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Abstract 

The corrosion properties of the alloy are influenced by the physical parameters 

involved in the preparation process. Experiments to explore the preparation process of 

Al-Mg alloys are very complex and time-consuming, and the amount of data is very 

limited. In this work, the analysis of the corrosion mechanism of Al-Mg alloy 

identified the alloy magnesium content, deformation, annealing temperature and time 

as important factors affecting the corrosion resistance of the alloy. Based on the 

existing experimental data, a machine learning framework that effectively promotes 

smart manufacturing is proposed. The results show that the machine learning 

framework constructed based on the existing experimental results can reliably predict 

the NAMLT values of the alloy. As more data is acquired, the method is expected to 

be used to adjust production processes for efficient and intelligent machining. 
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1. Introduction 

Al-Mg alloys have been used as important structural materials in the 

shipbuilding and transportation industries, due to their high specific strength, 

excellent plastic toughness, corrosion resistance and weldability[1, 2]. The β phase 

(Al3Mg2) in Al-Mg alloy has high nucleation power, which can only be 
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heterogeneously nucleated at the grain boundary and cannot be diffusely 

precipitated[3]. Therefore, the strength of Al-Mg alloy cannot be improved by heat 

treatment. The mechanical properties of Al-Mg alloy are mainly improved by solution 

strengthening of Mg and deformation strengthening. However, when Al-Mg alloys 

with Mg content above 3 wt.% are used for a prolonged period time at working 

temperature, the β phase will continue to precipitate at the grain boundaries, leading 

to the sensitivity of intergranular corrosion. [4, 5].  

The solution to the problem of intergranular corrosion sensitivity is usually to 

stabilizing annealing[3, 6, 7]. Previous studies have shown that stabilized annealing 

causes intermittent precipitation of β phase at grain boundaries, which can block the 

extension of intergranular corrosion and thus enhance the corrosion resistance of the 

alloy[8, 9]. The temperature range for stabilization annealing is above 200°C, which 

is the temperature range for the recovery and recrystallization of the alloy. The 

deformation strengthening of the alloy will be reduced after stabilization annealing. 

At lower annealing temperatures, the alloy recovers and deformation strengthening 

can be partially retained. At higher annealing temperatures or longer times, the alloy 

recrystallizes and the deformation strengthening is completely lost. Therefore, an 

appropriate stabilization annealing process is the main factor affecting the properties 

of the alloy.  

Experiments to explore the stabilization process of a single Al-Mg alloy are quite 

complex and time-consuming, and the amount of data is very limited. The 

stabilization annealing process of Al-Mg alloy depends on the Mg content of the alloy. 

Therefore, a model related to Mg content, stabilization annealing temperature and 

time is needed to predict the corrosion resistance of the alloy. Lim et al. developed a 

model related to the medium degree of sensitization, propagation direction and 

exposure time, which predicted the evolution of intergranular corrosion in AA5083. 

However, the construction of stabilized annealing models for alloys with different Mg 

contents has attracted little attention. Recently, artificial neural networks (ANN) have 

provided new methods for material modeling and process control[10,11]. ANN can 

self-identify patterns of input and output values without any prior natural hypothesis. 
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ANN does not require any knowledge of grain boundary precipitation and 

electrochemical corrosion. Therefore, ANN is applicable to simulate the corrosion 

resistance behavior of Al-Mg alloys under different stabilization annealing.  

In this paper, the corrosion properties of Al-Mg alloys with different annealing 

processes were systematically studied. In addition, a model was developed to predict 

the corrosion properties with Mg content, deformation, stabilization annealing 

temperature and time as parameters.  

2. Experimental and training data generation 

The aluminum alloy ingot was subjected to homogenization heat treatment (475 

˚C/24 h) and then machined hot rolled to 20mm thickness. The hot rolled sheets are 

recrystallized annealed (350°C/2 h) and finally cold rolled with a controlled 

depression of 10%-25% in each pass, for a total deformation of 60% or 35%. The 

actual composition and deformation of the alloy are shown in Table 1. 

Table 1 Sample processing details. 

Sample Mg content (wt%) Deformation (%) 

1# 3.9 60 

2# 4.9 60 

3# 6.1 60 

4# 5.9 50 

5# 6.0 35 

2.1 Microstructure characterization 

Microstructural characterization was performed by optical microscope, electron 

backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The 

quantitative EBSD measurements were carried out on a Quanta 650 with a step size of 

0.1 and the analysis software of channel 5 software. The EBSD samples were 

mechanically sanded and then electrolytically polished at 20 V for 15 s with an 

electrolyte of 5% perchloric acid and 95% methanol. The EBSD sample preparation 

was mechanically ground and then electropolished for 15 s at 20 V, with a 

temperature of 243 K, and an electrolyte of 5% perchloric acid and 95% methanol. 

The TEM samples were prepared by mechanical polishing to 70-100 µm, followed by 
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shearing to 3 mm discs and finally by double-jet electropolishing at temperatures 

below -30°C, with the polishing of 30% nitric acid and 70% methanol. The TEM 

measurements were performed on the JEM-2100F at 200 kV.  

2.2 Degree of sensitization 

The corrosion resistance of Al-Mg alloy was tested by nitric acid mass loss test 

(NAMLT) under different stabilization annealing processes. Three parallel specimens 

of each state alloy were tested, according to the ASTM G67 standard. When the 

NAMLT value of the specimen is less than 15 mg/cm
2
, the specimen is not sensitive 

to intergranular corrosion, indicating that the specimen has good resistance to 

intergranular corrosion. And when the NAMLT value is between 15-25 mg/cm
2
, the 

type of corrosion occurring in the specimen may be uniform corrosion, pitting 

corrosion or intergranular corrosion, which requires further observation of the 

longitudinal section of the specimen. The NAMLT value is greater than 25 mg/cm
2
, 

the specimen is in the intergranular corrosion-sensitive area, the specimen is more 

sensitive to intergranular corrosion. 

3. Results and data analysis 

3.1 Microstructure evolution 

 

Fig. 1 Inverse pole figure maps of the 2# alloy (a) 210℃/1h annealing; (b) 210℃/2h annealing; (c) 

210℃/4h annealing; (d) 210℃/24h annealing. 
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The microstructure of 2# alloy was characterized to explore the corrosion 

mechanism of the alloy. The inverse pole figure maps of the normal direction - rolling 

direction of 2 # alloy is shown in Fig. 1. The 2# alloy exhibits a typical deformed 

structure with elongated grains in the rolling direction, after annealing at 210°C for 

various times. A small amount of recrystallization is present in the alloy at 210°C/24h, 

which is difficult to occur due to the low annealing temperature (as shown in Fig. S1). 

The dislocation distribution of 2# alloy is shown in Fig. S2. It can be seen that the 

high-angle grain boundaries (HAGB) are distributed flat along the rolling direction. 

The low-angle grain boundary (LAGB) presents a network distribution, which 

decreases with the increase of annealing time.  

 

Fig. 2 TEM images showing the zone near grain boundary of the 2# alloy (a) 210℃/1h annealing; 

(b) 210℃/2h annealing; (c) 210℃/4h annealing; (d) 210℃/24h annealing. 

After 210 ℃/2h annealing, the phase precipitates at the grain boundary, as 

shown in Fig. 2 (a). With the increase of annealing time, the coverage of the 

precipitates at the grain boundary increases, and the thickness of the precipitates 

becomes thicker, showing a continuous distribution. After annealing at 220°C for 24 

hours, the maximum thickness of the β phase reached 53 nm with 81% coverage at 

the grain boundaries.  
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3.2 Corrosion resistance 

 

Fig. 3 Intergranular corrosion morphology: (a) 210℃/1h annealing; (b) 210℃/2h annealing; (c) 

210℃/4h annealing; (d) 210℃/24h annealing. 

The corrosion pattern is shown in Figure 3, where the white area is the matrix 

and the black is the area that has been corroded. The 2# alloy exhibited the best 

intergranular corrosion (IGC) resistance after 210°C/2h annealing with a NAMLT 

value of 2 mg/cm
2
. The sample in Fig. 3(d) shows significant IGC penetration with a 

NAMLT of 40 mg/cm
2
. The material can be considered as susceptible to IGC 

according to ASTM G67. 

4. Discussion 

4.1 Corrosion mechanism 

The IGC results show that the alloy of 240/24h annealing exhibits poor corrosion 

resistance, which is attributed to the continuous precipitation of the β phase along the 

grain boundaries (see Fig.2). Xue et al[5]. have reported that β phase precipitates 
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precipitate continuously along the HAGB providing a diffusion channel for 

intergranular corrosion, thereby reducing the corrosion resistance of the alloy. During 

annealing, due to the strong positive coupling between the Mg atoms and vacancies in 

the Al matrix with a binding energy of 0.2~0.4 eV, the Mg atoms tend to occupy 

vacancies at the grain boundaries, causing the Mg elements to segregate at the grain 

boundaries [12-14]. The annealing temperature was raised to obtain an intermittent β 

phase and the alloy showed excellent corrosion resistance, as shown in Fig. S3. Ding 

et al. reported that the β phase undergoes spheroidization, with intermittent 

distribution at grain boundaries, at the corresponding annealing temperatures [3]. The 

main nucleation sites of Al-Mg alloy grain boundary precipitates are along high angle 

grain boundaries, and no obvious phase precipitation is found at low angle grain 

boundaries [15, 16]. In cold deformed, the deformation bands are divided by flat large 

angle grain boundaries, providing nucleation sites for the precipitated phase and 

triggering continuous precipitation of the precipitated phase. In addition to the 

distribution of grain boundary precipitates, grain energy storage also plays an 

important role in corrosion propagation [17]. The distribution of grain boundary 

precipitates and grain energy storage are both affected by the stabilization annealing 

process. It can be concluded that the annealing process directly affects the corrosion 

resistance of Al-Mg alloys.  

4.2 Data analysis 

The ultimate goal of training a neural network is to ensure that the neural 

network model has good generalization ability to non-training samples. It is required 

that the model can effectively approximate the inherent laws contained in the sample, 

rather than considering the ability of the model to fit the training sample. Therefore, 

this paper adopts the K-fold cross-validation method to strengthen the generalization 

ability of the established network model. The training samples are evenly divided into 

5 parts, 4 samples are selected in turn for training, and the remaining 1 part is used for 

verification. Backward propagation artificial neural network was used to construct a 

model to predict the corrosion resistance of the alloy. The schematic diagram of the 

artificial neural network is shown in Fig.4, which includes an input layer, an output 
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layer and four hidden layers.  

 

Fig. 4 Proposed machine learning algorithm. 

In summary, the NAMLT of Al-Mg alloy is affected by factors such as Mg 

content and preparation process. Therefore, input layer includes Mg content, 

deformation, temperature and time, and the output layer is NAMLT. The sample data 

is normalized to improve the convergence reliability and speed of the model. 

 𝑃′ = 0.1 + 0.8 (
𝑝 − 𝑝𝑚𝑖𝑛

𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛
) (1) 

Where, P is the original data and P' is the unified data corresponding to P. The 

corrosion properties of alloys in different states are listed in Table S1. Each hidden 

layer in the model has 20 nodes, the maximum number of iterations is 1000, and the 

target error is 0.000001. 
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4.2 Models verification 

 

Fig. 5 Results of machine learning algorithms prediction. 

The prediction results of the mechanical algorithm are shown in Fig. 5. It can be 

seen that the predicted results are in good agreement with the experimental results. 

Although there are individual large errors between the predicted results and the actual 

experimental results, such as sample 11, both results belong to the same level of 

corrosion according to the ASTM G67 standard. Therefore, the model can still 

accurately predict the corrosion results of Al-Mg alloys. To further investigate the 

accuracy of the predicted values, the mean absolute error between the experimental 

and predicted values was analyzed. The calculation formula is as follows: 

 𝑀𝐴𝐸 =
1

𝑛
∑|𝐸𝑖 − 𝑃𝑖|

𝑛

𝑖=1

 
(2) 

Where MAE, Pi and Ei are the mean absolute error, predicted value and 

experimental value respectively. The MAE value of the model prediction is 0.195, 

indicating that the framework has a good prediction effect. 

5. Conclusions 

The analysis of the corrosion mechanism of Al-Mg alloy allows to identify the 

alloy magnesium content, deformation, annealing temperature and time as the key 
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information affecting the corrosion resistance of alloy. Based on the correlation of 

composition-process-corrosion properties during the preparation of Al-Mg alloys, a 

machine learning framework to effectively promote intelligent manufacturing is 

proposed. The mechanical learning framework constructed from the available 

experimental results predicts results with an MAE of only 0.195, which implies that 

this model can reliably predict the NAMLT values of alloys.  
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