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DYNAMIC SCALABLE SELF-ATTENTION ENSEMBLE FOR

TASK-FREE CONTINUAL LEARNING

Fei Ye and Adrian G. Bors*

Department of Computer Science, University of York, York YO10 5GH, UK

ABSTRACT

Continual learning represents a challenging task for modern

deep neural networks due to the catastrophic forgetting fol-

lowing the adaptation of network parameters to new tasks. In

this paper, we address a more challenging learning paradigm

called Task-Free Continual Learning (TFCL), in which the task

information is missing during the training. To deal with this

problem, we introduce the Dynamic Scalable Self-Attention

Ensemble (DSSAE) model, which dynamically adds new Vi-

sion Transformer (ViT) based-experts to deal with the data

distribution shift during the training. To avoid frequent ex-

pansions and ensure an appropriate number of experts for the

model, we propose a new dynamic expansion mechanism that

evaluates the novelty of incoming samples as expansion sig-

nals. Furthermore, the proposed expansion mechanism does

not require knowing the task information or the class label,

which can be used in a realistic learning environment. Empir-

ical results demonstrate that the proposed DSSAE achieves

state-of-the-art performance in a series of TFCL experiments.

Index Terms— Self-Attention, Continual learning, Mix-

ture model, Task-Free Continual Learning, Visual Transformer

1. INTRODUCTION

One of the most fundamental desirable artificial intelligence

systems characteristics is to be able to continually acquire

novel knowledge and skills without forgetting. The methods

having such an ability are called lifelong learning or continual

learning models. Modern deep learning can get impressive

performance on individual tasks, including classification [1],

representation learning and image generation tasks. However,

they suffer from huge performance losses when continually

learning several different tasks. In this case, the performance

loss for a model is called catastrophic forgetting [2].

Lifelong learning methods can be roughly branched into

three categories, according to the principle used : regulariza-

tion [3, 4], memory buffer [5, 6, 7] and dynamic expansion

[8, 9]. The regularization-based approaches normally impose

constraints on the objective function during training in order to
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alleviate catastrophic forgetting [3, 4]. The memory-based ap-

proaches either train a generator or use a fixed-length memory

buffer for preserving and replaying past examples during train-

ing. The dynamic expansion approaches dynamically build

new components to deal with the new tasks during the train-

ing [9]. However, these approaches rely on task information,

which is actually not available in a realistic learning paradigm

called the Task-Free Continual Learning (TFCL) [10].

Using a memory buffer is a popular approach in TFCL,

which usually designs an efficient sample selection strategy

[10, 11] by selectively storing and they replying samples dur-

ing each training step. However, interference occurs in such

methods between the old and new sample learning, resulting in

adverse knowledge transfer effects [12]. Dynamic expansion

approaches [13, 14, 11] increase the model’s capacity to deal

with the data distribution shift during the training, in order to

address the adverse knowledge transfer effect. Recently, the Vi-

sion Transformer (ViT) [15] and its variants [16, 17, 18] have

shown impressive capabilities when learning individual tasks,

which can be extended in continual learning. The key compo-

nent of ViT is the self-attention mechanism which models the

similarity information between different image patches. The

effectiveness of the self-attention mechanism in TFCL has not

been investigated so far. Therefore, we develop the Dynamic

Scalable Self-Attention Ensemble (DSSAE), which employs

the self-attention mechanism to learn a non-stationary data dis-

tribution without knowing the task information. To implement

this goal, each DSSAE expert employs a self-attention-based

feature extractor and a linear classifier. Then, a dynamic ex-

pansion mechanism adds new experts when identifying data

distribution shifts. Specifically, a memory buffer is used to

store the recent samples from a data stream and then evalu-

ate the novelty of the memory buffer as the expansion signal.

THIS mechanism enables a compact model, where each expert

learns a different underlying data distribution.

We summarize the contributions of this paper as follows :

• We propose the Dynamic Scalable Self-Attention Ensemble

(DSSAE) which can learn non-stationary data distributions

without requiring any task information.

• A new dynamic expansion mechanism evaluating the mem-

ory buffer’s novelty as an expansion signal to ensure a com-

pact model structure.

• The proposed DSSAE achieves state-of-the-art performance.



2. DYNAMIC VISION TRANSFORMER ENSEMBLE

In this section, we detail the dynamic scalable vision trans-

former ensemble. First, we describe each module of DSSAE

and the memory updating strategy. Then we propose a novel

dynamic expansion mechanism, enabling DSSAE to increase

its capacity to deal with the data distribution shift under con-

tinual learning. In the final section, we propose a learning

algorithm for training DSSAE.

2.1. Experts of DSSAE

First, we introduce the learning paradigm for TFCL and then

the detailed implementation of each expert of DSSAE. Let

T = {T1, · · · , Tn} be a set of training steps/times for learn-

ing a data stream D. This data stream consists of n data

batches D = {D1, · · · ,Dn}, where each data batch Di =
{xi,j , yi,j}bj=1 consists of several training examples and b is

the batch size. In a certain training step Ti, the model can

only access the data batch Di while all previous data batches

{D1, · · · ,Di−1} are not available. After the model has fin-

ished all training steps, we evaluate the model’s performance

on all testing samples. In the following, we describe the im-

plementation of an expert for DSSAE.

Each expert Ei in DSSAE consists of a feature extractor

Fδi and a linear classifier Fθi . We implement each feature

extractor Fδi by using a ViT, given that it has a robust feature

learning ability. Let x ∈ R
H×W×S be a data sample. where

{H,W,S} represent the image height, weight and channels,

respectively. We split an input x into a set of image patches

b ∈ R
R×(K2×S) where each patch bj ∈ R

K2

has the size of

K2 pixels and R = HW/K2 is the number of image patches.

Let Wp be a projection matrix which transfers the image

patches into the H-dimensional embedding space :

p = Wpb . (1)

Then we consider combining several self-attention modules

into a unified framework called the multi-head attention mech-

anism [19]. Each self-attention module has three independent

trainable matrices {Wi
K ,Wi

Q,W
i
V }, aiming to capture dif-

ferent statistical information from an input. A multi-head atten-

tion mechanism, therefore, can have a self-attention modules

{W1
K ,W1

Q,W
1
V , · · · ,Wa

K ,Wa
Q,W

a
V }. First, we calculate

the output by using each self-attention module :

Hi = Softmax(Qi(Ki)T /
√
r)Vi , (2)

Qi = Wi
Qp,K

i = Wi
Kp,Vi = Wi

V p ,

where
√
r is a scaling factor. Then we concentrate all outputs

from self-attention modules into one matrix, resulting in :

H⋆ = Concat(H1, · · · ,Ha) , (3)

where Concat(·) denotes that we concatenate all matrices into

a single one. Then the output of the multi-head attention

mechanism, Eq. (3), is fed into a feed-forward Multi-Layer

Perceptron (MLP) to produce the feature information for a

linear classifier, which is expressed by :

y = ε(WMxm + bm) ,

xm = FMLP(H⋆) ,
(4)

where FMLP is the MLP and ε(·) represents the sigmoid ac-

tivation function. {Wm, bm} are the trainable parameters of

the linear classifier and y is the prediction for an input x. Let

Fθi and Fδi represent the feature extractor and classifier for

the i-th expert, where θi and δi represent all parameters of the

self-attention module and the classifier, respectively. Since the

proposed DSSAE, E = {E1, · · · , Ec} would involve multiple

experts, we introduce a novel dynamic expansion mechanism

which enables E to continually add new experts during the

training, which is described in the following section.

2.2. The dynamic expansion mechanism

In this section, we propose a new dynamic expansion mecha-

nism to enable DSSAE for continual learning. The main mo-

tivation is that we want to create a new expert when the data

distribution shift occurs during the training with continuous

streams of data. In order to implement this, we first consider

assigning an autoencoder Vi for each expert Ei, in order to

evaluate the knowledge correlation between the information

learnt by the expert through the evaluation of data reconstruc-

tion and generation, and the information corresponding to a

given data batch. In addition, the autoencoder Vi can be also

used with the appropriate expert selector when evaluating a

given data batch input during the testing phase.

Let Li be a fixed-length memory buffer updated at Ti and

|L|Max be the maximum data sample capacity for Ti. We

consider a simple memory updating mechanism that removes

the earliest samples while continuously adding new samples

from an incoming data stream. Then we introduce a new

dynamic mixture model expansion mechanism evaluating the

novelty of the data from the memory buffer as the expansion

signal at the training step Ti :

Fs(Mi, Ej) =
1

|Mi|
∑|Mi|

u=1
{FRec(x

′
u, Vj(x

′
u))} , (5)

where FRec(·, ·) is the reconstruction error and Vz(x
′
j) is the

reconstruction for the j-th memorized sample from the mem-

ory buffer, implemented by the autoencoder of the j-th expert.

Then, the dynamic expansion mechanism evaluates the mem-

ory buffer using all previously trained experts :

min{Fs(x
′
j , E1), · · · ,Fs(x

′
j , Ek−1)} ≥ λ , (6)

where we assume that DSSAE has already trained k compo-

nents and λ is a threshold that controls the model expansion.

In addition, the threshold λ can also balance the model’s gen-

eralization performance and complexity. For instance, a big λ



Fig. 1. The learning procedure of the proposed model consists of three steps. The first step is to update the memory buffer

by continually adding a new batch of samples. If the memory buffer is overloaded, we then remove the earliest samples from

the memory buffer. The second step is to check the model expansion using Eq. (6). Finally, the third step trains the current

component on the memory buffer using Eq. (7) and Eq. (8).

leads to more components and thus improves the performance.

On the other hand, a small threshold λ tends to build fewer

components, resulting in lower performance.

2.3. Implementation

Each Ei expert in DSSAE consists of three modules, a ViT-

based feature extractor Fδj , a linear classifier Fθj and an au-

toencoder Vj . For Vj we consider an encoder Qj(x) and a

decoder Sj(z), which are trained by using the reconstruction

error loss on the memory buffer at Ti :

LRec =
1

|Mi|
∑|Mi|

u=1
{FRec(x

′
u, Vj(x

′
u))} . (7)

Then the classifier of the j-th expert is trained on the memory

buffer using the cross-entropy loss :

LClass =
1

|Mi|
∑|Mi|

u=1
{Fce(Fδi ⊗ Fθi(x

′
u), y

′
u)} , (8)

where Fce(·, ·) is the cross-entropy loss function and ⊗ repre-

sents the connection between two modules.

Algorithm. We introduce a new algorithm for training the

Dynamic Scalable Self-Attention Ensemble (DSSAE), which

can be summarized into four steps :

• Step 1 (Memory updating mechanism). In the i-th training

step Ti, the model sees a new batch of samples from the

data stream D which is added to the memory buffer Mi. If

the memory buffer Mi is overloaded |Mi| > |Mi|Max, we

remove the earliest samples from the memory buffer until

its size becomes equal to |Mi|Max.

• Step 2 (Learning process). In the i-th training step, we only

train the current component Ek on the memory buffer Mi

using Eq. (7) and (8), while all previously learnt experts are

frozen in order to preserve the prior learnt knowledge.

• Step 3 (Check the model’s expansion). If the memory buffer

is full |Mi| = |M|Max, we check the model’s expansion

using Eq. (6). If Eq. (6) is satisfied, we build a new expert

Ek+1 into E and return back to the step 1.

• Step 4 (Expert selection). Once all training steps have been

completed, we select a component for a given testing sample

xt according to :

s = arg min
s=1,··· ,k

{Freco(xt, Vs(xt))} , (9)

where s is the selected expert index for evaluating xt.

3. EXPERIMENTAL RESULTS

3.1. Experiment setting

We adopt the standard TFCL benchmarks from [20]. Split

MNIST : we divide MNIST dataset into five tasks, each con-

sisting of samples from two classes. We repeat this on CI-

FAR10 [21], resulting in Split CIFAR10. Split CIFAR100 :

we divide CIFAR100 into 20 tasks where each task consists of

2500 samples belonging to five classes.

Network architecture and hyperparameters for the classifier.

Following the setting in [20], the maximum memory size is

considerd as 2000, 1000 and 5000 for Split MNIST, Split

CIFAR10, and Split CIFAR100, respectively. In each training

step, a model would only access a batch of 10 samples. We

consider the image patch size of 7× 7 pixels for Split MNIST.

For Split CIFAR10 and Split CIFAR100, we consider the

image patch size of 8× 8 pixels.

3.2. Classification task

In Table 1 we evaluate DSSAE on Split MNIST, Split CI-

FAR10, and Split CIFAR100, and compare the results with

several baselines including : Finetune which directly trains a

classifier on the data stream, CURL [14], iCARL [22], CoPE



Methods Split MNIST Split CIFAR10 Split CIFAR100

finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04

GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48

iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37

reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79

MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57

GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94

CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52

CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69

ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60

ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50

CURL* 92.59 ± 0.66 - -

CNDPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12

Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68

DSSAE 95.23 ± 0.18 51.36 ± 1.12 23.35 ± 1.08

Table 1. Classification accuracy of five independent runs for

various models on three datasets. * and † denote the results

cited from [20] and [23], respectively.

Methods Split MNIST Split CIFAR10 Split MImageNet

Vanilla 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6

ER 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3

MIR 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5

ER + GMED 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6

MIR+GMED 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7

DSSAE 89.72 ± 1.5 43.27 ± 1.2 29.87 ± 0.9

Table 2. The classification accuracy of five independent runs

for various models over streams with fuzzy task boundaries.

[20], CNDPM, ER + GMED and ERa + GMED [23], where

GMED is Gradient based Memory Editing and ER is the Expe-

rience rRplay [24], while ERa is ER with data augmentation.

Those results show that the proposed DSSAE approach outper-

forms other baselines on all datasets.

In the following, we also evaluate the performance of var-

ious models on a more challenging setting called fuzzy task

boundaries [13] in which we swap randomly samples between

two tasks for each data stream, thus introducing outliers in

their probabilistic representations. We report the results in

Table 2, where we also compare the performance of various

models on Split MINI-ImageNet [25] which divides the MINI-

ImageNet [25] into 20 tasks and each task contains samples of

five different classes with images of higher complexity. These

results show that the proposed approach still outperforms other

baselines when learning this more challenging dataset.

3.3. Ablation study

In this section, we perform an ablation study to investigate the

effectiveness of each module of the proposed DSSAE. We first

evaluate DSSAE when changing the expansion threshold λ
from Eq. (6) on Split MNIST and the results are provided in

Fig. 2. The performance and the number of experts when

changing the threshold λ.

Methods Split MNIST Split CIFAR10 Split CIFAR100

DSCNNE 94.12 ± 0.24 50.27 ± 1.02 22.76 ± 1.05

DSSAE 95.23 ± 0.18 51.36 ± 1.12 23.35 ± 1.08

Table 3. Classification accuracy of five independent runs when

considering a CNN-based expert against a ViT-based expert.

Fig. 2. We can observe that a small λ encourages the proposed

DSSAE to build more experts while a large threshold λ hinders

the expansion process. In addition, more experts can lead to

better performance while requiring more parameters. We also

investigate whether the ViT-based expert is better than a Con-

volution Neural Network (CNN) based expert. We consider a

baseline model where each expert employs a CNN as a feature

extractor instead of ViT, called DSCNNE. We train DSCNNE

on three datasets and the results are reported in Table 3. These

results show that the proposed DSSAE outperforms DSCNNE

on three datasets, demonstrating that the ViT-based experts

used in DSSAE perform better than the CNN-based expert.

4. CONCLUSION

In this paper, we propose a new model called the Dynamic

Scalable Vision Transformer Ensemble (DSSAE), for contin-

ual learning. DSSAE dynamically adds new experts, each

containing a Visual Transformer (ViT), to deal with the data

distribution shift under the continual learning scenario. In

order to avoid frequent expansion and ensure the knowledge

diversity among the trained components, we propose a new

dynamic expansion mechanism evaluating the novelty of in-

coming samples with respect to the knowledge already aquired

by the model. Furthermore, such a mechanism does not require

accessing the task information or class label, and can be used

in a realistic continual learning setting. We perform a series

of experiments, and the empirical results demonstrate that the

proposed approach achieves the state of the art performance.
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