack variables

5: Set good sol = 0, f eas sol = 0, in f eas sol = 0 and insert = FALSE.

6: Set f acilities = ∅, Pool = ∅ and Forest Pool = ∅.
7: for iter = 1 to γ do

8: f acilities = Pseudo-RandomisedRounding({Ck}k≤K , x̂, α, ω) ▷ Activation of facilities

9: for each tuple roots of R active facilities do

10: Forest = GetForest(roots, f acilities)

11: Add Forest to Forest Pool.

12: if there is at least an isolated root then

13: for each isolated root j do

14: Forest Pool = FixForest( j, Forest Pool)

15: endfor

16: endif

17: f eas sol = 0.

18: for each forest f̂ in Forest Pool do

19: if F
f̂

S C
≤ εS C and F

f̂

PL
≤ εPL then ▷ The forest is feasible

20: f eas sol = f eas sol + 1.

21: insert = CheckPool( f̂ , Pool) ▷ Check for dominated/repeated solution

22: if insert == TRUE then

23: Pool = Pool ∪ { f̂ }
24: good sol = good sol + 1.

25: endif

26: S min
S C
= min(S min

S C
, εS C − FS C) and S max

S C
= max(S max

S C
, εS C − FS C)

27: S min
PL
= min(S min

PL
, εPL − FPL) and S max

PL
= max(S max

PL
, εPL − FPL)

28: endif

29: endfor

30: if f eas sol == 0 then ▷ The SOP in unfeasible

31: in f eas sol = in f eas sol + 1

32: endif

33: endfor

34: endfor

35: if in f eas sol <
(

K
R
)

∗ γ and good sol ≥ τ then ▷ SOP feasible and exploration promising

36: Repeat Lines 7-29. ▷ γ extra iterations

37: endif

38: S S C = β ∗ S max
S C
+ (1 − β) ∗ S min

S C
and S PL = β ∗ S max

PL
+ (1 − β) ∗ S min

PL
39: return Pool, S S C , S PL

40: end procedure

Algorithm 6 GetForest Procedure

1: procedure GetForest(roots, f acilities)

2: Set Forest = f acilities.

3: Set FS C =
∑

j∈ f acilities s j and FPL = 0.

4: for each v ∈ f acilities ∖ roots do

5: assign v to j = argmini∈rootsciv.

6: Update Forest.

7: FS C = FS C + c jv.

8: if c jv > FPL then

9: FPL = c jv

10: endif

11: endfor

12: return Forest

13: end procedure
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Algorithm 7 FixForest Procedure

1: procedure FixForest( j, Forest Pool)

2: Set New Forest Pool = ∅.
3: for each forest in Forest Pool do

4: Remove the forest from Forest Pool.

5: for v ∈ f acilities \ roots do

6: if v is assigned to i ∈ roots and at least two nodes are assigned to i then

7: ∆S C[v] = c jv − civ and ∆PL[v] = c jv.

8: endif

9: endfor

10: for v ∈ f acilities \ roots do

11: if v = argmin∆S C or v = argmin∆PL then

12: assign v to j.

13: FS C = FS C + ∆S C[v] and FPL = ∆PL[v]

14: Add the obtained forest to New Forest Pool.

15: endif

16: endfor

17: endfor

18: return New Forest Pool

19: end procedure

As already mentioned, the execution time of the pseudo-randomised rounding procedure is

O(|J|), while both GetForest and FixForest complexity is O(KR). The estimated execution

time for the loop on Lines 12-16 is O(KR2). In particular, the cardinality of Forest Pool in

the worst case (i.e. when there are R − 1 isolated roots and all the switches are possible) is

equal to
∏R−2

j=0 [K − R − j] = O(K(R−1)). Therefore, the pool checking on Line 21 performs at

most O(K2(R−1)) comparisons. Since the loop on Lines 9-29 entails
(

K

R

)

iterations, the expected

running time of the ForestExplore heuristics is O
(

γ ∗
(

K

R

)

∗ (K2(R−1) + KR2)
)

.

The worst case occurs when the grid of ε values is defined with unitary step and no jump is

performed, since AugForestExplore invokes the ForestExplore heuristics rS C ∗ rPL times.

5.3. Computational Experiments on the MoCLP-ZSPF

To check the validity of the MoCLP-ZSPF model as well, we performed a series of experi-

ments on a subset of the instances detailed in Section 4.2. Particularly, we adapted the framework

of the AUGMECON-R method (Section 3.1) to obtain an approximation of the Pareto Sets which

is then compared with the one produced by the AugForestExplore Matheuristics.

Remark 6. Since we have assumed that only active facilities can act as roots and that exactly one

facility is located in each zone, the maximum number of allowed roots is ⌊K/2⌋.
Given that, when R = 1 the MoCLP-ZSPF reduces to MoCLP-ZSPT, we first conducted

a set of experiments aimed at comparing the two formulations (2) and (4), detailed in Sec-

tion 5.3.1. Then, Section 5.3.2 presents the approximations of the Pareto Sets obtained with

the AUGMECON-R and AugForestExplore methods when R = 2 and R ≤ 6, respectively.

5.3.1. Comparison of the MoCLP-ZSPT and the MoCLP-ZSPF with single root

The experiments were conducted considering ≈ 20% of the small pmed instances and of the

RC-CluSPT ones. The payoff tables were obtained with the lexicographic optimisation, while

the parameters of the AUGMECON-R method were set analogously to Sections 4.5 and 4.6

respectively. The results are reported in Table 23 and Table 24.
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Table 23: Comparison of results on the small pmed instances using MoCLP-ZSPT and MoCLP-ZSPF with R = 1.

Nodes Nr. q Dem. Cand. Zones MoCLP-ZSPT MoCLP-ZSPF

avg(Pay-L) avg(AUG-R) avg(Sol.) avg(Pay-L) avg(AUG-R) avg(Sol.)

100 3 0.10 90 10 2 0.63s 6.02s 4.67 2.61s 22.73s 5.00

100 3 0.15 86 14 2 1.52s 8.01s 3.00 15.61s 125.17s 4.00

100 3 0.20 80 20 2 4.48s 45.12s 10.00 64.03s 833.35s 10.00

100 3 0.10 92 8 4 0.65s 6.09s 3.67 1.88s 14.62s 3.67

100 3 0.15 88 12 4 2.26s 39.43s 8.00 12.59s 187.15s 10.00

100 3 0.20 80 20 4 23.21s 269.39s 17.67 410.51s 3649.20s 17.67

Table 24: Comparison of results on RC-CluSPT problems using MoCLP-ZSPT and MoCLP-ZSPF with R = 1.

Type Nodes Nr. q avg(Dem.) avg(Cand.) Zones MoCLP-ZSPT MoCLP-ZSPF

avg(Pay-L) avg(AUG-R) avg(Sol.) avg(Pay-L) avg(AUG-R) avg(Sol.)

1 99.00 1 0.15 79.00 20.00 10 81.02s 41.06s 2.00 27314.95s 1878.74s 2.00

1 68.00 3 0.20 50.67 17.33 5 15.26s 665.52s 17.67 631.57s 10196.75s 17.33

5 67.50 4 0.20 50.75 16.75 5 8.19s 181.25s 10.00 288.36s 2333.27s 10.00

6 76.00 1 0.20 58.00 18.00 4 8.68s 447.24s 19.00 149.81s 5251.35s 18.00

6 76.00 1 0.20 58.00 18.00 4 13.89s 1272.30s 32.00 252.64s 5251.35s 18.00

6 73.00 3 0.20 52.50 20.50 9 40.62s 498.80s 10.50 16362.50s 15879.33s 10.50

These results show that, as expected, the presence of a fourth index in the formulation has

a strong impact on the resolution of the SOPs. In fact, comparing the average computational

times of the lexicographic optimisation approach for the same subset of instances, it appears

that the maximum ratio is 17.68 on the pmed problems, and even 402.82 on the RC-CluSPT

ones. Analogously, the average computational times of the AUGMECON-R method are one

order of magnitude lower when the three indices formulation is adopted. This outcome confirms

the strong speed-up due to the presence of one less index; in particular, the average ratio of the

average computational times is equal to 9.76 on the pmed instances, and 20.28 on the RC-CluSPT.

Finally, on the RC-CluSPT problems the exact approximation of the Pareto Set contains a greater

number of non-dominated solutions when adopting the MoCLP-ZSPT formulation; while on

average only 1 less solution is detected on the pmed ones. However, considering these results,

we can conclude that the MoCLP-ZSPT formulation has to be preferred when R = 1.

5.3.2. Results with Multiple Roots

A further computational phase was conducted on both the data-sets with the aims of: de-

tecting the peculiarities of the MoCLP-ZSPF formulation as the number R of roots varies, and

appraising the scalability of the proposed AugForestExplore Matheuristics. Indeed, preliminary

experimentation revealed that the MoCLP-ZSPF is more challenging for the AUGMECON-R

method already when R = 2, as emerged from the results in Tables 25 and 26.

Table 25: Aggregated numerical results on the small and medium pmed instances with R = 2.

Nodes Nr. q Dem. Cand Zones Roots avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

100 1 0.10 92 8 4 2 1.62s 29.80s 7.00 103.00 381.00 0.00

100 1 0.15 88 12 4 2 10.52s 195.37s 13.00 145.00 282.00 57.00

100 1 0.20 80 20 4 2 348.53s 2887.03s 10.00 159.00 325.00 0.00

200 2 0.10 184 16 8 2 1031.65s 3617.05s 27.00 236.50 226.00 21.50

200 2 0.10 180 20 4 2 635.65s 3415.26s 13.50 158.50 280.00 45.50

These results show that activating one additional root leads to average computational times
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Table 26: Aggregated numerical results on the RC-CluSPT instances with R = 2.

Type Nodes Nr. q avg(Dem.) avg(Cand.) Zones Roots avg(Pay-L) avg(AUG-R) avg(Sol.) avg(gp) avg(J-byp) avg(J-inf)

1 76.00 2 0.20 57.00 19.00 5 2 1121.24s 10080.34s 19.50 400.00 441.00 534.00

5 75.00 1 0.20 57.00 18.00 5 2 173.89s 6074.62s 8.00 395.00 1649.00 0.00

6 76.00 1 0.20 58.00 18.00 6 2 1415.11s 4898.44s 16.00 233.00 275.00 234.00

6 70.00 1 0.20 50.00 20.00 9 2 25375.50s 54637.36s 27.00 810.00 1016.00 274.00

increased by at least one order of magnitude. Though AUGMECON-R explores more grid-points

than the single-root case. Additionally, on the small pmed instances, the average computational

are strongly impacted when the number of candidates increases. Instead, on the RC-CluSPT

instances, the average computational times of the lexicographic optimisation grow dramatically,

revealing that as the number of roots increases the advanced connectivity constraints become

more challenging due to the smaller number of candidates per zone.

In view of these considerations, we adopted AugForestExplore to heuristically solve the

MoCLP-ZSPF with up to 6 roots. Specifically, preliminary experiments revealed that with the

parameter values detailed in Section 4.3.2, the resulting heuristic Pareto Set approximation was

competitive with the exact one. Therefore, the experimentation was conducted with these pa-

rameters and setting the time limit as 500 seconds on the RC-CluSPT instances.In particular, we

considered a representative subset of the RC-CluSPT instances.

Table 27: Aggregated numerical results of the AugForestExplore Matheuristic on the RC-CluSPT data-set.

avg(Nodes) Nr. q avg(Dem.) avg(Cand.) Zones Roots avg(Pay-L) Matheur. avg(Sol.) avg(OPS) avg(SP)

Type 1

68.50 4 0.20 51.25 17.25 5 2 645.52s 500.00s 18.50 1.15 49.46

99.50 2 0.15 80.00 19.50 10 2 84695.07s 500.00s 5.00 0.89 63.12

99.50 2 0.15 80.00 19.50 10 3 143654.92s 500.00s 4.00 0.28 54.00

Type 5

67.50 4 0.20 50.75 16.75 5 2 165.70s 500.00s 9.50 0.79 110.87

90.00 1 0.20 66.00 24.00 10 3 236628.48s 500.00s 14.00 0.01 100.62

Type 6

76.00 1 0.20 58.00 18.00 4 2 270.03s 500.00s 6.00 0.30 49.69

76.00 1 0.20 58.00 18.00 6 2 1415.11s 500.00s 13.00 1.15 45.04

76.00 1 0.15 61.00 15.00 9 2 775.26s 500.00s 12.00 0.75 31.22

76.00 1 0.15 61.00 15.00 9 3 290.64s 500.00s 12.00 0.06 61.85

73.00 2 0.20 52.50 20.50 9 2 24494.17s 500.00s 11.00 0.67 15.37

73.00 2 0.20 52.50 20.50 9 3 28187.94s 500.00s 12.00 0.16 82.98

The results in Table 27 reveal that on the Type 1 instances with the same characteristics (zones

and q), as R increases, the Matheuristics detects on average one less efficient solution. This out-

come is again related to the lower zone density which makes the advanced connectivity features

more challenging for the heuristic procedure too. Instead, on the Type 6 instances with 9 zones

and the same q values, the Pareto Set approximations relative to R = 2 and R = 3 contain on

average the same number of solutions. Though, OPS and Spacing values of the latter are worse.

These outcomes suggest that an extended time limit could allow the Matheuristics to perform a

more thorough exploration of the frontier. However, on this same Type instances, the Matheuris-

tics efficiently performs a thorough exploration for problems with the same demand, candidates

and q values, with 4 and 6 zones. This is confirmed by the doubled number of solutions detected.

Concerning the pmed data-set, a preliminary set of experiments revealed that an adequate

exploration of their Pareto Sets would require impractical computational times, given the larger

size of the instances and the corresponding density of zones. However, the logic underlying the
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heuristic framework ForestExplore is well suited to a parallel implementation, to which we

switched.

On these instances we defined the time limit as 300+
(

K

R

)

∗Nodes∗0.002 seconds, in order to

guarantee a 2-day exploration on the largest problems with 6 roots. In particular, we considered

3 out of 5 instances for the small and medium pmed ones, along with the large ones. Table 28

reports the results obtained on a subset of the pmed instances sized 100 and 200 nodes, for which

the payoff tables were obtained with the lexicographic approach.

Table 28: Aggregated numerical results of the AugForestExplore on the pmed instances with 100 and 200 nodes.

Nodes Nr. q Dem. Cand. Zones Roots avg(Pay-L) Matheur. avg(Sol.) avg(OPS) avg(SP)

100 3 0.10 90 10 4 2 1.77s 301.23s 3.67 0.44 34.13

100 3 0.15 86 14 4 2 10.57s 301.21s 15.33 0.92 47.80

100 3 0.20 80 20 4 2 322.42s 301.22s 24.33 1.06 43.47

200 3 0.10 180 20 4 2 1764.61s 306.02s 5.33 0.20 37.33

200 3 0.10 184 16 8 2 1283.39s 311.25s 20.67 0.66 46.28

200 3 0.10 184 16 8 3 525.59s 322.47s 30.00 1.14 40.39

200 3 0.10 184 16 8 4 2340.11s 328.08s 23.33 0.68 30.89

Recalling that as the number of candidates grows there is potentially a greater number of so-

lutions to explore, we can see how on small instances the Matheuristics succeeds in performing

this exploration. In fact, when the number of candidates doubles, it finds 6 times as many solu-

tions which are also characterised by better spreads. Nevertheless, on instances with 200 nodes,

when R = 2, as the density of zones increases, the heuristic approximation of the Pareto Set

is poorer, in terms of cardinality, spread and distribution indicators. Such an outcome suggests

again that zone density affects the performance of the approach and makes the problem more

challenging. Similarly, it happens that as the number of roots doubles the average computational

times of the lexicographic approach double too, thus confirming that also R impacts the com-

plexity of the problem. Curiously, the configuration with 3 roots is the one characterised by the

best approximation of the Pareto Sets, in terms of cardinality and spread indicators.

Remark 7. The average computational times for the exact computation of the payoff tables grow

dramatically as the number of roots increases; thus, we adapted the operations of the γ iterations

in the ForestExplore procedure (cf. Algorithm 5, Lines 7-29) to approximate the payoff table

for the pmed instances sized 300 to 600 nodes, using a time limit of 900 seconds.

Table 29 reports the results relative to instances with 300 nodes: it emerges that on prob-

lems with 6 zones, as the number of candidates grows the Matheuristic approximation of the

Pareto Set is poorer in terms of cardinality and spread indicators, though the solutions are better

diversified. Again, this outcome is related to the increased zone density which challenges the ex-

ploration of the pool of feasible forests performed in the ForestExplore procedure. However,

the results obtained for instances with 12 zones and R = 2 prove that the parallel implementation

of the heuristics is beneficial to the exploration process; in fact, the resulting approximations of

the Pareto Sets are better with respect to all indicators in comparison with those obtained for

instances with 6 zones.

Additionally, on these instances, for the same R values, and the same time limits, when the

number of candidates increases the Matheuristics provides increasingly better approximations

with respect to cardinality and spread indicators. This reveals how successful this approach is

in exploring and determining multiple efficient configurations for scenarios characterised by the
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Table 29: Aggregated numerical results of the AugForestExplore Matheuristic on the pmed instances with 300 nodes.

Nodes Nr. q Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

300 3 0.10 270 30 6 2 900s 315.15s 8.33 0.16 100.16

300 3 0.15 258 42 6 2 900s 311.95s 5.33 0.11 48.50

300 3 0.10 276 24 12

2

900s

425.54s 15.33 0.74 36.67

3 432.10s 14.00 1.41 96.43

4 598.11s 17.00 1.62 55.27

5 806.21s 16.67 2.90 94.50

6 855.73s 12.67 2.78 99.16

300 3 0.15 264 36 12

2

900s

339.66s 27.67 0.68 52.54

3 432.13s 31.33 1.09 55.41

4 597.53s 31.33 4.93 42.03

5 776.43s 19.33 16.84 66.48

6 855.36s 23.00 76.62 54.56

presence of several depots. In particular, it is noteworthy that these approximations are obtained

in at most 15 minutes.

Finally, Figure 5 depicts the average of average values of objective functions FS C and FPL

as the number of roots varies from 1 to 4. In particular, the values relative to R = 1 are those

of the solutions obtained with AugStarExplore method. These graphics reveal how allowing

for the activation of multiple roots (depots) is instrumental at fulfilling the reachability goal, by

decreasing the maximum length of paths from the root to any active facilities in the spanning

forest, as well as the overall costs. Indeed, the advantages in terms of path length and related to

the installation of multiple roots are already significant when one additional root is located.

(a) FS C values with R = 1, 2, 3, 4. (b) FPL values with R = 1, 2, 3, 4.

Figure 5: Representation of the heuristic average values for FS C (left) and FPL (right) objective functions. Each block

of four columns represents average values as R changes and refers to groups of three medium pmed instances with

cardinality of zones equal to 25, and q = 0.10, 0.15, as reported in the group name.

The analysis of results relative to the large pmed problems revealed that on the instances

with 400 nodes, 16 zones and the same number of candidates, as the number of roots increases,

AugForestExplore finds fewer solutions and produces worse Pareto Sets approximations with

respect to diversification indicators (cf. Table 30). Reversely, on instances with 8 zones, the ap-

proximations with the best values of all the indicators are those relative to the maximum allowed

number of roots, i.e. R = 4. Similarly, on instances with 500 nodes, the “worst” approxima-

tions are relative to configurations with fewer zones and roots (i.e. R = 2 and K = 10), probably

due to the reduced time limit that does not allow for exhaustive exploration. On the other hand,
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Table 30: Numerical results of the AugForestExplore Matheuristic on the pmed instances with 400 nodes.

Nodes q Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

400 0.10 360 40 8

2

900s

322.43s 33 0.49 45.75

3 344.85s 16 0.70 62.98

4 356.12s 40 3.39 56.71

400 0.15 344 56 8

2

900s

322.44s 10 0.40 106.09

3 344.86s 20 0.63 100.71

4 356.17s 26 0.89 50.60

400 0.10 368 32 16

2

900s

396.02s 15 0.50 39.81

3 749.51s 42 3.63 30.01

4 1766.82s 12 9.58 111.06

5 3811.70s 20 0.00 53.40

6 6726.94s 10 0.00 70.89

400 0.15 352 48 16

2

900s

396.10s 37 0.47 31.72

3 749.63s 31 0.79 45.00

4 1756.71s 20 3.18 57.99

5 3798.23s 19 2117.99 54.77

6 8080.96s 6 0.00 118.70

Table 31: Numerical results of the AugForestExplore Matheuristic on the pmed instances with 500 nodes.

Nodes q Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

500 0.10 450 50 10

2

900s

345.01s 16 0.50 137.50

3 420.17s 49 0.92 45.40

4 510.17s 61 3.52 51.64

5 552.04s 18 0.64 48.76

500 0.15 430 70 10

2

900s

345.07s 8 0.17 104.40

3 420.02s 36 1.22 72.15

4 510.33s 40 15.67 74.53

5 552.14s 17 3.39 66.46

500 0.10 460 40 20

2

900s

490.04s 8 0.71 43.60

3 1441.16s 9 1.05 91.82

4 5154.51s 22 2.05 36.92

5 15840.61s 36 0.00 12.79

6 44939.19s 5 0.00 89.52

500 0.15 440 60 20

2

900s

490.18s 4 0.25 56.10

3 1440.95s 14 1.75 103.52

4 5751.49s 6 2.22 79.27

5 16237.91s 17 0.00 51.08

6 41841.59s 2 0.00 0.00
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for the remaining instances, with the same number of candidates, the most challenging configu-

rations are those with 5 and 6 roots (cf. Table 31). This is because there might be more isolated

roots after the call to GetForest (cf. Algorithm 6); consequently, the cardinality of the pool of

solutions obtained with FixForest increases rapidly.

Table 32: Numerical results of the AugForestExplore Matheuristic on the pmed instances with 600 nodes.

Nodes q Dem. Cand. Zones Roots Pay-A Matheur. avg(Sol.) avg(OPS) avg(SP)

600 0.10 540 60 12

2

900s

379.24s 19 0.31 41.58

3 564.18s 13 0.95 139.58

4 894.07s 16 3.60 94.81

5 1251.18s 12 5.48 90.19

6 1412.05s 23 12.21 54.00

600 0.15 516 84 12

2

900s

379.30s 34 0.86 55.67

3 564.32s 42 0.72 73.59

4 1116.41s 10 0.01 8.34

5 1251.96s 29 4.64 61.00

6 1410.06s 26 124.14 53.91

600 0.10 552 48 24

2

900s

631.29s 6 0.53 50.58

3 2729.60s 11 1.57 25.15

4 15871.66s 4 0.00 187.28

5 83180.68s 7 0.00 33.33

6 200361.43s 3 0.00 45.03

600 0.15 528 72 24

2

900s

631.38s 22 1.53 26.28

3 2730.35s 24 3.19 57.01

4 13296.22s 8 0.00 30.77

5 53667.85s 3 0.00 28.29

6 395014.97s 0 0.00 0.00

Finally, the data relative to experiments conducted on instances with 600 nodes revealed that,

as expected, the higher the number of zones, the more challenging the MoCLP-ZSPF. In fact, the

configurations with K = 24 and R = 4, 5, 6 are characterised by very poor approximations of the

Pareto Sets, with respect to all the indicators. For example, as reported in Table 32, in more than

2 days of computation the Matheuristics did not detect any solution for the problem with 6 roots.

By contrast, the instances with K = 12 feature good quality approximations with multiple roots.

In particular, it is noteworthy that on these problems the Matheuristic approach is able to detect

on average 22 solutions in 15 minutes which is ≈ 30% of the time needed by AUGMECON-R to

find the same number of solution but on instances with only 200 nodes and 2 roots.

6. Conclusions and Future Lines of Research

This paper introduced advanced network connectivity features and zonal requirements within

Covering Location, giving rise to a novel class of NP-hard Multi-objective Covering Location

Problems. By adopting a broad modelling perspective, it was possible to fill relevant gaps high-

lighted in the literature, with the aim of extending the range of applicability of Network optimi-

sation tools and Location Problems to practical contexts. Specifically, this research allowed to

address all those real-world scenarios that require not only to locate facilities that provide maxi-

mum coverage for a certain demand for services, but also to include the economic, strategic and

operational aspects of their network connections in the decision-making process. To this end,

while modelling the problems through Multi-objective Mixed Integer Linear Programming, in-

novative networks measures were introduced to contain the distance between any active facility
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and selected depots or distribution centres. In addition, the choice of the network structures to

task for these functions was entailed in the decision-making process. As a result of this workflow,

an optimal design was defined for those scenarios in which the size of the underlying network

is restricted; furthermore, contexts characterised by underlying network structures of significant

size were efficiently equipped with an approximate planning of facility location and connection.

The arising optimisation problems are inherently Multi-objective as they contemplate differ-

ent and conflicting managerial perspectives that come into play when planning systems with the

mentioned characteristics. Therefore, this paper proposed a twofold solution approach aimed at

providing an accurate representation of their relevant Pareto Sets, in order to support optimal

decision-making. Firstly, we tailored the robust version of the Augmented ε-constraint method

(AUGMECON-R) (Nikas et al., 2020) for an exact exploration of the Pareto Sets. Secondly, we

exploited the mathematical properties of the introduced problems to design tailored Matheuristic

algorithms to boost scalability of the solution method, thus enabling to tackle large size instances

and multiple depots configurations. In particular, from the thorough experimental analysis con-

ducted, several elements emerged which appear to yield an increased computational burden dur-

ing the exploration of the Pareto Set, namely: an elevated zone density - in terms of candidates

and demands - results in greater computational effort, while zone sparsity yields to significant

challenges for the advanced network connectivity purposes. Furthermore, specific topologies of

the zones (e.g. not-contiguity) can result in complexities for the fulfilment of all the objectives.

Additionally, from a managerial standpoint, it emerged how the proposed research effectively

responded to the motivating needs, obtaining a proof of concept for the proposed models while

solving benchmark instances of realistic size.

The number of Pareto optimal solutions keeps limited while increasing network size, despite

the massive number of feasible solutions. This evidence confirms the suitability of adopting the

proposed Multi-objective modelling approach to support real-world decision making, as the final

choice can be safely made by policy makers among a limited number of efficient configurations.

On the same note, a characterisation of the problems related to the use of multiple de-

pots/distribution centres was obtained, showing how investing in the installation of multiple

depots proves to be cost-effective whenever ensuring a high efficiency in sending flows along

the network of active facilities becomes a strategic priority.

As concerns future lines of research, we first aim to develop improved mathematical for-

mulations for the proposed problems. In fact, the current MILP model for configurations with

multiple depots adopts a 4-indices formulation. However, as shown by the experimentation,

when the instance size increases, both the resolution of the model and the heuristic approach re-

quire a significant computational effort. In addition, this research has enabled bridging the gaps

highlighted in the literature on those scenarios in which the primary objective is to maximise

the coverage of demand for specific services. Consequently, in an attempt to fill similar and/or

further gaps, we intend to broaden our perspective to the cases where the strategic objectives

encompass the allocation of demand.

References

Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L., 2021. Performance indicators in multiobjective optimiza-

tion. European journal of operational research 292, 397–422.

Beasley, J., 1990. Or library. http://people.brunel.ac.uk/~mastjjb/jeb/info.html.

Berman, O., Einav, D., Handler, G., 1991. The zone-constrained location problem on a network. European Journal of

Operational Research 53, 14–24. doi:10.1016/0377-2217(91)90089-E.

39



Jo
u
rn

al
P

re
-p

ro
of

Journal Pre-proof

Blanco, V., Gázquez, R., 2021. Continuous maximal covering location problems with interconnected facilities.

Computers and Operations Research 132, 105310. URL: https://doi.org/10.1016/j.cor.2021.105310,

doi:10.1016/j.cor.2021.105310, arXiv:2005.03274.

Cherkesly, M., Landete, M., Laporte, G., 2019. Median and covering location problems with interconnected facilities.

Computers and Operations Research 107, 1–18. doi:10.1016/j.cor.2019.03.002.

Chukwusa, E., Verne, J., Polato, G., Taylor, R., Higginson, I.J., Gao, W., 2019. Urban and rural differences in geographi-

cal accessibility to inpatient palliative and end-of-life (peolc) facilities and place of death: a national population-based

study in england, uk. International journal of health geographics 18, 8.

Church, R.L., 1990. The Regionally Constrained p-Median Problem. Geographical Analysis 22, 22–32.

Demaine, E.D., Hajiaghayi, M., Mahini, H., Sayedi-Roshkhar, A.S., Oveisgharan, S., Zadimoghaddam, M., 2009. Mini-

mizing movement. ACM Transactions on Algorithms (TALG) 5, 1–30.

Ehrgott, M., Tenfelde-Podehl, D., 2003. Computation of ideal and nadir values and implications for their use in mcdm

methods. European Journal of Operational Research 151, 119–139.

EPA, U.S.E.P.A., 2022. Learn the basics of hazardous waste. Available at https://www.epa.gov/hw/

learn-basics-hazardous-waste.

Ferone, D., Festa, P., Fugaro, S., Pastore, T., 2022. The resource constrained clustered shortest path tree problem:

mathematical formulation and branch&price solution algorithm. Networks .
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 The introducton of advanced network connectvity and spataa features within 

covering aocaton probaems;

 A range of reaated Mathematcaa formuaatons via Muatiobbectve Mixed Integer 

Linear Programming modeas;

 Taiaored impaementaton of the robust version of the Augmented epsiaoniconstraint 

method;

 Design and impaementaton of originaa Matheuristcs utaising probaems’ 

mathematcaa features;

 Thorough computatonaa test on medium to aarge instances showing suitabiaity on 

reaaistc probaems.
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