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Abstract

Identifying locations of refugia from the thermal stresses of climate change for coral
reefs and better managing them is one of the key recommendations for climate change
adaptation. We review and summarize approximately 30 years of applied research focused
on identifying climate refugia to prioritize the conservation actions for coral reefs under
rapid climate change. We found that currently proposed climate refugia and the locations
predicted to avoid future coral losses are highly reliant on excess heat metrics, such as
degree heating weeks. However, many existing alternative environmental, ecological, and
life-history variables could be used to identify other types of refugia that lead to the desired
diversified portfolio for coral reef conservation. To improve conservation priotities for
coral reefs, there is a need to evaluate and validate the predictions of climate refugia with
long-term field data on coral abundance, diversity, and functioning. There is also the need
to identify and safeguard locations displaying resistance toprolonged exposure to heat
waves and the ability to recover quickly after thermal exposure. We recommend using more
metrics to identify a portfolio of potential refugia sites for coral reefs that can avoid, resist,
and recover from exposure to high ocean temperatures and the consequences of climate
change, thereby shifting past efforts focused on avoidance to a diversified risk-spreading

reative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is

© 2023 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.

Conservation Biology. 2023;¢14108.
https://doi.org/10.1111/cobi.14108

wileyonlinelibrary.com/journal /cobi | 1of19


mailto:jz262@le.ac.uk
http://creativecommons.org/licenses/by/4.0/
https://wileyonlinelibrary.com/journal/cobi
https://doi.org/10.1111/cobi.14108

20f19

W, <
(o) McCLANAHAN ET AL.

portfolio that can be used to improve strategic coral reef conservation in a rapidly warming
climate.
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Diversificacion de los tipos de refugio necesarios para asegurar el futuro de los arrecifes de
coral sujetos al cambio climatico

Resumen: Una de las principales recomendaciones para la adaptacion al cambio climatico
es identificar los refugios de los arrecifes de coral frente al estrés térmico del cambio
climatico y mejorar su gestion. Revisamos y resumimos ~30 afios de investigacion aplicada
centrada en la identificacion de refugios climaticos para priotizar las acciones de conset-
vaciéon de los arrecifes de coral bajo un rapido cambio climatico. Descubrimos que los
refugios climaticos propuestos actualmente y las ubicaciones que pueden evitarlos depen-
den en gran medida de métricas de exceso de calor, como las semanas de calentamiento en
grados (SCG). Sin embargo, existen muchas variables alternativas de historia vital, ambien-
tales y ecoldgicas que podrian utilizarse para identificar otros tipos de refugios que resulten
en el acervo diversificado que se desea para la conservacion de los arrecifes de coral. Para
mejorar las prioridades de conservacion de los arrecifes de coral, es necesario evaluar y
validar las predicciones sobre refugios climaticos con datos de campo a largo plazo sobre
abundancia, diversidad y funcionamiento de los corales. También es necesario identificar y
salvaguardar lugares que muestren resistencia a la exposicion climatica prolongada a olas
de calor y la capacidad de recuperarse ripidamente tras la exposicién térmica. Recomen-
damos utilizar mas métricas para identificar un acervo de posibles lugares de refugio para
los arrecifes de coral que puedan evitar, resistir y recuperarse de la exposicion a las altas
temperaturas oceanicas y las consecuencias del cambio climatico, para asi desplazar los
esfuerzos pasados centrados en la evitacion hacia un acervo diversificado de riesgos que
pueda utilizarse para mejorar la conservacion estratégica de los arrecifes de coral en un
clima que se calienta rapidamente.

PALABRAS CLAVE
andlisis de brecha, arrecifes de coral, cambio climatico, estrés ambiental, planeacion espacial marina, refugios
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INTRODUCTION have created a diversity of habitats, species, and emergent

reef communities with variable responses to environmental
Coral reefs have complex ecological, evolutionary, and geo- change. As climate change provokes rapid, intensive, and large-
logical histories (Dubinsky & Stambler, 2010). These histories scale impacts to coral reefs, there are some historical prece-
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(a) Three main types of climate refugia characterized by unique environments and associated taxa that represent variable coral life histories and

community organization responses to climate change: (left) avoidance refugia, locations that avoid physical exposures; (middle) resistance, locations have low
sensitivity to climate change; and (right) recovery locations can recover quickly after exposure. (b) Classification of the 35 published studies showing the percentages

identified using metrics that fall within the 5 possible coral reef refuge categories.

dents that indicate the possibility of considerable adaptation
(Pandolfi et al., 2011). For example, reef communities often
show predictable changes and adaptation to stress across reef
zones, along inshore to offshore gradients, from windward to
leeward sides of islands, across archipelagos, across seasons,
and along large ocean—basin geographic gradients (Asner et al.,
2022; Camp et al.,, 2018; McClanahan, Darling, et al., 2020
McClanahan, Maina, et al., 2020; Selmoni et al., 2020). There-
fore, coral reefs are expected to display a variety of responses,
as exemplified in the diverse terminology and concepts used to
describe outcomes of climate change (Camp, 2022; Kavousi &
Keppel, 2018).

Here, we refer to refugia as locations where biodiversity
retreats to, persists in, and potentially expands from once envi-
ronmental conditions change (Keppel et al., 2012). Refugia are
often based on historical evaluations, but we primarily investi-
gated the environmental and ecological processes that produce
refugia. After evaluating the impacts of climate disturbances and
the processes that influence thermally stressed corals, West and
Salm (2003) recognized 3 major categories of refugia for reefs:
avoidance, resistance, and recovery (Figures 1a & 2). Moreover,
they and others recognize that this diversity of responses and
associated locations creates a potential for strategic conserva-
tion science and interventions (Anthony et al., 2020; Camp,
2022; Chollett et al., 2022; Hoegh-Guldberg, Kennedy, et al,,
2018; McClanahan & Azali, 2021; McClanahan & Muthiga,
2017; Webster et al., 2017). Therefore, we reviewed the applied
work that has evaluated progress toward promoting the diversi-
fied portfolio approach recommended to improve the chances

for coral adaptation and persistence under rapidly warming
ocean conditions.

Ecosystems are vulnerable to collapse when stressed beyond
their capacity to adapt. For coral reefs, this collapse is typically
associated with coral bleaching and mortality from prolonged
exposure to high ocean temperatures that leads to the loss
of sensitive coral taxa, large coral colonies, declines in live
coral cover, or transitions to noncalcifying macroalgae, sponge,
and soft corals (McClanahan et al., 2002; Reimer et al., 2021).
Yet, such outcomes ate dependent on the complex interaction
among the elements of exposure and sensitivity and on the
capacity of reef species and assemblages to adapt (McManus
et al., 2021). Climate change increases the exposure of coral to
extreme temperatures, more acidic seawater, and less dissolved
oxygen, but the outcomes of this exposure depend on the natu-
ral variability and the ability of corals to resist and recover from
this exposure (McClanahan & Maina, 2003; Sully et al., 2019;
Dixon et al., 2022; Donovan et al., 2021). Environmental expo-
sures can be considered chronic and acute stressors, and in most
cases human pressures are aggravating the chronic and accentu-
ating acute exposure (He & Silliman, 2019; Andrello etal., 2022).
These interactions have consequences for coral reef species and
communities based on their traits and life histories (Datling
etal., 2012, 2019), given that some species will be more adapted
to different types of disturbances and others more capable of
rapidly recovering from disturbances. Coral bleaching, ot the
breakdown of the coral host and algal symbiosis, results from
various environmental exposures and can lead to differential
mortality and reorganization of the community. In the context
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(a) A theoretical framework of chronic and acute stresses and the resulting expectations of coral taxa and trait responses or life histories (LH)

(Darling et al., 2012) and (b) predictions of benthic cover based on the theoretical framework.

of climate change, prolonged exposure to high ocean temper-
atures increases the exposure of corals to damaging heat stress
that can cause corals to expel their symbiotic algae, leading to
the loss of color and ultimately the death of the coral colony. At
a community and ecosystem level, bleaching causes biological
reorganization that has substantial consequences for ecosys-
tem services that coral reefs provide. These include tourism,
fisheries production, and coastal protection that includes pro-
tection from sea level rise and more frequent and intense storms
(Ferrario et al., 2014; McClanahan et al., 2002).

After a series of global bleaching events, coral reef scientists
investigated responses to climate disturbances and developed
approaches to define and identify potential refugia (McClana-
han, 2022). Here, we define reef refigia conservation priorities
as locations where characteristics of avoidance, resistance, and
recovery provide substantial ecological resilience to climate
change and where other nonclimate pressures, such as over-
fishing, pollution, disease, and dredging, should be urgently
mitigated to reduce ecological degradation. Avoidance refugia
have stable and cooler water temperatures, resistance refugia
have coral assemblages with lower sensitivity to extreme heat
and subsequently less bleaching and mortality, and recovery
refugia have the ecological capacity to recover after bleaching
and mortality. There is abundant evidence that these refu-
gia types vary considerably with geography (Eladawy et al.,
2022; Hedouin et al., 2020; McClanahan, Darling, et al., 2020;
McClanahan, Maina, et al., 2020; Roff & Mumby, 2012). Ult-
mately, coral reefs have the best chance to survive and function
within these 3 types of refugia when other local pressures
are mitigated through good management, such as sustainable
fisheries management and pollution reduction. Therefore, we
summarized scientific efforts to identify geographic locations
and types of coral refugia in order to make recommendations

that improve the current science and actions needed for an
improved strategy for global coral reef conservation.

CORAL RESPONSES TO CLIMATE
DISTURBANCES

Coral responses to acute and chronic disturbances can provide a
useful framework to predict impacts of climate change (Chollett
et al., 2022). Acute stressors are defined as episodic stresses that
may periodically exceed thresholds of optimal or livable con-
ditions specific to the organisms’ survival capacity (Figure 2a).
For coral reefs, acute thermal stresses are mostly evaluated as
short-term deviations from the above warm-season variability
or chronic stress. Prolonged exposure to high ocean tempera-
tures is the most frequently evaluated stress on coral reefs and
measured relative to a mean summer baseline for the existing
satellite-based time series (McClanahan, 2022). Specifically, the
metric of degree heating weeks (DHWSs) is calculated by multi-
plying the number of weeks that the water temperatute is above
an average summer baseline by the number of degrees above
the threshold. The threshold temperature at which coral begins
to experience stress may vary, but the convention is to use
1 °C above the long-term satellite-derived summer mean. For
example, if the temperature is 2 °C above summer average tem-
peratures and remains at that level for 3 weeks, the DHW would
be 6 (2 °C X 3 weeks) (Liu et al., 2014). Acute stresses, therefore,
largely lie outside the envelope of normal historical environ-
mental conditions. The result is typically coral bleaching and
mortality of vulnerable coral species (e.g., branching and plating
acroporids [Darling et al., 2013]). The result is a community-
level shift to more tolerant coral species that can resist and
recover from exposure to acute temperature stress (Loya et al.,
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2001; McClanahan et al., 2020; Roche et al., 2018). Whether
this change is temporary ot persistent depends on historical
exposure and concordance with past and current disturbance
amplitudes and frequencies.

Chronic stress refers to a long-term or ongoing state of
environmental stress and exposure relative to baseline con-
ditions. Facing long-term chronic stress, corals can become
more tolerant or have adverse response and increased mortality.
Chronic stressors include important short-term elements of
stress, such as the daily to seasonal changes in tides, light, and
temperatures (Figure 2a), and the longer term environmental
history of reefs at ecological and evolutionary scales. Short-
term acute disturbances interact with long-term chronic stress.
For example, long-term ocean oscillations, such as El Nifio
Southern Oscillation and the Indian Ocean Dipole, can also
affect the year-to-year changes in temperature stress experi-
enced by corals (Abram et al., 2020). Thus, the differences
between acute and chronic stress can depend on organismal
sensitivity and community organization that contains some
“memory” induced by past exposure (Hughes et al., 2019).
Functional traits and genetics and the frequency of historical
exposures may, therefore, influence adaptation potentials.
Ultimately, high levels of acute and chronic disturbance will
shift coral communities toward smaller colonies and species
and less diverse communities (Lachs et al., 2021; McClanahan
et al., 2008) and can ultimately shift ecological dominance on
coral reefs toward other noncalcifying organisms (Reverter
et al., 2022; Robinson et al., 2019). This leads to the losses of
refuge for biodiversity and ecosystem functioning, such as reef
growth, that is critical for fisheries production and shoreline
protection.

Chronic and acute stresses influence species’ traits, commu-
nity organization, and their changes across disturbance events.
Therefore, these attributes should be reflected in avoidance,
resistance, and recovery refugia, and data on these attributes
can be tested against predictions. For example, the 4 possible
quadrats of acute and chronic stressor should be reflected in
the dominance of different life-history groups: competitive,
stress-resistant, ruderal, and generalist taxa (Datling et al., 2012)
(Figure 2a). Reefs and refugia types should reflect a mosaic of
coral taxa or functional traits that emerged from the interac-
tions between chronic and acute stress (Darling et al., 2019).
These traits, community composition, and subsequent refugia
types can, in turn, indicate the state of ecosystem service pro-
visions for humans. A diversity of these attributes is expected
to provide the functional redundancy and resilience to maintain
sustainable services (Reverter et al., 2022). In some cases, how-
ever, environmental exposures may simply become too extreme
for reefs to be colonized by anything other than noncoral and
noncalcifying taxa, with subsequent losses of services.

DEFINING CORAL REFUGIA

Mass bleaching events in 1983 and 1998 provoked the early
science on the impacts and theories of climate-change stress
responses on coral reefs (McClanahan, 2022). Notably, metrics

of thermal hotspots and degree-heating metrics (DHW) quickly
became the primary explanatory variables for thermal-stress
events because these metrics integrated elements of chronic
and acute stress (Liu et al.,, 2014). Although scientists realized
that coral responses were modified by a variety of common
factors, such as light penetration, depth, taxa, and duration of
exposure (Hughes et al., 2003), these were often seen as mod-
ifying factors that were of local concern and less amenable to
modeling and predictions at larger regional or global scales.
By the early 2010s, satellite and remote sensing provided sev-
eral modifying variables, including ultraviolet light, currents, and
water clarity, that were successfully included at regional- and
global-scale evaluations of coral reef bleaching (Maina et al.,
2011).

The popular adoption of thermal hotspot and DHW metrics
and the scale of the climate models (1° X 1° or 5 X 5 km) led
to the development of large-scale threshold models that were
developed from global coverage and model predictions of sea
surface temperatures (SSTs) to project future bleaching (Heron
et al,, 2016; Logan et al., 2021). These global threshold mod-
els were developed from model predictions of SSTs and used
to project future bleaching patterns. Thus, early climate projec-
tions wete at a very coarse scales of 1° grid cells and monthly
SSTs (Donner et al., 2005). An additional set of studies and
models often developed at a finer spatial scale included a vari-
ety of exposure and modifying variables, such as light, currents,
and water quality (McClanahan, 2022). Sometimes they con-
sidered the specific responses and niches of coral or specific
taxa responses to thermal stress. We pooled these studies and
termed them variability models because they typically evaluated
the variability contained in continuous metrics. Metrics varied
with each investigation, depending on their availability and the
investigator’s preferred theories and choices. These correlative
investigative pathways have since dominated the scientific lit-
erature for quantifying reef exposure and identifying refugia
(Figure 3). We did not review mechanistic models of thermal
stress that largely focus on scales considerably smaller than
conservation planning (Kavousi & Keppel, 2018).

Threshold models were primarily developed to predict coral
bleaching at large scales. Nevertheless, they are frequently used
to infer future states of reefs, including coral cover and recruit-
ment (Cornwall et al., 2021; Sheppard, 2003). Threshold models
and environmental variability models have different abilities to
predict bleaching and coral cover (McClanahan et al., 2019).
However, systematic statistical variable-selection approaches
have rarely been applied in threshold model studies, and the
predictive strength of thermal and nonthermal stress variables
is seldom known. For example, a review of 112 coral—climate
impact studies (McClanahan, 2022) showed that only 11% of
the threshold model studies used a selection process for sta-
tistical variables, compared with 43% of the variability model
studies (McClanahan, 2022). To date, identifying refugia relies
largely on the satellite-derived environmental variables chosen
to detect conditions of prolonged heat exposure that over-
look the ability to describe and predict additional areas of
coral resistance and recovery following exposure to bleaching
conditions.
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THE PROBLEM

A positive relationship among coral bleaching, mortality, subse-
quent coral cover, and reef functioning is frequently inferred
by climate stress and refugia predictions (Beyer et al., 2018;
Cornwall et al., 2021). Yet, threshold metrics of prolonged expo-
sure to excessive heat (typically DHWs) are not among the
strongest variables for predicting bleaching, mortality, and coral
cover (McClanahan, 2022). Moreover, threshold metrics are fre-
quently modified by several other environmental vatiables that
are seldom included in predictions made by threshold model-
ing studies. For example, large compilations of coral cover in
Indonesia, Indian Ocean, and Southwest Atlantic show that
nonthermal variables of dissolved calcium carbonate, oxygen
concentrations, and turbidity in seawater are better predictors
of coral cover than excess heat (DHWs) (McClanahan & Azali,
2021; Santana et al., 2023; Vercammen et al., 2019). Proxies of
chronic and acute thermal stresses often perform better than
DHWs when predicting bleaching and coral cover (Donovan
et al.,, 2021; McClanahan & Azali, 2021; McClanahan, Darling,
et al., 2020; McClanahan, Maina, et al., 2020; Vercammen et al.,
2019). Moreover, several studies show a nonlinear response
between temperature exposure and coral cover that suggests
complex dynamics of coral adaptation and potential resilience
(Darling et al., 2019; McClanahan & Azali et al., 2020; McClana-
han, Darling, et al., 2020). The threshold or location of the peak
response of coral cover can change with geography and over
time, including after repeated bleaching events (DeCatlo, 2020;
Shlesinger & van Woesik, 2023). As a result, a key assumption of
many threshold modeling studies that coral conditions decline
linearly with cumulative exposure gradients simplifies a more
complex relationship.

Most people who rely on tropical reefs are worried about
the impacts of reef degradation on the ecosystem services they
provide. Therefore, a key requirement of strategic coral reef

management is to secure the long-term support of coral reef
ecosystem services. Although threshold models have been influ-
ential in setting priorities for coral reef conservation (Beyer
et al,, 2018; Maina et al.,, 2011), they prioritize areas with less
future excess heat, fewer cyclones, and more ecological connec-
tivity (Beyer et al., 2018; Chollet et al., 2022). However, 23 of
the 30 variables used in 1 global model (Beyer et al., 2018) were
highly correlated variations of the thermal hotspot or DHW
metrics (McClanahan, unpublished analyses), which suggests an
overreliance on a single core metric (DHW) used to identify
short-term bleaching impacts. Furthermore, threshold metrics
often perform weakly in predicting bleaching and coral cover at
larger scales compared with other variables (McClanahan et al.,
2015, 2019; Mollica et al., 2019; McClanahan, 2022). For exam-
ple, many Indian Ocean reefs should have collapsed based on
moderate to high cumulative excess heat metrics predictions
(Obura et al., 2021; Sheppard, 2003). But, threshold predictions
are inconsistent with field data compilations of coral community
dynamics that show coral cover increases and recovery, fluctu-
ations, and taxonomic changes in coral assemblages since the
late 1980s (McClanahan et al., 2014; Datrling et al., 2019; Obura
et al., 2020).

On regional to global scales, the ability of the various
DHW metrics to predict bleaching rarely exceeds 20% when
there is no spatial optimization, and false positives and
negatives are excluded from calculations (van Hooidonk &
Huber, 2009; DeCatlo, 2020). Accounting for other environ-
mental covariates is likely to reduce this predictive ability
further (McClanahan et al, 2019). This suggests modest
amounts of excess thermal heat promote coral cover by
mechanisms that probably represent an adaptation to the
balance between chronic and acute thermal exposure. Ult-
mately, evaluating the mechanisms of adaption and eco-
logical organization will add more realism to conservation
prioritizations.
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CHANGING COURSE

Identifying refugia that provide ecosystem services requites
reconsideration of the metrics used to identify and classify refu-
gia. Avoidance refugia for coral reef identified by the excess
heat models at 1.5 °C of global warming are expected to largely
vanish by 2 °C of global warming (Dixon et al., 2022), which
can provoke despair and hopelessness for coral reef conser-
vation. Yet, many contemporary studies show reefs have high
and persistent coral cover that is often composed of commu-
nities with mixed hard and soft coral taxa and functional traits
(McClanahan, Datling, et al., 2020; McClanahan, Maina, et al.,
2020; Reverter et al., 2022). The disconnect between the grim
expectations of excess heat theory and observed persistence
of coral cover in excess heat-affected locations could eventu-
ally undermine confidence in International Panel for Climate
Change predictions (Hoegh-Guldberg, Jacob, et al., 2018). High
spatial vatiability and poor correspondence in predictions of
the various metrics and modeling approaches in predicting the
impacts of climate change on coral reef communities highlight
the need for more empirical tests of efficacy.

Regardless of the specific metric or study, most current loca-
tions published in the literature can be classified as avoidance
refugia. Categorizing the locations of refugia identified from the
literature into 3 types indicated that 97% of the 35 refugia pub-
lications evaluated used at least 1 avoidance metric (Appendix
S1). When studies were classified based on the 7 combinations
of the 3 refugia options, 51% of all studies used avoidance
metrics only. This increased to 63% for studies in which only
thresholds metrics were used. The remaining studies were clas-
sified as avoidance combined either with resistance (17.1%) or
with recovery (11.4%) (Figure 1b). One Brazilian study used
resistance metrics alone (Mies et al., 2020), and none used recov-
ery metrics alone or resistance and recovery combined, despite
the early suggestions of West and Salm (2003). Variability mod-
els generally distributed their metric more evenly; 26.3% used
all 3 types of metrics, whereas among threshold model studies,
only 6.3% used all 3.

Resistant corals and locations may be particularly under-
represented if the current avoidance-dominant metrics remain
highly reliant on a few related excess heat variables. An unequal
distribution of key metrics poses a problem for conservation
prioritization and building a balanced set of climate refugia.
For example, what if low excess heat or avoidance refugia are
eventually destroyed as thermal heat waves increase in duration
and extent (Skirving et al., 2019)? Therefore, it makes sense to
distribute conservation efforts and risk more evenly to include
more resistant and rapidly recovering locations.

Identification of coral refuges is based solely on a few highly
correlated measures of excess heat and related factors. There-
fore, there is a high risk that the conservation focus will only be
on avoidance refuges that allow corals to avoid the impacts of
climate change, rather than refugia where coral reefs can adapt
to the impacts of climate change. Future proposed locations
need to be evaluated for their abilities to avoid (exposure), resist
(sensitivity), and recover. Identifying coral reef refugia to cli-
mate change can be improved by recognizing coral sensitivity

and recovery, such as adaptive capacity, that reduces sensitiv-
ity to exposures (Bairos-Novak et al., 2021). Adaptive capacity
is increasingly being recognized as highly variable among taxa
and locations and influenced by connectivity (Asner et al., 2022;
Eladawy et al., 2022; McLachlan et al., 2020; McManus et al.,
2021). Sensitivity to thermal exposure is variable at many spa-
tial scales and likely driven by interactions between historical
exposure and species acclimation and adaptation (Louis et al.,
2016; Evensen et al., 2022; McClanahan, Darling, et al., 2020;
McClanahan, Maina, et al., 2020). Although this variability is
acknowledged, it is seldom understood well enough to be explic-
itly modeled when making predictions. For example, there are
cases of negative and positive adaptive covatiation with stresses.
These do not always reflect hard trade-offs that could hinder
adaptation to thermal stress and other stressful factors, such
as acidification or low dissolved oxygen (Wright et al., 2019;
Alderdice et al., 2021). Regardless, refugia model predictions
need testing with empirical field data and evolutionary models
if they are to predict intended outcomes, such as coral cover,
diversity, and reef calcification functions. Many questions need
answers if current refugia policies, planning, and applications are
to improve.

FINDING SOLUTIONS

A portfolio of climate refuges can still be created for the future,
even with limited information. For example, we evaluated the
spatial predictions of coral refugia from 15 studies published
from 2003 to 2021 (details in Appendix S2). We classified each
study as a threshold model or variability model from an evalua-
tion of the variables used in the modeling analyses (Figure 3).
Compiling and mapping refugia illustrated the potential for
identifying coral reef locations and a portfolio of climate refugia
that is not overly reliant on excess heat thresholds and avoidance
criteria (Figure 4). The observed spatial mismatch of locations
based on the methods was expected because models and predic-
tor variables were often different. Nevertheless, differences in
models provide an opportunity to identify spatially overlapping
predictions and to compare the strength of alternatives.

Our results suggest that avoidance refugia are only a subset
of a much larger set of potential refugia. Moreover, additional
criteria, such as ecological and governance information, will fur-
ther affect selections and the diversity of refugia. Global data
sets of coral reef field observations, such as coral cover and
community composition, are critically needed to improve the
spatial resolution of refugia models and predictions. To make
the current portfolio of climate refuges more comprehensive,
one can add refuges that focus on the resistance and recovery
of corals, in addition to those identified based on their abil-
ity to avoid excess heat. The high potential coverage of refugia
mapped in the 15 studies produced either a hopeful view of the
future or one that suggests a need to critically evaluate current
selections to strengthen the strategic portfolio. Given the poor
and declining ecological state of coral reefs globally, there is a
clear need to improve the predictive ability of metrics and model
approaches.
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FIGURE 4 Locations of substantial climate refugia identified in 14 published studies of climate refugia for coral reefs (yellow, locations identified by threshold
methods of Beyer et al. [2018] known as 50 Reefs; top panel purple, locations from 9 studies in which threshold metrics and low thermal stress were used as selection
criteria; middle panel purple, locations from 5 studies in which environmental variability methods were used; bottom panel purple, 14 models showing unique
variability locations identified by variability models after exclusion of threshold locations). Studies included in each panel are more fully described in Appendix S2.
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To develop a more representative global portfolio of refu-
gia with avoidance, resistance, and recovery characteristics, we
make the following suggestions for conservation science and
practice (Table 2).

First, a better understanding of the dynamics of coral resis-
tance and recovery refugia to climate change at local scales is
needed. For example, after prolonged exposure to heat stress,
what are the characteristics of coral reefs that can resist and
recover? Detailed field observations of coral communities over
bleaching events that can distinguish the least stressed, most
resistant, or fastest recovering corals at smaller scales will be
critical to developing metrics and proxies at larger areas rel-
evant to conservation, including national, regional, and global
scales. Given that ecoregional differences in coral sensitivity can
be shaped by local ecological and evolutionary histories, identi-
fying local characteristics of resistance and refugia may scale up
to larger conservation priorities and a global portfolio of refugia
(Eladawy et al., 2022; McClanahan, Maina, et al., 2020). By using
more environmental metrics and proxies from satellites, one can
gain a better understanding of the relationships between the
environment and biodiversity at larger spatial scales (Pilowsky
et al., 2022). Augmenting satellite-based metrics with artificial
intelligence and detailed local field studies that include coral taxa
and life-history dynamics should further improve predictions of
climate refugia for coral reefs (van Woesik et al., 2012; Datling
etal., 2019; Santana et al., 2023).

Second, more representation of resistance and recovery refu-
gia needs to be included in global portfolios of climate change
refugia. For example, global conservation strategies for coral
reefs, such as 50 Reefs, currently overemphasize avoidance refu-
gia. Extending this portfolio to include locations with a mix
of high coral cover, diversity, and adaptive potential in high-
exposure locations can include resistance and recovery locations
in the next iteration of a global coral reef conservation strategy.
This will require commitment to and funding of collaborative
coral reef monitoring efforts to compile robust, standardized,
and comparable empirical data sets of coral communities and
their change over time and modern statistical evaluations, such
as machine learning algorithms, that can account for the diver-
sity of environmental variables available from remotely sensed
satellite data (McClanahan & Azali, 2021; Santana et al., 2023;
Vercammen et al., 2019). Moreover, including coral taxa and
life-history resolution in environmental niche models may also
provide insights into the locations of resistance and recovery
refugia for coral reefs (Cacciapaglia & van Woesik, 2015, 2010).

BUILDING A STRONGER REFUGIA
PORTFOLIO

We suggest several options for improving predictions of coral
reef avoidance, resistance, and recovery refugia to climate
change. First, a variety of models based on field data need to
be compared. Predictions should be improved by undertaking
more tests of fit between environmental models and globally
comparable field survey data sets of coral cover and commu-
nity composition. Models should prioritize outcomes that coral

reef stakeholders find most relevant; these include coastal pro-
tection, fisheries production, and biodiversity. Yet, most studies
have evaluated coral bleaching, coral mortality, and coral cover,
and fewer have examined coral life histories, biodiversity, and
ecosystem functioning that relate to the outcomes most rel-
evant to policy and management (Datling et al., 2019; Perry
et al., 2018). Variables and models need to be demoted and pro-
moted more rapidly through the standard competitive scientific
process. Some poor models and variables persist despite low
predictive skill, which could be rectified by greater adoption of
variable selection and machine learning options. Artificial intel-
ligence algorithms can facilitate the increasingly large amounts
of collectively shared satellite and field data.

An outstanding question is whether excess heat predictions
and bleaching are the most useful variables to evaluate reefs.
Could coral mortality, recruitment, community structure, num-
bers of taxa, and reef fish diversity or productivity be of equal
or greater concern? Slower responding variables, such as coral
cover, growth, vertical relief, suitable substrate, recovery rates,
or some aspect of the coral community, might be better proxies
for policies and management that safeguard ecosystem services
in a future of climate-driven loss and damage. Furthermore, sci-
entists should prioritize modeling efforts that directly address
the above critical ecosystem services.

The number of environmental metrics and proxies at mod-
est scales, often <10 km?, has proliferated in recent times
(Tyberghein et al., 2012; Yeager et al, 2017). This makes
it increasingly possible to make proxies and predictions for
many benthic and coral metrics (Li & Asner, 2023) if there
are globally standardized and comparable data sets of field
information freely available, including those aligned with the
principles of open science. For example, satellite data, machine
learning algorithms, and coral cover compilations have uncov-
ered key environmental variables considerably different from
excess heat (McClanahan & Azali, 2021; Santana et al., 2023;
Vercammen et al., 2019). Niche models are another example.
Future niche models will need to include the variables that
best determine coral distributions, which is not likely to be
the current default of mean ocean conditions (Lee-Yaw et al.,
2021). Therefore, there is a need to include aspects of chronic
and acute temperature variabilities, light, calcium carbonate
concentration, dissolved oxygen, turbidity, currents, and con-
nectivity (McClanahan, 2020). Inclusion of chronic and acute
stress derived from a variety of environmental metrics should
help build better models and improve conservation.

A well-known statistical observation is that models based
on the past are often poor predictors of the future. This
repeated finding evokes problems when evaluating and com-
paring models. For example, a variability model (Maina et al.,
2011) was good at predicting coral cover immediately after the
1998 bleaching event but was less effective thereafter, possibly
because of acclimation and community change (McClanahan
& Azali, 2021; McClanahan et al., 2015; McClanahan, Maina,
et al., 2020). Consequently, an avoidance model parameterized
after the 1998 bleaching event would be expected to lose pre-
dictive ability as the “relentless march of mass coral bleaching”
proceeds (Skirving et al., 2019). The proposed change from
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TABLE 2 Specific recommendations for expanding the process of

identifying coral refugia.

Recommendations to improve
modeling

Recommendations for users of
model outputs

Diversify theory, types, and
numbers of methods and
variables examined for the
identification of refugia.

Evaluate and include interactive
roles of acute and chronic stress
for making better predictions of
response variables, such as
cover, diversity, and functions.

Embrace regional and local
assessments of reef status and
fine-scale modeling to take
advantage of local conditions
and knowledge to help identify
refugia at fine scales.

Improve predictions and
protection of key services rather
than just coral responses to
excess thermal exposure,
including calcification,
biodiversity, and fisheries
production.

Engage the climate modeling
community to include variables
that affect corals to improve
their predictions of their status
in global models.

Embrace uncertainty and
skepticism by continuously
testing models for failure and
using them as opportunities for
learning,

Build and test models for future
predictions, given that models
relying on past thermal
responses may have limited
predictive ability.

Keep avoidance refugia as a core
part of the refugia portfolio but
reconsider exposure variables
most important for promoting
avoidance.

Engage locally knowledgeable
people to ensure proposed
refugia are supported by their
local knowledge.

Work toward a balanced set of
environmental and ecological
critetia for site selection that
balances inclusion and
combinations of avoidance,
resistance, and recovery refugia.

Better define and continuously
readdress selection and mapping
of refugia as lessons are learned
from successes and failures.

Build capacity of local reef
practitioners to identify and
monitor coral reef refugia.

Include political support and
feasibility of management when
making refugia investment
decisions.

Evaluate governance context and
build capacity to overcome limits
to human engagement in
solutions.

avoidance to resistance and recovery refugia may not necessat-
ily improve the predictions of specific models, but the process
should reduce risk and avoid failures by creating a broader port-
folio of models and refugia types that can be actively evaluated
to ensure diverse attributes and outcomes (Webster et al., 2017).

Another option is to create ensemble models of refugia
prediction. Combining models will better address future uncer-
tainty and thereby prioritize locations based on multiple models,
an approach that is often used in climate modeling to improve
predictions of future states. For example, when several models
predict the same refugia location, these are no-regrets locations
that can inform policies that establish conservation investment
priorities. The process of variable and model selection inclu-
sion does, however, need to pass some thresholds of predictive
power. That is, from the above models, some will fail to meet
minimum criteria or be uncompetitive relative to other mod-

els. Weakly predictive vatiables and models can eventually be
dropped to strengthen a growing refugia prioritization portfolio.

To create a strong and comprehensive conservation portfo-
lio, models based on different assumptions, variable choices, and
weights need to be developed. This may seem like an onerous
task; however, the ensemble model approach used by global cli-
mate modelers has helped avoid overreliance on specific, overfit,
and weak predictions that can arise from using highly correlated
variables. Furthermore, including the increasingly available bio-
geographic, oceanographic, and other environmental variables
outside the usual DHW metrics is expected to improve future
refugia models (Pilowsky et al., 2022). For example, coral thet-
mal optima and mechanistic coral ecoevolutionary models have
made coral cover predictions over time (Logan et al., 2021; Matz
et al., 2020; McManus et al., 2021). These mechanistic models
can be compared with observed ecological conditions and statis-
tical or empirical fit models. Although mechanistic models can
lead to more robust predictions than statistical models under
novel environmental conditions (Cuddington et al., 2013), there
are considerable uncertainties surrounding the mechanisms and
the genetic diversity of different species, gene flow patterns,
connectivity, and genetic architecture of stress tolerance, among
other blind spots that can produce surprises. As conditions
for coral survival and biodiversity change rapidly, grounding
scientific models in observed field data will be crucial.

Comparing fundamentally different models and finding spa-
tial overlap in refugia is possible. Specifically, predictions of
coral cover from a variability model and a threshold model were
compared with 2050 predictions of coral cover from the Cou-
pled Model Intercomparison Project (CMIP) (Cornwall et al.,
2021; McClanahan & Azali, 2021). The variability model used
7 variables detived from fits to coral cover field data, whereas
the threshold model used the common excess heat vatiable.
Threshold variables were considerably weaker than the 6 con-
tinuous variables used in the variability model. Nevertheless,
refugia of sites with coral cover >25% in 2050 were predicted
by both models, but the variability model predicted a far larger
number and geographic spread of refugia than the threshold
model. Yet, there was sufficient ovetlap to suggest an area of
no regrets from northwest Madagascar to the African coastline
from southern Kenya to northern Mozambique, an area known
for its high biodiversity that may indicate a refuge on a geologic
scale (McClanahan et al.,, 2011). Spatial resolution of mod-
els and overlapping locations is a perennial concern, but new
globally consistent tools can reduce bias (Lyons et al., 2020).
Consequently, these ongoing efforts suggest ways to expand
the reef conservation portfolio to avoid blind spots, bias, and
overreliance on a few metrics and options.

Statistical models require openly and freely available field
data, which are scarce, but field compilations are increasing and
now sufficient for many scales, even globally (Datrling et al.,
2019; van Woesik & Kratochwill, 2022; https://datamermaid.
org/). Spatial and temporal scales of resolution and data qual-
ity are frequent concerns and caveats of all published modeling
papers. However, less frequently mentioned limitations are the
above types of foundational model structures, variable choices,
and ensemble model approaches. Scale resolution should not
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matter when the model structure and choice of variables are
weak. Science promotes generality, global views, and associated
publications, but management and refugia identification may
benefit more from the use of local data and implementation at
finer scales.

BUILDING AN OPEN-SCIENCE
PLATFORM

A fundamental concern for all reef stakeholders is improved
understanding of the effects of climate change on coral reef
growth, coastline protection, fisheries production, and other
reef services (Perry et al., 2020; Reverter et al., 2022). Yet, deci-
sions have been and will continue to be made in the absence of
critical knowledge. We outline a collaborative approach to pro-
vide a more comprehensive understanding of the consequences
of climate change for coral reefs and future ecosystem set-
vices that should promote a more diversified and learning-based
approach to refugia.

Large data sets need to be made available to modelers work-
ing at various scales. There are several efforts to collect reef data
from field observations and remotely sensed satellite observa-
tions at large scales, including the Global Coral Reef Monitoring
Network, Reef Check, MERMAID, Reef Life Survey, Reef-
Cloud, and the Allen Coral Atlas. Continued efforts to ensure
standardization of field methods and data models are critical,
including interoperability among different databases. Efforts to
analyze and model these data often depend on the specific inter-
ests and potential biases of investigators and funders. This is not
enough to ensure global, open-access, robust field data sets and
requires substantial reprioritization by scientists, monitoring ini-
tiatives, funders, and policy makers. Additionally, coral stress
responses are often evaluated rather than ecosystem services,
which are more likely to provoke societal support for better
management of coral refugia. Finally, many new and important
variables that could provide better connections to human needs
have been recognized, but many ate not being modeled. Ini-
tiatives, such as Earth System Models and CMIPs, should seck
advice from coral reef ecologists and social scientists to identify
variables that predict ecosystem services at appropriate scales
for transformative policies. In some cases, this may require scal-
ing down from global mapping to national or regional scales
of conservation and resource management, such as fisheries
and watershed management. Specifically, variables needed at
finer scales for future projections include SST variability, cal-
cium carbonate concentrations, dissolved oxygen, turbidity, and
nutrients.

Often critical but overlooked is the governance context and
the ability and willingness of stakeholders to effectively engage
in solutions. No amount of science can overcome a social inertia
that prevents action or limits actions to short-term interests. For
example, some nations in the current 50 Reefs portfolio have
long histoties of poor outcomes of protected area management
and widespread use of destructive fishing (Hampton-Smith
et al., 2021; McClanahan et al., 2006, 2015). Short-term pro-
duction of food or wealth, often at the expense of long-term

sustainability, marks the policies of many but not all tropical
nations. Countries with long histories of autocratic governance
are often associated with weak histories of supporting conser-
vation without external support (McClanahan & Rankin, 2010).
Governance policies that subsidize extraction rather than the
protection of natural resources are likely to increase human and
natural resource poverty (Sumaila et al., 2016). Future efforts
may be better served by considering enabling conditions, such
as political will, feasibility, and the cost and benefits of manage-
ment based on historical success (Jones et al., 2018). There are
locations in tropical nations with histories of effective reef con-
servation that can form a basis for evaluating the principles of
success (Cinner et al., 2010).

Any effort to improve predictions is going to require the
principles of continuous risk assessment and learning. That
is, exploratory and adaptive science are closely tied to adap-
tive management. The task is too large for any single set of
investigators but requires a learning community and platform
that extends the normal bounds of academic and conservation
programs. Future scientific efforts for reef conservation need
to encourage and support diverse approaches and avoid the
pitfall of seductive or monolithic theories. At the same time,
managers must be prepared to learn and adapt as global and
local stressors produce novel and challenging conditions for
coral persistence. This will require acknowledging and learning
from failures while recognizing the constraints of limited time
and resources for reef conservation. Furthermore, future con-
servation efforts must include continual trialing and updating
of information, combinations of empirical surveys and envi-
ronmental remote sensing information, and close work with
managers, stakeholders, scientists, and funders to develop criti-
cal conservation priorities for coral reefs from local to regional
to global scales.

CONCLUSIONS AND
RECOMMENDATIONS

Based on our review of 30 years of climate refugia studies, many
locations could be classified as potential refugia for coral reefs
and priorities for conservation (Table 1; Figure 4; Appendix S1).
However, portfolios of climate refugia must be based on empiri-
cal field-based examinations of relationships among key metrics
of coral cover, diversity, and ecosystem services; for example,
connecting climate forecasting to empirical compilations of field
data to show where the highest coral cover and biodiversity
is or is predicted to occur. A specific example of identifying
refugia described above is the mapping of the distribution of
excess heat globally and its hump-shaped relationship with coral
covet. This relationship indicates peak coral cover at intermedi-
ate excess heat. Knowing where these peak locations occur can
help identify where potentially high coral cover, biodiverse, and
functioning reefs occur at a global scale. Additionally, given the
global diversity, coverage, and accessibility of ocean vatiables, it
is now feasible to create more sophisticated multivariate mod-
els to improve the future climate refugia portfolios; specifically,
by combining observations of coral communities and remotely
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sensed environmental variables with artificial intelligence and
machine learning, It is now possible to create more accurate pre-
dictive ensemble models, similar to those used to make climate
predictions provided by the CMIP.

There are several scientific needs to improve identification
of coral reef refugia (Table 2). First, variables predictive of
avoidance, resistance, and recovery refugia need to be identi-
fied and evaluated to improve conservation of coral reefs. This
process of scientific discovery and policy implementation will
provide important learning by reducing current blind spots and
increasing adaptive management of coral reefs and the ecosys-
tem services they provide to neatly 1 billion people. Beyond
global efforts to identify better methods and refugia, there is
a need to increase support for local and regional downscaled
refugia portfolios and to match the scale of scientific studies to
the scale of governance and policy actions and include social,
economic, social governance, and political will when designing
global portfolios of conservation action. Coral reef scientists
from broad disciplines need to be engaged in these initiatives to
ensure their decisions are based on the best evidence. The suc-
cess of such efforts depends on improving large-scale and freely
available data-driven monitoring of coral reef biodiversity and
ecosystem functioning. This will ensure that science and policy
action have the best information with which to identify climate
refugia and catalyze global action to secure the future of coral
reefs in a changing climate.
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