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How prevalent is spontaneous thrombosis in a population containing all sizes of in-

tracranial aneurysms? How can we calibrate computational models of thrombosis based

on published data? How does spontaneous thrombosis differ in normo- and hypertensive

subjects? We address the first question through a thorough analysis of published data sets

that provide spontaneous thrombosis rates across different aneurysm characteristics. This

analysis provides data for a subgroup of the general population of aneurysms, namely

those of large and giant size (>10 mm). Based on these observed spontaneous thrombosis

rates, our computational modeling platform enables the first in-silico observational study

of spontaneous thrombosis prevalence across a broader set of aneurysms phenotypes. We

generate 109 virtual patients and use a novel approach to calibrate two trigger thresholds:

residence time and shear rate, thus addressing the second question. We then address the

third question by utilizing this calibrated model to provide new insights into the effects of

hypertension on spontaneous thrombosis.

We demonstrate how a mechanistic thrombosis model calibrated on an intracranial

aneurysm cohort can help estimate spontaneous thrombosis prevalence in a broader

aneurysm population. This study is enabled through a fully automatic multi-scale modeling

pipeline. We use the clinical spontaneous thrombosis data as an indirect population-level

validation of a complex computational modeling framework. Furthermore, our framework

allows exploration of the influence of hypertension in spontaneous thrombosis. This lays

the foundation for in-silico clinical trials of cerebrovascular devices in high-risk popu-

lations, e.g. assessing the performance of flow diverters in aneurysms for hypertensive

patients.

Keywords: Intracranial aneurysms, Spontaneous thrombosis, Residence time,

Shear rate, Hypertension
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I. INTRODUCTION

Spontaneous thrombosis (ST) of large and giant (>10 mm) unruptured intracranial aneurysms

(IAs) is a common event that can be detected incidentally during advanced neuroradiological stud-

ies before treatment1–3. These spontaneously thrombosed aneurysms are considered unstable dy-

namic structures that may grow, recanalize, bleed, compress, or cause thromboembolic events2–4.

Partially spontaneously thrombosed aneurysms may serve as a source of emboli leading to is-

chemic attack3,5 or cerebral infarction1,5. Complete ST can sometimes stabilize the growth of the

lesion, however, 33% (7/21) of the completely thrombosed aneurysms presented recanalization at

follow-up1.

Given this, it is worth asking, what is the precise prevalence of ST formation in IAs? In the

literature, spontaneous intra-aneurysmal thrombosis is a common phenomenon, and the ST preva-

lence reported in different studies varies widely. The ST prevalence rate of pediatric patients

(8.3%-16.9%) is higher than in adults6,7, while female patients are more likely to present with ST

than male patients1. Similarly, differences are observed depending on the aneurysms themselves,

with ST in small aneurysms (≤ 10 mm) a much rarer phenomenon1,8 than the approximately

50% prevalence rate in giant IAs (≥ 25 mm)3,9. Despite the statistics, the prevalence of ST on a

population level is not well-understood, as most studies had small sample sizes. We collect the

clinically-reported prevalence rates of ST (partial or complete) in IAs without treatment in the

literature and conduct a statistical analysis to identify the prevalence rate of ST across different

patient demographics and aneurysm characteristics.

Experimental studies have highlighted the importance of hemodynamic factors in the growth

and rupture of aneurysms10,11. However, in-vivo or image-based population-level analysis of

thrombosis hemodynamics in realistic anatomies and physiologies is currently very difficult, if not

impossible. Computational modeling has proven to be a powerful tool in predicting thrombosis in

aneurysms before and after treatment, and thus in patient-specific treatment planning or in-silico

trials12,13, nonetheless, such an approach remains dependent on hemodynamic thresholds usually

chosen based on ranges derived from limited highly-controlled in-vitro experiments, instead of

accurate representatives of real anatomy and physiology. Computational fluid dynamics (CFD)

models use hemodynamic surrogates in thrombosis initiation, with residence time (RT) and shear

rate (SR) being the most widely used parameters in flow stasis-induced clotting models12,14,15.

However, there is no consensus on the trigger thresholds, with different values used throughout
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the literature12,14,16–18. Therefore, there is a need to calibrate RT and SR thresholds for use in

clotting models12. In this study, we create, for the first time, an automatic computational workflow

that enables population-level in-silico studies to calibrate hemodynamic thresholds (RT and SR)

of thrombus formation against real population-specific data.

Finally, we use our calibrated thrombosis model to study the effect of hypertension on ST.

Hypertension is a well-known risk factor of unruptured IAs19 and more than 75% of saccular IA

patients have hypertension20. The flow diverter performance assessment (FD-PASS) in-silico trial

showed that hypertension may cause less effective flow diversion13, while the IntrePED study

reported an association between hypertension and ischaemic stroke in flow-diverted aneurysms21.

We modeled hypertension as boundary conditions modulated by a cerebral autoregulation system

(CARS) model22 originally proposed by Mader, Olufsen, and Mahdi 23 .

This paper aims to first establish the prevalence of ST in IAs with different characteristics and

different demographics. We then calibrate the hemodynamic thresholds (RT and SR) of thrombus

formation by matching our numerical ST prevalence to the real clinical data. Finally, we use our

calibrated thrombosis model to investigate the differences in the ST prevalence and aneurysmal

hemodynamic factors (RT and SR) in normotensive and hypertensive patients. The novelty of

this study is that we create, for the first time, a fully automatic multi-scale modeling workflow

that enables population-based in-silico studies to calibrate hemodynamic thresholds (RT and SR)

of thrombus formation against real population-specific data. We demonstrate how a mechanistic

thrombosis model calibrated on an intracranial aneurysm cohort (large and giant IAs only) can

help estimate ST prevalence in a broader aneurysm population (all sizes included). In addition, our

framework can provide new insights into the impact of hypertension on thrombosis by modeling

hypertension as boundary conditions modulated by a CARS model22.

II. MATERIALS AND METHODS

Through a thorough analysis of published data sets that provided ST rates for a subgroup of

the general population of aneurysms, namely those of large and giant aneurysms (>10 mm), we

estimated the clinical ST prevalence of large and giant IAs for our simulation cohort. Using the

clinical ST prevalence rate, we performed an in-silico observational study in 109 virtual patients to

calibrate RT and SR thresholds and estimate ST prevalence in a broader IA population. We further

investigated how ST differs in normo- and hypertensive conditions. As shown in Fig. 1, we created
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a fully automatic workflow executed on a cloud computing platform, MULTI-X (https://multi-

x.org), that segments angiographic image data, generates volumetric meshes, sets patient-specific

boundary conditions using a statistical population model, assembles and executes fluid dynamic

simulations, and provides patient-specific intra-aneurysmal flows. While each component of our

methodological framework has been independently developed and validated before, this study is

the first to model and present such a complex process on the largest patient cohort to date.

FIG. 1: Automatic workflow on MULTI-X. The images were from the @neurIST project24,25.

We applied a multi-tasking neural network to automatically segment these images26 and gener-

ate the corresponding patient-specific vascular surface models, and then we used ANSYS ICEM

CFD v19.3 (Ansys Inc. Canonsburg, PA, USA) to generate unstructured volumetric meshes.

The patient-specific inlet flow waveforms were generated from a Multivariate Gaussian Model

(MGM)27 and a CARS model22. Finally, the coupled Navier-Stokes equations and transport equa-

tion for RT were solved in ANSYS CFX v19.3 (Ansys Inc., Canonsburg, PA, USA) using a finite

volume method12.
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A. Systematic literature review

To estimate the ST prevalence for different aneurysm characteristics, a comprehensive and sys-

tematic review of the literature up to July 2021 was conducted on the MEDLINE database. We

searched for articles reporting cohort cases of IA ST (partial or complete). The articles were

identified using Boolean searches on PubMed with the following keywords “((spontaneous throm-

bosis) or (spontaneous clot formation)) and ((intracranial aneurysms) or (cerebral aneurysms))”.

The search strategy followed the PRISMA (Preferred reporting items for systematic review and

meta-analysis protocols) guidelines28. Case report articles were not considered. Only articles in

English were considered and only those reporting patient cohorts. Aneurysms were divided into

three groups: small (≤ 10 mm), large (>10 mm and <25 mm), and giant (≥ 25 mm) according to

the sizes reported by the investigators.

After the systematic literature review, we were able to estimate the ST prevalence of aneurysms

of different sizes. For a population, the ST prevalence (P) is given by

P =
NsPs +NlPl +NgPg

Ns +Nl +Ng

×100%, (1)

where Ns, Nl , and Ng are the numbers of small, large, and giant IAs, respectively. Ps, Pl , and Pg

are the ST prevalence of small, large, and giant IAs, respectively. However, ST is rarely reported

in small IAs, so we used the collected ST prevalence of only large and giant IAs, Pl and Pg, to

estimate the clinical ST prevalence for our cohort according to its distribution of large and giant

cases. We calibrated our clotting model by matching the numerical ST prevalence to the estimated

clinical ST prevalence for our simulation cohort. After calibration, we used the calibrated model

to predict the ST prevalence for small aneurysms, Ps. Finally, the ST prevalence for a broader

general population can be estimated by equation (1).

B. In-silico observational study

1. Patient and aneurysm characteristics

The patient image data in this paper were from the @neurIST project24,25. All images were

anonymized, respecting the @neurIST ethical approval for use of patient data (http://www.aneurist.org).

We only considered single aneurysm cases. 109 patient datasets (72 female, 37 male), with 67

small, 40 large, and 2 giant IAs, were available. Among the 109 cases, 67 small, 21 large, and 1
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giant case were segmented automatically, while the other 19 large and 1 giant case were manually

segmented in the @neurIST project. The details of the population characteristics of our simulation

cohort can be found in the supplementary material Table S1, the average age of our simulation

cohort is 51 years (range 22-78 years) and the mean aneurysm neck size is 5.0 ± 2.1 mm (range

1.7 – 12.3 mm). Of these 109 IAs, 61%(67/109) are small IAs, 37%(40/109) are large IAs, and

2%(2/109) are giant IAs. It is well-established in the literature that aneurysm size is the most

important factor associated with ST1,8,29. The distribution of aneurysm sizes in our simulation

cohort is quite similar to that of the general population obtained from a large consecutive series

of 1993 ruptured IAs30: 68%(1355/1993) small IAs, 30%(598/1993) large IAs, and 2%(40/1993)

giant IAs. Thus, the size-based ST prevalence calculated by our calibrated model can be applied

to the general population.

2. Flow simulations

Multiple steps are required to generate volumetric meshes for CFD simulations. We used a

3D multi-task segmentation neural network26 to complete the segmentation of the vessel and

aneurysm dome automatically. This segmentation network achieved an average Dice score of

0.82 and average surface-to-surface error of 0.20 mm (less than the in-plane resolution (0.35

mm/pixel)); from the segmentation, we acquired patient-specific vascular surface models that were

used to generate unstructured volumetric meshes using ANSYS ICEM CFD v19.3 (Ansys Inc.

Canonsburg, PA, USA). Details of the mesh convergence analysis, simulation specifications, and

equations for calculating RT and SR can be found in the supplementary material.

For a given case, if RT is greater than the RT threshold and SR is less than the SR threshold in

the aneurysm sac, thrombus formation is assumed to initiate. We performed a series of unsteady

simulations using the generated volumetric meshes and calculated the magnitude and distribution

of RT and SR on the whole computational domain (both the vessel and the aneurysm sac) and

on the isolated aneurysm sac for each case (Fig. S1). By varying the values of the RT and SR

thresholds, we obtained different numerical ST prevalence across our cohort of large and giant

IAs. Finally, by matching the simulated ST prevalence in our large and giant IA cohort to the

clinical ST prevalence, we were able to obtain a plausible range of trigger threshold values for RT

and SR and calibrate our model.
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3. Patient-specific inlet flow boundary conditions

Previous studies have found that inlet flow boundary conditions of CFD models affect IA hemo-

dynamics, with inter-subject variability in cerebral blood flow found to be 10-20%22,31–33. With

in-vivo measurement-derived boundary conditions unavailable for our cohort, we used a previ-

ously developed Multivariate Gaussian Model (MGM)27 to generate patient-specific boundary

conditions as internal carotid flow waveforms. The MGM model was trained and calibrated by

the data from 17 healthy young adults34. A virtual population of 1000 normotensive waveforms

was then generated while three of them, i.e., high, mean, and low, were selected to maximize the

variability across the entire virtual population (by selecting high/low as the upper/lower bounds of

the 1000 waveforms). To consider inter-subject variability, these three representative waveforms

were used as inlet boundary conditions for flow simulations. Poiseuille’s law was used to scale

the MGM-generated waveforms to achieve a time-averaged wall shear stress of 1.5 Pa at the inlet.

Fig. S2 shows the inlet flow waveforms for a 51-year-old female.

According to the latest definition of hypertension from the American College of Cardiolo-

gy/American Heart Association (ACC/AHA) in November 201735, participants are considered hy-

pertensive if they have a measured systolic blood pressure SBP ≥ 130 mmHg or a measured dias-

tolic blood pressure DBP ≥ 80 mmHg. We use a computational model of cerebral autoregulation22

originally proposed by Mader, Olufsen, and Mahdi 23 to model the effect of hypertension on IA

hemodynamics. The CARS model takes the normotensive blood flow waveforms calculated for

each virtual case, estimates the corresponding normotensive pressure waveforms (SBP: 90-120

mmHg, DBP: 70-80 mmHg, heart rate: 68 bpm), scales the normotensive pressure waveforms to

hypertensive waveforms (fixed scale factor 1.3 of SBP and DBP22,36, 68 bpm), and finally gener-

ates the associated hypertensive waveforms.

III. RESULTS

A. Clinical ST prevalence

According to our search strategy, 434 studies were initially identified; after removing duplicates

and case reports, 185 articles remained. 152 were excluded by title or abstract reading, while 33

underwent further detailed review for eligibility. A total of 11 studies were finally included in the

statistical analysis.

8



In Table I, we present the summary of all ST prevalence calculated from the results of our

literature review. The details of the collected cohort data of ST in large and giant aneurysms

are shown in Table S2 and Table S3. There are 646 IAs in total. The distribution of aneurysm

sizes in these 646 IAs are as follows: 68%(437/646) small, 4%(29/646) large, and 28%(180/646)

giant IAs. Of the 29 large IAs, 7 cases presented with ST. Therefore, the ST prevalence (partial

or complete) for large IAs is 24.1%(7/29)± 7.9%, with 90% confidence. Of the 180 giant IAs,

97 cases were thrombosed. Therefore, the ST prevalence (partial and complete) for giant IAs is

53.9%(97/180)±6.1%, with 90% confidence.

For our simulation cohort with 40 large and 2 giant cases, according to equation (1), we esti-

mated the ST prevalence rate as 25.5%. We used this as a criterion to calibrate the RT and SR

threshold parameters.

TABLE I: Summary of the literature ST prevalence.

Characteristics ST prevalence References

Giant (≥ 25 mm) 53.9%(97/180)±6.1% Schubiger et al.9; Whittle et al.3; Baumgartner et

al.37; Nurminen et al.38; Saatci et al.39

Large (>10 mm and

<25 mm) 24.1%(7/29)±7.9% Baumgartner et al.37; Saatci et al.39

Small (≤ 10 mm) Rarely reported Alberto et al.1; Ohta et al.8; Scerrati et al.29

ICA (giant) 42.1%(32/76)±9.3% Schubiger et al.9;Whittle et al.3; Baumgartner et

al.37; Nurminen et al.38; Saatci et al.39; Pierot et al.40

MCA (giant) 62.3%(33/53)±11.0% Schubiger et al.9; Whittle et al.3; Nurminen et al.38

BA (giant) 63.2%(24/38)±12.9% Schubiger et al.9; Whittle et al.3; Nurminen et al.38

Sex Slight female prevalence Alberto et al.1

Age (<15 years) 8.3%−16.9% Lasjaunias et al.6; Liang et al.7

ICA, internal carotid artery; MCA, middle cerebral artery; BA, basilar artery.

B. Numerical results of RT and SR

The maximum RT and minimum SR in the aneurysm sac at mean flow normotensive conditions

for all 42 large and giant cases are shown in Table S4. For a given pair of RT and SR thresholds, we
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obtained a specific numerical ST prevalence for large and giant IAs. We plotted all combinations

of RT and SR threshold values that can make the simulated ST prevalence close (within ±5%) to

the clinical ST prevalence of 25.5% (Fig. 2). The overlap of these parameters at high, mean, and

low is considered to be the plausible range of thresholds since it indicates where the thresholds are

largely independent of the inter-subject flow variability. We have 42 large and giant cases in total,

and an increase or decrease of one thrombosed case increases or decreases the ST prevalence by

2.4%. In Fig. 2, we set a 5% tolerance for the numerical ST prevalence (tolerance for 2 cases),

so the threshold values in the overlap region in Fig. 2 make the numerical ST prevalence between

20.5-30.5%. For the overlap area in Fig. 2, the RT and SR thresholds are in the ranges [1.0, 2.3] s

and [8, 27] s−1, respectively. The average value of RT and SR in the overlap area are 1.9 s and 11

s−1, respectively.

FIG. 2: For a given case, if RT is greater than the RT threshold and SR is less than the SR threshold

in the aneurysm sac, thrombus formation is assumed to initiate. We plotted the scatter graph of the

RT and SR thresholds that were found by matching our numerical ST prevalence to the clinical

ST prevalence (25.5%) of large and giant aneurysms with a 5% tolerance. The step size of the RT

threshold is 0.1 s and the step size of the SR threshold is 1 s−1. The plausible threshold values for

triggering thrombosis formation are those located in the overlap area.

When using the average value of RT and SR thresholds, i.e., 1.9 s and 11 s−1, the numerical

ST prevalence of large and giant IAs for our cohort is 28.6%(12/42)± 11.5%, while the numer-

ical ST prevalence of small IAs for our cohort is 17.9%(12/67)± 7.7%. We estimated the ST
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prevalence of large IAs (24.1%±7.9%) and giant IAs (53.9%±6.1%) from the literature data and

we obtained the ST prevalence of small IAs (17.9%± 7.7%) from our observational study. The

distribution of aneurysm sizes in a general population with 1993 IAs30 is: 68% (1355/1993) small

IAs, 30% (598/1993) large IAs, and 2% (40/1993) giant IAs. Therefore, the ST prevalence of the

general population containing all sizes of intracranial aneurysms can be estimated by equation (1)

as 20.5%(408/1993)±1.5%.

TABLE II: Comparison between thrombosed and non-thrombosed aneurysms.

ST large/giant Non-ST large/giant p value ST small Non-ST small p value

Number of IAs 12 30 12 55

Age (year) 51.9±5.7 51.5±5.8 0.83 50.5±3.3 51.4±7.5 0.55

Female,%(n/N) 58.3%(7/12) 66.7%(20/30) 0.35 66.7%(8/12) 72.7%(40/55) 0.84

Size (mm) 15.6±6.1 13.1±3.5 0.19 6.9±1.0 6.1±1.8 0.09

Neck width (mm) 6.3±2.6 6.9±2.1 0.49 3.4±0.6 4.0±1.1 0.01

Aspect ratio 1.9±0.4 1.6±0.7 0.05 1.7±0.4 1.1±0.5 8.2e-4

Non-sphericity 0.26±0.05 0.19±0.06 4.5e-4 0.26±0.03 0.16±0.06 1.7e-4

Max RT (s) 2.51±0.14 1.83±0.72 2.1e-5 2.46±0.20 0.73±0.60 4.1e-24

Min SR (s−1) 4.80±3.10 26.52±16.36 5.2e-8 3.23±2.76 81.30±102.52 8.0e-7

Aneurysm location

ICA/PCoA, % (n/N) 25.0 (3/12) 76.7 (23/30) 66.7 (8/12) 61.8 (34/55)

MCA/Sylvian, % (n/N) 16.7 (2/12) 16.7 (5/30) 16.7 (2/12) 25.4 (14/55)

BA/PCA/SCA, % (n/N) 50.0 (6/12) 6.6 (2/30) 8.3 (1/12) 7.3 (4/55)

ACA, % (n/N) 8.3 (1/12) 0 (0/30) 8.3 (1/12) 5.5 (3/55)

p values were computed using the two-tailed t-test.

ICA, internal carotid artery; PCoA, posterior communicating artery; MCA, middle cerebral artery; BA, basilar

artery; PCA, posterior cerebral artery; SCA, superior cerebellar artery; ACA, anterior cerebral artery.

Our simulation results show that bigger aneurysms are more likely to be thrombosed, which is

consistent with the literature data1,8,29,41. No exact ST prevalence for small IAs is reported in the

literature. From a hemodynanics point of view, our study found that the numerical ST prevalence

for small IAs of our cohort is 17.9%. Those thrombosed small IAs have a significantly higher
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aspect ratio (AR), measured as aneurysm height-to-neck width, than the non-thrombosed small

IAs (Table II).

To investigate why bigger aneurysms are more likely to present with ST, we compared the

demographics and aneurysm characteristics for thrombosed large and giant IAs, non-thrombosed

large and giant IAs, thrombosed small IAs, and non-thrombosed small IAs (Table II). The above

grouping for all 109 cases is based on the model-predicted ST status. These four groups are very

similar in terms of patient age and sex, but the size and AR of the thrombosed groups are larger than

that of the non-thrombosed groups. 62.5% (15/24) of the thrombosed group are high AR ( >1.6)13

IAs. In contrast, high AR cases only account for 24.7% (21/85) of the non-thrombosed group. In

our cohort, bigger aneurysms are also more likely to be high AR cases, with 59.5% (25/42) of the

large and giant IAs having a high AR, while only 16.4% (11/67) of the small IAs have a high AR.

The thrombosed groups, including both large/giant and small IAs, have a significantly higher AR

and non-sphericity than the non-thrombosed groups. Our results show that IAs with higher AR

and non-sphericity are more likely to be thrombosed and bigger aneurysms usually have a higher

AR.

We also analyzed the relationships between aneurysm geometry characteristics and the two

hemodynamic factors, RT and SR, for all 109 cases. As shown in Fig. S3, correlation between

size and RT/SR is weaker than between AR and RT/SR, and the maximum RT increases with AR.

The minimum SR in the aneurysm sac decreases with both size and AR.

C. The effect of hypertension on the ST prevalence

We imposed hypertensive inlet waveforms to investigate how hypertension affects the ST preva-

lence in large and giant IAs. Our numerical results show that the ST prevalence of large and giant

IAs of our cohort at hypertension is 23.8%, which is lower than at normotension (28.6%). To in-

vestigate why ST might be less common in hypertensive patients, we compared normotension and

hypertension in terms of the maximum RT and minimum SR in the aneurysm sac for all 42 large

and giant IAs ( Fig. 3). No significant differences are observed in the maximum RT calculated

under normotensive and hypertensive conditions (p = 0.5928). However, 90.5% (38/42) of cases

in hypertension have a higher minimum SR than in normotension (p = 0.0007). This explains why

flow stasis-induced computational models show a relatively lower ST prevalence in hypertensive

patients.
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(a) Maximum Residence Time (RT) (b) Minimum Shear Rate (SR)

FIG. 3: Comparison between normotension and hypertension for all 42 large and giant IAs in

terms of the maximum RT and the minimum SR. In the box and whiskers plot, the horizontal line

within the box denotes the median value. The lower and upper edges of the box denote the 25th

and 75th percentiles. The ends of the whiskers are drawn to the upper and lower extreme values.

p values were computed using the two-tailed t-test.

IV. DISCUSSION

The prevalence of ST in large and giant aneurysms reported in the literature varies widely.

ST occurs in 10% to 30% of unruptured large and giant aneurysms1, while the prevalence of ST

varies from 30% to 70%1,3,9,29 in giant aneurysms alone. For a specific cohort, the distribution of

large and giant IAs can vary. The ST prevalence may be higher with a larger proportion of giant

cases. This might be one of the main reasons why the ST prevalence in large and giant IAs varies

widely. Another reason is that some statistics are based on limited sample size. To obtain more

accurate ST prevalence in aneurysms of different sizes, we conducted a comprehensive literature

review. We collected 646 cases in the literature, with 437 small, 29 large, and 180 giant IAs.

7 out of 29 large IAs and 97 out of 180 giant IAs spontaneously thrombosed, therefore, the ST

prevalence is 24.1%(7/29)± 7.9% for large IAs and 53.9%(97/180)± 6.1% for giant IAs, with

90% confidence. These were used as benchmarks to calculate the ST prevalence of large and giant

IAs according to the distribution of large and giant IAs in our simulation cohort. Although large

and giant IAs are more likely than small IAs to be spontaneously thrombosed, the intraluminal

thrombosis is present in approximately the same proportion of giant aneurysms, regardless of
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location38. The ST prevalence of large and giant IAs in different locations (ICA, MCA, and BA)

is shown in Table I, but these statistics are not included in our calibration experiment as it is

well-established that aneurysm size1,8,29 is the main factor associated with ST, irrespective of its

location38.

Three main triggers of flow stasis-based clotting models appear in the literature: (1) high RT

alone; (2) low SR or wall shear stress (WSS) alone; and (3) high RT and low SR/WSS in combi-

nation. However, there is no clear consensus on the values of the trigger thresholds, and published

works studying ST hemodynamic thresholds often have small sample sizes. Based on CFD simu-

lations conducted on 113 aneurysms—where particles injected into the parent vessel were tracked

over multiple cardiac cycles—Leemans et al.42 found that the particle residence time for four out

of five partially thrombosed aneurysms had a long residence time (>1.9 s). While thrombus forma-

tion has been reported to initiate as early as RT = 1 s18, Marsh et al.43 found in their experiments

that a threshold of RT ≥ 1 s was ineffective as multiple patients in their cohort demonstrated a

median RT >1 s in the aneurysm, even before treatment. Reza and Arzani44 critically compared

different RT measures in aneurysms. They compared Particle RT, Eulerian RT, and Virtual-ink RT

(RTV I) in one cerebral aneurysm geometry and obtained maximum RT values in the aneurysm sac

of 0.66 s, 1.05 s, and 6.25 s, respectively. Rayz et al.14 estimated RTV I and analyzed the distribu-

tion of RT for 3 cases, for which they found that the mean RT was 18.22 ± 11 s (range 0.63–40.13

s) in the thrombosed area. Their results showed that a model with both low WSS and high RT

could predict thrombosed areas significantly better than the models using RT or WSS alone. WSS

correlates with SR through the viscosity of the fluid; however, SR is a measure of total blood defor-

mation, which is a better indication of blood stagnation and potential thrombosis because it takes

into account the shear forces due to both the wall and the surrounding fluid16. Based on experi-

mental results from Nyilas et al.45, Gorring et al.16 assumed that flow-induced thrombosis would

be initiated when SR <10 s−1; however, a limitation of their work is that simulations were based

on an idealized cavity rather than a real aneurysm geometry. Based on a Fourier analysis of SR at

thrombosed locations in the aneurysm sac of 10 CFD simulations, de Sousa et al.17 determined 25

s−1 as the threshold for the initiation of thrombosis.

High RT and low SR are usually used in computational models to characterize the flow stasis

that triggers the thrombosis formation process in the aneurysm sac. We calibrated RT and SR

thresholds using the clinical ST prevalence of large and giant IAs. Following calibration, the

plausible range of RT and SR thresholds for our model are located in the overlap area in Fig.

14



2, which indicates that the corresponding simulation results are largely independent of the inter-

subject flow variability. As shown in Table III, the RT threshold is in the range [1.0, 2.3] s, with

an average value of 1.9 s; the ST threshold is in the range [8, 27] s−1, with an average value of 11

s−1. The calibrated RT and SR thresholds are consistent with the literature and also more reliable

due to the rigorous calibration based on clinical data.

TABLE III: Comparison between our CFD calibrated thresholds and the literature thresholds.

Results Simulation Literature

RT threshold (s) 1.9 (range: 1 - 2.3) 1−512,14,18,42,43

SR threshold (s−1) 11 (range: 8 - 27) 10−2512,16,17

ST is not a well-documented phenomenon in hypertensive patients. This might be because

most patients treated for aneurysms have blood pressure-controlling measures in place46. Using

the calibrated RT and SR threshold values, our model predicted a slightly lower ST prevalence

for our virtual cohort in hypertensive conditions, modeled as boundary conditions from a CARS

model22. As shown in Fig. 3, the minimum SR in the aneurysm sac in hypertension is usually

higher than in normotension (P <0.001), although the maximum RT is relatively similar (p =

0.5928). SR is sensitive to changes in normotensive and hypertensive conditions, whereas RT

is robust. Blood flow stasis-induced models are usually triggered by high RT and low SR. In a

specific area in the aneurysm sac, only if RT is higher than the RT threshold and SR is lower

than the SR threshold is the clotting process assumed to initiate. From our simulation results, the

hypertensive conditions have limited effect on RT and SR in the aneurysm sac, thus only causing

a slightly lower ST prevalence than is found in normotensive patients.

We performed CFD simulations for 109 cases and analyzed the relationship between aneurysm

geometry characteristics and flow, finding that bigger aneurysms usually have a higher AR in our

cohort (Table II). Higher AR and more complex shape (higher non-sphericity) lead to higher RT

and lower SR in the aneurysm sac, and high RT and low SR ultimately trigger the thrombosis

formation. There is a strong link between IA morphology and hemodynamics17. The high preva-

lence of thrombus formation within large and giant IAs is related to AR8. Although high AR is

not sufficient for reliable prediction of thrombus formation, IAs with higher AR are more likely

to present with ST. High AR results in low velocity, low SR, and inhibition of pulsatile blood
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flow (Fig. S3-S6), leading to a pro-inflammatory and pro-coagulable micro-environment at the

aneurysm wall1,17.

FIG. 4: Residence Time (RT) and Shear Rate (SR) distribution in normotension and hypertension.

A. An example case comparison between normotension and hypertension

In this section, we show how hypertension affects the distribution and magnitude of RT and

SR with an example case. We performed six simulations for each virtual case using six different

inlet flow waveforms. A middle-aged female patient case (51 years old, aneurysm size 17.8 mm,

AR 2.3, location Basilar Tip) was selected for a detailed analysis. The inlet flow shown in Fig.

S2, which is generated from a MGM model27 and a CARS model22 according to the age and

gender of the patient, is imposed for simulation for this case. As shown in Fig. S7, the time-

averaged velocity distributions are roughly similar for normotension and hypertension, although

the velocity magnitude is slightly higher for normotension. This is because although the peak

velocity of the hypertensive inlet flow waveform is higher than that of the normotensive inlet flow

waveform, the mean velocity is higher for normotension (mean: 13.78 cm/s) than for hypertension

(mean: 11.29 cm/s).

For a given state (normotension/hypertension), the distribution and magnitude of RT and SR
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are almost equivalent. For example, in Fig. 4, the results of 4(a) and 4(b) are very similar. The

difference between the maximum RT values in normotensive and hypertensive conditions is small,

whereas the distribution of RT differs. We found apparent differences in both the magnitude and

distribution of SR from normotension to hypertension. In this case, slightly lower maximum RT

and higher minimum SR in the aneurysm sac are observed in hypertensive conditions.

B. Limitations

Limitations: (1) We assumed clotting in the aneurysm sac was triggered by blood flow stasis,

and high RT and low SR were usually used in computational models to characterize the flow stasis.

Therefore, we only focused on studying RT and SR in this paper. (2) Although we performed a

systematic review, we did not find enough data to estimate ST prevalence for small aneurysms.

It is well-established that aneurysm size is the most important factor associated with ST and this

phenomenon in large and giant aneurysms is well-documented. We only used the clinical ST

prevalence of large and giant IAs to calibrate our clotting model. (3) There were few ST cases

reported in hypertensive patients for us to use to estimate the ST prevalence and compare our

results. This might be because most patients treated for aneurysms have blood pressure-controlling

measures in place. Ours is the first study that looked into RT and SR for hypertensive patients.

Our results showing a slightly lower prevalence of ST in hypertensive cases were based only on

the hemodynanics point of view and there may be other physiology involved that was not included

in our analysis.

C. Conclusion

In this sensitivity analysis into stasis-driven thrombosis trigger thresholds, we first conducted a

systematic literature review to estimate the clinical ST prevalence rate for a subgroup of the gen-

eral population of aneurysms, namely those of large and giant size (>10 mm). We then performed

a series of numerical simulations for a virtual cohort of 109 patients and used the estimated clinical

ST prevalence of large and giant IAs as a criterion to calibrate the trigger thresholds in thrombosis

models. We showed how clotting models can be calibrated on aneurysm cohort and then help to

estimate the ST prevalence for a general population. To accelerate this in-silico calibration ex-

periment, we created a fully automatic workflow to segment the image data, generate the volume
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mesh, impose patient-specific boundary conditions and run the simulations on a cloud comput-

ing platform. Our results showed that the high prevalence of thrombus formation within large

and giant IAs is related to high AR. Bigger aneurysms usually have a higher AR, and IAs with

higher AR are more likely to be thrombosed. Our calibration experiment identified the plausible

values of two commonly used thrombosis trigger threshold parameters, RT and SR, as 1.9 s and

11 s−1, respectively. Furthermore, our model predicted a slightly lower ST prevalence in hyper-

tensive than in normotensive patients due to the larger minimum SR in the aneurysm sac caused

by hypertension. We found that SR is sensitive to the changes of boundary conditions from nor-

motension to hypertension, while RT is more robust. This study not only collated ST literature

and demonstrated how clinical ST prevalence data could guide computational thrombus formation

modeling by identifying plausible ranges of model parameters, but also revealed that ST may be

less common in hypertensive patients with large and giant IAs.
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