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Earlier collapse of Anthropocene ecosystems 
driven by multiple faster and noisier drivers

Simon Willcock    1,2,7 , Gregory S. Cooper    3,4,7, John Addy5 & John A. Dearing    6

A major concern for the world’s ecosystems is the possibility of collapse, 

where landscapes and the societies they support change abruptly. 

Accelerating stress levels, increasing frequencies of extreme events 

and strengthening intersystem connections suggest that conventional 

modelling approaches based on incremental changes in a single stress may 

provide poor estimates of the impact of climate and human activities on 

ecosystems. We conduct experiments on four models that simulate abrupt 

changes in the Chilika lagoon fishery, the Easter Island community, forest 

dieback and lake water quality—representing ecosystems with a range of 

anthropogenic interactions. Collapses occur sooner under increasing levels 

of primary stress but additional stresses and/or the inclusion of noise in all 

four models bring the collapses substantially closer to today by ~38–81%. We 

discuss the implications for further research and the need for humanity to 

be vigilant for signs that ecosystems are degrading even more rapidly than 

previously thought.

For many observers, UK Chief Scientist John Beddington’s argument 

that the world faced a ‘perfect storm’ of global events by 20301 has 

now become a prescient warning. Recent mention of ‘ghastly futures’2, 

‘widespread ecosystem collapse’3 and ‘domino effects on sustainability 

goals’4 tap into a growing consensus within some scientific communi-

ties that the Earth is rapidly destabilizing through ‘cascades of col-

lapse’5. Some6 even speculate on ‘end-of-world’ scenarios involving 

transgressing planetary boundaries (climate, freshwater and ocean 

acidification), accelerating reinforcing (positive) feedback mechanisms 

and multiplicative stresses. Prudent risk management clearly requires 

consideration of the factors that may lead to these bad-to-worst-case 

scenarios7. Put simply, the choices we make about ecosystems and 

landscape management can accelerate change unexpectedly.

The potential for rapid destabilization of Earth’s ecosystems is, 

in part, supported by observational evidence for increasing rates of 

change in key drivers and interactions between systems at the global 

scale (Supplementary Introduction). For example, despite decreases 

in global birth rates and increases in renewable energy generation, 

the general trends of population, greenhouse gas concentrations and 

economic drivers (such as gross domestic product) are upwards8,9—

often with acceleration through the twentieth and twenty-first cen-

turies. Similar non-stationary trends for ecosystem degradation10 

imply that unstable subsystems are common. Furthermore, there is 

strong evidence globally for the increased frequency and magnitude 

of erratic events, such as heatwaves and precipitation extremes11. 

Examples include the sequence of European summer droughts since 

201512, fire-promoting phases of the tropical Pacific and Indian ocean 

variability13 and regional flooding11, already implicated in reduced 

crop yields14 and increased fatalities and normalized financial costs9.

The increased frequency and magnitude of erratic events is 

expected to continue throughout the twenty-first century. The Inter-

governmental Panel on Climate Change (IPCC) Sixth Assessment 

Report concludes that ‘multiple climate hazards will occur simulta-

neously, and multiple climatic and non-climatic risks will interact, 

resulting in compounding overall risk and risks cascading across sec-

tors and regions’11. Overall, global warming will increase the frequency 

of unprecedented extreme events11, raise the probability of compound 

events15 and ultimately could combine to make multiple system failures 
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as reinforcing feedbacks accelerate connections or human activities 

increase stress levels. However, extreme events could also counter-

act each other (for example, extreme droughts and extreme rainfall 

events) and interconnections could also have weakening effects (for 

example, where increased plant growth driven by increased CO2 is 

counterbalanced by increased temperatures and droughts. To date, 

there is limited observational evidence showing that ecosystems have 

a record of tipping between alternate stable states21.

Others19 offer a mathematical tripartite classification of critical 

transitions that includes slow driver bifurcations, rate-induced (fast/

cumulative driver) and noise-induced (extreme event) tipping points. 

However, previous studies tend to focus on each of these categories 

individually. For example, there is a well-established body of physics 

and mathematical theory on ‘mean exit times’22, with studies investi-

gating the timing of tipping points in rate-induced18–20 or noisy19,23,24 

systems. However, despite calls for more experimental evidence of 

the impacts of climate variability and extremes on ecosystems25,26, the 

relative importance or combined effect of fast drivers, multiple driv-

ers and noisy system drivers on the collapse of real-world ecosystems 

is not known. Critical transitions driven by current pollution forcings 

such as greenhouse gas emissions27 and nutrient loadings28 are likely 

to be new, well beyond the envelope of natural variability. Hence, we 

avoid the use of the terms critical transition and tipping points, used 

formally in dynamical systems theory to represent shifts to alternative 

attractors and focus on abrupt threshold-dependent changes (ATDCs) 

that would be perceived by society as the quantitative (for example, 

fish and stock integrity) and/or qualitative (for example, ecosystem 

functions) collapse of a desirable system state29,30.

more likely16. For example, there is a risk that many tipping points can 

be triggered within the Paris Agreement range of 1.5 to 2 °C warming, 

including collapse of the Greenland and West Antarctic ice sheets, 

die-off of low-latitude coral reefs and widespread abrupt permafrost 

thaw17. These tipping points are contentious and with low likelihood in 

absolute terms but with potentially large impacts should they occur. 

In evaluating models of real-world systems, we therefore need to be 

careful that we capture complex feedback networks and the effects of 

multiple drivers of change that may act either antagonistically or syner-

gistically18–20. Prompted by these ideas and findings, we use computer 

simulation models based on four real-world ecosystems to explore how 

the impacts of multiple growing stresses from human activities, global 

warming and more interactions between systems could shorten the 

time left before some of the world’s ecosystems may collapse.

Intuitively, stronger interactions between systems may be 

expected to increase the numbers of drivers of any one system, change 

driver behaviour and generate more system noise. As a result, we would 

anticipate that higher levels of stress, more drivers and noise may bring 

forward threshold-dependent changes more quickly. For any particular 

system (for example, the Amazon forest) it is possible to envisage a time 

sequence that starts with one main driver (for example, deforestation), 

then multiple drivers (for example, deforestation plus global warming), 

more noise through extreme events (for example, more droughts and 

wildfires), with additional feedback mechanisms that enhance the 

drivers (for example, diminished internal water cycle and more severe 

droughts). A vortex could therefore emerge, with drivers generating 

noisier systems as climate variability and the incidence of extreme 

events increases. Under worst-case scenarios, the circle becomes faster 
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Fig. 1 | Schematic overview of the framework developed to explore the 

influence of slow driver trajectories and/or noise on the timing of ATDCs. 

a, The four systems models simulated in this study (see section on Overview of 

systems models). b, Schematic representation of a system dynamics model (Lake 

Phosphorus model) with its external slow (blue and green) and noisy (red/orange) 

drivers depicted in colour (see Generation of future scenarios). c, Depiction of 

the four experiment types (section on Generation of future scenarios), ranging 

from changes in the primary baseline driver only (experiment 1), changes in all 

slow drivers and noise inputs simultaneously (experiment 4, where ‘a’ and ‘b’ 

represent noise profiles that are uncoupled or coupled to the primary driver 

trajectory, respectively): darker colours schematically represent steeper 

trajectories and/or higher noise levels. d, The two linear techniques used to check 

whether outcomes shift into a functionally different state (section on Time-series 

breakpoint detection)—the top panel is applied to Lake Chilika, Easter Island and 

TRIFFID, where the systems collapse from high quantitative outcome states to low 

quantitative outcome states and the bottom panel is applied to Lake Phosphorus 

(where lake phosphorus concentrations shift from low to high). e, Depiction of 

the time-series breakpoint date recognition (section on Time-series breakpoint 

detection). The Easter Island icon in a is made by Roundicons and the remaining 

three icons are made by Freekpik, as sourced from www.flaticon.com.
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We have selected a range of system dynamic models that have 

been previously used to demonstrate generalizable findings (for 

example, with regard to safely overshooting ATDCs27) and can be 

externally manipulated to simulate internal emergent ATDCs at local 

and regional scales—as if they were impacted through stronger con-

nections to other systems. Reflecting modern ecosystems, these 

models show varied anthropogenic interactions, ranging from 

social-ecological systems with strongly coupled human–nature 

feedbacks to ecological systems with predominantly one-way inter-

actions where ecosystems are influenced by the external impacts of 

people. The ability of these models to capture feedback loops, delays 

and interactions between components is well established31,32 and has 

motivated their use in various recent studies of sustainability and 

resilience21,33–35. Therefore, guided by the ref. 19 typology of tipping 

points, we aim to generalize the dynamics of increasing the numbers 

of drivers, their rates and variability (as proxies for stronger interac-

tions between systems and noise) on the speed at which ATDCs are 

reached in four ecosystem dynamics models (Fig. 1): Lake Chilika 

lagoon fishery21,33, Easter Island36, Lake Phosphorus28,37 and a modi-

fied version of The Hadley Centre Dynamic Global Vegetation Model 

(TRIFFID) of forest dieback27,38.

Results
As described in the Methods, the four models each have a primary 

(baseline) slow driver (Fig. 2, grey boxplots), where linear changes 

in their trajectories over time can initiate ATDCs in their respective 

outcome variable (Lake Chilika, fish population; Easter Island, human 

population; TRIFFID, tree coverage; Lake Phosphorus, lake phospho-

rus concentration). When the strength of the primary slow driver in 

each model is increased, the modelled systems collapse sooner—as 

defined by a statistical breakpoint in their temporal trends (section 

on Time-series breakpoint detection). Increasing the strength of mul-

tiple drivers with additional secondary and tertiary drivers further 

reduces the breakpoint date (Fig. 2), with variation around these median 

responses determined by the relative strength of the additional driv-

ers—with addition of a weak secondary driver bringing forward the 

start of system collapse substantially less than the addition of a strong 

secondary driver (Supplementary Fig. 2-1).

In addition to earlier breakpoint dates, extra drivers can also cause 

ATDCs at levels where it would be resilient to the primary slow driver 

in isolation (Supplementary Section 2). For example, across the 1,000 

timesteps of the Lake Phosphorus model, the system is stable at nor-

malized baseline driver rates up to 0.348 (that is, Lake Phosphorus 
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Fig. 2 | The relationship between the breakpoint date and the primary 

(baseline) slow driver for the individual (grey) and multiple (coloured) 

drivers. The normalized primary driver trajectories are apportioned into  

three discrete ranges: low, 0.25–0.35; mid, 0.45–0.55; and high, 0.65–0.75.  

a–d, Subplots: Lake Chilika model, primary slow driver—fisher population 

growth, secondary driver—climate change, tertiary driver—fish price (a); Easter 

Island model, primary slow driver—tree clearance, secondary driver—agricultural 

carrying capacity, tertiary driver—tree mortality (b); TRIFFID model, primary 

slow driver—temperature change, secondary driver—disturbance rate (c); 

Lake Phosphorus model, primary slow driver—phosphorus external input, 

secondary driver—phosphorus recycling rate, tertiary driver—phosphorus 

sedimentation rate (d). Model timestep units: Lake Chilika, Easter Island and 

TRIFFID run in years; timesteps in Lake Phosphorus are unitless. Boxplots 

depict the median (50th percentile), upper quartile (75th percentile) and lower 

quartile (25th percentile); individual points represent outliers which fall outside 

1.5× the interquartile range from the lower and upper quartiles (as depicted by 

the boxplot whiskers). See Supplementary Table 3-1 for the number of model 

simulations underpinning each boxplot.
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concentration does not go through a breakpoint; Supplementary  

Fig. 2-4d). However, the addition of a single secondary driver of nor-

malized strength 0.3 can lead to breakpoints occurring at normalized 

primary driver strengths 0.312 (reduction from baseline: 0.036 (10.3%); 

Supplementary Fig. 2-4d) and the addition of an extra tertiary driver 

with normalized strength 0.3 can lead to breakpoints at normalized 

primary strengths 0.270 (reduction from baseline: 0.078 (22.4%); 

Supplementary Fig. 2-4d). With all additional drivers, 12.3% of break-

points observed in the Lake Phosphorus model occurred at primary 

driver strengths below the minimum threshold required to result in a 

breakpoint when the primary driver is acting in isolation (Lake Chilika, 

1.2%; Easter Island, 14.8%; TRIFFID, 7.7%; Supplementary Table 2-1).

Next, for each of the four models, the trajectories of the primary 

slow drivers were randomly perturbed by the addition of noise (sec-

tion on Generation of future scenarios). Noise was generated within 

the system dynamics software used to run the models (STELLA39) by 

randomly sampling per timestep from a normal distribution with a 

mean value of 0 and standard deviation of σ, meaning that random 

perturbations on the system could work in both positive (σ > 0) and 

negative directions (σ < 0). The value of σ was randomly sampled 

once per simulation to explore the effects of different noise scales 

on the time to reach the breakpoint date (section on Generation of 

future scenarios). The addition of high noise (normalized σ > 0.666) 

shows that increasing the variability of the primary slow driver (in 

isolation) across all four models can bring forward the date of system 

collapse (Fig. 3).

The effects outlined above are synergistic—combining multiple 

drivers with noise further reduces the breakpoint date beyond the 

effects of either multiple drivers or noise acting alone (Fig. 4). For exam-

ple, at a normalized slow baseline driver strength of 0.3 in the Easter 

Island model (Fig. 4b), the addition of low uncoupled noise (normalized 

σ ≤ 0.333) with all possible additional drivers switched on with normal-

ized strengths of over 0.666 (‘high’ secondary and tertiary trajectories) 

brings the median breakpoint forward from timestep 1,179 to timestep 

426 (63.8% reduction), whereas high noise levels (defined as normal-

ized σ > 0.666) brings the breakpoint forward from timestep 1,179 to 

timestep 225 (80.9% reduction). The finding that the breakpoint date 

is most advanced by the combination of high noise and high second-

ary trajectories is consistent across the other three models, with the 

median breakpoint date at a normalized slow baseline driver strength 

of 0.3 changing from year 2047 to year 2035 (37.5% reduction) for Lake 

Chilika, timestep 238 to timestep 92 (61.3% reduction) for TRIFFID and 

timestep 848 to timestep 388 (54.2% reduction) for Lake Phosphorus. 

Across all combinations of noise and multiple drivers, 1.7%, 7.5%, 6.6% 

and 8.9% of modelled breakpoints occurred at primary driver strengths 

below the minimum threshold required to result in a breakpoint when 
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Fig. 3 | The relationship between the breakpoint date and the primary slow 

driver (grey) for varying levels of uncoupled noise in the primary slow driver. 

Where normalised primary slow driver (σ) values ≤ 0.333 signify ‘low noise’ 

(yellow), normalised σ values > 0.333 and ≤ 0.666 signify ‘mid noise’ (orange), 

and normalised σ values > 0.666 signify ‘high noise’ (red; section on Generation 

of future scenarios). The normalized primary driver trajectories are apportioned 

into three discrete ranges: low—0.25–0.35, mid—0.45–0.55 and high—0.65–0.75. 

a–d, Subplots: Chilika model outputs, primary slow driver—fisher population 

growth (a); Easter Island model outputs, primary slow driver—tree clearance 

(b); TRIFFID model outputs, primary slow driver—temperature change (c); 

Lake Phosphorus model outputs, primary slow driver—phosphorus input (d). 

Model timestep units and boxplot dimensions are the same as in Fig. 2; see 

Supplementary Table 3-1 for the number of model simulations underpinning 

each boxplot.
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acting in isolation for Lake Chilika, Easter Island, TRIFFID and Lake 

Phosphorus, respectively (Supplementary Table 2-4).

All results presented above are robust to different modelling 

and monitoring decisions. For example, these results are consistent 

regardless of whether the noise is coupled to (allowed to grow with) 

the magnitude of the primary slow driver or uncoupled and sampled 

from a constant distribution (Supplementary Figs. 2-2 and 2-3 and 

Supplementary Tables 2-3 to 2-5) and irrespective of whether linear, 

nonlinear or threshold-type boundaries40 are used to define the break-

points (Supplementary Section 4 and Supplementary Figs. 4-1 to 4-6).

Discussion
Previous findings have supported the idea that Earth’s subsystems 

may interact to the extent that an abrupt shift in one raises the prob-

ability that a shift may occur in another41–43. In this paper, we have 

explored, through four ecosystem models, how these interactions 

may alter the timing of ATDCs through the effects of strengthened 

drivers, multiple drivers and higher internal variability or noise. The 

potential effects are substantial with combinations of a strengthened 

main driver, an additional driver and noise giving at least 38–81% reduc-

tions in the future date of a predicted ATDC compared to estimates for 

a non-interacting system with a constant single driver and no noise. 

Importantly, the effect per unit time on bringing forward an ATDC 

is greatest at low driver trajectories, which further strengthens the 

suggestion that abrupt Earth system changes may occur sooner than 

we think (Supplementary Introduction). Our findings also show that 

1.2–14.8% of ATDCs can be triggered by additional drivers and/or noise 

below the threshold of driver strengths required to collapse the system 

if only a single driver were in effect.

Overall, we find that, as the strength of a main driver increases, 

the systems collapse sooner. Adding multiple drivers brings collapses 

further forward, as does adding noise, and the two effects can be syn-

ergistic. However, the relative importance of these changes varies 

across systems. For the Chilika fishery, the most influential driver is 

captured as the primary driver and so additional drivers have limited 

influence, with the addition of noise in the primary driver bringing the 

breakpoint date much closer to the present. For Easter Island, TRIFFID 

and Lake Phosphorus, the opposite is true—the addition of high levels 
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Fig. 4 | The relationship between the breakpoint date and the primary 

slow driver (grey) when weak and strong multiple driver trajectories are 

combined with weak and strong uncoupled noise (N). Where normalized 

driver trajectories (T) ≤ 0.333 are classified as weak and T > 0.666 as strong, 

similarly, normalized noise (σ) values ≤ 0.333 and > 0.666 are clasified as 

weak and strong, respectively. The normalized primary driver trajectories are 

apportioned into three discrete ranges: low—0.25–0.35, mid—0.45–0.55 and 

high—0.65–0.75. a–d, Subplots: the Chilika model, primary slow driver—fisher 

population growth, additional driver—climate change and fish price (a); the 

Easter Island model, primary slow driver—tree clearance, additional drivers—

agricultural carrying capacity and tree mortality (b); the TRIFFID model, 

primary slow driver—temperature change, additional driver—disturbance rate 

(c); the Lake Phosphorus model, primary slow driver—phosphorus, additional 

drivers—phosphorus recycling rate, phosphorus sedimentation rate (d). Note, 

the Lake Phosphorus model (d) did not produce any outcomes between the 

0.65–0.75 primary driver range within the ‘high trajectory, high noise’ scenario; 

however, the median breakpoint date of the adjacent range (0.55–0.65) is 346. 

Model timestep units and boxplot dimensions are the same as in Fig. 2; see 

Supplementary Table 3-1 for the number of model simulations underpinning 

each boxplot.
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of noise in the primary driver advances the date of system collapse 

far less than additional drivers. Thus, while the earliest collapses in 

all the systems are found when both additional drivers and noise are 

applied, an important implication for real-world governance is that 

the precise importance of individual driver trajectories and noise is 

system-dependent.

Earlier occurrence of abrupt threshold-dependent changes
Our results show that systems do not collapse at a constant level of 

cumulative stress (that is, total stress built up over time) irrespective of 

the rate of stress change (Supplementary Section 5) but rather under-

line the importance of rate over accumulated stress18–20. Simulations 

where the primary, secondary or tertiary drivers change more rapidly 

tend to shift earlier and are less able to absorb cumulative stress (Sup-

plementary Fig. 5-1). Thus, the same ecosystem can collapse as a result 

of sustained/cumulative pressure of a slower driver but will probably 

collapse faster if the rate of change is increased18–20. Increasingly fast 

driver rates will eventually overwhelm the ability of balancing feedback 

loops to compensate for increased stress on the system; thus, signifying 

a loss of resilience. In the absence of strong balancing loops, a fast driver 

allows reinforcing feedback loops to grow (Supplementary Section 6). 

The driver may also re-energize dormant reinforcing feedback loops 

or allow new coupled, reinforcing feedback mechanisms to emerge 

(compare ref. 44). For the Easter Island, TRIFFID and Lake Phosphorus 

models, as the balance of feedback loops shifts towards reinforcing 

loops, the probability that the system will be driven out of its attractor 

into an ATDC increases (Supplementary Section 6). Additional drivers 

limit further the balancing ability of balancing feedback loops and 

increase the probability of collapse. For Lake Chilika, the pre-ATDC 

phase is dominated by reinforcing feedback loops driving fisher popula-

tion growth towards dangerous levels, with collapse coinciding with the 

growth of balancing feedbacks in the form of reduced fish populations. 

These rebalance the system by limiting the effectiveness of the fisher 

population’s fishing efforts (Supplementary Fig. 6-1).

In our analysis, the rise in driver stress is continuous over time. 

Where the stress is applied in discrete events (for example, wildfire 

events), the same response can be expected where elapsed time 

between events is insufficient for balancing feedback loops to rebal-

ance the system or where large stress events motivate additional ampli-

fying loops. This is similar to the impact of extreme events (that is, 

noise; Figs. 3 and 4), which has the ability to push a system out of its 

attractor temporarily or permanently; an effect that strengthens as 

the system becomes increasingly sensitive to perturbations close to 

a potential ATDCs19,23. However, sequences of extreme events from 

multiple drivers, such as extreme drought followed by extreme rain-

fall, may only act antagonistically where sufficient time allows for the 

system to repair the extreme impacts. Our study only looks at driver 

noise; there could coincidentally or equally be natural ‘state’ change/

noise (vertical axis on phase-plot figures)—for example, natural tree 

mortality, natural lake infilling, fluctuating populations in ecosystems, 

or ageing population, behavioural/psychological changes in the social 

domain—all of which could alter the probability of ATDCs even in the 

absence of, or changes in, the external drivers19,23.

Moving forward
These results have research implications for further developing and 

applying models of ecosystems to study ATDCs. Whilst our findings 

derive from models based on real-world systems, the greater complex-

ity of reality may limit the transferability of our results. The Lake Chilika 

model is the most complex of the four models, with upwards of 100 

model variables capturing hydroclimatic, ecohydrological, fishery and 

socio-economic dynamics interacting to create four balancing loops 

and seven reinforcing loops—and is validated against historical data33. 

Of all the models, it shows the least dramatic reductions in the date 

of any ATDC (Supplementary Introduction). Therefore, it is plausible 

that more complex systems will have stronger regulating mechanisms 

that stabilize the system through sets of balancing feedback loops44, 

constraining the more extreme of our findings.

Mechanistically, in simpler models, such as the Lake Phosphorus 

model, regime shifts may be triggered by a single feedback loop. In 

more complex models (and probably ecosystems), our analysis of 

feedbacks strengths shows evidence for an instability cascade through 

the system via multiple feedback loops. For example, the collapse in 

the Easter Island human population reflects the cumulative effects of 

several feedback loops triggered by overharvesting the tree popula-

tion. Growing instability weakens the balancing feedbacks for the tree 

population, rat population and agricultural carrying capacity (Supple-

mentary Fig. 6-2), allowing the reinforcing loop for the decline in human 

population to strengthen. In general, increasing driver strengths can 

trigger these mechanisms earlier, whereas additional drivers have the 

ability to shift the nature of the cascade (for example, including/exclud-

ing different feedbacks; Supplementary Figs. 6-5 to 6-8). However, in 

spatial terms, multiple interacting feedback mechanisms may lead to 

spatial re-organization which slows the rate of collapse45,46, with sto-

chasticity promoting temporal stability —particularly in local regions 

with small populations24. There is the possibility, too, that intercon-

nections could have weakening effects and, where the impacts are 

slower than the system response, extreme events could counteract each 

other. Thus, our quantitative findings could be viewed as representing 

worst-case scenarios for the different ecosystems7.

Nevertheless, the finding that additional stress produces quali-

tatively similar emergent phenomena in a range of simulation models 

should not be dismissed lightly47,48. The consistency across models 

representing varying processes, interactions and contexts may indi-

cate that equifinality makes the accurate representation of internal 

system dynamics less important than the external drivers/stresses in 

simulating complex realities49. Clearly, model development is required 

to better capture the diversity of system elements, interactions and 

feedbacks for more complex systems and, in particular, more realistic 

coupling of human decision-making and ecological/environmental 

dynamics. With the exception of Lake Chilika33, each model in this 

study was originally created to study the impact of a primary driver 

influenced by predominantly external anthropogenic processes, pre-

sumably the driver perceived as the most impactful. Our results show 

that this assumption may not be the case (for example, Easter Island) 

and models should include a range of plausible drivers and scenario 

combinations if they are to avoid underestimating the risk of ATDCs. 

Moreover, new ecosystem models should allow for the growth of feed-

back loops and long-term simulations to observe the mechanisms that 

underpin ATDCs48,50. For example, more realistic social-ecological 

coupling may lead to shifts in the human decisions capable of either 

shifting an ATDC much closer to the present or avoiding it completely. 

Monitoring of real-world systems should therefore capture multiple 

plausible drivers, their variability and their feedbacks to social systems. 

More ATDCs will occur unexpectedly if the focus on perceived main 

drivers ignores other drivers that increase cumulative stress and gradu-

ally reduce the resilience of systems, as exemplified in the lake water 

regime shift at Erhai, western China28. There, abrupt lake eutrophica-

tion was initially perceived to have been driven by transgression of 

a threshold in nutrient enrichment driven by agricultural runoff but 

historical analysis has shown that the shift was also affected by lake 

water-level management, seasonal climate and fish farming44.

Substantial research has focused on identifying early warning met-

rics linked to critical slowing down theory which applies primarily to 

‘equilibrium’ system states with single, slow drivers51. If, as we indicate, 

real-world tipping elements are more likely to be driven by multiple, 

fast drivers and extreme events, it is less likely that early warning sig-

nals in the frequency domain will be observed20,51 for noise-induced 

thresholds. Certainly, excluding noise from model systems, whilst a 

potentially useful simplification for theoretical understanding, risks 
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creating a false sense of security by overestimating the distance remain-

ing before critical thresholds are breached in the real world where 

multiple drivers and noise are abundant27,52. Therefore, alternative 

approaches to identifying resilience loss in real systems before ATDCs 

through structural metrics53–55 and early warning signals generated by 

agent-based models50 should be considered more widely.

Previous studies of interactions between tipping elements have 

focused on large-scale systems and suggest substantial social and 

economic costs from the second half of the twenty-first century 

onwards42,56. Our findings suggest the potential for these costs to 

occur sooner. For example, it is not clear whether the IPCC estimate 

for a tipping point in the Amazon forest before 2100 (ref. 11) includes 

the possibility for interacting drivers and/or noise; if not, our findings 

suggest that a breakdown may occur several decades earlier (Supple-

mentary Introduction). This would occur where local-scale failures 

in elements (such as species populations, fish stocks, crop yields and 

water resources) combine with more extreme events (such as wildfires 

and droughts) to precondition the large-scale system, already vulner-

able to the influence of other large-scale tipping elements, to collapse 

earlier—a meeting of top-down and bottom-up forces (Supplementary 

Introduction). This vertical integration of forces is reinforced by the 

rising trend in global warming that already represents a spatial integra-

tor which may be expected to strengthen before it subsides. Clearly, 

climate economics need to incorporate these synergistic and cumula-

tive effects that are occurring at local and regional scales into larger 

scale models where they are currently lacking57,58. The dominance of 

accelerating trends in global time series of economic consumption (for 

example, refs. 9,59) makes our finding that ramping up the main driver 

is the easiest way to bring forward an ATDC particularly worrying. Simi-

larly, the implication for regions experiencing more extreme events is 

that an ATDC may occur even before the main driver has ramped up.

The commonality of findings across four well-studied ecosystems 

has potentially profound implications for our perception of future risks 

associated with the climate and ecological crises. While it is not cur-

rently possible to predict how climate-induced ATDCs and the effects 

of local human actions on ecosystems connect across temporal and 

spatial scales, our findings show the potential for each to reinforce 

the other. The ability of present policy and practice to prevent an 

ever-deepening vortex of degradation in local and regional ecosystems 

requires urgent investigation7.

Methods
Overview of systems models
Here, we briefly describe the four previously published models used 

to investigate the effects of multiple drivers and noise upon the timing 

of ATDCs. Each model was replicated and simulated within the system 

dynamics software STELLA Architect v.1.6.1 (ref. 39), with outputs 

exported into CSV files as time series and analysed in the statistical 

software R v.4.1.0 (ref. 60). The models, example data and code used in 

the analyses are available via https://doi.org/10.5281/zenodo.7946433.

The Lake Chilika fishery model21,33 is a social-ecological model 

designed to simulate the future fish population and catch trajecto-

ries of the Chilika lagoon, Odisha, India. The model is able to explore 

the impacts of many slower drivers (fisher population growth and 

increased rainfall and temperatures under climate change) and many 

faster drivers (abrupt changes in fish prices and fishing gear) on the sus-

tainability and resilience of the fish population until 2100. As described 

in detail in ref. 33, the model includes coupling between many social and 

ecological components of the system. First, the efficiency of fish catch 

efforts is proportional to the fish population density within the lagoon 

(as fish density declines, catch per unit effort also decreases). Second, 

as a form of environmental carrying capacity, the fisher population 

growth is proportional to the total number of livelihoods supportable 

by the overall fishery value, which is derived from the total fish catch in 

any given month. Third, fishers may invest their fishing revenues into 

more intensive fishing gear (motorboats), which also has implications 

for fish catch and fish stock health over time. The model is also able to 

simulate many natural resource governance approaches (for example, 

fishing quotas and alternative livelihoods), although the model runs 

conducted here are all under the baseline governance scenario33 (the 

tidal outlet between the lagoon and the Bay of Bengal is re-opened every 

10 years to rejuvenate fish migration and lagoon salinity). The model 

has been previously validated against empirical data through standard 

behaviour-matching techniques and Monte Carlo sensitivity analysis33. 

The Lake Chilika model is run for a total of 1,536 timesteps (months), 

with each time series aggregated to the annual scale (about 1973–2100). 

Future trajectories, detailed in the section below on (Generation of 

future scenarios), activate from timestep 504 ( January 2015) after the 

completion of the historical parameterization and validation periods33.

The Easter Island model aims to explore alternative hypotheses 

behind the collapse of the Easter Island civilization36. The initial param-

eterization of the model here is the same as the ‘ecocide’ configuration 

detailed in ref. 36. The main internal social-ecological feedback driving 

model dynamics is the balancing feedback between human population 

growth, tree coverage and land clearance, whereby the overharvesting 

of the primary resource (palm forest) can lead to overshoot dynamics 

and the eventual demise of the human population (ecocide). As noted 

in ref. 36: ‘While it is obvious that the islanders were not directly living 

from palm trees, the forest provided several valuable and difficult to 

substitute ecological services, including food from fruits and palm 

nuts, timber to construct houses and sea-going canoes for fishing’. In 

addition to this main internal social-ecological feedback, many external 

variables can be modified to change the speed of human population 

growth, including the tree clearance rate per capita, the maximum 

carrying capacity of the agricultural system (to help support human 

population growth) and the mortality rate of trees (representative of 

potential disease outbreaks). The model is run for 1,500 timesteps 

(years), with future scenarios active from the first timestep (Genera-

tion of future scenarios).

The TRIFFID model is a modified version of The Hadley Centre 

Dynamic Global Vegetation Model, originally developed by ref. 38 to 

explore the effects of atmospheric CO2 concentrations on the rate of 

Amazon dieback. Here, we simulate the modified version developed 

by ref. 27, which is based around a central Lotka–Volterra equation 

describing the change in vegetation coverage as the primary exter-

nal driver (local atmospheric temperatures) increases. On any given 

timestep, the change in vegetation coverage (dv/dt) is driven by a 

temperature-dependent growth term and an externally set distur-

bance rate:

dv

dt

= gv (1 − v) − yv (1a)

g = g

0

[1 − (

T

l

− T

opt

β

)

2

] (1b)

T

l

= T

f

+ (1 − v)α (1c)

Where v is the vegetation coverage (ranging from 0–100 %), Tf is the 

temperature forcing parameter (see below), g is the vegetation growth 

rate (the increase in vegetation coverage [v]), g0 is the maximum growth 

rate (set at 2 % per year), y is the disturbance rate (see below), Tl is  

the local temperature, Topt is the optimal temperature (28 °C), β is the 

half-width of the growth versus temperature curve (10 °C) and α is the 

difference in temperature between surface bare soil and forest (5 °C). 

Therefore, the growth term is assumed to be parabolic with the local 

temperature (equation (1b)), meaning that once the local tempera-

ture increases beyond the optimal temperature, negative tree growth 

ensues (that is, additional tree mortality27), which in turn leads to an 
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increase in temperature (equation (1c)), which may eventually produce 

the runaway loss in tree coverage. Although the meaning of the dis-

turbance rate is not specified by ref. 27, it may proxy human-induced 

ecosystem stresses such as deforestation for agricultural land and 

disease-driven forest dieback. The model is run for 500 timesteps, 

with future trajectories active from the first timestep (Generation of 

future scenarios).

The Lake Phosphorus model is a simplified version of the original 

‘lake response to P input and recycling’ model37, as modified by ref. 28. 

The model is designed as a simple ecosystem model, with lake water 

phosphorus concentration driven by a generic external phosphorus 

input (which may, for example, proxy external inputs from agricultural 

runoff, sewage and industrial discharges from factories, construction 

sites and urban areas)61. In turn, lake water phosphorus is recycled back 

into the system as an ecological reinforcing feedback loop, propor-

tional to the lake phosphorus concentration on any given timestep. 

Phosphorus is also removed from lake waters via sedimentation, where 

the volume removed in sediment is proportional to the phosphorus 

concentration of the lake. Therefore, on any given timestep, the change 

in lake phosphorus concentration (dP/dt) equals:

dP = [a − sP + r

P

n

P

n

+ 1

n

]dt (2)

Where P is phosphorus concentration, α is phosphorus input rate, r 

is the maximum recycling rate, s is the phosphorus loss rate, n is the 

strength of the recycling response to phosphorus concentrations 

(n = 8) and t is time (see below). The model is run for 1,000 timesteps 

(unitless), with future scenarios active from the first timestep (see 

below). Given the simplicity of this model, an area for future research 

could be expanding the original model to explore how adaptive man-

agement mechanisms may help to avoid ecosystem thresholds, for 

example, by linking government fertilizer incentives to lake phospho-

rus levels as the ecosystem approaches a threshold.

Generation of future scenarios
Using the above models, we performed four in silico experiments 

(presented visually in Fig. 1):

•	 Experiment 1: only the primary slow driver in each model changes 

over time and all other drivers remain constant (Fig. 2 baseline).

•	 Experiment 2: multiple slow rates, with up to two additional (sec-

ondary and tertiary) slow trajectories on top of the primary driver 

changing over time (Fig. 2 multiple drivers).

•	 Experiment 3: the addition of noise to the primary trajectory  

(Fig. 3), with all other drivers held constant. The magnitude of 

noise may be either coupled or uncoupled from the trajectory of 

the primary driver.

•	 Experiment 4: the addition of noise to the primary driver, with 

up to two additional slow drivers (Fig. 4). The magnitude of noise 

may be either coupled or uncoupled from the trajectory of the 

primary driver.

To survey a wide range of future trajectories and generate a suf-

ficient number of simulations that collapsed (Time-series breakpoint 

detection), each of the models were run for the following number of 

iterations (including both coupled and uncoupled settings):

•	 Lake Chilika fishery: 70,000

•	 Easter Island: 70,000

•	 TRIFFID: 70,000

•	 Lake Phosphorus: 120,000

In turn, to maximize computational efficiency both in STELLA and 

in R, the following logic was applied to the inbuilt Monte Carlo function 

in STELLA to automatically generate the four different experiment types 

described above (the baseline primary driver always remains ‘on/active’):

•	 If µ1 > 0.4 then secondary driver active else secondary driver 

remains at default value.

•	 If µ2 > 0.4 then tertiary driver active else tertiary driver remains 

at default value.

•	 If µ3 > 0.4 then noise active else noise level remains at zero.

Where µ1, µ2 and µ3 represent ‘on switches’, with values randomly 

sampled from uniform distributions between 0 and 1 per simulation. 

The number of simulations per model experiment which showed ATDCs 

are detailed in Supplementary Table 3-1.

Whilst some insights could be obtained deterministically62, this 

is not possible for all models (for example, Lake Chilika) nor for all 

experiments (those involving additional noise). Thus, undertaking 

these model runs and analyses of the outputs (below) is the most con-

sistent, feasible approach suitable across all models and experiments, 

allowing for comparisons across experiments, as well as investigation 

of synergistic impacts—fulfilling our primary aim of investigating the 

impact of the interaction of fast drivers, multiple drivers and system 

noise on the timing of tipping points in ecosystems.

To investigate experiment 1, each of the four models has one pri-

mary baseline driver which changes from its default value in every 

simulation:

•	 Lake Chilika fishery: fisher population growth rate (net difference 

between the birth rate per 1,000 population and the death rate 

per 1,000 population)

•	 Easter Island: tree clearance rate (trees per person per year)

•	 TRIFFID: local temperature (°C)

•	 Lake Phosphorus: phosphorus input rate (unitless)

Baseline outputs were generated with the primary driver active 

and the secondary and tertiary drivers remaining at its default value and 

the noise level remaining at zero (Supplementary Table 3-2). In turn, the 

Monte Carlo sensitivity analysis function in STELLA randomly samples 

a future change trajectory for the primary slow driver per simulation 

(as plotted on the horizontal axes of Figs. 2–4). The primary trajectory 

is sampled between the lower and upper limits of uniform distribution 

bounds, meaning that there is a uniform likelihood of selecting any 

given trajectory between the bounds (Supplementary Table 3-2). A 

future change trajectory of ‘0’ would cause no change from the default 

value; the maximum trajectory change limits for each of the models 

can be seen in Supplementary Table 3-2.

The built-in STELLA ‘TIME’ function generates future scenario 

trajectories that change linearly over time (with a constant gradient 

over the model horizon). Therefore, the value of the primary driver at 

any given timestep equals:

Scenario value

i,t

= TIME

i,t

× (

Maximumtrajectory value

i

Total number of timesteps inmodel

) (3)

where i is the simulation number and t is the timestep (for example, t = 1, 

2, 3… total number of timesteps in model). Using the Easter Island model 

as an example: if a maximum tree clearance value of 7 has been sampled 

for the given simulation, then its value after 500 timesteps would be 

equal to 500 × (7/1,500) = 2.333. The plausible trajectory funnels for 

each of the primary drivers are plotted in Supplementary Fig. 3-1.

To simulate experiment 2, secondary and tertiary driver trajecto-

ries are also activated using the following logic:

•	 Secondary: primary driver active and secondary driver active and 

tertiary driver remains at default value and noise level remains 

at zero or
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•	 Tertiary: primary driver active and secondary driver remains at 

default value and tertiary driver active and noise level remains 

at zero or

•	 All: primary driver active and secondary driver active and tertiary 

driver active and noise level remains at zero

For each model, this specifically involved the following variables 

(Supplementary Table 3-2):

•	 Lake Chilika fishery: (1) annual rainfall totals and mean near-surface 

air temperatures, as per IPCC (2013) climate change projections 

for the east coast of India; (2) price of fish per unit (Indian rupee 

per kg), leading to a more commercially oriented fishery, with an 

increasing number of fishers able to upgrade from traditional 

fishing boats to more intensive motorboats33.

•	 Easter Island: (1) agricultural carrying capacity of the system, 

which enables a higher human population to be supported per 

unit of land cleared for agriculture; (2) the mortality rate of trees 

as a proxy for a disease-spread event.

•	 TRIFFID: (1) temperature-independent disturbance rate of veg-

etation coverage, that is, causes of forest clearance which are not 

directly linked to temperature changes (for example, deforesta-

tion). Note: due to the small size of the model, TRIFFID does not 

have a tertiary driver.

•	 Lake Phosphorus: (1) rate of phosphorus recycling within the lake 

environment, (2) rate of phosphorus removal from the lake via 

sedimentation.

For the Lake Chilika and Easter Island models, these additional 

drivers are external forcings (similar to the primary driver). However, 

since the TRIFFID and Lake Phosphorus models are designed with 

only a single external forcing, additional drivers were also generated 

internally by altering parameters that operate on state variables. Whilst 

mathematically, internal and external forcings are fundamentally 

different things, both potentially impact the state of the system and, 

ecologically, changing internal model parameters can act as a proxy for 

an external process causing that change. For example, in the Lake Phos-

phorus model we have a system with a bifurcation in one dimension of 

slow external forcing (α) and we additionally vary internal parameters 

of the system (P recycling rate and P removal rate) as a proxy for, for 

example, anthropogenic disturbance impacting the species composi-

tion within the lake63.

Each of the additional driver trajectories are produced via the same 

approach as in equation (3): the Monte Carlo sensitivity analysis func-

tion in STELLA randomly samples a trajectory between the lower and 

upper bounds of a uniform distribution for each driver (Supplementary 

Table 3-2); in turn, the TIME function linearly increases the value of the 

driver from its default value to its sampled trajectory value by the final 

timestep of the model horizon.

To produce one secondary trajectory per simulation in the Lake 

Chilika model, the sampling of rainfall and temperature trajectories 

are connected along a linear gradient, ranging from no change to a 

combination of +30% rainfall change and +4.5 °C temperature change 

by 2081–2100 relative to 1986–2005 (as per representative concentra-

tion pathway 8.5 projections for the east coast of India64). In STELLA, 

this is operationalized by the model variable ‘climate change trend’, 

with Monte Carlo sensitivity analysis in STELLA randomly sampling 

a value between 0 and 1 per simulation. As an illustration, if a value of 

0.6 was to be sampled, then the change in rainfall by 2081–2100 (rela-

tive to 1986–2005) would equal 0.6 × 30(%) = 18%, whilst the change in 

temperature would equal 0.6 × 4.5(°C) = 2.7 °C.

To investigate experiments 3 and 4, the value of each primary slow 

driver is perturbed per timestep by randomly generated noise. We 

simulate a standard Wiener process to generate noise, equal to 
√

dt × N(0, 1), where ‘dt’ equals change in time and ‘N(0,1)’ is a normal 

distribution with a mean of 0 and standard deviation of one. In turn, 

the product of the Wiener process is multiplied by the scaling factor σ, 

providing an overall level of noise to be added to the value of the pri-

mary driver on any given timestep. As per the future trajectories, the 

magnitude of σ is randomly sampled once per simulation from uniform 

distributions, with lower and upper limits shown in Supplementary 

Table 3-2.

Therefore, building on equation (3) above, the value of a primary 

driver at any point in time in experiments 3 and 4 equals:

Scenario value

i,t

= TIME

i,t

×(

Maximumtrajectory value

i

Total number of timesteps inmodel

) + (σ

i

×

√

dt × N (0, 1)

t

)

(4)

Equation (4) as detailed above only refers to the ‘uncoupled’ 

noise simulations. Therefore, to explore the effects of ‘coupled’ noise, 

whereby the magnitude of noise increases with the growth in the pri-

mary driver, 20,000 simulations were run per model spread evenly 

between experiments 3 and 4, with the magnitude of noise coupled to 

the magnitude of the primary driver trajectory. Given the differences 

in the shape of the noise spectrums, we do not directly compare out-

comes from the uncoupled and coupled noise simulations in this study. 

Instead, the purpose of modelling coupled noise is to ascertain whether 

worsening magnitudes of extreme events over time are associated with 

earlier ATDCs. In the coupled simulations, equation (4) is modified to:

Scenario value

i,t

= TIME

i,t

× (

Maximumtrajectory value

i

Total number of timesteps inmodel

)

+ (σ

i

×

√

dt × N (0, 1)

t

× Change in scenario value fromdefault

i,t

)

(5)

For experiment 3 (single slow driver plus noise), the runs were gen-

erated in STELLA39 with the following logic: primary driver active and 

secondary driver remains at default value and tertiary driver remains 

at default value and noise active. For experiment 4 (noise plus multiple 

slow drivers), the logic used included:

•	 Primary driver active and secondary driver active and tertiary 

driver remains at default value and noise active.

•	 Primary driver active and secondary driver remains at default value 

and tertiary driver active and noise active.

•	 Primary driver active and secondary driver active and tertiary 

driver active and noise active.

Time-series breakpoint detection
The identification of the timing of the ATDCs in the model runs was a 

two-step process.

First, to ensure that we were only analysing model runs that had 

transitioned (collapsed) to quantitatively and qualitatively functionally 

different states (for example, fishery collapse, civilization collapse, 

forest dieback or lake eutrophication), we assessed whether model out-

comes had crossed a predefined threshold at any point over the model 

horizon. For the three models which observe collapses in the outcome 

variable (Lake Chilika fishery, Easter Island and TRIFFID), model runs 

were considered to have reached a collapsed state if the outcome vari-

able reached a value beneath 20% of its initial value at any point during 

the simulation. This demarcation is therefore representative of type-1 

boundaries defined by ref. 40, with the numerical value of the boundary 

in line with the concept that fish stocks may be considered collapsed 

once their biomass falls beneath 20% of the biomass needed to maintain 

maximum sustainable yield65,66. In the case of the Lake Chilika fishery 

model, which has inbuilt social-ecological feedbacks that may trigger 

the recovery and later recollapse of the fishery21,33, we subset the time 

series to the period before the first timestep beneath 20% of the initial 

fish population. As we are only interested in the initial collapse, not 
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subsetting this time period would risk capturing subsequent collapses 

and recoveries in the analysis.

With lake eutrophication caused by an increase in phosphorus 

concentrations, a linear threshold beyond which we could be confident 

that the model had entered a qualitatively different state could not be 

identified. Therefore, as per the approach taken by ref. 67 for identify-

ing abrupt events in global climate models, we adopted a ref. 40 type-2 

boundary to include only simulations which reached lake phosphorus 

concentrations greater than four times the standard deviation (s.d.) 

of the pre-ATDC time series. Therefore, runs of the Lake Phosphorus 

model which did not exceed this 4 × s.d. threshold were not consid-

ered to reach phosphorus concentrations sufficiently outside of the 

pretransition envelope of variability and were therefore excluded 

from our analysis.

The second stage of time-series breakpoint detection used the 

optimal breakpoint function of the R package strucchange v.1.5-2 

(ref. 68) to identify ATDC dates in the time series that had successfully 

met the above qualifications (that is, reached an alternative state). As 

described in ref. 21, the optimal breakpoint function finds the most 

substantial deviation from stability in classical regression models 

(Supplementary Fig. 3-2), whereby regressions coefficients shift from 

one regime to another. Therefore, the breakpoint date is taken as the 

most substantial deviation of the outcome variable en route to its 

qualitatively and quantitatively alternative state.

Boxplots and output graphs
For each of the experiments (Generation of future scenarios), boxplots 

were generated to visualize the distribution of breakpoint dates for 

each of the slow driver and noise level combinations (Figs. 2–4). To 

standardize the comparisons between experiments, the normalized 

magnitude (0 → 1) of the primary trajectories (Supplementary Table 3-2) 

for each model was plotted on the horizontal axes. In turn, to visualize 

how the breakpoint dates change with the addition of secondary or 

noisy stresses over the range of the primary trajectories, model out-

comes that tipped (Time-series breakpoint detection) were subset in 

the statistical software R between normalized primary trajectory values 

of 0.25–0.35, 0.45–0.55 and 0.65–0.75. From here, boxplots for each of 

the driver combinations (for example, ‘primary only’ and ‘primary and 

secondary’) and primary driver subsets (for example, 0.25–0.35 and 

0.45–0.55) were graphed in R using the package ggplot (v.3.3.5; ref. 69).

Inclusion and ethics statement
This research is global in scope, using models that have been appropri-

ately cited throughout. Roles and responsibilities were agreed amongst 

collaborators ahead of the research.

Reporting summary
Further information on research design is available in the Nature Port-

folio Reporting Summary linked to this article.

Data availability
The datasets generated during and/or analysed during the cur-

rent study are available from the corresponding author on reason-

able request, with the models used to create these data available in 

a DOI-minting repository: https://doi.org/10.5281/zenodo.7946433.

Code availability
The code used to analyse the modelled data are deposited in a 

DOI-minting repository: https://doi.org/10.5281/zenodo.7946433.
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Data collection We run four previously published models. Each model was replicated and simulated within the system dynamics software STELLA Architect 

v.1.6.151. The models are available here: https://doi.org/10.5281/zenodo.7946433

Data analysis Outputs were exported into CSV files as time series and analysed in the statistical software R v.4.1.0. The optimal breakpoint function of the R 

package ‘strucchange’ v.1.5-2 was used. Boxplots were graphed in R using the package ‘ggplot’ (v.3.3.5). The code supporting this is available 
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Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender n/a

Population characteristics n/a

Recruitment n/a

Ethics oversight n/a

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We aim to generalise the dynamics of increasing the numbers of drivers, their rates and variability (as proxies for stronger 

interactions between systems and noise) on the speed at which tipping points are reached in four model social-ecological system 

dynamics models: Chilika fishery, Lake phosphorus, Easter Island, and a modified version of The Hadley Centre Dynamic Global 

Vegetation Model (TRIFFID) of forest dieback.  

Research sample The Chilika fishery model is a social-ecological model designed to simulate the future fish population and catch trajectories of the 

Chilika lagoon, Odisha, India. The Lake phosphorus model is a simplified version of the original ‘lake response to P input and recycling’ 

model, as modified by Wang et al. (48). The Easter Island model aims to explore alternative hypotheses behind the social-ecological 

collapse of the Easter Island civilisation. The TRIFFID model is a modified version of The Hadley Centre Dynamic Global Vegetation 

Model, originally developed by Cox et al. (50) to explore the effects of atmospheric CO2 concentrations on the rate of Amazon 

dieback. 

Sampling strategy We performed four in silico experiments:  

− Experiment #1: only the primary slow driver in each model changes over time, and all other drivers remain constant; 

− Experiment #2: multiple slow rates, with up to two additional (i.e. ‘secondary’ and ‘tertiary’) slow trajectories on top of the primary 

driver changing over time; 

− Experiment #3: the addition of noise to the primary trajectory, with all other drivers held constant. The magnitude of noise may be 

either coupled or uncoupled from the trajectory of the primary driver; 

− Experiment #4: the addition of noise to the primary driver, with up to two additional slow drivers. The magnitude of noise may be 

either coupled or uncoupled from the trajectory of the primary driver . 

 

Each of the models were ran for the following number of iterations (including both ‘coupled’ and ‘uncoupled’ settings):  

− Chilika fishery: 70,000  

− Easter Island: 70,000  

− Lake Phosphorus: 120,000  

− TRIFID: 70,000 

Data collection All data are modelled from the above experiments.

Timing and spatial scale All data are modelled from the above experiments. The time and spatial scale of the models vary

Data exclusions This research focusses on tipping points, so only model runs that went through Type-1 or Type-2 boundaries defined by Dearing et al. 

(14) were included in the analysis

Reproducibility Being modelled, the data are fully reproducible.

Randomization Being modelled, we have full control of covariates and so randomisation is not necessary

Blinding Blinding is not relevant to this study. Our data are identified using the optimal breakpoint function of the R package ‘strucchange’ 

v.1.5-2 and so observer bias is not possible
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