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PERCEIVE AND PREDICT: SELF-SUPERVISED SPEECH REPRESENTATION BASED LOSS
FUNCTIONS FOR SPEECH ENHANCEMENT

George Close, William Ravenscroft, Thomas Hain and Stefan Goetze

Department of Computer Science, University of Sheffield

ABSTRACT

Recent work in the domain of speech enhancement has explored the

use of self-supervised speech representations to aid in the training of

neural speech enhancement models. However, much of this work fo-

cuses on using the deepest or final outputs of self supervised speech

representation models, rather than the earlier feature encodings. The

use of self supervised representations in such a way is often not fully

motivated. In this work it is shown that the distance between the

feature encodings of clean and noisy speech correlate strongly with

psychoacoustically motivated measures of speech quality and intelli-

gibility, as well as with human Mean Opinion Score (MOS) ratings.

Experiments using this distance as a loss function are performed and

improved performance over the use of STFT spectrogram distance

based loss as well as other common loss functions from speech en-

hancement literature is demonstrated using objective measures such

as perceptual evaluation of speech quality (PESQ) and short-time

objective intelligibility (STOI).

Index Terms— self-supervised representations, speech en-

hancement, loss functions, neural networks

1. INTRODUCTION

Speech enhancement remains an active area of speech research due

to its applications in numerous downstream tasks [1]. Deep learn-

ing models have led to state-of-the-art results on numerous bench-

marks for speech enhancement and related tasks [2–5]. A key area

of research for these kinds of models has been the loss functions

used [6]. Furthermore, metrics used to evaluate speech enhancement

models have long been an active area of research; in many cases they

can also be used as the loss function used to train the models them-

selves [7–10]. Self-supervised speech representations (SSSRs) are

of increasing interest in a number of speech related tasks, includ-

ing speech enhancement [11–13]. Generally, the strength of SSSR

comes from their ability to predict the context of the speech content

in the input audio, and thus model the patterns of spoken language.

In this work, it is investigated whether SSSR distances between clean

and noisy speech signals have a stronger correlation to perceptu-

ally motivated speech enhancement measures such as PESQ than the

spectral distances of the signals. This analysis is also repeated for

MOS. In the contribution here we consider both the output of SSSR

encoder layers as well as the final output layer. It is demonstrated

the encoder layers have a notably stronger correlation to the afore-

mentioned evaluation measures than the output layers. Hidden unit

BERT (HuBERT) [12] and XLSR [14] SSSRs are chosen as these
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have both been applied in related speech tasks previously but in dif-

ferent ways [15, 16]. Following from this, the distances between

clean and noisy SSSR features are then evaluated for their useful-

ness as loss functions to train speech enhancement models. Their

performance is compared to other standard loss functions including

perceptually motivated loss functions such as STOI loss [17].

The remainder of this paper is structured as follows. In Sec-

tion 2, SSSRs are introduced and the two specific models used in

this work are detailed. In Section 3 the relationship between distance

measures derived from these models with speech assessment metrics

and human assessment is analysed, in order to obtain novel insight

in to the use of SSSRs for perceptually motivated speech enhance-

ment. Finally, in Section 4 simple signal enhancement networks are

trained using loss functions derived from SSSR distances and are

compared to baselines using conventional loss functions, analysing

the distance measures usefulness as loss function for a single channel

speech enhancement task.

2. SELF SUPERVISED SPEECH REPRESENTATION

MODELS

SSSR models are neural models of speech which are trained in a self

supervised way. This is typically done by ‘masking’ a portion of the

input and then tasking the model with recreating the masked portion.

At inference time, the network layers responsible for the recreation

step are removed and the model instead returns a deep ‘context’ rep-

resentation of the input time domain audio. At this point, additional

task specific layers can be appended to the network, with the self

supervised representation model either being fine-tuned or frozen as

the task specific layers are trained. Generally speaking, SSSRs can

be said to first perceive the input audio in a feature encoder step, and

then predict the context of the content of the audio in the deeper lay-

ers.

HuBERT [12] (Hidden Unit BERT) is a SSSR model which utilises

a BERT [18] style prediction loss in training. It consists of two main

components; the first is a convolutional neural network (CNN) fea-

ture encoder block consisting of stacked 1 dimensional convolutional

layers which transform the input time domain audio signal into a

512 channel feature representation. This is followed by a trans-

former [19] block which consists of several transformer layers to

produce the final 768 channel output representation. The HuBERT

model used in this work is trained on the 960h Librispeech [20] train-

ing set and is sourced from the fairseq Github repository1.

The Cross Lingual Speech Representation (XLSR) [14] model is

a variant of the Wav2Vec2 [11] SSSR model. It is trained on 436,000

hours of speech data from a number of different languages, including

BABEL2, which contains potentially noisy telephone conversations

1https://github.com/facebookresearch/fairseq
2https://catalog.ldc.upenn.edu/byyear



in a number of languages. It is structured similarly to HuBERT, with

a convolutional feature encoder block which outputs a 512 channel

feature representation, followed by a transformer block which out-

puts a final representation with 1024 channels. In this work we make

use of the smallest version of XLSR, sourced from the official Hug-

gingFace repository3.

2.1. SSSRs in quality estimation and speech enhancement

In [16], a non intrusive human MOS predictor is proposed which

makes use of pretrained XLSR representations as a feature extrac-

tion stage. With only a simple trained prediction network placed over

these XLSR representations, the proposed model was able to achieve

high performance in the Conferencing Speech 2022 [21] quality pre-

diction challenge. This indicates that the XLSR SSSR model is able

to capture quality information about the input signal, even without

access to a reference. It’s training data differs to that of other SSSR

models (such as HuBERT) in that it is trained in part on non-clean

speech. In this work, we aim to analyse the behaviour of XLSR and

HuBERT when exposed to noisy/low quality audio.

In [15], a number of techniques to incorporate SSSRs (namely Hu-

BERT) into a single channel speech enhancement system are pro-

posed. One of these techniques, called ‘supervision’ in [15] involves

the use of the distance between the SSSR output representations of

clean reference speech and the enhanced noisy speech output by the

enhancement model as an additional loss term to train the model.

This is in turn inspired by a prior work [22] in which the Wasser-

stein distance between clean and enhanced SSSR representations of

the audio is used as a loss term. In [22] the relationship between the

SSSR distances and perceptual measures is noted. However, both

of these works are motivated by the phoneme level information en-

coded in later layers of the SSSR network and thus only consider

the distance between the clean and noisy representations of the final

output layer of SSSR models. Here, we aim to explore the use of

distances derived from the intermediate feature encoder layer of the

SSSR models. Moreover, we aim to directly compare SSSR derived

distances with a standard distance used as a loss function for speech

enhancement, by formulating the proposed distance measures simi-

larly, i.e. as mean squared error (MSE) distances.

3. SSSR DERIVED DISTANCES IN RELATION TO

SPEECH ASSESSMENT METRICS

In this work, first the mean squared error (MSE) distance between

representations of some clean speech s[n] and a corresponding noisy

version of s[n], x[n]

x[n] = s[n] + v[n], (1)

is analysed, where n is the discrete time index and v[n] is some

additive noise caused by the recording environment. Specifically,

we define these using either SFE, XFE or SOL, XOL where FE and

OL denote the SSSR encoder representation and final output layer

respectively:

SFE = GFE(s[n]) (2)

SOL = GOL(GFE(s[n])) (3)

with GFE,GOL denoting the encoder output and final layer in the

SSSR mode respectively, and XFE, XOL defined similarly. SFE

is the output of the SSSRs feature encoder layer, while SOL is the

3https://huggingface.co/facebook\

/wav2vec2-xls-r-300m

output of its final layer.The MSE distances between these SSSR rep-

resentations are defined as:

dFE(SFE,XFE) =
1

T · F

T∑

t

F∑

f

(SFE[t, f ]−XFE[t, f ])
2

(4)

dOL(SOL,XOL) =
1

T · F

T∑

t

F∑

f

(SOL[t, f ]−XOL[t, f ])
2

(5)

where T and F denote time and feature dimensions of the represen-

tation.

These SSSR derived distances are compared with a distance

which is commonly used as a loss function in speech enhancement

tasks. The MSE distance between clean and noisy spectrogram rep-

resentations is taken:

dSG(SSG,XSG) =
1

T · FHz

T∑

t

FHz∑

fHz

(SSG[t, fHz]−XSG[t, fHz])
2

(6)

where SSG and XSG are magnitude spectrogram representations of

s[n] and x[n], respectively, and T and FHz are the time and fre-

quency dimensions of the spectrograms.

In the following, dFE and dOL are computed using the XLSR and

HuBERT models. As mentioned in the previous section, SFE, XFE

and SOL, XOL of the XLSR model have feature dimensions F of

512 and 1024 respectively, while those of HuBERT have feature di-

mensions of 512 and 768, sharing a time dimension T , the size of

which is dependent on the length in samples of the input time do-

main audio.

SSG and XSG are computed using a Fourier Transform with an FFT

size of 512, window length of 32 ms, and a hop length of 16 ms

(resulting in a 50% frame overlap) using a hamming window. This

results in a spectogram with a frequency dimension FHz of 257, and

a time dimension T which is dependent on the length in samples of

the input time domain audio.

3.1. Datasets

To express the relationship between the distance measures and psy-

choacoustically motivated metrics the VoiceBank-DEMAND [23],

a popular and commonly used dataset for single channel speech en-

hancement, is used. Its training set consists of 11572 clean and noisy

speech audio file pairs (s[n], x[n]), mixed at four different signal-to-

noise ratios (SNRs) {0, 5, 10, 15} dB. Eight noise files are sourced

from the DEMAND [24] noise dataset; two others, a babble noise

and a speech-shaped noise were also used. The training set contains

speech from 28 different speakers (14 male, 14 female), with English

or Scottish accents.The testset containing 824 utterances is mixed at

SNRs of 2.5, 7.5, 12.5 and 17.5 dB, with five different noises which

do not appear in the training set from the DEMAND corpus.

In order to assess the relationship between the distance measures

and human MOS ratings, the NISQA [25] dataset is used. This is

a dataset of variable length clean and noisy speech audio file pairs

(s[n], x[n]) with real human-annotated MOS labels, designed for the

training and testing of neural MOS predictors.The two testsets used

here contain 440 clean/noisy pairs in total.

The audio files in both datasets have a sample rate of 48 kHz and are

down-sampled to 16 kHz such that G(·) in (2), (3) can computed.



Distance PESQ STOI Csig Cbak Covl MOS

r ρ r ρ r ρ r ρ r ρ r ρ

dSG -0.66 -0.53 -0.60 -0.68 -0.75 -0.70 -0.84 -0.69 -0.74 -0.64 0.35 -0.27

XLSR dFE -0.82 -0.78 -0.80 -0.81 -0.93 -0.92 -0.88 -0.85 -0.90 -0.87 -0.47 -0.43

XLSR dOL -0.66 -0.61 -0.69 -0.68 -0.76 -0.75 -0.74 -0.72 -0.74 -0.71 -0.44 -0.40

HuBERT dFE -0.83 -0.79 -0.75 -0.76 -0.95 -0.93 -0.90 -0.87 -0.91 -0.89 -0.48 -0.46

HuBERT dOL -0.44 -0.43 -0.40 -0.42 -0.52 -0.52 -0.45 -0.45 -0.50 -0.49 -0.42 -0.37

Table 1. Spearman r and Pearson ρ correlation between distance measures and speech quality and intelligibility metrics in the VoiceBank-

DEMAND testset, as well as MOS in the NISQA Challenge testset

Fig. 1. Scatter plots showing the relationship between the PESQ

metric and MSE Spectrogram distance dSG as well as, HuBERT

dFE, HuBERT dOL distances for the VoiceBank-DEMAND testset

3.2. SSSR distances and psychoacusitcally motivated metrics

Fig. 1 shows the relationships between the distance measures

and PESQ [7] scores computed using the s[n], x[n] pairs in the

VoiceBank-DEMAND [23] testset using dSG, HuBERT dFE and

HuBERT dOL . From this, it can be observed that HuBERT dFE

correlates significantly more strongly than dSG with PESQ. Fur-

thermore, the distance computed using the output of the 1D con-

volutional encoder dFE correlates more strongly than the distance

computed using the SSSR output dOL. This suggests that the pho-

netic and linguistic processing which occurs in the deeper parts of

the model are less sensitive to the noise in x[n]. The first 5 columns

of Table 1 shows the Spearman r and Pearson correlations ρ between

PESQ, STOI and the components of the Composite [26] measure.

Like with PESQ and STOI, the Composite measure scores all cor-

relate more strongly with the proposed SSSR distances than with

dSG, in particular the feature encoder derived distance dFE. To our

knowledge, this is the first time that the correlation between SSSR

derived distances and the Composite measure have been analysed,

and the high correlation displayed here shown.

3.3. SSSR distances and human quality assessment

Fig. 2 and the last column of Table 1 show the relationship between

the MSE distances and human MOSs in the ‘FOR’ and ‘P501’ testset

s[n], x[n] pairs of the NISQA [25] dataset. While the overall corre-

lations are lower here than those of the metrics analysed in the first

Fig. 2. Scatter plots showing the relationship between human MOS

scores and MSE Spectrogram distance dSG, HuBERT dFE and Hu-

BERT dOL with in the NISQA Challenge testset

5 colunms, the same pattern emerges with dFE and dOL correlating

more strongly with the MOS scores than dSG. The HuBERT based

distances again correlate more strongly than XLSR; this is possibly

due to the language match between the training data of HuBERT and

that of the data, both being English only.

4. SSSR BASED SIGNAL ENHANCMENT EXPERIMENT

An experiment is carried out in order to assess the effectiveness of

the SSSR derived distance measures as loss functions for speech en-

hancement tasks.

4.1. Experiment setup

Simple masking based speech enhancement models were trained

using a number of different loss functions; dSG, dFE, dOL as de-

scribed in the previous sections, as well as Si-SDR loss [27] and

STOI loss [17]. Each model was trained for 50 epochs on the

VoiceBank-DEMAND [23] training set. dFE, dOL are computed for

XLSR or HuBERT feature encoder and output representations. The

Adam [28] optimiser is used with a learning rate of 0.001. At test

time, the epoch obtaining the highest PESQ score on the validation

set is loaded. The SpeechBrain [29] toolkit is used to implement the

experiment.



4.2. Loss Functions

The distance measures defined in (4), (5) and (6) are modified to be

used as loss terms for a speech enhancement neural model:

LFE(SFE, ŜFE) =
1

T · F

T∑

t

F∑

f

(SFE[t, f ]− ŜFE[t, f ])
2

(7)

LOL(SOL, ŜOL) =
1

T · F

T∑

t

F∑

f

(SOL[t, f ]− ŜOL[t, f ])
2

(8)

LSG(SSG, ŜSG) =
1

T · FHz

T∑

t

FHz∑

fHz

(SSG[t, fHz]− ŜSG[t, fHz])
2

(9)

where ŝ[n] is the enhanced time domain audio signal output by the

neural model when x[n] is input and ŜFE, ŜOL and ŜSG are the

feature encoder output, output layer and spectrogram representations

of ŝ[n] respectively.

4.3. Enhancement Model Structure

The same model structure is used for all models. It consists of 2

bidirectional long short term memory (BLSTM) layers followed by

two linear layers, with the first linear layer using a LeakyReLU ac-

tivation and the second a Sigmoid. The input to the model is a mag-

nitude spectrogram (XSG) and the model returns a ‘mask’ which is

multiplied with the noisy input spectrogram to produce the enhanced

spectrogram Ŝ
′

SG Note that the ′ here denotes that this spectrogram

contains no time domain phase information. From this, the enhanced

time domain speech ŝ[n] is then created via the overlap-add resyn-

thesis method, using the original noisy phase of x[n]. This structure

is selected because, despite being relatively simple and with a small

parameter count, it is able to achieve state of the art performance in

perceptually motivated speech enhancement [2, 5, 10].
4.4. Signal Enhancement Performance

Table 2 shows the experiment results. The proposed model using

HuBERT LFE as its loss function outperforms the baseline using

the spectrogram distance LSG in terms of PESQ and the Compos-

ite measure Csig, Cbak and Covl. Additionally, the best performing

model by a significant margin in terms of Cbak uses the XLSR en-

coder distance loss function LFE, and most SSSR based losses out-

perform the baseline systems in this measure. Those models which

use SSSR encoder distance LFE outperform those which use SSSR

output layer distance LOL; this is consistent with the correlation val-

ues in Table 1 where dFE distances correlate more strongly with the

metrics than dOL distances. Audio examples from all systems tested

can be found here4.
4.5. Analysis

Fig. 3 shows an example of the feature representations of s[n] and

x[n] used as inputs to dSG and dFE for both HuBERT and XLSR.

Tonal noise introduced in x[n], visible as a line spanning approxi-

mately the first 50 time frames in XSG, is well represented in the

XLSR XFE but not in HuBERT XFE. This is a possible explana-

tion for the increased Cbak score for the XLSR LFE loss over the

HubERT based loss LFE as XLSR XFE representations appear to

be more sensitive to noise in non speech regions of the representa-

tion. The fact that XLSR is trained in part on noisy data is a potential

explanation for this behaviour.

4http://staffwww.dcs.shef.ac.uk/people/G.Close/

icassp/audio_egs.html

loss function PESQ STOI Csig Cbak Covl Si-SDR

noisy 1.97 0.92 3.35 2.44 2.63 8.98

LSG 2.70 0.94 4.00 2.62 3.35 18.62

LSISDR [27] 2.28 0.92 3.51 2.44 2.88 18.66

LSTOI [17] 2.12 0.93 3.46 2.16 2.77 13.31

HuBERT LFE 2.79 0.94 4.10 2.68 3.44 18.47

HuBERT LOL 2.55 0.92 3.66 2.42 3.08 14.92

XLSR LFE 2.69 0.92 3.77 3.05 3.21 9.72

XLSR LOL 2.43 0.91 3.21 2.64 2.79 13.00

Table 2. Signal Enhancement performance on the VoiceBank-

DEMAND testset

Fig. 3. Visualisation of inputs representations of s[n], x[n] to dSG,

HuBERT dEF and XLSR dEF. SSSR features are sorted according

to depthwise euclidean distance following Algorithm 1 in [30] and a

sigmoid function is applied to increase clarity.

5. CONCLUSION

In this work it is demonstrated that the earlier ‘perceive’ feature en-

coder layers of SSSRs preserve aspects of noise and distortion in

speech to a greater degree than the deeper ‘predict’ layers. More-

over, we find that a simple distance measure between the encoder

representations of clean and noisy speech correlates strongly with

perceptually motivated metrics of speech quality, as well as with hu-

man speech quality assessment. This correlation is affected by the

attributes of the data used to train the SSSR. This finding is validated

by the use of these distance measures as loss functions for a speech

enhancement task, where feature encoder distance outperforms both

the deeper output layer and a standard spectrogram based loss. Fu-

ture work will include the further tuning of SSSR encoders towards

human perception, as well as investigating the effect of the training

data on the SSSR encoder representations.



6. REFERENCES

[1] R. Haeb-Umbach, J. Heymann, L. Drude, S. Watanabe, M.

Delcroix, and T. Nakatani, “Far-field automatic speech recog-

nition,” Proceedings of the IEEE, vol. 109, no. 2, pp. 124–148,

2021.

[2] S.-W. Fu, C. Yu, T.-A. Hsieh, P. Plantinga, M. Ravanelli, X. Lu,

and Y. Tsao, “Metricgan+: An improved version of metricgan

for speech enhancement,” 2021.

[3] M. Maciejewski, G. Wichern, and J. Le Roux, “WHAMR!:

Noisy and reverberant single-channel speech separation,” in

ICASSP 2020, May 2020.

[4] X. Chang, W. Zhang, Y. Qian, J. L. Roux, and S. Watanabe,

“MIMO-SPEECH: End-to-End Multi-Channel Multi-Speaker

Speech Recognition,” ASRU 2019, pp. 237–244, October 2019.

[5] G. Close, T. Hain, and S. Goetze, “MetricGAN+/-: Increasing

Robustness of Noise Reduction on Unseen Data,” in EUSIPCO

2022, Aug. 2022.

[6] M. Kolbæk, Z.-H. Tan, S. H. Jensen, and J. Jensen, “On

loss functions for supervised monaural time-domain speech en-

hancement,” IEEE/ACM Transactions on Audio, Speech, and

Language Processing, vol. 28, pp. 825–838, 2020.

[7] A. Rix, J. Beerends, M. Hollier, and A. Hekstra, “Percep-

tual evaluation of speech quality (PESQ)-a new method for

speech quality assessment of telephone networks and codecs,”

in ICASSP 2001, 2001, vol. 2, pp. 749–752 vol.2.

[8] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen,

“An algorithm for intelligibility prediction of time–frequency

weighted noisy speech,” IEEE Transactions on Audio, Speech,

and Language Processing, vol. 19, no. 7, pp. 2125–2136, 2011.

[9] J. L. Roux, S. Wisdom, H. Erdogan, and J. R. Hershey, “SDR

– Half-baked or Well Done?,” in ICASSP 2019, May 2019.

[10] S.-W. Fu, C. Yu, K.-H. Hung, M. Ravanelli, and Y. Tsao,

“Metricgan-u: Unsupervised speech enhancement/ dereverber-

ation based only on noisy/ reverberated speech,” 2021.

[11] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec

2.0: A framework for self-supervised learning of speech rep-

resentations,” in Advances in Neural Information Processing

Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan,

and H. Lin, Eds. 2020, vol. 33, pp. 12449–12460, Curran As-

sociates, Inc.

[12] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdi-

nov, and A. Mohamed, “Hubert: Self-supervised speech repre-

sentation learning by masked prediction of hidden units,” 2021.

[13] S. wen Yang, P.-H. Chi, Y.-S. Chuang, C.-I. J. Lai, K. Lakhotia,

Y. Y. Lin, A. T. Liu, J. Shi, X. Chang, G.-T. Lin, T.-H. Huang,

W.-C. Tseng, K. tik Lee, D.-R. Liu, Z. Huang, S. Dong, S.-

W. Li, S. Watanabe, A. Mohamed, and H. yi Lee, “SUPERB:

Speech Processing Universal PERformance Benchmark,” in

Proc. Interspeech 2021, 2021, pp. 1194–1198.

[14] A. Babu, C. Wang, A. Tjandra, K. Lakhotia, Q. Xu, N. Goyal,

K. Singh, P. von Platen, Y. Saraf, J. Pino, A. Baevski, A. Con-

neau, and M. Auli, “XLS-R: Self-supervised Cross-lingual

Speech Representation Learning at Scale,” in Proc. Interspeech

2022, 2022, pp. 2278–2282.

[15] O. Tal, M. Mandel, F. Kreuk, and Y. Adi, “A systematic

comparison of phonetic aware techniques for speech enhance-

ment,” 2022.

[16] B. Tamm, H. Balabin, R. Vandenberghe, and H. V. hamme,

“Pre-trained speech representations as feature extractors for

speech quality assessment in online conferencing applica-

tions,” in Interspeech 2022. sep 2022, ISCA.

[17] S.-W. Fu, T.-W. Wang, Y. Tsao, X. Lu, and H. Kawai, “End-

to-end waveform utterance enhancement for direct evaluation

metrics optimization by fully convolutional neural networks,”

IEEE/ACM Transactions on Audio, Speech, and Language

Processing, vol. 26, no. 9, pp. 1570–1584, 2018.

[18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:

Pre-training of deep bidirectional transformers for language

understanding,” in Proc. of ACL 2019, Minneapolis, Min-

nesota, June 2019, pp. 4171–4186, Association for Computa-

tional Linguistics.

[19] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is

all you need,” in Advances in Neural Information Processing

Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R.

Fergus, S. Vishwanathan, and R. Garnett, Eds., 2017, vol. 30.

[20] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-

rispeech: An asr corpus based on public domain audio books,”

in 2015 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2015, pp. 5206–5210.

[21] G. Yi, W. Xiao, Y. Xiao, B. Naderi, S. Möller, W. War-
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