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The 1997 OPEN process metamodel was the first fully documented software engineer-

ing process architecture for object-oriented projects, predating the Catalysis method,

Select Perspective and the still emerging Rational Unified Process by a number of

years. The OPEN process metamodel is based on a three-tier architecture, in which

process Activities are broken down into a number of distinct Tasks; and each Task may

be achieved through the application of a number of approved Techniques. This paper

describes the relationships between the three layers of the OPEN process metamodel

and shows how OPEN’s Techniques contribute to a particular tailored process. As an

exemplar, we describe Techniques relevant to late design and coding.
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1. INTRODUCTION

Software engineering requires the underpinning of a flexible and reliable, process-focussed

methodology. A process tells you how to do things and how to manage and monitor the software

development. In most of the second generation object-oriented (OO) software development

methods (i.e. those published around 1994), there was, with a couple of exceptions OOSE (Jacobson

et al, 1992 and MOSES (Henderson-Sellers and Edwards, 1994), little substantive support for

process to the degree required by professional software engineers. Methods such as Coad and

Yourdon (1991) and OMT (Rumbaugh et al, 1991) concentrated mainly on developing sets of

diagrams rather than identifying the underpinning for their development in terms of project

management issues such as timeboxing and version control. Booch (1991) focussed on notation that

was applied by intuition, using a “round trip gestalt design” approach and, later (Booch, 1994), with

macro- and micro-lifecycles. Some sequencing is implicit in OMT, although the general flavour is

still that of a waterfall design approach. More recently, it has been shown (Simons and Graham,

1999) that an over-emphasis on design diagrams can give rise to cognitive misdirection. 

From these two early, process-focussed methods (MOSES and OOSE) have grown two third

generation OO methods: OPEN published in 1997 (Graham et al, 1997) and, more recently,
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Jacobson et al, (1999) Unified Process which underpins the commercial RUP (Rational Unified

Process) product. In this paper, we focus on the older, more established OPEN methodological

framework and explain how this framework is used for software development environments tailored

to specific industry domains, individual organizations and indeed distinct projects.

OPEN stands for Object-oriented Process, Environment and Notation. OPEN is the first full

lifecycle object-oriented methodology to address all the process issues. Its main focus is in

providing an architectural framework, which is evident in its process metamodel (Figure 1), which

can then be tailored by the user, thus creating a  useful and usable software engineering process (or

SEP). Although each individually created/tailored OPEN SEP is different in its detail, each

conforms to the overall OPEN metalevel architecture (Henderson-Sellers, 1999a). OPEN thus

provides a standard method architecture1 – a common process language across the OPEN

community of worldwide users.

OPEN has an underpinning lifecycle model based on the contract-driven model of Graham

(1995b) which has been objectified (Section 2). In this model, process lifecycle objects, called

Activities, monitor the progress of development which is accomplished through the carrying  out of

Tasks associated with the Activity. A Task is the smallest objectified unit of work  which is managed

directly in the OPEN process. The tools which a developer deploys to  accomplish a Task are known

as Techniques. There are many Techniques, both traditional and novel, available in the OPEN

Toolbox (Henderson-Sellers et al, 1998). Previously, we have elaborated on the relationships

between Activities and Tasks  (Henderson-Sellers et al, 1997; Graham et al, 1997). In this paper, we

reiterate the reasoning behind the whole three-level process architecture, but focus more on the

relationships between Tasks and Techniques. To inform the reader about the spread and coverage of

process-oriented Techniques now available in the  OPEN Toolbox, we give an overview in Section

3. We go on to show in Section 4 how particular sets of compatible Techniques can be selected and

grouped to fulfil the Tasks associated with model building and implementation (including “Code”,

“Construct the object model”, “Design user interface”, “Optimize the design”). In so doing, we

1 Interestingly, it is at this metalevel that the OMG Software Process Engineering group are likely to issue their first RFP
in late 1999.

Figure 1: The OPEN process consists of Activities which in turn
consist of Tasks. Tasks use Techniques for their realization
(Graham et al, 1997).



illustrate the integrative capability of the OPEN metalevel process architecture for both old and new

Techniques.

1.1 The need for process

Some software development seems to occur in a very ad hoc fashion. The majority of industries

would appear to work at CMM level 1 (see review in Henderson-Sellers, 1996, Chapter 8). In these

situations, when successes occur, the underlying reason is not obvious and there is no means to

identify how to repeat the success. Conversely, when failures occur (as they inevitably will), in an

ad hoc, CMM level 1, development shop, there is no way of identifying how to fix the process and

learn from the failure and avoid a repeat failure in the future. A process of any sort lays down some

guidelines to help developers set their own (personal and team) standards that they can follow. It is

then possible for other personnel to temporarily or even permanently take over a role and for

managers to control, monitor and evaluate how well the development is progressing towards

completion. A process thus identifies activities that need to be  done, recommends means by which

to achieve these goals and, most  importantly, creates a sequence which allows temporal planning.

Indeed, the adoption of processes are commensurate with mature or maturing software development

groups of CMM level 2 or probably 3 (or above).

1.2 An object-oriented process

Many of the traditional techniques for process and project management may be applied in an

object-oriented project. However, there is a universal recognition by OO developers, consultants

and mentors that three properties distinguish the best OO methods apart from  traditional linear and

single-pass lifecycles. Object-oriented development naturally lends itself  to, and is most successful

when coupled with, a process lifecycle that is:

(i) iterative – allowing revisions to rework existing deliverables;

(ii) incremental – producing a steady stream of deliverables in stages; and

(iii) parallel – working towards multiple modular deliverables simultaneously.

An iterative lifecycle is one in which its various development stages may be revisited (fully or

partially) in cyclic order. Iterative development  should not be used as an excuse for undisciplined

design modification and code hacking; rather it should be properly tracked and the impact of

changes managed appropriately.

Incremental delivery is linked with the iterative approach to some degree in that an OO

development should deliver products to the users incrementally, usually at the end of each  iteration,

possibly every few weeks. Incremental delivery keeps the customer in the loop, ensuring that they

always have in their possession a delivered and running version which contains progressively more of

the required functionality. Distinction may be made between an evolving prototype and a production

delivery – although this distinction is becoming increasingly blurred. Nevertheless, the availability of

incrementally delivered software every few weeks or few months facilitates rapid feedback from users

who, in a traditional waterfall development, might not have been able to do so for several years.

Finally, OO supports a parallel lifecycle in that the full software system awaiting  development

can be easily broken down into packages or subsystems. Because of the high degree of modularity

supportable in an OO development, it is relatively easy to ensure that these several packages can be

developed essentially independently of each  other.

Using OPEN on a project requires access not only to the process specification (Graham et al,

1997) but also to a modelling language and a set of “how to” techniques (Henderson-Sellers et al,
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1998). In this paper, we first summarize the basic architectural elements of OPEN  and its contract-

driven lifecycle (the process element) before exploring in more depth the Techniques which are

required as an integral part of the tailorable methodological framework of OPEN.

2. THE OPEN PROCESS-FOCUSSED DEVELOPMENT METHOD

The OPEN methodological framework is described in terms of interacting objects, each of which

represents an Activity (Graham et al, 1997). These Activity objects have responsibilities and

associated contracts such that they can be configured in a variety of ways contingent upon the basic

rule that the pre-condition of each Activity object must be met before this new Activity can

commence. Secondly, before you leave the Activity to transfer to yet another one, you must meet

its post-condition, which includes testing criteria. With its  emphasis on contracts, this underpinning

lifecycle model is thus known as the contract-driven lifecycle (Graham, 1995b).

Activities consist of Tasks (Figure 1) which are like Activities in the sense that they describe

things that have to be done (but not how to do them). Activities are heterogeneous collections of

goals whereas Tasks represent the smallest unit of work (that can be project-managed) that results

in a Deliverable and which can be readily evaluated for completeness.

The Activities and Tasks, discussed in detail in Graham et al, (1997), describe what is to be

done. They do not suggest any ways of accomplishing these goals. That is the role of the OPEN

Techniques (Figure 1). The OPEN methodological framework provides this underpinning skeleton

into which can be slotted, synergistically, selected and compatible Tasks and Techniques from those

available. Many of these OPEN Techniques are in fact very well-known, others less so. While

OPEN supports these well-established techniques, it also documents others ignored or poorly

represented in the OO literature – particularly those associated with project management, business

decision making, requirements engineering, metrics and usability. We discuss some of these briefly

in Section 3 of this paper. Finally, although early OOAD methods tended to eschew coding

concerns, OPEN provides some interesting support, as discussed here in Section 4 – as our main

illustrative example of how OPEN provides a “scaffolding” for the successful integration and

tailoring of both existing and new OO techniques.

OPEN specifies a number of deliverables which can be documented (Figure 1) using  any one

of a number of modelling languages (a modelling language is defined to be a metamodel plus a

notation). One that is well-known is the Unified Modeling Language (UML) which was endorsed

by the Object Management Group in late 1997. A second is the  OPEN Modelling Language (OML)

(Firesmith et al, 1997) which has many elements of the OMG’s UML but provides additional

benefits (Henderson-Sellers, 1998; Henderson-Sellers et al, 1999b). OML is more compatible with

the OPEN process since both have a strong responsibility-driven focus emphasizing the

identification of both objects and process activities according to their behaviours; and specify  both

of these using a similar contracting metaphor.

2.1 Tailoring OPEN

There are currently 30 Tasks (Table 1) identified within the OPEN framework, of which ten have

subtasks. Each Task represents a single managed unit of work which is relevant to the completion

of one or more process Activities. Most frequently, the goal of an Activity is achieved through the

completion of several Tasks. For example, the Build Activity is accomplished by selecting Task

units such as “Construct the object model”, “Design user interface”, “Map roles on to classes” and

“Code”. In general, though, the relationship between OPEN Tasks and Activities is many-to-many.



For example, the Task: “Write manual(s) and prepare other documentation” is applicable to just

about every  Activity. Naturally, every Task will be highly relevant to some Activities and irrelevant

to others. This leads to the OPEN idea of Activity-Task linkages.

While some Activity-Task pairs can be identified as of zero value and thus labelled as forbidden,

other pairs may be identified as being mandatory. For example, in undertaking Project planning, one

must use the Task: “Develop software development context plans and strategies”. However, there

are many other pairings that are more fuzzy. For instance, sometimes you might want to face the

Task: “Evaluating quality” during the Build Activity and in other cases you might prefer to defer it

to User Review or Evaluation. The link has a different possibility value than either a certainty or a

zero chance.

Based on this observation of a “fuzzy” link between (at least some) pairs of Activity-Task, the

notion of a possibility (or deontic) matrix can be introduced to formalize these two-dimensional

pairings. Figure 2 exemplifies this approach. The values in this matrix, for all possible pairs, are

categorized into one of five categories:

• Mandatory (M)

• Recommended (R)

• Optional (O)

• Discouraged (D)

• Forbidden (F)

The actual values in this matrix will vary depending upon a number of things - such as project

size, organizational culture, domain of the application to be developed, skills and likes/dislikes of

the development team. Indeed, at the smaller granularity of application, such as a single project,

most of these values will be either M or F. This tailoring is in fact the aim of one of the subtasks of

Task: “Develop software development context plans and strategies”, a subtask called “Tailor the

lifecycle process”.
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Analyze user requirements

Code

Construct the object model 

Create and/or identify reusable components (“for

reuse”)

Deliver product to customer

Design and implement physical database 

Design user interface 

Develop and implement resource allocation plan 

Develop business object model (BOM)

Develop software development context plans

and strategies

Evaluate quality 

Identify CIRTs 

Identify context

Identify source(s) of requirements

Identify user requirements 

Maintain trace between requirements and design

Manage library of reusable components

Map logical database schema 

Map roles on to classes

Model and re-engineer business process(es)

Obtain business approval 

Optimise reuse (“with reuse”) 

Optimise the design

Test

Undertake architectural design

Undertake feasibility study

Undertake in-process review

Undertake post-implementation review

Undertake usability design

Write manual(s) and prepare other

documentation

Table 1: OPEN Tasks in alphabetical order.
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We noted above that OPEN establishes a linkage between Activities and Tasks; and that this is

a many-to-many mapping. There is a second linkage between OPEN Tasks and the Techniques

which are deployed to accomplish them. Whereas a Task is a unit of managed work, a Technique is

a concrete method or approach that is selected to accomplish the Task. OPEN brings together all the

tried-and-tested (and some new) OO techniques that have been used worldwide for the past decades.

Each Technique is a tool to be applied by the users of the OPEN process, selected according to its

fitness of purpose in completing a Task.

Figure 2: The lifecycle process consists of several Activities. 

Figure 3:  A core element of OPEN is a two-dimensional
relationship between tasks and techniques. Each task may
require one or several techniques in order to accomplish the
stated goal of the task; and techniques may be applicable to
several tasks. For each combination of task and technique, an
assessment can be made of the likelihood of the occurrence of
that combination. Some combinations can be identified as
mandatory (M), others as recommended (R), some as being
optional (O), some are discouraged (D) but may be used with
care and other combinations that are strictly verboten (F =
forbidden).  (Adapted from Graham et al, 1997) 



The link between Technique and Task follows the same argument as for the links between Task

and Activity. OPEN represents these links by a many-to-many fuzzy relationship represented again

as a two dimensional matrix (Figure 3). Again, this matrix must be tailored to your requirements.

Indeed, this matrix is much more likely to reflect the individualistic needs of your developers and

your project than the first matrix of Figure 2. This is because there are, in fact, many “duplicates”

in OPEN’s toolbox. For example, there are several techniques for finding objects. Some OO

software developers start by a textual analysis, some use simulation, some use CRC cards and yet

others prefer a use-case driven beginning to a software project. For example, if we had a small

project with pre-defined requirements, a small team and short project timelines, we might  identify

the Activities and Tasks (and their connections) in Figure 4  as relevant. These would correspond to

lifecycle Activity objects as shown in Figure 5. 

Figure 4 has identified, for this small example, six activities and eight main tasks. Which

Techniques might be useful to accomplish these Tasks? Figure 6 lists those that may be identified,

based on a team’s predisposition to the use of a responsibility-driven OPEN approach2.
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Figure 4: Binary values in the Activity-Task matrix appropriate
for a small project using a responsibility-driven approach within
OPEN and for which the requirements are prespecified.

Figure 5 : Activity objects appropriate to small project and to
matrix values of Figure 4.

2 As opposed to a use-case-driven OPEN approach which is an alternative, feasible option.
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Thus a successful tailoring of OPEN results in the selection of appropriate Tasks and

Techniques. This matrix tailoring is one of the strengths of OPEN which makes it suitable for a wide

range of project types3. This is why OPEN can be called a methodological framework rather than a

methodology.

3. THE SCOPE AND COVERAGE OF OPEN TECHNIQUES

In discussing the three layer OPEN process architecture, we wish to highlight in particular the  little

explored relationships between Tasks and Techniques. A fairly complete encyclopaedia of OO

development techniques has recently been compiled by the OPEN Consortium (Henderson-Sellers

et al, 1998). This work lists Techniques alphabetically in five catalogues (the appendices A-E). To

give the reader some idea of the breadth of scope and coverage of that work, we provide a brief

survey of some of the Techniques relating to some quite disparate Tasks, ranging from project

management to interface design. For more detailed definitions and context of applicability, the

reader should then refer to Henderson-Sellers et al, (1998). In Section 4, we then discuss in more

detail, as an exemplar, the linkage between modelling and coding Tasks (“Identify CIRTs”,

“Construct the object model”, “Map roles on to classes” and “Code”) and the Techniques deployed

to accomplish them.

3.1 Project Management and Quality Assurance Techniques

OPEN has a significant focus (and therefore a large number of techniques) on project management

and quality (testing and metrics). Project management (PM) is, in many ways, an overlay to the

Figure 6: Technique-Task linkages suggested for
small exemplar project (Figures 4 and 5).

3 Specific tailorings are explored in a recent paper by Henderson-Sellers et al, (1999a).



whole process of building software, addressing also many business (as opposed to technical)

concerns. In the business context, before any software is even contemplated, there are a number of

business decisions that have to be made. An assessment of the business problem and its likely

feasible solutions (OPEN Task: “Undertake feasibility study”) will use Techniques such as cost-

benefit analysis, simulations, critical success factors, impact analysis, business process modelling

and so on.

Once approval has been given for the construction of a software solution to the business domain

problem, PM techniques begin to focus on planning techniques such as package identification and

coordination together with traditional planning tools such as CPM and Gantt charts, perhaps as

implemented in one of the shrink-wrapped project management software tools.

At the personal level, there are a number of Techniques that have been found to enhance

personal productivity in certain cases. For many software developers, an awareness of their own

work strategies for success has been engendered by the application of the PSP Technique, perhaps

linked to SMART goals (McGibbon, 1995). This may also be enhanced if the organisation supports

the goals of an organisational quality scheme such as TQM.

PM also extends to the deployment of the software at the customer site. Here techniques such

as customer (on-site) training and standard cut-over strategies need to be planned and actioned.

Under the PM umbrella are also placed testing and metrics. In OPEN, testing is seen as an

integral part of the Activity objects, being part of the post-condition. This means that not only

software artefacts but also process elements are evaluated en route rather than post facto. Testing

can, however, still be implemented at several levels: including unit (class) testing, sub-

system/package testing, integration testing. It can be done internally (alpha tests) or externally (beta

tests) or on-site (acceptance tests). Increasingly, it is important to include specific testing strategies

to address usability (OPEN Technique: “Usability testing”).

Object-oriented metrics (Henderson-Sellers, 1996) are fully supported in OPEN although we

fully realise that the industry understanding of metrics and their utility is often limited. For example,

one approach seeks to measure readily available surface properties of source code without there

being any sound understanding of whether high or low scores in these metrics correspond to

underlying quality (Chidamber and Kemerer, 1994). By contrast, the Goal-Question-Metric (GQM)

approach identifies qualitative software properties that are desirable and then seeks to discover

ways of measuring factors that contribute to these qualities (Offen and Jeffery, 1997; Henderson-

Sellers, 1999b). Other quality-focussed techniques in OPEN include class naming standards,

exception handling techniques, the use of formal methods and standards compliance.

3.2 Techniques Relating to User Requirements

The general area of requirements engineering is a nexus between social science and (computer)

technology. It bridges between the user(s) and their requirements and the ability of the software

engineer to construct a design that is both implementable in a language suitable for computation and

also understandable (and therefore endorsable) by the end-user.

The first steps in requirements engineering are identification of the source or sources of the

requirements (e.g. people, paper-based files, electronic databases) and then the elicitation of the

particular requirements (for a particular project) from those sources. This is perhaps most difficult

when the source is human since there is much sociological understanding necessary for (and often

foreign to) the requirements engineer, who is often science/technology-focussed in their mindset.

Many of the OPEN Techniques involve traditional people interaction/problem solving techniques
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such as brainstorming sessions, active listening, interviewing and questionnaires. Indeed, there is a

myriad of techniques that can be used to elicit requirements and it is certainly not the intention that

you should use all of them on each particular project. Choose the one that suits the skills of the

requirements engineer and the culture of the end-user. For many organizations, a well-structured

approach will be appreciated; perhaps a highly structured questionnaire. For more creative

environments or ones in which the requirements are perhaps not well understood by the potential

users, roleplay, storyboarding and rich pictures may prove helpful.

When more than a single user is involved (as is usual), more extensive techniques are required.

Here, RAD and JAD, and their associated workshops, have been found most beneficial. Whilst it is

important to ensure that the adoption of RAD/JAD is NOT seen as a permissible reason/excuse to

prototype rapidly (“hack”), such RAD workshops can bring together in a highly productive

environment system analysts and users. Good sources of reference here are Graham (1995a; 1996b).

Following elicitation is a process of understanding, in conjunction with users, exactly what are

the implications (in terms of software) for the satisfaction of those requirements. Here problem

solving skills are to the fore. Techniques such as simulation to undertake what-if scenario evaluation

and CRC cards (Beck and Cunningham, 1989) can be most useful.

Many of the techniques included in OPEN’s requirements engineering group of Techniques are

relatively new to OT although well-known in other domains of computing and information systems.

What is needed is an interviewer/requirements engineer who has an OO mindset and can tailor

questions and lines of enquiries that will permit the discovery of CIRTs4 with the greatest facility.

Discussions should focus on responsibilities, some scenarios and concepts in the business domain.

It may be dangerous to focus on data particularly if the interviewees have been educated/trained in

entity relationship modelling and since this can lead to the development of a data rather than an

object model. Similarly, over-dependence on use cases (Jacobson et al, 1992) may lead to top-down

functional decomposition (Firesmith, 1995; Korson, 1998).

3.3 Techniques for User Interface Design

Designing for usability (including user interface design) together with usability testing is critical to

the development of high quality software. Before an OO method can be regarded as complete, it must

include advice on these HCI issues, drawing on the wealth of established information from the HCI

community. In OPEN, we choose to draw the developer’s attention to sources of HCI advice rather

than “reinvent the wheel” (Preece et al, 1994). It is clear that these issues are at the same time 

(a) important and (b) often ignored for expediency. OT is a technology that can bring benefits of

quality to the software industry. A major component of quality, at least as far as the user is concerned,

is the GUI. For a successful software industry, it is thus crucial to focus on the quality of the user

interface. The goals of dialogue design were highlighted by Downes et al, (1991) and elaborated

upon by Cox and Walker (1993) into a series of dialogue design steps involving visualization of the

interface, abstraction into objects and their interactions, adding detail to the objects and their

representation, prototyping the UI design and detailed program construction.  A more detailed set of

heuristics for good UI design, especially concerning the content of messages, is discussed by Graham

(1995a). The constraints on human short-term memory (Miller, 1956) have for long been appreciated,

leading to restrictions on the number of menu items and depth of menu trees. Issues concerning

hierarchical versus random navigation must be addressed. The state-based modality of older user

interfaces was one of the original targets of the Smalltalk project (Goldberg, 1985).

4 CIRT = Class, Instance, Rôle or Type.



More recently, 4GL-style screen painting techniques have given way to interface building

toolkits (Valaer and Babb, 1997), such as NeXT’s Interface Builder, Visual Basic and the recent

Java Beans technology, all of which allow the programmer to assemble visual prototypes of the UI

and wire the visual controls to application objects. These tools alleviate much of the programming

effort involved and help to impose a common look-and-feel; but they do not obviate the need for

careful design. Usability testing is therefore an extremely important technique: some fourteen

checks are specified in Graham (1995a).

3.4 Reuse Strategies and Supporting Techniques

Reuse is an integral part of OPEN. There are issues of technical concern and issues of management

concern. It has been argued that many of the technical issues are solved and it is really the NIH5

syndrome that prevents reuse.

CIRTs designed for a single project tend not to represent the totality of the concept they are

modelling. The characteristics included will be those pertinent to the current project rather than to

the broader domain. For reuse, classes (and other artefacts) need to be “complete”, highly tested and

robust (among other things). Techniques such as “Completion of abstractions” and “Refinement of

inheritance hierarchies” are relevant here. These focus on, firstly, creating a full and complete

specification of the concept and secondly on the likely modifications to the inheritance hierarchy to

permit a more flexible representation of concepts in the problem domain. Addition of genericity

(OPEN Technique: “Genericity specification”) can also be useful here at the detailed design stage.

Reuse is not merely at the class level; there is currently much enthusiasm in engendering reuse

via patterns, mechanisms, components and frameworks (Szyperski, 1998, Chapter 9). Indeed,

OPEN describes a process for the initial identification, development and maturation of frameworks

(Henderson-Sellers et al, 1998), evolving from the whitebox framework stage to the blackbox

framework stage as described by Pree (1997).

Creation of reusable artefacts is one thing (OPEN Task: “Create and/or identify reusable

components (“for reuse”)”; finding existing components requires a totally different set of

Techniques (OPEN Task: “Optimize reuse (“with reuse”)” and Task: “Manage library of reusable

components”). If developers cannot identify an appropriate artefact rapidly, then they will not reuse

it but will redevelop it from scratch. Thus it is important that artefacts are not only well catalogued

(OPEN Technique: “CIRT indexing”) but that tools exist to locate these stored artefacts (Freeman

and  Henderson-Sellers, 1991).

On the PM side of reuse, we need to consider how the quality of reusable artefacts destined for stor-

age in the company library can be assessed. Quality metrics (coupling, cohesion, complexity etc.) are

available and new reuse metrics have been proposed (Henderson-Sellers et al, 1998). Another important

element is a person responsible for the quality of the library. This important role necessitates both a

reactive and a proactive response: accepting and checking artefacts proposed for inclusion in the library

together with the active encouragement of the provision of such classes and encouragement to (re)use

them in later projects. This approach is supported, in part, by OPEN Technique: Application Scavenging.

It should be practised in the context of well-defined roles of the development team (Application

Developer, Reuse Manager, Librarian, Application Scavenger) in order to avoid conflicts of interest.

The hardest part seems to be how to implement a “rewards” strategy that will encourage a reuse

mindset. Many obvious such strategies are open to abuse. For instance, “royalty” payments to

developers may be made on the basis of how often a class they have contributed is used by others
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or on the extent to which the classes in the current project have been extracted from the library

(friends can easily be cajoled/entreated to use these “as a favour”). Some newer ideas are currently

being investigated as a subproject of the OPEN project.

4. MODELLING TECHNIQUES FOR SEAMLESS ANALYSIS AND DESIGN

Modelling techniques form the largest grouping of OPEN Techniques. They also provide the most

object-oriented flavour – many were newly invented within the object-oriented paradigm in

comparison with PM or UI techniques, for instance, which have an obvious heredity outside of OT.

In this section, we “weave together” a number of these modelling-focussed tools from the OPEN

“toolbox” of techniques.

To illustrate how a wise choice may be made of a set of OPEN Tasks and Techniques, we will

use the small (toy) example of Figure 4 and concentrate on issues regarding the OPEN Activity:

“Modelling and Implementation: OOAD/D/P” (labelled 2 in Figure 4). For this Activity, the

appropriate Tasks are seen to be

• Identify CIRTs

• Construct the object model

• Map roles on to classes

• Code

In the following subsections, we explore the implications for appropriate Techniques for these four

Tasks. Some of the relevant Techniques (a subset extracted from Figure 6) to be discussed here are

Task: “Identify CIRTs”

• Textual analysis

• CRC card modelling

• Abstraction utilisation

• Responsibility identification

• Contract specification

Task: “Construct the object model”

• Service identification

• Relationship modelling

• Collaborations analysis

• Interaction modelling

• Generalisation and inheritance identification

• State modelling

• Scenario development

Task: “Map roles on to classes”

• Role modelling

Task: “Code”

• Class internal design

• Implementation of services

• Implementation of structure

4.1 CIRT identification

CIRT identification may rely on any one (or in fact more than one) of several techniques including

textual analysis, task analysis and use case evaluation. CIRTs may be identified from state transition



diagrams or from CRC roleplay exercises. It is rare for anyone to be able to identify relevant

concepts just by considering a static view of the domain. Our view of the world is interactive and

dynamic; our design of the software system is also implicitly dynamic. CIRTs are only of value if

they interact. Thus in identifying concepts it is almost inevitable that we concurrently think about

how they interact (see Section 4.2.2).

One good way of identifying concepts is to select key nouns in the requirements specification

(candidate CIRTs) and then to look for the responsibilities (Appendix A) held by each such CIRT.

Responsibilities can be identified from requirements, elicited by techniques such as CRC or

roleplays  and can be categorized as either (i) responsibilities for knowing; (ii)  responsibilities for

doing; and (iii) responsibilities for enforcing. These are then implemented by one or more opera-

tions in the CIRT interface. Operations in the interface then link smoothly across to one or more

(often only one) methods in the code.

The responsibility is a high-level statement of the service(s) to be provided by each CIRT. This

must be supplemented by a set of rules which govern that service provision. This is known as

“software contracting” (Meyer, 1988; 1992b). The objective is to clearly document the meaning of

services and/or responsibilities. Contracts and responsibilities are thus not synonyms – although

they are often confused (Rational, 1997). Contracting is so important that not only is it used in

Modelling but it is also an integral part of the lifecycle process model.

Good OO design is also highly modular. CIRTs have restricted interfaces detailed by their

responsibilities (see above) – data (attributes) and methods are detailed design or coding decisions.

Each CIRT thus identifies, encapsulates and fully represents a single concept in the domain at the

current abstraction level (Appendix B). As abstraction levels change during the OPEN process as

more and more detail is added, more CIRTs will be identified, some CIRTs will be found to be

aggregates and thus decomposable into their parts.

By focussing on the interface, as should all good application developers, we are also focussing

on another key element of object technology: encapsulation/information hiding. Encapsulation is a

boundary – it may be transparent, translucent or opaque. Information hiding requires an opaque

encapsulation in which only those details of the coded class which are reflected in the externally

available services (operations and (logical) attributes) or, at a higher level, external responsibilities

can be seen from outside the class. These details, together with the class name, constitute the

interface. They should be supplemented by responsibilities for enforcing linked to internal rulesets. 

4.2 Constructing the Object Model

OPEN Task: “Identify CIRTs” focusses on autonomous concepts. To build an “object model” (a

model describing classes, objects, use cases etc.), consideration needs to be given to how these

CIRTs connect together, both statically and dynamically. In the early stages of building the object

model, the emphasis will be on mappings/associations some of which may be usefully modelled as

aggregations (composition structures) or containment. Later, as knowledge is gained  regarding the

static view of the object model and refined, generalisation/specialisation will be used increasingly

to create inheritance structures. Also, usage structures are elaborated as inter-object communication

patterns (the dynamic view) unfold. In this subsection, we explore a subset of the OPEN Techniques

relevant to the Task: “Construct the object model”.

4.2.1 Service identification

Once some of the candidate CIRTs have been identified, together with their high-level

responsibilities, we need to transform these into the services offered by the CIRT. Services are the
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properties (logical attributes) and operations seen in the interface of the class. Each responsibility

may lead to the identification of one or more properties and operations, the latter being related to

behaviour and the former to knowledge. Operations may also be found by examining other classes

and seeing what operations they are likely to send out requests for – operations are services offered,

not required.

4.2.2 Relationship modelling

In OOAD, relationships are usually established between classes or types although these

relationships (except for generalisation/inheritance) in fact represent instance-instance links. OPEN

makes the usual primary modelling distinction between simple-valued attributes and  associations.

However, OPEN prefers the majority of its associations to have the semantics of  mappings, or one-

way dependencies. Later during implementation, mappings may be encoded directly as pointer-

valued attributes, or as access functions returning the desired object. Aggregations are  mappings

which have the semantics of whole-part relationships – although the definition is still not  agreed

(Henderson-Sellers and Barbier, 1999).

4.2.3 Collaboration and interactions

In OPEN, interaction analysis and collaborations analysis are two distinct techniques, although there

is significant closeness in the two techniques. A collaboration is, in OPEN and OOram (Reenskaug

et al, 1996), a sub-contracting relationship between two roles, eventually to be  embodied in classes.

It represents the client-supplier relationship between roles that supports one or more messages that

the client delegates to the supplier in order to help the client fulfil its own responsibilities (see Section

4.2.1). Collaboration diagrams are used for documentation. Interactions, on the other hand, represent

the enactment of collaborations (i.e. its dynamic counterpart). In UML, there are two types of

interaction diagrams: collaboration diagrams and sequence diagrams which give different visual

emphases on these interactions: the sequence diagram emphasizes the time-ordering of interactions

and the collaboration diagram emphasises a network of static connections between instances that

form a subsystem, along which messages may flow. In UML, a collaboration is therefore more like

a network of static associations between instances, rather than a client-server relationship between

types. Choice between using either UML diagram is often a matter of taste.

4.2.4 “Inheritance”

Conceptual generalisation is the most productive technique to apply during classification, since it

leads to inheritance graphs that support both reuse of conceptual designs and polymorphism

(dynamic type substitution). On the other hand, ‘implementation inheritance’ refers to the

opportunistic reuse of code, considered irrespective of any considerations of subtyping or the

relatedness of the two concepts. It should only be used in the context of optimisation of design/code

since it mitigates strongly against reuse at the application developers’ level.

Inheritance structures may also include multiple specialisations. Thisnetwork structure is harder

to maintain and understand and multipleinheritance should only be used when necessary6. Indeed,

we would go even further and suggest that inheritance itself (as single inheritance), whilst being a

“trademark” of an OO system, should be used sparingly. There are many cases when it is the first,

unthinking modelling option. In reality, reuse is better served in many of these cases by

6 The analogy we like to use is that of a chainsaw – great for sawing down trees (the difficult job) but highly dangerous
for more mundane tasks such as pencil sharpening.



delegation/subcontracting/collaborations. Some useful reminders of this necessary balance in using

different techniques for different jobs are given in texts by Page-Jones (1995) and Riel (1996).

4.2.5 Dynamic Modelling

The dynamic side of OO modelling may be seen in user interactions with the system (use cases), in

the state-transition descriptions of how a single class (or more strictly interfaces belonging to a

single class) handles events or in the way that a small group of CIRTs may collaborate together to

fulfil a single service request by delegation, subcontracting and inter-CIRT collaborations. Indeed,

many such designs could be regarded as underpinned by patterns (Gamma et al, 1995),  a topic of

immense value to realise a component software industry.

While collaborations (Section 4.2.3) are usually documented in collaboration diagrams, the same

kinds of diagram can also be used to document use cases, scenarios and task scripts (OPEN Technique:

“Scenario development”). Although no unique definition of use cases exists (Cockburn, 1997), they

can be understood as describing how a system functions from the (external) user’s viewpoint.

Use cases (and their variants) have many uses. They may be useful in eliciting and describing

user requirements; they may help in the identification of CIRTs or, conversely, be identified from

the CIRTs and the semantic net and collaboration diagrams; they may be useful in directing the

testing program.

Whilst many authors have embraced use cases as part of their methods, it must be remembered

that

1) They show functionality. Decomposition could too easily lead, not to objects, but to detailed

DFDs (Firesmith, 1995). Decomposition of task scripts is argued (e.g. Graham, 1995a; 1996a)

to lead to an identifiable end-point in the atomic task script, thus providing a more reliable

modelling technique.

2) There is no obvious way to “find the object” directly from a use case. Techniques for converting

the information found in use cases to a set of interacting classes (as depicted, for instance, in a

class diagram) are little different from those aimed at finding objects directly from the

requirements documents. Whilst this is not surprising, care is required. Indeed, Korson (1998)

recommends that you “do not derive your design directly from your use cases”.

3) There are still many “dialects” (Cockburn, 1997) which foil inter-communication between

development groups (Simons, 1999).

Some methodologists advocate that their methods should be totally use-case driven (Jacobson,

1996). We beg to differ. Use cases (and their alternatives) need to be an integral part of a method –

their primary use in some situations may in fact be for driving the testing, rather than for eliciting

requirements descriptions.

4.3 Roles

One frequent error is the use of inheritance to represent an apparent is-a-kind-of knowledge

structure (specialisation inheritance) when a more appropriate modelling technique would be that

of roles. The importance of roles as a complete modelling technique, distinct from the labels on

associations in OMT which have the same name, has been recognised in the publication of the

OOram method (Reenskaug et al, 1996) and in their incorporation into the UML and OML

metamodels. Essentially, a role is a temporary object classification in the sense of an instance, say

of type PERSON, temporarily adding an additional classification, say EMPLOYEE and

COMMUTER. Consider an instance of type PERSON: Margaret. Between 8 and 9 a.m., she is a
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commuter, between 9 and 5 an employee and between 5 and 5.45 a commuter again. Yet all the day

she remains a person. Using subtypes to model this would be inappropriate since it would lead to

an instance of subtype COMMUTER (the instance Margaret in fact) moving, at 9 o’clock, to become

an instance of subtype EMPLOYEE. Such temporary migration between subclasses can be

indicative of the need for role modelling.

Roles can thus be thought of as temporary reclassification. Perhaps more importantly, they are

additional classifications rather than changes of classification - for instance between EMPLOYEE

and RETIREE. Roles occur frequently in real life. Role modelling is a software technique of

representing that reality in the software design. 

If UML is used as the notation with OPEN, roles can be shown in collaboration diagrams

directly or in class diagrams using the <<role>> stereotype (Appendix C). With OML as the

notation, a separate and distinctive icon is used on both diagrams.

4.4 Coding Styles and Implementation Techniques

OOAD produces a system-level design in which classes, the attributes they manage, inter-class

connections and the numbers and semantics of methods have been determined. This is large

programming language independent; although it is recognized that the presence of particular program-

ming language constructs may profitably influence the choice of design architecture. An example of

this is shown in the C++ Standard Template Library (Stepanov and Lee, 1994), where considerable

responsibility for copying, inserting and appending elements in containers is transferred to generic

template functions acting on iterators, rather than supplied as methods of the containers themselves.

There are a number of OPEN techniques which give advice on coding issues. When coding, the

focus of the development team switches from consideration of the interface (the “type” aspect of

the CIRT) to the internal viewpoint (the class implementation). Operations in the interface are now

implemented or realised by a method (member function in C++, for example) in the code. Firstly,

it may be necessary to design the way that a particular method is to be constructed. Since C++,

Eiffel and Java (and less so, Smalltalk) are essentially object-oriented procedural programming

languages, then the way in which the code is structured internally to a method is indeed procedural

in nature. Consequently, it is generally believed that designing such methods simply requires the

application of traditional structured design techniques but at a much smaller scale than occurs in a

traditional, structured programming development environment. Thus, one might anticipate seeing

structures such as loops, if/then/else, case/switch statements and linear series of assignment

statements. However, whilst conventional wisdom suggests that in C++ (for instance) such a piece

of procedural code to implement a single method may be 20-30 lines long, more recent evidence

(Haynes and Henderson-Sellers, 1997) shows that in all OOPLs, the typical method size in well-

written OO code is 2-3 lines long only. In other words, good C++ style should be not procedural

style but “Smalltalk style”. If this observation is repeated and upheld, then the OPEN Technique:

“Class internal design” will fade into insignificance.

Implementation (coding) of services (or characteristics) and structure is in terms of methods,

properties (exceptions, links, parts and attributes) and assertions (pre-conditions, post-conditions

and invariants). Some of these are truly hidden or private; while others cross the boundary and are

in fact public operations (Wirfs-Brock and Wilkerson, 1989). It is important to note that the public

section of a class should include only those methods which provide its interface – and this should

be minimal, according to the purpose of the abstraction. In C++ and Java, there is a third category

of visibility: protected. Whether to mark attributes as private or protected is a difficult decision.



There are two common coding practices:

(i) in systems that rely more on composition than inheritance, make all data attributes private; 

(ii) in systems that rely heavily on inheritance, make all data attributes protected, so that descen-

dants may easily access them. 

In the first style, data are strongly encapsulated, so that only the declaring class may access them

directly. This means that any descendant, although it inherits the data attribute, cannot access it. If

the descendant needs access, it is common to define protected access methods in the original class.

If systems make heavy use of inheritance, this can lead to code-bloat, with many internal access

methods. In this case, it is more sensible to decide to make all data protected (the second style). 

The notion of visibility relates both to what features are seen as part of the class interface i.e.

what are external responsibilities or external services; and also the extent to which other classes are

permitted to see, and hence have access rights to, this particular class. Objects are visible to each

other when they are in the same scope i.e. within the same Namespace. Fusion (Coleman et al,

1994) contains a richer family of visibility relationships (reference lifetime, server visibility, server

binding and reference mutability) which may also be useful.

Finally, it is sometimes the case that several public methods rely on a common algorithm – for

example, insertion, removal and membership testing in a SET class may involve a common

searching operation. This may be made into a private (or protected) internal method, reducing the

size of the code overall. However, a review should be conducted of classes that acquire too many

internal methods of this kind. Often this indicates a class hiding a functional abstraction, which

should really be conceived differently, with the behaviour distributed over several objects.

Related to the same encapsulation theme are the notions of “friends” in C++ (Stroustrup, 1991)

and selective exporting in Eiffel (Meyer, 1992a). C++ originally provided the “friend” mechanism to

allow a class to break its own encapsulation selectively, for the sake of efficiency. A class may declare

another class, a method, or a global function to be a friend, meaning that this program component is

trusted and has privileged access rights to the internals of the declaring class. In principle, friend

declarations should only be used as a last resort. However, certain language limitations in C++ have

led to “friend” declarations being commonly used in three identifiable situations:

(i) To circumvent bounds-checks in operations involving two different class abstractions, e.g.

multiplication of a Vector and a Matrix;

(ii) To extend the interface of library classes not available to the developer, e.g. overloading

operator >> and operator <<, conceptually members of the iostream classes, to read and write

new user-defined classes;

(iii) To enable automatic type conversion, by replacing binary methods, which normally block type

conversion, with global friend functions, e.g. global overloads of operator +, operator -, which

access inside Vector and Matrix.

Eiffel provides a flexible export mechanism which is the dual of friends – instead of breaking

encapsulation, it offers selective interfaces to different clients. By default, every feature is public;

however, feature {NONE} makes the following declarations secret (equivalent to protected), and

feature {CLASSA, CLASSB} makes the following declarations accessible only to the named

classes.

Stylistic guidelines for different languages are emerging. These are often referred to as the

“idioms” of that particular language. Some more general guidelines for “good coding” are to be

found in the Law of Demeter which is aimed at the preservation of encapsulation. It was formulated

by Lieberherr et al, (1988) and later revised by Lieberherr and Holland (1989) and is a form of
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voluntary design restriction, which prohibits the sending of messages to certain categories of objects

from within methods. The need for such a law arises mostly in languages which pass objects by

reference, such as Smalltalk, Eiffel or Java. In these languages, it is possible, by some combination

of message expressions, for an object to obtain access to part of another object (a sub-object) and

cause this to be altered, without the permission of the owning object. The intent of the law is to force

all messages to sub-objects to pass through the interface of the owning object first, which delegates

the request to the sub-object (OPEN Technique: “Delegation”).

Other design/coding decisions include whether to store information or to recalculate it on each

method invocation. As an example, consider the characteristic/property of a class which gives an

enquirer the current balance of a bank account. The value of the Balance object to be returned to

the client object could be stored as an attribute of the BankAccount object. Alternatively, what is

stored may be a transaction history, probably since the last bank statement was issued. The current

balance is thus calculated anew each time the balance operation/service is requested as previous

balance + Σ recent transactions.

The use of a distributed system also forces certain coding decisions. For instance, using an ORB

focusses attention closely on the interface and possibly on IDL considerations – inheritance is no

longer as important since what is important is the interface and services provided by the CIRT in

question. Design decisions regarding virtual and actual nodes need to be implemented, as does code

to implement asynchronous or synchronous message passing sequences. It is likely that concurrent

threads will be created and coded.

5. SUMMARY

In developing the third generation OO methodology OPEN, thoroughbred OO ideas have been

embodied in both the lifecycle process and the tasks and techniques which are used to effect successful

OO software development. Linkages between Activities and Tasks and between Tasks and Techniques

are the focus of the OPEN Task: “Tailor the lifecycle process”, in which the project manager (typically)

creates a specific OO process for the current software development and/or as the organisation’s own

standard OO process. Techniques then provide the practical advice on how to build the software system

and have been discussed here in clusters, with more detail on those focussing on model building and

coding. Thus OPEN provides a comprehensive methodological framework (as outlined in Figure 1) for

the application and utilisation of object technology in a true software engineering context.
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APPENDIX A: RESPONSIBILITIES

Concepts and abstractions focus on the external view – how an object is seen, what it is responsible

for knowing and how it behaves. Responsibilities, introduced by Wirfs-Brock and Wilkerson

(1989), represent high level abstractions of integrated state and behaviour. As illustration, consider

the CIRT to represent a horse. This can be done either using:

• The data-driven approach describes a horse in terms of its parts: head, tail, body, leg(4).

• The procedural (functional interface) approach describes a horse in terms of operations it can

perform: walk, run, trot, bite, eat, neigh.

• The responsibility-driven approach describes a horse interms of its responsibilities:

communicate, carry things, maintain its living systems.

A data-driven approach harks back to earlier structured methods, such as the entity-relationship

modelling adopted in Shlaer/Mellor, OMT and Fusion, in which the emphasis was more on pure

storage entities. Whilst OMT does not prevent the developer from identifying “behaviour” during

analysis, all examples are data-focussed. The Coad and Yourdon methodology has a similar data-

driven focus. Fusion, on the other hand, does mandate that only data are considered during analysis.

The use of a data-driven (“OO”) methodology such as these may, if used by an unskilled developer,

lead to traditional entity-relationship models rather than true object models. In a true object model,

behaviour (as exemplified by responsibilities) tends to be more equally distributed among CIRTs -

this was amply demonstrated in a metrics study by Sharble and Cohen (1993) in which the data-

driven design (DDD) was of a lower quality (as measured by their set of metrics) than the

responsibility-driven design (RDD).

Whilst both a DDD and a RDD approach can work, particularly in the hands of a skilled

developer, we have generally found that novices prefer a RDD. Indeed, it has been found that a



responsibility-driven approach is more than useful in teaching undergraduate students the OO

paradigm. Whilst permitting DDD, we strongly recommend a RDD focus to your development

strategy. Whilst a responsibility driven design focusses on an holistic approach at the model

building level, a contract-driven approach takes that one level higher and applies those ideas to the

life-cycle process itself. The objects representing Activities have both responsibilities and contracts:

pre- and post-conditions controlling the overall development process.

APPENDIX B: ABSTRACTION AND CLASSIFICATION

Modelling is representing a system, here first a business system and then a software system, at a given

level of abstraction. The use of abstraction is not only one of the most central tenets of OT, but also

for many one of the most difficult. Abstraction requires the capturing of the essence of a problem and

its elements – in terms of types, objects, relationships etc. – at a given level of detail or granularity.

An abstraction mindset leads to the successful introduction and use of classification. It is natural

for people to group together common items in their everyday world in order to impose a cognitive

or mental model of the external of “real world” in which we all exist. Indeed, some philosophers

argue that since the only reality is our own cognitive perception of the world around us – and each

of us constructs our cognitive map independently and differently – then the real world has no

meaning or existence! 

This skill of classification to a higher abstraction level leads to the notion of generalisation –

identifying a superclass or supertype, which may often be an abstract class in OO jargon (i.e. one

with no instances), but which captures the essence of a shared concept. 

APPENDIX C: STEREOTYPES

Stereotypes are widely used in CIRT modelling. The word stereotype, in a linguistic sense, suggests

something representative – sometimes pejoratively. In OT, its meaning has been changed to mean a

temporary metalevel subclassification. In OOSE (Jacobson et al, 1992), CIRTs could be either

controller objects, entity objects or interface objects – a similar grouping technique was used by

Budd (1991). These stereotype labels indicate the superset to which the object belongs. This

approach is merely a convenient way of dividing up objects following a “divide and conquer” style.

There is nothing sacrosanct in these classification categories and no impact on the semantics or

implementation styles implied. Following Wirfs-Brock’s (1994) discussion on OO stereotypes, the

concept has been embodied in the UML approach to modelling. Stereotypes are applied liberally as

means of extending the concepts as portrayed in the UML metamodel. Whilst providing much-

vaunted extensibility (an important aim of the metamodel), excessive use of stereotyping runs the

risk of different developers producing overlapping or ill-defined classifications (Berner et al, 1999).

For example, airline A may stereotype their frequent flyers as bronze, silver or gold based on

thresholds of annual miles flown of 100,000 and 200,000 whereas airline B uses the same stereotypes

based on annual expenditures. Thus the <<gold>> stereotype is ambiguous and third (and fourth)

parties adopting it will find no agreed semantics. In fact, this leads to the identical problem observed

by McGregor and Korson (1993) in their introduction of the discriminant – used later in MOSES

(Henderson-Sellers and Edwards, 1994), OML (Firesmith et al, 1997) and UML (OMG, 1997a;b).

As well as classes, some relationships are suggested as ripe for stereotyping. OMG (1997a)

encourages the use of the <<uses>> and <<extends>> stereotypes7 on the dependency relationship
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between use cases (the subset approach to stereotyping). Similarly, in the class diagram, there are a

large number of predefined stereotypes on the Dependency relationship and its subtypes. However,

it should be noted that, while a stereotype is defined to be, essentially, a user-defined partition at the

model rather than the metamodel level, there are several stereotypes predefined in UML e.g.

<<access>>, <<friend>> and <<import>> as stereotypes of the Permission relationship (Figure 7).

Furthermore, in the UML standard, several metatypes (e.g. Include, Extend, Binding, Uses in Figure

7 – but there are many others) are depicted using a stereotype notation.  

Figure 7: The Relationship metalevel hierarchy of UMLV1.3.
Some of the metatypes in the metamodel are shown using
stereotypes while others have stereotypes which represent
partitions of the metatype.
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