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In previous work we have described how refinements can be checked using a temporal logic based

model-checker, and how we have built a model-checker for Z by providing a translation of Z into the

SAL input language. In this paper we draw these two strands of work together and discuss how we

have implemented refinement checking in our Z2SAL toolset.

The net effect of this work is that the SAL toolset can be used to check refinements between Z

specifications supplied as input files written in the LATEXmark-up. Two examples are used to illustrate

the approach and compare it with a manual translation and refinement check.

Keywords: Z, refinement, model-checking, SAL.

1 Introduction

In this paper we discuss the development of tool support for refinement checking in Z. In doing so we

draw on two strands of work - one on providing a translation of Z into the input language of the SAL

tool-suite, and the other on using model checking to verify refinements in state-based languages.

The SAL [18] tool-suite is used in both strands, and is designed to support the analysis and veri-

fication of systems specified as state-transition systems. Its aim is to allow different verification tools

to be combined, all working on an input language designed as a format into which programming and

specification languages can be translated. The input language provides a range of features to support this

aim, such as guarded commands, modules, definitions etc., and can, in fact, be used as a specification

language in its own right. The tool-suite currently comprises a simulator and four model checkers [4]

including those for LTL and CTL.

Our work on the first strand has resulted in a translation tool which converts Z specifications to a

SAL module, which groups together a number of definitions including types, constants and modules for

describing a state transition system. The declarations in a state schema in Z are translated into local

variables in a SAL module, and any state predicates become appropriate invariants over the module and

its transitions.

A SAL specification defines its behaviour by specifying transitions, thus it is natural to translate each

Z operation into one branch of a guarded choice in the transitions of the SAL module. The predicate

in the operation schema becomes a guard of the particular choice. The guard is followed by a list of

assignments, one for each output and primed declaration in the operation schema. This methodology has

been implemented in a tool-set, as described in [9, 8].

Our work on the second strand has derived a methodology for verifying a refinement using a model-

checker by combining two specifications in a special way and verifying particular CTL properties for this

combination. Specifically, [21, 22, 10] described how refinements in Z and other state-based languages

could be verified by encoding downward and upward simulations as CTL theorems - the simulation

conditions being the standard way to verify refinements in state-based languages such as Z, B etc.

The contribution we describe in this paper is to implement this methodology in our Z to SAL trans-

lation toolkit. This extension to the tool enables two Z specifications to be input in LATEXformat, and for
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a refinement check to be performed. Internally this is achieved by translating each specification from

LATEXto a single SAL specification upon which appropriate CTL theorems can be verified using the SAL

CTL witness model-checker sal-wmc.

The purpose of this paper is to describe how this is done, using two examples as way of illustration.

The structure of the paper is thus as follows. In Section 2 and Section 3 we provide background on

refinement and the Z to SAL translation respectively. How specifications can be combined to enable

a model checker to verify a refinement is described in Section 4, and this section also describes our

implementation of this methodology. To illustrate the process we present a slightly more complicated

example in Section 5 and we conclude in Section 6.

2 Refinement

Data refinement [5, 6] is a formal notion of development, based around the idea that a concrete specifi-

cation can be substituted for an abstract one as long as its behaviour is consistent with that defined in the

abstract specification.

Each language, method or notation has its own variants. In Z, refinement is defined so that the

observable behaviour of a specification is preserved. This behaviour is in terms of the operations that are

performed, and their input and output values. Values of the state variables are regarded as being internal,

and thus refinement can be used to change the representation of the state of a system. Hence the term

data refinement.

In a state-based setting such as provided by Z, data refinements are verified by defining a relation

(called a retrieve relation) between the two specifications and verifying a set of simulation conditions.

The retrieve relation shows how a state in one specification is represented in the other. For refinement to

be complete, a relation, rather than simply a function, is required [6].

In general, there are two forms the simulation conditions take, depending on the interpretation given

to an operation, specifically that given to the operation’s guard or precondition [6]. The two interpreta-

tions are often called the blocking and non-blocking semantics. We consider the latter, i.e., the standard,

approach in this paper.

For any interpretation, there are two simulation rules for refinement which are together complete,

i.e., all possible refinements can be proved with a combination of the rules. The first rule, referred to as

downward (or forward) simulation [6, 5], requires that

initialisation the initial states of the concrete specification are related to abstract initial states

applicability the concrete operations are enabled (at minimum) in states related to abstract states where

the corresponding abstract operations are enabled, and

correctness the effect of each concrete operation is consistent with the requirements of the correspond-

ing abstract operation.

We do not consider the alternative kind of simulation known as an upward simulation in this paper,

although there is nothing to stop the the appropriate methodology being implemented in our tool suite.

Definition 1 A Z specification with state schema CState, initial state schema CInit and operations

COp1 . . .COpn is a downward simulation of a Z specification with state schema AState, initial state

schema AInit and operations AOp1 . . .AOpn, if there is a retrieve relation R such that the following hold

for all i : 1..n.
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1. ∀CState • CInit ⇒ (∃AState • AInit∧R)
2. ∀AState; CState • R∧preAOpi ⇒ preCOpi

3. ∀AState; CState; CState′ • R∧preAOpi ∧COpi ⇒ (∃AState′ • R′∧AOpi)

The use of a retrieve relation allows the state spaces of the abstract and concrete specifications to

be different - the retrieve relation documents their relationship. The first condition ensures appropriate

initial states are related, and the second that the concrete operations are defined whenever abstract ones

are (modulo the retrieve relation). The third conditions ensures that the concrete operations have an effect

that is consistent with the abstract, whilst also allowing non-determinism to be reduced.

As an example refinement, consider the following simple specification. It defines two operations that

add and remove an input from a set s of some given type T .

[T] max : N

A = [s : PT
∣∣ #s ≤ max] AInit = [A′

∣∣ s′ =∅]

AEnter

∆A

p? : T

#s < max

p? 6∈ s

s′ = s∪{p?}

ALeave

∆A

p? : T

p? ∈ s

s′ = s\{p?}

A simple data refinement replaces the set s by an injective sequence l as follows (assuming the same

T and max):

C = [l : iseq T
∣∣ #l ≤ max] CInit = [C′

∣∣ l′ = 〈〉]

CEnter

∆C

p? : T

#l < max

p? 6∈ ran l

l′ = la 〈p?〉

CLeave

∆C

p? : T

p? ∈ ran l

l′ = l ↾ (T \{p?})

It is easy to see that the second specification is a downward simulation of the first, using as retrieve

relation the following:

R == [A; C
∣∣ s = ran l]

Our task is to build a tool that can automatically check this kind of refinement.
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3 Z2SAL

The original idea of translating Z into SAL specifications was due to Smith and Wildman [20], however,

our implementation has increasingly diverged from the original idea as optimization issues have been

tackled. In [9, 8] we have described the basics of our implementation, which provides a bespoke parser

and generator, written in Java, to translate from the LATEX encoding of Z into the SAL input language.

A Z specification written in the state-plus-operations style is translated into a SAL finite state au-

tomaton, following a template-driven strategy with a number of associated heuristics. The Z-style of

specification is preserved in this strategy, including postconditions that mix primed and unprimed vari-

ables arbitrarily, possibly asserting posterior states in non-constructive ways. We also preserve the Z

mathematical toolkit’s approach to the modelling of relations, functions and sequences as sets of tuples,

permitting interchangeable views of functions, sequences and relations as sets.

A specification in the SAL input language consists of a collection of separate input files, known

as contexts, in which all the declarations are placed. At least one context must contain the definition

of a module, an automaton to be simulated or checked. In our translation strategy, we use a master

context for the main Z specification and refer to other context files, which define the behaviour of data

types from the mathematical toolkit. The master context consists of a prelude, declaring types and

constants, followed by the main declaration of a SAL module, defining the finite state automata, which

implements the behaviour of the Z state and operation schemas. The states of the SAL translation are

created by aggregating the variables from the Z state schema, and the transitions are created by turning

the operation schemas into guarded commands, triggered by preconditions on input and local (state)

variables, and asserting postconditions on local and output variables.

The implementation of this basic strategy is presented in [8], here we recap on its salient points

on two examples. Consider the first specification above. Upon translation the specification becomes a

context, here called a.

The built-in types of Z are translated into finite subranges in SAL, according to a scheme described

in [8]. For example, N is translated to:

NAT : TYPE = [0..4];

The basic types of Z are converted into finite, enumerated sets in SAL, consisting of three sym-

bolic ground elements by default (but sometimes with an extra bottom element to deal with partiality of

functions etc.). For example, the given type T is translated to:

T : TYPE = {T__1, T__2, T__3};

Where the Z specification expresses predicates involving the cardinality of sets, the translator gen-

erates a bespoke counting-context for sets containing up to the maximum number of symbolic ground

elements generated for the set, as described in [8]. For this example, a count3 context is generated; the

instantiation for counting up to three elements of type T is named:

T__counter : CONTEXT = count3 {T; T__1, T__2, T__3};

The bounding constant max is an uninterpreted constant in Z, which we translate in SAL as a local

variable, which can in principle take any value in the NAT type’s range. This leads to some simulation

states where the limits of the system’s behaviour are reached quickly (e.g. if max = 0), but other states in

which all three elements may be added to the set s.

State and initialisation schemas. The state variables from the Z state schema are translated into

the local variables of the SAL module, which together constitute the aggregate states of the automaton.

The state predicate is treated as follows: we define a corresponding DEFINITION clause to represent the
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schema invariant. This is achieved by introducing an extra local boolean variable, called invariant__,

and declaring a formula for this in the definition sub-clause.

The Z initialization schema is translated in a non-constructive style into a guarded command in the

INITIALIZATION clause of the SAL module, with the invariant as part of the guard. Thus, for the above

example, we get the following translation.

State : MODULE =

BEGIN

LOCAL max : NAT

LOCAL s : set {T;} ! Set

INPUT p? : T

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (T__counter ! size?(s) <= max)

INITIALIZATION [

s = set {T;} ! empty AND

invariant__

-->

]

The challenge of the translation strategy is to deal efficiently with the large vocabulary of mathemati-

cal data types such as sets, products, relations, functions, sequences and bags. The translation tool has to

represent these efficiently in SAL, whilst preserving the expressiveness and flexibility of the Z language.

The basic approach is to define one or more context files for each data type in the toolkit. For

example, the set mathematical data type in Z is translated into a SAL context, which models the set as

a boolean-valued membership predicate on elements (following Bryant’s optimal encoding of sets for

translation into BDDs, [2, 3]). All other set operations are based on this encoding:

set {T : TYPE; } : CONTEXT = BEGIN

Set : TYPE = [T -> BOOLEAN];

empty : Set = LAMBDA (elem : T) : FALSE;

...

contains? (set : Set, elem : T) : BOOLEAN =

set(elem);

...

union(setA : Set, setB : Set) : Set =

LAMBDA (elem : T) : setA(elem) OR setB(elem);

...

END

Similar contexts are defined for the function, relation and sequence data types. Whereas Z sets

and relations are modelled as boolean maps, Z functions and sequences are modelled using SAL’s total

functions. We adopt a totalising strategy, introducing bottom elements for types that participate in the

domain or range of functions, or range of sequences.

Translating the Z operation schemas. Each operation schema in Z contributes in two ways to the

SAL translation. Firstly, an operation schema may optionally declare input, or output variables (or both),

which are extracted and declared in the prelude of the module clause, as SAL input and output variables.

Secondly, the predicate of each operation schema is converted into a guarded command in the transition

sub-clause, the last sub-clause in the module clause.
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The input and output variables are understood to exist in the local scope of each operation schema,

which has consequences in the translation. The SAL translation eventually substitutes the suffix ‘_’‘_’

for ‘!’ in the output variables, since the latter is reserved.

The computation performed by each operation schema is expressed as a guarded command in the

transition sub-clause. The name of the schema is used for the transition label, which aids readability.

The guarded command has the general syntactic form: label : guard --> assignments.

The guards for each transition include the primed invariant__’ as one of the conjuncts, which

asserts the state predicate in the posterior state of every transition. This, combined with the assertion of

the unprimed invariant__ in the initial state, ensures that the state predicate holds universally.

Finally, a catch-all ELSE branch is added to the guarded commands, to ensure that the transition rela-

tion is total (for soundness of the model checking). In practice, this allows model-checking to complete,

even if the simulation blocks at a given point. Admitting the ELSE-transition allows simulations to pass

through states in which the invariant__’ fails to hold. Normally, this does not matter, since we can

also ensure that LOCAL state variables are not modified, whenever the ELSE-transition is taken.

However, a new soundness problem emerged when admitting bottom values, as part of a totalising

strategy for partial types. Our previous practice was to assert that INPUT variables never took bottom

values, as part of the invariant. However, a loophole was discovered that allowed the system to pass

through states in which the invariant did not hold (due to selecting bottom values for inputs) and then

recover in the following cycle, in which the invariant held once more, but undefined values had been

accepted as inputs from the previous cycle. Ideally, we would have liked to rule out invalid inputs in the

ELSE-transition, but the SAL tools do not permit this.

Instead, we now assert both the primed invariant__’ and unprimed invariant__ in the guard to

each transition, so closing the loophole. In practice, simulations can still pass through states where the

invariant fails to hold, but they are then forced to pass through ELSE-transitions repeatedly, until some

valid input is selected. The new translation is once again sound, but simulations may have more latent

cycles. Thus for the transition component of our example we have the following:

TRANSITION [

AEnter :

T__counter ! size?(s) < max AND

NOT set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! insert(s, p?) AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE}

[]

ALeave :

set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! remove(s, p?) AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE}

[]

ELSE --> s’ = s
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]

A similar translation is produced for C, this time producing a SAL input file using contexts defined

to model Z sequences; see Appendix A.

4 Model-checking a refinement

A series of approaches to model-checking a refinement is described in [21, 22, 10] by Smith and Derrick

with varying degrees of sophistication. They all work by taking two specifications, A and C say, and

building a combined system M which encodes the behaviour of both in such a way that it is possible

to write CTL properties to check the various aspects that are needed for simulation conditions to hold.

There are variations to this approach as follows.

1. Three different combinations are formed, Minit, Mapp, Mcorr, one for each of the three downward

simulation conditions (and a similar methodology for upward simulations);

2. One combination is formed, M, encoding all three properties to be checked in one system.

These two approaches need the candidate retrieve relation to be passed to the tool, thus a final ap-

proach is

• Additionally have the model-checker search to find if such a retrieve relation exists.

For efficiency reasons (and here to aid readability) we describe our implementation of the first ap-

proach, again restricting ourselves for brevity to downward simulations. Thus in the approach we de-

scribe, which is an abbreviated discussion of [22], here three systems are formed and if all three checks

are satisfied then the concrete system is indeed a downward simulation of the abstract system with the

chosen retrieve relation.

To illustrate the approach, we use the example specified above, noting that although for readability

we describe it as a combination of Z schemas, in our implementation the combination acts at the level

of combining SAL modules. We will combine the two specifications into one system so that we can

encode the simulation conditions on the combined system, thus the combined specification includes all

the abstract and concrete variables. The methodology assumes the state variables of the abstract and

concrete systems are disjoint (as in fact they are in our example), but if not, then renaming is applied first

to achieve it.

Initialisation. The simulation condition on initial states requires that for each concrete initial state,

we are able to find an abstract initial state related by the retrieve relation R. To encode this condition we

initialise Minit so that the concrete part of the state is initialised. Hence in our example, the combined

system’s state and initialisation are as follows:

Minit

s : PT

l : iseq T

#s ≤ max

#l ≤ max

Initinit

M′
init

l′ = 〈〉

To check whether an abstract initial state exists that is related to any particuar concrete initial state,

we use just one operation (normally called InitAinit) which changes the abstract part of the state to an

initial value and leaves the concrete part unchanged. In our example this operation is then:



44 Building a refinement checker for Z

[∆Minit

∣∣ s′ =∅ ∧ l′ = l]

For any non-trivial specification InitAinit is total, thus we do not need the ”catch-all” ELSE branch in

the SAL model-checker which is needed for non-total systems as described above. Then, with a system

with one operation the required initialisation condition holds if the operation can be performed such that

the resulting abstract and concrete parts of the state are related by R. That is, we require that there exists

a next state such that s = ran l, i.e.:

EX (s = ran l)

Applicability. Applicability conditions in refinements check the consistency of the operations’ pre-

conditions. To encode this as a temporal formula we introduce a variable ev to the combined state to

denote the name of the last operation that occurred, and, as in [22], we use a different font for the val-

ues of type ev. Since we will need an additional operation to ensure totality, the combined state for an

applicability check in our example will be the following:

Mapp

s : PT

l : iseq T

ev : {AEnter,CEnter,ALeave,CLeave,Choose}

#s ≤ max

#l ≤ max

The applicability condition requires that if abstract and concrete states are related by the retrieve

relation, then the concrete operation must be applicable whenever the abstract one was. For the sake

of efficiency we initialise to states which are already related by the retrieve relation, that is, here of the

form1:

Initapp = [M′
app

∣∣ s′ = ran l′]

Operations are then specified, one for each abstract or concrete operation, each shadowing the be-

haviour of the original operation, and only specifying the values of that operation (eg AEnterapp defines

values for variables that originate from the abstract specification). In addition, we introduce a Choose

operation.

AEnterapp

∆Mapp

p? : T

#s < max

p? 6∈ s

s′ = s∪{p?}
ev′ = AEnter

ALeaveapp

∆Mapp

p? : T

p? ∈ s

s′ = s\{p?}
ev′ = ALeave

1The value of ev can be left underspecified.
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CEnterapp

∆Mapp

p? : T

#l < max

p? 6∈ ran l

l′ = la 〈p?〉
ev′ = CEnter

CLeaveapp

∆Mapp

p? : T

p? ∈ ran l

l′ = l ↾ (T \{p?})
ev′ = CLeave

Chooseapp =̂ [∆Mapp | ev′ = Choose]

The applicability check can now be written in CTL as follows.

(EX (ev = AEnter)⇒ EX (ev = CEnter))∧ (EX (ev = ALeave)⇒ EX (ev = CLeave))

Correctness. A similar methodology is applied to check the correctness condition, and here we

use the same combined state and initialisation as used for applicability, as well as the same totalisation

Choose:

Mcorr =̂ Mapp

Initcorr =̂ Initapp

Choosecorr =̂ Chooseapp

The downward simulation correctness condition requires that any after-state of a concrete operation

is related by the retrieve relation to an after-state of the abstract operation. To encode this correctly one

needs to ensure that each operation in the combined state does not alter variables from the portion of

state it is not representing. Thus we have operations of the form:

AOpcorr =̂ [AOpapp | l′ = l]
COpcorr =̂ [COpapp | s′ = s]

This allows us to perform the operations COpcorr and AOpcorr in sequence so that the abstract part

of the final state reached is identical to that which could have been reached by performing only AOpcorr,

and the concrete part is identical to that which could have been reached by performing only COpcorr. The

correctness condition is then:

EX (ev = AEnter)⇒ AX (ev = CEnter⇒ EX (ev = AEnter ∧ R))
∧

EX (ev = ALeave)⇒ AX (ev = CLeave⇒ EX (ev = ALeave ∧ R))

Implementation in SAL. The above is described in terms of combinations of Z specifications, al-

though, of course, it is implemented in terms of combining SAL modules in our tool-suite.

The process of combining the two LATEX Z specifications plus retrieve relation into a single SAL

specification in order to check the downward simulation conditions was achieved using an extension to

our Z to SAL parser. When translating a single Z specification to SAL our compiler first parses the Z, then

transforms it into an internal SAL representation and finally the SAL file is generated. In extending the

tool-set to combine two specifications in the manner described above the major modification was to the
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middle phase, the transformation from Z to SAL. Nevertheless the process of parsing two specifications

sequentially required some modification for a number of issues.

For example, declarations in the abstract and concrete state schemas need to be checked to ensure

that they contain distinct identifiers, but where types and constants occur in both specifications they

have to be identical to cope with SAL’s strict type checking. Neither of these problems caused much

difficulty since, e.g., there already was a mechanism to ensure that a variable name used in two different

Z operations did not lead to a conflict in the SAL translations (where all variables had the same scope).

In our simple, single specification, translation this is achieved by prefixing the variable name by the

name of its transition wherever an ambiguous name is detected and the same mechanism was used when

producing a single combined specification. The only modification was that variables from axiomatic

definitions were prefixed by the specification name rather than the transition name.

Treating types declared in two different specifications as the same was slightly more complicated

as types from the abstract specification occurring in the concrete had to be identified. In our single

translation types are canonical, for reasons explained in [8] and this had to be maintained in the combined

translation without the parser rejecting a concrete specification which contains an apparently second

declaration of a type which has been declared in the abstract specification. This problem also occurred

with identical constants in both specifications.

Having parsed the two specifications, the retrieve relation is read in and parsed as a single Z operation

with everything from both the abstract and concrete specifications in scope.

The process of transforming a single Z specification into SAL consists of fixing the finite ranges of

all the types, eliminating redundant predicates, giving initial values to all the constants and identifying

any named types that would have to be generated in SAL. In transforming two specifications into one

SAL specification the finite ranges were fixed to the widest required by either specification but apart

from that the process is essentially simple. The two sets of initial declarations were combined and the

two lists of operation schemas in Z became a single list of transitions in SAL. The resulting structure is

that of our internal representation of any SAL specification and a SAL text file could be generated from

it in the standard way.

The result produced by our tool-kit of the two SAL modules for the correctness condition is given in

Appendix B. It is then a trivial matter to check the required theorem on it.

5 A further example

A further example, which provides a comparative analysis with the manual approach to refinement check-

ing, is given by the following (now standard) example.

The Marlowe box office allows customers to book tickets in advance using the Book operation –

mpool is the set of tickets, and if a ticket is available (mpool 6= ∅) then one is allocated then and there.

When the customer arrives, operation Arrive presents this ticket. Ticket is the set of all tickets, and a free

type adds a possibly null ticket, and tkt models which tickets have been allocated.

[Ticket] MTicket ::= null
∣∣ ticket〈〈Ticket〉〉

Marlowe

mpool : PTicket

tkt : MTicket

MInit

Marlowe

tkt = null
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MBook

∆Marlowe

tkt = null

mpool 6=∅

tkt′ 6= null

ticket−1(tkt′) ∈ mpool

mpool′ = mpool\ {ticket−1(tkt′)}

MArrive

∆Marlowe

t! : Ticket

tkt 6= null

tkt′ = null

t! = ticket−1(tkt)

mpool′ = mpool

In an alternative description - the Kurbel - customers still book tickets in advance. However, now if

there is an available ticket then this is simply recorded by the operation Book provided the customer has

not already booked. Only when the customer actually arrives at the box office, is the ticket allocated by

Arrive. kpool is the pool of tickets and bkd denotes whether a ticket has been booked.

Booked ::= yes
∣∣ no [Ticket]

Kurbel

kpool : PTicket

bkd : Booked

KInit

Kurbel

bkd = no

KBook

∆Kurbel

bkd = no

kpool 6=∅

bkd′ = yes

kpool′ = kpool

KArrive

∆Kurbel

t! : Ticket

bkd = yes

kpool 6=∅

bkd′ = no

t! ∈ kpool

kpool′ = kpool\ {t!}

The Marlowe specification is a downward simulation of the Kurbel (and in fact Kurbel is an upward

simulation of Marlowe). The retrieve relation linking the two that one is tempted to write down is the

following:

R

Marlowe

Kurbel

bkd = no ⇒ tkt = null ∧ kpool = mpool

bkd = yes ⇒ tkt 6= null ∧ kpool = (mpool∪{ticket−1(tkt)})

In [22] a hand translation of these specifications into SAL was performed, followed by a merging into

a single SAL specification - also performed by hand. A natural question to ask therefore is to what

extent our automatic translation and combination is comparable with the manual process. The above

candidate retrieve relation was used in the manual process, which revealed a failure to pass the necessary
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refinement conditions - both specification and retrieve relation needing adjustment before the Marlowe

was shown to be a valid downward simulation of the Kurbel.

It is interesting to note that the results of the automatic translation were broadly comparable to the

manual one, and in fact due to our optimizations show slight reduction in state space size (see table be-

low). The automatic combination essentially identical to the manual. The latter is to be expected - the

combination is essentially simple once the specifications have been converted into SAL.

Step Manual Auto

0 1344 840

1 3360 6072

2 8544 6072

3 8544 6072

4 8544 6072

6 Conclusion

This work contributes on one hand to the strand of work on providing tool support for Z, and on the other

hand to automatic refinement checking.

Recent work on providing tool support for Z includes the CZT (Community Z Tools) project [16],

our own work [9], as well as related work such as ProZ [19], which adapts the ProB [15] tool for the Z

notation.

Work on automatic refinement checking includes that of Bolton who has used Alloy to verify data

refinements in Z [1]. There have also been a number of encoding of subsets of Z-based languages in the

CSP model checker FDR [11, 17, 14], which checks that refinement holds between two specifications by

comparing the failures/divergences semantics of the specifications; and simulation-based refinement can

be encoded as a failures/divergences check [7, 13, 12].

Clearly there is much to be done in terms of further work here, not least some performance charac-

terisations of when such an approach produces feasible state spaces.

Acknowledgements: This work was done as part of collaborative work with Graeme Smith and Luke

Wildman of the University of Queensland. Tim Miller also gave valuable advice on the current CZT

tools.
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Appendix A

Here is the SAL translation of the concrete specification from Section 2

c : CONTEXT = BEGIN

NAT : TYPE = [0..4];

T : TYPE = {T__1, T__2, T__3, T__B};
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State : MODULE =

BEGIN

LOCAL max : NAT

LOCAL l : sequence {T; T__B, 3} ! Sequence

INPUT p? : T

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ = (sequence {T; T__B, 3} ! injective?(l) AND

sequence {T; T__B, 3} ! valid?(l) AND

p? /= T__B AND

sequence {T; T__B, 3} ! size?(l) <= max)

INITIALIZATION [

l = sequence {T; T__B, 3} ! empty AND invariant__

-->

]

TRANSITION [

CEnter :

sequence {T; T__B, 3} ! size?(l) < max AND

NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! append(l, p?) AND

invariant__ AND

invariant__’

-->

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}

[]

CLeave :

set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! remove(l,p?) AND

invariant__ AND

invariant__’

-->

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE}

[]

ELSE --> l’ = l

]

END;

END

Appendix B

The result of automatically combining the two SAL modules from Z specifications given in Section 2:

r2corr : CONTEXT = BEGIN

NAT : TYPE = [0..5];

T : TYPE = {T__1, T__2, T__3, T__B};

EVENT__ : TYPE = {AEnter, ALeave, CEnter, CLeave, Choose__};

T__counter : CONTEXT = count4 {T; T__1, T__2, T__3, T__B};

State : MODULE =

BEGIN

LOCAL max : NAT
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LOCAL max : NAT

LOCAL s : set {T;} ! Set

INPUT p? : T

LOCAL l : sequence {T; T__B, 3} ! Sequence

LOCAL ev__ : EVENT__

LOCAL invariant__ : BOOLEAN

DEFINITION

invariant__ =

(T__counter ! size?(s) <= max AND

sequence {T; T__B, 3} ! injective?(l) AND

p? /= T__B AND

sequence {T; T__B, 3} ! valid?(l) AND

sequence {T; T__B, 3} ! size?(l) <= max)

INITIALIZATION [

(s = sequence {T; T__B, 3} ! range(l))

-->

]

TRANSITION [

AEnter :

T__counter ! size?(s) < max AND

NOT set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! insert(s, p?) AND

ev__’ = AEnter AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

ALeave :

set {T;} ! contains?(s, p?) AND

s’ = set {T;} ! remove(s, p?) AND

ev__’ = ALeave AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

CEnter :

sequence {T; T__B, 3} ! size?(l) < max AND

NOT set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! append(l, p?) AND

ev__’ = CEnter AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}
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[]

CLeave :

set {T;} ! contains?(sequence {T; T__B, 3} ! range(l), p?) AND

l’ = sequence {T; T__B, 3} ! remove(l,p?) AND

ev__’ = CLeave AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

[]

Choose__ :

ev__’ = Choose__ AND

invariant__ AND

invariant__’

-->

s’ IN {x : set {T;} ! Set | TRUE};

l’ IN {x : sequence {T; T__B, 3} ! Sequence | TRUE};

ev__’ IN {x : EVENT__ | TRUE}

]

END;

END


	1 Introduction
	2 Refinement
	3 Z2SAL
	4 Model-checking a refinement
	5 A further example
	6 Conclusion

