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ID2image: Leakage of non-ID information

into face descriptors and inversion

from descriptors to images

Mingrui Li , William A. P. Smith , and Patrik Huber

University of York, York YO10 5DD, UK
{ml1652,william.smith,patrik.huber}@york.ac.uk

Abstract. Embedding a face image to a descriptor vector using a deep
CNN is a widely used technique in face recognition. Via several possi-
ble training strategies, such embeddings are supposed to capture only
identity information. Information about the environment (such as back-
ground and lighting) or changeable aspects of the face (such as pose,
expression, presence of glasses, hat etc.) should be discarded since they
are not useful for recognition. In this paper, we present a surprising result
that this is not the case. We show that non-ID attributes, as well as land-
mark positions and the image histogram can be recovered from the ID
embedding of state-of-the-art face embedding networks (VGGFace2 and
ArcFace). In fact, these non-ID attributes can be predicted from ID em-
beddings with similar accuracy to a prediction from the original image.
Going further, we present an optimisation strategy that uses a genera-
tive model (specifically StyleGAN2 for faces) to recover images from an
ID embedding. We show photorealistic inversion from ID embedding to
face image in which not only is the ID realistically reconstructed but the
pose, lighting and background/apparel to some extent as well.

1 Introduction

State-of-the-art face recognition relies on the use of deep neural networks (usu-
ally CNNs) to embed a face image to an identity vector [6,26,23]. A measure of
distance in this embedding space is used to represent dissimilarity in identity.
The goal of training such networks is to minimise the within-class scatter while
maximising the between-class scatter for all identities. The former goal necessi-
tates that the embedding should depend only on the identity of the person in the
image. Environmental conditions such as the lighting, background and properties
of the camera as well as changeable aspects of the face such as pose, expression
and the presence of accessories should not affect this embedding (i.e. should not
introduce within-class scatter). In other words, the embedding network should
learn invariance to these factors. In this paper, we explore a number of unan-
swered questions about some of the properties of these embeddings.

ID to image inversion First, we ask whether it is possible to create an
image from an ID vector that correctly recreates the identity of the person.
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Conventional text-based passwords are usually passed through a cryptographic
hash function for storage [3]. Since these are pseudo one-way functions, it is ex-
tremely difficult to invert an encrypted password to cleartext, with brute force
or dictionary attacks the only options. For password verification, only the en-
crypted version need be stored and a leak is not critical due to the difficulty of
inversion. It is tempting to assume that ID embeddings from face images pos-
sess similar characteristics. For example, the Face ID facial recognition system
developed by Apple Inc. makes this argument in its advertising to reassure users:

Face ID doesn’t store an image of your face. Instead of storing an image,

Face ID saves a mathematical value created from the characteristics of

your features. It’s impossible for anyone else to recreate your likeness

from this. [14]

However, since the embedding of a face image to an ID vector is a noisy process,
it cannot be assumed that an identical embedding will arise from any image of
the same person’s face. Therefore, the ID vector cannot be passed through a hash
function for storage since the hashed value will change dramatically with small
changes in the ID vector. From a security perspective, this means that raw ID
vectors must be stored for future identification. From an inversion perspective, it
means that similar images map to similar ID vectors. Also, embeddings based on
deep neural networks are computed via a differentiable function. This means that
it is possible to optimise an image representation to minimise an ID vector loss,
thereby reconstructing an image with the desired identity (subject to suitable
regularisation, which we achieve via a generative model).

Non-ID information leakage Second, we ask whether ID embeddings truly
contain only ID-related information. The engineering of training datasets, net-
work architectures and loss functions has been widely studied in the face recog-
nition literature in order to satisfy the goal of invariance to non-ID factors in
the input image. Datasets are created specifically to introduce lots of variation
in these non-ID factors. Then, by designing a loss function that encourages the
same ID to embed to the same point, invariance to these factors is hopefully
learnt. In this paper, we investigate to what extent this has been achieved. In
particular, we ask: how well do modern face embedding networks successfully
remove non-ID factors when embedding a face image?

Inversion including non-ID factors Finally, we connect these two lines of
investigation by asking whether it is possible to recover an image from an ID
vector that not only captures the correct face identity but also non-ID char-
acteristics of the actual image that was used to compute the ID vector. The
possibility of ID vector to image inversion raises privacy and security questions.

For the reasons mentioned above, ID descriptor vectors cannot be stored se-
curely hashed. This means that any third party with whom identity must be
verified is receiving an encoding of a face image from which an image can be
recovered. Where non-ID information leaks into this representation, it means
the image itself can potentially be recovered. This could, for example, leak un-
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intended information in the background of the image or maybe an unflattering
image that the user would not wish to be made public.

2 Related work

GAN inversion General adversarial networks (GANs) have become a popular
tool in computer vision and machine learning. In 2019 and 2020, Karras et
al. [15,16] set the benchmark with StyleGAN and StyleGAN2, able to create
photo-realistic face images at high resolution. A defining feature of StyleGAN
is in its generator architecture. Instead of feeding an input latent code z ∈ Z
only to the beginning of the network, a mapping network first transforms it to
an intermediate latent code w ∈ W . Affine transforms then produce styles that
control the layers of a synthesis network. In addition to that, stochastic variation
is facilitated by providing random noise maps to the synthesis network.

Recent work has shown that GANs can encode a rich set of semantics in
their latent space. In addition to generating images, recently, attempts have
been made to invert the GAN generating process from the image back to latent
space for the purpose of image manipulation or analysis, which is widely known
as GAN inversion. To accomplish that, most existing works either learn an extra
encoder or regressor separate from the GAN (e.g. [5,25]), or directly optimise
the latent code to fit a target image (e.g. [32]), or a combination of the two
(i.e. initialising the optimisation with the result from a regressor, e.g. [34]).

For StyleGAN specifically, recently, several works have shown that it is pos-
sible to retrieve the latent code w of a target image [27,28]. The works show
that inverting to the latent space W is easier than to Z. However, accurately
reconstructing a target image is still an ongoing challenge. In another recent
work, Abdal et al. [1,2] propose a framework to project an image into the latent
space W+, where W+ contains separates latent vectors for the specific scales
of StyleGAN, hence effectively reconstructing different levels of features in the
target image. Finally, Yin et al. [33] introduce a deep-inversion method that in-
verts a pretrained neural network to generate synthesised class-conditional input
images for data-free knowledge transfer.

What all these methods have in common is that the inversion they do usually
means going from an image to a latent code. Much different to that, we inves-
tigate ID-descriptor to image inversion, which uses StyleGAN as a generative
model (i.e. ID→StyleGAN code→image).

ID descriptor information & inversion In a seminal work, in 2015, Ma-
hendran and Vedaldi [21] set out to analyse the visual information contained
in both shallow (e.g. HOG) and deep feature representations, to investigate the
question: given an encoding of an image, to which extent is it possible to recon-

struct the image itself. They propose an optimisation method to invert repre-
sentations using gradient descent. Among their findings are that networks retain
rich information even at deep levels and that a progressively more invariant and
abstract notion of the image content is formed in the network. As face identity
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descriptors usually are made up of the final layer of a deep network, it would
therefore be the most invariant and abstract representation.

Few works so far have investigated the inversion of a face descriptor back to a
face image. Genova et al. [13] train an image to 3DMM parameter regressor in an
unsupervised manner, where the key idea is an ID loss between ID descriptor of
the original image and the ID descriptor of a 3DMM image rendered with a dif-
ferentiable renderer. The only trainable part of their system is the ID descriptor

to 3DMM parameter regressor. This constitutes an ID inversion network - but
they do not reconstruct the image itself, so no non-ID information is recovered.

Following on from the general idea of an ID loss, there are a number of
works that employ an identity loss in 3D face model fitting, for example GAN-
FIT [12]. Cole et al. [7] also perform an ID-only inversion for the purposes of
face frontalisation. They assume that the face encoder successfully removes all
non-ID information and train to reconstruct only frontal image landmarks and
textures. Since they do not use a GAN, their results are not photorealistic.
Some recent works [24,10] have investigated a so-called black-box attack, which
is whether given only an ID descriptor, and no access to an attacked model, one
could reconstruct an image of the face, and they have presented encouraging
(technically) as well as concerning (from a privacy perspective) results.

In terms of non-ID information contained in face descriptors, in an early work,
Kumar et al. [18] came to the perhaps surprising result that using a so-called
inverse crop, where the face is cut out of an image, leads to surprisingly high
face recognition rates on LFW. It should be noted though that these inverse
crops do contain hair and part of ears/chin, and that LFW is a fairly simple
dataset (recognition rates achieved are over 99%, even a decade ago) - so it is
largely unexplored, if any background or other non-ID information is present in
face descriptors, especially in today’s state-of-the-art networks. To the best of
our knowledge, no work so far has investigated if any non-ID properties can be
recovered from identity descriptors.

Privacy leakage & Adversarial learning Past studies have shown that face
recognition networks encode soft biometrics (e.g. age, race and gender) while
training [11]. This indicates that face descriptors are at risk of privacy leaks.
Privacy leakage in face representation is a vital issue, as it can raise several con-
cerns associated with the unauthorised extraction of an individual’s information.
More recent studies have shown that the extraction of such soft biometric data
can improve the performance of facial recognition systems [22,9].

Inspired by GANs, several adversarial learning methods have been proposed
that remove or mitigate sensitive information stored in the training data or
learn somehow obfuscated features. Alvi et al. [4] are inspired by domain and
task adaptation methods, they propose a joint learning and unlearning method
to remove bias from neural network embedding. To unlearn the bias, the authors
adversarially minimise the classification loss and confusion loss. The confusion
loss is computed by calculating the cross-entropy between classifier output and
uniform distribution. Li et al. [19] deployed several neural networks to simu-
late an attacker that attempts to reconstruct entire raw data. An obfuscator is
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Fig. 1. Non-ID attribute regression via an ID bottleneck. Only the green component
is trained: an MLP that maps an ID vector to the appropriate attribute (such as
expression, landmarks, image histogram etc). The labels either come from a pretrained
(and fixed) attribute estimation network that takes an image as input, they are provided
as manually assigned labels or they are computed directly from the image.

trained to hide privacy-related information, which ensures that the attacker can-
not train using features provided by the obfuscator to accurately infer privacy
attributes or reconstruct the raw data. Dhar et al. [9] propose to adversarially
minimise gender predictability to reduce gender bias from pretrained face de-
scriptors. They show that gender bias in face recognition is correlated with the
power of face descriptors to predict gender. The face descriptors with low gender
predictability generally demonstrated lower gender bias in face verification.

3 Non-ID attribute prediction from ID

We begin by exploring to what extent we are able to estimate non-ID “attributes”
from an ID descriptor provided by a pretrained face encoder CNN. We use
“attribute” here in very general terms, including image-based attributes such as
landmark positions and colour histograms and non-ID face attributes such as
the presence or absence of a smile, glasses or hat. For each attribute, we train
an MLP that maps from an ID descriptor to the target attribute. All of our
MLPs are trained on CelebA [20], which includes 202,599 celebrity face images
with 40 binary attributes. We aligned and cropped the original CelebA to a
VGGFace2 compatible version and scaled all images to resolution 224. We train
in a supervised fashion using either labelled real data or synthetically generated
data. In all cases, we embed images i to an ID descriptor, d = VGG(i) using
the VGGface2 face encoder [6], where d ∈ R

2048. Fig. 1 illustrates our proposed
Non-ID attribute regression framework.

3.1 Discrete Binary Attributes

We begin by estimating discrete binary attributes. These have been manually
labelled as part of the CelebA [20] dataset. Then we train an MLP to classify



6 M. Li et al.

Attribute Landmarks Histogram
Smiling Wearing_Hat Eyeglasses mean EMD

From ID (VGGFace2 [6]) 91.0% 99.0% 99.7% 9.3% 2.68
From ID (ArcFace [8]) 81.7% 96.7% 96.7% 7.3% 2.45
From image [20] 92% 99% 99% 8.2% 0.0
Baseline 50.4% 96.7% 94.0% 11% 2.97

Table 1. Quantitative results for attribute prediction (discrete binary attributes, land-
marks and image histogram) from ID vectors (row 1 and 2) and images (row 3). In row
4 we show baseline performance in which we simply always predict the most common
class, the mean landmarks or the mean histogram respectively. For attribute prediction,
higher is better, and for the landmark and histogram prediction, lower is better.

the binary class using Binary Cross Entropy loss, Adam with learning rate 10−3,
for 20 epochs. We train separate networks for the smiling, glasses and wearing
hat attributes. Our MLP consists of 3 fully connected layers with 256 hidden
neurons and a sigmoid output layer.

3.2 Histogram regression

In this section, we examine whether background colour and lighting informa-
tion can be restored from ID by predicting the histogram of the RGB channel.
Histograms of RGB intensities provide a global summary of an image that encap-
sulates not only ID but also environment-related features such as background,
camera settings and lighting. For each image, we compute a ground truth hard
histogram and use this as the label for training. Here, the three colour values
are binned into fixed width bins, with one histogram per colour channel. We
found that a very small MLP provides best performance for the task of image
histogram regression from ID vector. We use 2 fully connected layers with ReLU
activation and 8 neurons per layer. We apply softmax to the output layer such
that the output represents a normalised histogram. We use N = 10 bins. We
train this network using mean squared error loss, Adam with learning rate of
10−6, and batch size 32, for 20 epochs.

3.3 Landmark regression

Finally, we attempt to directly regress the coordinates of 68 face landmarks
from the ID vector. We apply the dlib landmark detector [17] to all images in
the CelebA dataset [20]. We use these as pseudo ground truth labels for our
regressor. We use a three-layer MLP to predict landmarks from ID vector with
256 neurons per hidden layer and 136 outputs for the 2D coordinates of each
landmark. For comparison, we also train a more conventional image to landmark
regressor using a CNN. We use a simple architecture comprising 5 convolutional
layers followed by 2 fully connected layers. The activation function is ReLUs.
Both image to landmark and ID vector to landmark networks are trained using
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Fig. 2. Examples of correctly (left) and incorrectly (right) classified samples. We show
the original images but note that the classification is done only on the ID vectors

derived from these images.

mean squared error loss and the SGD optimiser with learning rate 10−3, batch
size 16, and for 150 epochs.

3.4 Results

We now evaluate our prediction of non-ID attributes from ID vectors, as provided
by the VGGFace2 network. We show quantitative results for all attributes in
Table 1. The evaluation images we used are 15k test images from CelebA with
the remaining 188k images for training. To validate our results, we repeat the
experiments with ID vectors generated by the ArcFace network.

For discrete binary attributes, we show the percentage classified correctly.
Our result regressed from the ID vector is shown in the first and second rows.
This shows that non-ID leakage exists in different networks. For comparison in
the third row we show the result from [20] computed from the original image. In
the fourth row, we show the baseline performance obtained by always guessing
the more common class for the binary attribute prediction, the mean landmarks
for the landmark prediction, and the mean histogram for the histogram predic-
tion. With the exception of the wearing hat attribute for the ArcFace embedding,
we can see that we significantly outperform that baseline and, remarkably, match
or even exceed the performance of an image-based method despite only having
access to an ID vector that should be independent of these non-ID attributes. In
Fig. 2 we show some examples of correctly and incorrectly classified samples. It
is interesting to note that quite subtle smiles are encoded in the ID vectors such
that we correctly classify them and, even in the case of the false positives shown,
there are still smile-like features in the wrinkles around the mouth. Similarly,
the false positives for wearing hat are in fact wearing headgear.

We now evaluate image-based attributes. In Table 1 we show quantitative re-
sults for landmark prediction in the fifth column and histogram prediction in the
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0 255 0 255 0 255 0 255 0 255

Fig. 3. Qualitative results for histogram and landmark regression. row 1: input image
with ground truth landmarks, row 2: landmarks regressed from ID vector, row 3: ground
truth image histograms (dotted) and histograms regressed from ID vector (solid).

sixth column. For the landmark error, we show Euclidean distance averaged over
landmarks expressed as a percentage of the interocular distance. For histogram
error, we show the Earth Mover’s distance to ground truth. Our prediction from
ID vector outperforms the baseline and is only marginally worse than prediction
from images (in the case of landmarks). In the case of histogram, the prediction
from images is exact. In Fig. 3 we show qualitative results for landmark and
histogram estimation from ID vectors. In the first row we show the original im-
age with ground truth (dlib) landmarks overlaid. In the second row we show the
original images with the landmarks regressed from the ID vector overlaid. The
landmarks are qualitatively convincing and clearly reconstruct pose - an entirely
non-ID related property. In the third row we show the ground truth (dotted
lines) and estimated (solid lines) RGB image histograms.

4 Image from ID with a generative model

We now investigate if, and how well, an image of a person can be recovered from
an ID descriptor. Having shown that non-ID attributes can be estimated from a
face descriptor, we also explore to what extent the original image itself, including
non-ID information, can be reconstructed from an ID descriptor.

4.1 ID-only inversion

We begin by attempting to create an image that is recognisably the same person
as the original but not necessarily similar to the original image. We pose this
as an optimisation problem and use a generative face model to constrain the
problem. Specifically, we restrict the solution to the space of images represented
by the StyleGAN2 face model [16]. We denote by i = g(z) the face image that
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Fig. 4. Reconstructing an image from an ID descriptor, including preservation of non-
ID properties (landmarks and image histogram). We assume we only have access to
the ID descriptor of a real image. We initialise the optimisation using a regression
network to predict GAN latent code from ID descriptor. We then iteratively optimise
the GAN latent code in order to produce an image that matches the ID, landmarks
and histogram predicted from the target ID descriptor using pretrained networks.

arises via the generator from the latent code z. Suppose we are given a target
VGG descriptor, d, then we wish to solve the following optimisation problem:

min
z

LID(z), where LID(z) = ‖VGG(g(z))− d‖
2

2
. (1)

In practice, this optimisation is prone to convergence on local minima and sensi-
tive to initialisation. For this reason, we train a network that we use for initial-
isation that regresses a StyleGAN2 latent code directly from an ID descriptor.
Our network comprises an MLP with 3 hidden layers with ReLU activation,
2,048 units per hidden layer. We train this network using synthetic data ob-
tained by randomly sampling images from StyleGAN2, passing these through
the face encoder network and then using the resulting ID descriptor and random
GAN latent code as an input/output training pair. We subsequently optimise
(1) using the Adam optimiser with a learning rate 0.001.

4.2 Image reconstruction

The results of the above process successfully produce an image with the correct
identity. However, they often fail to reconstruct certain features of the original
image, for example the pose and expression of the face, the lighting in the image,
the background and the presence of apparel. We have shown that, with suitable
supervision and training, it is possible to extract some of these properties from
weak signals that find their way into the ID descriptor. Once reconstructed, we
now show that these can be used to provide additional, direct supervision to
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Fig. 5. Direct regression versus ID loss optimisation. Top row: input images. Middle
row: output of ID to StyleGAN2 latent code regression network. Bottom row: after
subsequent optimisation of StyleGAN2 latent code to minimise LID.

the inversion problem. Essentially, we ask that not only the ID be reconstructed
but that additional, non-ID, features estimated from the ID descriptor also be
reconstructed (specifically landmarks and image histogram).

Landmarks From the target ID descriptor, d, we use the pretrained regression
network described in Section 3.3 to compute approximate target landmarks,
fID→landmarks(d). During reconstruction, we compare the target landmarks with
those extracted from the current image reconstruction using the pretrained image
to landmark regression CNN, fimage→landmarks(i):

Llandmarks(z) = ‖fimage→landmarks(g(z))− fID→landmarks(d)‖
2

2
. (2)

Soft histogram For the histogram reconstruction loss, we follow a similar
strategy. We use the pretrained regression network described in Section 3.2
to compute an approximate target histogram, fID→histogram(d). The exact his-
togram of the reconstructed image is discrete and therefore not differentiable. For
this reason, we use a differentiable soft approximation of the image histogram.

The idea is to use sigmoid to softly assign values to bins. Consider a vector
x ∈ R

M of M values. We wish to compute a soft histogram H(x) ∈ R
N which

softly assigns all values in x to N ∈ Z
+ histogram bins. We specify minimum and

maximum values (we use min = 0 and max = 255 for image histograms) and the
bin width by δ = max−min

N
. The ith bin centre is given by ci = min+ δ(i− 0.5).

Then, the value of the kth bin in H is:

H(x)k =

M∑

j=1

f(xj − ck + δ/2)− f(xj − ck − δ/2), (3)
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Target ID ID + ID + Landmark
Landmark + Histogram

Fig. 6. Ablation study. We show inversion results with only ID loss, ID and landmark
losses and all three proposed losses.

where f is an assignment function. In a hard (non-differentiable) histogram, f
is the Heaviside step function. In our soft histogram, we use sigmoid, f(x) =
Sigmoid(σz), with parameter σ which controls the softness of the bins. When
σ is very large, the soft histogram approaches the hard histogram but the gra-
dient vanishes, while small σ yields a very soft histogram that badly approx-
imates the true histogram. We use σ = 1.85 in our experiments. To compute
a soft image histogram, we apply (3) to all values in one colour channel of
an image, yielding three histograms. Now we can write the histogram loss as:
Lhistogram(z) = ‖H(g(z))− fID→histogram(d)‖

2

2
.

Image reconstruction We now pose the image reconstruction problem as
optimising the weighted sum of the ID, landmark and histogram losses:

min
z

w1LID(z) + w2Llandmarks(z) + w3Lhistogram(z), (4)

where we use w1 = 1, w2 = 0.0006 and w3 = 0.01 in our experiments. This
process is visualised in Fig. 4.
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Different lighting Different expression Different pose

Real image

Reconstructed
from ID

Fig. 7. Reconstruction of the same person twice under very different light-
ing/pose/expression. For each case, we show the original images for the same person
(i.e. same ID) in the first row and the corresponding reconstructions in the second row.

4.3 Qualitative results

We now present results of inversion from ID to image. We begin with an ablation
study of ID-only inversion in Fig. 5. The results show that ID loss optimisation
significantly improves over direct regression. The identities in the bottom row
are clearly a better visual match to those in the top row. We then follow with
an ablation study of our full inversion pipeline in Fig. 6. We show input images
in the first column and results with various combinations of losses in columns
2-4. We initialise with our ID to GAN latent code regressor. Then we iteratively
optimise only ID loss (column 2 - as in Section 4.1), ID loss and landmark
loss (column 3) and all of ID, histogram and landmark losses (column 4). The
result in column 2 convincingly reconstructs the ID of the original person but
the pose and lighting are wrong. Introducing landmark loss largely corrects the
pose (though note StyleGAN2 is biased towards frontal poses which means large
pose angles are often underestimated). Introducing histogram loss yields similar
lighting and skin tone producing an image similar to the original.

Next, we illustrate that our approach is capable of reconstructing different
images of the same person under different conditions. In Fig. 7 we show pairs
of real images of the same person in row one. From left to right, these exhibit
different lighting, expression and pose. We show our full inversion result in row
two. Even though both original images should yield the same ID descriptor,
there is enough leaked information that we are able to convincingly reconstruct
lighting, expression and pose.

Finally, we show additional inversion results in Fig. 8. The last column shows
a failure case in which the pose is incorrectly reconstructed. This occurs when es-
timated landmark accuracy is low and is further compounded by the StyleGAN2
bias towards frontal faces.

4.4 Quantitative results

We quantitatively evaluate the reconstructed images, comparing them to the
original images. To facilitate that, we calculate the mean squared error (MSE),
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Fig. 8. Additional inversion results. We show original target image (top row), recon-
structions using only ID loss (middle) and full reconstruction result (bottom). The last
column shows a failure case.

peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) [31]
between each reconstructed image and the original image, on the MoFA-Test
dataset [29], containing 84 images and 78 identities. Table 2 shows an ablation
study of reconstructing only with ID loss, with ID and landmark loss, and with
all losses. It can be seen that overall, the extra losses help to recreate the actual
image and not just the identity of a person.

Second, we test how well the reconstructed images (using all losses) preserve
identity on the MoFA-Test dataset. We use cosine similarity on VGGFace [23]
(as opposed to VGGFace2, which is used for our inversion) embeddings as a
measure of how well a method was able to reconstruct the identity. Fig. 9 shows
the distribution of similarity scores of our method, compared with Genova et
al. [13], Tran et al. [30], and MoFA [29]. Note that these three methods solve a
different problem: reconstruction with a 3D morphable model given the original

image. However, Genova et al. [13] do this via an ID bottleneck meaning the
comparison is meaningful. With an average similarity score of 0.77, we signifi-
cantly outperform all other methods (0.40 for Genova et al., 0.22 for Tran et al.,
and 0.18 for MoFA). This is particularly notable given that we reconstruct the
image only from an ID vector. The difference is likely partly down to using a
generative model (StyleGAN2) that is much more powerful than a 3DMM.

5 Conclusion

Our results show that, indeed, non-identity information finds its way into state-
of-the-art face descriptor embedding networks like VGGFace2 and ArcFace. We
have shown that, given the possibility of being able to query the network, it
is possible to not only reconstruct an image of a person’s face encoded in a
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Fig. 9. Distribution of VGGFace cosine similarity for MoFA-Test. We show the dis-
tribution of similarity scores of our method, Genova et al. [13], Tran et al. [30], and
MoFA [29] for the original images and their corresponding reconstruction.

ID only ID+LMs ID+LMs+Hist

MSE (lower better) 2.05 2.14 2.03
PSNR (higher better) 12.98 13.21 13.35
SSIM (higher better) 0.14 0.14 0.15

Table 2. Quantitative evaluation on MOFA-test, comparing reconstruction with only
ID loss, ID and landmark loss, and ID, landmark and histogram loss.

descriptor but also non-ID attributes as well as landmark positions and the
image histogram. Being able to reconstruct not just an image with the right ID
but the actual original input image has privacy and security implications.

There are many important avenues for future work. First, it is important to
replicate these results on other face embedding networks (our initial experiments
suggest that our findings indeed transfer between networks). Second, the inver-
sion performance could likely be improved by including other explicit non-ID
features. Thirdly, our current work only tried to inversion the background colour
by predicting the histogram of RGB intensity from ID, and the subsequent work
could be extended by restoring the solid objects on the background to provide
a more intuitive view of the background information leaks. Finally, and most
interestingly, we believe that our work provides a route to improving face recog-
nition performance while also alleviating privacy concerns. Non-ID information
is a nuisance factor for face recognition. It means that some of the capacity of the
embedding space is wasted on useless information and that distance measures
incorrectly observe identity dissimilarity when in fact the difference is due to
non-ID factors. This is in addition to privacy and security concerns related to
the leakage of image information into ID vectors. In future we will introduce an
adversarial loss into face recognition training that penalises the inclusion of non-
ID information in the embedding. We will also attempt to reconstruct non-id
information from black-box features, without access to the model’s architecture.
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