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COMPRESSING CROSS-DOMAIN REPRESENTATION

VIA LIFELONG KNOWLEDGE DISTILLATION

Fei Ye and Adrian G. Bors*

Department of Computer Science, University of York, York YO10 5GH, UK

ABSTRACT

Most Knowledge Distillation (KD) approaches focus on the

discriminative information transfer and assume that the data

is provided in batches during training stages. In this paper,

we address a more challenging scenario in which different

tasks are presented sequentially, at different times, and the

learning goal is to transfer the generative factors of visual con-

cepts learned by a Teacher module to a compact latent space

represented by a Student module. In order to achieve this,

we develop a new Lifelong Knowledge Distillation (LKD)

framework where we train an infinite mixture model as the

Teacher which automatically increases its capacity to deal with

a growing number of tasks. In order to ensure a compact

architecture and to avoid forgetting, we propose to measure

the relevance of the knowledge from a new task for a set of

experts making up the Teacher module, guiding each expert

to capture the probabilistic characteristics of several similar

domains. The network architecture is expanded only when

learning an entirely different task. The Student is implemented

as a lightweight probabilistic generative model. The experi-

ments show that LKD can train a compressed Student module

that achieves the state of the art results with fewer parameters.

Index Terms— Lifelong learning, Generative models,

Teacher-Student architecures, Mixtures of experts.

1. INTRODUCTION

Lifelong learning (LLL), representing the ability to continu-

ously learn from experiences, is an essential characteristic of

all living beings, enabling them to adapt and survive. How-

ever, learning and acquiring new knowledge from a series of

tasks represents a challenge in artificial systems due to the

catastrophic forgetting [1] which occurs when switching tasks.

Most existing studies address the forgetting from a series

of predictive tasks, where the model is trained to remember

the discriminative information across tasks. In this paper, we

address a more challenging scenario in which the model is re-

quired to remember the generative representation information

across domains over time. To implement this goal, we provide

a mechanism for compressing and storing the probabilistic
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representations associated with the knowledge learnt from

several data domains during LLL. For a given set of distinct

domains (tasks) {T1, . . . , TK}, when learning the i-th task, we

only access the data samples x drawn from a specific domain

Ti. Our goal is to find a model M = {fω, Gε} which can

embed the knowledge from all prior tasks into a latent space

Z through the inference process fω : X → Z and recover the

data from the embedded latent space Z through a generative

process Gε : Z → X . Once M was trained, we can easily

implement many down-stream tasks on the embedded latent

space such as interpolation [2, 3] and log-likelihood estimation

[4, 5]. This learning process opens a new direction for LLL

where the model compresses the accumulated knowledge from

a sequence of tasks into a compact latent space.

The primary challenge when attempting to learn multiple

tasks is the catastrophic forgetting. Many approaches aiming

to alleviate catastrophic forgetting are based on episodic mem-

ory systems [6] or by using Generative Replay Mechanisms

(GRMs) [7]. In this paper, we focus on the GRM based models,

since such methods do not rely on real data from prior tasks.

Existing GRM models, although successfully used for LLL,

fail to learn long sequences of tasks, where each database is

characterized by different probabilistic representations. This

is due to the mode collapse [8], when GRMs learn several

entirely different data. It was shown that by employing ex-

pansible mixture models we can deal with such challenges.

However, existing mixture models [4, 9, 5, 10] require pre-

serving the whole network architecture while performing the

model selection at the testing phase.

Inspired by addressing the drawbacks of GRMs while em-

ploying mixture models, we propose a new Lifelong Learning

Framework (LKD), consisting of a Teacher-Student model,

where the Teacher evolves over time according to the expan-

sion mechanism to accumulate knowledge from a dynamically

changing environment. The Student is designed to continually

embed generative factors from the knowledge learned from

the Teacher into a single latent space in which different data

domains are embedded into multiple clusters. To ensure a

compact network architecture for the Teacher, we propose to

calculate the dependency between the incoming task and each

expert through a knowledge consistency evaluation approach,

which guides the selection and expansion of the experts in

the Teacher. The main contributions are : (1) We propose



Fig. 1. The Lifelong Knowledge Distillation (LKD) framework consisting of the Teacher and Student modules.

to learn the accumulated generative factors, from successive

domains by developing a novel lifelong learning framework;

(2) A new approach to regularize the selection and expansion

of the Teacher, which ensures a compact network architecture

during training; (3) We introduce a new knowledge distillation

loss that can distill the generative representations from the

Teacher to the Student.

2. LIFELONG KNOWLEDGE DISTILLATION

FRAMEWORK

2.1. Preliminaries

Problem definition: Let {DT
1 , · · · ,D

T
N} be the training sets of

N tasks, where each DT
i consists of NT

i testing samples xT
i

over the data space X . This paper focuses on the cross-domain

setting, aiming to learn a sequence of several datasets. Let

T = {T1, · · · , TN} be a set of N tasks, where each task Ti
is defined by a training set DS

i . When learning Ti, during the

lifelong learning, a model would draw samples from the train-

ing set DS
i , while all previous training sets {DS

1 , · · · ,D
S
i−1}

are not available. Once the learning of all tasks is finished, the

model’s performance is evaluated on {DT
1 , · · · ,D

T
N}.

Variational Autoencoder (VAE) is an explicit generative

latent variable model which learns an observed variable

x, while estimating a latent variable z over the latent

space Z within a unified optimization framework. For a

given VAE model pθ(x, z), we aim to search the optimal

parameters θ that maximize the marginal log-likelihood

log pθ(x) =
∫

pθ(x | z)p(z) dz. This involves the prior dis-

tribution p(z) = N (0, I) (Gaussian distribution with an unit

vector I), which is intractable to optimize since it requires ac-

cess to all z. VAEs training relies on maximizing an Evidence

Lower Bound (ELBO) to the marginal log-likelihood by, [11] :

LELBO(x; θ, ξ) :=Ez∼qξ(z |x) [log pθ(x | z)]

−DKL [qξ(z |x) || p(z)] ,
(1)

where qξ(z |x) is a variational distribution aiming to approx-

imate the true posterior pθ(z |x). pθ(x | z) is the decoding

distribution and DKL(·) represents the Kullback–Leibler (KL)

divergence.

2.2. Teacher module

Using a single VAE for learning frequent GRM processes

has significant limitations when learning a sequence of tasks

[2]. In this paper, we develop a novel infinite mixture of

VAEs (experts) as a dynamically expandable experts-based

memory system for the Teacher module, where each expert

captures one or several similar visual concepts from several

given tasks. Let us assume that we have already trained K
experts M = {M1, · · · ,MK} after Tt, and each component

Mi has the parameter set {θi, ξi}. The dynamic expansion

and selection mechanism is shown in Fig. 1. We require to

evaluate the knowledge similarity between the information

accumulated by each expert and that corresponding to the

incoming task, in order to guide the Teacher module to adopt

the appropriate learning strategy for the next task Tt+1. In

the following, we describe how we perform the selection and

expansion for the next task learning.

Selection and expansion. As shown in Fig. 1. once the Tt-
th task was learnt, the selection or expansion procedure is

performed by a non-parametric inference process in which we

firstly evaluate the probability r, for mixture’s expansion or

component selection, by comparing the knowledge measure



min{Fks(Mi, Tt+1)}
K
i=1 and a threshold hold :

r =

{

0, min {Fks (Mi, Tt+1)}i=1,...,K > hold ;

1, min {Fks (Mi, Tt+1)}i=1,...,K ≤ hold ,
(2)

where Fks(·) is a pre-defined function that evaluates the knowl-

edge similarity. Then we update the selection probability pi of

each expert as :

pi =











r × (1/Fks (Mi, Tt+1))
∑K

j=1 (1/Fks (Mj , Tt+1))
, i < K + 1 ;

1− r, i = K + 1 .

(3)

If r = 0, then the Teacher module expands its capacity,

p(K+1) = 1, otherwise the Teacher module selects an expert

according to {p1, . . . , pK}.

Training the infinite mixture model. After determining the se-

lection probability, we define the Teacher’s loss function for

the following (t+ 1)-th task, as :

max
Θ

∑S∗

i=1
wi

{

Ez∼qξ(z |x) [log pθ(x | z)]

−DKL [qξ(z |x) || p(z)]
}

,
(4)

where S⋆ is the potential number of experts, determined by

S∗ = K if the Teacher does not expand (r = 1) at the (t+ 1)-
th task learning, otherwise a new expert is added, S⋆ = K+1.

Θ is the set of all components parameters. Then we train

the Teacher by using Eq. (4) with the expert’s weights w =
{w1, · · · , wS⋆} sampled from a Categorical distribution ∼
Cat(p1, . . . , pS⋆), optimizing either a selected, or a newly

created component at Tt+1.

2.3. Knowledge similarity (KS) evaluation

Existing mixture models [13, 14] use the log-likelihood, evalu-

ated by each component when provided with a new training set,

for the expansion or selection process. However, these models

have the following drawbacks: 1) They require the existence

of inference mechanisms for each component; 2) They do not

have a mechanism to compare the statistical representations

of a given task to their components’ representations. In the

following we address these shortcomings by proposing two

approaches for evaluating the KS between each expert and the

incoming task, without requiring any inference mechanism for

the experts.

Firstly, we assume that we have the Student module, imple-

mented by a single VAE, which is trained to learn the knowl-

edge from all experts. The Student module already knows the

whole information learnt so far and we can use its representa-

tion for the KS evaluation. We employ the cosine distance on

the feature space Z of the Student for the KS evaluation :

COS(Mi, Tt+1) :=
1

n

∑m

u=1

{

zt+1,u · z′j,u
‖zt+1,u‖

∥

∥z′j,u

∥

∥

}

, (5)

where zt+1,u and z
′
j,u are the feature vectors extracted by the

Student when considering the inputs xt+1,u and x
′
j,u, drawn

from the incoming task Tt+1 and the j-th expert, respectively.

m is the number of samples used for the evaluation. Given

that a larger measure in Eq. (5) represents a better similarity,

we consider the following KS criterion in Eq (2) :

Fks (Mi, Tt+1)) = −COS(Mi, Tt+1). (6)

Secondly, we introduce another approach to evaluate the

KS by comparing the sample log-likelihood between the in-

coming task and each expert, estimated using the Student

model with parameters {θs, ξs} :

FLog(Mi, Tt+1) :=
1

n

∑m

u=1

{

|LELBO(xt+1,u; θs, ξs)

− LELBO(x
′
j,u; θs, ξs)|

}

, (7)

where Fks in Eq. (2) is implemented by FLog in this case.

2.4. Data-free knowledge distillation (KD)

Unlike in other KD approaches that transfer knowledge at the

predictive tasks [15], the proposed KD transfers data repre-

sentation information through a sampling procedure without

accessing real samples and labels. In order to embed the

information from all experts into a single latent space, we im-

plement the Student module as a VAE of parameters {θs, ξs}.

In the following, we introduce a new KD-based loss function

that encourages the knowledge transfer on the posterior and

the decoding distribution between the Teacher and Student:

LKD1 =
∑K

i=1
DKL(pθi(x | z) || pθs(x | z)) (8)

LKD2 =
∑K

i=1
DKL(qξi(z |x) || qξs(z |x)) , (9)

where pθs(x | z) and qξs(z |x) are the decoding and variational

distributions for the Student module. Since we can not access

past samples when evaluating Eq. (8) and (9), we estimate the

KL divergence using the sampling process, where the past data

x is generated by each expert and is then used as input for the

inference model of the same expert. Together with the KD

process, we introduce a new objective function allowing the

Student to learn novel knowledge without forgetting previously

learnt information :

LStu =− LELBO(x; θs, ξs) + η1LKD1 + η2LKD2 ,
(10)

where {η1, η2} are hyperparameters balancing the learning

of a new task and the already learnt knowledge. In prac-

tice, we divide the optimization of Eq. (10) into two inde-

pendent optimization processes, where one is used to learn

the new task only by minimizing −LELBO(x; θs, ξs) and the

second one is used for the knowledge transfer by minimiz-

ing LKD1 + ηLKD2. We set η = 0.001 in all experiments.



SL SSMI PSNR

Datasets LGM LKD BE-Stu LTS LIMix-Stu LGM LKD BE-Stu LTS LIMix-Stu LGM LKD BE-Stu LTS LIMix-Stu

MNIST 51.15 50.53 33.65 75.40 176.82 0.81 0.81 0.86 0.71 0.42 18.34 18.18 20.16 16.56 13.72

Fashion 289.63 39.09 234.66 46.53 178.04 0.40 0.66 0.41 0.71 0.37 10.63 14.39 12.33 17.76 8.81

SVHN 309.66 33.85 113.00 63.99 146.70 0.25 0.78 0.45 0.45 0.47 7.56 19.35 11.01 11.03 13.58

IFashion 263.02 52.06 100.97 39.81 158.18 0.30 0.69 0.60 0.75 0.43 7.27 15.24 15.46 18.05 14.17

RMNIST 21.53 22.17 24.03 25.45 157.55 0.91 0.91 0.90 0.89 0.43 22.01 21.94 21.58 21.31 14.18

Average 187.00 39.54 101.26 50.24 163.45 0.53 0.77 0.64 0.70 0.42 13.16 17.82 16.11 16.94 12.89

Table 1. The performance of various models under the MSFIR setting, where the result for LIMix-Stu is reported from [12].

Dataset LKD LGM BE-Stu LTS

CelebA 63.26 740.36 138.22 243.75

CACD 138.51 1084.60 243.45 294.29

CIFAR10 235.55 590.56 268.95 224.52

Sub-ImageNet 241.36 624.86 271.08 232.29

SVHN 26.48 52.80 59.29 44.15

MNIST 28.41 21.39 26.02 25.49

Average 138.93 519.09 167.83 177.42

Table 2. Average Squared Loss (SL) when learning datasets

with complex images.

Eq. (9) encourages the knowledge transfer on the generative

representations from each expert to the inference model of the

Student, while Eq. (8) ensures the consistency on the decoding

distributions between the Student and Teacher modules.

3. EXPERIMENTS

3.1. Datasets and evaluation criteria

Baselines. We compare the proposed Lifelong Knowledge

Distillation (LKD) with several baselines including LTS [16],

LGM [17] and BE-Stu. We implement BE-Stu by using the

BatchEnsemble [18] as the Teacher, where each component

is a VAE model and shares parameters between components.

The Student in BE-Stu is implemented by a VAE model which

is trained on the data generations by the Teacher. We also

compare with LIMix-Stu [12] which uses the Teacher-Student

framework. In our experiments, we mainly compare the LKD

with the expansion and selection criterion from Eq. (7). We

name our model as LKD-COS when the selection criterion

is given by Eq. (5). We employ the Squared Loss (SL), the

structural similarity index measure (SSIM) [19] and the Peak-

Signal-to-Noise Ratio (PSNR) [19] as performance criteria.

Datasets. We follow the lifelong training setting from [12]

which considers a sequence of five tasks, MNIST , SVHN,

Fashion, InverseFashion (IFashion) and Rotated MNIST (RM-

NIST). We name this learning setting as MSFIR. We also

consider a sequence of datasets containing complex images in-

cluding the CelebA, CACD, CIFAR10, Sub-ImageNet, SVHN

and MNIST, namely (CCCSSM).

3.2. The evaluation of the Student’s performance

Firstly, we train all models under the MSFIR lifelong learning,

where LKD uses three experts and the results from Table 1

show that LKD outperforms all baselines in every task under

three criteria.

(a) KS for LKD training. (b) Network expansion in LKD.

Fig. 2. Knowledge similarity (KS) evaluation and the expan-

sion of the network during the training.

We investigate the expansion of the LKD during LLL

by evaluating the Knowledge Similarity (KS) measures

Flog(Mi, Tt+1) from Eq. (7) after each task switch, and the

results are shown in Fig. 2-a. After learning the first task, the

KS measure between the first expert and the data representa-

tion for the next task (SVHN database), is 586. Therefore, the

Teacher module adds a new generator to learn SVHN. Then,

after learning the third task, the KS measure between each

expert and the next task (IFashion database) is smaller than

150. Therefore the Teacher module reuses the first expert

to learn IFashion and RMNIST (last task). The architecture

expansion of the Teacher module is shown in Fig. 2-b, where

LKD leads to a reasonable number of experts, each capturing

different data representations from the databases.

We also investigate the model’s performance on databases

with complex images. We train various models under (CCC-

SSM) setting where LKD uses hold = 120 in Eq. (2). The

average SL results are provided in Table 2 indicating that the

proposed framework performs better than other methods by

a large margin. The performance of LTS tends to degenerate

on CCCSSM since a single GAN is struggling to learn several

complex databases through the GRM process. The expansion

of the Teacher is shown in Fig. 2-b, where LKD uses 5 experts.

4. CONCLUSION

This research study is the first to explore Knowledge Distilla-

tion for transferring generative factors from multiple domains

under the LLL framework. We achieve this by proposing an

expanding model for the Teacher module within a Teacher-

Student framework. We perform several experiments, and the

empirical results verify the effectiveness and performance of

the proposed methodology.
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