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Abstract

Graph-structured data has benefits of capturing inter-connectivity (topology) and hetero-

geneous knowledge (node/edge features) simultaneously. Hypergraphs may glean even

more information reflecting complex non-pairwise relationships and additional metadata.

Graph- and hypergraph-based partitioners can model workload or communication patterns

of analytics and learning algorithms, enabling data-parallel scalability while preserving the

solution quality. Hypergraph-based optimisations remain under-explored for graph neural

networks (GNNs), which have complex access patterns compared to analytics workloads.

Furthermore, special optimisations are needed when representing dynamic graph topologies

and learning incrementally from streaming data.

This thesis explores hypergraph-based optimisations for several scalable graph analytics and

learning tasks. First, a hypergraph sampling approach is presented that supports large-scale

dynamic graphs when modelling information cascades. Next, hypergraph partitioning is

applied to scale approximate similarity search, by caching the computed features of replicated

vertices. Moving from analytics to learning tasks, a data-parallel GNN training algorithm

is developed using hypergraph-based construction and partitioning. Its communication

scheme allows scalable distributed full-batch GNN training on static graphs. Sparse adja-

cency patterns are captured to perform non-blocking asynchronous communications for

considerable speedups (10x single machine state-of-the-art baseline) in limited memory and

bandwidth environments. Distributing GNNs using the hypergraph approach, compared to

the graph approach, halves the running time and achieves 15% lower message volume. A

new stochastic hypergraph sampling strategy further improves communication efficiency in

distributed mini-batch GNN training.

The final contribution is the design of streaming partitioners to handle dynamic data within a

dataflow framework. This online partitioning pipeline allows complex graph or hypergraph

streams to be processed asynchronously. It facilitates low latency distributed GNNs through

replication and caching. Overall, the hypergraph-based optimisations in this thesis enable

the development of scalable dynamic graph applications.

x
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Chapter 1

Introduction

“ “Exactly!” said Deep Thought. “So once you do know what the question
actually is, you’ll know what the answer means.”

”
Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Graph structured data is omnipresent today and has widespread applications – recommenda-
tion systems for e-commerce, classification algorithms for physical/biological systems like
protein molecules, forecasting models for road traffic, and analytics algorithms for social
networks to name a few. Entities and their relationships can form large-scale inter-connected
networks where the topological structure captures information that cannot otherwise be
represented. New graph data is being constantly generated from sources such as social media
and wireless sensor devices. Given the ever-expanding sizes of graph data, it is becoming
progressively more difficult to process an entire graph on a single machine. Therefore, it is
prudent to explore techniques either to sample smaller subgraphs from the data for a single
machine to handle, or to partition the data into parallel, distributed tasks that can be run on
multiple machines.

Furthermore, while graphs already offer a compelling mix of connectivity information
alongside raw feature information, there are even more enticing avenues now within reach:
temporal graphs can encode evolving connectivity patterns, heterogeneous graphs can mar-
shal together data from multi-modal sources, and meta structures such as meta-paths or
hypergraphs can reveal more complex patterns hidden in the data like non-pairwise rela-
tionships [168]. Hypergraphs, in particular, with their ability to generalise edge connections
and thereby encode relationships between any number of vertices as ‘hyperedges’, can be
used to develop sophisticated models of graph connectivity and communication patterns.
Sampling techniques to construct hypergraphs, and partitioning techniques based on hy-
pergraph models, are therefore valuable tools to enable highly scalable applications. This
thesis examines hypergraph-based optimisations that can be applied to a variety of analytics
and learning tasks on large graphs. The goal is to develop support for efficient, scalable,
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distributed applications on real-world large-scale graph structures, keeping in mind various
system considerations (e.g., limited memory, low network bandwidth, low latency).

For any large-scale data, the most common approach to improve the efficiency of the system
is to distribute the data and computations. Distributed processing of large graphs is made
possible by graph partitioning techniques, where the original graph data is divided into
subgraphs that can be processed in parallel across several machines. Hypergraph-based
partitioning models have been successfully wielded on a few well-known graph analytics
workloads, and have been found to provide a more accurate representation of communication
volume; this is due to their powerful capability of using hyperedges that connect any number
of nodes [70]. However, there remains a need to evaluate the performances of partitioners
on non-traditional workloads and even graph-based learning tasks.

Graph analytics solutions have been a staple in graph theory for centuries. Graph-based
learning applications are a much newer trend, now that machine learning (ML) methods
have established a stronghold for automated decision-making and predictive tasks. The
ability to use graph data in deep learning is a relatively recent advancement. Graph neural
networks (GNNs) operate directly on graph structures to learn vector embeddings and
perform ML tasks such as node classification and link prediction. GNNs have seen a meteoric
rise in popularity and form the core of numerous industry applications today. For example, the
e-commerce giant Alibaba uses graph embeddings for product recommendations on amassive
scale [161]. Uber Eats and Pinterest also curate their recommendations using GNNs [79, 179].
Amongst other things, graph learning has been used for fake news detection through network
spread analysis [121], for drug discovery by modelling biomolecular structures [52], and for
traffic forecasting on spatio-temporal networks [82].

One of the main challenges of GNNs, which prevents their wide adoption in industrial applica-
tions, is the poor scalability to graphs that contain billions of records having high-dimensional
features. For instance, social graphs used by Facebook contain up to a trillion edges [34],
and e-commerce graphs used by Alibaba consist of billions of user/item nodes [161]. What
makes learning tasks on graphs different from analytics tasks is the unique access patterns
afforded by the neighbourhood aggregation steps over multiple layers of GNN computations.
The inter-dependencies between nodes lead to complications in mini-batch generation and
excessive network communication overheads. While sampling approaches have seen some
success, sampling can lead to bias and loss of meaningful structural information. Hence,
distributed whole-graph training is often necessary to maintain the utility of the model while
improving its efficiency on massive datasets.

An understanding of the access patterns arising from GNN computations provides an op-
portunity to adjust the data partitioning and communication schemes in a manner designed
to serve GNNs effectively. Due to the relative infancy of the field, studies are still limited
on data-parallelisation techniques that are tailored specifically towards GNNs. Thus, it is
useful to determine intelligent partitioning strategies for the data and computations involved
during graph learning (e.g., the underlying graph adjacency data, input feature matrices,
and trainable model parameters) that can minimise the communication overheads during
training and inference on distributed systems, especially in environments having memory

2



Chapter 1. Introduction

and network limitations. Hypergraph construction is well-suited to model communication
patterns accurately for such uses, especially when the graph connectivity data is sparse.

In real-world settings, the massive scale of the graph data is not the only challenge. Many
real-world graphs are also inherently dynamic, containing evolving patterns of connections,
or features that change over time. Traditional graph algorithms are not built for temporal
workloads, and the scalability and quality of their results often break down when faced
with such inputs. More widespread support is desirable for graph analytics and graph-based
learning applications to operate on dynamic graph data at scale. Temporally-guided sampling
and partitioning techniques on hypergraphs are therefore vital and interesting challenges.

In a similar vein, while numerous GNN architectures have been devised for static graphs, vast
amounts of training data are being continuously generated by events that denote temporally
evolving relationships between entities (such as social network interactions or user-item
preferences [166, 179]). Graph streams refer to data arriving in the form of a sequence of edge
connections or vertices (the latter with their complete adjacency information). Incremental
updates and online inference tactics may be employed for graph-based learning systems to
process dynamic graph data with sufficiently low latency and high throughput. With this
development of GNNs for dynamic graph streams comes a need for streaming partitioning
techniques to permit efficient and scalable computations.

Given a stream of vertices or edges, heuristics are commonly used to decide the partition into
which to place the new arrivals [155, 156]. Such a one-pass, streaming graph partitioning
algorithm may be applied just prior to a data-parallel dynamic GNN model. However,
streaming partitioners have been primarily evaluated for analytics tasks rather than GNN
workloads. Graph-based learning models provoke new challenges such as ‘neighbourhood
explosion’, calling for strategies involving replication of vertices and re-scaling of partitions
to be incorporated within the streaming partitioning scheme. Therefore, there is ample
scope for research into partitioners designed to fit within a low latency stream processing
environment alongside dynamic GNNs. The ability to distribute streaming data on-the-fly
unleashes the power to process large (even unbounded) graph streams with high throughput
and minimal communication overheads. This allows incremental learning models to be run
even on machines that have limited memory and network bandwidth.

Additionally, the inclusion of more complex data can create future prospects of using het-
erogeneous features and hypergraph metadata to encode streaming workload patterns for
more intricate load balancing and communication scheme improvements. Existing streaming
pipelines are restricted to edge and vertex streams, and none can handle complex inputs
such as hypergraphs. Support for hypergraphs is particularly useful as it extends the scope
of streaming graph pipelines to also process partial/incomplete adjacency information in a
vertex-centric manner. For example, when a hyperedge is ingested, subsequent hyperedges of
a vertex may introduce new previously unseen adjacent vertices. This is not possible with ver-
tex streams where each vertex must be provided with its complete immediate neighbourhood.
The use of such partial adjacency information is unsupported by current state-of-the-art
methods. Therefore, streaming partitioners for graph-based learning, on both graph and
hypergraph stream workloads, are a compelling area of study.
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Figure 1.1: Illustrative pipeline where graph-structured data is ingested in static, dynamic,
or streaming format, and distributed using an appropriate static or streaming partitioner
(which uses a graph or hypergraph model), to allow distributed, data-parallel computations
(static or online) for graph analytics or graph-based learning at large-scale

Overall, this thesis aims to develop more generalisable and efficient tools, for both graph
analytics and learning, that can operate on real-world large-scale graph structures. Several
hypergraph-based optimisations and transformations are explored to sample or partition
graphs that may be static, contain temporal connectivity patterns, or be ingested as complex
event streams.

1.1 Research challenges

This section provides an overview of the main research challenges addressed in the thesis.
The three research questions (RQs) identify gaps in the literature with respect to the broader
motivations laid out above, and outline the specific scope and objectives of the respective
thesis chapters that tackle them.

Broadly, this body of work can be associated with three domains that have complementary
connections with one another: graph/hypergraph partitioning, graph analytics/learning, and
dynamic/streaming data. Each research question discussed below ties into one or more of
these topics, and contributes towards the overall goal of this thesis. An illustrative pipeline
of the combined work is presented in Figure 1.1.

RQ 1: Does the use of hypergraphs improve optimisations in sampling and parti-

tioning for graph analytics and learning?

Hypergraphs generalise graphs by allowing hyperedges (nets) to connect any number of
nodes. This helps to expose more complex relationships (beyond simple pair-wise connec-
tions) that cannot be represented in ordinary graphs. Constructing nets associated with a
node offers an interesting technique to sample subgraph information. Hypergraph-based
sampling approaches have been proposed within some static graph analytics algorithms
such as information cascade (or social contagion) models [19, 37]. One focus of this research
question is to identify a hypergraph construction approach that can be applied to model
temporally evolving graphs. The randomness in the sampling stage during the hypergraph
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construction can potentially be exploited to account for network dynamics, thereby reflecting
temporal dependencies and changing connectivity patterns.

Hypergraph partitioning has also gained popularity due to its strength of modelling com-
munication patterns accurately [70]. Hypergraph-based partitioners are widely used for
balancing computational load while minimising communication cut size for graph analytics,
yet there is a lack of research into their utility for GNN applications. This research question
thus also seeks an evaluation of the efficacy of hypergraph partitioning compared to graph
partitioning, first for different similarity search graph analytics workloads, and then for
distributed full-batch GNN training on various real-world networks.

Mini-batch training in GNNs makes use of sampling as well, which typically generates
random batches of nodes (i.e., subgraphs). It is interesting to consider whether hypergraph
construction, in tandem with this random sampling to create subgraphs, can also better
encode communication volumes to benefit distributed mini-batch training in GNNs.

RQ 2: How do the demands on hypergraph (and graph) partitioners differ when

employed for scalable graph analytics versus scalable graph learning?

Graph algorithms have been a staple for various analytics purposes such as to discover com-
munity structures and shortest paths, to model diffusion through networks, and to measure
similarities between entities. The partitioning quality of various graph- or hypergraph-based
partitioners is typically evaluated by running PageRank [125] on the distributed graph.
However, the workload and application setting have a large impact on the utility of a parti-
tioning scheme. For example, PageRank iteratively updates the scores of every node in the
graph. In contrast, a single-source similarity search algorithm only traverses the common
neighbourhood required to reach the target node. This makes highly connected or central
nodes more likely to be accessed over large query workloads. Hence, this research question
highlights the importance of evaluating whether partitioning can be suitably applied for the
specific workload under question. In situations where there is no communication of data
across the partitioned subgraphs, it is also necessary to determine how the solution quality is
affected. Furthermore, examining the utility of a hypergraph-based partitioning model over a
graph-based model helps to assess whether the former is indeed a more promising approach
to encode communication overheads accurately, be it for graph analytics or graph-based
learning tasks.

Graph-based learning models, when compared to analytics algorithms, rely on entirely
different access patterns when operating on the graph. During the feedforward and back-
propagation phases in graph convolutional network (GCN) training, for instance, the con-
volution operation involves message passing and aggregation steps that induce irregular
data accesses due to complex graph inter-connectivity. Existing systems use partitioning
algorithms designed for traditional graph algorithm workloads (e.g., PageRank, connected
components, or shortest paths), which do not take complex GCN data access patterns into
consideration. Therefore, intelligent message passing strategies need to be employed to
achieve a communication-efficient distributed data-parallel solution for GNN inference and
training. Identifying and properly evaluating such a strategy is another important focus of
this research question.
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RQ 3: Can hypergraph (and graph) partitioning be applied effectively for distributed

learning on dynamic/streaming graph data, particularly in low latency settings?

Many real-world graphs are inherently dynamic with evolving topology and features over
time. In graph-based learning, support for dynamism in GNNs involves modifications to
allow graph snapshots to be processed in sequence [126, 135, 164]. However, distributed
GNN systems are mainly designed for static inputs by employing static graph partitioning,
and suffer poor data locality since the graph data is loaded with every mini-batch iteration.
Batch processing systems suffer poor latency when faced with streaming input, motivating
the need for streaming graph systems instead to perform incremental updates and online
inference in GNNs.

This research question underlines the importance of developing a streaming partitioner
that can keep pace with a streaming GNN pipeline. The partitioner must be evaluated on
GNN inference and training workloads rather than on the graph analytics tasks that are
typically used to measure partitioner performance. This is because the workload of the
task at hand informs the partitioning decisions, with ingested nodes and edges being placed
in appropriate machines on-the-fly to have good locality and load balance. In particular,
decisions surrounding replicated partitioning policies for vertices can affect the efficiency of
distributed GNN computations. The irregular access patterns of GNN operations also incur
additional communication overheads and suffer from ‘neighbourhood explosion’ during
the message aggregation step when updating node representations [11]. Therefore, the
partitioning scheme must be designed to combat this issue, and to successfully meet the
throughput and latency needs highlighted above.

Another priority of this research question is to examine streaming hypergraph partitioning
for a data stream that consists of hyperedges. It is of interest to study the duality between
hypergraphs and bipartite graphs through various hypergraph transformations, to determ-
ine whether models indeed benefit from the more complex hypergraph structures used to
represent incomplete evolving neighbourhoods.

The previous research questions interrogate partitioning and sampling techniques from the
perspective of both graph analytics and learning tasks, with a special focus on hypergraph-
based approaches. There was a preliminary consideration of dynamic graphs in RQ1, which is
expanded here into a deeper investigation of streaming systems. Thus, this research question
seeks to assess the design of streaming graph/hypergraph partitioners within a pipeline that
performs graph learning on massive graph streams in a distributed setting.

1.2 Contributions

Several contributions are presented in this thesis that address various gaps in the literature
and offer advancements to the field. This section summarises the contributions (C1–C6) and
relates them to the various research challenges that were laid out previously.

C1 Hypergraph-based sampling for graph analytics on dynamic graphs: An effi-
cient hypergraph-based sampling strategy is designed to capture temporal patterns of
spread in a dynamic network with evolving connections. Such sampling and modelling

6



Chapter 1. Introduction

techniques have been previously used on static graphs, but it is nontrivial to apply
them to dynamic settings while still preserving the solution quality guarantees. The
proposed hypergraph sampling strategy takes into consideration temporal dependen-
cies in the graph analytics task, thus expanding the scope of previous such models to
dynamic graphs.

C2 Application and evaluation of hypergraph-based (and graph-based) partition-

ing for graph analytics on static graphs: A partitioning scheme with vertex replic-
ation is applied for scaling approximate single-source nearest neighbour search. The
quality of the approximate results depends upon the amount of information contained
within the local data of the subgraph partitions or communicated across. The impact
of restricting inter-partition communication is thus studied, after such partitions are
obtained from the graph or hypergraph partitioning methods, as an initial indica-
tion of the benefits of the hypergraph model in encoding communication overheads.
It is insufficient to rely on performance results from traditional workloads such as
PageRank to determine the effectiveness of these partitioners for new algorithms and
tasks. Therefore, an unsupervised experimental setting is devised to quantify the
effectiveness of the similarity measure with different partitioning parameter settings.

C3 Hypergraph-based partitioning for distributed full-batch GNNs on static

graphs: Graph and hypergraph partitioning strategies have been commonly
evaluated on graph analytics workloads, but GNN training and inference steps induce
irregular access patterns and thus pose unique challenges. The message passing and
aggregation processes involved during the convolution step in GNNs incur heavy
communication overheads. To minimise this network traffic, a hypergraph-based
partitioning scheme is proposed with non-blocking point-to-point communications.
The merits of the hypergraph model are demonstrated over the standard graph model
for partitioning, since the latter does not accurately encode the communication costs.
These optimisations, previously unexplored for GNN training, are shown to be highly
scalable to large number of CPUs.

C4 Hypergraph-based sampling for distributed mini-batch GNNs on static graphs:

When mini-batch sampling is performed in distributed GNN systems, it impacts the
communication volumes across machines. This results in potentially lower quality of
partitions that are based solely on full graph connectivity. Thus, a novel stochastic
hypergraph partitioning model is proposed to encode the expected communication
volume. This hypergraph sampling technique successfully captures the randomness of
communication operations in distributed mini-batch training of GNNs and achieves
improvements over the earlier hypergraph model.

C5 Graph-based partitioning for distributed incremental GNNs on streaming

graphs: A partitioning scheme is designed within a streaming dataflow framework
to support the distributed execution of a data-parallel streaming GNN pipeline. Due
to the latency-critical nature of the incremental GNN pipeline that ingests graph
stream events continuously, there is a need to optimise the latency of the streaming
partitioner. This partitioner defines the replicated vertices to be used for inter-partition
communications during the distributed GNN message passing step. It is also built to
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support variable parallelism of the system to combat the neighbourhood explosion
problem in GNNs and to allow flexible re-scaling of partitions.

C6 Hypergraph-based partitioning for distributed incremental GNNs on stream-

ing hypergraphs: Streaming graph data is typically handled either as edge streams or
as vertex streams (where each vertex is ingested alongwith its complete neighbourhood
adjacency information). The more realistic situation of incomplete neighbourhoods in
vertex streams, where subsequent streaming updates may introduce new neighbours,
is ignored. Since there is an observed duality between such a vertex stream with incom-
plete neighbourhoods and a stream of hypergraph nets, a novel streaming hypergraph
dataflow framework is proposed. This approach extends streaming support to complex
hypergraph structures as input. Hypergraph transformations are used to examine
the benefits of directly processing hypergraphs instead of using their corresponding
approximate graph representations.

1.3 Thesis structure

In this chapter, details were provided of the main research questions being addressed, along
with a summary of the main contributions of this thesis. The remainder of this thesis is
structured as described below. The inter-relations between chapters, contributions, and
research questions are outlined in Figure 1.2.

Chapter 2 introduces the background knowledge necessary for various technical aspects of
the thesis. Chapter 3 provides a thorough summary of related work to place this research
in the context of the wider literature. Chapters 4–7 describe the various research findings
of this thesis, with the first two focusing on graph analytics tasks while the latter two deal
with graph-based learning using GNNs. Chapters 5 and 6 handle graph applications in the
static domain. Chapters 4 and 7 study the dynamic setting, through i) temporal networks
represented by graph snapshots in continuous time intervals, and ii) event data streams of
graphs (edge streams) or hypergraphs (hyperedge streams), respectively.

Chapter 4 tackles RQ1, with a hypergraph-based construction approach proposed for the
graph analytics task of spread modelling (Contribution C1). Hypergraphs are employed to
sample reachable sets of nodes in a temporal network. This has applications in efficiently
modelling information cascades within dynamic graphs where the topology patterns and
characteristics of spread may change over time. A novel use of hypergraph sampling also
helps to encode temporal dependencies, paving the way for further analysis of streaming
graph settings related to RQ3.

In Chapter 5, hypergraph (and graph) models for partitioning are explored and evaluated on a
graph analytics workload of similarity search (Contribution C2). Here, a bespoke evaluation
strategy is devised to judge the quality of the approximate solution obtained using two
different methods – one with strict data locality (no inter-partition access) and one without
(inter-partition communication is permitted). Noting the benefits of a hypergraph model as
per RQ1, and studying the above tradeoffs for RQ2, helps compare the access patterns across
different workloads. This chapter also introduces the use of vertex replication for caching
the computed values during operations on the graph, which is revisited in Chapter 7.
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Figure 1.2: Thesis structure (chapters) and contributions with corresponding research
questions (RQs)

Moving on to GNNs, hypergraph (and graph) models are used for partitioning in Chapter 6.
The neighbourhood aggregation step in GNNs is found to induce complex access patterns,
as per RQ2. To tackle this challenge, the work focuses on a novel communication-efficient
algorithm using hypergraph models that can minimise network overheads during distributed
full-batch training of GNNs (Contribution C3). The benefits of the hypergraph model over the
graph model for encoding communication volumes are demonstrated, in an answer to RQ1.
Furthermore, the hypergraph sampling ideas from Chapter 4 help to inspire a sampling-based
approach to support distributed mini-batch training of GNNs (Contribution C4).

Chapter 7 confronts the low latency setting defined in RQ3. For a streaming dataflow
framework with an incremental GNN model, the use of a streaming graph partitioner with
replication provides distributed scalability, whilst meeting throughput and latency constraints
of the system (Contribution C5). Moreover, the novel capability of ingesting complex hyper-
graph inputs, and using a streaming hypergraph partitioner for their distributed processing,
offers functionality that is currently unsupported by state-of-the-art streaming systems
(Contribution C6) and addresses RQ1.

Finally, Chapter 8 concludes this thesis with a summary of the contributions and key
takeaways, followed by a discussion of limitations and opportunities for future work that
arise from this research.
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Chapter 2

Background

“ When action grows unprofitable, gather information; when information

grows unprofitable, sleep. ”
Ursula K. Le Guin, The Left Hand of Darkness

This chapter provides the necessary background knowledge and preliminaries for the tech-
nical discussions in the remainder of the thesis. Further problem-specific preliminaries are
included within subsequent chapters as needed.

2.1 Graph-structured data

Static graphs

Data can take various forms such as relational databases, images, text, or unstructured
networks. In particular, graph data structures are non-Euclidean in nature, representing the
data primarily in terms of the relationships between entities.

A graph G is denoted as G= (V, E), whereV = {𝑣1, 𝑣2, . . . , 𝑣𝑛} is a set of vertices and E is
the set of edges 𝑒 = (𝑣𝑖 , 𝑣 𝑗 ) ∈ E representing pairwise relationships between these vertices.

In this thesis, the terms ‘graph’ and ‘network’ are used interchangeably, since the latter is
commonly found in application domains. Similarly, ‘vertices’ are often referred to as ‘nodes’,
and ‘edges’ may be called ‘links’.

In a directed graph, edges have a source node and a target node, while in an undirected graph,
they represent bidirectional connections between the node-pair. Nodes and edges may have
any number of (heterogeneous) features. To simplify the presentation, a single feature can
be considered associated with each node, denoted by 𝑥𝑣 ∀𝑣 ∈V , and edge features can be
similarly defined as 𝑥𝑒 ∀𝑒 ∈E. If a graph G is weighted, edge weights can be treated as an
edge feature where 𝑤(𝑒) is the weight of an edge 𝑒 ∈ E.
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Any proper subgraph G𝑖 is a graph whose vertices and edges are a subset of the original
graph G, that is, G𝑖 = (V𝑖 , E𝑖), whereV𝑖 ⊆ V , E𝑖 ⊆ E.

Given a vertex 𝑣, its in-neighbourhood is defined as the set of all vertices inV which are
connected by an incoming edge to 𝑣. Formally, the in-neighbourhood is 𝑁𝑖𝑛 (𝑣) = {𝑢 ∈ V :
(𝑢, 𝑣) ∈ E}. Out-neighbourhoods are similarly defined, but instead considering outgoing
edges. For undirected graphs, there is no distinction made between in-neighbourhoods and
out-neighbourhoods.

The adjacency matrixA of a graph G can be used to describe its topological connections,
and is defined using entries A(𝑖, 𝑗) such that

A(𝑖, 𝑗) =

1, if (𝑣𝑖 , 𝑣 𝑗 ) ∈ E

0, otherwise

Dynamic graphs

Dynamic graphs have an evolving topology where vertices and edges may be added or
deleted over time. That is, they can be viewed as temporal or time-varying networks where
the links carry information about when they are active. While usages vary across literature,
in this thesis the terms ‘dynamic graph’ and ‘temporal network’ are used to denote the same
type of data.

In order to make use of existing static graph algorithms with minimal modification, a dynamic
graph is often defined as a series of static graph snapshots, i.e., G = (G1,G2, . . . ,G𝑛), where
G𝑡 = (V𝑡 , E𝑡 ) for 𝑡 ∈ 𝑇 and 𝑇 = {1, 2, . . . , 𝑛} is the time domain (i.e., set of all snapshots or
time intervals).

For a more nuanced view of such temporal networks, it is possible to define either contact
sequences or interval graphs. The former is useful where interaction durations are of
negligible length and each contact (link) simply has a set of timestamps at which it is active.
The latter instead uses a set of intervals to denote the start and end times, with links remaining
active for the duration.

Graph streams

Data that is continuously generated, usually from different multi-modal sources, is referred
to as streaming data or an event stream. Stream processing techniques allow for real-time,
up-to-date analytics, training, and inference on such data.

A graph stream is data that is typically modelled as either edge streams or vertex streams.
In edge streams, data is ingested as an asynchronous list of edges (𝑢, 𝑣) ∈ G, that may
contain additional feature information. Vertex streams instead take the form of a list of
tuples (𝑢, 𝑣1, . . . , 𝑣𝑘) where the entire adjacency information (local neighbourhood) of 𝑢 is
provided, i.e., (𝑢, 𝑣1), . . . , (𝑢, 𝑣𝑘) are all the (directed or undirected) edges from 𝑢.

Streaming graph data has a wide variety, ranging from social network interactions and
e-commerce purchase histories to spatio-temporal mobility data. Dynamic graph structures

11



Chapter 2. Background

may be generated by an asynchronous stream of timestamped events such as these. Each
such timestamped event may be an add, delete, or update operation on a graph element
(vertex, edge, or feature). In this manner, even unbounded graph streams can be processed,
e.g., in limited memory systems or for low latency applications.

Hypergraphs

Hypergraphs generalise graphs by allowing hyperedges (nets) to connect any number of
vertices. H = (V,N) can be used to denote a hypergraph consisting of vertex setV and net
set N . The set of vertices connected by a net 𝑛 𝑗 ∈N is referred to as the pins(𝑛 𝑗 ).

Every hypergraph has an incidence matrix, whose rows correspond to the nodes and columns
correspond to the nets. For an undirected hypergraph, the incidence matrix L is defined
with entries L(𝑖, 𝑗) such that

L(𝑖, 𝑗) =

1, if 𝑣𝑖 ∈ 𝑛 𝑗

0, otherwise

Hypergraphs have been found to be computationally more efficient requiring fewer matrix
multiplication operations, and the incidence matrix of a hypergraph requires less storage
space compared to the corresponding graph incidence matrix [168]. There is a duality
between hypergraphs and incidence graphs. An incidence graph is a bipartite graph that can
be constructed by taking all elements ofV and N as nodes, and adding edges (𝑣, 𝑛) if and
only if 𝑣 ∈ 𝑛, where 𝑣 ∈ V and 𝑛 ∈ N .

There are two important strategies used to reduce a hypergraph to its dual graph: i) clique
expansion which transforms a hyperedge into a clique of the multiple edges involved, and ii)
star expansion which converts the hypergraph into a heterogeneous (bipartite) graph with
nets as a second node type [200]. Star expansion is equivalent to constructing the incidence
graph of the hypergraph. The main motivator for these transformations is the widespread
availability of graph-based approaches. The expansions to convert hypergraphs into such
graph structures allow existing graph analytics and learning algorithms to be directly applied.

However, it is important to note that hypergraphs are a nontrivial extension of graphs.
This is because most, but not all, bipartite graphs can be regarded as incidence graphs of
hypergraphs. It is only true if disallowing edges that are fully contained within other edges,
but allowing repeated edges and edges containing one/no vertices [18]. In other words,
graphs are a special case of hypergraphs. Therefore, reducing the hypergraph problem into
a corresponding graph problem is inadequate as the resulting solution cannot fully capitalise
on the information contained in the hypergraph. It has also been proven that an exact
‘cut-model’ representation of a hypergraph as a graph is impossible [78].

In Figure 2.1, some hypergraph-based sampling and transformation techniques relevant to
this thesis are illustrated. Sampling subgraphs and denoting them as hyperedges, as shown in
the top half of the figure, can be useful to generate hypergraph models from graph-structured
data. For example, to model information cascades propagating through a network, given some
initial seed (node 𝑣3 in green), various reachable sets of nodes can be sampled as subgraphs
of the original graph. These subgraphs, treated as nets, can then be merged to construct a
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Figure 2.1: Hypergraph-based sampling and hypergraph transformation techniques

hypergraph that models the many possible paths of spread. Similarly, various mini-batch
sampling technique for GNNs generate subgraphs by sampling the neighbourhoods of nodes;
these subgraphs as nets can also form a larger hypergraph that models the message passing
behaviour within the mini-batches during GNN inference or training.

Rather than constructing hypergraphs, hypergraph transformations to generate graphs or
streams are also of interest. The resulting graphs from these approaches can be utilised as
inputs for GNNs or any other systems that only operate on simple graph-structured data. A
few hypergraph transformation techniques are shown in the bottom half of Figure 2.1. These
transformations include the aforementioned clique expansion and star expansion. Note that
these approximations fail to capture hierarchical higher-order relations. Clique expansion
loses information about net 𝑛2 because it is contained within 𝑛3, while star expansion does
not retain any vertex-vertex information and requires the algorithm to be designed to handle
its heterogeneous nature. Another strategy is to convert the hyperedges into a stream of
heterogeneous vertex adjacency information (𝑣, {𝑛𝑖}), which is especially helpful if the
hypergraph input itself is ingested as a stream. For example, node 𝑣3 belongs to nets 𝑛1,
𝑛2, and 𝑛3, and is joined by edges to a new set of vertices that each denote a net. Each such
vertex with its net list can be processed in sequence, in an approach that may be viewed as a
dynamic version of star expansion.
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2.2 Partitioning graph-structured data

To determine how a large-scale input dataset may be divided across processors for data-
parallel computation, partitioning techniques are typically employed. Partitioning graphs
is crucial since it allows for parallelisation or complexity reduction of a vast swathe of
graph-theoretical problems and graph-based applications. It is fundamental for parallel and
distributed frameworks to achieve scalable graph analytics or graph learning, given the
increasing availability of large-scale graphs that cannot be loaded into memory in their
entirety. Partitioning for graph-based applications is challenging due to complex inter-
dependencies and access patterns between nodes.

Graph partitioning is the mathematical technique of dividing a graph into subgraphs while
satisfying various constraints. Graph partitioning is generally performed by identifying ‘cut
edges’ or ‘cut vertices’ that can be removed or replicated to create disconnected subgraphs,
i.e., partitions or parts. Cut edges are the edges of the original graph that connect nodes from
different partitions, and can provide an estimate of the amount of information exchange
that may be necessary across partitions during distributed computations on the partitioned
graph. Similarly, cut vertices offer an estimate of the amount of replication of nodes that
may be required.

It is desirable for the computational load to be balanced across processors and for communic-
ation overheads across processors to be minimised. Put simply, the graph must be divided
into equal sized parts while the number of cut edges or cut vertices that are left spanning
different parts is minimised. That is, the two main constraints that are optimised when
partitioning a graph are as follows:

i) Balanced partitions: Graph data, and the computational tasks associated with every
node, should be split evenly across processors (physical parts) such that data locality
and balanced parallel workloads are achieved. Achieving such load balancing en-
sures that processors can minimise the idle time of waiting for synchronisation or
communication from other busy processors.

ii) Fewer cut edges or cut vertices: Communication/replication operations, e.g., inter-
partition message exchanges (in edge-cut partitioning) or synchronisation of node
representations across master/replicas (in vertex-cut partitioning), cause significant
overheads and should be minimised. These overheads must not eclipse the computation
time, because that prevents scalability to high processor counts.

More refined partitioning techniques may add constraints specific to the application scenario.
For example, in a streaming partitioning case where the input graph changes structure
dynamically, it may be necessary to periodically re-balance the partitions. Here, the initial
partitioning step might also aim to minimise subsequent re-balancing costs (cost of migrating
nodes across partitions).

Graph partitioning

Given a graph G= (V, E) with vertex setV and edge set E, a 𝑝-way (edge-cut) partitioning
of G is defined as 𝛱 = {V1,V2 · · · V𝑝} consisting of subsets of vertices V𝑚 ⊂ V that are
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mutually disjoint (V𝑚 ∩V𝑛=∅ if 𝑚≠𝑛) and nonempty (V𝑚≠∅ ∀V𝑚 ∈𝛱 ) where the union
of these subsets gives the vertex set (

⋃V𝑚 = V).

Each edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ E between vertices 𝑣𝑖 , 𝑣 𝑗 ∈ V is given a cost(𝑣𝑖 , 𝑣 𝑗 ) and each vertex
𝑣𝑖 ∈V is associated with a weight 𝑤(𝑣𝑖), therefore the weight of a partV𝑚 ∈𝛱 is defined as
𝑊 (V𝑚)=

∑
𝑣𝑖∈V𝑚

𝑤(𝑣𝑖).

The partition 𝛱 is balanced if it satisfies

𝑊 (V𝑚) ≤ (1 + 𝜗)𝑊𝑎𝑣𝑔, ∀𝑉𝑚 ∈ 𝛱

where 𝑊𝑎𝑣𝑔 =
∑

𝑣𝑖∈𝑉
𝑤(𝑣𝑖)/𝑝 is the average part weight and 𝜗 is the maximum allowed

imbalance ratio.

In edge-cut partitioning, vertex sets are disjoint and thus vertices are unique to single
partitions whilst edges may cross partitions and therefore be shared between two partitions.
Under such a partitioning 𝛱 , an edge (𝑣𝑖 , 𝑣 𝑗 ) ∈E is called a cut edge if it connects vertices
belonging two different parts. The 𝑝-way graph partitioning problem is defined as finding a
balanced partitioning 𝛱 such that the total partitioning cost is minimised. In other words,
the partitioning must satisfy the above balancing constraint while minimising the global
cost associated with the set of cut edges E𝐶 , i.e.,

min
𝛱

∑︁
(𝑣𝑖 ,𝑣 𝑗 ) ∈E𝐶

cost(𝑣𝑖 , 𝑣 𝑗 )

Vertex-cut partitioning is similar, but instead defined as a disjoint family of edge sets E𝑚 ⊂E.
Thus, in vertex-cut partitioning, vertices may be shared between two or more partitions,
while the edges are restricted to single partitions. In other words, cut vertices may get
replicated to reside in multiple partitions. Hence, ‘replication factor’ is often used to define
the global cost associated with cut vertices in terms of the number of replicas created. More
formally, replication factor is typically computed and minimised as

min
𝛱

𝑝∑
𝑖=1
|V𝑖 |

|V|

Hypergraph partitioning

Given a hypergraphH = (V,N) with vertex setV and net set N , its partitioning 𝛱 can be
defined as above. Each net 𝑛 𝑗 ∈ N is associated with cost(𝑛 𝑗 ). The weight𝑊 (V𝑚) of a part
is defined similar to the graph partitioning case, as is the associated balancing constraint.

Under the partition 𝛱 , the connectivity set 𝛬(𝑛 𝑗 ) is the set of parts that net 𝑛 𝑗 connects (i.e.,
pins(𝑛 𝑗 ) ∩ V𝑚≠∅). The number of such parts is called connectivity 𝜆(𝑛 𝑗 )= |𝛬(𝑛 𝑗 ) |. If a net
𝑛 𝑗 connects to multiple parts, i.e., 𝜆(𝑛 𝑗 )>1, it is said to be cut. Otherwise, the net is said to
be uncut. The connectivity cut size under 𝛱 is defined as

X(𝛱 ) =
∑︁
𝑛 𝑗 ∈N

cost(𝑛 𝑗 ) × (𝜆(𝑛 𝑗 ) − 1)
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The hypergraph partitioning problem is therefore finding a 𝑝-way partition that satisfies the
balancing constraint while minimising this connectivity cut size. By allowing a net to connect
multiple vertices, it may span more than two partitions (since a net is considered to connect
to a part if it connects to any vertex in that part). This is unlike traditional graphs where a
cut edge only crosses two different partitions. However, a hypergraph regards multiple cut
edges between the same two parts as a single cut net. This departure from traditional graph
partitioning allows communication costs across partitions to be more accurately modelled in
situations where message packets would not be duplicated or transmitted redundantly to the
same partition.

Hypergraph-based partitioning models are particularly well-suited for parallel sparse matrix-
vector multiplication (SpMV) and sparse-dense matrix multiplication (SpMM) [26, 71]. These
operations are frequently employed within scientific computing, and GNN architectures in
particular see rampant use of SpMM along with dense matrix multiplication (DMM).

2.3 Graph analytics tasks

Graph analytics is used to analyse the relationships between entities. The field involves
network analysis tools such as centrality measures, community detection, and analysis of
connectivity or paths. These techniques have been employed in a wide range of applications
including recommendation systems, social network analysis, and disease tracking.

In particular, this thesis focuses on two tasks: i) similarity search, which is widely used for
retrieval and recommendation, and ii) cascade models, which have applications in social
networks and contact networks.

Similarity search

The similarity between nodes in a graph is based on a comparison of their neighbourhood
structures, i.e., the topology of all immediately adjacent nodes. Some more complex defini-
tions may take into account information beyond simply the graph layout. Similarity search
has many applications ranging from determining user-item preferences for recommendation
systems to retrieving similar documents and webpages.

Typically, a similarity measure can be computed between a pair of nodes as some value indic-
ating the match between them. Some measures such as cosine similarity or Jaccard similarity
are also commonly applied to any vector representations having high-dimensional features.
Other methods determine similarity based on structural context, such as SimRank [80] which
is based on the idea that ‘similar objects are referenced by similar objects’.

Cascade models

Research on modelling cascades in networks has traditionally been focused on identifying
the influential nodes in social networks, particularly for viral marketing campaigns [42].
This task, called influence maximisation, is to find the small subset of seed nodes in a graph
such that it would maximise the expected spread of influence.
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Two main types of cascade models, namely the independent cascade (IC) model and the
linear threshold (LT) model, have been considered to study the spread through a network
and the growth of the final influenced set of nodes. In IC models, each node has one chance
with some probability of influencing its neighbour. In LT models, a node becomes active if
the collective influence from its neighbours exceeds a certain threshold.

In this thesis, the terms ‘cascade’, ‘diffusion’, ‘propagation’, ‘flow’, and ‘spread’ are all used
to refer to the same concept of information moving through a network. This ‘information’
may be referred to as ‘activation’ or ‘influence’ where appropriate.

2.4 GNN models

One chief motivation for the development of graph-based learning models was to represent
graph-structured data in low-dimensional vector space, i.e., through feature or representation
learning that results in graph embeddings similar to the widely used word embeddings
in NLP [61, 129]. Advancements in convolutional neural networks for computer vision
led to further breakthroughs, finally resulting in graph neural networks. GNN models
typically learn graph representations, i.e., node or edge embeddings, that are then used for a
downstream task. This makes it possible to perform end-to-end ML tasks on graph data. In
so doing, GNNs leverage both feature information as well as topological structure obtained
from graph-structured data.

These powerful graph-based learning models have seen a rise in popularity due to the vast
potential of graph data in various domains, such as social networks, knowledge graphs,
and recommendation systems. Variants of GNNs such as graph convolutional networks,
graph attention networks, and graph recurrent networks have been applied with success on
numerous deep learning tasks at node-level (e.g., node classification, clustering), edge-level
(e.g., link prediction), and graph-level (e.g., graph classification, matching).

Message Passing GNNs

The expressivity of GNNs for modelling inter-dependencies between nodes in a graph is
achieved via message passing operations as a means to aggregate and update information. As
per the Message Passing GNN (MPGNN) paradigm [56], the computation task for a GNN layer
at each of its nodes can be viewed as message generation along each incoming edge with an
aggregation operation at the receiving node, after which the node updates its representation
for use by the next GNN layer. Below is a common MPGNN formulation where the GNN
layer ℓ generates embeddings 𝑥𝑣 for layer ℓ+1 at every node 𝑣:

𝑚
(ℓ+1)
𝑒 = 𝛾(𝑥 (ℓ )𝑢 , 𝑥

(ℓ )
𝑣 , 𝑥

(ℓ )
𝑒 ) ∀ (𝑢, 𝑣, 𝑒) ∈ 𝑁𝑖𝑛 (𝑣)

𝑎
(ℓ+1)
𝑣 = 𝒶(𝑚 (ℓ+1)𝑒 : (𝑢, 𝑣, 𝑒) ∈ 𝑁𝑖𝑛 (𝑣))

𝑥
(ℓ+1)
𝑣 = 𝜓(𝑥 (ℓ )𝑣 , 𝑎

(ℓ+1)
𝑣 )

The messages 𝑚𝑒 are generated along each incoming edge in the node’s in-neighbourhood
(𝑒 = (𝑢, 𝑣) ∈ 𝑁𝑖𝑛 (𝑣)), as some function of the features (𝑥𝑢, 𝑥𝑣 , 𝑥𝑒). All |𝑁𝑖𝑛 (𝑣) | messages
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at 𝑣 are then aggregated into 𝑎𝑣 , which is used in combination with its old feature 𝑥 (ℓ )𝑣 to
generate the new representation 𝑥

(ℓ+1)
𝑣 for layer ℓ+1.

Therefore, the behaviour of each GNN embedding layer can be expressed by defining the
Message (𝛾), Aggregator (𝒶), and Update (𝜓) functions. Typically, 𝛾 and 𝜓 are neural
networks in themselves, whereas𝒶 is one ofConcat, Sum,Mean,Min,Max, LSTM, orAttention
functions. A multi-layer GNN is constructed by stacking these computations. Finally, an
output (neural network) layer after the last embedding layer can be used to generate decisions
or predictions based on the task at hand (e.g., node classification, link prediction).

Graph convolutional networks

GCNs are the most commonly used type of GNN and have wide applications. Spatial models,
that are based on the above message passing idea, have become more popular than the older
spectral-based methods, that were inspired by signal processing techniques. This thesis
focuses on two GNN models in particular.

The GCN model proposed by Kipf and Welling [89] is a generalisation of convolution
operations applied to non-Euclidean data. During forward-propagation, the adjacency matrix
and trainable weight matrix are used to compute a new feature matrix at every layer from
that of the previous layer. A non-linear activation function is applied to obtain the features
at every layer. Similarly, backpropagation uses the final loss function and weight matrices to
compute the gradient matrices for each layer. These gradients are then used to update the
weight matrices according to some model learning rate.

This computation can be viewed in a vertex-centric way as a message-passing operation
from each of the neighbours of a node followed by an aggregation function, as described
earlier by the MPGNN paradigm. That is, at every node 𝑣:

𝑥
(ℓ+1)
𝑣 = 𝜌

©­«
∑︁

𝑁𝑖𝑛 (𝑣)
𝑥
(ℓ )
𝑢 W (ℓ )ª®¬

where 𝑥 (ℓ+1)𝑣 is the updated feature at 𝑣 during layer ℓ + 1 computation, 𝑥 (ℓ )𝑢 is the feature of
its neighbour 𝑢, and W (ℓ ) is the trainable weight matrix.

The GraphSAGE [67] algorithm instead performs neighbourhood sampling for aggregation,
and thus behaves similar to GCN but using sub-sampled neighbours for training. It can be
used as an inductive framework since inference is possible even on unseen nodes/graphs,
whereas GCN needs the full graph structure and can be used for transductive applications.
GCN uses the Mean aggregator and GraphSAGE uses a generalised aggregation function.

When full-graph training cannot be performed due to the large-scale nature of the data,
the usual solution is to resort to mini-batch training. Mini-batching is carried out through
neighbourhood sampling to construct each batch (where parameter weights are updated
after each batch). GraphSAGE is a popular neighbourhood sampling method for such
purposes. Computations are commonly supported across multiple processors that train on
mini-batches in parallel (where parameter weights are synchronised before being updated for
all processors). Distributed full-batch ormini-batch training is also achievable, by partitioning
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the input graph and defining the required communication scheme. As is evident from the
above, vertex-centric MPGNN models lend themselves well to graph partitioning techniques
that can minimise communication overheads during the message aggregation phase through
data locality of the node neighbourhood that needs to be accessed.

2.5 Graph processing systems

Parallel and distributed systems

Distributed systems consist of many autonomous processors, each with their own local
memory, that communicate with each other by exchanging messages. The processors in a
typical distributed system run computations in parallel to perform some shared task, making
it important to achieve load balancing and minimisation of communication overheads.

Data-parallel graph processing generally employs partitioning to split the input graph while
preserving data locality. Such parallelism presents unique challenges in GNN tasks due to the
dependencies between input data samples (nodes). Model-parallelism is typically achieved
by pipelining operators corresponding to each GNN layer, or pipelining the processing of
individual samples or single neural computations within a layer. Hybrid-parallel models
perform both data- and model-parallel computations on the input graph and GNN model.

Streaming dataflow systems

Batch processing systems suffer poor latency when faced with streaming input, thus stream-
ing systems have been developed to handle such data. Popular streaming dataflow systems
include Apache Spark [185] and Apache Flink [25]. Such streaming pipelines are designed
to efficiently process bounded and unbounded data streams with low latency and high
throughput, typically using distributed environments.
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Related Work

“ “I’ve been thinking, Hobbes”

“On a weekend?”

“Well, it wasn’t on purpose” ”
Bill Watterson, Calvin and Hobbes

This chapter offers a review and discussion of the related literature in order to establish
the wider context for this research. The literature review helps to identify challenges and
solutions that are closely related to the contributions of this thesis. More specific technical
details of the related work are presented within the preliminaries in subsequent chapters
where needed.

3.1 Graph algorithms

Graph analytics

Graph algorithms are in popular use for analytics tasks, based on graph-structured represent-
ations of pairwise connections between nodes. Numerous algorithms have been developed
for efficiently finding shortest paths, centrality, node similarity, information cascades, flow
dynamics, and community structures in large graphs. These lend themselves to graph
analytics applications on a variety of data, from social networks to knowledge graphs.

One of the most popular graph algorithms is Google’s PageRank, which models web docu-
ments as nodes, and determines query relevance based on the links among these nodes [125].
Similarity search algorithms are useful for related problems of document retrieval and recom-
mendation. The SimRank measure proposed by Jeh andWidom [80] led to a rise in popularity
of graph-based similarity models. Many SimRank-like models have been developed for ef-
ficient computation of similarity between node-pairs – e.g., P-Rank [191], RoleSim [83],
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MatchSim [105], CoSimRank [136] – that differ from one another in their treatment of neigh-
bouring nodes and the specific heuristics used during their iterative computations. Therefore,
each of these elicits different access patterns when traversing the neighbourhood to compute
similarity scores. Not only are there different measures, but also different types of queries
used for a given measure – e.g., single-source, single-pair, and all-pairs similarity – which
impacts the access patterns and produces entirely different workloads.

There is also extensive work in the areas of information diffusion and influence maximisation,
especially for social networks, due to the lucrative opportunities in viral marketing [31, 42,
62, 101]. Under the widely used IC and LT propagation models, finding a subset of users
that maximises the expected spread is shown to be NP-Hard [86]. There are approximate
solutions with near-optimal time complexity [150] and parallel algorithms to scale influence
maximisation tasks for large-scale networks [109, 145]. Temporal networks are of particular
relevance in the analysis of spreading processes since time-varying interaction edges and
the relative ordering of interaction events can be highly relevant to the model. For example,
both infectious disease spread and rumour propagation are affected by the dynamics and
duration of contact between individuals [59, 91], and computer viruses stabilise or die out
depending on dynamic interactions with removable devices [199]. While modelling spread,
a few IC models do incorporate time constraints. For example, the continuously-activated
and time-restricted (CT-IC) model is a generalisation where every active node can activate
its neighbours repeatedly until a given deadline [88]. The latency aware (LAIC) model
incorporates influencing delay probabilities within a time constraint for the spread [107].
However, such methods do not address evolving contact network topology or dynamically
changing propagation properties along each connection.

Graph neural networks

Deep learning on graphs has gained significant attention in recent years. Zhang et al.
[190] survey a variety of GNN architectures – graph recurrent neural networks, graph
convolutional networks, graph autoencoders, graph reinforcement learning, and graph
adversarial methods – dividing them into node-level and graph-level tasks, and note that
modelling the evolving characteristics of dynamic graphs remains understudied. Similarly,
Wu et al. [170] survey several different architectures and discuss applications ranging from
traffic forecasting to recommendation systems. Other taxonomies split GNNs on the basis
of the types of graphs handled [198]. All these reviews note that heterogeneous graphs,
dynamic graphs, and scalability are particularly interesting challenges to tackle.

GCNs generalise the convolution operation, performed by convolutional neural networks on
structured data (e.g., images, time-series), to graphs [21, 38, 118, 144]. GCNs are used in a
wide range of data-intensive graph applications such as node classification [89, 117], traffic
forecasting on road networks [180], and recommendation systems on user-item graphs [179].

Surveys that look at GCNs typically categorise them into spectral-based and spatial-based
models, depending on the type of convolution operation performed [187]. Spectral model
convolutions borrow from signal processing techniques to localise the graph signal (node
features) in its spectral domain or vertex domain through linear combinations. Spatial model
convolutions instead extend traditional Euclidean convolutions and generally perform some
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aggregations of features in the node neighbourhood, making them computationally more
efficient and localised, although spectral information is ignored. In particular, the GCN
model proposed by Kipf and Welling [89] is a special variant that performs semi-supervised
node classification on graphs, and clearly denotes vertex localisation as the aggregation of
neighbourhood node representations. Therefore, this model is often considered to bridge the
gap between spectral-based and spatial-based models.

Most GNN methods use such message passing and aggregation along edges as their funda-
mental operations, and can be treated as special cases of the previously described message-
passing (MPGNN) framework [56]. Popular libraries for developing GNN models include
Deep Graph Library (DGL) [162] and PyTorch-Geometric [50].

Hypergraph neural networks

Generalised hypergraph structures can make use of hyperedges to build more powerful rep-
resentations, e.g., biological networks, chemical molecular structures [48, 94]. Hypergraphs
possess the benefit of modelling complex, non-pairwise relationships. Due to the ability
to model higher-order correlations within the data, hypergraph-based learning has been
explored in computer vision tasks [77, 196]. Similarly, in social networks, high-order social
relations such as triangle motifs between user-item nodes and session-based temporally con-
nected user-item interactions have been used to build multi-channel convolutional networks
for recommendation [171, 181].

Hypergraphs are also useful to encode multi-modal heterogeneous data. For example, deep
learning on hypergraphs has been proposed that uses multi-modal features for object recog-
nition [49]. This hypergraph neural network approximates the hyperedges through clique
expansion; it is a spectral method that generalises convolution operations using a hypergraph
Laplacian. The traditional GCN can therefore be regarded as a special case. Another method,
HyperGCN, also uses clique expansion to turn the task into a graph learning problem, but
with a more efficient hypergraph Laplacian where each hyperedge is linearly approximated
by exactly one pairwise edge [173]. Agarwal et al. [3] compare different hypergraph ap-
proaches in terms of their reductions to graph construction and their associated Laplacian
matrix for spectral computations, finding many to be equivalent.

However, Arya et al. [7] argue that hypergraphs are not a special case of graphs, therefore
information can be lost during this reduction to a graph problem. They propose HyperSAGE,
an inductive approach inspired by the popular GraphSAGEmethod, for deep learning directly
on hypergraph structures. HyperSAGE uses a two-level message passing and aggregation
technique, treating the neighbourhood of a node in terms of within the net (intra-edge) and
also across nets (inter-edge), to fully utilise higher-order relations in hypergraphs.

3.2 Distributed systems

Distributed graph processing systems

Distributed systems have been widely employed for graph analytics. Pregel [113] and Power-
Graph [57] are particularly popular for distributed graph algorithms. GraphX [172] moves
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beyond such graph-parallel systems and exploits a data-parallel framework to efficiently
express graph computations. Several graph analytics APIs, including GraphX, are built
atop Apache Spark or similar frameworks, which face CPU utilisation bottlenecks. These
vertex-centric models also suffer high communication overheads relative to computation and
thereby have poor scalability to large number of machines [69, 111]. In contrast, graph- and
block-centric models utilise local graph partition structure to reduce communication and
scheduling [153, 174]. Exploiting sparse connectivity patterns can also achieve better data
locality in data-parallel vertex-centric solutions, enabling efficient communication across
thousands of processors.

Graph partitioning is widely employed for improving the efficiency of different types of quer-
ies [46, 138, 192], handling skewed workloads [177], reducing communication overheads [55],
and achieving scalability in network bound applications [34]. Communication overheads
depend upon both message volume and communication patterns among partitions [55].
This motivates the need for intelligent partitioning and communication schemes tailored
to particular workloads. Some methods do take into account task-specific considerations
during the partitioning stage, such as by determining partitioning strategies adaptively
at runtime [45] or using an application-driven partitioning strategy [46]. However, there
remains a lack of research into GNN workloads for optimisations in partitioning.

Distributed GNN systems

Graph learning tasks perform both forward and backward propagation of model parameters,
involving ℓ-hop neighbourhood aggregations, which require different considerations in parti-
tioning compared to that of traditional graph processing. To efficiently train GCNs, methods
have been devised to restrict the neighbourhood considered by sampling. FastGCN [30]
samples a specific number of vertices for aggregation in each layer independently to reduce
the computational footprint in deeper GCNs, while a different adaptive method performs
sampling conditional on previous layers [76]. Similarly, a vertex neighbourhood sampling
approach is utilised in GraphSAGE [67]. Clustering algorithms like ClusterGCN [33] also re-
strict convolution operations and neighbourhood search to sampled subgraphs. Pruning and
caching methods have been devised as well, to achieve accelerated GNN inference [116, 197].
All these efforts focus on reducing computation costs and memory requirements without
sacrificing the quality of vertex representations.

Memory management and distributed training are essential for scalable deep neural net-
works [14, 40, 163, 188]. Various frameworks use distributed memory systems for parallel
GNN training. On GPUs, NeuGraph [112] uses dataflow scheduling while Roc [81] employs
dynamic regression-based partitioning to optimise communication, and G3 [108] leverages
graph native operations for parallel graph processing. The DGCL [24] communication library
instead reroutes communications to use fast links with vertex replication during distributed
GNN training.

The Deep Graph Library (DGL) Python package is especially popular for GNN development
using existing deep learning frameworks such as PyTorch and TensorFlow. It provides mes-
sage passing functionality, batch and sparse matrix optimisations, and distributed CPU/GPU
training capabilities. DistGNN [115] optimises DGL for full-batch training using a shared
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memory implementation on CPU clusters, and employs a minimum vertex-cut graph parti-
tioning strategy and delayed aggregate functions to reduce communications. As an altern-
ative to whole-graph training systems, sampling approaches have been deemed useful to
overcome the coordination and communication overheads through mini-batches [142]. In
DistDGL [194], reduction of network communication traffic is achieved by partitioning and
co-locating the vertex/edge features with their corresponding local partition data for distrib-
uted CPU mini-batch training. DistDGLv2 [195] achieves a hybrid design by placing data in
distributed CPU memory and performing mini-batch training on GPUs, with asynchronous
sampling to overlap CPU and GPU computations.

Various other solutions optimise the sampling step in different ways. AliGraph [176] uses
distributed graph storage and optimised sampling operators to enable large-scale training.
AGL [186] is a fault-tolerant system running on top of MapReduce for scalable GNN training.
PaGraph [106] is built on top of DGL and introduces caching to accelerate sampling-based
data-parallel GNN training. However, studies are limited on optimising GNN communications
without sampling, especially when distributed whole-graph training is necessary.

Zheng et al. [193] argue that distributed mini-batch sampling in GNN systems suffer perform-
ance bottlenecks due to the sampling step; they thus propose ByteGNN to improve resource
utilisation on CPUs with a partitioning strategy tailored for GNN sampling. The resource
under-utilisation problem is exacerbated in GPUs since mini-batch sampling overshadows
training time even further [142]. The communication architectures on CPU also involve
different optimisation design decisions compared to GPU-based systems [119]. Hence, it is
important to consider whether the solution is targeting CPU or GPU clusters.

Data-parallelisation for GNNs

The potential of exploiting data access patterns in GNN training has been recently highlighted
as an open research question [96]. Sparse-dense matrix multiplication (SpMM) and dense
matrix multiplication (DMM) are core kernel operations in GCN training. SpMM achieves
convolution whereas DMM corresponds to propagating vertex-feature vectors through a
single layer neural network. Therefore, considering the access patterns in these computations
is important in improving the resource efficiency and scalability of GCN training. There
have been improved solutions for parallel SpMM [93, 98, 140] and DMM [13] problems.
However, the special requirements of combining SpMM and DMM for scalable GCN training
and ensuring efficient forward propagation and backpropagation phases during training
remain under-explored. In particular, communication operations incur high latency and
bandwidth costs to aggregate feature matrices during forward propagation as well as to
aggregate gradients and update parameter matrices during backpropagation.

While recent parallel/distributed algorithms achieve GCN training for GPU clusters and
cloud systems [154, 194], these typically perform broadcast and allreduce types of collective
communication operations. Sancus [127] is a recent model that adaptively avoids broadcast
communications to reduce network traffic in data-parallel GNNs. However, parallel SpMM
still requires broadcast-type communication, which is the main performance bottleneck
in GCN training, due to its high memory and bandwidth costs. CAGNET [154] uses the
aggregate memory of GPU clusters and the NCCL multi-GPU communication library to
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asymptotically reduce communication costs of SpMM in full-batch GNN training by divid-
ing dimensions of the iteration space across the training pipeline. It performs broadcasts
among processors turn-wise to transfer vertex-features in small portions but incurs signi-
ficant latency overheads. Sparse data communication and compression methods have been
considered to alleviate the scalability issues of allreduce for larger models and processor
counts [40, 47, 95, 104]. Despite improvements, such redundant data and message transfer
causes unnecessary communication overheads. Therefore, a viable alternative is to design a
mechanism that can utilise non-blocking point-to-point communications that move only the
necessary data among processors.

Moreover, in GCN training, model parameter matrices are significantly smaller than the
adjacency and vertex-feature matrices, so performance improvements in allreduce communic-
ation are not significant in the overall parallel execution time. Instead, efficient parallelisation
of SpMM performed on the large graph data can lead to higher performance increase. The
GE-SpMM algorithm [75] for GPUs allows integration with DGL for faster computation of
GNNs by processing columns in parallel and directly operating on sparse matrix data in CSR
format. Feat-Graph [74] co-optimises graph traversal and feature dimension computation to
offer efficient CPU/GPU implementations of sampled dense-dense matrix product (SDDMM)
and SpMM in GNN training, and reveals sensitivity to partitioner parameters. FusedMM [132]
develops a general-purpose matrix multiplication kernel for graph embedding and GNN
operations. FusedMM unifies the matrix multiplications into a single operation since SpMM is
frequently directly followed by DMM, but the approach is only applicable to shared-memory
systems. Besides such speedups to SpMM, another promising strategy can be to leverage the
partitioning scheme for communication-efficient GNN training through asynchronous local
partial SpMM computations.

3.3 Partitioning methods

Static graph partitioners

Partitioning algorithms are widely employed on graphs to enable data-parallelism for load
balance and low communication. Graph partitioning can by achieved either by vertex-cut
methods (i.e., assigning an edge to a partition with vertices replicated across partitions where
necessary) or edge-cut methods (i.e., assigning a vertex to a partition with edges crossing
partition boundaries where necessary). Graph partitioning is NP-Hard, therefore solutions to
these problems generally involve heuristics and approximation algorithms (e.g., local search,
spectral methods), many of which are summarised in an old survey by Elsner [43].

One of the earliest algorithms, the Kernighan-Lin (KL) algorithm, was developed for optim-
ising circuit design [87]. KL-based heuristics have been widely used for graph partitioning,
offering fast good quality results via iterative vertex swapping to find the locally minimum
partition from an initial bipartition. Spectral partitioning and clustering approaches are a
common alternative to such local search techniques. In spectral methods, a partition is derived
from approximate eigenvectors of the adjacency matrix or using the eigen-decomposition of
the graph Laplacian matrix, thus operating on a global view of the graph [64].
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Multi-level algorithms have gained popularity due to quickly producing high-quality parti-
tions [22, 85]. These algorithms work in multiple stages. Each stage collapses vertices and
edges of the graph, partitions the smaller coarsened graph, and then projects the partitioning
back and refines it for the original graph. The partitioning stage may be performed by any
relatively simple methods, such as the KL algorithm above.

METIS [84] is a widely used graph partitioning tool that is based on this multi-level graph
partitioning paradigm. It is available as standalone command-line programs or API routines
that can be invoked within user-written programs in C/C++. The graph adjacency inform-
ation is input in CSR sparse matrix format. The output is the part vector providing the
partition number allocated to each vertex. The METIS_PartGraphKway function is used
to partition the graph using multi-level 𝑝-way partitioning. The ComputeVertexSep-

arator function instead bisects the graph by computing the vertex separator, with these
separator (cut) vertices being identifiable in the resulting part vector.

Static hypergraph partitioners

Hypergraph partitioning has also been explored alongside graph partitioning. A faster imple-
mentation of the KL algorithm has been introduced for hypergraph partitioning, called the
Fiduccia-Mattheyses (FM) algorithm [51]. Multi-level approaches for hypergraph partition-
ing are more recent. They use clustering to coarsen the hypergraph, FM-based partitioning
on the resulting supernodes, and projection back. The hypergraph partitioning problem
for finding a 𝑝-way partition that satisfies computational load balancing constraints while
minimising the communication cut-size is also NP-Hard. Tools such as PaToH [27] and
KaHyPar [139] use heuristics to produce good quality solutions.

PaToH provides a stand-alone program or a library interface that utilises the multi-level
hypergraph bisection algorithm for 𝑝-way partitioning. It uses its own plain text input
format, listing the pins of each net of the hypergraph. The output of the PaToH_Part

function is a part vector giving the allocated partition for every vertex. As an extension,
rpPaToH [141] proposes a replicated partitioning tool for undirected hypergraphs, where a
replicated FM heuristic is used within the recursive bipartitioning framework of PaToH. To
achieve partitioning and replication simultaneously, an additional replication ratio constraint
is used. The output is the list of part numbers for each vertex indicating all the parts that it
is replicated to.

KaHyPar has similar functionality to PaToH, producing slightly better cut sizes but with a
slower running time. However, Mt-KaHyPar [58] offers a multi-threaded parallel partitioning
algorithm that is capable of processing extremely large hypergraphs with comparable solution
quality, making it a useful choice for large-scale data.

Streaming graph partitioners

To handle dynamic graph updates, some methods modify existing static graph partitioning
schemes and introduce re-balancing strategies. One approach aims to lower the reparti-
tioning cost, i.e., the cost of migrating vertices across partitions so as to re-balance the
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partitioning [123]. Other adaptive methods similarly try to prevent introducing new cut
edges while minimising the repartitioning cost [2, 8, 44, 156].

Graph partitioning heuristics may incur heavy costs that affect the latency of the subsequent
graph analytics tasks, therefore there has been work exploring how to partition the graph
in a lightweight streaming fashion as it gets loaded to memory. This low latency, online
approach is well-suited to dynamic graphs where offline repartitioning of the entire new
graph snapshot is inefficient.

Processing streaming data is also of increasing interest for big data analytics where the
arriving input must be ingested and processed on-the-fly. If the entire data cannot fit into the
memory, it must be partitioned across distributed systems. Both the batched graph computa-
tional models (e.g., Pregel [113], Giraph [34]), and stream processing systems (e.g., Apache
Flink [25]), can make use of streaming graph partitioning. Streaming graph partitioning
approaches can be applied on graph data in the form of a vertex stream (a sequence of nodes
along with their corresponding adjacency lists describing their neighbourhood) or an edge
stream (a sequence of individual edges that are interconnected).

Stanton and Kliot [146] compare different vertex stream orderings (random, breadth-first,
depth-first) used to first linearise the graph, and identify a weighted linear deterministic
greedy (LDG) approach (assigning a node to a partition with the most neighbours, penalising
crowded partitions) for generating balanced edge-cut partitions. FENNEL [155] introduces a
unifying edge-cut framework that subsumes two popular heuristics for streaming balanced
graph partitioning: assigning a node to a partition having i) the fewest non-neighbours, or
ii) the most neighbours. It thus accommodates performance requirements that depend upon
system/application characteristics, e.g., balanced communication traffic is likely to be more
important in large clusters, whereas balanced computational load may be more relevant for
small clusters.

HDRF [130] instead performs vertex-cut partitioning, where high-degree vertices are replic-
ated first, thus exploiting skewed degree distributions. The goal is to cut high-degree vertices
to create strongly connected components having low-degree vertices, and place these into
their own partitions.

Many such streaming partitioning and repartitioning objectives are compared in a survey
of partitioning strategies by Buluç et al. [23]. The partitioning quality of these various
graph partitioning approaches is typically evaluated by running PageRank on the distributed
graphs. However, the workload and application setting have a large impact on the utility
of a partitioning scheme. Abbas et al. [1] perform an experimental comparison of stream-
ing graph partitioning methods across different applications and datasets, using a unified
distributed system on Apache Flink. They conclude that model-dependent techniques (e.g.,
FENNEL for vertex stream, HDRF for edge stream) offer better communication performance
while data-model-agnostic methods (e.g., hash) trade off data locality for better balanced
workloads. Pacaci and Özsu [124] draw important distinctions between vertex-cut and
edge-cut partitioning methods based on streaming vertex or streaming edge systems, and
evaluate different workloads for each setting. Their experimental study demonstrates that
the topology of the graph and characteristics of the task-specific workload should be used to

27



Chapter 3. Related Work

inform the choice of partitioner. Despite these studies on various graph analytics algorithms
(e.g., PageRank, connected components, shortest path), there is no work that evaluates the
utility of streaming partitioners adapted for distributed graph learning.

Streaming hypergraph partitioners

The streaming setting has not yet been explored very widely in the context of hypergraph
partitioning. The main challenge is that in a hypergraph, a vertex appears with its nets,
which does not implicitly provide information about neighbouring vertices (unlike in graph
streams where the connected vertex becomes implicitly known). Hence, the connectivity
among the nets and the parts needs to be accounted for during the part assignment process.

The objective for streaming min-max hypergraph partitioning is to divide a set of items
(vertices), having sets of topics (nets) associated with them, into partitions as they arrive
sequentially. This is related to the min-max multi-way graph cut problem where the goal is
to partition vertices such that the maximum of the number of cut edges of each part (i.e.,
maximum capacity rather than average or sum) is minimised [147]. A greedy item placement
strategy is employed such that the maximum number of distinct topics (pins) covered by
each part is minimised [4]. Another memory-efficient variant makes use of optimisations
on the part-to-net and net-to-part information storage for additional speedups [151]. The
min-max hypergraph partitioning problem is NP-Hard and the streaming setting provides
even less information to the algorithm during part assignments. Nonetheless, the above
algorithm appears to be the only streaming hypergraph partitioners currently in use [114].
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Chapter 4

Hypergraph-based Sampling on

Dynamic Graphs for Analytics

“ The only thing binding individuals together is ideas. Ideas mutate and

spread; they change their hosts as much as their hosts change them. ”
Bernard Beckett, Genesis

This chapter provides the first preliminary exploration in this thesis of hypergraph-based
optimisation approaches. Here, the focus is on eliciting the dynamic behaviour of a network
by using a temporally-guided sampling strategy to construct the hypergraph. Several inter-
esting graph analytics workloads involve solutions that depend upon the temporal properties
of the network, such as evolving interactions within a social network. While there has been
a great deal of research on analytics tasks for static graphs, dynamic graphs present new
and unique challenges arising from temporal dependencies for which solutions are not yet
well-studied. One such task is influence maximisation, and more broadly, the study of spread
within networks.

Modelling the spread of influence, disease, or other information through a network depends
upon its connectivity patterns and on the random seeds from where the information cascade
process begins. Traditional approaches for modelling propagation in networks (e.g., of
diseases, computer viruses, or rumours) cannot adequately capture temporal properties
such as order/duration of evolving connections or dynamically changing likelihoods of
propagation along connections. Temporal models on evolving networks are therefore crucial
in many applications that need to analyse dynamic spread.

In this chapter, a temporal cascade model is designed with the help of a hypergraph-sampling
technique. This hypergraph is used to encode the set of reachable nodes from the random
seeds during an information propagation cascade process. Temporal dependencies in the
propagation step, arising from the evolving topology of connections, are taken into account
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during this hypergraph construction. This approach ensures that solution quality guarantees
continue to be preserved even in the dynamic setting, unlike in most other time-evolving
cascade models. In future chapters, the idea of using hypergraphs is extended to partitioning
techniques as well as new sampling ideas for GNN training, first in static graphs, and finally
in streaming scenarios that build further on the dynamic setup discussed here.

More concretely, this chapter presents the Temporal Independent Cascade (T-IC) model
with a spread function that efficiently utilises a hypergraph-based sampling strategy. The
temporally-guided sampling policy and the use of dynamic propagation rates along edges
ensure that the algorithm realistically models the spread of activations. The spread function is
proven to be submodular, with guarantees of approximation quality when simulating spread
through evolving networks. This enables scalable analysis on highly granular temporal net-
works where other models struggle, such as when the propagation rate across connections
exhibits arbitrary temporally evolving patterns. For example, a disease-spreading virus has
varying transmissibility based on interactions between individuals occurring with different
frequency, proximity, and venue population density. Similarly, propagation of information
having a limited active period, such as rumours, depends on the temporal dynamics of social
interactions in the network.

Algorithms on evolving networks typically focus on maximising influence [53, 68, 122, 149,
178]. Influence maximisation aims to identify the subset of seed nodes that can result in
the maximum spread through the network. To the best of the author’s knowledge, there
is no prior work on capturing sentinel and susceptible sets in temporal cascade networks
as studied in this chapter. The former aims for maximum coverage of the network via
a small group of sentinel (detector) nodes, and the latter identifies the nodes most likely
to receive information rather than spread it. The selection of sentinel nodes has been an
important task in many applications on static networks where early detection of activation
is beneficial, such as monitoring disease outbreaks [12], signalling wireless sensor network
failures [41], and detecting malicious data transmissions [148]. Identification of a minimal
solution set of sentinel nodes is of interest as resources are often constrained (e.g., expensive
medical tests or wireless sensors). Susceptible nodes are also studied in the context of static
networks. For example, failure points in communication networks may be triggered by the
cascading failure and redistribution of data packets, and have been modelled stochastically
for mitigation purposes [133]. Other studies on fake news detection find that recognising
easily influenced users is more important to control the spread, rather than identifying the
influential users [143]. It is important to note, therefore, that these objectives are distinct
from the widely studied influence maximisation objective.

The dynamics of the spread over an evolving network topology introduces several challenges
in the selection of both the above types of solution sets. The reachable sets determined using
the proposed hypergraph-based sampling are shown to be effective in identifying sentinel
nodes and susceptible nodes, making it possible to provide solutions for the several above
application domains even with temporal networks. T-IC is shown to significantly outperform
the alternatives in modelling both if and how spread takes place within a dynamic graph,
and is efficient even on large graphs.
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4.1 Preliminaries

The traditional IC model description is provided below, as well as the definition of a temporal
network that is used in this chapter.

Independent Cascade model

In a standard IC model, information flows through the network via a series of cascades. Nodes
may either be active (already influenced by the information that is propagating through
the network) or inactive (either unaware of the information that is propagating but has
not reached it by this point, or not influenced by the propagation that did reach it). The
standard IC model assumes a static probability distribution over a static graph structure.
This IC process is simulated over a graph G = (V, E,𝓅) where each edge (𝑢, 𝑣) ∈ E is
associated with a constant probability function 𝓅 : E ↦→ [0, 1], reflecting the likelihood of
activation when nodes 𝑢 ∈ V and 𝑣 ∈ V have a common edge (e.g., a common meeting
point in the location histories of two individuals). Propagation starts from an initial seed
set in V (the only nodes active at step 0). Propagation takes place in discrete steps with
each active node 𝑢 during step 𝑖 being given a single chance to activate its currently inactive
neighbour 𝑣 with some probability 𝓅(𝑢, 𝑣). That is, at every step 𝑖 ≥ 1, any node made
active in step 𝑖−1 has a single chance to activate any one of its inactive neighbours. The
process continues with nodes remaining active once activated, until no further propagation
is possible. Therefore, this is a stochastic process that requires a large number of simulations
to accurately determine the spread of information.

Temporal network

Since the standard IC model uses a static probability distribution over a static network, it
is insufficient to handle evolving graphs with changing propagation rates. In real-world
settings, both the structure of G and the propagation rates may change dynamically. For
example, the spread of rumours depends on the dynamics as well as the duration of contacts
between individuals, and is guided by the specific short-lived nature of gossip or fake news.
Similarly, a disease spread model needs to consider the order and duration of interactions
within a population, and the varying infectivity of a virus over its lifetime. Therefore, a new
temporal IC model must be defined for a temporal network.

Definition 4.1.1 (Temporal Network). Given a discrete time window 𝑇 = {1, 2, ..., 𝑛}, a
temporal network is a graph G = (V, E, 𝑃(𝑡)) where for each time interval 𝑡 ∈𝑇 , edge set E is

associated with a different propagation probability distribution 𝑃(𝑡): E ↦→ [0, 1]. That is, each
edge (𝑢, 𝑣) ∈E has 𝑛 probabilities 𝓅(𝑢, 𝑣, 𝑡), one for each 𝑡 ∈𝑇 .

Since 𝑢 and 𝑣 may be linked multiple times in 𝑇 , the corresponding 𝓅(𝑢, 𝑣, 𝑡) for every
interval 𝑡 needs to be separately maintained. An evolving graph is represented by adding all
edges and assigning𝓅(𝑢, 𝑣, 𝑡) = 0 when there is no (𝑢, 𝑣) connection in interval 𝑡. Moreover,
a rigorous formulation for 𝓅(𝑢, 𝑣, 𝑡) is needed to describe more complicated cases of spread.

Figure 4.1 illustrates the impact of temporal order and dynamic connections in a spread
model on a sample location-based interaction network (e.g., to track the spread of disease).
Suppose node c is initially active. In the first case, as shown in Figure 4.1(a), nodes a and

31



Chapter 4. Hypergraph Sampling for Dynamic Analytics

(a) Propagation probability increases with population density and duration

(b) Propagation probability increases with proximity and duration

Figure 4.1: Example of dynamic propagation probabilities in the network that reflect tem-
poral characteristics. Edge connection indicates proximity, with thicker edge for higher
probability (based on population density, proximity, and duration of contact) and dotted
edge for latent probability after deletion.

b have higher likelihood of activation than nodes that arrive later, such as e or f , or
nodes that leave, such as d . The greater chance of activation due to the prolonged duration
of contact with the active node c , as well as the increased risk of activation due to the high
density of nodes, is reflected in the thicker edge connections to a and b . In the second
case, shown in Figure 4.1(b), a and b are again more susceptible due to their proximity
to c , because c leaves before d approaches closer. The risk of activation for d then
increases as the node approaches closer to other nodes that may have been activated by c .

4.2 Temporal Independent Cascade (T-IC) model

Use of a temporal IC model can help to ascertain if and how spread within a network
occurs, by considering evolving network topology alongside granular contact/interaction
information to model spread and build solution sets.

T-IC model properties desired

There are a number of challenges that existing solutions do not handle effectively all at
once, namely: evolving connectivity patterns, dynamic propagation patterns, approximation
guarantees, and sentinel/susceptible solution sets.

i) Evolving connectivity patterns: The spread model must cater for both the addi-
tion/deletion of edges and varying contact frequencies. For example, connectivity
patterns such as the interactions between infected individuals over time [91], or the
usage of removable storage devices in a computer network affected by a computer
virus [199], can govern how the spread takes place. Previous cascade models
that operate on such evolving connectivity patterns (and preserve approximation
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guarantees) often use static snapshots at regular intervals to represent the dynamic
nature of the network. Rather than using partially observed connections from
an incomplete static snapshot to produce solutions that are more likely to be
sub-optimal [122], there is a need for a solution set that is optimised across the entire
window of time-varying contact events. Furthermore, it is desirable for the spread
model to capture temporal dependencies at every step.

ii) Dynamic propagation patterns: There is currently no comprehensive solution with
provable quality guarantees to handle dynamic propagation at different rates, where
the likelihood of the spread of activation along connections can exhibit arbitrary
temporally evolving patterns. For example, the bounded infectious period of a disease-
causing virus [91] can be captured by a dynamic propagation rate that tapers down to
0 after a defined duration of time. Similarly, dynamic propagation patterns can be used
to model the limited period of effectiveness of a rumour [59], or the more long-term
effects on a machine infected with a computer virus [199].

iii) Approximation guarantees: Prior IC based solutions lose approximation guarantees
when modified to support time windows or graph snapshots. To allow for scalable
analysis that can support the use of fine-grained temporally evolving graph data, rigor-
ous approximation guarantees must be maintained in the temporal spread modelling
algorithm. However, providing such solution quality guarantees should not come at
the cost of excessive running time.

iv) Sentinel/susceptible solution sets: While cascade models have been predominantly con-
sidered for influence maximisation and identifying highly influential nodes, they can
also be enhanced to identify i) sentinel nodes that quickly detect activation anywhere
in the network, or ii) susceptible nodes that easily collect activation from anywhere
in the network. A set of sentinel (or detector) nodes is one that provides the best
coverage over the entire network. That is, spread processes taking place anywhere in
the network are likely to reach (and be detected by) one of these sentinels. Identifying
such a sentinel set involves an optimisation objective that is different from that of
influence maximisation, and requires a novel ‘reverse spread’ process. Another inter-
esting objective is the identification of high priority susceptible nodes, i.e. those that
are independently most likely to collect activation. For such a solution set, the overall
network coverage is disregarded in favour of individual risk.

T-IC model formulation

To address the above challenges, the T-IC model is defined over an evolving network. A
temporal network has already been formalised in Definition 4.1.1 as one where the propaga-
tion probability between two nodes can vary over time. The T-IC model handles dynamic
propagation rates and allows an active node to repeatedly try to activate its neighbours. That
is, while spread may continue to take place as long as a node is active, the actual likelihood
is determined by the propagation rate (e.g., it may drop to zero quickly depending on the
infectious period of a virus [91], or based on the short-term nature of rumours [59]). This is
an enhancement of the well-known IC model, as it takes the temporal ordering of activations
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into account and allows for dynamic changes in both propagation probability and network
connectivity patterns.

Given time intervals 𝑖, 𝑗 ∈ 𝑇 such that 𝑖 < 𝑗 , the T-IC model proceeds from 𝑖 to 𝑗 as follows:
Let 𝐴𝑡 denote the set of initially active nodes at the beginning of time interval 𝑡. Within
each interval 𝑡 ∈ [𝑖, 𝑗], the standard IC model is executed once under probability distribution
𝑃(𝑡) on edges. That is, the active nodes for that particular interval activate their neighbours
based on the propagation rates 𝓅(𝑢, 𝑣, 𝑡) associated with the edges for that time interval
only. This proceeds until no further spread is possible. Note that this 𝓅(𝑢, 𝑣, 𝑡) varies, and
can fall to 0 to indicate that spread does not take place at the given 𝑡, thereby allowing the
model to closely replicate real-world dynamic spread. The set of all activated nodes at the
end of interval 𝑡 is 𝐴𝑡+1, which thus also represents the active nodes at the beginning of the
next time interval 𝑡+1 (active nodes remain active in subsequent intervals). This process
is executed for each interval 𝑖, 𝑖+1, . . . , 𝑗 and the final set of active nodes 𝐴 𝑗+1 is obtained
after interval 𝑗 .

In other words, the standard IC process is unmodified and run to completion independently
within each discrete time interval 𝑡 ∈ [𝑖, 𝑗] under the corresponding probability distribution
defined over edges. For the entire chosen time window ([𝑖, 𝑗] ∈ 𝑇 ), stacking several of these
IC processes, and treating activated nodes as the seeds for the next run, allows the spread
over an evolving graph to be simulated without sacrificing the approximation guarantees.
Furthermore, if a node is activated in a specific time interval, it can continue to activate
its neighbours in subsequent time intervals, but subject to the propagation probability
distribution. For example, a person infected with a virus may continue to spread infection
during interactions with people repeatedly, but the probability rate remains high only for as
long as they are contagious and then drops to 0. This continuous activation during the T-IC
process, along with the propagation probability formulations, makes it possible to reflect
real-world spreading phenomena (e.g., for disease monitoring) with the T-IC model while
maintaining the solution quality guarantees.

4.3 Hypergraph-based reachable set construction

Now that the T-IC process is introduced for detection and analysis of spread (e.g., disease
outbreaks, misinformation campaigns), its spread function and hypergraph-based sampling
and construction strategy to determine random reachable sets are discussed in greater detail.

Submodular spread function

While other models lose the rigorous approximation guarantees with changes to support tem-
poral spread, the significant contribution presented here enhances a well-defined sampling
approach and allows optimality guarantees to be preserved in a new dynamic setting. The
defined reverse spread function 𝜙(·) is first proven to be submodular in Theorem 4.3.1. It
follows that a standard hill-climbing greedy algorithm using this spread function achieves a
1− 1

𝑒
-approximation guarantee, i.e., a solution that uses this function can be approximated to

within 1− 1
𝑒
of optimal [86]. Thereby, the novel spread function utilises dynamic propagation
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probabilities for every edge in the network while preserving solution quality unlike many
popular temporal IC solutions.

Theorem 4.3.1. Under the T-IC model, function 𝜙𝑖 𝑗 (·) is submodular.

Proof. Let G = (V, E,𝓅) be a directed graph where each edge (𝑢, 𝑣) ∈E is associated with
a weight 𝓅(𝑢, 𝑣) denoting the probability that spread occurs from 𝑢 to 𝑣. Kempe et al. [86]
showed that the IC model induces a distribution over graph G, such that a directed graph
𝑔 = (V, E′) can be generated from G by independently realizing each edge (𝑢, 𝑣) ∈E with
probability 𝓅(𝑢, 𝑣) in E′. In a realised graph 𝑔∼G, nodes reachable by a directed path from
a node 𝑢 are its reachable set 𝑅(𝑢, 𝑔), and correspond to the nodes activated in one instance
of the IC process with 𝑢 as the initially active seed node. They proved that for 𝑆 ⊂ 𝑉 , the
spread function 𝜎(𝑆, 𝑔) =

�� ⋃
𝑢∈𝑆

𝑅(𝑢, 𝑔)
�� is submodular.

Similarly, the T-IC model induces a distribution over G= (V, E, 𝑃(𝑡)), where the IC model
is executed independently in each discrete time interval 𝑡 ∈ [𝑖, 𝑗] under the corresponding
probability distribution defined over edges. Additionally, an activated node remains active
in subsequent intervals, getting multiple chances to activate its neighbours. So, directed
graph 𝑔𝑖 𝑗 = (V, E′) can be generated as follows: For intervals 𝑡 = 𝑖, 𝑖+1, . . . , 𝑗 , each edge
(𝑢, 𝑣) ∈E is realised in E′ with probability𝓅(𝑢, 𝑣, 𝑡), only if node 𝑢 is active at the beginning
of interval 𝑡. Hence, the reachable set 𝑅(𝑠, 𝑔𝑖 𝑗 ) corresponding to a node 𝑠 on the generated
graph 𝑔𝑖 𝑗 consists of all the nodes that are reachable and activated by time interval 𝑗 by the
seed 𝑠 that was initially active in time interval 𝑖.

Let 𝑔𝑇
𝑖 𝑗
denote the transpose of 𝑔𝑖 𝑗 , obtained by reversing all its directed edges. Reachable

set 𝑅(𝑟, 𝑔𝑇
𝑖 𝑗
) corresponds to all seed nodes that, if active in interval 𝑖, would have the

ability to activate the receiving node 𝑟 by time interval 𝑗 . Given a set of nodes 𝑆, let the
reverse spread 𝜙(𝑆, 𝑔𝑖 𝑗 ) denote the number of nodes that can reach some node in 𝑆. That
is, 𝜙(𝑆, 𝑔𝑖 𝑗 ) =

�� ⋃
𝑢∈𝑆

𝑅(𝑢, 𝑔𝑇
𝑖 𝑗
)
��. Since 𝜙(𝑆, 𝑔𝑖 𝑗 ) = 𝜎(𝑆, 𝑔𝑇

𝑖 𝑗
), the submodularity of 𝜙(𝑆, 𝑔𝑖 𝑗 )

follows. Therefore, the expected reverse spread 𝜙𝑖 𝑗 (𝐺, 𝑆) = 𝐸 (𝜙(𝑆, 𝑔𝑖 𝑗 )) is submodular,
being a linear combination of submodular functions. □

Hypergraph-based sampling strategy

Borgs et al. [19] use a state-of-the-art sampling strategy to build a hypergraph representation
and estimate the spread of activation. In this section, an enhancement of this technique
is presented to handle dynamic propagation rates and identify solution sets for both the
newly defined optimisation tasks (i.e., identifying sentinel nodes and susceptible nodes). The
algorithm and sampling strategy use a novel process of generating the hypergraph to encode
the reverse spread of any given subset of nodes via its nets. A hypergraph is a generalisation
of a graph in which any number of nodes may be connected by a hyperedge (net). The nodes
contained in a net are called its pins. The two-step sampling strategy is as follows: i) random
T-IC processes (that start with random active seeds) are executed on the temporal network,
and ii) for each execution of a T-IC process, a hypergraph net is constructed whose pins are
the nodes that are activated during the process.
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As shown in Theorem 4.3.1, 𝑔𝑖 𝑗 can be drawn from the distribution induced by a T-IC model
on 𝐺. The edges in the graph 𝑔𝑖 𝑗 are tried to be realised by traversing only live edges
(i.e., edges where the starting node is already active). This constraint of only considering
live edges means that the construction encodes the dynamic nature of the spread, because
sampling takes place by respecting the temporal ordering of connections. If a node 𝑣 is
reachable from many different nodes in 𝑔𝑖 𝑗 , then it is more likely that this node will be
activated by time interval 𝑗 . Since any random seed in time interval 𝑖 is equally likely to start
the spread, the existence of more paths that lead to the node 𝑣 results in a higher likelihood
of its activation. This means that the reachable set of nodes 𝑅(𝑢, 𝑔) (i.e., all the nodes from
the realised graph 𝑔𝑖 𝑗 that are reachable by a directed path of edges from the node 𝑢), which
depends on the random seed node 𝑢, is one among many possible sets of activated nodes at
the end of a random T-IC process on the randomly sampled 𝑔𝑖 𝑗 . Note that since traversal over
live edges helps to capture temporal dependencies in the spread model, the identification of
sentinel/susceptible nodes is a non-trivial and orthogonal problem that cannot be achieved
through traditional influence maximisation.

Random reachable sets

Overall, the solution depends on two levels of randomness that are encountered during the
hypergraph construction: i) the sampling strategy for 𝑔𝑖 𝑗 ∼G, and ii) the computation of
𝑅(𝑢, 𝑔𝑖 𝑗 ) given a random seed 𝑢. The former depends on the probability distribution induced
by the T-IC model over G, while the latter depends on the seed node 𝑢. Such a reachable set
that is generated by two levels of randomness is referred to here as a ‘random reachable set’
𝑅𝑅(𝑢, 𝑔𝑖 𝑗 ). Outbreaks are typically thought to start from a single source [72, 90]. Therefore,
one random seed node is considered in the simulations.

The main sampling step is repeatedly performed to build a hypergraphH = (V,N) where
each net 𝑛𝑢 ∈ N is independently generated by executing a random T-IC process from
seed 𝑢. The hypergraph corresponds to a random reachable set 𝑅𝑅(𝑢, 𝑔𝑖 𝑗 ), i.e., pins(𝑛𝑢) =
𝑅𝑅(𝑢, 𝑔𝑖 𝑗 ). The solution quality and concentration bounds thus depend upon the number of
nets generated to build the hypergraph [19].

Note that H and G are composed of the same set of nodes V . For a solution set 𝑆, the
number of nodes sharing a net with at least one node in set 𝑆 (which are referred to as
deg(𝑆) henceforth) corresponds to the number of times a node in 𝑆 gets activated during
the random T-IC processes executed to compute the random reachable sets. To select 𝑆
as a collection of sentinel nodes, higher deg(𝑆) will be more likely to detect spread in the
network, which can be understood as follows: The degree of a node in the hypergraph is
the sum of |N | Bernoulli random variables [19]. This is because the inclusion of a node
𝑣 in a random reachable set 𝑅𝑅(𝑢, 𝑔𝑖 𝑗 ) and in pins(𝑛𝑢) can be considered as a Bernoulli
trial with success probability 𝓅𝑣 , where 𝓅𝑣 denotes the probability that 𝑣 gets activated in
a random T-IC process. That is, the hypergraph node degrees are binomially distributed
with an expected value E[𝑑𝑒𝑔(𝑣)]=𝓅𝑣×|N |. This implies that 𝓅𝑣 =E[𝑑𝑒𝑔(𝑣)/|N |]. Since
the reverse spread can be written as 𝜙𝑖 𝑗 (𝑣) = |V|×𝓅𝑣 , the node degree corresponds to an
estimation of reverse spread of node 𝑣. Similarly, in hypergraph H , the expected value
E[𝑑𝑒𝑔(𝑆)/|N |] corresponds to the probability that at least one node in 𝑆 gets activated
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during a random T-IC process. Therefore, the degree of a set 𝑆 of nodes in hypergraphH ,
corresponds to an estimation of the reverse spread 𝜙𝑖 𝑗 (𝑆)= |V|×E[𝑑𝑒𝑔(𝑆)/|N |], which can
be estimated well if a sufficient number of nets are built.

4.4 Optimisation objectives

Two distinct objectives and associated T-IC based solutions are introduced in this context:
i) finding sentinel nodes, and ii) finding susceptible nodes. These are applicable to spread
monitoring in evolving networks to i) detect if there is any spread by checking a limited
number of nodes, and ii) understand how it is likely to spread by identifying the most
susceptible nodes.

Novel spread functions are defined to address these two objectives. The above efficient
hypergraph-based sampling strategy captures evolving connections and dynamic propagation
rates in the network, and T-IC processes generate ‘random reachable sets’ that can reflect the
patterns of spread within this evolving network. These random reachable sets are used to
develop two solutions, Reverse Spread Maximisation (RSM) and Expected Spread Maximisation

(ESM), that can be used to identify sentinel and susceptible nodes respectively, with provable
approximation guarantees for the optimality of these solution sets.

RSM is employed to find sentinel nodes, i.e., a set of nodes where at least one is likely to be
activated regardless of where the spread begins. RSM is useful to detect if there is spread
within a population. An application is ‘sentinel surveillance’ and the early detection of
outbreaks by using sensors at the set of sentinels [12, 35, 73]. To understand how the spread
is likely to take place, ESM is studied to identify susceptible nodes, i.e., a set of nodes that
accumulate the most spread from arbitrary seeds. A susceptible set represents all individuals
most liable to be part of the spread.

Sentinel nodes

The first objective is to identify the sentinel nodes, i.e., the set of nodes that maximises the
probability of detecting any activations in a network where the set of initially active nodes is
not known. In other words, this optimisation objective focuses on finding 𝓀-element subsets
that can behave as sentinels. The proposed solution can also be run until termination over
an indefinite time window, but when there is a temporal constraint within which to detect
outbreaks, it is noted that a truncated solution set (choosing only 𝓀 nodes) can sufficiently
cover the entire relevant spread.

The objective is to maximise the probability that at least one node in a 𝓀-element solution
set 𝑆 becomes active after a random T-IC process (i.e., one that starts with randomly selected
seeds) within a given time window [𝑖, 𝑗]. The ‘temporal reverse spread maximisation’
objective, as defined below, corresponds to this goal of identifying a𝓀-element set of sentinel
nodes. Optimising the success rate of detection of spread anywhere in the network by
using sentinels can be achieved by maximising the expected amount of ‘reverse spread’ 𝜙(·).
Expected reverse spread can be defined as the expected number of nodes that can spread
activation to the nodes in 𝑆. Therefore the expected reverse spread of set 𝑆 on G within [𝑖, 𝑗],
denoted by 𝜙𝑖 𝑗 (G, 𝑆), is the expected number of nodes that can activate at least one node
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in set 𝑆 during a random T-IC process in [𝑖, 𝑗]. The problem of maximising the expected
reverse spread 𝜙𝑖 𝑗 (G, 𝑆) can be formally defined as follows:

Definition 4.4.1 (Temporal Reverse Spread Maximisation). Find the 𝓀-element subset of

nodes 𝑆∗ ⊂ V such that

𝑆∗ = argmax
𝑆⊂V , |𝑆 |=𝓀

𝜙𝑖 𝑗 (G, 𝑆) (4.1)

A practical application of finding this optimal solution is to detect an outbreak using minimal
resources (e.g., medical tests, computer virus checks, or online content reviews). Testing a
targeted set of individuals can be an efficient way to detect the onset of spread within a pop-
ulation before it is widespread, akin to the aforementioned concept of sentinel surveillance.

Susceptible nodes

To understand how the spread takes place within the network, it is instead necessary to
identify the high priority nodes that collect activation, i.e., nodes that are the most susceptible
to activation.

Hence, this aim is to identify the 𝓀-element subset 𝑆 containing the maximum expected
number of active nodes after T-IC process in [𝑖, 𝑗]. Similarly to the temporal reverse spread
maximisation objective, the ‘temporal expected spread maximisation’ objective defined below
corresponds to the goal of identifying a 𝓀-element set of susceptible nodes. This second
problem is formally defined as follows:

Definition 4.4.2 (Temporal Expected Spread Maximisation). Let 𝐼 (𝑠) be an indicator random
variable for node 𝑠∈ 𝑆 such that

𝐼 (𝑠) =

1 if 𝑠 is activated

0 if 𝑠 is not activated
(4.2)

after executing random T-IC process. Find a 𝓀-element subset of nodes 𝑆∗ ⊂V that maximises

the expected number of active nodes in 𝑆∗

𝑆∗ = argmax
𝑆⊂V , |𝑆 |=𝓀

E

[∑︁
𝑠∈𝑆

𝐼 (𝑠)
]

(4.3)

For example, in disease, computer virus, or misinformation monitoring applications, this
objective helps to identify the subset 𝑆 that are all highly likely to be infected. These offer
important candidates to immunise, disconnect, or re-educate in order to mitigate the spread.

4.5 RSM and ESM solution algorithms

This section describes the two algorithms, Reverse Spread Maximisation (RSM) and Expected

Spread Maximisation (ESM), proposed to efficiently compute solution sets for the tasks
corresponding to Definitions 4.4.1 and 4.4.2 respectively.
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Reverse Spread Maximisation solution

In the hypergraphH = (V,N), if a node connects many nets (i.e., its degree is high), then
that node has a high probability of being activated during a random T-IC process. Similarly,
if a set 𝑆 of nodes covers many of the nets (random reachable sets), then its expected reverse
spread 𝜙𝑖 𝑗 (G, 𝑆) is likely to be higher. In other words, there is a larger set of nodes that all
have a chance to activate at least one node of 𝑆 within the time window [𝑖, 𝑗].

As in the maximum coverage problem, the goal is to cover the maximum number of nets (ele-
ments) in the hypergraphH by choosing a solution set 𝑆 of 𝓀 nodes (subsets). This step is
therefore equivalent to the well-known NP-Hard maximum coverage problem [157]. Borgs
et al. [19] show that the maximum set cover computed by the greedy algorithm on the
hypergraph yields (1− 1

𝑒
−𝜖)-approximation guarantee for influence maximisation. Here, the

parameter 𝜖 relates the approximation guarantee to the running time of the algorithm, and
the solution quality improves with the increasing number of nets in the hypergraph.

Algorithm 4.1: RSM Solution
input :G = (V, E, 𝑃(𝑡)), 𝑖, 𝑗 , 𝓀, |N |

1 H = (V,N = ∅)
2 𝑆 = ∅
3 for 𝑛 = 1 to |N | do
4 Select source node 𝑠 ∈ V uniformly at random
5 𝐴 = {𝑠}
6 for 𝑡 = 𝑖 to 𝑗 do

7 𝐵𝐹𝑆_𝑄 = 𝐴

8 while 𝐵𝐹𝑆_𝑄 ≠ ∅ do
9 𝑢 = dequeue(𝐵𝐹𝑆_𝑄)

10 foreach (𝑢, 𝑣) ∈ E do

11 Draw 𝓅 ∈ [0, 1] uniformly at random
12 if 𝓅 ≤ 𝓅(𝑢, 𝑣, 𝑡) and 𝑣 ∉ 𝐴 then

13 𝐴 = 𝐴 ∪ {𝑣}
14 enqueue(𝐵𝐹𝑆_𝑄, 𝑣)
15 N = N ∪ {𝐴}
16 for 𝑘 = 1 to 𝓀 do

17 𝑣𝑘 = argmax
𝑣

degH (𝑣)

18 𝑆 = 𝑆 ∪ {𝑣𝑘}
19 Remove 𝑣𝑘 and all of its incident nets fromH
20 return S

Algorithm 4.1 displays the overall execution of the proposed solution. It generates a number
of random reachable sets by first drawing a graph 𝑔𝑖 𝑗 from the distribution induced by T-IC
model on the input graph G and then performing a breadth-first search (BFS) starting from a
randomly selected node 𝑢. This randomised BFS through time intervals proceeds such that
the set of source nodes at each interval are the activated nodes in the preceding interval
(lines 6–14). Thus each edge (𝑢, 𝑣) ∈E is searched with probability 𝓅(𝑢, 𝑣, 𝑡) in time interval
𝑡. All nodes activated during a random BFS form a random reachable set and are connected
by a net in hypergraph H (line 15). After generating the hypergraph H with |N | nets,
the algorithm repeatedly chooses the highest degree node at each iteration, adds it to the
solution set, and subtracts this node together with all incident nets from the hypergraph.
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This is done repeatedly until a 𝓀-element subset of nodes, which is the resulting solution
set 𝑆, is computed (lines 16–19). This algorithm generates a solution of sentinel nodes for
Definition 4.4.1.

Expected Spread Maximisation solution

In order to maximise the expected number of active nodes in 𝑆, all the nodes having the
highest probability of being activated should be included in the solution set, since the

expected number can be given as E
[ ∑
𝑠∈𝑆

𝐼 (𝑠)
]
=

∑
𝑠∈𝑆

𝓅𝑠 .

Algorithm 4.2: ESM Solution
input :G = (V, E, 𝑃(𝑡)), 𝑖, 𝑗 , 𝓀, |N |

1 H = (V,N = ∅)
2 𝑆 = ∅
3 for 𝑛 = 1 to |N | do
4 Select source node 𝑠 ∈ V uniformly at random
5 𝐴 = {𝑠}
6 for 𝑡 = 𝑖 to 𝑗 do

7 𝐵𝐹𝑆_𝑄 = 𝐴

8 while 𝐵𝐹𝑆_𝑄 ≠ ∅ do
9 𝑢 = dequeue(𝐵𝐹𝑆_𝑄)

10 foreach (𝑢, 𝑣) ∈ E do

11 Draw 𝓅 ∈ [0, 1] uniformly at random
12 if 𝓅 ≤ 𝓅(𝑢, 𝑣, 𝑡) and 𝑣 ∉ 𝐴 then

13 𝐴 = 𝐴 ∪ {𝑣}
14 enqueue(𝐵𝐹𝑆_𝑄, 𝑣)
15 N = N ∪ {𝐴}
16 𝑆 = argmax

V′⊂V , |V′ |=𝓀

∑︁
𝑣∈V′

𝑑𝑒𝑔H (𝑣)

17 return S

Hence, the problem in Definition 4.4.2 can be solved by Algorithm 4.2. The final step (line 16)
now selects the solution set as the 𝓀-element subset of nodes having the most incident nets
(i.e. largest degrees inH ).

As illustrated in Figure 4.3, the proposed sampling strategy is applied on 𝑔𝑖 𝑗 , allowing
solutions for the objectives of finding sentinel/susceptible nodes. Clearly, the sampling step
is dependent on temporal dynamics which change upon transposing 𝑔𝑖 𝑗 (Figure 4.2), therefore
solutions for these two objectives are distinct from influence maximisation approaches in
literature. Specifically, the RSM approach can detect any outbreak efficiently, e.g., sentinel
nodes b and e

(
or b and f

)
collectively correspond to greater coverage of the network

than that offered by the ESM solution
(
nodes b and a

)
. The ESM solution appears in

RR-sets more frequently, and are nodes that are all highly likely to be activated. Such sentinel
nodes are relevant in settings such as disease monitoring (for contact tracing efforts), or
computer virus tracking (to identify and restore infected machines quickly). Identifying
susceptible nodes in a social network also has interesting use cases such as combating rumour
spread and misinformation campaigns more effectively.
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Figure 4.2: RSM vs ESM on 𝑔𝑇
𝑖 𝑗

Figure 4.3: RSM vs ESM on 𝑔𝑖 𝑗

4.6 Experimental evaluation

For each real dataset, a temporal network is built on which the T-IC process is executed.
The solutions are evaluated in terms of identifying sentinel nodes and susceptible nodes as
defined in Section 4.4.

Datasets

Eight real datasets are used to build temporal networks. The T-IC model can be used to
analyse a variety of application settings, such as monitoring disease or malware spread,
countering misinformation campaigns, and tracking social influence. For an example use
case of disease monitoring, six location-based networks are considered. The first two are
spatio-temporal network datasets constructed using the locations (check-ins) of Foursquare
users, in line with other research studies on disease monitoring applications [17, 165]. These
are referred to as NYC and Tokyo datasets. The NYC and Tokyo datasets [175] record
check-in times, (anonymised) user IDs, venue IDs, venue locations, and venue categories.
The temporal and spatial information from these are used to build edge connections in the
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network of users, selecting 25 consecutive days’ data. To alleviate sparsity, the nodes for
all users visiting the same venue in the same day are connected bidirectionally. Similarly,
the third dataset SP-office [54] taken from SocioPatterns1 contains a temporal network
of contacts between individuals in an office building, where active contacts are recorded
at 20-second intervals. A small interval of 6 hours is considered to determine whether
interactions take place between individuals, based on whether their active locations are the
same. Since all the location data is collected from departments within the same workplace,
using a larger interval would result in a fully connected contact network. Information about
departments is provided which is similar to venue categories in the first two datasets. The
first 8 consecutive days are considered to construct the temporal network.

The fourth location dataset is based on SafeGraph,2 which has been used to analyse mobility
patterns for COVID-19 mitigation [28]. SafeGraph contains POIs, category information,
opening times, as well as aggregate mobility patterns such as the number of visits by day/hour
and duration of visits. Using these mobility patterns, synthetic trajectories are generated
for 2K individuals visiting 100 unique POIs in the NYC area over 25 days. To build an
individual’s trajectory, for each day of the week for three consecutive weeks, sequential visit
locations are selected and assigned to appropriate timestamps (based on travel time and
visit duration) as follows: i) each individual receives a random start timestamp for travel, a
random start POI location, and a random trajectory length that determines the number of
POIs to visit, ii) SafeGraph dwell time estimates and a random distance-based travel time
are used to determine the timestamp for reaching the next location, iii) depending on this
timestamp, POIs are filtered out from the candidate list (based on opening time, category
information, and distance from current location) to ensure that the trajectory sequences
generated are feasible and realistic, and iv) the next location POI is selected from among the
remaining candidates, and the process (steps ii–iv) is repeated until the full length trajectory
is complete (where no candidates exist, the trajectory is truncated). Then, the corresponding
contact network is constructed by connecting (bidirectionally) nodes that appear in the same
location at the same time, considering 5 minute intervals to determine this overlap. This
semi-synthetic network is called SG-traj.

Analysis of spread on such networks has been widely studied and provides relevant baselines
for comparison. Nonetheless, adjustment of the propagation parameters and model activation
state types can reflect many other use-cases from computer virus attacks to rumour spread,
for any appropriate dataset that provides granular temporal information.

Studies are also conducted on two social network datasets: wiki-Vote [102] and cit-
HepPh [100]. wiki-Vote consists of user discussions on Wikipedia, with edges between
users representing votes. cit-HepPh encodes citation connections between research
papers. These datasets reflect the typical network structure for problems such as influence
maximisation, and propagation probabilities are assigned according to related literature.

Finally, two location datasets developed specifically for studying pandemics are also used
to further study the disease use case: Haslemere and Italy. The first records meetings
between users of the BBC Pandemic Haslemere app over time, including pairwise distances

1www.sociopatterns.org
2www.safegraph.com
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with 5 minute intervals [91]. The second reports temporal aggregated mobility metrics for
each day’s movement of population between Italian provinces based on smartphone user
locations before and during the COVID-19 outbreak over 90 days [128]. The Italy dataset
also provides transition probabilities between provinces, which are directly used as the
propagation probabilities for the T-IC process.

The statistics of the constructed networks are in Table 4.1. This reports the total number of
temporal edges constructed, and the maximum degree across the entire time window of the
temporal edges.

Table 4.1: Dataset properties

Dataset #Nodes #Edges Max degree
NYC 876 18,270 147
Tokyo 765 102,018 311
SP-office 232 78,249 131
SG-traj 2,000 57,530 56
Haslemere 469 205,662 1,506
Italy 111 235,190 6,808
wiki-Vote 8,297 103,689 1,167
cit-HepPh 34,546 841,798 846

Propagation probability settings

Each directed edge (𝑢, 𝑣) is assigned a corresponding probability 𝓅(𝑢, 𝑣, 𝑡) of propagation
from node 𝑢 to node 𝑣 at time 𝑡, defined based on the needs of the specific application
dataset. For example, tracking disease spread may require this propagation to be based on
contact duration and physical proximity, which are not relevant to malware in cyberspace.
Factors like the period of transmissibility for diseases versus rumours/misinformation have
different thresholds that are determined by experts. T-IC supports a variety of settings simply
by adjusting the propagation rate formulation as needed. A few of these possibilities are
presented below:

• Sampled from a distribution: For social network datasets, the propagation probability
is assigned following the common practice in influence modelling studies [32] of using a
uniform distribution. The edges of the network are randomly assigned to a discrete time
interval in 𝑇 , and 𝓅(𝑢, 𝑣, 𝑡) ∈ [0, 0.3] is sampled for each edge (𝑢, 𝑣).

• Provided by the data: The Italy dataset directly uses the provided transmission probability
between connected nodes. In this dataset, it reflects the meta-population migration patterns
between different regions (nodes). Note that this network is of a lower granularity than the
individual-level trajectories in the location-based datasets.

• Obtained from domain experts: For location-based contact networks and Haslemere, a
domain-informed probability assignment is utilised in the manner proposed by experts. Based
on epidemiological studies [5, 60, 91, 120], the propagation probability 𝓅 of a connection
from node 𝑢 to node 𝑣 at time interval 𝑡 is calculated as follows, to incorporate knowledge of
virus spreading characteristics:
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𝓅(𝑢, 𝑣, 𝑡) = 1 − 𝑒𝑥𝑝
(
−

∑︁
𝑡 ′

𝒻(𝑢, 𝑣, 𝑡′)
)

where 𝒻(𝑢, 𝑣, 𝑡) denotes the ‘force of infection’ (the larger the value of 𝒻(𝑢, 𝑣, 𝑡), the greater
is the transmission probability between 𝑢 and 𝑣 at time 𝑡), and 𝑡′ ∈ (𝑡 − 𝑡0, 𝑡] indicates the
relevant duration of time up to the current time interval 𝑡. The latter is governed by 𝑡0, the
duration for which historic infection force is considered, since the transmission probability
is decided by the accumulated infection force over 𝑡′. Note that 𝓅(𝑢, 𝑣, 𝑡) can drop to zero to
denote no spread, such as once the individual is no longer infectious.

Therefore, a minimal expression for 𝒻(𝑢, 𝑣, 𝑡) must consider the distance from 𝑢 to 𝑣 and
the population density at the venue to determine risk, and is formulated in line with the
literature [91] as:

𝒻(𝑢, 𝑣, 𝑡) = 𝑎𝑒−0.1×𝒹 + 𝑏𝑒−0.1×𝓂−1

where 𝒹 is the distance between 𝑢 and 𝑣 at time interval 𝑡 (based on their location data),
𝓂 is the number of people located at the same venue, and 𝑎, 𝑏 are hyper-parameters. To
realistically simulate spread, a default value of 𝑎 = 0.05 is used, with 𝑏 = 0.05 (for NYC,
SG-traj, and SP-office datasets) or 𝑏 = 0.01 (for Tokyo dataset due to its dense
connectivity). When 𝒹 is greater than some threshold or when the dataset has no such
proximity information, the contribution to infection force is assumed to be zero (i.e., 𝑎 = 0).

Baselines

There is a lack of research examining sentinel and susceptible nodes on temporal networks,
or using IC models. Comparable alternatives to the RSM and ESM solution sets are thus
sought out. Baselines are selected in three groupings. The first consists of IC model-based
methods (Greedy-IM [86], DIA [122]), to demonstrate the superiority of T-IC for analysing
spread on evolving networks. The second is the traditional virus propagation method for
finding the critical 𝓀 nodes to immunise to prevent an epidemic (T-Immu [131]). The final
grouping covers simple heuristic-based methods (Max-Deg, Random).

Greedy-IM obtains the top-𝓀 influential nodes using a greedy hill-climbing algorithm over
|𝑇 | time windows. Since it is infeasible for larger datasets, it is run only on the smallest
Haslemere and Italy datasets. Greedy-IM is applied for each time window separately
to calculate the corresponding spread over 𝑇 and the results are averaged to select the best
node. The Dynamic Influence Analysis (DIA) method designs a dynamic index data structure
to perform influence analysis over evolving networks. The updating index structure only
shows the graph connection at the latest timestamp. Top-𝓀 influential nodes are selected at
each time window using DIA, and average results are reported over the |𝑇 | time windows.
T-Immu formulates a non-linear dynamic system to remove a small set of nodes to prevent an
epidemic. An epidemic threshold is also derived for evolving graphs. Both DIA and T-Immu
handle temporal and topological information in contact networks, therefore they are run
on the location datasets that include such information. The Max-Deg algorithm selects the
top-𝓀 nodes in decreasing degree order. The Random algorithm selects 𝓀 nodes uniformly
at random in a given graph, with average results presented after 20 simulations.
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Table 4.2: Normalised performance (reverse spread and binary success rate) at |𝑇 |=25 with
different sizes of solution set |𝑆 |=𝓀

Dataset Method Reverse Spread Binary Success Rate
k 10 20 30 40 50 10 20 30 40 50

NYC

RSM 7.9 8.5 9.0 9.5 10 8.6 7.6 9.1 8.4 10

T-Immu 5.0 8.2 8.3 8.7 9.2 7.4 7.1 7.5 6.9 8.6
DIA 0.0 1.0 2.4 3.2 4.1 0.0 1.1 3.1 4.2 4.8
Max-Deg 7.5 8.0 8.4 8.8 9.2 7.5 6.7 7.4 6.8 8.3
Random 4.0 6.3 7.9 8.7 9.2 2.1 6.0 6.6 5.7 6.6

Tokyo

RSM 8.4 8.9 9.3 9.7 10 8.4 9.1 9.0 9.2 10

T-Immu 8.3 8.8 9.1 9.3 9.7 7.9 8.4 8.2 8.5 8.9
DIA 0.0 0.9 2.0 3.0 4.0 0.0 0.7 1.4 2.7 4.0
Max-Deg 7.9 8.5 9.0 9.3 9.7 7.6 8.1 7.8 8.4 9.0
Random 6.6 8.1 8.7 9.3 9.7 5.5 6.9 6.5 7.3 7.8

SG-traj

RSM 3.1 5.4 7.3 8.6 10 3.1 5.3 7.0 8.2 10

T-Immu 1.7 3.2 4.8 6.3 7.3 1.7 2.7 3.8 4.0 5.6
DIA 0.0 0.1 0.1 0.2 0.2 0.1 0.1 0.2 0.2 0.2
Max-Deg 2.0 3.3 5.1 6.3 7.5 2.1 2.6 4.2 4.2 6.6
Random 1.7 3.4 4.9 6.5 7.8 0.0 0.1 0.6 0.7 1.4

wiki-Vote
RSM 6.4 7.9 8.8 9.5 10 6.6 8.5 8.6 8.8 10

Max-Deg 0.0 0.8 1.9 2.9 4.4 0.6 1.8 2.8 3.4 4.1
Random 0.1 1.1 1.8 2.5 3.0 0.0 0.6 1.3 1.7 1.9

cit-HepPh
RSM 3.5 5.7 7.5 8.8 10 3.9 4.7 7.0 8.0 10

Max-Deg 0.1 0.2 0.3 0.6 0.9 0.0 0.2 0.4 0.6 1.0
Random 0.0 0.0 0.0 0.4 0.5 0.0 0.0 0.0 0.0 0.0

Setup

The algorithms are executed on an Ubuntu 20.04 machine with 16 Intel 3.90 GHz CPUs and
503 GB RAM.

The proposed solution sets are compared with the influential sets from the alternatives
with respect to the following performance measures: i) reverse spread from the solution set,
ii) average number of activated nodes (expected spread) in the solution set, and iii) binary
success rate of detecting spread. The reverse spread 𝜙(·) is computed as defined in Section 4.3.
The binary success rate is the average number of times that there is at least one active node
in the solution set during random T-IC processes. Reverse spread is expected to be correlated
with binary success, as both relate to the effectiveness of the solution set (sentinel nodes) in
covering/detecting spread in the network. The expected spread, computed as the average
number of activated nodes in the solution set, represents its susceptibility. Specifically, 1000
random T-IC processes are simulated to activate nodes in the network within 𝑇 .

Performance with different solution set sizes 𝓀

Tables 4.2 and 4.3 summarise the comparative results on the large-scale location datasets and
social datasets. Solution sets (𝑆) of sizes𝓀=10, 20, . . . , 50 are considered, with a time window
of length |𝑇 |=25 days. All results are normalised for ease of comparison, i.e., the range of
values between the minimum and maximum is mapped to [0, 10] to produce normalised
value 𝑥𝑛= 𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
, where 𝑥 is the original value, and 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and

maximum values across all the methods on the same measure. For example, consider the
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Table 4.3: Normalised performance (expected spread) at |𝑇 | = 25 with different sizes of
solution set |𝑆 |=𝓀

Dataset Method Expected Spread
k 10 20 30 40 50

NYC

ESM 2.3 3.8 6.1 7.1 10

T-Immu 0.4 0.7 1.7 2.0 2.3
DIA 0.0 0.0 0.1 0.2 0.3
Max-Deg 0.4 0.5 0.9 1.1 1.8
Random 0.1 0.4 0.7 0.9 1.2

Tokyo

ESM 2.2 4.5 5.9 7.8 10

T-Immu 1.1 2.0 3.5 5.0 6.8
DIA 0.0 0.0 0.1 0.2 0.3
Max-Deg 0.9 1.7 1.9 2.9 3.6
Random 0.3 0.9 1.2 1.7 2.3

SG-traj

ESM 2.1 3.9 5.9 6.9 10

T-Immu 0.9 1.4 2.2 2.3 3.4
DIA 0.0 0.1 0.1 0.1 0.1
Max-Deg 1.0 1.3 2.3 2.5 3.8
Random 0.0 0.0 0.3 0.4 0.7

wiki-Vote
ESM 2.8 6.7 8.4 9.6 10

Max-Deg 0.1 0.3 0.5 0.8 1.4
Random 0.0 0.1 0.2 0.3 0.3

cit-HepPh
ESM 3.5 5.1 6.7 8.4 10

Max-Deg 0.0 0.2 0.3 0.5 0.7
Random 0.0 0.0 0.0 0.0 0.0

normalised reverse spread on the NYC dataset shown in Table 4.2 . The value 0 for DIA in
this section at 𝓀=10 means that the reverse spread of DIA with 𝓀=10 is minimum among
all methods from 𝓀=10 to 𝓀=50, while the value of 10 for RSM at 𝓀=50 denotes that its
reverse spread in this configuration is maximum across among all methods and all 𝓀.

The set returned by RSM collectively achieves the highest reverse spread coverage in all
cases, which increases with increasing 𝓀 (solution set size). Without prior information about
the initial seeds from where activation begins to spread, distributing limited resources (e.g.,
scarce/expensive wireless sensors or medical tests) to these sentinel nodes (i.e., the nodes
selected in 𝑆) increases the probability of detecting the spread at an early stage.

By contrast, ESM selects all nodes having the highest probabilities of being activated during
a random T-IC process, and thus best captures the largest expected spread out of all methods.
ESM outperforms Max-Deg, which is often enforced in reality, by up to 82% on NYC. ESM is
thus an effective targeted strategy for identifying the most susceptible nodes (e.g., for contact
tracing or treatment).

The binary success rate using RSM is the best for all datasets and 𝓀. Comparisons with
T-Immu and DIA show that considering temporal properties while also preserving the overall
graph structure is vital to select the ideal solution sets. RSM consistently outperforms
T-Immu (nearly 2x better on SG-traj) despite having related objectives, since T-Immu
cannot capture time-varying transmission probabilities. RSM also drastically outperforms
DIA, which is worse than Random, because DIA selects nodes of the evolving network based
on an updating index which only remembers the latest probability assignment and fails to
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Figure 4.4: Normalised reverse spread with different lengths of time window |𝑇 |

capture the globally optimal solution set over 𝑇 . The improvements (at least 10% higher
success rates in the worst case) over Max-Deg confirm that the dynamic topology of the
network (captured by the RSM and ESM solutions with T-IC process) plays a much more
significant role compared to the local connectivity (node degrees) when modelling the spread.

Performance with different time window lengths |𝑇 |

The effect of varying the time window 𝑇 is studied while keeping a constant solution set
size 𝓀=50 on NYC, Tokyo, and SG-traj over one-day intervals up to |𝑇 | = 25. All three
datasets provide spatio-temporal trajectories where the evolution of spread over time is
relevant. The results are also plotted for SP-office, Haslemere, and Italy. The time
window used is different to accommodate these latter datasets. The propagation probability
for Italy is the real transmission probability of people moving between any two provinces
over |𝑇 | = 90 days, while for Haslemere it captures infections over |𝑇 | = 3 days. For
SP-office, |𝑇 | = 8 days is considered, with 𝓀=10 nodes. Due to the small and densely
connected nature of SP-office, the baseline algorithms can identify only up to a small
number of sentinel nodes. Additional nodes quickly become redundant after already covering
the entire contact network. Figures 4.4–4.6 show that reverse spread, expected spread, and
binary success all increase with |𝑇 |, as it allows more activations to take place. As expected,
RSM has the best performance with respect to reverse spread (Figure 4.4) and binary success
rate (Figure 4.5), and ESM outperforms other methods in terms of having the best expected
spread (Figure 4.6).
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Figure 4.5: Normalised binary success rate with different lengths of time window |𝑇 |

Only considering the node degrees is ineffective, particularly as propagation becomes more
complex, e.g., on a large network and elongated time windows. DIA is jeopardised especially
with smaller time windows as the overall optimality of the solution set is not guaranteed by
the most recent snapshot of the graph. Specifically, DIA selects the nodes heavily depending
on the topology connections. Hence, when the connections are dense across a smaller
number of venues (departments), even selecting very few nodes (2 nodes in SP-office

case) immediately terminates the algorithm. In comparison, this issue can be mitigated in
RSM because the propagation process is formulated with a finer granular level. Haslemere

and Italy datasets in these figures also highlight how Greedy-IM cannot effectively capture
the optimal global solution over multiple time windows.

The impact of a densely connected network (e.g., Tokyo, SP-office) on the nature of
the spread is visible in Figures 4.4–4.5. Here, selecting a solution set for maximal coverage
provides relatively similar results across different methods, although RSM continues to
perform best. The average node degree in these networks is high, meaning that activation
quickly spreads through the network. This is difficult to combat even considering only 𝓀=10
solution nodes for SP-office. While Haslemere and Italy are also densely connected,
the more realistic disease setting of these datasets, and their specific time windows (|𝑇 |)
under consideration, permit the different methods to show more variation in performance.
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Figure 4.6: Normalised expected spread with different lengths of time window |𝑇 |

Running time efficiency

While the solution quality improves with higher number of hypergraph nets generated (up to
a certain point), there is an efficiency trade-off. The running time of generating hypergraph
nets is measured by varying the desired number of nets |N | and the number of time windows
|𝑇 | under consideration, as shown in Table 4.4 and Table 4.5, respectively. Specifically, with
|N | increasing from 20K to 100K (for a fixed |𝑇 |=5) in Table 4.4, there is a slight increase in
running time (from 0.43 to 2.18 seconds for Tokyo) demonstrating the efficient and scalable
nature of the reachable set sampling based algorithm. The hypergraph construction time
also increases with |𝑇 | (for a fixed |N |=20K) in Table 4.5 due to a prolonged propagation
process, which is especially evident in dense networks (e.g., Tokyo). Despite the increase in
computation time and memory requirements when increasing |N |, stable solution sets of
sufficiently high quality are found to be produced without the need for more than 20K nets.

T-IC can model large-scale individual-level contacts efficiently, whereas other solutions [73,
122, 131] are only feasible on small graphs. For example, T-Immu is time-consuming due to
repeated computations of the eigenvalue of the dynamic contact network structure which
makes it not feasible for large-scale dataset (e.g., cit-HepPh), and DIA can only consider
the latest snapshot but not the global structure efficiently.

The commonly used IC-based method, Greedy-IM, is used for comparison of the running
time for selecting different size of solution set 𝑆 from 𝓀 = 10 to 𝓀 = 50 in Table 4.6. The
running time of Greedy-IM grows quickly and gets infeasible with large dataset and long time
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Table 4.4: Running time (in seconds) with different number of nets |N | (for |𝑇 |=5)

Dataset
|𝑁 | 20000 40000 60000 80000 100000

NYC 0.99 1.95 2.96 4.00 4.99
Tokyo 0.43 0.86 1.31 1.75 2.18
SP-office 0.83 1.71 2.62 3.51 4.43
SG-traj 0.04 0.07 0.11 0.15 0.19
wiki-Vote 53.40 108.76 158.52 216.58 271.99
cit-HepPh 1.27 2.69 3.98 5.35 6.45

Table 4.5: Running time (in seconds) with different number of time windows |𝑇 | (for
|N |=20K)

Dataset
|𝑇 | 5 10 15 20 25

NYC 0.98 1.80 3.34 5.51 11.32
Tokyo 0.42 5.40 22.65 55.94 106.0
SP-office 0.83 2.64 6.04 12.21 18.35
SG-traj 0.04 0.06 0.10 0.12 0.16
wiki-Vote 53.40 149.49 320.87 549.95 917.51
cit-HepPh 1.27 7.46 25.68 63.73 130.65

Table 4.6: Running time (in seconds) with different sizes of solution set |𝑆 |=𝓀 (for |𝑇 |=3)
on Haslemere

Method
k 10 20 30 40 50

RSM 19.15 19.16 19.20 19.23 19.26
ESM 18.34 18.34 18.35 18.35 18.36
Greedy-IM 878.98 2647.99 6729.71 11780.86 18948.14

windows, whereas RSM and ESM running times grow much more slowly. Hence, only a small
dataset Haslemere is evaluated, and considering a small window of |𝑇 | =3. While RSM
and ESM remain feasible, the running time of Greedy-IM increases sharply from 15 minutes
to over 5 hours with larger 𝓀, which makes it inapplicable for large evolving networks.

Large-scale datasets are easily supported by the proposed solution. Therefore, several
intervention strategies can be efficiently studied using the T-IC process, for simulations
on reducing spread in temporal networks. For example, various techniques are applicable
to the disease monitoring context, like targeted shutdowns (deleting nodes) or occupancy
restrictions (limiting the number of connection edges), backward contact tracing (identifying
superspreaders that occur repeatedly among reverse reachable sets), and categorical analysis
(node-level study of different categories and their impact on spread). There are analogues to
reduce spread in other settings such as with misinformation propagating in social networks.

4.7 Discussion

The Temporal Independent Cascade (T-IC) model is shown to be effective in finding solution
sets for the tasks of Reverse Spread Maximisation (RSM) and Expected Spread Maximisation
(ESM). These tasks have a wide variety of application settings, from modelling the spread of
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diseases in population contact networks to combating misinformation or rumours spreading
in social networks.

Reachable sets (nodes that may be affected when the spread occurs) are constructed using a
hypergraph-based sampling approach, which is shown to have several benefits in modelling
evolving connectivity and spread patterns in dynamic graphs. More crucially, the reverse
spread function derived using this T-IC approach is proven to be submodular, allowing
the above RSM and ESM algorithms to maintain important approximation guarantees of
IC models even when applied to temporal networks. This enables the newly proposed
algorithms to efficiently handle large-scale and highly granular data. Unlike the alternatives,
the proposed sampling method of T-IC is shown to be scalable, and high quality results are
produced within seconds requiring no more than 20K nets constructed.

The hypergraph-based sampling approach only traverses live edges, therefore respecting
the temporal dependencies that are imposed by the evolving graph topology. Furthermore,
the construction of random reachable sets inherently accounts for the randomness of the
seed nodes from where spread first begins. This ensures that, with sufficient number of
hypergraph nets being generated, the overall spread in the network (regardless of where it
starts) can be modelled with high accuracy.

Two objectives are defined to identify i) a minimal set of sentinel nodes (i.e., nodes which
minimally cover the network, for the purpose of spread detection), and ii) a set of highly
susceptible nodes (i.e., nodes that are at high risk, for prioritising tracing, intervention, and
treatment measures across various use cases). These are notably distinct from the traditional
influence maximisation goal, and require novel approaches to identify optimal solution sets.
RSM and ESM are respectively shown to be effective for solving these, where nets of the
hypergraph are selected to obtain the collective highest network coverage (sentinel nodes)
or highest individual activation likelihoods (susceptible nodes).

Through extensive quantitative analysis performed on eight real-world datasets across
multiple settings, it is demonstrated that the dynamic topology captured by the T-IC model
plays amuchmore significant role than local connectivity. This is evident in the sentinel nodes
identified by RSM having significantly higher success rates of detecting spread compared
to T-Immu and DIA. It is also shown that temporal characteristics alongside the global
graph structure are needed for optimal solutions, which can be seen as ESM dramatically
outperforms Max-Deg as a superior targeted strategy for identifying susceptible nodes.

These findings help to set the stage for further exploration of hypergraph-based optimisa-
tion strategies for efficient and distributed computations. In particular, the challenges of
temporal networks are examined and tackled here in detail. In the next chapters, hypergraph
partitioning models and more hypergraph-based sampling techniques are explored on static
graphs, for both graph analytics as well as GNN workloads. Then, the dynamic setting is
revisited, with a foray into streaming graph workloads in the final chapter.
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Hypergraph-based Partitioning

on Static Graphs for Analytics

“ He had spent years in search of boredom, but had never achieved it. Just

when he thought he had it in his grasp, his life would suddenly become full

of near-terminal interest.

”
Terry Pratchett, Sourcery

To achieve scalability on large graphs (e.g., by using distributed systems), the common
approach is to partition the graph data for parallel processing. Graph partitioners strive
to achieve good data locality and balanced workloads across partitions. Communication
overheads are involved when partitions need to access data that is not available locally.
Hypergraph-based partitioning models have gained popularity, which rely on treating the
data/tasks as nodes and using hyperedges to represent the communication requirements
between them. In so doing, communication costs incurred from cut nets are more accurately
modelled and minimised in the partitioned graph.

Before designing any partitioning or communication scheme, it is important to understand
how the use of such a graph/hypergraph partitioning algorithm can affect the system per-
formance and scalability. Methods to partition graphs are typically evaluated based on their
performance on running PageRank, connected components, or shortest path algorithms [159].
However, other graph analytics algorithms have their own unique workload patterns, as
they may induce different traversals and data accesses. As a consequence, different tasks
on partitioned graphs may alter the performance efficiency and the quality of approximate
results. This is especially true in a limited communication environment where data locality
must be strictly maintained and the machines do not exchange information about their local
subgraphs. It motivates the need for bespoke evaluation schemes to assess the efficacy of the
partitioning scheme on any new workload.
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For example, PageRank [125] is widely used to calculate the importance of a node based
on the network structure. The method aggregates scores from the local neighbourhood of
each node over repeated iterations. Variations such as personalised PageRank can produce
resulting node lists for single-source queries [10, 160]. Other similarity measures have been
devised, such as SimRank and RoleSim. Despite commonalities in their overall working, these
measures induce very different access patterns in computing their similarity match scores.
The former considers if two nodes are similar by checking if all their in-neighbours are
similar, while the latter works by averaging only the similarities over the maximum bipartite
matching of this in-neighbourhood. These computations are often performed for a single
query node instead of for all pairs of nodes over the entire graph. Therefore, running global
PageRank may not offer a relevant workload to approximate the workloads obtained when
performing single-source SimRank or RoleSim computations. The shortest path algorithm is
used with single-source queries, but is still not a good estimate of the above workloads since
the entire neighbourhood is not explored when determining the shortest route.

In this chapter, an approximate similarity search workload is considered, and partitioning
methods are applied to evaluate the impact on solution quality. Hypergraph-based (and
graph-based) partitioning is used to i) scale this model to support large-scale inputs, both
without and with strict data locality (i.e., restricted communication across partitions), and ii)
evaluate the performance tradeoff in terms of running time and solution quality. The benefits
of the hypergraph model over the graph model are demonstrated in this graph analytics
setting, where communication across partitions is better reflected by the former to thereby
choose more centrally connected separator vertices for caching.

Specifically, RoleSim* [184], a recent similarity model, is employed as the specific use case
with real single-source similarity computation query workloads. A partitioning strategy
is developed in this chapter to scale RoleSim* on large graphs by taking advantage of its
triangular inequality property to prune the search graph. Replicated vertices are used to cache
similarity scores, and as a means of communicating with their counterpart on a different
part (i.e., when neighbourhoods need to be accessed to compute new similarity scores). Next,
this partitioned approximate model is evaluated in terms of ranking quality, efficiency, and
scalability using a novel unsupervised semantic evaluation scheme and real RoleSim* query
workloads. The results are compared on the partitioned graph to reflect two different settings
– one where inter-partition communication is allowed, and one where it is not. These graph
and hypergraph partitioning approaches are applicable on any workload. The evaluation
scheme designed is useful to determine the best choice of partitioner by testing its quality
directly on the target workload, instead of relying on heuristics such as partitioning cut size
or replication factor.

5.1 Preliminaries

A vast swathe of graph-based similarity models have been proposed over the years, and the
definitions of those studied in this chapter are provided below. Their sparse matrix notation
is also discussed to elicit connections to sparsity-based partitioning approaches.
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SimRank [80]

SimRank is one of the most widely known similarity measures. It is based on the idea that
‘similar nodes are pointed to by similar nodes’, i.e., the in-neighbourhoods of similar nodes
are recursively similar. SimRank measures the similarity of two nodes based on global graph
structure from the paths connecting them. Various types of queries may be performed:
single-source, single-pair, all-pairs, and partial-pairs SimRank [6, 99, 103, 110, 182].

Given a graph G(V, E), SimRank uses the global graph structure to measure the similarity
between two vertices. Two vertices 𝑢 and 𝑣 are similar if their in-neighbours 𝑁𝑖𝑛 (𝑢) and
𝑁𝑖𝑛 (𝑣) are also similar. Formally, the SimRank score is defined as

𝑆𝑅(𝑢, 𝑣) =


1, if 𝑢 = 𝑣

𝑐
|𝑁𝑖𝑛 (𝑢) | |𝑁𝑖𝑛 (𝑣) |

∑︁
𝑎∈𝑁𝑖𝑛 (𝑢)

∑︁
𝑏∈𝑁𝑖𝑛 (𝑣)

𝑆𝑅(𝑎, 𝑏), if 𝑢 ≠ 𝑣
(5.1)

where 𝑐 ∈ [0, 1] is a damping factor. The SimRank score between a vertex and itself is always
maximum (𝑆𝑅(𝑢, 𝑢) = 1). The SimRank score of a node with no in-neighbours is always 0.

Despite its popularity, SimRank has disadvantages of producing unreasonable similarity
scores in various situations and accommodating only paths of equal length from a common
parent node while ignoring many other paths in the similarity estimation.

RoleSim [83]

RoleSim was devised as a role-oriented similarity model, with the intuition that ‘two nodes
are role similar if they interact with automorphically equivalent sets of in-neighbors’. That
is, unlike using the average similarity of all the in-neighbour pairs of (𝑢, 𝑣) as in SimRank, in
RoleSim only the similarities over the maximum bipartite matching 𝑀 (𝑢, 𝑣) are averaged and
the remaining are ignored. RoleSim measures the similarity of two nodes through the paths
connecting their different roles, thus even disconnected nodes could be considered similar.
Automorphically equivalent nodes, intuitively, are ones that have similar roles. These nodes
may exchange roles with minimum effect on the structure of the graph.

Given a graph G(V, E), and two vertices 𝑢 and 𝑣 with in-neighbours 𝑁𝑖𝑛 (𝑢) and 𝑁𝑖𝑛 (𝑣),
their maximum bipartite matching 𝑀 (𝑢, 𝑣) is given as

𝑀 (𝑢, 𝑣) =
{
(𝑥, 𝑦) : 𝑥 ∈ 𝑁𝑖𝑛 (𝑢), 𝑦 ∈ 𝑁𝑖𝑛 (𝑣),

(𝑥′, 𝑦′) ∉ 𝑀 (𝑢, 𝑣), such that 𝑥 = 𝑥′or 𝑦 = 𝑦′
}

(5.2)

RoleSim then measures the similarity between 𝑢 and 𝑣 as

𝑅𝑆(𝑢, 𝑣) = (1 − 𝛽) max
𝑀 (𝑢,𝑣)

∑
(𝑎,𝑏) ∈𝑀 (𝑢,𝑣)

𝑅𝑆(𝑎, 𝑏)

|𝑁𝑖𝑛 (𝑢) | + |𝑁𝑖𝑛 (𝑣) | − |𝑀 (𝑢, 𝑣) |
+ 𝛽 (5.3)

where 𝑎 ∈ 𝑁𝑖𝑛 (𝑢) and 𝑏 ∈ 𝑁𝑖𝑛 (𝑣). The parameter 0 < 𝛽 < 1 is a decay factor.
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RoleSim suffers the major drawback of only considering limited information over automorph-
ically equivalent sets and ignoring the rest of the neighbourhood.

RoleSim* [184]

RoleSim* follows a recursive intuition that two similar nodes i) interact with automorphically
equivalent sets of in-neighbors and ii) are pointed to by similar nodes out of these sets.

Given a graph G(V, E), and two vertices 𝑢 and 𝑣 with in-neighbours 𝑁𝑖𝑛 (𝑢) and 𝑁𝑖𝑛 (𝑣)
havingmaximum bipartite matching𝑀 (𝑢, 𝑣) as above, RoleSim* then computes the similarity
between 𝑢 and 𝑣 as

𝑠(𝑢, 𝑣) = 𝛽

(
𝜇 ×

Part 1: average similarity over maximum matching 𝑀 (𝑢, 𝑣)︷                                                               ︸︸                                                               ︷
1

|𝑁𝑖𝑛 (𝑢) | + |𝑁𝑖𝑛 (𝑣) | − |𝑀 (𝑢, 𝑣) |
∑︁

(𝑥,𝑦) ∈𝑀 (𝑢,𝑣)
𝑠(𝑥, 𝑦)

+ (1 − 𝜇) × 1
|𝑁𝑖𝑛 (𝑢) | × |𝑁𝑖𝑛 (𝑣) | − |𝑀 (𝑢, 𝑣) |

∑︁
(𝑥,𝑦) ∈𝑁𝑖𝑛\𝑀

𝑠(𝑥, 𝑦)︸                                                               ︷︷                                                               ︸
Part 2: average similarity over 𝑁𝑖𝑛 \𝑀 = (𝑁𝑖𝑛 (𝑢) × 𝑁𝑖𝑛 (𝑣) ) − 𝑀 (𝑢, 𝑣)

)

+ (1 − 𝛽) (5.4)

Here 𝑁𝑖𝑛 (𝑢) × 𝑁𝑖𝑛 (𝑣) = {(𝑥, 𝑦) | 𝑥 ∈ 𝑁𝑖𝑛 (𝑢) and 𝑦 ∈ 𝑁𝑖𝑛 (𝑣)} are all in-neighbouring pairs
of (𝑢, 𝑣). This is divided into two subsets 𝑁𝑖𝑛 (𝑢) × 𝑁𝑖𝑛 (𝑣) = 𝑀 (𝑢, 𝑣) ∪ (𝑁𝑖𝑛 (𝑢) × 𝑁𝑖𝑛 (𝑣)) −
𝑀 (𝑢, 𝑣), which forms the two parts of the RoleSim* definition. The average similarity over
maximum matching 𝑀 (𝑢, 𝑣) in Part 1 provides the contribution from (𝑢, 𝑣) interacting
with the automorphically equivalent set 𝑀 (𝑢, 𝑣) of in-neighbours. The average similarity
over (𝑁𝑖𝑛 (𝑢) × 𝑁𝑖𝑛 (𝑣)) − 𝑀 (𝑢, 𝑣) is the contribution from (𝑢, 𝑣) being pointed to by the
remaining in-neighbourhood pairs from 𝑀 (𝑢, 𝑣). The parameter 0 < 𝜇 < 1 is the relative
weight balancing similarities inside and outside𝑀𝑢,𝑣 . RoleSim* covers the traditional RoleSim
model as a special case when 𝜇 = 1, since Equation 5.4 reduces to the traditional RoleSim
equation. The behaviour at 𝜇 = 0.5 is close to that of the SimRank equation.

The iterative RoleSim* computation between two nodes is shown to be symmetric, bounded,
and monotonic. Furthermore, defining 𝒹(𝑢, 𝑣) = 1 − 𝑠(𝑢, 𝑣), for any three nodes 𝑎, 𝑏, 𝑐 in a
graph, the following triangle inequality holds

𝒹(𝑎, 𝑏) +𝒹(𝑏, 𝑐) ≥ 𝒹(𝑎, 𝑐) (5.5)

In other words, it is possible to induce a RoleSim* distance that obeys sum-transitivity in the
similarity scores. This property is crucial for the partitioning strategy introduced later.

Sparse matrix notation for similarity measures

A matrix form for the SimRank model is offered by Kusumoto et al. [99], which is equivalent
to Equation 5.1. This is defined as follows:

S1 = max{𝑐(QS1Q
𝑇 ), I}
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whereS1 is the SimRank similarity matrix whose entryS1 (𝑖, 𝑗) is the SimRank score 𝑆𝑅(𝑖, 𝑗)
and I is an identitymatrix. Q is the backward transitionmatrix andQ𝑇 is its matrix transpose,
with Q defined as

Q(𝑖, 𝑗) =


1
|𝑁𝑖𝑛 (𝑖) | , if ∃(𝑖, 𝑗) ∈ E

0, otherwise

The presence of the maximum bipartite matching term makes representing RoleSim and
RoleSim* using matrix notation a slightly more involved process. First, a local masking
matrix M may be constructed, with entries M (𝑖, 𝑗) defined such that

M (𝑖, 𝑗) =

1, if nodes 𝑖 and 𝑗 are maximally matched

0, otherwise

Considering S2 as the RoleSim similarity matrix whose entry S2 (𝑖, 𝑗) is RoleSim score
𝑅𝑆(𝑖, 𝑗), it is possible to denote the sum of the RoleSim similarity scores over the maximum
weighted bipartite matching as

S2 = A(M ⊙ S2)A𝑇

using Hadamard product ⊙, where A is the adjacency matrix.

This indicates that partitioning strategies are indeed useful to distribute such sparse matrix
computations. Hypergraph-based partitioners are particularly well-suited to the task in
situations where there is sparsity in the input adjacency matrix. Hypergraph partitioning
has been previously applied for parallel PageRank [20], but has not been studied for the
similarity search workloads described in this chapter.

5.2 Partitioning models for scalable similarity search

RoleSim* based similarity search can be scaled via pruning using the triangular inequality
property. With some precomputation, it is possible to prune the node-pairs that need not
be evaluated and thereby eliminate nodes from the candidate list of most similar nodes. In
this section, a strategy is described for retrieving approximate node-pair similarity results in
a partitioned graph. Then a method is discussed for exact single-source RoleSim* (SSRS*)
computation to obtain the similar nodes to a query 𝑞, by indexing based on the distance to
some chosen keys.

First, a simple partitioning strategy is applied, where graph G is divided into parts of roughly
equal sizes and the important nodes are determined that should be replicated and have their
computed similarity scores cached for best efficiency. Identification of these important nodes
is done using a vertex replication approach, i.e., vertex-cut partitioning. The set of vertex
separators (also called vertex cut or separating set) is referred to as V𝑆 . Nodes in V𝑆 are
the nodes that, when removed from G, separate it into its partitions. This is true for both
graph partitioning and hypergraph partitioning, and these vertices are available to all parts
in which they are replicated.
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Approximate single-source similarity search

Example 5.2.1. Consider the digraph G in Figure 5.1a, where a 2-way partitioning has
been performed resulting in vertex separators V𝑆 =

{
3 , 7

}
. Subgraphs G1 and G2 are

constructed such thatVG1 =
{
1 , 2 , 3 , 7

}
andVG2 =

{
3 , 4 , 5 , 6 , 7

}
. Using the

SSRS* approach, all pairs of similarities from nodes inV𝑆 to nodes in G can be precomputed.
Given a decay factor 𝛽 = 0.8, and relative weight 𝜇 = 0.7, the exact RoleSim* similarities
are computed (after 𝑘 iterations) and cached for all 𝑠(𝑣, ∗) where 𝑣 ∈ V𝑆 . Now, for node-
pair (2, 1), the exact similarity score of 𝑠(2, 1) from G1 may be approximately computed
as 𝑠𝑃 (2, 1) where the precomputed value of 𝑠(3, 7) is used in every iteration and only the
pruned graph G1 is considered, i.e., strict data locality is enforced without inter-partition
communication. The similarity score 𝑠𝑃𝐴(2, 1) also uses the precomputed 𝑠(3, 7), but also
permits inter-partition communication to neighbouring nodes if they are present in G2. As
seen from Figures 5.1b and 5.1c, 𝑠𝑃𝐴(2, 1) is more accurate but less efficient due to accessing
a larger graph.

12
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(a) Partitioned graph G with the two partitions encircled in dashed red and solid blue respectively
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Figure 5.1: Approximate RoleSim* node-pair similarity retrieval performance on graph G

Consider a query node 𝑞. To compute its similarity to any node 𝑛 in G, there are three
different cases:

1. One or both nodes are vertex separators, i.e., 𝑞 ∈ V𝑆 or 𝑛 ∈ V𝑆 : this means an exact
value for 𝑠(𝑞, 𝑛) is already precomputed
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(2, 3)

(3, 5) (3, 6) (7, 5) (7, 6)
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(6, 5) (6, 6)

(2, 4)
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(a)Without approximation: involves many repetitive computations

(2, 3) (2, 1)

(3, 7) (7, 7)

(2, 4)

(2, 3) + (3, 4)− 1 (2, 7) + (7, 4)− 1

lower bounds

(b) With approximation: involves retrieving approximate similarities of vertex separators to nodes

Figure 5.2: Approximate RoleSim* node-pair similarity retrieval by caching the similarities
between vertex separators to all nodes and using triangle inequality to compute approximate
results for node-pairs (2, 3) in case 1, (2, 1) in case 2, and (2, 4) in case 3

2. Both nodes are in the same partition, say 𝑞 ∈ G1 and 𝑛 ∈ G1: this means an approximate
value for 𝑠(𝑞, 𝑛) can be computed considering G1 as the input graph and discarding
all nodes/edges from G2

3. Both nodes are in different partitions, say 𝑞 ∈ G1 and 𝑛 ∈ G2: this means an approxim-
ate (lower bound) value for 𝑠(𝑞, 𝑛) can be directly computed from the precomputed
exact values of 𝑠(𝑣, ∗) by making use of the triangle inequality property of RoleSim*

Figure 5.2 depicts how numerous additional similarity computations are avoided by retrieving
the values stored for nodes inV𝑆 and using these to compute approximate results. In cases 1
and 2 when G is pruned into G1, the nodes and edge connections that are discarded can no
longer contribute to the approximate similarity computation during the RoleSim* traversals
on the partitioned graph, and only the precomputed values at the vertex separator may be
used. The case 3, considering 𝑞 ∈ G1 and 𝑛 ∈ G2 and precomputed exact values of 𝑠(𝑣, ∗), is
explained in further detail:

Using triangle inequality from Equation 5.5, ∀𝑣 ∈V𝑆 the following result holds:

𝑠(𝑞, 𝑛) ≥ 𝑠(𝑞, 𝑣) + 𝑠(𝑣, 𝑛) − 1

Hence, using the precomputed values of 𝑠(𝑣, ∗), the score for 𝑠(𝑞, 𝑛) must have a lower
bound as the largest of these values, or:

𝑠(𝑞, 𝑛) ≥ max
𝑣∈𝑉𝑆

(
𝑠(𝑞, 𝑣) + 𝑠(𝑣, 𝑛) − 1

)
This can be extended to obtain approximate results using any 𝑝-way partitioning. The vertex
separator set is added (along with its cached precomputed similarity scores to all nodes) into
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each of the subgraphs after using a 𝑝-way partitioning scheme, and the same procedure is
followed for pruning.

Exact single-source similarity search

The challenge of returning an exact solution for the most similar nodes to a query 𝑞 can also
be considered. The vertex separator setV𝑆 is taken as a set of keys whose similarities to all
nodes are precomputed. From the triangle inequality:

𝒹(𝑞, 𝑛) ≥ |𝒹(𝑣, 𝑛) −𝒹(𝑞, 𝑣) | (5.6)

Hence, a lower bound may be obtained on 𝒹(𝑞, 𝑛), by computing:

𝒹(𝑞, 𝑛) ≥ max
𝑣∈𝑉𝑆

|𝒹(𝑣, 𝑛) −𝒹(𝑞, 𝑣) | (5.7)

Given some 𝑠min, the goal is to find all nodes 𝑛𝑖 such that 𝑠(𝑞, 𝑛𝑖) ≥ 𝑠min. That is,𝒹(𝑞, 𝑛𝑖) ≤ 𝜉

where 𝜉 = 1 − 𝑠min is the distance threshold for pruning. The lower bounds𝒹(𝑞, 𝑛𝑖) for all
nodes 𝑛𝑖 are given by Equation 5.7. Any lower bound greater than 𝜉 allows the node 𝑛𝑖 to
be pruned from the candidate list. This resulting candidate set is denoted as V𝑘 . In large
graphs, with careful partitioning to select a small number of vertex separators (|V𝑘 | ≪ |V|),
the number of distance computations is substantially reduced.

This approach can be applied to prune partitions while identifying the top-𝓀 similar nodes
to query 𝑞. Consider subgraphs G 𝑗 obtained after partitioning G, each containing a single
vertex separator 𝑣. Using precomputed values for 𝒹(𝑣, ∗), Equation 5.6 gives the lower
bounds of𝒹(𝑞, 𝑛𝑖) for 𝑛𝑖 ∈ VG 𝑗

( 𝑗 = 1, · · · , 𝑝 respectively for each of the 𝑝 partitions). The
minimum of all these distances within a partition gives a lower bound value that helps to
index and order the partitions:

𝒹(𝑞, 𝑛𝑖) ≥ min
𝑛𝑖∈VG 𝑗

|𝒹(𝑣, 𝑛𝑖) −𝒹(𝑞, 𝑣) |

These lower bounds may be denoted as 𝜉G 𝑗
for each subgraph G 𝑗 . Without loss of generality,

suppose 𝜉G1 > 𝜉G2 for a 2-way partitioning of G. Thus, every node in G1 is necessarily at
least 𝜉G1 distance away from 𝑞. First, the exact distances are computed for all nodes in G2. If
𝑘 such nodes all have a distance to 𝑞 that is smaller than 𝜉G1 , then nodes of G1 need not be
considered, and the resulting top-𝓀 can be directly returned. If not, that is if any nodes of
G2 are at a distance higher than the lower bound of the next partition (here, G1), then nodes
of G1 must be processed. These nodes are then inserted into the top-𝓀 ranking based on the
computed distances. A similar process continues through the ordered set of 𝜉G 𝑗

values for
𝑝-way partitioned data.

5.3 Technique for evaluation of solution quality

A brief departure is needed from discussions of the partitioning approach to consider the
impact that sampling can have on the graph-based task, in this case SSRS*. It is important
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to study how sampling strategies (hypergraph-based or otherwise) can affect the results
obtained for a given task, before such sampling is performed indiscriminately to prune graph
structures. For this to be possible, the quality of results obtained from different similarity
measures needs to be quantified. A novel unsupervised evaluation setting is devised using
self-similarity as the ground truth. This allows a study into the effect of sampling the
immediate neighbourhood of a query node on similarity scores in RoleSim*, compared with
SimRank and RoleSim.

This evaluation is inspired by the tactic of determining duplicate nodes in a network simply
by examining their neighbourhoods for similar patterns. In many applications, the underly-
ing network contains duplicate entities with noisy, incomplete, and partially overlapping
information, such as in a social network that has been scraped from multiple sources. The
similarity between duplicates is expected to be high, and can help to identify them as such.
Here, duplicate entities are considered as separate nodes, where each duplicate has some
sampling of the total set of neighbouring edges available to the node. For example, in a co-
purchasing product graph (AMZ), duplicates may exist when merging multiple e-commerce
sources, or when identical products are sold by different sellers. This indicates that each
of these duplicate products were frequently purchased along with certain other products
as they share some common neighbours. As another example, differently formatted author
names or multiple sources for a paper can lead to duplicates in co-authorship and citation
networks (DBLP).

Consider a single query node 𝑞. A duplicate node 𝑞′ is created and added to the graph. This
𝑞′ is connected to some proportion of the total number of neighbours of 𝑞. The proportion 𝜂

is the sampling ratio parameter. Henceforth, 𝑞′ is referred to as the ‘sampled clone’. The
similarity scores of 𝑞 to all other points in the graph can now be computed using SimRank,
RoleSim, RoleSim*, or any other chosen measure. In particular, the proposed evaluation
scheme is interested in whether the similarity between 𝑞 and its sampled clone 𝑞′ can be
preserved and identified by the chosen measure, while varying the sampling ratio 𝜂.

5.4 Experimental evaluation

The objective is to quantify the effectiveness of the similarity measures using different
partitioning strategies, and to evaluate the tradeoff between the quality of approximate
results and the improvement achieved in running time, when the input graph is partitioned
or pruned in different ways.

Datasets

Two real-world datasets are used in the evaluation. The first is DBLP, an undirected collabor-
ation graph taken from DBLP bibliography.1 A co-authorship subgraph is extracted from six
top conferences in computer science for the time period of 2018–2020. An edge connected
two authors (nodes) if they have co-authored a paper. The second dataset is AMZ, a directed

1https://dblp.uni-trier.de/db/
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co-purchasing graph derived from Amazon.2 Each node represents a product, with an edge
connecting 𝑖 → 𝑗 if product 𝑗 appears in the frequent co-purchasing list of product 𝑖.

Table 5.1: Dataset properties

Dataset #Nodes #Edges Type
DBLP 2,372 7,106 Undirected
AMZ 5,086 8,970 Directed

Baselines

The similarity scores obtained using RoleSim* (RS*) are compared with those from SimRank
(SR) and RoleSim (RS). These methods compute respective similarities as described earlier. In
particular, the single-source RoleSim* method (SSRS*) is also examined in different settings.

METIS [84] and rpPaToH [141] are used as the graph and hypergraph partitioning tools
respectively, using their vertex separator or replication functionality.

Setup

All experiments are conducted on an Ubuntu 20.04 machine with 8 Intel 1.70 GHz CPUs and
8GB RAM.

The similarity results are aggregated over a query workload on DBLP and AMZ graphs
respectively, where query nodes are chosen at random from the graph. Each experiment is
repeated 5 times and the average is reported.

Performance of SSRS* with partitioning

A partitioning scheme (using the triangle inequality property) is applied for approximate
SSRS* computation. First, a graph-based partitioning method is tested. METIS is used to
generate 2-way graph partitioning of the graph using the vertex separator method. Similarity
scores are precomputed from these vertex separator nodes to all nodes, and these cached
values are retrieved during single-source RS* computations. Second, a hypergraph-based
partitioning method is tested in a similar fashion. For this, rpPaToH is used to generate
2-way hypergraph partitioning with vertex replication. These replicated vertices are treated
in exactly the same manner as the vertex separators described above, to precompute and
cache similarity scores.

For both partitioners, the resulting partitioning is made to produce 10 separator (replicated)
vertices. It should be noted that the number of separator vertices has an impact on the
quality of results. The 2-way partitioning of the given data using METIS results in 10 vertex
separators. The replication ratio constraint in rpPaToH is used to tweak the number of
resulting replicated vertices obtained from the hypergraph model, and made to match the
number of vertex separators generated by METIS for the graph model. If a greater number
of vertices were replicated (and therefore had precomputed scores cached), this would lower
the running time while also negatively affecting the quality of the approximate solutions.
The running time decreases due to the easier retrieval of cached values with fewer exact

2https://www.amazon.co.uk/
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Figure 5.3: Performance comparison with graph-based partitioning on DBLP
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Figure 5.4: Performance comparison with hypergraph-based partitioning on DBLP

computations needing to be performed. At the same time, avoiding exact computations
causes the quality of the resulting similarity scores to drop.

The average ranking quality based on normalised discounted cumulative gain (nDCG) is
commonly used to evaluate whether similarity measures are effective and robust [189]. The
accuracy (nDCG) and efficiency (running time) of SSRS* over real datasets DBLP and AMZ

are evaluated by randomly sampling 100 queries from each dataset. With varying number
of iterations 𝓀, single-source RoleSim* similarities {𝑠𝑘 (∗, 𝑞)} are computed with respect to
each query 𝑞. The SSRS*-P and SSRS*-PA methods are then used to test the performance
on the partitioned graphs. Choosing these SSRS* similarities {𝑠𝑘 (∗, 𝑞)} as the baseline, the
average value of nDCG is evaluated for both SSRS*-P and SSRS*-PA over 100 queries on
each dataset. SSRS*-P denotes an approach where only the pruned subgraph is considered
for similarity computation (strict data locality without inter-partition communication), while
SSRS*-PA denotes an approach where access to neighbouring nodes in other partitions is
allowed during the similarity computation (inter-partition access is permitted).

Considering the graph-based partitioning approach, Figures 5.3a and 5.5a indicate that, on
these datasets, SSRS*-P achieves close to 85% accuracy in terms of nDCG for top-100 results.
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Figure 5.5: Performance comparison with graph-based partitioning on AMZ
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Figure 5.6: Performance comparison with hypergraph-based partitioning on AMZ

SSRS*-PA is more accurate, however it incurs much higher computational time due to more
edge connections being taken into consideration. As seen from Figures 5.3b and 5.5b, a
partitioning approach like SSRS*-P may offer a more scalable computation of approximate
similarity scores even for large number of iterations.

Figures 5.4a and 5.6a show that accuracy remains largely the same for the hypergraph-
based partitioning method as with the graph-based method. For the hypergraph partitioner,
efficiency is improved over the graph partitioner with SSRS*-PA on both datasets (by 10–
15%) as seen in Figures 5.4b and 5.6b. Hypergraph-based partitioners have the benefit of
encoding communications more accurately, thus the selection of the replicated vertices is
likely to better reflect their importance within the neighbourhood access workload pattern.
The improved efficiency is more stark in the case of the directed graph AMZ, even though
both METIS and rpPaToH treat the graph/hypergraph as undirected. Therefore, this is
more reasonably attributed to their relative sparsity patterns, as the AMZ graph has sparser
connections than DBLP. Hypergraph-based partitioners are known to be especially powerful
for sparse adjacency matrices as they can represent the exact communication volume.
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Figure 5.7: Effect of sampling ratio 𝜂 and weight 𝜇 on ranking quality on DBLP
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Figure 5.8: Effect of sampling ratio 𝜂 and weight 𝜇 on ranking quality on AMZ

Performance of SSRS* with sampled neighbourhood

The solution quality of different similarity measures can be evaluated using the previously
described novel unsupervised setting. Here, the number of queries where the sampled clone
𝑞′ is deemed similar to query 𝑞 intuitively studies howmuch structural information about the
query node is successfully ascertained by the similarity model. For example, an indicator of
good semantic accuracy of the similarity model could be when a sampled clone 𝑞′ is present
in the top-𝓀 similar nodes list of 𝑞, or when the amount of overlap between the top-𝓀 lists
of 𝑞 and 𝑞′ is high. First, 𝜂 is varied for 𝑞′ with a step size of 0.25 (and ensuring no orphaned
nodes). This results in some overlap of neighbourhoods as the value of 𝜂 grows towards
1. The values 𝜇 = {0.0, 0.3, 0.5, 0.7, 1.0} are considered for the relative weight balancing
parameter in the two-part calculation of RS*.

Figure 5.7a presents the number of queries out of the total workload of 20 queries, on the
undirected DBLP graph, where the sampled clone 𝑞′ is among the top-5 similarity scores
for the query 𝑞. This top-5 list is based on all nodes in the graph, i.e., over 2K for DBLP.
Similarly, Figure 5.8a shows results on the directed AMZ graph. Both sets of plots depict that
with higher 𝜂, there are more such queries. However, the greater overlap in neighbourhood
is not the only contributing factor. RS* is heavily impacted when there is a large mismatch in
the sampled neighbourhood sizes (as is RS). This is confirmed through an exploratory study
where results are obtained on varying the sampling of both 𝑞 and 𝑞′ together (sampling
𝜂 and 𝜂′ neighbouring edges respectively, which both can now vary from 0 to 1). Despite
random samples of neighbourhoods, the results peak only when the neighbourhood sizes
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are close to each other (i.e., 𝜂 and 𝜂′ are equal). More specifically, the exact nature of the
neighbouring nodes themselves appears less important compared to the relative structure of
connectivity patterns within the neighbourhood.

Next, the impact of sampling ratio 𝜂 and weight balancing parameter 𝜇 on the ranking
quality of RoleSim* are tested. The nDCG is plotted, considering top-100 similar nodes of
the sampled clone and comparing this to the baseline original query. The trend (with respect
to 𝜂) seen in Figure 5.7b and Figure 5.8b for 𝜇 = 1 is observed to resemble that obtained for
RoleSim, and the trend for 𝜇 = 0.5 is close to that obtained for SimRank.

A fixed value of 𝜇 = 0.7 is also considered, which demonstrates that RS* has higher ranking
quality compared to SR and RS, with respect to the average nDCG. Figure 5.7c with undirected
DBLP graph shows that RS* produces a more consistent nDCG even with small 𝜂. For the
directed AMZ graph in Figure 5.8c too, RS* remains more stable while RS shows significant
changes with sampling ratio, and the performance of SR is poor throughout. The results
together indicate that for the challenge of identifying duplicate entities, RoleSim* is best
suited to correctly identify a match. When presented with a noisy sample of edge connections
from the duplicate node, even a small sample of edges from the duplicate can produce good
matching results. That is, regardless of the node itself, the topology of the neighbourhood is
important for RoleSim*, and this should be preserved by the partitioning scheme employed to
scale up RoleSim* across distributed subgraphs. As previously determined, the partitioning
policy of allowing/disallowing communications across these subgraphs is also important to
tradeoff efficiency and accuracy of the approximate results.

5.5 Discussion

In this chapter, partitioning approaches are applied on static graphs and evaluated using
a graph analytics similarity search workload. The goal is to examine the tradeoff between
solution quality and running time of the approximate single-source RoleSim* similarity
search algorithm.

Both graph-based and hypergraph-based partitioners are employed, with the set of replicated
vertices being used to cache precomputed similarity scores. It is demonstrated on two real-
world datasets that the SSRS* algorithm on a pruned subgraph is considerably faster than
the baseline version run on the complete graph. However, observing strict data locality
(SSRS*-P) hurts the accuracy performance (nDCG) and lowers the solution quality of the
approximate results compared to the exact results by 15-20%. Allowing some inter-partition
communication (SSRS*-PA) during the similarity computations improves the solution quality.
This comes at the cost of efficiency, as the communication overheads and extra neighbourhood
accesses incur longer running time.

Partitioning the search graph is thus shown to be a useful strategy empirically, and this is also
evident from the nature of the sparse matrix computations required for SimRank, RoleSim,
and RoleSim*. Hypergraph-based partitioning is especially promising, due to the exact
communication volumes being encoded by this method when sparse matrix multiplication
is to be performed. The hypergraph partitioner is found to slightly lower the running time
of SSRS*-PA, which can be explained by its ability to choose better vertices for caching.
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The findings in this chapter pave the way for further research into novel hypergraph-based
partitioning and sampling optimisations on static graphs. One such method is presented in
the following chapter specifically targeting GNN workloads.

In addition to these results, this chapter also provides a brief exploration of the effect
that neighbourhood sampling can have on graph-based tasks. An unsupervised evaluation
method is proposed to quantify how well a similarity measure is able to detect duplicate
nodes. These duplicates are sampled clones containing a subset of the neighbourhood of
the original nodes. The behaviour of the search algorithm suggests that relative structure
of connectivity patterns is an important indicator of similarity, and even a small sample
of edge connections can be exploited to derive accurate node matches. The topology of
the neighbourhood, rather than the node itself, is important for RoleSim*. Therefore, the
partitioning scheme on such similarity measures should preserve this topology information
where possible to ensure quality of approximate results is maintained even on distributing the
computations. Different communication policies across these partitions additionally cause a
tradeoff between efficiency and accuracy. This study is therefore beneficial to understand
where sampling and data locality methods can be safely enforced in future chapters.
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Chapter 6

Hypergraph-based Partitioning

on Static Graphs for GNNs

“ We are, at this moment, both creating and solving problems faster than we

ever have before. So your job – the only thing anyone can ask of you as a

human – is to solve more problems than you create.

”
Hank Green, vlogbrothers (Hello Future Dead Person)

The previous chapters dealt with graph analytics workloads, with explorations of hypergraph-
based partitioning and sampling optimisations for both static and dynamic graph data. In
this chapter, the focus is on graph learning applications. A hypergraph-based strategy is
developed for communication-efficient distributed GNN training on static graphs. Here, an
asynchronous communication scheme is designed using hypergraph-based partitioning to
account for the unique access patterns in GNNs that differ from those of traditional analytics
tasks on which graph/hypergraph partitioners are commonly tested.

The scale of large graphs, including their multi-dimensional features for the vertices, neces-
sitates the use of distributed-memory systems for successfully training graph-based learning
models [112, 194]. GCNs are particularly popular for deep learning on graphs, and have
become the de facto standard for learning graph representations. During the feedforward and
backpropagation phases in GCN training, the graph convolution operation involves message
passing and aggregation steps that induce irregular data accesses due to complex graph inter-
connectivity. Existing systems use graph partitioning algorithms designed for traditional
graph algorithm workloads (e.g., connected components or shortest paths), that do not take
the unique challenges of complex GCN data access patterns into consideration. Therefore,
intelligent partitioning and message passing strategies need to be employed, that improve
data locality and avoid broadcasts, to achieve a communication-efficient distributed-memory
parallel inference and training solution.
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To address this, a highly parallel GCN training algorithm is introduced that scales to large
processor counts. In the proposed solution, the large adjacency and vertex-feature matrices
are partitioned among processors. The edge-cut partitioning of the graph is exploited to
make use of asynchronous non-blocking point-to-point communication operations between
processors for better scalability. To further minimise the parallelisation overheads, a sparse
matrix partitioning scheme is introduced based on a hypergraph partitioning model for
full-batch training. The merits of such a hypergraph model are shown over the standard
graph partitioning model which does not accurately encode the communication costs of
transmitting features across processors.

In order to capture the randomness when communication operations are performed for mini-
batch training instead of full-batch training, this chapter also includes a stochastic hypergraph
model. This model is based on a hypergraph sampling and construction technique that can
be utilised for any mini-batch sampling strategy. It encodes the expected communication
volume for additional optimisations in parallel mini-batch training.

The solutions in this work focus on large-scale CPU clusters, commonly used for big sparse
problem instances in scientific computing, since research towards adapting existing, rel-
atively inexpensive supercomputing systems towards deep learning is gaining attention.
Nevertheless, the solutions are also demonstrated on GPU clusters. The full-batch and
mini-batch solutions significantly improve efficiency and scalability over the state-of-the-art
algorithms. The communication scheme devised here is easily applicable on any message
passing GNN models operating on a variety of large-scale real-world graph data, such as
citation networks, social networks, and road networks.

6.1 Preliminaries

GCN feedforward phase

GCNs generalise the convolution operation to graphs having arbitrary size and topology.
An adjacency matrix can be used to describe the (sparse) edge connections along which
data aggregation takes place for every layer in the neural network. Let A ∈R𝑛×𝑛 denote
the adjacency matrix of a graph G = (V, E) which consists of |V| = 𝑛 vertices. Vertex set
V is associated with a feature matrix Hℓ ∈ R𝑛×𝑑ℓ for every GCN layer ℓ, rows of which
correspond to 𝑑ℓ-dimensional vertex features.

In a simple GCN [89], given an input feature matrix H0, feedforward of GCN is defined for
layers ℓ=1, 2, . . . 𝐿 as

Zℓ = ÂHℓ−1W ℓ

Hℓ = 𝜌(Zℓ) (6.1)

Some re-normalisation tricks (to deal with exploding/vanishing gradient problems) and self-
loops (for computations at a node to consider the data at the node itself) are introduced into 𝐴.
Matrix Â is formed as Â=D−

1
2 ÃD−

1
2 for normalisation, where matrix Ã=A+I corresponds

to the adjacency matrix with self loops and matrixD(𝑖, 𝑖)=∑
𝑗 Ã(𝑖, 𝑗) corresponds to the
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diagonal matrix of vertex degrees. To ease the notation,A is used instead of Â to denote the
normalised adjacency matrix.

In Equation 6.1, only theA matrix is sparse and the remaining matrices are dense. SpMM
AHℓ−1 combines feature vectors for each vertex (itself and neighbours). The resulting
combined features are then involved in a DMM and multiplied by trainable parameter matrix
W ℓ ∈R𝑑ℓ−1×𝑑ℓ . Finally, a non-linear activation function 𝜌(·) is applied to each element of
matrix Zℓ to compute Hℓ .

GCN backpropagation phase

The backpropagation phase requires a gradient matrix G𝐿 ∈R𝑛×𝑑𝐿 which is computed as

G𝐿 = ∇H𝐿 J ⊙ 𝜌′ (Z𝐿)

where ∇H𝐿 J denotes the matrix of derivatives of the loss function J with respect to output
features inH𝐿 , 𝜌′ (·) denotes the derivative of the activation function, and symbol ⊙ denotes
element-wise multiplication (i.e., Hadamard product). Gradient matrices for the preceding
layers for ℓ=𝐿, 𝐿−1, . . . , 1 are recursively computed as

Sℓ = AGℓ (W ℓ)𝑇

Gℓ−1 = Sℓ ⊙ 𝜌′ (Zℓ−1) (6.2)

In Equation 6.2, SpMM is performed with matrices A and Gℓ , and the resulting matrix is
used in DMM with (W ℓ)𝑇 . Each gradient matrixGℓ ∈R𝑛×𝑑ℓ is used to update parameter
matrix W ℓ by the following set of gradient update rules

𝛥W ℓ = (Hℓ−1)𝑇AGℓ

W ℓ ←W ℓ − 𝛼𝛥W ℓ

where 𝛥Wℓ denotes the matrix of derivatives of the loss function Jwith respect to parameters
in matrix W ℓ , and 𝛼 denotes the learning rate. It is important to note that, if the input
graph is directed, transpose A𝑇 is used instead of A in backpropagation (a more detailed
description can be found in [154]).

6.2 Data-parallel GCN training algorithm

A highly parallel algorithm is introduced for training GCNs on distributed-memory systems.
In this section, the feedforward and backpropagation steps of the proposed parallel GCN
training algorithm are presented. The solution achieves scalability by replacing the blocking
broadcast communications in existing approaches with non-blocking point-to-point commu-
nications for parallel SpMM and transferring only the necessary data with minimal number
of messages between processors. The solution employs a one-dimensional (1D) partitioning
on large adjacency, vertex-feature, and gradient matrices for parallel SpMM computations in
feedforward and backpropagation phases. It replicates parameter matrices across processors
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due to their relatively smaller sizes. This enables data locality for performing DMM compu-
tations without any communication. Allreduce communication is needed for aggregating
gradients, which has a negligible cost compared to the communication costs incurred in
parallel SpMM.

GCN parallel feedforward

The proposed parallel feedforward algorithm executes on 𝑝 processors each of which is
denoted by 𝑃𝑚 for 𝑚 = 1, 2, . . . , 𝑝. Adjacency matrix A and vertex feature matrices Hℓ

for all layers ℓ = 0, 1, . . . , 𝐿 are 1D row-wise partitioned among processors where each
processor 𝑃𝑚 stores submatricesA𝑚 ∈R𝑛×𝑛 andHℓ

𝑚 ∈R𝑛×𝑑ℓ , which only contain subsets
of rows of matrices A and Hℓ . Adjacency matrix and feature matrices are conformably
partitioned so that if row A(𝑖, :) is assigned to submatrix A𝑚, then the corresponding
feature vectors Hℓ (𝑖, :) for all layers ℓ are assigned to submatrices Hℓ

𝑚, respectively (i.e.,
A(𝑖, :) ∈A𝑚 ⇔ Hℓ (𝑖, :) ∈Hℓ

𝑚 ∀ℓ). Parameter matrices W ℓ for all layers ℓ are replicated
and stored by all processors due to their relatively smaller sizes.

The matrix partitioning scheme encodes a vertex-partitioning on graph G, since the rows
A(𝑖, :) andHℓ (𝑖, :) denote the adjacency list and features of vertex 𝑣𝑖 ∈V . Moreover, this
partitioning also induces a task partitioning in the feedforward phase: If a vertex 𝑣𝑖 is
assigned to a processor 𝑃𝑚, the task of computing row Z (𝑖, :)ℓ of intermediate matrix Zℓ in
layer ℓ is performed by processor 𝑃𝑚 where row Z (𝑖, :)ℓ is computed as

Zℓ (𝑖, :) = ©­«
∑︁

𝑗∈cols(A(𝑖,:) )
A(𝑖, 𝑗)Hℓ−1 ( 𝑗 , :)ª®¬W ℓ

Hence, to compute submatrix Zℓ
𝑚, processor 𝑃𝑚 needs to receive all Hℓ−1-matrix rows

corresponding to all nonzero column indices inA𝑚, which are not locally stored inHℓ−1
𝑚 .

Let Hℓ−1
𝑛𝑚 ∈ R𝑛×𝑑ℓ−1 denote the submatrix consisting of rows that are needed to be trans-

ferred from processor 𝑃𝑛 to 𝑃𝑚. That is, submatrixHℓ−1
𝑛𝑚 contains subset of rows ofHℓ−1

𝑛

corresponding to the intersection of nonzero row indices ofHℓ−1
𝑛 and column indices ofA𝑚.

More formally, ∃ 𝑖 ∈ rows(Hℓ−1
𝑛𝑚 ) if 𝑖 ∈ cols(A𝑚)∩rows(A𝑛). Non-blocking point-to-point

communications are employed to transfer these submatrices between processors. After pro-
cessor 𝑃𝑚 receives submatrixHℓ−1

𝑛𝑚 from each processor 𝑃𝑛 for all 𝑛≠𝑚 such thatHℓ−1
𝑛𝑚 ≠0,

𝑃𝑚 performs multiplication

Zℓ
𝑚= (A𝑚H

ℓ−1
𝑚 +

∑︁
𝑛≠𝑚

A𝑚H
ℓ−1
𝑛𝑚 )W ℓ

to compute submatrix Zℓ
𝑚 ∈ R𝑛×𝑑ℓ . Then, 𝑃𝑚 applies the nonlinear activation function

Hℓ
𝑚= 𝜌(Zℓ

𝑚) to proceed to the next layer.

To manage sparse point-to-point communication operations, each processor 𝑃𝑚 is provided
with sets S𝑚 and R𝑚 which are computed before training with respect to the partitioning of
adjacency matrixA among processors. Set S𝑚 is composed of diagonal matricesX𝑚𝑛 ∈R𝑛×𝑛

for each processor 𝑃𝑛 ≠ 𝑃𝑚. Matrix X𝑚𝑛 is used in a special matrix multiplication to
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determine which local Hℓ−1
𝑚 -rows to be sent by processor 𝑃𝑚 to 𝑃𝑛. Formally,

S𝑚 = {X𝑚𝑛 | X𝑚𝑛 ≠ 0 ∧X𝑚𝑛 (𝑖, 𝑖) = 1

∀𝑖 ∈ cols(A𝑛) ∩ rows(A𝑚)}

That is, the 𝑖th diagonal entryX𝑚𝑛 (𝑖, 𝑖)=1 if the intersection of nonzero row and column
indices of matrices A𝑚 and A𝑛 contains index 𝑖, otherwise it is set to zero. Set R𝑚 is
composed of processors from which 𝑃𝑚 receives at least one message. Formally,

R𝑚 = {𝑃𝑛 | 𝑃𝑛 ≠ 𝑃𝑚 ∧ 𝑐𝑜𝑙𝑠(A𝑚) ∩ 𝑟𝑜𝑤𝑠(A𝑛) ≠ ∅}

That is, processor 𝑃𝑛 is included in R𝑚 if the intersection of nonzero row and column indices
of matricesA𝑚 andA𝑛 is nonempty, and processor 𝑃𝑚 receives at least one row ofHℓ−1

𝑛

from processor 𝑃𝑛.

Algorithm 6.1 describes the proposed parallel feedforward algorithm. The GraphBLAS [36]
library is used to perform the sparse matrix operations. In lines 3–5, to overlap communica-
tion by computation, a non-blocking communication is performed for each diagonal matrix
X𝑚𝑛 ∈ S𝑚 by processor 𝑃𝑚 to send required Hℓ−1

𝑚 -matrix rows to processor 𝑃𝑛. Matrix
Hℓ−1

𝑚𝑛 is formed through a specialised matrix multiplication Hℓ−1
𝑚𝑛 =X𝑚𝑛⊗Hℓ−1

𝑚 . By this
matrix multiplication, if the 𝑖th diagonal entry is X𝑚𝑛 (𝑖, 𝑖) = 1, then the 𝑖th row Hℓ−1

𝑚 is
copied into matrixHℓ−1

𝑚𝑛 . Operator ⊗ denotes that the matrix multiplication is performed
under a semiring defined by GraphBLAS, to replace the multiplication operator with a copy
operator that will directly carry the second operand to the resulting variable without mul-
tiplying (i.e., 𝑧=𝑥 × 𝑦 ⇒ 𝑧= 𝑦). In line 6, local matrix multiplication Zℓ

𝑚=A𝑚H
ℓ−1
𝑚 W ℓ is

performed without waiting for the non-blocking communication operations to complete.
Matrix Zℓ

𝑚 is incomplete at this stage and its computation is finalised after receiving all
necessary data. In lines 7–9, processor 𝑃𝑚 receives Hℓ−1

𝑛𝑚 from each 𝑃𝑛 ∈R𝑚, and performs
multiplication and addition Zℓ

𝑚 = Zℓ
𝑚 +A𝑚H

ℓ−1
𝑛𝑚 W ℓ to compute the final matrix Zℓ

𝑚. The
activation function 𝜌 is then applied in line 10 to generateHℓ

𝑚 for layer ℓ.

Algorithm 6.1: GCN Parallel Feedforward
1 forall processors 𝑃𝑚 in parallel do

2 for ℓ = 1 to 𝐿 do

3 foreach X𝑚𝑛 ∈ S𝑚 do

4 Hℓ−1
𝑚𝑛 = X𝑚𝑛 ⊗Hℓ−1

𝑚

5 Non-blocking send Hℓ−1
𝑚𝑛 to processor 𝑃𝑛

6 Zℓ
𝑚 = A𝑚H

ℓ−1
𝑚 W ℓ

7 foreach 𝑃𝑛 ∈ R𝑚 do

8 Receive Hℓ−1
𝑛𝑚 from processor 𝑃𝑛

9 Zℓ
𝑚 = Zℓ

𝑚 +A𝑚H
ℓ−1
𝑛𝑚 W ℓ

10 Hℓ
𝑚 = 𝜌(Zℓ

𝑚)

GCN parallel backpropagation

In the backpropagation phase, similar to the vertex feature matrices, gradient matricesGℓ

for each layer ℓ are row-wise partitioned among processors where each processor 𝑃𝑚 holds
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submatrix Gℓ
𝑚 ∈ R𝑛×𝑑ℓ in each layer ℓ. Gradient matrix Gℓ and adjacency matrix A are

conformably partitioned so that if rowA(𝑖, :) is assigned to submatrixA𝑚, then rowGℓ (𝑖, :)
is assigned to submatrix Gℓ

𝑚 (i.e., A(𝑖, :) ∈A𝑚 ⇔ Gℓ (𝑖, :) ∈Gℓ
𝑚 ∀ℓ). Hence, the task of

computing row S (𝑖, :)ℓ of intermediate matrix Sℓ is given to processor 𝑃𝑚 if rowA(𝑖, :) and
corresponding vertex 𝑣𝑖 is assigned to 𝑃𝑚. So, the same row-wise partitioning is induced on
matrix Sℓ as with matrices A and Gℓ . Matrix Sℓ is computed by following similar steps of
computation of Zℓ in feedforward phase. Then, 𝑃𝑚 performs element-wise multiplication,
denoted by the ⊙ operator, to obtain Gℓ−1

𝑚 =Sℓ
𝑚 ⊙ 𝜌′ (Zℓ−1

𝑚 ).

Algorithm 6.2 gives the proposed parallel backpropagation algorithm. In line 2, each processor
𝑃𝑚 computes submatrixG𝐿

𝑚 by using the local vertex-feature matrixH𝐿
𝑚 in the final layer.

Here, ∇H𝐿
𝑚
J denotes the matrix of partial derivatives of the loss function with respect to

H𝐿
𝑚, and its formulation depends on the definition of the loss function. In lines 4–10, matrix

Sℓ is computed in a similar way to computation of Zℓ in Algorithm 6.1. In line 11, gradient
matrixGℓ−1 for the preceding layer is computed via element-wise multiplication of matrices
Sℓ
𝑚 and 𝜌′ (Zℓ−1

𝑚 ). In line 12, each processor 𝑃𝑚 computes partial results for gradient matrix
𝛥Wℓ of the loss function J with respect to parameter matrixW ℓ .

In the computation of 𝛥Wℓ , matrix (Hℓ−1
𝑚 )𝑇 is computed in feedforward phase, whereas

(A𝑚G
ℓ) part is computed as a by-product in lines 7 and 10. Here, if column (Hℓ−1)𝑇 (:, 𝑖)

is stored in (Hℓ−1
𝑚 )𝑇 , then the corresponding row (AGℓ) (𝑖, :) is also stored in (A𝑚G

ℓ).
Therefore, multiplication (Hℓ−1

𝑚 )𝑇 (A𝑚G
ℓ) by processor 𝑃𝑚 producesmatrix 𝛥Wℓ

𝑚 of partial
products where each nonzero 𝛥Wℓ

𝑚 (𝑖, 𝑗) contributes to the corresponding nonzero

𝛥Wℓ (𝑖, 𝑗)=
∑︁
𝑚

𝛥Wℓ
𝑚 (𝑖, 𝑗)

in the final matrix 𝛥Wℓ . In line 13, the final gradient matrix 𝛥Wℓ is computed via an
allreduce-type communication operation which combines (sums) partial matrices from all
processes and distributes the result back to all processes. In line 14, gradient update on W ℓ

is performed by all processors on their local copies.

Algorithm 6.2: GCN Parallel Backpropagation
1 forall processors 𝑃𝑚 in parallel do

2 G𝐿
𝑚 = ∇H𝐿

𝑚
J ⊙ 𝜌′ (Z𝐿

𝑚)
3 for ℓ = 𝐿 to 1 do
4 foreach X𝑚𝑛 ∈ S𝑚 do

5 Gℓ
𝑚𝑛 = X𝑚𝑛 ⊗Gℓ

𝑚

6 Non-blocking send Gℓ
𝑚𝑛 to processor 𝑃𝑛

7 Sℓ
𝑚 = A𝑚G

ℓ
𝑚 (W ℓ)𝑇

8 foreach 𝑃𝑛 ∈ R𝑚 do

9 Receive Gℓ
𝑛𝑚 from processor 𝑃𝑛

10 Sℓ
𝑚 = Sℓ

𝑚 +A𝑚G
ℓ
𝑛𝑚 (W ℓ)𝑇

11 Gℓ−1
𝑚 = Sℓ

𝑚 ⊙ 𝜌′ (Zℓ−1
𝑚 )

12 𝛥Wℓ
𝑚 = (Hℓ−1

𝑚 )𝑇 (A𝑚G
ℓ)

13 𝛥Wℓ = Allreduce-sum(𝛥Wℓ
𝑚)

14 W
ℓ ←W

ℓ − 𝛼𝛥Wℓ
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(a) For graph G, the feature matrixHℓ−1 for layer ℓ − 1 has been conformably partitioned along withA while the weight matrixW ℓ has been duplicated across all 3 processors. Processor
𝑃3 (in green) requiresHℓ−1

13 andHℓ−1
23 from the other two processors (in blue and red respectively).

(b) Computations are demonstrated here on the processor 𝑃3 (in green) which stores A3 andHℓ−1
3 locally but must receive Hℓ−1

13 and Hℓ−1
23 . The resultingHℓ

3 features are similarly
computed for all layers (ℓ = 1 → 𝐿) during the feedforward phase. Subsequently, during backpropagation (ℓ = 𝐿 → 1), these are used to generate 𝛥W ℓ for updation of the weight
matricesW ℓ on all processors.

Figure 6.1: Communication and computation processes during feedforward and backpropagation phases of the distributed GCN algorithm
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Example 6.2.1. A sample execution of the feedforward phase is illustrated in Figure 6.1.
The adjacency matrixA, and feature matrixHℓ for each layer ℓ are conformably partitioned
among the three processors. Thus, each processor 𝑃𝑚 only stores submatrices A𝑚 and
Hℓ−1

𝑚 . For instance, the computation of matrix Zℓ
3 by processor 𝑃3 (in green) requires

the other two processors to send Hℓ−1
13 and Hℓ−1

23 corresponding to nonzero indices, and
local matrix multiplication is performed without waiting for the completion of these non-
blocking communications, to computeHℓ

3 . Processor 𝑃3 retrieves features of 𝑣1 and 𝑣4

for convolution on vertex 𝑣5 , and retrieves features of 𝑣2 and 𝑣4 for vertex 𝑣6 . Hence,
Hℓ−1

13 contains rows 1 and 2 ofHℓ−1 whileHℓ−1
23 contains row 4, since these are the nonzero

indices ofA𝑚 where the feature matrix rows are not locally stored. Note that row 4 is only
transferred once to avoid a redundant communication.
Figure 6.1 also displays the computations performed in the backpropagation phase. As seen
in the figure, the relatively smaller-sized weight matrices W ℓ for each layer ℓ are replicated
among all processors. The computation of matrixSℓ is identical to the computation of matrix
Hℓ and requires the same communication steps which are determined by the partitioning on
the adjacency matrixA. Matrix Sℓ is used together with matrix Zℓ−1 to compute gradient
matrixGℓ−1. The figure also shows the all-reduce operation performed on locally computed
matrices 𝛥W ℓ

𝑚 to compute the final matrix 𝛥W ℓ for gradient update operations.

Extension to GNNs

The main difference between general GNN models [92, 158, 169] and GCNs is in the way
messages are created and combined between vertices. In some GNN models, DMM is
performed first and messages are created, which is followed by a specialised SpMM for
message passing and combining. For example, in a GAT [158], first each vertex feature is
transformedwith a local parametermatrix (i.e., DMM), and the resulting feature is transmitted
to neighbour vertices using the same communication pattern as in SpMM. At the destination
vertex, features are concatenated and then multiplied with an attention vector. That is, the
order of SpMM and DMM can be changed and additional mathematical operations can be
applied to their outputs, without affect the message directions and communication patterns
between vertices. Therefore, the proposed partitioning methods can be directly used for
other GNN models, and simple modifications to the proposed GCN algorithm can support
the additional computations necessary alongside this communication scheme.

6.3 Partitioning models for full-batch training

The use of point-to-point communication operations in the proposed solution enables com-
munication to be reduced further via sparse matrix partitioning strategies [29]. A sparse
matrix partitioning scheme is developed to distribute the adjacency, vertex-feature, and gradi-
ent matrices used in computations among processors, based on a hypergraph partitioning
model for the original graph.

Different partitioning models may be used for splitting the adjacency matrix among pro-
cessors. In this chapter, it is shown that, during the message-passing operations, the hyper-
graph partitioning model encodes SpMM communication costs more accurately than the
graph partitioning model which is in popular use (e.g., in DistDGL [194]).
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Graph model

In a graph model, a 𝑝-way partitioning 𝛱𝑝 = {V1,V2, . . . ,V𝑝} over vertex setV induces a
row-wise partitioning on matrix A among 𝑝 processors. If a vertex 𝑣𝑖 is assigned to part
V𝑚 ∈𝛱𝑝 , then rowA(𝑖, :) is assigned to processor 𝑃𝑚. Note that the input graph G= (V, E)
in GCN training can be directed or undirected, but graph partitioning tools (e.g., METIS)
assume that the graph to be partitioned is undirected, edges have integer costs, and vertices
have integer weights.

Under a partition 𝛱𝑝 , each undirected cut edge (𝑣𝑖 , 𝑣 𝑗 ) represents the communication of
Hℓ−1 (𝑖, :)- and Hℓ−1 ( 𝑗 , :)-matrix rows between respective processors during feedforward
phase, and communication of Gℓ (𝑖, :)- and Gℓ ( 𝑗 , :)-matrix rows during backpropagation
phase. Since there is a 𝑑-dimensional vertex feature matrix Hℓ ∈R𝑛×𝑑ℓ , each undirected
edge encodes a total communication volume of

∑
ℓ 2(𝑑ℓ−1 + 𝑑ℓ) nonzero entries over all

layers ℓ. Because the communication volume encoded by each edge is the same constant
value, each undirected edge (𝑣𝑖 , 𝑣 𝑗 ) can be associated with a unit cost(𝑣𝑖 , 𝑣 𝑗 )=1. Each vertex
𝑣𝑖 is associated with a computational weight 𝑤(𝑣𝑖) = |cols(A(𝑖, :)) |. DistDGL [194] also
utilises this partitioning scheme and partitions the input graph via METIS, only considering
undirected graphs.

The graph model is less accurate compared to the hypergraph model because the former
overestimates the total communication volume between processors. This deficiency of the
graph model can be seen in two ways: i) When both of the directed edges (𝑣𝑖 , 𝑣 𝑗 ) and (𝑣 𝑗 , 𝑣𝑖)
are not simultaneously present in the input graph G, the graph model still considers an
undirected edge (𝑣𝑖 , 𝑣 𝑗 ) that sees communication in both ways although the communication
is actually one-way. ii) If a vertex 𝑣𝑖 is connected to vertices 𝑣 𝑗 and 𝑣ℓ that are stored together
but on a different processor from 𝑣𝑖 , the graph model assumes that the features of 𝑣𝑖 are sent
twice. However, these features are sent to that processor once in a single message. These
two cases cause the partitioning cut size to be higher than the actual communication volume
when the graph model is employed.

Hypergraph model

1D row-wise partitioning of adjacency matrix can be modelled as a hypergraph partitioning
problem [26] since the hypergraph model can encode the exact communication volume of
parallel GCN. The connectivity cut size of the hypergraph model encodes the total com-
munication volume among processors, while weights of partitions encode the associated
computational load for processors. Hence, minimisation of the connectivity cut size under
weight balancing constraints achieves minimisation of the total communication volume
while achieving computational load balance. During the feedforward phase, the hypergraph
model encodes the total communication volume onHℓ−1-matrix rows for parallel SpMMs
AHℓ−1 among processors in each layer ℓ. The model also encodes the total communication
volume onGℓ-matrix rows for parallel SpMMs AGℓ during backpropagation phase.

To partition adjacency matrix A, first a hypergraph H = (V,N) is built where for each
matrix rowA(𝑖, :) there exists one vertex 𝑣𝑖 ∈V and for each columnA(:, 𝑗), there exists
one net 𝑛 𝑗 ∈ N . Similar to the graph model, a partitioning obtained on the vertex set of
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the input graph H = (V, E) also induces a 1D row-wise partitioning on the adjacency
matrix. That is, a 𝑝-way partitioning 𝛱𝑝 = {V1,V2, . . . ,V𝑝} over vertex set V induces a
row-wise partitioning on matrixA among 𝑝 processors, since each vertex 𝑣𝑖 corresponds
to rowA(𝑖, :). Additionally, each vertex 𝑣𝑖 ∈V also represents the task of computing rows
Zℓ (𝑖, :) and Sℓ (𝑖, :) in each layer ℓ. Therefore, each vertex 𝑣𝑖 is associated with weight
𝑤(𝑣𝑖)= |cols(A(𝑖, :)) |, i.e., the number of nonzero column indices in the 𝑖th row of matrix
A, to encode the computational load of the task represented by vertex 𝑣𝑖 . Note that the
number of nonzero arithmetic operations required to compute rows Zℓ (𝑖, :) and Sℓ (𝑖, :)
is proportional to the number of nonzero column indices in rowA(𝑖, :). So, satisfying the
balancing constraints in hypergraph partitioning achieves computational load balance.

Net setN encodes task dependencies on rows of matricesHℓ−1 andGℓ during feedforward
and backpropagation phases for each layer ℓ. Each net 𝑛 𝑗 ∈ N connects all vertices 𝑣𝑖 ∈V for
which the corresponding row A(𝑖, :) has a nonzero entry in the 𝑗 th column. For computing
rowsZ (𝑖, :)ℓ andS (𝑖, :)ℓ , the processor that owns rowA(𝑖, :) needs allHℓ−1- andGℓ-matrix
rows, corresponding to nonzero column indices cols(A(𝑖, :)), respectively. Therefore, pins
of a net 𝑛 𝑗 denotes the tasks that require row Hℓ−1 ( 𝑗 , :) and Gℓ ( 𝑗 , :). Formally, pins of a
net 𝑛 𝑗 can be written as

pins(𝑛 𝑗 ) = {𝑣𝑖 ∈ 𝑉 | ∃ 𝑗 ∈ cols(A(𝑖, :))}.

Under a partitioning 𝛱𝑝 , a net 𝑛 𝑗 ∈N with connectivity set 𝛬(𝑛 𝑗 ) encodes the total com-
munication volume on rows Hℓ−1 ( 𝑗 , :) and Gℓ ( 𝑗 , :) in each layer ℓ. Here, at least one
part in 𝛬(𝑛 𝑗 ) stores vertex 𝑣 𝑗 since each diagonal entry contains a nonzero entry in ad-
jacency matrix A. That is, for all net 𝑛 𝑗 ∈ N , vertex 𝑣 𝑗 ∈ pins(𝑛 𝑗 ). Therefore, a part
V𝑚 ∈ 𝛬(𝑛 𝑗 ) stores vertex 𝑣 𝑗 and hence, processor 𝑃𝑚 stores rowsHℓ−1 ( 𝑗 , :) andGℓ ( 𝑗 , :)
in its local submatricesHℓ−1

𝑚 andGℓ
𝑚, respectively. Due to the task dependencies encoded

by net 𝑛 𝑗 , processor 𝑃𝑚 sends row Hℓ−1 ( 𝑗 , :) to all processors corresponding to parts in
𝛬(𝑛 𝑗 )\V𝑚 during feedforward phase, i.e., 𝜆(𝑛 𝑗 ) − 1 communications. Similarly, processor
𝑃𝑚 sends row Gℓ ( 𝑗 , :) to all processors in 𝛬(𝑛 𝑗 )\V𝑚 during backpropagation phase. If a
processor 𝑃𝑛 ∈ 𝛬(𝑛 𝑗 )\V𝑚 has multiple vertices connecting to net 𝑛 𝑗 , processor 𝑃𝑛 receives
rowHℓ−1 ( 𝑗 , :) and rowGℓ ( 𝑗 , :) only once. So, net 𝑛 𝑗 incurs a communication volume of
cost(𝑛 𝑗 )×

(
𝜆(𝑛 𝑗 )−1

)
where the cost of net 𝑛 𝑗 is denoted as cost(𝑛 𝑗 )=

∑
ℓ 𝑑ℓ−1+𝑑ℓ since all

nonzero entries in rowsHℓ−1 ( 𝑗 , :) andGℓ ( 𝑗 , :) are communicated in each layer ℓ. Since the
cost of each net is the same constant value, each net can also be associated with a unit cost
𝑐𝑜𝑠𝑡 (𝑛 𝑗 ) = 1. Therefore, the total communication volume

∑
𝑛 𝑗 ∈N

2 × cost(𝑛 𝑗 ) ×
(
𝜆(𝑛 𝑗 ) − 1

)
can be written as ∑︁

𝑛 𝑗 ∈N
2 ×

(
𝜆(𝑛 𝑗 ) − 1

)
which indicates that minimising the connectivity cut size corresponds to minimising the
total communication volume.

Example 6.3.1. Figure 6.2 displays an illustrative example of the proposed hypergraph
partitioning model on a sample graph G having adjacency matrixA. The hypergraphH is
constructed having partsV1 (blue),V2 (red), andV3 (green) each containing two vertices,
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Figure 6.2: Hypergraph partitioning of graph G having adjacency matrix A (including
self loops), by constructing the corresponding hypergraphH where every net 𝑛 𝑗 connects
nonzero entries of the column 𝑖 in A. The feature matrix Hℓ for layer ℓ is conformably
partitioned along with A, while the weight matrix W ℓ is duplicated across all processors.

with a net 𝑛 𝑗 for every column A(:, 𝑗). According to the hypergraph partitioning model,
rows of A are assigned to processors based on the hypergraph vertex partitioning. For
example, row A(𝑖, :) will be stored on processor 𝑃1 as vertex 𝑣1 , and is assigned to V1.
Since 𝑣1 represents a task, the computational load is proportional to the number of non-zero
columns in row 1 and is encoded by its weight 𝑤(𝑣1)=3. Each net connects non-zero entries
in a row. For example net 𝑛2 connects 𝑝𝑖𝑛𝑠(𝑛2) = { 𝑣1 , 𝑣2 , 𝑣4 , 𝑣6 } with connectivity set
𝛬(𝑛2) = {V1,V2,V3}. Its connectivity is therefore 𝜆(𝑛2) = 3. The net set N thus encodes
task dependencies during the feedforward and backpropagation phases since communication
operations on matricesHℓ andGℓ−1 are identical and determined by the partitioning on
matrix A. The feature matrix Hℓ−1 is conformably partitioned with A for each layer of the
GCN, while the weight matrix W ℓ is replicated across the three processors.
Figure 6.2 also depicts how the graph model overestimates the communication volume.
Features of vertex 𝑣4 must be fetched by vertices 𝑣2 , 𝑣3 , 𝑣5 , and 𝑣6 . According to the
graph model, the feature vector of 𝑣4 is encoded as if it were sent from processor 𝑃2 to
processor 𝑃3 twice, but should only be sent once. Therefore, cut edges connecting to vertex
𝑣4 in the graph encode a communication volume of 3 instead of the true value of 2. On the
other hand, the hypergraph model shown onH uses net 𝑛4 to encode communications from
vertex 𝑣4 . Since the connectivity of 𝑛4 is 𝜆(𝑛4)=3 and hypergraph partitioning minimises
connectivity–1 metric, net 𝑛4 encodes the true communication volume as 𝜆(𝑛4)−1=2.
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6.4 Partitioning model using hypergraph sampling for

mini-batch training

The hypergraph/graph models described in the previous section encode the communication
volume in full-batch training. In mini-batch training, some chosen sampling technique is
applied to the input graph to produce subgraphs on which convolutions are performed.

Stochastic hypergraph model

A stochastic hypergraph model is proposed which encodes and minimises the expected com-
munication volume in mini-batch training. The partitioning model is applicable alongside any
desired sampling technique being used for the generation of mini-batches, e.g., GraphSAGE
neighbourhood sampling.

First, mini-batches (i.e., subgraphs) are randomly generated using any sampling technique.
Next, for each subgraph, a hypergraph is constructed that encodes the total communication
volume for the mini-batch. By merging all hypergraphs generated (one per mini-batch),
a larger hypergraph is built that can encode the expected connectivity of any randomly
generated net. Partitioning the resulting merged stochastic hypergraph minimises the
expected connectivity of a random net, and thus minimises the expected total communication
volume for any randomly generated mini-batch. Additionally, if each vertex is equally likely
to be selected in a mini-batch, then the same vertex weighting and balancing constraint in
the hypergraph model for full-batch training can be applied here to achieve computational
load balance for mini-batch training.

More formally, given an input graph G= (V, E), each mini-batch corresponds to a subgraph
G′= (V′ ⊂V, E′ ⊂E). The proposed stochastic hypergraph partitioning process is described
in Algorithm 6.3. First, 𝑏mini-batches are generated (line 1, each corresponding to a subgraph
G′
𝑖
= (V′

𝑖
, E′

𝑖
) for 𝑖=1, 2, . . . ,𝑏. For each such subgraph G′ a hypergraphH ′= (V′,N ′) is

built in the same way as in full-batch training (line 2). In line 3, the stochastic hypergraphH =

(V =
⋃V′

𝑖
,N =

⋃N ′
𝑖
) is formed by merging all vertex and net sets into the corresponding

sets for the merged hypergraph. Finally, a partitioning 𝛱 ofH is computed which can be
used to determine the row-wise partitioning of the adjacency matrix (line 4).

Algorithm 6.3: Stochastic Hypergraph Partitioning
1 Generate 𝑏 subgraphs G𝑖 = (V′𝑖 , E′𝑖 ) of G for 𝑖 = 1, 2, . . . , 𝑏
2 Build hypergraphH𝑖 = (V′𝑖 ,N ′𝑖 ) for each G𝑖 = (V′𝑖 , E′𝑖 )

3 Build stochastic hypergraphH = (V =
𝑏⋃
𝑖=1
V′

𝑖
,N =

𝑏⋃
𝑖=1
N ′

𝑖
)

4 Partition 𝑝-way hypergraphH to obtain partitioning 𝛱 = {V1,V2, . . . ,V𝑝}
5 Return 𝛱

Under a 𝑝-way vertex partition 𝛱 of the stochastic hypergraphH , let 𝜆 denote the expected
connectivity of a randomly generated net. By using Hoeffding’s inequality, the value of 𝜆
can be estimated within its 𝜖 error with a probability of at least 1−𝛿, and is dependent on
|N |. That is, if an adequate number of nets are generated, the stochastic hypergraph model
encodes the expected communication volume with low error with high probability. Since
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the expected connectivity 𝜆 is determined by the partitioning 𝛱 over the hypergraph, the
stochastic hypergraph partitioning can minimise this objective.

6.5 Experimental evaluation

The parallel training algorithm (with different choices of partitioning strategy) is evaluated
on numerous datasets to test its performance in terms of scalability, communication costs,
running time, and predictive accuracy.

Datasets

The performance of the proposed parallel GCN training algorithm is evaluated on a di-
verse set of real-world graphs from popular applications that use GCN models such as
citation networks, social networks, road networks, and product co-purchasing networks.
The first eight datasets (amazon0601, cit-Patents, coPapersDBLP, com-Amazon,
com-Youtube, flickr, roadNet-CA, and soc-Slashdot0902) are from the Stan-
ford Large Network Dataset Collection.1 ogbn-Papers100M is available from the Open
Graph Benchmark collection.2 reddit is a dataset hosted by Deep Graph Library (DGL).3

Properties of these graphs are displayed in Table 6.1.

Table 6.1: Dataset properties

Dataset #Nodes #Edges Type

amazon0601 403,394 3,387,388 Directed
cit-Patents 3,774,768 16,518,948 Directed
coPapersDBLP 540,486 30,491,458 Undirected
com-Amazon 334,863 1,851,744 Undirected
com-Youtube 1,134,890 5,975,248 Undirected
flickr 820,878 9,837,214 Directed
roadNet-CA 1,971,281 5,533,214 Undirected
soc-Slashdot0902 82,168 948,464 Directed

ogbn-Papers100M 111,059,956 1,615,685,872 Directed
Cora 2708 10556 Undirected
reddit 232,965 114,615,892 Undirected

Baselines

DGL (with PyTorch 4 v1.6 backend) implementation of GCN is used as the baseline, and
speedup values are computed according to its single-node CPU performance. The proposed
solution performance is also compared against CAGNET [154] which is the most closely
related algorithm. The comparison is performed by using both the original GPU implement-
ation and a custom CPU implementation of CAGNET. Comparisons against Neugraph [112]
and Roc [81] are omitted as they are not compatible with CPU clusters, and CAGNET already
provides much more scalability.

1https://snap.stanford.edu/data/
2https://ogb.stanford.edu/docs/nodeprop/
3https://docs.dgl.ai/en/0.8.x/api/python/dgl.data.html
4https://pytorch.org/
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The improvements in performance are evaluated of the proposed parallel GCN training
algorithm with both hypergraph partitioning (HP) and graph partitioning (GP) models used
to partition the input matrices. For mini-batch training, the stochastic hypergraph (SHP)
model is tested. Additionally, results are reported for random partitioning (RP) as a baseline,
which evenly splits the adjacency matrix by assigning rows to processors uniformly at
random, and is a competitive method for balancing computational load and communications.

Setup

CPU experiments are run on a cluster of 180 compute nodes with 2x Intel Xeon Platinum 8268
2.9 GHz 24-core processors (48 cores per node) and 4GB RAM per core. GPU experiments use
the Sulis5 cluster of 30 nodes each with 3x NVIDIA A100 GPUs and 4GB RAM per core. Both
use InfiniBand interconnect (100 Gbit/s) and Slurm Workload Manager. The single-node
DGL implementation requires a server with a better hardware (memory) configuration, thus
a 16-core Intel Xeon 3.90GHz processor is used having 500 GB memory.

The CPU code is in C++, using the GraphBLAS library for local sparse matrix operations
and MPI for point-to-point communication operations. The GPU version uses PyTorch with
NCCL backend to perform communication operations [9].

PaToH [27] hypergraph partitioning tool and METIS [84] graph partitioning tool are em-
ployed. For ogbn-Papers100M, KaHyPar [139] is used which can handle massive-scale
graphs. The partitioning tools are used with their default parameters and the maximum
imbalance ratio is set as 𝜗=0.01.

Communication costs

Table 6.2 compares HP, GP, and RP in terms of the communication volume and message
counts metrics they incur on 512 processors (i.e., MPI processes). For each partitioning
method, the parallel GCN algorithm is run with random vertex features and label data for
five epochs, to measure the communication cost and running time metrics. These metrics
respectively relate to bandwidth and latency costs induced by different partitioning strategies
on parallelisation costs. In the table, both the average and maximum volume/number of
messages sent by a processor are displayed. Average values are proportional to the total
message volume/count values, and are used to show how much the maximum values deviate
from the mean.

For each input graph, the first and second rows denote the respective values attained by HP
and GP, where these values are normalised with respect to values attained by RP. The third
row denotes the ratios of values attained by HP and GP (i.e., HP/GP). The first column (i.e.,
‘R’) in the table indicates the ratio of the parallel running time of HP and GP to that of RP.
The last column (i.e., ‘S’) denotes the speedup values attained by HP and GP with respect to
single-node running time performance of DGL. At the end of the table, the geometric means
of the normalised values for HP and GP are given along with the ratios of these values in the
last row. For instance, the ‘R’ and ‘S’ columns for amazon0601 are interpreted as follows:
The parallel running times of HP and GP divided by that of RP is 0.63 and 0.65, respectively.

5https://sulis-hpc.github.io/
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Table 6.2: Performance comparison with HP, GP, and RP on 𝑝=512 CPUs

Volume Messages
R Avg Max Avg Max S

amazon0601
HP 0.63 0.12 0.29 0.22 0.51 10.88
GP 0.65 0.18 0.31 0.30 0.62 10.55

HP/GP 0.97 0.67 0.92 0.74 0.82

cit-Patents
HP 0.77 0.17 0.29 0.70 0.89 8.48
GP 0.80 0.19 0.50 0.77 0.94 8.10

HP/GP 0.95 0.88 0.57 0.91 0.95

coPapersDBLP
HP 0.32 0.07 0.08 0.42 0.71 10.93
GP 0.69 0.07 0.16 0.57 0.77 5.04

HP/GP 0.46 0.97 0.49 0.74 0.92

com-Amazon
HP 0.32 0.09 0.20 0.14 0.32 14.31
GP 0.37 0.14 0.27 0.19 0.42 12.37

HP/GP 0.86 0.60 0.73 0.72 0.75

com-Youtube
HP 0.40 0.36 0.52 0.72 0.97 10.85
GP 1.45 0.37 2.60 0.90 0.99 3.01

HP/GP 0.28 0.98 0.20 0.81 0.98

flickr
HP 0.81 0.45 0.60 0.79 1.00 9.59
GP 11.13 0.38 6.89 0.96 1.00 0.70

HP/GP 0.07 1.19 0.09 0.82 1.00

roadNet-CA
HP 0.19 0.01 0.01 0.01 0.03 30.32
GP 0.20 0.01 0.02 0.01 0.03 29.08

HP/GP 0.96 0.78 0.67 1.03 1.00

soc-Slashdot0902
HP 0.75 0.74 0.69 0.86 0.92 3.50
GP 2.02 0.85 4.38 0.93 1.00 1.30

HP/GP 0.37 0.86 0.16 0.92 0.92
mean HP 0.47 0.13 0.21 0.29 0.48 10.60
mean GP 0.98 0.15 0.56 0.35 0.52 5.04

mean HP/mean GP 0.48 0.87 0.37 0.83 0.92

The parallel running time of HP divided by that of GP is 0.97. Speedups achieved by HP and
GP with respect to DGL, displayed under column ‘S’, are 10.88 and 10.55, respectively.

As seen in Table 6.2, both HP and GP provide significant improvements over communica-
tion volume and message count metrics. On average, HP and GP incur 87% and 85% less
average communication volume than RP respectively, with HP performing 15% better than
GP. In terms of maximum communication volume, HP consistently outperforms RP, provid-
ing 79% improvement on average over RP. HP performs 63% better than GP and provides
better communication balance. Even though GP provides 44% improvement on average
over RP, its performance significantly degrades for graphs com-Youtube, flickr, and
soc-Slashdot0902 where for instance, GP performs 6.89x worse than RP for flickr.
Although both partitioning methods provide significant improvement in average communic-
ation volume, graph partitioning can disrupt the communication balance between processors.
For the message count metrics, on average, HP and GP reduce the total number of mes-
sages by 71% and 65% as compared to RP while HP performs 17% better than GP. Similarly,
maximum message count is respectively reduced by 52% and 48% by HP and GP while HP
performs 9% better than GP.
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Figure 6.3: Strong scaling for full-batch training with HP, GP, and RP for 𝑝=16 to 𝑝=512 CPUs (top row) and with HP, GP, RP, and CAGNET (CN) for 𝑝 = 3 to 𝑝 = 27
GPUs (bottom row)
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Parallel running time efficiency

Improvements in communication costs by HP and GP considerably reduce parallel running
of RP. On all graphs, HP provides an average of 2.12x speedup over RP, despite the latter
achieving good communication and computation balance. GP runs 20%–80% faster than
RP for most graphs. However, it is slower than RP on flickr, com-Youtube and soc-

Slashdot0902. The reason for this is the communication volume imbalance, as can be
seen from the maximum and average communication volumes achieved on these graphs.
The best performance is achieved by HP and GP for roadNet-CA where both partitioning
methods provide approximately 99% improvement in communication volume and message
count metrics compared to RP and run 5x faster.

As seen in the speedup column, on average, HP and GP provide 10.60x and 5.04x speedup
respectively over the DGL implementation. The best speedup is achieved for roadNet-CA

where HP and GP provide 30.32x and 29.08x speedup. This is because road networks are
relatively more sparse as compared to the other social networks and hence the amount of
data transferred between processors reduces in such cases. As the graph sizes increase and
graphs become more sparse, partitioning tools usually perform better optimisations.

Figure 6.3 displays strong scaling of HP, GP, and RP on CPU (first row) and GPU (second
row) clusters. As seen here, on the CPU cluster, HP achieves almost linear speedup up
to 512 cores on all input graphs. Additionally, HP either matches or outperforms GP, and
always outperforms RP. The reason for the speedup loss of HP on 512 processors for soc-

Slashdot0902 is the relatively smaller size of the graph as compared to the others.
In general, GP performs better than RP except for flickr, com-Youtube, and soc-

Slashdot0902 graphs due to degradation of communication balance as also shown in
Table 6.2. Here, line plots for the CPU implementation of CAGNET are omitted since HP and
GP significantly outperform it.

Algorithms that are focused on optimising communication operations are demonstrated
to be better suited to CPU clusters over GPUs, and where the sparsity of the problem is
important to exploit. As seen in Figure 6.3, for GPU cluster experiments, the PyTorch imple-
mentations (with NCCL backend) of both CAGNET and the proposed parallel GCN (i.e. HP,
GP and RP) do not scale well (up to 27 GPUs). The reason for this is the high communication
efficiency needed to attain speedup on GPUs. In comparison to MPI, the NCCL backend
cannot provide the necessary efficiency. On GPUs, the proportion of total running time that
is spent on local computation is small, therefore the gains obtained via parallelisation do not
amortise the time spent for communication on larger GPU counts. In addition, despite the
optimisations obtained in the communication volume from the proposed algorithm, with the
NCCL backend these are not as effective as with MPI. This results in limited performance
improvement on the overall parallel run time due to the higher latency costs. HP and GP con-
tinue to be faster than CAGNET for most datasets and settings. In addition, the performance
improvement is expected to be more stark at higher GPU counts, as can be seen from the CPU
cluster results, but no suitable larger GPU clusters were available for experiments. Moreover,
the parallel CPU implementation for HP is found to outperform the GPU version in many
cases. For example, on amazon0601, the running time is 0.94 seconds on 512 CPUs, while
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Figure 6.4: Performance comparisons for full-batch training. Communication time and
computation time split with HP, GP, RP, and CAGNET (CN) on coPapersDBLP for 𝑝=16
to 𝑝=512 CPUs

on 15 GPUs it takes as long as 1.02 seconds. On the larger roadNet-CA dataset, the same
setting takes only 0.67 seconds on CPU and twice as long (1.28 seconds) on GPU.

Communication and computation time comparison

Figure 6.4 analyses the breakdown of communication and local computation times in the
total parallel CPU running time of HP, GP, RP, and CAGNET (CN) for coPapersDBLP. On
all processor counts, HP and GP consistently perform better than CAGNET, with HP being
the best method at high processor counts. On the largest processor count, HP runs nearly 12x
faster than CAGNET. Even though RP performs worse than CAGNET on 𝑝=16 processors,
its performance becomes better as the number of processors increases. As seen in the figure,
the total communication time decreases with the total computation time for HP, GP and
RP as the number of processors increases, whereas the communication time of CAGNET
increases. This is because point-to-point communication necessitates each processor to
communicate only with a small subset of processors and thus incurs lower communication
volume and latency costs, whereas broadcast communication involves all processors and
incurs higher communication overheads due to the unnecessary data and message transfer.
The redundant computations in CAGNET are also visible in its higher local computation
times. Moreover, better optimisations are achieved by HP than GP, which is evident from
the communication time of GP being 1.7x higher and CAGNET being 8.3x higher than that
of HP on 512 processors. HP shows between 2.4x to 3x better communication efficiency over
RP from low processor counts to high, while the communication benefit of GP over RP drops
slightly from 2.7x to 1.8x.

Scalability for deeper networks

Figure 6.5 shows speedup performance of HP, GP, and RP when varying the number of
layers and the dimensionality of features, on roadNet-CA for 512 CPUs. The number of
dimensions is chosen as 𝑑 = 50 and 𝑑 = 100, and the number of layers is increased from 2
to 8. The speedup is computed by dividing the running time of DGL by the running time
of HP, GP, or RP respectively under the same GCN configuration. When the number of
layers increases and 𝑑 is kept constant, there is no loss of speedup in any algorithm, and
speedup in fact increases for HP. The speedups decrease as 𝑑 increases because of the rise
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Figure 6.5: Performance comparisons for full-batch training.
Speedup with increasing layers (𝐿 = 3, 4, . . . , 8) and dimen-
sions (𝑑 = 50, 100) on roadNet-CA for 𝑝 = 512 CPUs

Figure 6.6: GNN model ac-
curacy with HP on Cora for
𝑝 = 1 to 𝑝 = 27 GPUs

in total communication volume, which reduces the parallelisation efficiency. For example,
the speedup of HP decreases approximately from 40x to 17x when the number of features is
increased from 𝑑 = 50 to 𝑑 = 100, for an 8-layer GCN. On the other hand, the performance
of HP increases from approximately 28x to 40x when the number of layers is increased from
3 to 8, for 𝑑 = 100.

Predictive performance

The effect on predictive performance of the GCN model is also examined when parallelised
using the proposed training algorithm. The downstream task studied here is node classifica-
tion. The Cora dataset is used since the large-scale networks do not have training labels.
The parallel training algorithm is run for 30 epochs on up to 27 GPUs, and its accuracy
performance is compared with the serial training algorithm. Figure 6.6 shows that the parallel
training algorithm does not have any negative impact on the accuracy performance, with
approximately 75% accuracy achieved in all settings using hypergraph partitioning. The
GCN model performs exact full-batch computations across all the parallelised settings, and
the predictive performance remains unchanged within some tolerance (due to the stochastic
nature of the training steps).

Stochastic hypergraph model

Figure 6.7 shows the relative performance improvement of the stochastic hypergraph
model (SHP) over HP in mini-batch training. 10K random mini-batches of size 20K vertices
are generated. The total communication volume they induce under partitionings obtained
by HP and SHP on com-Amazon graph using GPU are measured. 𝜖 = 0.1 and 𝛿 = 0.5 are
used to run SHP and the same maximum imbalance ratio (𝜗 = 0.01) is set for both SHP and
HP. As seen in the figure (inset), where the relative improvement (in red) of SHP over HP
is reported along the secondary y-axis, HP induces 10% more communication volume than
SHP on average. The performance difference in favour of SHP is even more pronounced at
higher processor counts. Furthermore, SHP is seen to provide a greater benefit of shorter
running time with more processors.
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Figure 6.7: Performance comparisons for mini-batch training. Running time and communic-
ation volume (‘Msg Vol’) with HP and SHP on com-Amazon for 𝑝 = 3 to 𝑝 = 27 GPUs

Scalability to billion-scale datasets

The algorithm is also tested on a billion-scale ogbn-Papers100M dataset, which is only
feasible when partitioned onto 27 GPUs due to memory limitations. Table 6.3 shows that
the method is scalable not only to high processor counts but also to very large graphs. RP
slows down significantly with increasing dimensionality of features. On the other hand, the
communication benefit of HP, reducing communication volume approximately by a factor of
10x, allows it to scale better.

Table 6.3: Performance comparison with HP and RP (𝑑 = 1, 2, 5) on ogbn-Papers100M
for 𝑝 = 27 GPUs

Partitioning
model

Running time (secs) Communication
volume𝑑 = 1 𝑑 = 2 𝑑 = 5

HP 24.46 25.00 29.73 1.2 billion
RP 34.70 42.88 65.14 13 billion

Comparison against SOTA

The optimisations are proposed for large-scale CPU clusters, since the improvement of
point-to-point communication overheads over broadcast is more pronounced in such cases.
Nonetheless the running time of the GPU implementation (HP) is compared against state-of-
the-art (SOTA) distributed GPU systems. All systems use the same GCN architecture and
report results on the reddit dataset that is common among them. The reported algorithms
(except CAGNET) use methods that affect training and predictive performance, such as
caching, vertex replication, and asynchronous parameter updates, whereas HP performs
full-batch training with negligible impact on accuracy. As seen from the results, HP achieves
considerable relative performance even on small GPU counts.

6.6 Discussion

In this chapter, a highly parallel algorithm is developed for GCN training on large-scale
distributed-memory systems. For scalability, all matrices except parameter matrices are
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Table 6.4: Running time (in seconds per epoch) compared to SOTA on reddit

Method Running time (per epoch) Setup Reference

HP 0.67 A100*3 -
CAGNET 0.11 V100*4 Fig 1 (c=1) [154]
ROC 1/5 = 0.20 P100*4 Fig 5 [81]
Sancus 97.4/1000 = 0.09 V100*4 Table 4 (SCS-A) [127]
PaGraph ≈ 1.00 1080Ti*1 Fig 9 [106]
Dorylus 162.9/120 = 1.36 V100*2 Fig 5, Table 4 [152]
DGCL 0.15 V100*4 Fig 8(a) [24]

row-wise partitioned between processors. The algorithm achieves further communication
cost reduction by capturing the sparsity pattern of the adjacency matrix to perform point-
to-point communications, via the use of a sparse matrix partitioning scheme based on an
intelligent hypergraph model. This is especially useful when the size of input graphs make
using shared-memory systems infeasible, or where network limitations cause bottlenecks
for broadcast-type communications.

Edge-cut partitioning is employed, rather than vertex-cut with replication (as in other
chapters), due to the aim of performing exact full-batch GCN computations. Replication
has the potential to further improve running time efficiency with the help of caching, but
would introduce additional synchronisation communication overheads. In order to maintain
the focus on examining exact communication overheads during training and inference,
replication is not explored here.

The method is shown to be scalable on a CPU cluster with an MPI backend, with the
use of a hypergraph-based partitioning providing significant speedups compared to SOTA
alternatives. The latency between hidden layers is considerably amortised, allowing deeper
GCN models to be trained, and with no impact on accuracy performance. Experiments on a
GPU cluster with NCCL backend also provide useful insights on large-scale GNN training,
demonstrating less scalability compared to the CPU versions as well as slower running times
in some instances.

This solution utilises a hypergraph-based model for static partitioning of the data in full-batch
GNN training, and additionally makes use of a hypergraph sampling trick for mini-batch
GNN training. The novel stochastic hypergraph model is designed to successfully capture
the randomness of communication operations in parallel mini-batch training and further
improve scalability. It uses a sampling and merging technique to construct a hypergraph
that encodes the expected (rather than exact) communication volume among processors and
thereby achieves improvements over the hypergraph model.

The parallel GCN training algorithm is adaptable to other GNNs by changing only the local
computations without requiring any changes in terms of the communication operations. The
asynchronous communication scheme is able to significantly alleviate the scalability issues
of distributing GNN tasks on massive datasets to a large number of machines. In the next
chapter, the partitioning task is considered for a fully streaming case where the subsequent
GNN can perform asynchronous updates. While the goal of this chapter was to design a
communication-efficient algorithm for systems having memory and network bandwidth
limitations, in the upcoming streaming case the target is low latency systems.
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Hypergraph-based Partitioning

on Streaming Graphs for GNNs

“ It’s weird how I am constantly surprised by the passage of time when it’s

literally the most predictable thing in the universe. ”
Randall Munroe, xkcd (Star Wars)

The previous chapter dealt with GNNs in the context of static graph inputs. However, social
networks [166], item-product recommendation systems [179], physical systems [137], and
biological networks [134] are among the many examples of graph data that are inherently
dynamic with evolving topology and features over time. Chapter 4 offered a graph analytics
approach that could operate on temporal networks. In this chapter, a similar dynamic input,
ingested in the form of streaming graph events, is considered for graph learning tasks.

GNN models on streaming graphs must be equipped to continuously capture the dynamic
state of the graph and incrementally update the model, while ensuring that system latency,
memory, and throughput requirements are met during both inference and training. Streaming
GNN systems, such as the recent D3-GNN system [63] built atop Apache Flink, can help to
tackle all these challenges. In order to distribute the computations in such streaming GNN
systems, it is necessary to manage the computational load balance while minimising the
communication costs using a suitable online partitioner, the design of which is the focus of
this chapter.

While graph streams typically consist of node/edge addition and feature update events to
the graph, node/edge deletion events require careful handling within the GNN system to
ensure that the ‘staleness’ problem is avoided in the resulting representations, which is an
orthogonal area of work. The partitioning may also become imbalanced after numerous
deletion events, and require re-balancing. In this chapter, the partitioner is designed under
the assumption of a stream having additive nature only (without any deletion events).
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For efficient distributed processing of graph streams in low latency environments, it is
of utmost importance to develop a high quality streaming partitioner that does not cause
bottlenecks in the system. This chapter presents thePartitioner component developed for the
D3-GNN system, which is designed to be data-parallel by assigning parts to graph elements
on-the-fly using streaming graph partitioning heuristics. To ensure that the throughput of
the system remains unimpeded, the Partitioner is designed in a multi-threaded manner that
grants some latency optimisations. Such a partitioner must also help the system to tackle
GNN challenges such as ‘neighbourhood explosion’ caused by the MPGNN aggregation
step [11]. To this end, a flexible mapping of logical parts to physical parts is proposed that
allows the system to scale the different GNN layers to a variable number of processors.

While streaming graph inputs already present a significant technical challenge, more complex
streaming hypergraph data structures may also need to be ingested. Such hyperedge streams
can be viewed as a representation of traditional vertex streams but having incomplete
adjacency information, which are not supported by any popular dynamic GNN systems. Thus,
the streaming partitioning framework in this chapter is developed to support distributed,
streaming graph learning tasks on streaming hypergraphs as well as streaming graphs. The
research into streaming hypergraph partitioners is limited, and this chapter presents the first
experimental comparison of graph- and hypergraph-based techniques for streaming graph
learning workloads. To compare the performance of hypergraph neural networks (HGNNs)
with GNNs, and thereby judge the efficacy of partitioning hypergraph streams over graph
streams for distributing the respective models, hypergraph transformation techniques are
applied to generate equivalent graph approximations.

Unlike the edge-cut partitioners in the previous chapter, the streaming partitioners designed
here are vertex-cut. Hence, similar to Chapter 5, here the partitioning involves vertex
replication. This is due to streams of edges/nets being processed, where assigning them
to parts can create cut vertices that must be replicated onto multiple parts. Distributed
computation with replicated partitioning introduces new challenges that must be handled,
such as maintenance of master part tables that the replicas will utilise for communication,
and decisions on which replicas require active access to feature values; these choices vary
depending on whether the input is treated as a graph stream or a hypergraph stream. The
proposed framework enjoys scalability to high degree of parallelism, up to 200 CPU cores,
via distribution of tasks by the streaming partitioning solution. It is applicable on large-scale
dynamic GNN workloads that can be in the form of either graph streams or more complex,
and previously unstudied, hypergraph streams.

7.1 Preliminaries

Streaming dataflow system

A streaming dataflow system is a pipeline of data transformation tasks, also referred to as
‘operators’, that consume input streams and emit output streams. The pipeline starts at one
or more ‘data-source’ operators and ends at one or more ‘data-sink’ operators. Operators
are parallelisable across threads and machines, with each parallel ‘sub-operator’ instance
performing local computations.
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Apache Flink [25] is a versatile, stateful dataflow framework that can process both bounded
and unbounded streams, with checkpoints for failure recovery. Flink has the ability to trigger
computations based on event timestamps and watermarks for consistency and completeness,
and based on processing time for latency requirements.

Hypergraph star expansion

The star expansion algorithm for a hypergraph H = (V,N) can be used to construct a
heterogeneous bipartite graph G∗ = (V∗, E∗). A new vertex is created for every net 𝑛 ∈ N ,
resulting in a new vertex set V∗ = V ∪ N . Each such vertex 𝑛 ∈ V∗ is connected to all
the vertices 𝑣 ∈ V∗ that were contained in 𝑛 as a hyperedge of H , i.e., all the pins(𝑛).
Therefore, each net corresponds to a star in the graph G∗, and the new edge set is given as
E∗ = {(𝑣, 𝑛) : 𝑣 ∈ 𝑛 and 𝑛 ∈ N}.

In the distributed streaming setting, performing star expansion is useful as it generates an
edge stream. This allows for vertex-cut replication-based partitioning approaches to be used.
By contrast, clique expansion generates a vertex stream which is better suited to edge-cut
partitioning without any replication.

7.2 Streaming partitioner design

The D3-GNN system [63] is designed to perform asynchronous forward and backward pass
operations optimised for online inference and incremental training of GNNs on streaming
graph data. The asynchronous computations are distributed with the help of streaming
graph/hypergraph partitioning. This is performed by a Partitioner operator that is designed
to be embedded within its dataflow pipeline of operators (seen in Figure 7.1).

GNN embedding layers in the system are defined via the behaviour of the Message (𝛾),
Aggregator (𝒶), and Update (𝜓) functions following the common MPGNN framework.
These layer computations (i.e., Storage operators) are stacked to form the overall dataflow
pipeline. Model-parallelism is achieved across the Storage operators because each layer
of the GNN is processed by a separate operator. Meanwhile, data-parallelism is enacted
across their sub-operators that process smaller subgraphs, enlisting the Partitioner to divide
the incoming graph/hypergraph stream into parts. This section describes the partitioning
scheme designed to support the distributed execution of the hybrid-parallel pipeline.

Replication for inter-partition communication

Streaming partitioning logic is needed to assign parts to the incoming graph elements
using a local dynamic summary of the graph seen so far. Any streaming partitioning
algorithm can be embedded within the Partitioner operator. For example, this could rely on
an HDRF partitioning algorithm [130] for edge streams, or a streaming min-max hypergraph
partitioning algorithm [4] for net streams. Apart from partitioning the graph, the Partitioner
operator also routes the workload to the relevant logical parts. At any time that a feature
update must take place, it is the job of the Partitioner to identify the master part of its
corresponding graph element and assign it to this task.
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Figure 7.1: Streaming partitioner functionality within the dataflow pipeline

When the data is in the form of an edge stream (e.g., user-user interactions in social networks),
the HDRF vertex-cut algorithm is adapted for use within this system. In other words, the
stream of edges (𝑢, 𝑣) being ingested gets assigned to different partitions on-the-fly, resulting
in some cut high-degree vertices that belong in multiple parts. The first assigned part
is treated as the master part and subsequent ones as replica parts. In this way, through
the master-replica tethers recorded by the Partitioner, communication is possible between
Storage operators that maintain only their local partitioned subgraphs after replicating
the cut vertices. For the vertices that are replicated, their corresponding computation units
(Aggregators) reside only with the master vertex (and not with replicas). GNN aggregations
that occur here instigate cascading feature updates in the node neighbourhood, which
is accessed in full through various replicas located in other parts as well. These update
operations are allocated to the appropriate logical parts by the Partitioner.

On the other hand, when hypergraphs are streamed in (e.g., user and list of topics that they
interact with in an online community), the streaming min-max algorithm is adapted for
use. Here the incoming vertices are assigned parts such that there is maximum intersection
between its nets and the nets already connecting to the part, i.e., to minimise the greatest
number of distinct nets being connected to any part. Therefore, instead of replicated vertices,
this leads to replicated net elements across different parts that must communicate with one
another. These nets have their corresponding computation units (Aggregators) replic-
ated too, as they are required during updates to participate in the forward and backward
propagation steps with local partial matrices. This is because an HGNN is treated as having a
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two-level message passing and aggregation process, one within every hyperedge (intra-edge)
and another across the hyperedge (inter-edge). The latter of these requires aggregation at
the nets (a more detailed description can be found in [7]).

Algorithm 7.1: Streaming Partitioner
input : 𝑠𝑡𝑎𝑡𝑒, 𝑚𝑎𝑠𝑡𝑒𝑟_𝑡𝑎𝑏𝑙𝑒, 𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑠, 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

1 𝑝𝑎𝑟𝑡 ← assignPart(state, master_table, num_parts, operator)

2 if 𝑚𝑎𝑠𝑡𝑒𝑟_𝑡𝑎𝑏𝑙𝑒(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟.𝑒𝑙𝑒𝑚𝑒𝑛𝑡) = ∅ then
3 𝑚𝑎𝑠𝑡𝑒𝑟_𝑡𝑎𝑏𝑙𝑒(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟.𝑒𝑙𝑒𝑚𝑒𝑛𝑡).𝑖𝑛𝑠𝑒𝑟𝑡 (𝑝𝑎𝑟𝑡)
4 𝑎𝑠𝑠𝑖𝑔𝑛𝑀𝑎𝑠𝑡𝑒𝑟 (𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟.𝑒𝑙𝑒𝑚𝑒𝑛𝑡, 𝑚𝑎𝑠𝑡𝑒𝑟_𝑡𝑎𝑏𝑙𝑒)
5 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟.𝑝𝑎𝑟𝑡 ← 𝑝𝑎𝑟𝑡

6 return 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

Algorithm 7.1 describes the pseudo-code for this streaming partitioner logic. The total
number of available parts is given by 𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑠, and the current summary of the dynamic
graph is in 𝑠𝑡𝑎𝑡𝑒. The chosen partitioning method assigns a 𝑝𝑎𝑟𝑡 number (line 1), which
is declared as the master if the 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 has not been seen previously in the stream and
therefore does not have any pre-existing master part recorded (lines 2–3). The 𝑒𝑙𝑒𝑚𝑒𝑛𝑡

stores its assigned 𝑝𝑎𝑟𝑡 (be it master or replica), as well as information on how to access the
master (lines 4–5).

In order to communicate with their masters, replicas store their master part number. Masters,
in turn, maintain a list of their replicated parts. To eliminate storage redundancy, some
elements are not actively replicated, and instead only communicate via empty stubs in the
replicas. For instance, vertex Aggregators are stored only in the master and need to merely
receive messages from replicas. For such use-cases, replicas do not need to access the features
stored in their masters, but instead the replicas and master merely need to know the existence
of each other for communication. Aggregators for nets, by contrast, must be stored in both
the master and replicas as they update all their respective local part vertex features (during
the inter-edge step).

Combating neighbourhood explosion

Changes to the data in Storage, brought about by graph feature updates, must induce
corresponding changes in Aggregators and cascading Messages for maintaining up-to-
date representations. Due to this cascade, with every subsequent layer, the amount of
computations necessary in the GNN forward pass increases. The increase is roughly by a
factor that is the average node degree of the input graph. Since the aggregation computation
also first involves message passing steps, this neighbourhood explosion problem triggers
additional communication costs in a distributed system.

The streaming setting can face bottlenecks due to the neighbourhood explosion problem in
GNNs, which can cause Storage operators for deeper layers to receive higher forward pass
workload. This imbalance in workload patterns within different nodes in the GNN may be
aggravated by hubness (centrality) of certain nodes or by external factors that localise the
updates topologically.
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To tackle the neighbourhood explosion challenge, a new system hyper-parameter is intro-
duced called ‘explosion factor’ (𝜔). This enables the parallelism obtained from the Partitioner
to be varied for each individual Storage operator, i.e., the number of sub-operators that
perform the same task in a data-parallel manner now depends on the GNN layer. Namely,
given an initial parallelism 𝑝 and 𝐿 layers of the GNN, the actual parallelism for each Stor-
age operator (layer) is assigned as 𝑝𝑖 = 𝑝 ∗ 𝜔𝑖−1 for 𝑖 ∈ [1, . . . , 𝐿]. This parameter must
be selected considering the frequency of training, even though the forward pass is always
benefited by higher 𝜔, because neighbourhood explosion has a reverse effect on layer-wise
workload during the backward pass for training.

Variable parallelism using logical parts

Assigning physical partitions alone does not allow flexible re-scaling of Storage operat-
ors (e.g., if the number of physical partitions changes due to failure), nor does it support
different parallelisms across the chained Storage operators (e.g., to better cope with the
exponential load induced by neighbourhood explosion). For this, the total number of avail-
able parts (𝑛𝑢𝑚_𝑝𝑎𝑟𝑡𝑠 used in Algorithm 7.1) is defined to be the same as the maximum
possible parallelism of the system (𝑝𝑚𝑎𝑥), while graph elements are actually partitioned
using 𝑘𝑒𝑦𝐵𝑦(𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟.𝑝𝑎𝑟𝑡). In other words, the streaming Partitioner assigns only logical
parts while the physical part is computed using a hash of the assigned logical part. As a
consequence, multiple logical parts may map to the same sub-operator.

When an operator’s parallelism 𝑝 gets closer to 𝑝𝑚𝑎𝑥 , some sub-operators may remain
constantly idle due to never being assigned with any logical parts. To circumvent this,
instead of using Flink’s default hashing method, Algorithm 7.2 is employed to compute
physical parts from logical parts. Each operator gets assigned at least one key, and overall,
logical parts are evenly distributed to operators depending on the current 𝑝.

Algorithm 7.2: Physical Part Computation
input : 𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑝𝑎𝑟𝑡, 𝑝, 𝑝𝑚𝑎𝑥

1 𝑘𝑒𝑦_𝑔𝑟𝑜𝑢𝑝 ← 𝑙𝑜𝑔𝑖𝑐𝑎𝑙_𝑝𝑎𝑟𝑡 % 𝑝𝑚𝑎𝑥

2 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑝𝑎𝑟𝑡 ← 𝑘𝑒𝑦_𝑔𝑟𝑜𝑢𝑝 ∗ 𝑝/𝑝𝑚𝑎𝑥

3 return 𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙_𝑝𝑎𝑟𝑡

Operators store data (state) in two ways: Operator State stores data for a given sub-operator,
which can be accessed by all elements arriving at sub-operator, while Keyed State stores
data at the granularity of a unique key, and each arriving element can only access data
that is assigned to its particular key. Upon re-scaling the system, Operator State is either
randomly redistributed to new sub-operators, or broadcast (in entirety) to all remaining
sub-operators to then perform recovery logic. Keyed State, however, is distributed to the
new sub-operator containing that key. This flexible mapping of keys to sub-operators allows
for re-scaling of the physical partitions based on availability, and a fixed hash function (for
logical to physical parts) guarantees fault tolerant recovery. Hence, the fault tolerance logic
can be delegated to Flink, thereby ensuring state redistribution and correct operation even
under variable parallelisms.
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Latency optimisation

Since the streaming graph input is in the form of an edge stream, an online partitioning step
followed by the incremental forward pass update step takes place for every new edge event
that is ingested. In the hypergraph stream case, the partitioner assigns a single vertex to
its part but the downstream HGNN carries out a number of updates (both intra-edge and
inter-edge) corresponding to this one partitioning step. Therefore, it is observed that the
partitioner can cause a bottleneck in the system when a graph stream is ingested, affecting
the latency of the subsequent GNN inference operation. This is less of a concern in the
hypergraph stream where the partitioner can more easily keep up with the throughput of
the inference forward pass. To overcome the bottleneck, the Partitioner operator is designed
with a novel distributed setup to allow for latency optimisation wherever necessary (e.g.,
when using HDRF with edge stream).

Distributing the HDRF partitioner within D3-GNN requires a shared-memory model for
storing partial degree and partition tables, something currently unavailable in Apache
Flink. Without it, a single thread needs to be allocated to the partitioner, which causes the
aforementioned bottleneck when scaling up the system. Hence, the Partitioner operator is
developed to support correct, concurrent thread distribution for any streaming partitioner
methods adapted within it for use in the system. It distributes the main partitioning logic
among an arbitrary number of threads while having synchronised access to the output
channel. The latter is necessary to avoid corrupt data during network transfer, as output
channels consume data in smaller units than the graph data being streamed. Furthermore,
a vertex-locking mechanism is proposed for correctness within HDRF. That is, edges with
common vertices are assigned to their logical parts one at a time. Note that for shuffled graph
streams (streams not generated via BFS or DFS traversals), non-locking partitioning is not
found to significantly impede the partitioning quality (load balance and replication factor).

7.3 Experimental evaluation

The performance of D3-GNN is evaluated in the distributed setting using the proposed
Partitioner logic. Both graph and hypergraph streams are considered as input dynamic
workloads, with subsequent inference computations done using GNNs and HGNNs.

Datasets

ThePartitioner in the D3-GNN system is evaluated on two hypergraph datasets (tags-ask-
ubuntu and threads-math-sx) that are publicly available1 as timestamped sequences
of simplices (nets) [16], as well as on the star expanded graphs that are generated from
these hypergraphs. In tags-ask-ubuntu, nodes denote tags and their corresponding
nets represent questions on the Ask Ubuntu forum. A node (tag) can thus be associated with
a list of nets (questions) that have the same tag. In threads-math-sx, nodes are users
and nets represent message threads on the Math Stack Exchange forum. A node (user) has a
list of nets (threads) that the user has participated in.

1https://www.cs.cornell.edu/~arb/data/
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To examine the performance of the Partitioner more closely on streaming graphs, a temporal
network dataset reddit-hyperlink [97] is used directly, as obtained from the Stanford
Large Network Dataset Collection.2 reddit-hyperlink dataset contains an edge-list
of directed subreddit mentions (hyperlinks) derived from the Reddit Social Network. The
hyperlink data is provided in two files based on mentions in either the title of the post or in
the body, but only data from the body is considered in this chapter. The data is processed in
sequence and treated as an incoming stream of edge addition and feature update events to
the graph, ordered by the edge timestamps.

The properties of these datasets are listed in Table 7.1. The number of edges of the hypergraph
datasets is based on their star expanded graph.

Table 7.1: Dataset properties

Dataset #Nodes #Edges #Nets Type

tags-ask-ubuntu 3,029 1,468,584 271,233 Directed
threads-math-sx 176,445 3,220,786 719,792 Directed

reddit-hyperlink 35,776 286,561 - Directed

Baselines

For experiments on graph data, a GNN model is implemented in the D3-GNN dataflow
pipeline, using a distributed 2-layer GraphSAGE architecture [67]. This model is also run on
the star expanded graphs obtained after transforming the hypergraph data. For operating
directly on hypergraphs, the HGNN model is a 2-layer HyperSAGE architecture [7]. Both
models use a Mean aggregator. The focus in this chapter is on comparing the GNN and
HGNN performances with graph and hypergraph stream inputs within the D3-GNN system,
therefore comparisons against other systems are omitted.

A more nuanced comparison of the Partitioner performance is also provided, for which
HDRF partitioner andMinMax (streaming min-max hypergraph partitioner) are used for
graph edge streams and hypergraph vertex streams respectively. For distributing graph
tasks, the custom HDRF method is applied with balance coefficient 𝜗 = 8 unless otherwise
specified. For hypergraphs, the MinMax algorithm is adapted keeping the default balance
tolerance as defined [151]. A Random partitioner baseline is also employed.

Setup

Experiments are executed on a Slurm cluster with 10 machines, where each machine contains
Xeon E5-2660 v3 @ 2.6 GHz (20 cores/40 threads) and 64GB RAM. Apache Flink3 and Deep
Java Library4 with PyTorch5 are used as the primary ML framework.

The explosion factor parameter for distributed task allocations (to tackle variable workloads
at each layer due to neighbourhood explosion in GNNs) is 𝜔 = 3 unless specified. That
is, when the parallelism of the system is said to be 𝑝, the parallelism for each layer is

2https://snap.stanford.edu/data/
3https://flink.apache.org
4https://djl.ai
5https://pytorch.org
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𝑝𝑖 = 𝑝 ∗ 3𝑖−1 for 𝑖 ∈ [1, . . . , 𝐿] as described earlier. Depending on Flink’s internal allocation
during execution, this translates to distributed tasks using 𝑝

10 machines on average.

Results are reported for an average over 3 runs, with the systems being scaled up from 1
machine (20 cores) to 10 machines (200 cores). For these experiments the number of logical
parts in D3-GNN is set as the parallelism of final layer (i.e., 𝜔𝑝 for the 2-layer GNN).

Comparison of HGNN with GNN

First, the performance of the partitioners is compared in terms of the following metrics:
i) replication factor in the partitioned graph/hypergraph to reflect how many replica ver-
tices/nets are generated, ii) communication volume in the first layer of the GNN or HGNN to
study the overheads, and iii) running time of the GNN or HGNN model to evaluate efficiency
performance gains.

The HGNN 2-layer HyperSAGE model is compared against the GNN 2-layer GraphSAGE
model. The two hypergraph datasets are used as streaming input directly by the HGNN,
which performs a two-level aggregation as described earlier. The distributed HGNN model
is made data-parallel with the help of a MinMax partitioning method to place the incoming
vertices. The same hypergraph datasets are transformed into their equivalent graph format
by means of the hypergraph star expansion method. These star expanded graphs are then
used as inputs for the GNN model. The GNN model uses the HDRF partitioning method to
distribute the edges to parts for data-parallelism. In this manner, a comparison is obtained
between the graph and hypergraph partitioning approaches in a streaming graph learning
setting, which has not been previously studied.

As can be seen from Figures 7.2 and 7.3, using an HGNN model to directly operate on
hypergraph data is preferable to using a GNN on transformed data (star expanded graph).
This echoes the findings of Arya et al. [7] for the star expansion case, with a new focus on
streaming inputs. Hypergraphs are capable of encoding more information that may be lost
during the transformation into graphs. Given a streaming system with comparable latency
and throughput for both models, an HGNN would be the superior choice over a GNN. That
being said, the two-level aggregation in an HGNN model engenders more communication
operations. Consequently, it is necessary for the hypergraph partitioning for distributed
HGNN to produce much better data locality than the graph partitioning for the equivalent
distributed GNN. From the figures, it is evident that the replication factor directly influences
the network overheads, as the message volume follows similar trends. Both are seen to be
significantly lower for the HGNN, and scalable to high parallelism on both tags-ask-

ubuntu (Figures 7.2a and 7.2b) as well as threads-math-sx (Figures 7.3a and 7.3b).
That is, even despite the greater number of communications needed by HGNN, the overheads
in the D3-GNN system are maintained lower than those of the GNN version. Running time
efficiency improvements of HGNN over GNN are even more pronounced on the larger and
sparser threads-math-sx graph, which can be explained due to hypergraph partitioning
being particularly powerful for sparse matrix operations (Figures 7.2c and 7.3c).
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Figure 7.2: Performance comparison with GNN and HGNN on graph and hypergraph
formats of tags-ask-ubuntu
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Figure 7.3: Performance comparison with GNN and HGNN on graph and hypergraph
formats of threads-math-sx

Effect of star expansion

The above findings suggest that star expansionmay not be suitable in a low latency distributed
setting for graph learning. Moreover, star expansion is primarily designed for static cases.
Given a hypergraph stream, the conversion into a star expanded graph stream is found to
induce an inherent grouping in the resultant overall stream. That is, given a vertex 𝑣 and its
list of nets {𝑛𝑖} (i.e., a single input event in the hypergraph stream), the star expanded graph
produces a stream of undirected edges {(𝑣, 𝑛𝑖)} all with 𝑣 as one endpoint (i.e., a sequence
of inputs in the graph stream). To study the impact of this ordering, the star expansion
process is also reversed to generate {(𝑛, 𝑣 𝑗 )} sequence of edges instead, where all the vertices
connected to the same net are grouped in the overall stream rather than vice versa. These
two versions of the resulting graph are referred to as ‘v2n’ and ‘n2v’ respectively to denote
whether the edge stream is grouped as ‘vertex to all its nets’ or ‘net to all its vertex pins’.

Using ‘n2v’ has a significant detrimental effect on partitioning quality of HDRF and therefore
message volume, and also severely impacts the running time of the GNN on both datasets
(Figures 7.2 and 7.3). This suggests that supplying a stream of edges connected to the same
source vertex, before moving on to the next vertex, is a more suitable transformation in the
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Figure 7.4: Performance comparison with different partitioners on reddit-hyperlink

streaming setting. The ‘n2v’ version is somewhat closer in structure to a streamed clique
expansion, where all vertices having a net in common get connected as a clique. Based
on these findings, the clique expansion, which is more commonly applied to transform
hypergraph inputs for HGNNs that require graph data, may not be the ideal technique.

Effect of partitioner

Figures 7.2 and 7.3 show that MinMax partitioner for the hypergraph stream is advantageous
over other configurations in terms of message volume and running time efficiency. The
Random partitioner performs reasonably well on the hypergraph for the small and dense
tags-ask-ubuntu dataset but incurs much more network overheads with HGNN on
larger datasets. For the GNNmodel, Random edge allocation enjoys short distributed running
times, but the HDRF partitioner outperforms Randomwhen considering communication costs.
Regardless, even HDRF for distributed GNN has significantly poorer running time efficiency
as compared to any partitioned HGNN model. This once again speaks to the need for
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supporting direct computations on hypergraphs instead of relying on graph approximations.

TheMinMax partitioner assigns an incoming vertex and all its nets to their allocated partitions
in a single step, with the imbalance tolerance value being based on the average part weight
at that point in the streaming partitioning process. HDRF, on the other hand, assigns edges
to parts and uses a predefined imbalance tolerance value 𝜗. Therefore, a further study is
conducted on HDRF by varying its 𝜗 parameter. A performance comparison within the
D3-GNN system between HDRF with different parameter settings (𝜗) along with a Random
partitioner is shown in Figure 7.4. For each 𝜗, the corresponding label in the figure is
‘HDRF-𝜗’. This imbalance tolerance at higher values assigns more importance to the load
balancing constraint. Lower 𝜗 improves network communication overheads at the cost of
load balance, mainly due to a lower replication factor, but can find uses to meet bandwidth
limitations of the distributed environment. Using Random partitioning results in the highest
communication volume needed for the GNN, thereby also lowering its throughput.

7.4 Discussion

This chapter explores partitioning in a streaming setting; graph data is ingested in the form of
a stream of edges, and complex hypergraph data is ingested as a stream of nets. Hypergraphs
are equivalent, in their dual transformation, to bipartite graphs with nets being represented
as a new type of vertex. Hence, with the help of a star expansion technique, the streaming
hypergraphs may be unrolled into edge streams, thus allowing comparisons between graph
learning models that operate on these two different formats. Streams are considered to only
add nodes/edges to the graph or update their features, with no deletion events.

Here, partitioning tactics akin to those from Chapter 6 are used to create a data-parallel
pipeline. Ideas related to vertex replication, similar to Chapter 5, are deployed in tandem with
this setup, since the streaming edges/nets are to be distributed using a vertex-cut partitioning
scheme. This requires replication logic to be incorporated within the partitioners to allow
masters and replicas to communicate. Distributing such an incremental system also calls
for the partitioner to support variable parallelism to combat neighbourhood explosion in
deeper layers, and the ability to flexibly re-scale the parts for fault tolerance. For the
partitioner to keep pace with the low latency pipeline on streaming data, multi-threaded
latency optimisations are also incorporated.

The HGNN model operating directly on the hypergraph is shown to be more suitable,
compared to a GNN on the corresponding transformed graph, in maintaining efficiency
performance and reducing communications. Distributing the hypergraph via MinMax parti-
tioning and using a data-parallel HGNN is preferable to distributing the edge stream with
HDRF and using a data-parallel GNN, especially with large, sparse inputs. The grouping of
edges in the star expansion is also found to impact the partitioning quality of HDRF.

Different partitioners are examined in more detail for the GNN workload, by varying the
imbalance tolerance of HDRF for graph stream data. This reveals a tradeoff between load
balance and replication factor, with the latter contributing to higher communication costs
during inference and training. Nonetheless, the flexible parallelism of the system, achieved
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using the explosion factor parameter, supports its high scalability to large number of pro-
cessors. Both the throughput and running time of the model are found to improve with
higher parallelism. Therefore the use of appropriate partitioners helps to distribute the
streaming D3-GNN system easily for both hypergraph and graph data.
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Chapter 8

Conclusions

“ Too many scholars think of research as purely a cerebral pursuit. If we do

nothing with the knowledge we gain, then we have wasted our study. Books

can store information better than we can–what we do that books cannot is

interpret. So if one is not going to draw conclusions, then one might as well

just leave the information in the texts.

”
Brandon Sanderson, The Way of Kings

To conclude this thesis, a discussion of all the solutions is presented to review and highlight
their main contributions, which are also available at a glance in Table 8.1. This is followed
by a critical summary of the limitations and avenues for future research.

8.1 Discussion

Several challenging research questions were addressed in this thesis, first to identify the
salient features of hypergraphs and dynamic graphs, and then to apply hypergraphs in
different use cases, both static and dynamic, to optimise computations in graph analytics
and learning tasks.

In particular, Chapters 4 and 5 investigated graph analytics applications. Chapter 4 used
hypergraphs to efficiently encode numerous sampled subgraphs and thereby reflect the
expected spread of information (from arbitrary seed nodes) through a temporal network.
Chapter 5 applied hypergraph (and graph) models for replicated partitioning of a search
graph to achieve scalable approximate single-source similarity calculations. Chapters 6 and
7 focused on the graph-based learning domain, more specifically, GNN models. Chapter 6
used hypergraph partitioning to better encode network traffic and described the design of
an asynchronous communication scheme for scalable distributed training of static GNNs.
Chapter 7 developed a streaming hypergraph (and graph) partitioner that interfaced with an
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Table 8.1: Summary of thesis contributions

Challenges Proposed Novel Solutions Findings Applications

Chapter 4: Graph analytics
(spread modelling) on

dynamic graphs

T-IC, a temporal independent cascade model that uses
hypergraph-based sampling to generate reachable sets
where temporal dependencies are taken into account
(based on dynamic graph topology and dynamic
propagation patterns) while maintaining solution

quality guarantees; RSM and ESM algorithms to find
efficient solution sets for the identification of sentinel

and susceptible nodes respectively

RSM and ESM outperform 5 baselines to identify
solution sets on dynamic graphs; T-IC model remains
feasible on large-scale graphs unlike baselines; Both

temporal and global patterns are taken into account by
hypergraph sampling and fully customisable spread

characteristics are supported

Monitoring/combating the
evolving spread of diseases,

computer viruses,
misinformation

Chapter 5: Graph analytics
(similarity search) on

large-scale static graphs

Hypergraph- (and graph-) based partitioners applied
along with vertex replication and caching techniques
for scalable approximate RoleSim* search on the pruned
subgraphs obtained from the large-scale original graph;

Evaluation of SSRS* solution quality based on
successful identification of duplicated nodes, when

partitioning is done with and without strict data locality,
to appreciate differing task-specific workload patterns

Caching replicated vertices improves SSRS*
computation efficiency; Strict data locality involves
accuracy tradeoff; Hypergraph partitioner lowers

running time by 15% over graph partitioner

Scalable similarity search
for recommendation
systems, web search,
document retrieval

Chapter 6: Distributed
GNNs on static graphs in
limited memory/bandwidth

environments

Hypergraph-based partitioning with non-blocking
point-to-point communication scheme to minimise

communication overheads for distributed data-parallel
full-batch GNN training; Hypergraph construction

approach using stochastic sampling to further optimise
distributed mini-batch GNN training

Hypergraph partitioning reduces communication
overheads in full-batch GNN training with 10x speedup
over DGL baseline; Hypergraph sampling can encode
randomness of mini-batching for further improvements

Highly scalable
graph-based learning tasks
such as question-answering,
protein matching, traffic

forecasting

Chapter 7: Distributed
GNNs on streaming graphs

in low latency
environments

Hypergraph- (and graph-) based partitioning along with
vertex replication to support distributed online

inference and incremental training of HGNNs and
GNNs on streaming graphs; Transformation between
complex hypergraph streams and graph streams with
support for incomplete adjacency information in

dynamic systems

HGNNs on hypergraphs are more efficient than GNNs
on star expanded graphs especially for large, sparse

graphs; MinMax partitioner distributes hypergraphs to
incur lower network overheads compared to HDRF

partitioner on edge streams

Low latency streaming
graph-based learning for
traffic forecasting, social

networks, recommendation
systems
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asynchronous dataflow system, and took advantage of replication to perform online GNN
inference and training in low latency settings.

The Temporal Independent Cascade (T-IC) model presented in Chapter 4 provides an IC-
based estimation of the set of reachable nodes that can be used even when spread takes
place in a network having evolving topology and propagation rates. The defined spread
function under the T-IC model yields solutions with quality guarantees due to submodularity
even in this dynamic setting. Besides this, two optimisation objectives are put forward; the
Reverse Spread Maximisation (RSM) and Expected Spread Maximisation (ESM) algorithms
are devised to deliver effective solution sets for these objectives of identifying sentinel nodes
and susceptible nodes respectively. Hypergraphs are employed to efficiently encode the
sampled subgraphs for the expected set of of reachable nodes during a T-IC process on the
network. There are two levels of randomness in this sampling strategy, which imparts new
capabilities: i) modelling temporal dependencies during the spread process, and ii) estimating
the potential spread from any random seed node. Thus, hypergraphs can offer innovative
strategies to furnish dynamic graph tasks with a temporally-guided high-quality stochastic
sampling methodology.

Chapter 5 makes use of hypergraph-based (and graph-based) partitioning on a similarity
search graph. Here, a pruning strategy is put forward that uses cached values from the
replicated vertices instead of recomputing similarity scores. The method is shown empirically
to produce results with an efficiency tradeoff that depends on whether or not inter-partition
communications are allowed. The triangle inequality property of the similarity measure
is used to guarantee correctness of the similarity computations in the pruned subgraph.
Therefore, exact similarity computation is also a possibility that is discussed. Furthermore,
this chapter elicits a deliberation about the variations in workload patterns when dealing
with subtly different graph analytics tasks. This discussion, for different similarity measures,
hinges upon an unsupervised evaluation setting that expects (sampled neighbourhood)
duplicates of a node to be ranked highly in the node’s top-𝓀 similarity list. These differing
workloads patterns are all the more significant when analytics tasks are compared against
graph-based learning tasks. Nonetheless, hypergraph models are deemed powerful for use
within partitioning tools to enable distributed computations for both analytics and learning
on graphs, and caching the states of replicated vertices proffers some interesting avenues for
performance speedups.

The hypergraph model for partitioning is then utilised to good effect in designing the novel
asynchronous point-to-point communication scheme described in Chapter 6. Using an
edge-cut hypergraph partitioner helps to better encode the communication volumes during
irregular data accesses induced by the neighbourhood aggregation step of graph convolution
operations. This holds true especially for graphs with sparse adjacency matrices, since sparse
matrix multiplications are a core kernel operation in GNNs. The developed parallel algorithm
is helpful in minimising overheads when GNNs are scaled to a large number of processors
for distributed full-batch training on massive graphs, with no adverse impact on accuracy
performance. A stochastic sampling approach together with the hypergraph model provides
further improvements in the mini-batch training case.
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Finally, Chapter 7 takes the notion of asynchronous computations to an extreme, for fully
streaming graph workloads handled within a low latency dataflow framework. Here, stream-
ing hypergraph (and graph) partitioners are designed that can combat the neighbourhood
explosion problem brought about by the aggregation step in GNNs. This is accomplished
using novel variable parallelism at every GNN layer, which also aids in fault tolerance to
recover from failure. Additionally, vertex-cut partitioning is employed with intelligent vertex
replication to determine where aggregated features should be cached for maximum efficiency.
In latency critical applications, even the streaming partitioner itself is distributed to keep
pace with the streaming GNN computations and avoid creating a throughput bottleneck in
the dataflow system. This entails vertex-locking to ensure correctness of results despite the
concurrent threads of the partitioner. More intriguingly, the system is built to support both
graph streams as well as more complex hypergraph streams. With hypergraphs ingested
directly, and an appropriate streaming hypergraph partitioning method deployed, this en-
ables the system to perform asynchronous distributed computations even on incomplete
adjacency information, which is unsupported in state-of-the-art systems.

8.2 Limitations and future work

While this thesis presents significant novelties towards scalable and efficient systems with
static and dynamic applications, the study is not without limitations. In particular, the lack
of availability of appropriate datasets and baselines makes it difficult to provide conclusive
comparisons of the performance benefits in some proposed methods. Besides this, several
enticing extensions are deemed possible that can further the functionality and performance
of the proposed solutions.

Availability of datasets

In the T-IC model (Chapter 4), the estimated spread should ideally be compared against
real-world ground truth information, e.g., highly granular contact tracing data about the
spread of a disease, to test the efficacy of the proposed solutions. However, such data that is
both granular and temporal is generally not publicly available (due to valid concerns around
privacy). To circumvent this, the evaluation is conducted by simulating several instances of
spread and considering the average performance for many such reachable set scenarios. The
T-IC model along with the RSM and ESM solutions can be applied to new datasets, therefore
future work should incorporate evaluations on any such data that becomes available in
various domains.

In the streaming setting, due to the relative nascency of such studies, there is currently limited
availability of hypergraph-structured data1. As hypergraph streams become more popular,
it should be possible to incorporate more heterogeneous features and meta-structures into
the existing system (D3-GNN), and handle them using its partitioning component which is
presented in Chapter 7.

1https://www.cs.cornell.edu/~arb/data/ is a notably comprehensive and well-documented
source at present
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Suitability of baselines

Due to the approach of T-IC in which dynamic propagation rates are enlisted, it is quite unlike
previously existing approaches that can operate on temporal networks. Most of the baselines
are also not scalable, meaning that there was a restricted comparison of the efficiency benefits
of the algorithms. Moreover, the objectives of identifying sentinels and susceptible nodes
presented in Chapter 4, while often studied in theoretical work and static settings, are not
well-examined for temporal networks. As more solutions emerge in future, there is ample
scope for new evaluations to compare them against the proposed T-IC algorithms.

The new communication scheme in Chapter 6 for distributed GNNs is primarily designed for
full-batch training on CPU clusters. Since most distributed GNN systems draw on sampling
techniques to heed memory requirements and attain performance benefits, they are not
directly comparable baselines. CAGNET is the only competing method that similarly focuses
on full-batch communication optimisations for CPU clusters. The experiments conducted
using the GPU version provide reasonable comparisons. All the same, there is potential to
extend the proposed solution and make it more easily comparable against some existing
baselines, as discussed later.

A similar problem is encountered when evaluating the utility of the partitioner in Chapter 7.
Currently, no other existing system boasts the same streaming GNN capabilities, which
makes exact comparison impossible. Moreover, HGNNs that perform learning directly on
hypergraphs are rare, thus the evaluation instead uses star expansion to apply a GNN on the
reduced graph structure as a baseline.

Extensions

Distributed T-IC model: Reachable sets are manifested in the T-IC model in Chapter 4 by con-
structing a hypergraph’s nets out of sampled subgraphs that reflect the spread patterns. While
already scalable, this task can further be distributed, whereby multiple smaller hypergraphs
would emerge out of the partitioned graph. Future research is liable to find appropriate
strategies to combine the resulting information and generate good quality solution sets.

Streaming T-IC model: The T-IC model handles dynamic graphs using snapshots with continu-
ous time intervals, but does not support a fully streaming setup. That is, incorporating ideas
from Chapter 7 could be a path towards updating the nets of the hypergraph incrementally
as new data is ingested, for a streamed sampling approach. This opens the door to modelling
spread in a completely online manner.

Temporal Linear Threshold model: Chapter 4 relied on an IC model to simulate the spread,
due to its strong ties with influence maximisation problems. It is interesting to contemplate
how the objectives and algorithms might need tweaking to fit an LT process to model spread
instead. Since nodes within LT models accumulate activation until a threshold is crossed to
activate the node, it will have implications on the temporal dependencies that get encoded
within the hypergraph-based sampling strategy being proposed in the chapter.

Directed similarity measure: The investigations into scaling the RoleSim* measure (Chapter 5)
formed a small part of a larger study, therefore only preliminary evaluations were conducted
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on moderately-sized datasets, both directed and undirected. The influence of the directed
properties of edges warrants further examination, since it is governed by the deeper working
of the similarity measure. It is credible that directed edges would incur different access
patterns during the similarity computations, and consequently affect the partitioning quality.

Vertex-cut partitioning for GNN training: It could be useful to integrate a replicated par-
titioning component in Chapter 6, similar to the methods in other chapters, whereupon
some communications may be avoided at important nodes by replicating them. With this
vertex-cut approach, despite additional communication overheads caused by the need for
synchronisation of replicas, the computations would be reduced by accessing cached repres-
entations at the replicated vertices. Using such a replicated parallel algorithm would also
enable comparisons with models such as DistGNN [115] that use similar techniques.

Improvements in communication: For the GPU implementation presented in Chapter 6, incor-
porating future support for asynchronous communication (as in the CPU implementation)
may help overcome the limitations of NCCL to overlap communication and computation for
better performance gains.

Generalised GNN solutions: GCN, GraphSAGE, and GAT are all special cases that fall under
the purview of the MPGNN paradigm, which is an adequate vertex-centric perspective
with which to regard GNNs for the purpose of distributing tasks. The proposed parallel
GCN training algorithm in Chapter 6 is adaptable to other GNNs by changing only the
local computations as described, and this does not require any changes in the fundamental
communication operations. This opens up many future directions of research to come up
with task-specific and model-specific optimisations, based on how the GNN architecture
affects communications, and which asynchronous computations could be overlapped.

Streaming graph deletion events: The streaming setting of Chapter 7 is restricted to streams
of an additive nature, i.e., node/edge deletion events are not taken into account. The GNN
system can be designed to counter the staleness problems when deletions take place, which
is an orthogonal area of study. More importantly, the proposed partitioner can be updated
to include an edge routing table, allowing it to support re-balancing of the partitions when
substantial changes in the graph topology after deletions begin to cause an imbalance in the
load across partitions.

Clique expansion GNN model: In Chapter 7, the star expansion method was employed to
transform hypergraphs into graphs for use with GNNs. The streaming setting emphasises
the need for careful ordering of the resultant stream after transformation. Star expansion
allows a vertex-cut partitioner to distribute the generated edge stream, whereas an edge-cut
partitioner could be used on the clique expanded graph. Thus an additional exploration could
be to use clique expansion and an edge-cut streaming partitioner such as FENNEL [155], to
investigate the impact on the GNN model performance as well as to compare it with the
HGNN model on the original hypergraph.
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8.3 Concluding remarks

This thesis explores the power of combining hypergraph structures with optimisation tech-
niques such as stochastic sampling and partitioning, for their use within scalable graph
systems. The systems under study may be both static and dynamic, and this work makes
progress towards supporting large-scale and dynamic graphs, as well as complex hypergraph
representations, to enable high-quality, efficient tools for graph analytics and learning.
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