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Abstract

Learning audio representations is an important task with many potential

applications. Whether it takes the shape of speech, music, or ambient sounds,

audio is a common form of data that may communicate rich information. Audio

representation learning is also a fundamental ingredient of deep learning. How-

ever, learning a good representation is a challenging task. Audio representation

learning can also enable more accurate downstream tasks both in audio and

video, such as emotion recognition. For audio representation learning, such a

representation should contain the information needed to understand the input

sound and make discriminative patterns. This necessitates a sizable volume of

carefully annotated data, which requires a considerable amount of labour.

In this thesis, we propose a set of models for audio representation learning.

We address the discriminative patterns by proposing graph structure and

graph neural network to further process it. Our work is the first to consider

the graph structure for audio data. In contrast to existing methods that

use approximation, our first model proposes a manual graph structure and

uses a graph convolution layer with accurate graph convolution operation. In

the second model, By integrating a graph inception network, we expand the

manually created graph structure and simultaneously learn it with the primary

objective in our model. In the third model, we addressed the dearth of annotated

data by including a semi-supervised graph technique that represents audio

corpora as nodes in a graph and connects them depending on label information

in smaller subgraphs. We brought up the issue of leveraging multimodal data

to improve audio representation learning in addition to earlier works. To

accommodate multimodal input data, we included heterogeneous graph data

to our fourth model. Additionally, we created a new graph architecture to

handle multimodal data.
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Chapter 1

Introduction

1.1 Motivation

Audio is a ubiquitous form of data that can convey rich information, whether

in the form of speech, music, or surrounding environment sounds. We are

always surrounded by dynamic auditory events, some of which are nice, such as

singing birds, human narrating a well-articulated story, and babbling brooks,

and others which are less pleasant, such as the sound of a lawnmower on a

Saturday morning! Humans have the ability to recognise, filter, and understand

a wide range of existing sounds from an early age, allowing them to focus on

crucial features in the audio while filtering out a vast number of distractions.

Machines must be able to analyse and understand the auditory environment

with great precision in the era of artificial intelligence (AI).

Representation learning is a fundamental ingredient of deep learning. How-

ever, learning a good representation is a challenging task. For audio represent-

ation learning, such a representation should contain the information needed

to understand the input sound and make discriminative patterns. Two cru-

cial components of a good representation are robustness and interpretability.

A robust representation should also be reusable in fine-tuning tasks as well.

Hence it should capture the structure of the data. Interpretability is another

desired characteristic which sheds light on the underlying mechanisms in deep

networks.

Audio representation learning has been used in a wide variety of applications

and still gaining popularity, such as remote health monitoring [5], self-driving

cars [6], acoustic surveillance [7], investigating the dynamics of animal behaviour

[8], as well as the use of automatic speech recognition (ASR) and emotion

recognition systems for human-computer interaction [9–11].

Even though audio representation learning has been the focus of consider-

able research, there are still problems. Following the developments in computer

vision (CV) and natural language processing (NLP), many studies are applying
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Figure 1.1: There are various sounds all around us every day. Many tools pick
them up and let us keep and use them later. We can then use the stored audio
database and ML systems to process and classify the input audio.

those techniques to the learning of audio representations without any modi-

fication that causes conceptual mistakes. For instance, a lot of research on

audio data has been conducted without considering the key distinction between

audio and other types of data by applying convolution neural networks (CNN),

a very well-liked and potent method for CV, directly to raw or preprocessed

audio data (Spectrogram).

Audio is in fact temporal data, and then learning the statistical regularities

of environmental events is a powerful tool for enhancing performance. In

addition, expectations about the temporal occurrence of events (when) are

often tied with the expectations about certain event-related properties (what

and where) happening at these time steps. While many works have been

ignored, audio is a temporal data type whose temporality must be taken into

account both during preprocessing and while creating the architecture for

processing. However, it remains unclear whether this often implicit type of

modelling can be proactively enhanced by explicit knowledge about temporal

regularities. To further explore this hypothesis, in this work, we offer graph

modelling of audio data to enable explicit modelling of temporal occurrence

of events. In addition, we strive to learn an appropriate deep representation

for audio recognition using graph neural networks (GNNs) that addresses the

aforementioned issues and apply them to two speech emotion recognition (SER)

and acoustic event classification tasks (AEC).

Concurrent with the progress of AI, the deployment of machine learning

solutions on mobile (edge) devices for consumer applications is gaining more

and more attention [12–14]. Thus, ML systems with stable performance and

great accuracy in real-world situations are required for all of these applications.

However, the limited storage and computation resources provided by these
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platforms are an obstacle that is being addressed by many researchers working

to reduce their complexity [15–17]. In this thesis, our proposed graph-based

model is a compact, efficient and scalable way to represent data results in a

lightweight graph-based network with a much fewer number of parameters

enabling them to perform swiftly on edge devices without losing performance.

Finally, audio perception by humans is inherently multimodal in nature. It

involves processing both aural and visual cues. Visual cues are important not

only for audio source localization [18], but also for improving audio perception

[19]. Perceptual studies have also revealed that visual cues can even change

how sound is heard [20]. In this thesis, motivated by the success of graph-based

methods in multimodal problems, we propose a heterogeneous graph-based

approach to learn visually-aware audio representations.

1.2 Challenges

Despite recent significant advancements in audio representation learning, a

number of technological obstacles remain. We identify the following main

challenges as follows:

Audio feature extraction. Despite recent substantial advances in the

field of ML, existing computer audition systems are still unable to do audio

interpretation and analysis with the precision of a human in situations when

humans are capable of doing so. Furthermore, traditional ML approaches

were limited in their ability to process the raw input data. For many years,

developing ML systems required precise engineering and fundamental domain

knowledge to develop a feature extractor (e.g., OPENSMILE [8, 9]) that

mapped raw audio characteristics like amplitude and frequency into meaningful

feature vectors from which the machine learner could recognise patterns. Due to

the huge amount of task-specific consideration, this manual feature engineering

method is arduous and time-consuming.

Such features are also task-dependent, requiring human expertise to pick

and design discriminative information for a specific task [10]. Task-specific

feature sets, on the other hand, frequently outperform more general feature

vectors in terms of performance. Because these features are fine-tuned for a

specific domain, such as acoustic features for affective computing, emotion

classification [11–13], and music genre classification [14], they may not perform

well for tasks that differ slightly, causing the ML system’s performance to suffer

[15].

Lack of explicit audio temporal modelling. Although attention to

audio representation learning has grown, the field suffers from a lack of looking

into data insights. Semantics can be delivered from the whole audio sample,

but the details are much more important for fine-grained analysis. For each
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segment in audio, the appropriate features are extracted and will be used to

analyse each frame separately. In addition, semantic relations between frames

are important as each frame’s feature. Then finding and discovering these

relations are a tedious and labour-intensive process. Some earlier methods

used dynamic modelling approaches to address the lack of relations in a single

audio clip. But dynamic processes prompted greater problems which mostly

resulted in much more computation and slightly better results.

Lack of large labelled datasets In audio representation learning, the

lack of large annotated datasets and a wide diversity of audio applications

impedes many developments. The availability of large high-quality labelled

datasets has the power to push forward a research area. For example, the

ImageNet dataset played a vital role in the breakthrough of Convolutional

Neural Networks (CNNs) [21] for image classification.

Audio modality may provide incomplete information. Although

one modality conveys a meaning not borne by the other modalities, but the

same meaning is conveyed at the same time via several modalities which might

be missed in the target modality in case of noise or other problems related to

acquiring, storing, and reading data. In addition, the fusion of multiple sensors

can facilitate the capture of complementary information or trends that may

not be captured by individual modalities. Moreover, multiple sensors observing

the same data can make more robust predictions because detecting changes in

it may only be possible when multiple modalities are present.

1.3 Contributions

This thesis proposes novel graph-based deep models for representation learning

with a new graph-based approach. Our approaches are more effective (modelling

spatio-temporal details in the audio data), light (low number of parameters),

and precise (achieved state-of-the-art performance) and even have the ability

to process heterogeneous data. The main contributions of this thesis are as

follows:

• Audio as graph (Chapter 3)

– Transforming raw audio to graphs. For the first time in the audio

community, we provide two ways for constructing graphs in order to

represent the input audio data in a new domain and preserve both

spatial and temporal information in a single data format.

– New graph convolution formulation. Following the previous contri-

bution, we propose a generic graph convolution network leveraging

the concepts in the graph signal processing field.
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– Application to SER. Speech emotion recognition is a long-lasting

speech application that is a diverse and challenging task to try. After

developing a graph-based solution to learn audio representation,

we apply it to well-known speech emotion recognition datasets:

IEMOCAP, MSP-IMPROV.

• Graph structure learning (Chapter 4)

– Dynamic graph structure learning. Since the graph structure is not

naturally defined, we propose to learn a (sub)optimal structure.

Graph structure learning is trained jointly with the classification

losses.

– Graph inception network. To capture information in different graph

depths, we propose a new graph architecture.

– Application to SER generates SOTA results. The effectiveness of

the proposed model is tested on different datasets in speech emotion

recognition task.

• Graph self-supervised learning (Chapter 5)

– Subgraph-based auxiliary learning. We develop a subgraph-based

auxiliary learning framework for audio representation learning with

limited labelled data.

– Graph self-supervision tasks. We introduce a set of new graph tasks

that can be applied to any type of graph.

– Application to SER and Acoustic event classification. We demon-

strate the superior performance of our proposed method for two

tasks: acoustic event classification, and speech emotion classification

on three large benchmark audio databases.

• Graph multi-modal learning (Chapter 6)

– Transforming audiovisual input to heteregeneous graphs. We develop

a graph construction method for converting multimodal data to a

heterogeneous graph.

– Heterogeneous graph network. We introduce a novel heterogeneous

graph neural network that can capture modality-specific information

as well as complementary information between modalities.

1.4 Thesis Outline

The rest of the thesis is organised as follows:
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• Chapter 2: Literature Survey

This chapter reviews the history and current directions in four key areas:

audio representation learning, Graph neural networks, Self-supervised

learning, and Multi-modal representation learning. In the audio repres-

entation learning section, the works in speech emotion recognition and

acoustic event classification have been reviewed. In addition, graph liter-

ature is divided into two spectral and spatial subfields, and the related

works are reviewed. As follows, self-supervised works in graph literature

are surveyed. Finally, multi-modal representation learning approaches

are explored in the audio-visual context.

• Chapter 3: Audio as graph

In this chapter, we cast audio representation learning as a graph classific-

ation problem. We model a speech signal as a simple graph, where each

node corresponds to a short windowed segment of the signal. Owing to

this particular graph structure, we take advantage of certain results in

graph signal processing to perform accurate graph convolution.

• Chapter 4: Graph learning

This chapter makes the point that manually constructing a graph is not

the best solution and that the underlying graph structure must be learned

during the training phase. Then, in order to simultaneously capture

information from various graph depths and the structure of the graph

itself, we also create a novel graph architecture.

• Chapter 5: Self-supervised graphs for audio representation

learning

In this chapter, we propose a graph self-supervised learning approach to

learn effective audio representations from a limited amount of labelled

data. Considering each audio sample as a graph node, we propose a

subgraph-based learning framework with new self-supervision tasks.

• Chapter 6: Visually-aware graph-based audio representation

learning

In this chapter, we propose a visually-aware audio representation learning

approach based on heterogeneous graphs in the context of acoustic event

classification. Our heterogeneous graph model creates a shared space

for audio and visual modalities that takes advantage of their spatial and

temporal relationships explicitly.

• Chapter 7: Conclusion and future work

In the final chapter, we summarise the contributions of this thesis. We

then discuss applications of our work and new research directions made

possible by the presented contributions.
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Chapter 2

Related Works

In this chapter, we survey works related to the contributions of this thesis.

The chapter is organised as follows: Section 2.1 presents a taxonomy of tasks

and methods for audio representation learning and summarises key works in

the area. Section 2.2 gives an in-depth overview of graph neural networks. We

review the history and current state-of-the-art solutions for the task. Section

2.3 summaries self-supervised learning in graphs. Finally, Section 2.4 surveys

developments in methods that leverage other modalities to further boost audio

representation learning.

2.1 Audio Representation Learning

Research on audio or speech processing has traditionally considered the task of

designing hand-engineered acoustic features as a separate distinct problem from

the task of designing efficient machine learning (ML) models to make prediction

and classification decisions. This methodology has two primary drawbacks:

first, feature engineering is manual, which is laborious and requires human

expertise; second, the created features might not be the most appropriate for

the objective at hand. This has motivated the adoption of a recent trend in the

audio community towards the utilisation of representation learning techniques,

which can learn an intermediate representation of the input signal automatically

that better suits the task at hand and hence lead to improved performance.

With advancements in deep learning (DL), where the representations are more

advantageous and less reliant on human knowledge, it is now more important

than ever to train representations for tasks like classification, prediction, etc.

Despite the fact that there is a large body of literature on this topic, we

only survey two sub-fields: speech emotion recognition and acoustic event

classification that we studied them in this thesis as applications.
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2.1.1 Speech Emotion Recognition

Speech Emotion Recognition (SER) has been an essential part of Human-

Computer Interaction (HCI) and other complex speech processing systems over

the past ten years. An SER system typically identifies the presence of various

emotions in the speaker by extracting and categorising the salient features

from a preprocessed speech signal. However, there are significant quantitative

and qualitative differences between how humans and machines recognise and

correlate emotional aspects of speech signals, which makes it extremely difficult

to combine knowledge from interdisciplinary fields, particularly speech emotion

recognition, applied psychology, and human-computer interface.

There are many methods and algorithms used for the task of emotion

recognition from speech. Each one of these methods is trying to solve the

problem from a specific angle and has advantages and shortcomings. Many

speech emotion recognition systems still rely on low-level acoustic, prosodic

and lexical features that are then fed to deep models for classification. Several

features like rhythm and intonation that human beings can recognize are known

as prosodic features or para-linguistic features as these features manage the

components of speech that are properties of massive units as in sentences,

words, syllables, and expressions and sentences [22]. Prosodic characteristics

are long-term features since they are extracted from massive units. These

features are the ones passing on unique properties of emotional substance

for speech emotion recognition. Commonly used prosodic qualities are based

on energy, duration, and fundamental frequency properties. Mel Frequency

Cepstral Coefficient is another of the most popular low-level acoustic features

in automatic speech recognition (MFCC). The vocal tract’s form is represented

by the short-time power spectrum envelope, which is represented by MFCCs.

Before translating the utterances into the frequency domain with a short-time

discrete Fourier transform to produce MFCC, the utterances are divided into

several segments. Numerous sub-band energies are calculated using the Mel

filter bank. After that, the logarithm of respective sub-bands is computed.

Lastly, MFCC is determined by applying the inverse Fourier transform [23].

SER can be carried out in two ways: (1) traditional models, and (2) deep

learning models.

Traditional Methods. In earlier efforts to recognize emotions from the speech

signal, almost all the implementations used hand-crafted features such as low-

level descriptors (LLD), MFCCs, and linear prediction cepstral coefficients

(LPCC). They were implementing frameworks based on machine learning

algorithms that needed extensive feature engineering and a deep understanding

of the subject matter to be able to infer the features helping the most to

bring them into the calculations. Since the 1960s, Hidden Markov models
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(HMM) have been used extensively in voice recognition. HMM is a statistical

Markov model in which the system is assumed to be a Markov process with an

unobserved state. They are designed to produce a flexible model that complies

with the temporal characteristics of speech, classifying minute variations in an

audio input. Naturally, HMMs were one of the first choices to try in SER [24].

Support Vector Machines (SVM), as one of the well-known methods, is used as

a classifier for emotion recognition [25, 26]. The classifier is generally described

for linearly separable patterns by splitting the hyperplane. SVM makes use of

the kernel trick to model nonlinear decision boundaries. The SVM classifier

aims to detect that hyperplane having a maximum margin between two classes’

data points. The original data points are mapped to a new space if the given

patterns are not linearly separable by utilizing a kernel function. K-nearest

neighbour (KNN) [27], decision tree [28], naive Bayes classifier [29], artificial

neural network (ANN) [27] (input, output, and only one hidden layer) are

other methods that have been used in this literature.

Deep Learning Methods. The introduction of AlexNet by Krizhevsky et al.

[21] in 2012, a multi-layer convolutional neural network trained on ImageNet

in 2010 to recognise 1000 different classes and obtain great results, is one of

the most well-known instances that sparked the widespread application of deep

learning. Following that, numerous deep architectures emerged. A method

based on a deep neural network with fully connected and convolutional pooling

layers has been proposed by Harar et al. [30]. They have restricted their classes

to angry, neutral, and sad compared to earlier research. They have eliminated

silence from their signals in their system before segmenting the files into 20 ms

segments with no overlap. They have six layers of convolution in their network

before any feature selection, followed by dropout layers with p values of 0.1, a

lattice of two parallel feature selectors, and then a sequence of fully connected

layers. Zhang et al. [31] have developed an Emotion recognition system based

on a deep convolutional neural network designed for the ImageNet LSVRC-2010

contest. This network, AlexNet, is also pretrained with a dataset of 1.2 million

images, then fine-tuned using samples that they had from EMO-DB. Using this

system, they can recognize three classes of emotions (angry, sad, and happy)

plus a neutral category. Moreover, they have demonstrated that their system

can have accuracies over 80% on EMO-DB, about 20% more than the baseline

SVM standard. They have also applied their method to 3 other databases (

[32], eNterface05 [33], and Baum-1s [34]) and were able to get results higher

than the baseline method. They concentrated on how autonomous feature

selection in deep convolutional neural networks can outperform feature selection

in shallow convolutional networks and statistical model-based techniques like

HMM. Deep convolutional neural networks are effective at simulating even

the smallest transient signal characteristics. However, this flexibility comes
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at the expense of tuning exponentially more variables, which necessitates the

use of additional training samples. Millions of samples are used to train these

networks when used for picture applications. However, the number of samples

in SER is typically restricted to thousands. Additionally, this increases the

likelihood of overfitting in deep convolutional network-based solutions.

Recurrent neural networks (RNN) can learn and react to the temporal event

without changing the slowly shaped weights thanks to their feedback connection,

forming short-term activations for recent events. This feature can be beneficial

in the case of applications where time is an essential feature, like speech

processing, music composition, and video description. The magnitude of the

weights will determine whether the error signals flow backwards in time, grow or

disappear when they are trained through backpropagation through time. As a

result, the network will either produce fluctuating weights or train and converge

slowly [35]. To be able to incorporate the short-term adaptation of RNNs and

avoid the problems above, a new architecture called Long ShortTerm Memory

(LSTM) has been introduced [35]. In recent years, LSTM networks have been

becoming the centre of attention for many applications involving time-series

events. Speech Processing and especially speech emotion recognition are two

of these applications [36, 37]. In an early proposal for using LSTM networks

[38], a multimodal LSTM-based classification network has been proposed for

exploiting acoustic, linguistic, and visual information. In their study, they

compared both unidirectional and bidirectional LSTM networks. They also

have compared their proposed results with the AVEC 2011 Audio/Visual

Emotion Challenge [39]. In this research, they extract 1941 audio features

composed of Prosodic, Spectral, and Voice quality features, linguistic word-

level content, and all the video features extracted by applying the Viola-Jones

method, segmented optical flow, and head tilt. Then all the features are fed to

a unidirectional and a bidirectional LSTM network. Later in another work [40],

a context-aware system was proposed for end-to-end recognition of emotions

in speech using CNNs followed by LSTM networks. The big difference in their

method versus other deep learning algorithms is that they do not preselect

features before training the network. They introduce raw input to the system

and let the black box choose the best representations for the features. In

another recent research, a system based on two layers of modified LSTMs with

512 and 256 hidden units is proposed, followed by a layer of attention weighting

on both time dimension and feature dimension and two fully connected layers

at the end. In their research, they have stated that humans’ attention on the

whole stimuli is not balanced, and it has been shown incorporating this concept

creates excellent results in image processing. Therefore, they have proposed

a self-attention mechanism to the forgetting gate of an LSTM layer, which

results in the same performance while reducing the computations.
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After introducing the attention concept and transformer architecture [41] in

natural language processing, This model has been widely used in other applic-

ations. Recently, the Transformer has also been adapted for audio processing

but is typically used in combination with a CNN [42–44]. A Transformer

and a CNN are combined in each model block in [44], while in [42, 43], the

authors stack a Transformer on top of a CNN. Other initiatives [45–47] com-

bine CNNs with less complex attention modules. In contrast to these studies,

another recent work [48] proposes an audio Spectrogram Transformer (AST)

that relies solely on attention mechanisms and is convolution-free and achieves

state-of-the-art performance on popular speech benchmarks.

2.1.2 Acoustic Event Classification

Audible sounds are those that are detectable and audible to humans. They

span the 20 Hz to 20 kHz range. Speech, music, and environmental sound

are additional categories for audible sounds (Fig. 2.1). There are sounds that

are naturally formed, such as thunder, rain, and lighting, as well as sounds

made by animals like dog barking and other bird sounds. Similar to this,

certain man-made noises fall into this group such as environmental noise in the

area of the factory floor, jet cockpit, babble noise, highway, and the subway.

Furthermore, some sounds such as car horns, siren, whistle, alarm, footsteps,

the sound of the clock, the sound of air conditioner, and glass breaking come

under artificial sounds.

Sound

Inaudible Audible

Environmental 
Sound Speech Music

Noise Natural Sound Artificial 
Sound

Figure 2.1: Classification of different types of sounds

The classification of natural sound is crucial for tracking environmental

activity [49]. This category includes animal sounds as well. The forest depart-

ment benefits from the classification of various animals using animal sound

as an input in a number of ways [50]. Evaluation of biodiversity and environ-

mental change can be done by classifying the variety of birds in a given area
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[51, 52]. This kind of sound classification has recently become very popular

and has proven to be extremely helpful in medical research [53]. Artificial

sound categorization is mostly employed in home automation [54–56], urban

sound analysis [57, 58], remote surveillance [59, 60], and other applications.

Similar to SER, traditional methods in this field only rely on hand-crafted

features in the time domain such as ZCR, power of the signal, and entropy

of energy and frequency domain such as spectral centroid, spectral space, the

entropy of spectral, flux, the spectral roll of, MFCC that are then fed to

Gaussian mixture model [61], HMM [62], ANN [63], KNN [63], and SVM [63]

for classification.

After shining deep learning models, they have been used extensively for

acoustic sound classification [64, 65]. An early work [64] utilised a two-layer

convolution network to classify environment and urban sounds. In this study,

overlapping segments were generated by resampling the raw recordings. A

log-scaled Mel-spectrogram was then extracted from them after that. The

short input audio segments are then classified using a CNN model after ap-

plying augmentation techniques to compensate for the lack of labelled data.

The outcomes demonstrated that the suggested strategy outperformed the

traditional methods by a significant margin. RNNs and their combinations

with CNNs have also been widely used in this application as well [66–68].

Unfortunately, there are still very few publically available databases of

environmental recordings, both in terms of quantity and size. The lack of

human-annotated data is crucial because the size of the learning dataset has a

significant impact on the performance of supervised deep models. Therefore,

semi/self-supervised and unsupervised [69] methods are proposed to mitigate

this effect. Among them, self-supervised learning [70] attracts a lot of interest

due to its success in other domains. In a study [71], a triplet loss-based SSL

has been utilised for audio classification. In a recent attempt [72], the author

proposed three different techniques, Word2Vec, Audio2Vec and temporal gap,

to perform SSL for sound classification. In another line of work [73], an

AudioBERT is presented to learn prototypical representations from sound

using SSL.

2.2 Graph Neural Networks

Deep learning on graph data has emerged as a major topic in the past few

years. This is because graphs provide a natural and convenient way to deal

with large data. Unlike other neural networks which perform on structured

data, graph neural networks are a class of deep learning methods designed

to perform inference on unstructured data described by graphs. GNNs are

neural networks that can be directly applied to graphs, and provide an easy

12



way to do node-level, edge-level, and graph-level prediction tasks. Among

the different graph neural networks, graph convolution networks (GCN) have

received the most attention [74–76] owing to the popularity of traditional CNNs.

GCNs have wide applications in computer vision, natural language processing,

social network analysis, and even in problems arising in physics, chemistry

and biology [77]. In computer vision, GCNs have been successfully applied to

action recognition [78, 79], face clustering [80], object detection [81], visual

reasoning [82], and in image generation generation using scene graphs [83, 84].

The GCNs can be broadly classified into two categories: spatial and spectral.

Below, we explore each of them in detail.

2.2.1 Spatial Graph Neural Networks

In spatial-based approaches, they tried to imitate the convolution operation as

aggregating nodes’ attributes from neighbours [74]. This approach has many

limitations because graph structures have unordered nodes and a different num-

ber of neighbours around each node. To go beyond these limitations, Niepert

et al. [85] proposed a batch-training algorithm in a part of a graph to improve

scalability on large-scale graphs. They also used fixed-sized neighbourhoods

for each graph to deal with a different number of neighbours around each

node. Hamilton et al. convert graph structure data into grid structure data

with fixed size formation. They also proposed a ranking method based on

nodes’ features to use standard CNN for generating node level outputs [86].

In another work, Xu et al. [76] showed some shortcomings of previous GCNs

in distinguishing certain simple graph structures. Based on the Weisfeiler-

Lehman graph isomorphism test, they developed their structure to go beyond

previous problems. They stated instead of a linear projection after going throw

the spectral domain, they used a Multi-layer Perceptron (MLP) network and

achieved state-of-the-art performance on graph classification tasks. In this

paper, we extend the idea of [76] and build our model.

2.2.2 Spectral Graph Neural Networks

Spectral-based approaches formulate convolution operation in the perspective

of graph signal processing [87] which defines convolution as a filter in the graph

domain. Bruna et al. proposed the first spectral convolution neural network

[88]. They proposed the filter in the spectral domain is a set of learnable

parameters. Due to high computation cost which in order or N3 where N is

dimension of input data, Defferrad et al. [89] proposed ChebNet which redefines

filter g as Chebyshev polynomials of the diagonal matrix of eigenvalues, i.e,

gθ =
K−1∑
i=0

θiTk(Λ̂) where Λ̂ = 2Λ/λmax − IN and K is number of polynomials.
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The Chebyshev polynomials were computed recursively, and no need to have

eigen decomposition. Thus the computation complexity is reduced from O(N3)

to O(K|E|) where |E| is the number of edges in the graph. In follow-up work,

Kipf and Welling [75] introduced a first-order approximation of Chebyshev

polynomials to simplify it. Based on their assumptions, the approximation

becomes:

x ∗G g = θ0x− θ1D
1
2AD

−1
2 x (2.1)

To reduce the number of parameters and avoid overfitting, they assumed

θ = θ0 = −θ1. Thus, the 2.1 becomes:

x ∗G g = θ(In − θ1D
1
2AD

−1
2 )x = θÂx (2.2)

They also showed by using a kind of renormalization trick, they achieved a

better result than ChebNet. Xu et al. [90] proposed that wavelets are localized

in vertex domain and sparse and used graph wavelets instead of eigenvectors

of graph Laplacian. Although they just achieved edge improvements, they

showed in one case, the number of non-zero elements in wavelet transform has

dramatically decreased.

Pooling operation is one of the important layers in convolution networks

which helps to reduce dimension, rotational and position variance and aggregate

low-level features in the neighbourhood to obtain high-level ones. Henaff et

al. [91] showed using a simple max/mean pooling is the beginning of the

network helps to reduce the dimensionality of the graph and mitigate the cost

of the graph Fourier transform computation. Xu et al. [76]. In ChebNet [89],

they proposed input graphs are processed by the coarsening process. After

that, the vertices from the coarsened and original graph are used to form a

balanced binary tree. Through this process, they could use regular 1D pooling

on the vertex domain. Different from ChebNet, Zhang et al. [92] introduced

SortPooling, which performs pooling by rearranging vertices in meaningful and

consistent order according to their structural information. They also solve the

problem of different sizes of graphs by truncating or extending vertices to a

specific number. This approach enhances the accuracy in many baseline data

sets and also allows end-to-end gradient-based training.

Unlike previous papers which tried to cluster nodes in vertex domain and

perform pooling, DIFFPOOL [93] proposed a differentiated graph pooling

module that can generate hierarchical representations of graphs and also can

be used with different GCNs. In this process, they learn an assignment matrix

S(l) and embedding matrix Z(l):
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Z(l) = GNNl,embed(A(l), X(l))

S(l) = softmax
(
GNNl,pool(A

(l), X(l))
) (2.3)

where A(l) is coarsened adjacency matrix and X(l) is the input cluster node

features. Given the assignment and embedding matrices, they proposed the

new representation in each layer as:

X(l+1) = S(l)TZ(l)

A(l+1) = S(l)TA(l)S(l)
(2.4)

The formulation used in Equation 2.3 is general and can be combined

with any GNN not only to enhance the performance but also to speed up the

convolution operation.

2.3 Self-supervised Learning

Supervised learning has been a prominent paradigm requiring accurate annota-

tion of datasets, commonly completed manually through painstaking human

effort. Due to the massive quantities of data necessary to train state-of-the-art

machine learning models effectively, several alternative means of supervision

have been proposed. Pre-training neural network models on the large Imagenet

dataset [94], before fine-tuning on a target dataset, has become the de-facto

standard in settings where annotated data is limited. Alternative means of

building large annotated datasets for pre-training, such as mining social media

websites [95] have also been proposed. This section reviews advancements in

two methods used for reducing the burden of human labour in data annotation

related to our contributions: self-supervised learning in audio and graph data.

2.3.1 Self-supervised Learning in Audio Data

SSL has gained considerable popularity since its introduction in natural lan-

guage processing [96], and computer vision [97–99] owing to its ability to learn

effective data representations without requiring manual annotations. Acquiring

detailed manual annotations is arguably more difficult (and often expensive)

in many audio and speech processing tasks, which makes SSL an increasingly

popular paradigm in audio analysis. Contrast predictive coding (CPC) was the

earliest work on SSL in the audio domain [100]. This work demonstrated the

applicability of contrastive SSL to audio by predicting latent audio features at
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a future time instant. The popular model, Wav2Vec, further refined this CPC

approach [101] to produce state-of-the-art audio presentations.

The majority of SSL works in the audio domain rely on extracting audio

descriptors and then utilising deep models to reconstruct a perturbed version

of those descriptions as SSL tasks. For example, a self-supervised neural

voice synthesizer was used [102] to reconstruct the input as an SSL (pretext)

task. The Problem Agnostic Speech Encoder (PASE) [103] is another recent

work that seeks to learn multitask speech representations from raw audio

by predicting a number of handcrafted attributes like MFCCs and prosody

features. Teacher-student models have also been investigated, where the trained

model from the previous epoch serves as the teacher for the current epoch [104].

Several recent papers in audio analysis report that SSL can improve over fully

supervised models [72, 105, 106] while others use crossmodal self-supervision

from visual domain [107, 108].

2.3.2 Graphs and SSL

Following the immense success of SSL on computer vision and natural language

processing, very recently, there has been increasing interest in applying SSL

to graph-structured data. However, it is non-trivial to transfer the pretext

tasks designed for image/text for graph data analytics. The main challenge

is that graphs are in irregular non-Euclidean data space. Compared to the

2D/1D regular-grid Euclidean spaces where image/language data reside in,

non-Euclidean spaces are more general but more complex. Therefore, some

pretext tasks for grid-structure data cannot be mapped to graph data directly.

Furthermore, the data examples (nodes) in graph data are correlated with the

topological structure naturally, while the examples in image and text are often

independent. Hence, how to deal with such dependency in graph SSL becomes

a challenge for pretext task designs.

Fig. 2.2 illustrates some examples of SSL in different research areas. The

history of graph SSL goes back to at least the early studies on unsupervised

graph embedding [109, 110]. These methods learn node representations by

maximizing the agreement between contextual nodes within truncated random

walks. A classical unsupervised learning model, graph autoencoder (GAE)

[111], can also be regarded as a graph SSL method that learns to rebuild the

graph structure. Graph SSL can be divided into three types: (1) reconstruction-

based, (2) auxiliary property-based, and (3) contrastive-based methods. The

categorizations of these methods are briefly discussed below.

Reconstruction-based Methods (Fig. 2.3) change the graph from two

angles: the graph structure and its features (both nodes and edges) and generate

a perturbed version [111, 112]. Additionally, they contain two sub-networks,
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(a)

[MASK] is everything.

Love is everything.

I’m going to go to 
London.

I have to get up soon.

I’m not very hungry!

(b)

Mask

Shuffling

(c)

Figure 2.2: SSL examples of SSL pretext tasks in image, text, and graph
analytics. (a) image colonizing (upper) and image contrastive learning (bottom).
(b) mask language modeling (upper) and next sentence prediction (bottom).
(c) graph mask (upper) and graph shuffling (bottom)

one for extracting graph representation and the other for reconstructing the

graph by decoding. The perturbed graph is then fed to the model to get the

reconstructed graph. The models were eventually made to learn the underlying

information of the data using a reconstruction loss. Under this framework,

graph SSL can be formulated as:

θ⋆, ϕ⋆ = arg min
θ,ϕ

Lssl

(
gϕ
(
fθ(G̃ )

)
,G

)
(2.5)

where f, g,G , G̃ are graph encoder, pretext decoder, input graph, and the

perturbed graph data. In addition, θ and ϕ are the learnable parameters that

will be trained with reconstruction loss.

Auxiliary Property-based Methods (Fig. 2.4) enrich the supervision

signals by computing the graph attributes from the graph embedding repres-

entation and compare it with the actual value [112–114]. The approaches are

therefore divided into regression and classification tasks according to their

output value type. The SSL task can be formulated as below:

θ⋆, ϕ⋆ = arg min
θ,ϕ

Lssl

(
gϕ
(
fθ(G̃ )

)
, c
)

(2.6)

where c denotes the specific graph auxiliary property value. For regression-

based approaches, c can be localized, or global graph properties, such as the

node degree or distance to clusters within G [112]. For classification-based

methods, on the other hand, the auxiliary properties are typically constructed

as pseudo labels, such as the graph partition or cluster indices [114]. Regarding

the objective function, Lssl can be a mean squared error (MSE) for regression-

based and cross-entropy (CE) loss for classification-based methods.

Contrastive-based Methods (Fig. 2.5) are usually developed based on the
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Encoder
𝑓𝜽

Representation

Pretext
Decoder

𝑔𝜑

Reconstruction Loss

Perturbation

Perturbed graph

Input graph

Figure 2.3: Reconstruction-based graph SSL methods. The model input is
generated by an (optional) graph perturbation. In the pretext task, a generative
decoder tries to recover the original graph from the middle representation, with
a loss function aiming to minimize the difference between the reconstructed
and original graphs

concept of mutual information (MI) maximization, where the estimated MI

between augmented instances of the same object (e.g., node, subgraph, and

graph) is maximized [115–117]. For a contrastive-based graph, SSL can be

formulated as below:

θ⋆, ϕ⋆ = arg min
θ,ϕ

Lssl

(
gϕ
(
fθ(G̃1), fθ(G̃2)

))
(2.7)

where G̃1 and G̃2 are two differently augmented instances of G . In these

methods, the pretext tasks aim to estimate and maximize the MI between

positive pairs (e.g., augmented instances of the same object) and minimize the

MI between negative samples.

2.4 Multi-modal Representation learning

Multimodal representation learning, which aims to narrow the heterogeneity gap

among different modalities, plays an indispensable role in utilising ubiquitous

multimodal data. Due to the powerful representation ability with multiple

levels of abstraction, deep learning-based multimodal representation learning

has attracted much attention in recent years.
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Encoder
𝑓𝜽

Representation

Pretext
Decoder

𝑔𝜑

Prediction Loss

Property 
Extraction

Input graph

Auxiliary Properties Predicted Properties

Figure 2.4: Auxiliary property-based graph SSL methods. The auxiliary
properties are extracted from graphs. A classification- or regression- based
decoder aims to predict the extracted properties under the training of CE/MSE
loss.

Different cognitive signals describing distinct features of the same object

are captured in multiple types of media, such as text, image, video, sound,

and graph, to convey comprehensive knowledge about objects in the environ-

ment. The term ”modality” in the context of representation learning refers

to a certain method or technique of information encoding. As a result, the

various media types indicated above also refer to modalities, and tasks for

learning representations via many modalities will be referred to as multimodal.

Multimodal data are more informative than unimodal data because they show

an object from various perspectives, which are typically complimentary or

supplemental in content. Early studies on speech recognition, for instance,

demonstrated that the visual modality gives information about lip motions

and mouth articulations, such as opening and closing, and can therefore aid

in improving speech recognition performance [20]. Utilising the extensive

semantics that various mediums provide is consequently beneficial.

However, even though it is simple for humans to perceive the environment

using extensive data from various sensory organs [20], it is still unclear how

to give machines analogue cognitive capacities. The heterogeneity gap in

multimodal data is one of the difficulties we face. Fig. 2.6 illustrates how the

vector representations associated with comparable semantics might be entirely

different because the feature vectors from various modalities were initially
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positioned in uneven subspaces. This problem, known as the heterogeneity gap,

would prevent the following machine learning modules from fully utilising the

multimodal data [118]. Projecting the heterogeneous features into a common

subspace, where the multimodal data with comparable semantics will be

represented by similar vectors, is a popular approach for solving this issue

[119]. Therefore, the main goal of multimodal representation learning is to

reduce the distribution gap in a shared semantic subspace while maintaining

modality-specific semantics.

In the past few decades, numerous studies using a variety of methodologies

have been utilized to decrease the heterogeneity gap. As a result, several

applications have benefited from the development of multimodal representation

learning. For instance, by utilising fused features from several media, cross-

media analysis tasks, including video classification [120], event detection [121,

122], and sentiment analysis [123, 124], can perform better. Cross-modal

retrieval is the process of retrieving images using text as input or the opposite. It

is made feasible by using cross-modal similarity or cross-modal correlation [125].

Cross-modal translation [126], a novel class of multimodal application, has most

recently attracted significant interest in the computer vision community. It

aims to transform one modality into another, as the name suggests. Examples

of applications in this area are text-to-image synthesis [127], video explanation

[128], and image caption [129].

As this thesis solely focuses on audio representation learning, we will

only discuss works that support audio learning while attending to video data

in the following. The majority of existing works on learning audiovisual

representations rely on maintaining a tight temporal synchrony between the

visual and audio modalities [130–132]. Consider a scene of a bike moving away

from the camera. The revving sound of the bike fades as it moves away. While

an audio-only-based model may not be capable of detecting the fading sound as

’bike’, taking into account the bike as a visual cue, it is possible to identify the

event as ’motorbike running’. Computer vision-inspired models are common

[133–135], where two augmented views of a given audio/audiovisual sample

are fed to a shared ‘backbone’, followed by optimizing a contrastive loss [136–

140], distillation [140, 141], quantization [130] or information maximization

[142, 143]. However, the vision-inspired audio representation learning methods

do not take full advantage of the temporal information available in video data

or the complementary knowledge between modalities. Another difficult aspect

of such approaches is that data augmentation functions, being vision-inspired,

are not often well-suited to a multimodal input.

Heterogeneous graphs are a compact, efficient, and scalable way to rep-

resent data involving multiple different entities and their relations [144, 145].

Modelling the interaction of entities (including modalities) with heterogeneous
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graphs is a relatively new paradigm. Multimodal heterogeneous graphs have

been successfully used to address various problems in computer vision and

natural language processing, such as visual-question answering [146], multi-

media recommendation [144, 147], audio-visual sentiment analysis [148], and

cross-modal retrieval [145]. Multimodal heterogeneous graphs lead to a closer

coupling between concepts in multiple modalities, resulting in a significant

performance improvement over previous methods [144, 146–148].

2.5 Summary

This chapter presented an overview of existing research related to our con-

tributions to audio representation learning, graph neural networks, graph

self-supervised learning, and multi-modal representation learning. Firstly,

we reviewed audio representation learning in two subfields: speech emotion

recognition and acoustic event classification. The aforementioned fields are

growing steadily thanks to advancements in deep learning models, along with

more extensive and more diverse datasets. We highlighted the most important

concerns in these areas and investigated the suggested solutions.

Secondly, we discussed literature on graph neural networks. By grouping

works into spectral and spatial approaches, we see a notable paucity of spatial

approaches compared to spectral works. We first concentrated on spatial

methods and studied a few techniques that were built around solely taking

geometry into account. On the other hand, we studied spectral techniques in

more detail and made connections to graph signal processing materials. Thus,

we will focus on this difference in Chapter 3 and evaluate which can be more

effective for our application. We also summarised graph-based solutions for

other applications and realized that our work in Chapter 3 is the first attempt

to apply graphs to audio data.

Thirdly, we review the literature on self-supervised learning related to

our contributions: audio representing learning and graphs structural learning.

These methods paved the way for proposing our contribution, in particular,

semi-supervised learning of audio data with graph self-supervised learning

proposed in Chapter 5.

Finally, we review literature proposing multi-modal learning. We specifically

focus more on cases with only audio with the supervision of video data. There

are a number of studies in both graph multi-modal processing and multi-modal

representation learning that we can find, but none combine the two. In Chapter

6, we propose a heterogeneous graph and architecture for stratifying the audio

representation with visual supervision.

In the next chapters, we will explain how the proposed graph modelling

can be applied to audio data in different applications.
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Figure 2.5: Contrast-based graph SSL methods. Two different augmented
views are constructed from the original graph. Then, the model is trained by
maximizing the MI between two views.
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That’s amazing!

Feel exhausted!

Figure 2.6: Schematic of the common subspace learning, which aims to project
the heterogeneous data of different modalities into a common subspace. This
image shows that the different modalities of a phenomenon share common
knowledge in an ideal embedding space.
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Chapter 3

Audio as Graph

3.1 Introduction

Machine recognition of emotional content in speech is crucial in many human-

centric systems, such as behavioural health monitoring and empathetic con-

versational systems. SER, in general is a challenging task due to the huge

variability in emotion expression and perception across speakers, languages

and cultures.

Many SER approaches follow a two-stage framework, where a set of LLDs

are first extracted from raw audio. The LLDs are then input to a deep learning

model to generate discrete (or continuous) emotion labels [36, 149–151]. While

using hand-crafted acoustic features is still common in SER, lexical features

[25, 152] and log Mel spectrograms are also used as inputs [153]. Spectrograms

are often used with CNNs [153] that do not explicitly model the speech

dynamics. Explicit modelling of the temporal dynamics is important in SER

as it reflects the changes in emotion dynamics [154]. To capture the temporal

dynamics of emotion, recurrent models, especially the LSTMs, are popular

[36, 150, 151]. The recurrent models, though predominant in SER, often lead

to complex architecture with millions of trainable parameters.

A compact, efficient and scalable way to represent data is in the form of

graphs. GCNs [75] have been successfully used to address various problems in

computer vision and natural language processing, such as action recognition

[78], object tracking [155] and text classification [156]. In the context of audio

analysis, we are aware of only one recent work that proposed an attention-based

graph neural network architecture for few-shot audio classification [157].

Motivated by the recent success of GCNs, we propose to adopt a deep

graph approach to SER. We base our work on spectral GCNs, which have a

strong foundation in graph signal processing [158]. Spectral GCNs perform

convolution operation on the spectrum of the graph Laplacian, considering

the convolution kernel (a diagonal matrix) to be learnable [88]. This involves
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eigen decomposition of the graph Laplacian matrix, which is computationally

expensive. To reduce the computational cost, ChebNet approximates the

convolution operation (including the learnable convolution kernel) in terms of

Chebyshev polynomials [89]. The most popular form of GCN uses a first-order

approximation of the Chebyshev polynomial to further simplify the convolution

operation to a linear projection [75]. Such GCN models are simple to implement

and have been successfully used for various node classification tasks in social

media networks and citation networks [75].

In this chapter, we cast SER as a graph classification problem. We model

a speech signal as a simple graph, where each node corresponds to a short

windowed segment of the signal. Each node is connected to only two adjacent

nodes, thus transforming the signal to a line graph or a cycle graph. Owing to

this particular graph structure, we take advantage of certain results in graph

signal processing [159] to perform accurate graph convolution (in contrast to

the approximations used in popular GCNs). This leads to a light-weight GCN

architecture with superior emotion recognition performance on the IEMOCAP

[160] and the MSP-IMPROV [161] databases.

To summarize, the contributions of this chapter are as follows: (i) To the

best of our knowledge, this is the first work that takes a graph classification

approach to SER. (ii) Leveraging theories from graph signal processing, we

propose a GCN-based graph classification approach that can efficiently perform

accurate graph convolution. (iii) Our model has significantly fewer trainable

parameters (∼30K only). Despite its smaller size, our model achieves superior

performance on both IEMOCAP and MSP-IMPROV databases outperforming

relevant and competitive baselines.

3.2 Proposed Graph Approach

In this section, we describe our graph classification approach to SER. First,

we construct a graph from each speech sample. Next, we develop a new

GCN architecture that assigns a discrete emotion label to each (speech sample

transformed to) graph. Fig. 3.2 gives an overview of our approach. Below, we

describe each component in detail.

3.2.1 Graph Construction

Given a speech signal (utterance), the first step is to construct a corresponding

graph G = (V,E), where V ∈ {vi}Mi=1 is the set of M nodes, and E is the set

of all edges between the nodes. The adjacency matrix of G is denoted by

A ∈ RM×M where an element (A)ij denotes the edge weight connecting vi and

vj .
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Figure 3.1: Graph construction from the speech input. (a) LLDs are extracted
as node features xi from raw speech segments; (b) cycle graph and (c) chain
graph.

Our graph construction strategy follows a simple frame-to-node transform-

ation, where M frames (short, overlapping segments) of the speech signal form

the M nodes in G (see Fig. 3.1(a)). Since the graph structure is not naturally

defined here, we investigate two simple undirected graph structures: (i) a cycle

graph defined by the adjacency matrix Ac, and (ii) a line graph defined by

adjacency Al. The two graph structures are shown in Fig. 3.1(b)-(c).

Ac =



0 1 0 · · · 1

1 0 1 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

1 0 · · · 1 0


Al =



0 1 0 · · · 0

1 0 1 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 · · · 1 0


These two graph structures are important because of the special structures of

their graph Laplacians, which significantly simplifies spectral GCN operations.

This is discussed in the following section in more detail.

Each node vi is also associated with a node feature vector xi ∈ RP . A node

feature vector contains LLDs extracted from the corresponding speech segment.

A feature matrix X ∈ RM×P containing all node feature vectors is defined as

X = [x1, · · ·xM ].
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Figure 3.2: Our proposed graph-based architecture for SER consists of two
graph convolution layers and a pooling layer to learn graph embedding from
node embeddings to facilitate emotion classification.

3.2.2 Graph Classification

Given a set of (utterances transformed to) graphs {G1, ..., GN} and their true

labels {y1, ...,yN} represented as one-hot vectors, our task is to develop a GCN

architecture that is able to recognize the emotional content in the utterances.

Our architecture comprises two graph convolution layers, a pooling layer that

yields a graph-level embedding vector, followed by a fully connected layer that

produces the discrete emotion labels (Fig.3.2).

Graph convolution layer. We base our model on a spectral GCN, which

performs graph convolution in the spectral domain. Following the theory of

graph signal processing [158], graph convolution in time domain is defined as

h = xi ∗w (3.1)

where w is the graph convolution kernel (learnable) and xi is the input node

features. This is equivalent to a product in the graph spectral domain.

ĥ = x̂i ⊙ ŵ (3.2)

where ĥ, x̂i, and ĝ denote the output, node features and the convolution

filter in the graph spectral domain i.e., their graph Fourier transforms (GFT).

Considering the node feature matrix and adopting a matrix notation, we get

Ĥ = X̂Ŵ (3.3)

In order to have X̂ and Ŵ, we usually compute the normalized graph Laplacian

matrix

L = D− 1
2LD− 1

2 (3.4)

where D is the degree matrix, L = D−A where A is the adjacency matrix of
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the graph. The eigen decomposition of L can be written as

L = UΛUT =

M∑
i=1

λiuiui
T (3.5)

where λi is the ith eigen value of L corresponding to the eigen vector ui,

Λ = diag(λi) and U = [u1,u2 · · ·uN ]. The exact graph convolution operation

is thus defined as

Ĥ = (UTX)(UTW)

H = UĤ

The graph convolution propagation at kth layer thus becomes

H(k+1) = U
(

(UTH(k))(UTW(k))
)

(3.6)

where H(0) = X and W is learnable. Note that for A = Ac (cycle graph), L

takes the following form

L =



2 −1 0 · · · −1

−1 2 −1 · · · 0

0 −1 2 · · · 0
...

...
...

. . .
...

−1 0 · · · −1 2


The L is circulant and GFT is equivalent to the Discrete Fourier Transform

(DFT) [159]. Similarly, for A = Al (line graph), GFT is equivalent to Discrete

Cosine Transform (DCT). This makes the convolution operation convenient

and computationally efficient as we can avoid eigen decomposition that can be

computationally expensive for arbitrary graph structures.

Following a recent work on GCN [76], we propose to learn the convolution

kernel in Eq. (3.6) in terms of a Multi-Layer Perceptron (MLP). Finally, our

convolution operation takes the following form

H(k+1) = U
(

MLP
(
UTH(k)

))
, (3.7)

where only the MLP parameters are learnable.

Pooling layer. Our objective is to classify entire graphs (as opposed to the

more popular task of graph node classification). Hence, we need a function to

attain a graph-level representation hG ∈ RQ from the node-level embeddings.

This can be obtained by pooling the node-level embeddings H(k) at the final

layer before passing them onto the classification layer. Common choices for
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pooling functions in the graph domain are mean, max, and sum pooling [75, 85].

Max and mean pooling often fail to preserve the underlying information about

the graph structure, while sum pooling has shown to be a better alternative

[76]. We use sum pooling to obtain the graph-level representation:

hG = sumpool(H(K)) =
M∑
i=1

hi
(K) (3.8)

The pooling layer is followed by one fully-connected layer, which produces

the classification labels. Our GCN model is trained with the cross-entropy loss

= −
∑
n

yn log ỹn.

3.3 Evaluation

In this section, we present experimental results and analysis to evaluate the

performance of the proposed GCN architecture with application on speech

emotion recognition.

3.3.1 Dataset

We evaluate our model on two most popular SER databases: IEMOCAP [160]

and MSP-IMPROV [162]. For both databases, a single utterance may have

multiple labels owing to different annotators. We consider only the label which

has majority agreement.

The IEMOCAP database contains a total of 12 hours of data collected

over 5 dyadic sessions with 10 subjects. To be consistent with previous studies,

we used four emotion classes :anger, joy, neutral, and sadness. The final dataset

contains a total of 4490 utterances including 1103 anger, 595 joy, 1708 neutral

and 1084 sad.

The MSP-IMPROV database contains utterances from 12 speakers col-

lected across six sessions. The dataset contains a total of 7798 utterances

including 792 samples for anger, 3477 for neutral, 885 for sad and 2644 samples

for joy.

3.3.2 Node Features

We extract a set of low-level descriptors (LLDs) from the speech utterances as

proposed for Interspeech2009 emotion challenge [163] using the OpenSMILE

toolkit [164]. The feature set includes Mel-frequency cepstral coefficients

(MFCCs), zero-crossing rate, voice probability, fundamental frequency (F0)

and frame energy. For each sample, we use a sliding window of length 25ms

(with a stride length of 10ms) to extract the LLDs locally. Each feature is then
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smoothed using a moving average filter, and the smoothed version is used to

compute their respective first order delta coefficients. In addition, we also add

spontaneity as a binary feature for IEMOCAP as this information is known

to help SER [165]. The spontaneity information comes with the database.

Altogether this yields node feature vectors of dimension P = 35 for IEMOCAP

and P = 34 for MSP-IMPROV (no spontaneity feature).

3.3.3 Implementation Details

Each speech sample produces a graph of M = 120 nodes, where each node

corresponds to an (overlapping) speech segment of length 25ms. Padding

is used to make the samples of equal length. The dimension of the graph

embedding is set to Q = 64. We perform a 5-fold cross-validation and report

both average weighted accuracy (WA) and unweighted accuracy (UA). All

parameters and validation remain the same for both databases. Our network

weights are initialized following the Xavier initialization [166]. We used Adam

optimizer with a learning rate of 0.01 and a decay rate of 0.5 after each 50

epoch for all experiments. We used Pytorch for our experiments on an NVIDIA

RTX-2080Ti GPU.

3.3.4 Results and Analysis

Comparison with graph-based models. We compare our model against

three state-of-the-art deep graph models using the same node features and a

cycle graph structure.

GCN [75]. A natural baseline to compare with our model is a spectral

GCN in its standard form. The original network [75] is designed for node

classification and only yields node-level embeddings. To obtain a graph-level

embedding, we used the sum pooling function.

PATCHY-SAN [85]. A recent architecture that learns CNNs for arbitrary

graphs. This architecture is originally developed for graph classification.

PATCHY-Diff [93]. A recent work on hierarchical GCN proposes to use

a differentiable pooling layer between graph convolution layers. We used this

pooling layer with PATCHY-SAN as in the original paper.

Table 3.1 and Table 3.3 compare our model against these existing graph

models (Graph baselines) in terms of SER accuracy. All these models use the

same node features. Clearly, our model outperforms all the graph baselines by

a significant margin. Compared to the popular GCN [75], our model improves

the recognition accuracy by more than 9% and 3% on IEMOCAP and MSP-

IMPROV, respectively. This result indicates that accurate convolution in the

graph domain improves the accuracy significantly.

Comparison with SER state-of-the-art. In addition to the graph baselines,
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Table 3.1: Results and comparison on the IEMOCAP databases in terms of
weighted accuracy (WA) and unweighted accuracy (UA).

Model WA (%) UA (%)

Graph baselines

GCN [75] 56.14 52.36

PATCHY-SAN [85] 60.34 56.27

PATCHY-Diff [93] 63.23 58.71

SER models

Attn-BLSTM 2016 [151] 59.33 49.96

BLR 2017 [167] 62.54 57.85

RNN 2017 [36] 63.50 58.80

CRNN 2018 [168] 63.98 60.35

SegCNN 2019 [153] 64.53 62.34

LSTM 2019 [37] 58.72 -

CNN-LSTM 2019 [37] 59.23 -

Ours (cycle) 65.29 62.27

Ours (line) 64.69 61.14

Ours (cycle w/o MLP) 64.19 60.31

we compare our model with a number of recent SER models. These include a

Bayesian model [167], CNN models ([37], SegCNN [153]), RNN architectures

([36], RCNN [168]), LSTM models ([37], Attn-BLSTM [151]) and a CNN-LSTM

model [37]. The majority of the above models (except the models by Latif et

al. [37]) use LLDs as input.

Tables 3.1 and 3.3 show that our model outperforms (i) all graph baselines

despite a simpler architecture and (ii) all LSTM-based architectures (a class

of models most commonly used in SER) on both databases by a significant

margin. Our model (with the cycle graph structure) achieves the highest WA on

IEMOCAP and is comparable to the state-of-the-art WA on MSP-IMPROV. In

terms of UA, our model’s performance is comparable to SegCNN on IEMOCAP.

Nevertheless, our model has significantly fewer parameters: 30K learnable

parameters vs. 8.8M in SegCNN and 0.8M in LSTM.

Network size. Table 3.2 compares the number of learnable network parameters

Table 3.2: Model size comparison in terms of learnable parameters

GCN PTCHY-SAN PTCHY-Diff BLSTM Ours

∼76K ∼60K ∼68K ∼0.8M ∼30K

31



Table 3.3: Results and comparison on the MSP-IMPROV databases in terms
of weighted accuracy (WA) and unweighted accuracy (UA).

Model WA (%) UA (%)

Graph baselines

GCN [75] 54.71 51.42

PATCHY-SAN [85] 55.47 52.33

PATCHY-Diff [93] 56.18 53.12

SER models

ProgNet 2017 [161] 58.40 -

CNN 2019 [37] 50.84 -

LSTM 2019 [37] 51.21 -

CNN-LSTM 2019 [37] 52.36 -

Ours (cycle) 57.82 55.42

Ours (line) 57.08 54.75

Ours (cycle w/o MLP) 56.82 53.22

for various models with ours. All graph networks are smaller (an order of

magnitude smaller) than LSTM architectures yet highly accurate. Our model

has the highest accuracy with half the parameters of other graph-based networks.

This is owing to the lightweight convolution operation and because of the choice

of our graph structure. In our approach, graph structure remains the same for

all samples, which requires us to compute the eigen-decomposition only once.

This operation can even be replaced by directly using DFT or DCT kernels, as

mentioned earlier.

Ablation: Between the two graph structures we investigated, higher SER

accuracy is achieved using the cyclic structure on both the databases. With the

line graph, the model accuracy is slightly lower. We also compare our model’s

performance for different pooling strategies (used to compute graph-level

representation from node embeddings) in Table 3.4. Aligned with observations

made in past works (e.g., [76]), sumpool shows improvement over meanpool

Table 3.4: Comparing different pooling strategies for our model on the IEMO-
CAP database.

Pooling Maxpool Meanpool Sumpool

WA (%) 61.68 62.45 65.29
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and maxpool by 2.8% and 3.6% on IEMOCAP. When using graph convolution

without MLP (see Eq. 3.6) performance drops by 1% (see Table 3.1 and 3.3).

These results confirm that each proposed component in our network (MLP

convolution, sumpool) contributes positively towards its performance.

3.4 Conclusion

We proposed a compact and efficient GCN architecture (with only 30K learnable

parameters) for recognizing emotion content in speech. To the best of our

knowledge, this is the first graph-based approach to SER. We transformed

speech utterances to graphs with simple structures that largely simplify the

convolution operation on graphs. Also, the graph structure we defined remains

the same for all samples as our edges are not weighted. This leads to a

lightweight GCN architecture which outperforms LSTMs, standard GCNs and

several other recent graph models in SER. Our model produces higher or

comparable performance to the state-of-the-art on two benchmark databases

with significantly fewer learnable parameters.

In the next chapter, we will continue exploring graph modelling on audio

graphs by learning graph structure.
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Chapter 4

Audio Graph Learning

4.1 Introduction

Human emotion is expressed, perceived and captured using a variety of dynamic

data modalities, such as speech (verbal), videos (facial expressions) and motion

capture (body gestures). Modelling and analysis of these cues are critical for

many human-centric systems with applications ranging from driver’s safety

to mental healthcare to human-robot conversational systems. In recent years,

significant progress has been made towards the recognition and analysis of

emotion using dynamic facial expressions [169, 170], speech [154, 171] and body

gestures [172]. Since human emotion is inherently multimodal, research efforts

that combine information from multiple modalities are also on the rise [173].

Besides expressed emotion, work has also been done to analyze emotion evoked

by natural images [174], videos [175] and music [176].

In the literature of dynamic emotion recognition, recurrent models, such

as LSTM, are common [154, 177]. These networks often have a complex

architecture with millions of trainable parameters requiring large amounts of

training data. This makes many emotion recognition models incompatible

for use in resource-constrained devices. A compact, efficient and scalable way

to represent data is in the form of graphs. We thus adopt a graph approach

to building a compact model for dynamic emotion recognition. Furthermore,

existing emotion recognition models assume a prior knowledge of the input

modality. Since emotion can be sensed through a variety of modalities, a

generalized model that can handle disparate modalities efficiently is important.

We show that our modality-agnostic graph approach is able to achieve state-of-

the-art accuracy across various modalities with significantly fewer trainable

parameters.

Traditionally, sequences are modelled using RNNs. However, recent lit-

erature has successfully used the idea of defining a sequence over a graph

[78, 178, 179]. Considering a video frame sequence as a ‘structured’ graph,
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Input audio

Figure 4.1: A graph approach to modelling speech. Data samples are trans-
formed to a learnable graph structure, where each node corresponds to a
short temporal segment. A novel graph architecture (L-GRIN) produces an
embedding for the entire graph, facilitating speech emotion recognition.

Mao et al. showed that graph models can outperform RNNs [178]. Motivated

by these recent successes and in the pursuit of a compact model, we propose

to adopt a graph approach to model emotion dynamics. Subsequently, we

cast emotion recognition as a joint graph learning and classification problem

(see Fig. 4.1 for an overview). In our approach, each dynamic data sample

is represented as a graph, where each node corresponds to a short temporal

segment in the data. Each node is associated with the features extracted from

the short temporal segment (frame) as its node attributes. This frame-to-node

graph construction approach focuses on modelling the temporal dynamics in

data; note that spatio-temporal structure (e.g., facial keypoints structure)

within the graph resists the idea of a generic, modality-agnostic model and also

increases model size significantly. Our graph structure (and hence the model)

does not change with the choice of modality or node attributes. Modelling as a

graph offers compactness and convenience to handle missing data (particularly

common in mocap).

The graph structure, i.e., the edge weights connecting the nodes, is not

naturally defined here. When a graph structure is not known apriori, a common

practice is to manually construct the graph. This, however, results in sub-

optimal graphs. We thus propose to learn the graph structure itself during the

training stage. This is a generalized formulation, where the temporal depend-

encies between the nodes are automatically discovered. The only assumption

we make is that the graph structure remains the same for all samples in a given

database. To this end, we propose a novel GCN architecture, the Learnable

Graph Inception Network (L-GrIN), with several novel components: a new

definition of graph convolution that uses a non-linear layer-wise projection
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technique, introduction of an inception module in graph domain, learnable

graph structure and a learnable graph-to-vector pooling function. Our archi-

tecture produces superior results on the IEMOCAP, a popular speech emotion

recognition database. In summary, the main contributions of this chapter are

as follows:

• A generalized, modality-agnostic graph approach to classifying dynamic

signals that combines graph learning with graph classification.

• A novel graph architecture, termed L-GrIN, with a new graph convo-

lution layer, a graph inception module, learnable graph structure and

learnable graph-to-vector pooling.

• State-of-the-art performance on speech emotion recognition task.

4.2 Proposed Graph Learning Method

In this section, we describe our deep graph approach to emotion recognition.

First, we construct a graph from dynamic input data following a generalized

frame-to-node approach. Next, we propose a novel architecture that jointly

performs graph learning and graph classification. This is achieved by optimizing

over a new loss function that combines classification loss and a graph structure

loss. The proposed architecture, L-GRIN, is illustrated in Fig. 4.3. Below, we

describe each component of this network in detail.

4.2.1 Graph Construction

Given a dynamic input sequence, our first task is to construct an undirected

graph G = (V,E) that can efficiently capture the emotion-related dynamics in

the data, where V is the set of nodes with cardinality |V| = M and E is the set

of all edges between the connected nodes. A representative description of G is

typically given by an adjacency matrix A ∈ RM×M which is symmetric for an

undirected graph.

Our graph construction approach follows a frame-to-node transformation,

where M frames in the data form the M graph nodes {vi}Mi=1 ∈ V (see Fig. 4.2).

A frame refers to a small temporal segment of the data, e.g., an audio segment

of length 40ms. In order to encode the temporal information, a frame (node)

should be connected with weights to a series of past and future nodes. An

element (A)ij ∈ A contains the weight corresponding to the edge eij ∈ E

connecting vi and vj . Note that the graph structure is not naturally defined

here, i.e., the elements in A are unknown. A common way to define the elements

in A is through constructing a distance function manually [78]. However, this

may result in a sub-optimal graph representation. Hence, we propose to learn
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xM xj+1
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Figure 4.2: Graph construction: Given a dynamic input sequence of M seg-
ments, a fully-connected graph with M nodes is constructed without making
any assumption. The edge weights are learned during the training phase. Each
node is associated with a node attribute vector xi.

the elements in A by jointly optimizing a structural loss combined with a

classification loss. This loss function will be discussed in Section 4.2.2.

In order to capture the emotion content at the node level, we rely on

modality-specific features or even raw data. Each node vi is thus associated

with a node feature vector xi ∈ RP . A feature matrix X ∈ RM×P consisting

all the node feature vectors is defined as X = [x1,x2, · · · ,xM ]T . Features for

individual modalities are discussed in Section A.

4.2.2 Learnable Graph Inception Network

Given a set of (dynamic inputs transformed to) graphs {G1, ..., GN} and their

true labels {y1, ...,yN}, our task is to develop a deep graph architecture that is

able to recognize the emotional content in the data. Since the graph structure

is not naturally defined here, we also learn an optimal A from the training data

with the underlying assumption that each graph has different node features

but the same edge weights. We formulate this as a joint graph learning and

graph classification problem.

A common GCN architecture takes the node feature matrix X ∈ RM×P and

the graph adjacency matrix A as inputs and produces a node-level representa-

tion matrix Z ∈ RM×Q, where Q is the dimension of the output feature vector
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Figure 4.3: Our proposed architecture, L-GrIN, consists of two graph inception
layers (with a new spectral graph convolution layer) and a pooling layer (two
fixed pooling layers and a learnable pooling layer). The inception layers
produce node-level representations that are pooled to obtain a graph-level
representation by the pooling layer. L-GRIN also learns the underlying graph
structure (adjacency matrix) by jointly optimizing a classification loss and a
graph structure loss.

at each node. A GCN layer H(k+1) can be defined as a non-linear function of

its previous layer as follows

H(k+1) = σ(AH(k)W(k)) (4.1)

where W(k) is the weight matrix for the kth layer of the neural network, σ is

a non-linear activation function, such as a ReLU, and k is the layer number

(k = 0, · · ·K). Note that H(0) = X and H(K) = Z. An effective improvement

on this propagation rule has been recently proposed [75].

H(k+1) = σ
(
D− 1

2 (A + I)D− 1
2H(k)W(k)

)
(4.2)

where D is the degree matrix of A, and I is an M ×M identity matrix. Note

that the term within the parenthesis in Eq. (4.2) is simply a linear projection

and can be re-written as

H(k+1) = σ(ÂH(k)W(k)) (4.3)

where Â = D− 1
2 (A + I)D− 1

2 .

We present a new GCN architecture, called L-GrIN (see Fig. 4.3), for joint

graph learning and classification. It has the following four new components:

• Non-linear spectral graph convolution (G∗conv). Motivated by a recent

work on spatial graph neural network [76], we replace the linear projection in

(4.3) by a multi-layer perceptron (MLP) layer, and replace Â by a learnable

A. Thus, instead of the linear layer in (4.3), we define a new spectral graph

convolution layer G∗(·) as follows:

G∗(H(k)) = σ
(

MLP(k)
(
ReLU(A)H(k)

))
(4.4)
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where MLP(.) has two hidden layers with η neurons each, A is the learnable

adjacency matrix and σ is a nonlinear activation function. A is learned through

a joint optimization process described later in this section. The ReLU(·) in

Eq. (4.4) ensures the non-negativity of A. We refer to the convolution operation

defined above as G∗conv in the rest of the chapter.

• Graph inception. We extend the idea of inception layer in traditional

CNNs [180] to the graph domain, and introduce a graph inception module in

our architecture (see Fig. 4.3). Our graph inception layer consists of two graph

convolution layers and one maxpool layer operating on directly connected

(1-hop) neighbours only.

Given an input H(k), the proposed graph inception layer is defined as

follows:

H(k+1) =
[
G∗
1(H

(k)) |G∗
2(H

(k)) |maxpool(H(k))
]

(4.5)

where | denotes concatenation of the node features, and G∗
1 and G∗

2 are two

G∗conv layers (see Eq. (4.4)) with different size of their MLP layers (η = 128

for G∗
1 and η = 64 for G∗

2). Hence, for an input of H(k) ∈ RM×P , the inception

layer produces an output H(k+1) ∈ RM×(128+64+P ).

The motivation behind the inception layer is to be able to capture the

emotion dynamics at multiple temporal scales. The two G∗conv layers that

yield embeddings of different dimensions can be interpreted as a multiscale

analysis on graphs in the spectral domain. Like a traditional inception layer in

CNN, our graph inception layer also combines features from multiple scales

allowing the network to have both width and depth. Our graph inception layer

has fewer parameters (compared to inception networks in CNNs), enabling us

to feed the input directly to the inception layer.

The maxpool function in Eq. (4.5) operates on every node separately. For

each node vi, we only consider its directly connected neighbours (1-hop) and

maxpool over the embeddings along the feature dimension. Note that as we

start with a fully-connected graph, initially, this operation is the same as

maxpooling over all nodes, but this changes quickly as we start learning the

graph structure.

• Learnable pooling for graph-level representation. Our objective is to

classify entire graphs, as opposed to the more common task of classifying each

node. Hence, we seek a graph-level representation hG ∈ RQ as the output of

our network. This can be obtained by pooling the node-level representations

H(k) at the K-th layer before passing them to the classification layer (see

Fig.4.3). Common choices for pooling functions in the graph domain are mean,

max and sum pooling. Max and mean pooling often can not preserve the

underlying information about the graph structure, while sum pooling is shown

to be a better alternative [76]. However, all these pooling functions treat
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every neighbouring node with equal importance, which may not be optimal.

To this end, we propose to learn a pooling function Ψ that combines the

node embeddings from the K-th layer to produce an embedding for the entire

graph. Additionally, we also use maxpool and meanpool and combine all the

graph-level embeddings together. The pooling layer is thus defined as follows:

hG =
[
maxpool(H(K)) |Ψ(H(K)) |meanpool(H(K))

]
(4.6)

Ψ(H(K)) = H(K)p

where p has learnable weights to combine node-level embeddings to obtain a

graph-level embedding.

• Learnable adjacency (A). Recall that in our task, the graph structure

is not known. Although we can define such a structure manually, the results

are sub-optimal. An effective approach would be to learn the graph structure

(adjacency matrix) itself by jointly optimizing over a classification loss and

graph learning loss. We assume that all videos have the same underlying

graph structure containing the same number of nodes and edges. This largely

simplifies our task of graph structure learning. The overall loss L for joint

graph learning and classification is composed of two components: (i) LGC : a

graph classification loss, and (ii) LGL: a graph learning loss. The classification

loss LGC is defined as the cross-entropy loss:

LGC = −
N∑

n=1

yn log ŷn (4.7)

where ŷn is the predicted label for the nth sample. The graph learning loss,

LGL, is designed to facilitate learning the pooling vector p and the adjacency

matrix A. This is defined as follows:

LGL = λ1e
T (Ad ⊙A)e + λ2∥A∥2F︸ ︷︷ ︸

graph structure loss

+ λ3∥p∥22︸ ︷︷ ︸
learnable pooling

(4.8)

where ⊙ denotes element-wise multiplication, e is an all-ones vector, ∥ · ∥F
denotes Frobenious norm, λ1, λ2, and λ3 control the relative weights of the

three terms, and Ad is a structure matrix defined as follows:

(Ad)ij = (i− j)2 (4.9)

The structure matrix Ad forces the nodes that are temporally close to each

other to have stronger relationships, i.e. higher weights in the A. The larger the

squared distance between two nodes vi and vj (frames), the smaller will be the

weights in (A)ij . The ReLU operation (see Eq. (4.4)) ensures the non-negativity

40



of the elements in A. The overall optimization is thus as follows:

min
A,p,Θ(1:k)

L = min
A,p,Θ(1:k)

[
LGC + LGL

]
where Θ denotes all other learnable network parameters across all graph convo-

lution layers, including its constituent MLP layers. Every term in the overall

loss function L is differentiable, thereby allowing an end-to-end optimization.

4.3 Evaluation

In this section, we evaluated our proposed model on speech emotion recognition.

4.3.1 Databases

We use the popular IEMOCAP database [160] for evaluating the performance

of our model on speech emotion recognition. This database contains a total of

12 hours of data recorded in 5 sessions, where each session contains utterances

from two speakers. The final database contains a total of 5531 utterances:

1103 angry, 1708 neutral, 1636 happy and 1084 sad.

4.3.2 Node Features

We extract a set of LLDs from the raw speech utterances as proposed for Inter-

speech2009 emotion challenge [163] using the OpenSMILE toolkit [181]. The

feature set includes MFCCs, zero-crossing rate, voice probability, fundamental

frequency (F0) and frame energy. For each sample, we use a sliding window of

length 25ms with a stride length of 10ms to extract the LLDs locally. Each

feature is then smoothed using a moving average filter, and the smoothed

version is used to compute their respective first-order delta coefficients. In

addition, motivated by a recent work on speech emotion recognition [182], we

also add spontaneity as a binary feature. The spontaneity information comes

with the database. Altogether this produces node feature vectors of dimension

P = 35.

4.3.3 Implementation Details

Each audio sample produces a graph of M = 120 nodes, where each node

corresponds to an (overlapping) speech segment of length 25ms. Cyclic padding

is used to make the samples of equal length as before. We perform a 5-fold

cross-validation and report the average unweighted accuracy in Table 4.1. The

unweighted accuracy, a standard evaluation strategy for IEMOCAP, does not

take into account the class imbalances. It simply computes the total number

of correct classifications across all classes. All other parameters and settings
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Table 4.1: Speech emotion recognition results on IEMOCAP database.

Model Accuracy (%) Params

∗BLSTM (baseline) 58.04 ∼ 0.8M
∗GCN (baseline) 56.14 ∼ 78K
∗PATCHY-SAN [85] 60.34 ∼ 60K
∗PATCHY-Diff [93] 63.23 ∼ 68K

CNN [37] 58.52 ∼ 0.45M

CNN-LSTM [37] 59.23 ∼ 0.6M

Rep learning [183] 50.40 -

LSTM-CTC [154] 64.20 ∼ 0.4M
∗L-GrIN 65.50 ∼ 92K
∗ use same node features

remain the same as before to show the generalizability of our model. We set

λ1 = λ2 = 0.1 and λ3 = 1 × 10−4 (see Eq. 4.8). We used Adam optimizer

with a learning rate of 0.01 and decay rate of 0.5 after each 50 epoch for all

experiments. To initialize the learnable adjacency matrix A, we generate a

random matrix whose elements are drawn from a Normal distribution with

zero mean and unit variance. We used Pytorch for implementing our model

and the baselines and an NVIDIA RTX-2080Ti GPU for all experiments.

4.3.4 Baselines, State-of-the-art

Our model is compared with two baselines (BLSTM and GCN), two state-of-the-

art graph-based architectures (PATCHY-SAN [85] and PATCHY-Diff [93]) as

before. In addition, we also compare our model with four state-of-art methods

in speech emotion recognition: CNN [37], CNN-LSTM [37], representation

learning [183] and LSTM with Connectionist Temporal Modeling (LSTM-CTC)

[154].

4.3.5 Results

Table 4.1 shows that our model performs better than the baselines and state-

of-the-art methods on IEMOCAP. Our model’s performance may seem only

slightly better (1.3%) compared to LSTM-CTC, but it requires 4 times more

parameters than ours. LSTM-CTC uses 238-dimensional feature vectors where

our feature dimension is only 35. Although PATCHY-Diff yields a competitive

accuracy with a smaller model size on IEMOCAP, it trails L-GrIN by a

large margin on other databases. Note that PATCHY-SAN and PATCHY-

Diff perform better than BLSTM and CNN-LSTM methods, indicating the
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effectiveness of graph-based methods in general.

4.3.6 Network Analysis

In this section, we explore the effect of the components and our contributions

in our method. In our method, we proposed a light L-GrIN to process graphs

in different resolutions with the ability to learn the graph structure at the same

time with the main objective. We also proposed a learnable pooling layer to

attend to the node importance for achieving the graph representation. A more

extensive analysis can be found in Appendix A.

Network Size Table 4.1 lists the number of learnable network parameters

for the baselines, state-of-the-art graph-based architectures and the proposed

L-GrIN. As mentioned earlier, a graph network largely reduces the number of

learnable parameters as compared to the BLSTM or CNN architectures without

compromising the recognition accuracy. Our model has more parameters than

the baseline GCN due to the inception layers and other learnable parameters

but also improves the recognition accuracy significantly. PATCHY-SAN and

PATCHY-Diff have smaller network sizes compared to L-GRIN, but both trail

L-GrIN in terms of performance on all databases.

Learnable vs. Fixed Pooling Recall that to obtain a graph-level embedding

from node-level embeddings, L-GrIN learns a pooling function (see Fig. 4.3).

To show if learnable pooling indeed improves the recognition performance, we

compare its performance with various fixed pooling strategies: max pooling,

mean pooling and sort pooling (sortpool) [92]. Table 4.2 presents the com-

parisons on the IEMOCAP database in terms of speech emotion recognition

accuracy, which clearly shows the advantage of learnable pooling over fixed

pooling strategies. A similar trend is observed for other databases.

Learnable vs. Manually Constructed Adjacency An adjacency matrix

represents the pairwise relationship between the graph nodes. When this in-

formation is not available naturally, a common practice is to manually construct

an adjacency matrix. We argued earlier that this might result in sub-optimal

Table 4.2: Comparison between learnable and fixed pooling strategies on the
IEMOCAP database. All experiments in this table use the same (binary)
adjacency matrix for a fair comparison.

Pooling Accuracy (%)

Maxpool 64.32

Meanpool 63.16

Sortpool [92] 61.05

Learnable pool 65.50
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Table 4.3: Comparison between learnable and manually constructed graph
structures. For a fair comparison, all experiments use maxpool to convert node
embeddings to graph embeddings.

Accuracy (%) Params

IEMOCAP IEMOCAP

Binary 61.4 78K

Weighted 54.3 78K

Learnable 65.5 92K

graph structures, which in turn affect the classification performance. We now

compare the performance of learnable adjacency with two fixed adjacency

matrices:

(i). Binary adjacency: a natural choice is a binary adjacency matrix as used

for graph-based action recognition [78]. This is defined as (Ab)ij = 1 if

|i− j| = 1 and 0 otherwise, i.e., a node (frame) is connected only to its

subsequent and preceding node in the temporal direction.

(ii). Weighted adjacency: Another adjacency matrix is formed by using the

squared ℓ2 distance between two node attributes as their edge weight.

This is defined as (Aw)ij = ∥xi − xj∥22.

Table 4.3 compares the performance of the proposed learnable adjacency

with the two fixed adjacency matrices described above on the IEMOCAP

database. For this set of experiments, we used only maxpooling to obtain the

graph-level embeddings for a fair comparison. Clearly, the learnable adjacency

matrix shows consistent improvement in accuracy across all databases for a

relatively small increase in model complexity (only 6% additional parameters).

The results show that a learnable adjacency has better at generalizing across

databases and modalities.

Ablation Study We performed exhaustive ablation experiments to investigate

the contribution of each component we proposed to build L-GrIN. Table 4.4

presents the ablation results on the IEMOCAP database. We observe that

each new component brings significant improvement (row 2 to row 5) over the

performance of standard GCN [75] which has 56.1% recognition accuracy (the

top row in Table 4.4). The introduction of the graph inception layer increases

the recognition rate by 5%; when combined with our new graph convolution

layer G∗conv (Eq. (4.4)), the accuracy increases to 62.7%. Adding the learnable

graph structure (learned A) and learnable pooling bring the accuracy up to

65.5% both contributing to the accuracy. Removing the learnable adjacency
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and pooling reduces the accuracy by 2.3% and 2.6% respectively. The ablation

results show that each of the proposed components in our architecture is

important and contributes positively towards its superior performance.

Table 4.4: Ablation study on the IEMOCAP database. Each new component
in L-GRIN contributes towards its performance.

G∗conv Inception Learned A Learned p Accuracy (%)

- - - - 56.1

✓ - - - 57.2

- ✓ - - 61.5

- - ✓ - 57.9

- - - ✓ 59.0

- - ✓ ✓ 60.4

✓ ✓ - - 62.7

✓ ✓ ✓ - 62.9

✓ ✓ - ✓ 63.2

✓ ✓ ✓ ✓ 65.5

Inception Layer Settings We also investigate the effects of the graph

inception layer hyperparameters: (i) the parameter η corresponding to the size

of the graph convolution filters G∗
1 and G∗

2 in Eq. (4.5), and (ii) the number

of graph inception layers in L-GrIN. First, we vary the filter dimensions

(which can be interpreted as scales) in the two inception layers and note

how this corresponds to the model’s performance. Results for the RML

database are presented in Table 4.5; similar trends have been observed for

other databases. Results in Table 4.5 show that we achieve the best performance

for the combination of (64, 128), which is used in our model. Next, we vary the

number of inception layers in the model, each with (64, 128) filter combination

(see Table 4.5. We observe that reducing or increasing the number of inception

Table 4.5: Analyzing inception layer settings on the IEMOCAP database.

Effect of filter size (η)

Size of the two filters Accuracy (%)

(16, 32) 61.6

(32, 64) 64.3

(64,128) 65.5

(128, 256) 65.1

Effect of number of inception layers

Number of layers Accuracy (%)

1 63.0

2 65.5

3 65.3
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layers from 2 results in a drop in performance. We chose to use two inception

layers in the proposed model. It is obvious that the model size increases

significantly as we add more inception layers or increase filter sizes within

the layers. We notice a small drop in performance with larger filter sizes and

with a higher number of inception layers. This could be possibly due to over-

smoothing and over-mixing of the node features. However, the over-smoothing

effect is not as prominent as in many node classification tasks.

4.4 Conclusion

We proposed a novel, generalized graph architecture that can recognize emotion

in a variety of dynamic input sequences. Our proposed architecture, L-GrIN,

learns to detect emotion while jointly learning the underlying graph structure

(adjacency matrix) and a pooling function to yield graph-level representation

from node-level embeddings. We proposed a new spectral graph convolution

operation and introduced the idea of inception in the graph domain. The

advantage of our model lies in its state-of-the-art performance on speech

emotion recognition task, with significantly fewer parameters compared to the

CNNs and RNNs (to check the results for other modalities, see Appendix A).

This indicates that our model is suitable for applications in resource-constrained

devices, such as smartphones.

We used both modality-specific features and even raw data as node features

in this chapter. Our approach is not tied to any particular feature. In fact,

our model can be trained end-to-end by combining it with modality-specific

networks (e.g., a CNN) for feature extraction. The architecture we developed,

although focuses on emotion recognition, is fairly generic. It will be applicable to

a variety of classification tasks involving dynamic data, such as pose estimation,

action recognition and visual speech recognition. Since our model makes

no assumption about the graph structure, this is also applicable to common

unstructured graphs.

In the next chapter, we will check the validity of self-supervision on graphs

and how we can apply it to audio graphs.
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Chapter 5

Self-supervised Graphs for

Audio Representation

Learning

5.1 Introduction

Large databases with high-quality manual annotations are scarce in the audio

domain. For tasks such as speech-based emotion analysis, manual annotations

are often difficult to acquire due to the subjectivity involved in the perception

and expression of emotion across speakers, language and culture. On the other

hand, for tasks such as acoustics event classification, manually annotating a

large volume of audio data is simply impractical. Thus a core challenge in the

audio analysis is to learn from a limited amount of labelled data while taking

advantage of a larger amount of unlabeled training samples.

Why graphs. SSL has emerged as an effective approach to learning

from unlabeled data [96–99]. We propose an SSL approach on graphs to

learn effective audio representations from a limited amount of labelled data.

Considering each audio sample as a node in a graph, we cast audio classification

as a node labelling task. The motivation behind adopting a graph approach

is two-fold: (i) It leads to compact models as compared to commonly used

recurrent speech models as noted in recent works [1, 184]; (ii) A graph structure,

if properly constructed, can efficiently capture the relationship between the

small number of available labelled nodes and a larger number of unlabeled nodes.

Extensive experiments with standard benchmarks bring out the advantages

of graph-based methods in terms of performance compared to the non-graph

models.

Following the success of SSL on images, it has been extended to graph

data for both fully supervised [113], and semi-supervised [114, 185, 186] tasks.

Graph SSL tasks usually involve learning the local or global structure or the
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Figure 5.1: Our model: A subgraph-based audio representation learning
framework with SSL task. Our subgraph construction technique is efficient, can
handle class imbalance, and the SSL framework facilitates robust and effective
learning from highly limited labelled data.

context information in the data [113, 114, 185]. Conventional graph tasks such

as node clustering and graph partitioning have already been used as SSL tasks

[185]. In the audio domain, SSL has also started gaining popularity. Several

recent papers report that SSL can improve over fully supervised models [72]

while others use crossmodal self-supervision from visual domain [107, 108].

However, works that use the graph approach to learning audio representation

are limited. We are aware of only one recent work where an audio sequence

has been considered as a line graph to exploit graph signal processing theory

to achieve accurate spectral graph convolution [1].

In this chapter, we propose a graph SSL approach to learning effective audio

representations from a limited amount of labelled data. Considering each audio

sample as a graph node, we propose a subgraph-based learning framework

with new self-supervision tasks. Our framework takes advantage of the entire

pool of available data (labelled and unlabeled) during training, while during

inference, our subgraphs are constructed using random edges with no overhead

(e.g., nearest neighbour computation) of graph construction. In contrast to

the more common SSL-then-finetune approach, we use an auxiliary learning

paradigm where an SSL task and a node labelling task are performed jointly.

Evaluation on large benchmark databases shows that our model achieves better

results than fully supervised models outperforming state-of-the-art on several

databases. To summarize, our contributions are as follows:

• We develop a subgraph-based auxiliary learning framework for audio

representation learning with limited labelled data. To the best of our

knowledge, ours is the first work on self-supervised semi-supervised audio
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representation learning with graphs.

• We propose two new graph SSL tasks: graph denoising and graph shuffling,

and show that they can improve the performance of any graph network

for semi-supervised node classification.

• We demonstrate the superior performance of our model for two tasks

(acoustic event detection and speech emotion classification) on three large

benchmark audio databases. Our model, despite using limited labelled

data, performs better or on par with fully supervised models and can

produce representations that are robust to various types of audio noise.

5.2 Proposed Graph Self-supervised Tasks

In this section, we propose our self-supervised (sub)graph-based audio repres-

entation learning model. Our model consists of an audio feature encoder, a

subgraph construction step and a multitask-SSL architecture with new pretext

tasks and loss functions.

5.2.1 Audio Feature Encoder

Our model has a feature encoder f : S→ H that takes raw audio S as input

and returns embedding H. These embeddings are used as node attributes in

graph G that we construct using labelled and unlabeled training data (described

below). Owing to the different types of audio data (speech and sound), we

use two different feature encoders: low-level descriptors for speech data and

log-spectrogram-based convolutional features for the generic (non-speech) audio.

We chose simpler embeddings so as to demonstrate the effectiveness of our graph

approach. Nevertheless, our model is not tied to any specific embedding, and

rich audio embeddings such as wav2vec [101] may lead to better classification

results. More details about f are provided in the Experiments section.

5.2.2 Graph Construction During Training

Given a collection of N (labelled and unlabeled) audio samples for training, we

construct an undirected graph G = (V,E) to capture the relationships among

the samples, where E is the set of all edges between the connected nodes, and

V = Vl ∪ Vu has |Vl| = M labeled and |Vu| = (N −M) unlabeled nodes. To

construct the graph G, we first consider the labelled nodes. For a node vi ∈ Vl,

we compute its k-nearest neighbors among all nodes in Vl based on their node

attributes zi. We add an edge eij ∈ E with edge weight aij = 1 to the first

Q nodes, if vj is among the k-nearest neighbors of vi and has the same label

as vi. We add another edge eip ∈ E with weight aip = −1 between vi and its

49



farthest node vp ∈ Vl. This negative weight is expected to force the two nodes

to be apart in the embedding space. Every unlabeled node in Vu is connected

to its two nearest and one farthest neighbour with a respective edge weight

of 1 and −1, where the neighbours can be any node in V. We thus obtain a

corresponding graph adjacency matrix A = {aij}Ni,j=1.

5.2.2.1 Subgraph Construction

Instead of constructing one large graph containing all training samples, we

propose to construct and train on subgraphs. In our case, subgraph construction

ensures that we do not end up with a sparse graph. This is also motivated by the

observations made in several recent papers where subgraphs are able to learn

local context more effectively (without oversmoothing or node dependence)

while reducing computational load [187–190]. To construct a subgraph Gs,

we randomly select Ns ∈ Vl labeled nodes (equal number of samples from

each class) and Ms ∈ Vu unlabeled training nodes, yielding a set of Vs nodes,

|Vs| = Ns + Ms. This procedure ensures the degrees of the nodes do not vary

too much and class balance is maintained in each subgraph. Next, the edges in

the subgraph are added the same way as for the full graph mentioned above.

We also show that this approach produces better results than working with a

single large graph.

5.2.3 Subgraph SSL Training with Limited Labels

We adopt an auxiliary learning paradigm to merge self-supervision into the

main task of audio classification. This is done by jointly optimizing for node

classification and an auxiliary graph SSL task. Our model (see Fig. 5.1) has

a shared GCN module for learning the latent audio representations, which is

followed by two branches: one for audio classification and the other for SSL.

Our model is inductive, i.e., neither attributes nor edges of the test nodes are

present during the training process. This is a more challenging scenario than

transductive learning [191].

Our node (audio) classification sub-network uses supervision from only the

true labels while producing pseudolabels for the unlabeled nodes. We train this

sub-network using two loss functions:

(i) Cross-entropy loss Lce computed for the labeled nodes.

Lce = −
∑
vp∈Vl

yp log(ŷp) (5.1)

(ii) For the unlabeled nodes, we propose to compute an entropy regularization

loss Len. This can be considered as a measure of class overlap - the lower the
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Algorithm 1: Subgraph-based SSL training

Input : Labeled nodes Vl, unlabeled nodes Vu, node embeddings X
Output :Learned parameters (Θ,Θ′,Θ′′), pseudolabels ŷp for Vu

for each epoch do
Gs ← subgraphConstruct(Vl,Vu,X)
Ĝs ← createGraphforSSL(Gs)
ŷ← gΘ′ (fΘ(Gs)); X̃← gΘ′′ (fΘ(Ĝs))

Θ,Θ′,Θ′′ ← Lce + λ1Len + λ2Lssl

end
Function subgraphConstruct (Vl,Vu,X)

Vs ← randomly select Ns nodes from Vl and Ms nodes from Vu

for ∀vs ∈ Vs do
Vnn ← nearest neighbors(vs)
if vs ∈ Vl then

Es
+← edge between vs and 2 nearest nodes vi ∈ Vnn with

same labels with edge weight 1
else

end

Es
+← edge between vs and 2 nearest nodes vi ∈ Vnn with edge

weight 1
end

Es
+← edge between vs and farthest vi ∈ Vnn with weight (−1)

end
return Gs(Vs,Es)

entropy loss, the more distinguishable the predicted class labels are.

Len = −
∑

vp∈Vu

P (ŷp)log(P (ŷp)) (5.2)

where yp is the true label for node vp, ŷp is its predicted label, Vl and Vu are

the sets of labelled and unlabeled training samples. The SSL sub-network is

trained using a graph SSL task optimizing over a loss function Lssl (discussed

below). Given a subgraph input Gs, the overall optimization is given by:

min
Θ,Θ′,Θ′′

[
Lce(Θ,Θ′,Gs) + λ1Len(Θ,Θ′,Gs)+

λ2Lssl(Θ,Θ′′, Ĝs)
] (5.3)

where Θ, Θ′, and Θ′′ are the learnable parameters for the shared GCN, classi-

fication GCN and the SSL sub-networks, Ĝs is the SSL variant of Gs, and λ1

and λ2 control the relative weights of SSL loss and entropy regularization.

To this end, we experiment with three graph SSL tasks. These SSL tasks

are model-agnostic, and can be used with any graph neural network. We

propose two novel proxy tasks in the graph SSL domain: graph denoising and
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graph shuffling. In addition, we also experiment with the recently introduced

graph completion proxy task.

5.2.3.1 Graph Denoising (Proposed)

Motivated by the speech denoising autoencoder [192] that learns by reconstruct-

ing clean speech from noisy input, we propose the SSL task of graph denoising.

Given a subgraph Gs, we construct a noisy graph Ĝs, where Gaussian noise is

added to every node feature vector x̂s(i) = xs(i) + z(i), where z(i) ∼ N(0, ϵ)

by adding Gaussian noise with zero mean and ϵ variance to each node feature.

The SSL regression task is to learn to reconstruct node feature matrix Xs from

noisy X̂s by optimizing the following loss function:

Lssl =
1

|Vs|
∥X̃s −Xs∥2F where X̃s = g(Θ,Θ′′, X̂s) (5.4)

It’s worth mentioning that in a recent study [193], a denoising autoencoder

has been used to perform self-supervision on graph data. This work is different

in a number of ways. They used a self-supervised approach that jointly learns

the graph structure and node features at the same time. While we apply the

cleaning loss (Eq. 5.4) after a graph-based feature extractor, the referenced

work proposed an auto-encoder architecture that receives noisy node features

as well as the predicted graph structure as input. In addition, the loss function

in the reference was binary cross-entropy while we tried to reconstruct the

node features with L2 norm loss (MSE).

5.2.3.2 Graph Completion

This SSL task forces the network to learn to reconstruct missing information

so as to learn local context. Following a recent work [185], we mask a random

set of target nodes Vsc ⊂ Vs by setting their node attributes to zero. The task

is to recover this missing information for the target nodes. Given Gs, denote

the ground truth feature matrix corresponding to Vsc as Zsc and its predicted

version as Z̃sc, the SSL loss is then given by

Lssl =
1

|Vsc|
∥X̃sc −Xsc∥2F (5.5)

5.2.3.3 Graph Shuffling (Proposed)

We propose a novel SSL task that aims to determine whether or not a graph

node is in its correct position. This task encourages the graph network to

learn structural dependencies among nodes without using annotations. Given

Gs, we randomly sample a set of graph nodes Vsh ⊂ Vs and shuffle their node

attributes randomly with each other creating Ĝs. The SSL task is posed a
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binary node classification task on Ĝs where the model outputs 1 if is node is

unchanged and 0 otherwise.

Lssl = − 1

|Vsh|
∑

vi∈Vsh

yi log(ŷi) + (1− yi) log(1− ŷi) (5.6)

5.2.4 Subgraph Construction During Inference

After completing training, we obtain a large number of pseudolabeled samples.

In order to create the subgraph during inference, we randomly sample |Vs|
nodes (equal number of nodes from each class) from the entire set of training

samples considering both true and psesuolabels. The edges between these nodes

are constructed as was done during training. Each test node (audio sample) vt

has to be connected to this graph structure Gs. Computing nearest neighbours

during inference time may not always be practical; hence, we propose to connect

vt with T training nodes (labelled or pseudolabeled) randomly with edge weight

1.

5.2.4.1 Optimal Number of Random Edges

A natural question is what is the optimal value of T so as to ensure that we do

not connect to only pseudolabeled nodes, which could be incorrect. Hence, we

ask: What is the minimum number of nodes a test node, vt, should be connected

with, such that there is at least one connection with a true-labelled node?

Let G be a graph with |V| nodes, including known N true labelled and

M pseudolabeled nodes. The probability of having all T edges from vt to

be connected with only the pseudolabeled nodes is given by
(M−1

T )
(N+M−1

T )
using

Hypergeometric distribution. Therefore, the probability of an vt to be connected

to at least one true labeled node is given by P = 1− (M−1
T )

(N+M−1
T )

. With known

N and M , we set a high value of P (= 0.9) to compute the value of T for

our experiments. Once the graph is thus constructed, we use only the audio

classification branch to determine the class labels for the test nodes.

5.3 Semi-supervised Acoustic Event Classification

This section presents extensive experimental results on the analysis of our

model and demonstrates its effectiveness for audio classification tasks. For

more analysis of the proposed self-supervised tasks, check Appendix B.

5.3.1 Datasets

We use a large scale weakly labeled database called the AudioSet [194] that

contains audio segments from YouTube videos. We work with 33 class labels
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that have a high rater confidence score (≥ 0.7) (see Fig. 5.2 for the names of

those classes). This yields a training set of around 89,000 audio clips and a

test set of more than 8,000 audio clips. We consider only 10% of the 89,000

training samples as labelled and the rest are used as unlabeled training data

for our experiments.

5.3.2 Feature Encoder

To extract the node features, each audio clip is divided into non-overlapping

960 ms segments. For each segment, a log-mel spectrogram is computed by

taking its short-time Fourier transform using a frame of length 25 ms with 10

ms overlap, 64 mel-spaced frequency bins and log-transforming the magnitude

of each bin. This creates log-mel spectrograms of dimension 96× 64 which are

the input to the pre-trained VGGish network [195]. We use the 128-dimensional

features extracted from the VGGish for each log-mel spectrogram and average

over all segments to form the final vector representation of each audio clip.

Note that although we use VGGish embeddings to be comparable with previous

works, other generic audio embeddings will work as well.

5.3.3 Experimental Settings

To construct the subgraph during training, we sample data with Ms = 5,

Ns = 2 × number of classes, and T = 4. This yields a subgraph size of 71

nodes. This process ensures the subgraph nodes are class-balanced every

time. The subgraph construction process is repeated until all unlabeled nodes

appear at least once, i.e., the subgraphs are constructed by sampling without

replacement. Note that for constructing the edges, the nearest neighbours need

to be computed only once for all the training nodes. For the test nodes, no

nearest neighbour computation is needed due to our random edge construction

strategy. For graph neural network, we select regular GCN [75] with 2 graph

convolution layers and a hidden size of 256 for all layers. We used the same

architecture for all experiments. We use the 80:10:10 train:validation:test split

only for the semi-supervised framework, where we consider 10% of that 80%

train data as labelled and the rest as unlabeled. All hyperparameters were

chosen solely based on validation data, with test data accounting for no model

or parameter selections. In order to obtain robust estimates of performance

metrics, this process is repeated 5 times to report the average accuracy and

standard deviation. We set λ1 = 0.01 and λ2 = 0.1 (see Eq. 5.3). Our model

uses Xavier initialization and the Adam optimizer with a learning rate of 0.001

for all experiments. We use Pytorch for implementing our models and the

baselines. All models were trained on a single NVIDIA RTX-2080Ti GPU.
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Figure 5.2: Results on AudioSet: Class distribution and average precision
per class achieved using our model with graph completion task. Note that our
model can handle the class-imbalance owing to our graph construction process,
as high AP is achieved even for classes with fewer samples.

5.3.4 Baselines

We compare our method with a number of fully supervised models in Table

5.1. The Spectrogram-VGG model is the same as configuration A in [196] with

only one change: the final layer being a softmax with 33 units. The feature

for each audio input to the VGG model is a log-mel spectrogram of dimension

96×64 computed averaging across non-overlapping segments of length 960ms.

We did not adjust the hyperparameters for baselines other than VGG and

used the settings stated in the original papers. The fully supervised version

of our model follows the same graph construction strategy as proposed with

80:10:10 (train:validation:test) split. The split process is done 5 times for our

models, and average performance with standard deviation is reported. All

other baseline implementations are done by the authors and follow the same

evaluation protocol as the proposed methods.
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Table 5.1: Acoustic event detection results on AudioSet: Our model, using
only 10% labelled data, outperforms all semi-supervised models and several
fully supervised models. The fully supervised version of our model without
SSL shows comparable performance to the state-of-the-art, indicating the
effectiveness of our subgraph-based learning strategy for audio classification.
It’s worth noting that the current amount of parameters for our model excludes
the feature extractor, which may vary depending on the model.

Model mAP Params

Semi-supervised

Ours w/o SSL 0.23± 0.01 218K
Ours w/ denoise 0.26± 0.00 260K
Ours w/ completion 0.27± 0.01 260K
Ours w/ shuffle 0.24± 0.00 219K
Ours w/ all three SSL 0.28± 0.02 261K

Spectrogram-VGG 0.16± 0.05 6M
AST [48] 0.22± 0.01 88M

Fully supervised

Ours w/o SSL 0.42± 0.02 218K
Spectrogram-VGG 0.26± 0.01 6M
DaiNet [197] 0.25± 0.07 1.8M
Wave-Logmel [45] 0.43± 0.04 81M
VATT [198] 0.39± 0.02 87M
AST [48] 0.44± 0.00 88M

5.3.5 Results

Table 5.1 reports the average recognition accuracy (averaged over 5 runs) with

standard deviation for each model and its variants. For the case of all three

SSL, we applied all three self-supervised tasks in parallel with a shared feature

encoder and add the corresponding loss functions to the main classification

loss. It compares the performance of our model with different SSL tasks with

that of fully supervised models in terms of mean Average Precision (mAP).

The graph models with SSL outperform the plain graph model without SSL.

When compared with the fully supervised models, our graph SSL models

(denoise and completion in particular) outperform Spectrogram-VGG, and

DaliNet [197]. Our model also has significantly fewer learnable parameters.

The fully supervised GCN model uses the same graph construction method as

proposed and performs very close to the state-of-the-art. This demonstrates

the effectiveness of our graph construction strategy. Fig. 5.2 shows the average

precision (AP) per class for the AudioSet database. A high AP is achieved

even for classes with fewer samples, e.g., church-bell has an AP of 0.843 even

with only 627 samples. This suggests that our model is not highly affected by

56



a lower number of samples owing to how we construct the sub-graphs during

the training process.

5.4 Evaluation

In this section, we evaluate our method on semi-supervised speech emotion

recognition.

5.4.1 Datasets

For this task, we use the two most popular speech emotion datasets.

The IEMOCAP [160] dataset contains 12 hours of speech collected over 5

dyadic sessions with 10 subjects. It includes 4490 utterances with labels, 1103

anger, 595 joy, 1708 neutral and 1084 sad.

The MSP-IMPROV [162] contains 7798 utterances from 12 speakers collected

across six sessions including 792 samples for anger, 3477 for neutral, 885 for

sad and 2644 samples for joy. The train-test split is the same.

5.4.2 Feature Encoder

Following relevant past works on speech emotion analysis [163], we extract a set

of LLDs from the speech utterances using the OpenSMILE library [164]. This

feature set includes MFCCs, zero-crossing rate, voice probability, fundamental

frequency (F0) and frame energy. For each audio sample, we use a sliding

window of length 25ms (with a stride length of 10ms) to extract the LLDs.

The local features are smoothed temporally using a moving average filter,

and the smoothed version is used to compute their respective first-order delta

coefficients. Then we compute the mean, max, standard deviation, skew and

kurtosis of the extracted LLDs and their delta coefficients to compute one

feature vector per speech sample. Altogether this yields node embeddings of

dimension 165 for an audio clip.

5.4.3 Experimental Settings

We follow the same settings as in the acoustic event detection task with a

change in the graph size. The input graph used for this task has 53 nodes,

where Ms = 5, Ns = (12× number of classes), and T = 4. Further discussion

on the effect of graph size is presented in the next section.

5.4.4 Results

Table 5.2 compares our model against the state-of-the-art supervised, non-graph

semi-supervised, and non-graph self-supervised methods on the two speech
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Table 5.2: Speech emotion recognition results: Classification (unweighted)
accuracy (in %) on two benchmark databases are presented. Our model,
using only 10% labelled data, outperforms semi-supervised and several fully
supervised models on both databases. The fully supervised version of our model
produces the highest accuracy even without SSL, indicating the effectiveness
of our subgraph-based learning strategy. (* indicates audiovisual models).

Model IEMOCAP MSP-IMPROV Param

Semi-supervised

Ours w/o SSL 63.8± 2.2 58.6± 1.8 212K
Ours w/ denoise 68.0± 1.1 64.1± 1.0 271K
Ours w/ completion 66.4± 1.7 63.8± 1.5 271K
Ours w/ shuffle 65.9± 1.4 64.1± 1.3 213K
Ours w/ all three SSL 68.6± 1.2 65.2± 1.8 272K

LadderNet [199] 60.7 - -
Transformer* [200] 61.2 - -
SimCLR [201] 65.1 - 30M

Self-supervised

SSAST [202] 59.6 - 89M
BYOL-S/CvT [203] 65.1 - 5M
wav2vec 2.0 [204] 65.6 - 317M
HuBERT [204] 67.6 - 316M

Fully supervised

Ours w/o SSL 70.5 66.7 212K
SegCNN [153] 64.5 - -
GA-GRU [205] 63.8 55.4 -
CNNattn [206] 66.7 - -
WADAN [207] 64.5 - -
SpeechGCN [1] 62.3 57.8 30K

databases. Clearly, our method (with denoise SSL in particular) outperforms

others by a significant margin, using only 10% of the training data as labelled.

Again note that the fully-supervised version of our model yields state-of-the-art

result. Furthermore, as compared to non-graph self-supervised methods, our

method provides comparable or higher results (especially with denoise and all

three SSL) with a substantially reduced number of parameters. The results

show that SSL with subgraph is an effective learning framework for speech

classification even when labelled data is highly limited.
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Figure 5.3: (a) Impact of graph size on audio classification performance on the
IEMOCAP database. (b) Effect of the fraction of masked nodes for the SSL
tasks. The results shown are for the IEMOCAP database. The ⋆ indicates the
best performance.

5.5 Model Analysis and Ablation Studies

5.5.1 Why Subgraph Instead of a Large Graph

To investigate whether subgraphs indeed produce superior performance, we

experimented with a single big graph that includes all training samples simul-

taneously. When compared with the semi-supervised audio node classification

task on IEMOCAP, the large graph achieves only a 49.44% recognition accuracy

which is much lower than the accuracy (63.84%) achieved using the subgraphs-

based learning framework, both without SSL. An intuitive explanation of the

superior performance of subgraphs for audio classification: Since the graph

structure is not given, constructing smaller graphs with balanced class samples

introduces less error (as compared to a large graph) as subgraphs limit the

number of unlabeled nodes per graph.

Fig. 5.3(a) shows how the classification performance varies with graph size

(number of nodes). We observe that initially, the recognition accuracy improves

as the graph size increases (up to size 50), but then starts decreasing. Overall,

our observation is that subgraphs are more effective than using larger graphs

in settings where we have limited labelled and a large amount of unlabeled

training data.

5.5.2 Number of Masked Nodes in SSL Tasks

For the completion and the shuffle SSL tasks, we select a fraction of nodes

(masked nodes) within a subgraph to apply the transformation. Fig. 5.3(b)

shows how the fraction of masked nodes affects the classification performance.

We observe that, in general, the recognition accuracy drops as masked nodes

are increased beyond 10%. Following this observation, we mask 10% of the

nodes in a subgraph during the SSL task.

59



2 3 4 5 6
Number of conv layers

GCN

Denoise

Completion

Shuffle

M
od

el
s

0.217 0.212 0.195 0.185 0.187

0.442 0.409 0.363 0.343 0.322

0.402 0.400 0.366 0.329 0.310

0.444 0.407 0.362 0.338 0.316

Figure 5.4: Oversmoothness analysis for IEMOCAP dataset: Measured in
terms of mean average distance (MAD), is significantly smaller for our SSL-
based models compared to GCN models. Darker colour indicates smaller
MAD values, i.e., higher oversmoothing. We observed a similar trend for other
datasets studied in our work.

5.5.3 Oversmoothness

GCN models are known to suffer from oversmoothness as the number of layers

increases [208]. We investigate whether our model benefits from SSL in mitig-

ating oversmoothness. A quantitative metric for measuring oversmoothness

is Mean Average Distance (MAD). It measures the average distance from a

node to all other nodes [208]. Using MAD, we experimented with a varying

number of graph convolution layers on the IEMOCAP database. Fig. 5.4 shows

that SSL-based models are more resilient to oversmoothness, producing more

distinguishable node embeddings. This is clear from the average distances

being much larger compared to the no SSL case. A similar trend is observed

in other datasets.

Table 5.3: Model robustness against noise: Performance changes in recognition
accuracy (in %) for noisy speech vs. clean speech. The results shown are for
the IEMOCAP database where ↓ indicates a drop in performance.

Speech noise types

Babble Factory White Pink Cockpit

Ours w/o SSL 2.8 ↓ 1.6 ↓ 3.1 ↓ 2.0 ↓ 1.1 ↓
Ours w/ denoise 0.5 ↓ 1.2 ↓ 0.5 ↓ 0.9 ↓ 0.8 ↓
Ours w/ completion 0.7 ↓ 1.1 ↓ 0.8 ↓ 1.3 ↓ 1.6 ↓
Ours w/ shuffle 0.8 ↓ 0.8 ↓ 1.0 ↓ 1.5 ↓ 0.9 ↓
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Figure 5.5: Performance using less than 10% labelled data: Our model performs
reliably with SSL producing consistent improvement as labelled data becomes
scarce; the denoise task performs the best (results shown for IEMOCAP).

5.5.4 Robustness Against Noise

To investigate the robustness of our model against noisy data, we experiment

with six common noise types that may corrupt speech data: babble, factory,

white, pink and cockpit noise [209]. Assuming additive noise, the noisy mixtures

are obtained by adding the noise (one type at a time) to each speech sample

first and then using the feature encoders as usual. Noise is added only to the

test samples during inference. We compare the performance of our model on

noisy test data with that with clean test input in Table 5.3 for the IEMOCAP

dataset. Clearly, SSL provides significant robustness against noise as their

drop in performance is consistently smaller compared to GCN semi-supervised

results without SSL.

5.5.5 Reducing Labeled Data Further

We further investigate how the subgraph strategy holds up to even more scarce

labelled data and whether or not the SSL tasks help. Fig. 5.5 shows the

performance of our model with 2% and 5% labeled data in addition to 10% on

the IEMOCAP database. We note that SSL tasks bring consistent improvement

across all cases, where the denoise task performs the best.

5.6 Conclusion

Our work contributes to the understanding of semi-supervised audio repres-

entation learning - a relatively understudied topic in the acoustics and speech

community. We developed a subgraph-based SSL framework for audio rep-

resentation learning with limited labelled data. We make use of graphs to

capture the underlying information in the unlabeled training samples and

their relationship with the labelled samples. To this end, we proposed an
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effective subgraph construction technique and two new graph SSL tasks. Our

framework is generic, and can effectively handle both speech and non-speech

audio data. Our model could achieve comparable or better performance than

fully supervised models, despite using only 10% of the labelled data. Since the

graph structure in our task has to be constructed first, our model is currently

not end-to-end learnable. This could be addressed in future work where the

graph structure itself is learned jointly with the embeddings. Furthermore,

our current model relies on pre-trained embeddings, which gives the flexibility

of choosing any suitable embeddings. Nevertheless, our model can be made

end-to-end trainable which will be addressed in a future work.

In the next chapter, we step ahead, and multimodality will be explored to

determine whether it is advantageous for learning audio representations.
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Chapter 6

Visually-aware Graph-based

Audio Representation

Learning

6.1 Introduction

Audio perception by humans is inherently multimodal in nature. It involves

processing both aural and visual cues. Visual cues are important not only for

audio source localization [18], but also for improving audio perception [19].

Perceptual studies have also revealed that visual cues can even change how

sound is heard [20].

The majority of existing works on learning audiovisual representations

rely on maintaining a tight temporal synchrony between the visual and audio

modalities [130–132]. Consider a scene of a bike moving away from the camera.

The revving sound of the bike fades as it moves away. While an audio-only-

based model may not be capable of detecting the fading sound as ’bike’,

taking into account the bike as a visual cue, it is possible to identify the

event as ’motorbike running’. Computer vision-inspired models are common

[133–135], where two augmented views of a given audio/audiovisual sample

are fed to a shared ‘backbone’, followed by optimizing a contrastive loss [136–

140], distillation [140, 141], quantization [130] or information maximization

[142, 143]. However, the vision-inspired audio representation learning methods

do not take full advantage of the temporal information available in video data

or the complementary knowledge between modalities. Another difficult aspect

of such approaches is that data augmentation functions, being vision-inspired,

are not often well-suited to a multimodal input.

Heterogeneous graphs are a compact, efficient, and scalable way to represent

data involving multiple different entities and their relations [144, 145]. Model-

ling the interaction of entities (including modalities) with heterogeneous graphs
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Figure 6.1: (Left) Heterogeneous graph architecture. We split the input
video clip into Q and P overlapping segments and then construct the hetero-
geneous graph containing intra- and inter-modality edges between nodes. Each
edge type is considered and processed by the corresponding GNN. For both
audio and video modalities, heterogeneous graph convolution layers are utilised
to extract the embedding for each node. Separate learnable pooling modules
are then used to capture the overall graph representation. (Right) Hetero-
geneous graph layer has two independent audio and video flows taking into
account intra-modality edges, as well as an attention layer connecting video
nodes to audio nodes considering inter-modality edges.

is a relatively new paradigm. Multimodal heterogeneous graphs have been

successfully used to address various problems in computer vision and natural

language processing, such as visual-question answering [146], multimedia recom-

mendation [144, 147], audio-visual sentiment analysis [148], and cross-modal

retrieval [145]. Multimodal heterogeneous graphs lead to a closer coupling

between concepts in multiple modalities, resulting in a significant performance

improvement over previous methods [144, 146–148]. Motivated by the success

of graph-based methods in multimodal problems, we propose a heterogeneous

graph-based approach to learn visually-aware audio representations.

In this chapter, we propose a visually-aware audio representation learning

approach based on heterogeneous graphs (see Fig.6.1 for an overview) in

the context of acoustic event detection. Our heterogeneous graph model

creates a shared space for audio and visual modalities that takes advantage of

their spatial and temporal relationships explicitly. We first model the input

audiovisual clip as a heterogeneous graph with two sub-graphs, one for each

modality with edges capturing inter- and intra-modality relationships. We next

develop a heterogeneous graph neural network which is able to capture rich

audio representation incorporating complementary information from the visual

information. Our contributions are as follows:

• We develop a graph construction method for converting an audiovisual

clip to a multimodal heterogeneous graph.

• We propose a novel heterogeneous graph neural network (HGNN) that

can capture modality-specific information as well as complementary
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Figure 6.2: Heterogeneous graph construction process. For simplicity, the edges
are only shown for vi and vj . Similar connections are added for each node.

information between modalities.

• We demonstrate improved performance by our model for the task of

acoustic event classification on the large benchmark AudioSet dataset.

6.2 Proposed Method

This section describes our proposed approach for visually-aware audio repres-

entation learning. First, we construct heterogeneous graphs to represent the

audiovisual data consisting of modality-specific subgraphs and inter-modality

edges. Next, we propose a heterogeneous graph neural network (HGNN) ar-

chitecture that performs graph classification in the context of acoustic event

detection.

6.2.1 Heterogeneous Graph Construction

Our first task is to construct a heterogeneous graph G = (V,E, O,R), where

V represents the set of nodes, E the set of edges, O is the set of node types

(object/modality), and R is the set of edge types, where |O|+ |R| > 2 Each

node v ∈ V is associated with a node type and each edge e ∈ E is associated

with an edge type.

Given an audiovisual input, we uniformly divide the video frames and the

audio into P and Q segments (see Fig.6.2). The segments are used for feature

extraction. Then, given the video and the audio segments, we construct a

heterogeneous graph with node sets Vv = {vi}Pi=1 and Va = {ai}Qi=1, with edge

sets E = {Evv,Eaa,Eva}, which represent edges between video-only nodes, audio-
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Figure 6.3: AudioSet sample video. An ambulance starts moving, sirening,
and the camera tracks it.

(a)    1 sec segments (b)    0.5 sec segments (c)    0.25 sec segments

Figure 6.4: Correlation matrices. We compute the correlation matrices for the
ambulance video data (Fig. 6.3) in three different time resolutions: 1, 0.5, and
0.25 second segments. Dashed lines show the pattern in (a).

(a)    1 sec segments (b)    0.5 sec segments (c)    0.25 sec segments

Figure 6.5: Correlation matrices. We compute the correlation matrices for the
ambulance audio data (Fig. 6.3) in three different time resolutions: 1, 0.5, and
0.25 second segments. Dashed lines show the pattern in (a).

only nodes, and between audio-video nodes respectively. These corresponding

adjacency matrices are denoted as Av, Aa, and Ava. Each node vi ∈ Vv

corresponds to a video segment and its associated feature vector is xv
i ∈ Rdv .

Similarly, an audio node ai ∈ Va is associated with feature vector xa
i ∈ Rda .

Since the graph structure is not naturally defined here, we propose to add

inter- and intra-modality edges (see Fig. 6.2). Additionally, Our graph has two

parameters for each edge type, i.e, for Evv,Eaa,Eva: (i) span across time and

(ii) dilation. The former denotes the number of nodes connected to each node

in the temporal direction, whereas the latter denotes leaps between nodes. In

total, we have six hyperparameters for graph construction.

Inspired by SlowFast [210], we further investigate our data by segmenting

and visualizing the correlation matrices in various time resolutions. To do so,
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Figure 6.6: AudioSet sample video. An agent switches on and off, and an
alarm sounds.

(a)    1 sec segments (b)    0.5 sec segments (c)    0.25 sec segments

Figure 6.7: Correlation matrices. We compute the correlation matrices for the
alarm video data (Fig. 6.6) in three different time resolutions: 1, 0.5, and 0.25
second segments. Dashed lines show the pattern in (c).

we picked two data samples from AudioSet. The first (Fig. 6.3) is a video clip

showing a fast-moving ambulance with blue lights blinking and sirening. The

second (Fig. 6.6) indicates a switch and an agent’s hand turning it on or off; as

a result, an alert sounds. The audio and video modalities are segmented with

different time resolutions and the results are shown in Fig. 6.4, 6.5, and 6.7.

As the patterns are indicated with dashed squares, we can observe that the

fast actions will produce patterns in lower resolution in time (1 sec segments)

both in the video (Fig. 6.4) and audio (6.5) modality.

Even if we specified two hyperparameters for each modality while building

our graph, choosing them would be a heuristic process and not be ideal because

we saw that each data requires a distinct set of connections in order to capture

the proper representation. To mitigate this effect, we propose to choose

these hyperparameters randomly from a fixed range. This solution has two

implications. First, it enables the graph’s nodes to have connections with

varying ranges that can accommodate both long- and short-range dependencies.

It also acts as a technique for augmentation. Because no graph will manifest

over training epochs with the same connection, which is equivalent to the

augmentation method is CV.
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6.2.2 Heterogeneous Graph Neural Network (HGNN)

Given heterogeneous graphs G1, ..., GN and their ground-truth labels y1, ...,yN ,

the task is to learn a d-dimensional graph representation hGi ∈ Rd that captures

rich structural and semantic information in Gi.

The key idea of most GNNs is to aggregate feature information from a

node’s neighbours and then update the node feature vector:

H(k+1) = σ
(
AH(k)W(k)

)
(6.1)

where W(k) is the weight matrix for the kth layer of the GNN, σ is a non-linear

activation function, such as ReLU, and k is the layer number (k = 0, · · ·K).

Because of the various node and edge types, this approach is not directly

applicable to our heterogeneous graphs. Previous studies utilise meta-paths

for processing heterogeneous graphs [211, 212], which has been shown to be

inadequate to properly exploit the information provided by node and edge

types [213]. To overcome this, we use separate GNNs for processing different

edge types.

Our HGNN has three flows of information corresponding to the intra- and

inter-modality edges, as shown in Fig. 6.1. Audio and video flow process

the audio and video nodes by considering only intra-modality edges (Evv,Eaa)

between audio and video nodes, respectively. The third flow carries audio-

related information from video nodes to audio nodes for the inter-modality

edges (Eva):

xa
l+1 = GNNθ1

(
xa
l ,Aa

)
+ GNNθ2

(
xv
l ,Ava

)
xm
l+1 = GNNθ3

(
xv
l ,Av

) (6.2)

where xa
l ,xv

l and GNN are audio and video node features in layer l, and GNN

is a graph-based neural network such as GCN [75].

Our objective is to classify entire graphs, as opposed to the more common

task of classifying each node. Hence, we seek a graph-level representation

hG ∈ Rd as the output of our network. This can be obtained by pooling the

node-level representations xa
K , xv

K at the K-th layer before passing them to

the classification layer (see Fig. 6.1). Common choices for pooling functions in

the graph domain are mean, max, and sum pooling [75]. Max and mean pooling

often fail to preserve the underlying information about the graph structure,

while sum pooling has been shown to be a better alternative [76]. However, all

these pooling functions treat adjacent nodes with equal importance, which may

not be optimal. To this end and following [2], we propose to learn a pooling

function Ψ that combines the node embeddings from the K-th layer to produce

an embedding for the entire graph. The pooling layer for each modality is thus
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Figure 6.8: Cross-modality graph layer. This layer ensures that if the long-term
dependencies are missing from the heterogeneous graph we constructed, they
are taken into consideration in our model.

defined as follows:

hG =
[
Ψn(xa

K) |Ψm(xv
K)

]
= xa

Kpa + xv
Kpv (6.3)

where pa and pv are learnable weights to combine node-level embeddings

to obtain a graph-level embedding for audio and video nodes. The overall

heterogeneous graph network is trained with a focal loss L:

L = −
∑
n

α(1− yn)γ log ỹn. (6.4)

6.2.3 Graph Cross Modality Layer

We can further enhance the prominent modality in our graph by proposing a

cross-modality layer. Our heterogeneous graph construction only relies on two

hyperparameters which enables two modalities to connect to the neighbouring

nodes in both space and time directions. But in real-world scenarios, we might

have a relationship between modalities for a long distance in time. Thus,

we propose a cross-modality layer in Fig 6.8. We use this layer to discover
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prolonged relationships across modalities following a heterogeneous layer. All

of the modalities are mapped in the shared-knowledge space using a shared

GCN layer. Then, using the node features, a matched graph is built. The

KNN graph, in which each node connects to the K-closest nodes from the

opposite modalities, is a widely popular method. This graph is processed by

a GNN network after graph construction. This assures that the prolonged

information will be stored in the dominant modality by updating the processed

node features from the dominant modality (in this case, audio).

6.3 Evaluation

In this section, we first discuss the dataset used for benchmarking and feature

extraction details. We then present experimental results and analysis to

evaluate the performance of the proposed HGNN architecture on the acoustic

event classification problem.

6.3.1 Dataset

We use a large scale weakly labelled dataset AudioSet [194], which contains

audio segments from YouTube videos. We work with 33 categories from the

balanced set that have a high rater confidence score ({0.7, 1.0}). This yields a

training set of 82,410 clips. For a fair comparison with baseline methods, we

also use the original evaluation set, which has 85,487 test clips.

6.3.2 Feature Encoder

Audio Encoder. To extract the audio node features, each audio clip is

divided into 960 ms segments with 764 ms overlap. For each segment, a

log-mel spectrogram is computed by taking its short-time Fourier transform

using a frame of 25 ms with 10ms overlap, 64 mel-spaced frequency bins, and

log-transforming the magnitude of each bin. This creates log-mel spectrograms

of dimensions 96× 64, which are the input to the pre-trained VGGish network

[195]. We use the 128-dimensional features extracted by the VGGish network

for each log-mel spectrogram.

Video Encoder. Each video is segmented into non-overlapping 250 ms

chunks to extract the video node features. The 1024-dimensional feature is

then obtained by feeding each segment into an off-the-shelf 3D convolution

network, S3D [214] (trained with self-supervision[215]). Note that our method

is not limited to these pre-trained embeddings and can work with any generic

embeddings for both audio and video.
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6.3.3 Implementation Details

Each video clip produces a heterogeneous graph with P = 40 audio and

Q = 100 video nodes, where each node corresponds to a 960 ms length audio

or 250 ms length video segment. In all experiments, 4 heterogeneous layers are

used, with a 512 embedding size for heterogeneous graph layers. We repeat

our experiments 10 times with different seeds and report both mAP (mean

average precision) and ROC-AUC (area under the ROC curve) values. Our

network weights are initialized following the Xavier initialization. We used

Adam optimizer with a learning rate of 0.005, a decay rate of 0.1 after 1500

iterations, and 1000 warm-up iterations for all experiments. We set α = 0.5 and

γ = 2 (see Eq. 6.4). The graph construction hyper-parameters are explored

heuristically and set to span audio = 6, dilation audio = 3, span video = 4,

dilation video = 4, span audio-visual = 3, and dilation audio-visual = 1 for all

experiments. We use Pytorch on an NVIDIA RTX-2080Ti GPU.

6.3.4 Results and Analysis

6.3.4.1 Baselines

We compare our method with a number of fully and self-supervised models,

as tabulated in Table 6.1. The Spectrogram-VGG model is the same as

configuration A in [196], with only one change: the final layer is a softmax

with 33 units. The feature for each audio input to the VGG model is a

log-mel spectrogram of dimensions 96×64 computed by averaging across non-

overlapping segments of length 960ms. We also compared our method with

a graph-based work. Each node in this chapter represents an audio clip, and

a KNN subgraph has been created, as well as a GNN that is trained using

graph self-supervised proxy tasks [3]. We also use the two popular spatial and

temporal network architectures, ResNet-1D [216] and LSTM, with pretrained

embedding features for both audio and video as input, to further investigate

the superiority of our graph modelling. All baseline hyper-parameters are set

to the values published in the original papers. Note that we do not utilise any

data augmentation, despite the fact that other methods used powerful data

augmentations.

6.3.4.2 Results

Table 6.1 reports the mAP and ROC-AUC (averaged over 10 runs with different

seeds) values with standard deviation for each model and their variants. It

compares the performance of our model with different independent modalities

and strong baselines with that of the heterogeneous model in terms of mean Av-

erage Precision. The heterogeneous graph model outperforms the homogeneous
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Table 6.1: Acoustic event detection results on AudioSet

Model mAP ROC-AUC Params

Ours audio only 0.42± 0.01 0.90± 0.00 1.4M
Ours video only 0.15± 0.02 0.75± 0.01 1.5M
Ours 0.50± 0.01 0.93± 0.00 2.1M
Ours* 0.51± 0.02 0.93± 0.03 2.5M

Baselines

ResNet-1D 0.38± 0.03 0.89± 0.02 81.2M
ResNet-1D audio only 0.35± 0.01 0.90± 0.00 40.4M
LSTM audio only 0.40± 0.00 0.90± 0.00 0.8M

State-of-the-art

DaiNet [197] 0.25± 0.07 - 1.8M
Spectrogram-VGG 0.26± 0.01 - 6M
VATT [198] 0.39± 0.02 - 87M
SSL graph [3] 0.42± 0.02 - 218K
Wave-Logmel [45] 0.43± 0.04 - 81M
AST [48] 0.44± 0.00 - 88M

graph and non-graph models. Our method leverages the pre-trained features

as node attributes. Thus, to check the performance of our graph-based model,

two strong baselines, ResNet-1D and LSTM, have been selected. Compared to

these methods, our homogeneous graph sub-models achieve a superior mAP

score that demonstrates the effectiveness of our graph-based modelling strategy.

Furthermore, when compared to other baselines, our heterogeneous graph-based

model achieves the greatest ROC-AUC score (0.93), implying more trustworthy

predictions at various thresholds. When compared with the other supervised

models, our heterogeneous graph model outperforms Spectrogram-VGG and

DaliNet [197]. Our model also has significantly fewer learnable parameters

compared with the recent transformer-based architectures, VATT and AST.

6.3.4.3 Ablation Experiments

We perform exhaustive ablation experiments to investigate the contribution of

each component we propose to build our heterogeneous graph neural network.

Table 6.2 presents the ablation results on the AudioSet dataset. We observe

that each new component brings improvement. In all experiments, model

performance is measured with mAP to quantify the recognition rate. The

introduction of the heterogeneous graph increases the recognition rate by about

9%; when combined with our new graph attentional convolution layer between

modalities (right half of Fig. 6.1), the performance increases to 0.49. Adding

the learnable pooling brings up the mAP score to 0.50. Removing the learnable

pooling, however, reduces the performance by about 3% and 1% for audio-only
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and video-only models, respectively. The ablation results show that each of

the proposed components in our architecture is important and contributes

positively towards the overall model performance.

Table 6.2: Ablation experiments on the AudioSet dataset. Each new component
in our heterogeneous network contributes towards its performance. Note that
these results are from the models without utilising cross-modality layers.

Audio Video Attn Learned p mAP

✓ - - - 0.38

✓ - - ✓ 0.41

- ✓ - - 0.12

- ✓ - ✓ 0.13

✓ ✓ - - 0.49

✓ ✓ ✓ - 0.49

✓ ✓ ✓ ✓ 0.50

6.3.4.4 Qualitative Results

We display how our model attends to different nodes to gain insights into its

learning process. Because each video clip is divided into 100ms segments, each

node represents a 100ms time window. In Fig. 6.9, 6.10, and 6.11, we show the

attention weights corresponding to audio nodes in cases of with and without

video supervision for three input videos from the test set with distinct acoustic

classes. Then, for each video, we sample four frames and display them on top

of each figure to provide more visual information. This gives rise to salient

nodes for each input. The results show that the proposed model can extract

visually complementary information to an audio event from heterogeneous

graphs as input.

6.3.4.5 Add More Classes

We further push the complexity of the problem by increasing the number of

classes gradually. Table 6.3 reports the performance of our model in a different

number of classes in the training set. The performance decreased in mAP and

ROC-AUC as we added more classes. We suggested using 33 classes with higher

rater confidence scores which implies that those classes have lower annotation

noise. One of the reasons our model can’t maintain high accuracy could be

that adding more classes allows the data to get noisier and mislead the model

into learning inappropriate features. Another argument is that we only use the

pre-trained features, which may not be the best way to provide our model with

enough data to produce adequate discriminative power in the classification

task.
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video-assisted
audio only

“Gunfire shooting” “Soldier talking” “Gunfire without shooting”

(a) Gunshot, gunfire

Figure 6.9: Qualitative results showing attention weights corresponding to the
audio nodes for with (in blue) and without (in orange) video supervision. Each
node represents a segment of 100-millisecond duration, and the ground-truth
label for each video is provided above. Attention values were normalized and
re-scaled to [0,1] range. This video begins with a strong machine firing sound.
After that, a soldier is interrogated, followed by footage of troops. Finally, the
machine appears again but is not fired. Even without the associated sound of
shooting, the video-assisted audio nodes are able to recognise the firing machine
towards the end by assigning higher attention weights to these moments.
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video-assisted
audio only

“Horse neighing” “Horse starts moving” “Horse disappearing”

(b) Horse neighing

Figure 6.10: Qualitative results. A horse begins neighing and moves away
from the camera. As it moves, the sound fades. The horse is no longer visible
or audible as time elapses. The audio-only model incorrectly detects these
moments by assigning high attention values, while the video-assisted model
correctly discards these moments.
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“Engine is off” “Engine is on” “Motorcycle starts moving” “The sound is fading”

video-assisted
audio only

(c) Motorcycle starting

Figure 6.11: Qualitative results. A video of a motorcycle moving. The
video-assisted attention weights suggest that our model can capture additional
meaningful patterns, such as the engine start. Furthermore, as the engine
sound fades, the attention weights corresponding to the audio-only model
decrease, and the video-assisted attention weights have relatively higher values
indicating that the video information extracted by our model is complementary
to the audio event information.
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Figure 6.12: Increasing number of classes. Our model performs reliably good
in a low number of classes, and as we increase the number of classes, the
performance drops in both mAP and ROC-AUC

Table 6.3: Increasing number of classes. As we increased the number of classes
in the training set, the number of trainable parameters and samples in the
training set increased.

Number of classes Parameters (M) Number of samples (K)

20 2.19 1.08
30 2.2 1.79
40 2.21 2.31
50 2.22 2.85
80 2.25 5.56
100 2.27 6.76
527 2.71 39.83

6.3.4.6 Different Number of Multimodal Nodes

To further explore the power of the heterogeneous graph modelling for mul-

timodal data, we experimented with acoustic event classification problem with

the different number of nodes in both audio and video modality. In the graph

construction step, we segmented both audio and video clips into smaller over-

lapped chunks and then used a pretrained network to extract corresponding

features. In this section, we increase the number of audio and video nodes

in our heterogeneous graph starting at 10 to observe how our model behaves.

Note that we’ve tested it on a single modality case, and the results are in

Table 6.5.
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Table 6.4: Increasing number of classes. As we increased the number of classes
in the training set, the number of trainable parameters and samples in the
training set increased.

Modality Number of nodes mAP ROC-AUC

Audio

10 0.42 0.91
48 0.43 0.91
100 0.45 0.92
130 0.46 0.92

Video
10 0.09 0.70
40 0.21 0.81
100 0.22 0.81

6.3.4.7 Static v.s. Dynamic Edges

As we noted in Section 6.2.1, choosing the span over time and dilation hyper-

parameters for graph construction is not optimal, hence we suggested sampling

random hyperparameters within a given range. The results of our investigation

into this statement are presented in Table 6.5. Table 6.5 shows how our random

hyperparameter selection takes into account various graph architectures to

improve model performance in terms of both mAP and ROC-AUC metrics.

Tuning hyperparameters used to be a tedious and long process and, in our case,

poses a fixed graph structure for each multimodal graph. Table 6.5’s three first

rows are the output of manually choosing the hyperparameters. The dynamic

range for choosing such hyperparameters is displayed in the rows below. It has

been found that recommending this fixed range will increase performance with

a significant margin and need significantly less parameter searching.

Table 6.5: Dynamic vs. static edges. We experiment with selecting graph
construction hyperparameters within a fixed range to allow dynamic graph
construction for each data point.

Dynamic audio video inter-modality
mAP ROC-AUC

edges Span over time Dilation Span over time Dilation Span over time

- 2 1 1 1 2 0.42 0.83

- 2 2 3 1 2 0.48 0.88

- 10 3 5 5 5 0.49 0.90

✓ [1,3) 1 [1,4) 1 [1,3) 0.38 0.86

✓ [1,7) 1 [1,7) 1 [1,3) 0.43 0.92

✓ [1,7) [1,3) [1,7) [1,3) [1,3) 0.47 0.92

✓ [1,7) [1,4) [1,3) [1,4) [1,3) 0.49 0.94

✓ [1,11) [1,11) [1,6) [1,6) [1,6) 0.54 0.94
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6.4 Conclusion

In this chapter, we introduced the idea of heterogeneous graphs to model audio

data with visual cues. We proposed a compact and efficient graph-based archi-

tecture that learns audio representations effectively in the context of acoustic

event detection. We transformed an audiovisual input to a heterogeneous graph

with different learnable hyper-parameters capturing intra and inter modalities

connections in both spatial and temporal domains. Our heterogeneous graph

model produces higher or comparable performance to the state-of-the-art on

a popular benchmark dataset, the AudioSet. Our current model relies on

pre-trained embeddings, which gives the flexibility of choosing any suitable

embeddings. Nevertheless, our model can be made end-to-end trainable, which

will be addressed as part of our future work.
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Chapter 7

Conclusion and Future Work

In this thesis, we have proposed a set of algorithms for learning representation

from audio data in the form of a graph. First, we explored how audio data could

be modelled using a graph structure. In follows, we suggested learning the

graph structure together with the major loss because the graph structure is not

natural. As follow-up research, we created a graph self-supervised framework

and presented three primary self-supervised tasks that can be used for any type

of graph data or task while taking into account the low amount of validated data

situations. Finally, we added heterogeneous graph modelling to improve the

graph representation in one modality. Allowing us to include several modalities

in a single graph structure. In order to process our multi-modal graph, we

also suggested a new heterogeneous graph architecture. In this chapter, we

summarise our contributions and consider future work.

7.1 Summary of Contributions

• We first presented a method for combining ideas from graph signal

processing to audio data. An efficient, compact, and scalable graph-

based model is introduced to process the constructed graph. This model

achieved superior performance compared to the popular graph neural

network by applying exact convolution operation in the graph domain.

• In Chapter 4, we further extended our idea and proposed a dynamic graph

structure for audio data, which is learnt during training alongside the

main objective. In this chapter, we propose a generalized graph approach

that can take any time-varying (dynamic) data modality as input. To this

end, we present the Learnable Graph Inception Network (L-GrIN) that

jointly learns to recognize emotion and to identify the underlying graph

structure in data. Our architecture comprises multiple novel components:

a new graph convolution operation, a graph inception layer, learnable

adjacency, and a learnable pooling function that yields a graph-level
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embedding. We tested this method on audio data in this section, but we

tried and extend it to other modalities of data in Appendix A.

• In Chapter 5, we explore a self-supervised graph approach to learning

audio representations from highly limited labelled data. Considering each

audio sample as a graph node, we propose a subgraph-based framework

with novel self-supervision tasks to learn effective audio representations.

During training, subgraphs are constructed by sampling the entire pool

of available training data to exploit the relationship between the labelled

and unlabeled audio samples. During inference, we use random edges

to alleviate the overhead of graph construction. We evaluate our model

on three benchmark audio datasets spanning two tasks: acoustic event

classification and speech emotion recognition. We show that our semi-

supervised model performs better or on par with fully supervised models

and outperforms several competitive existing models. Our model is

compact and can produce generalized audio representations robust to

different types of signal noise.

• Finally, in Chapter 6, we employ heterogeneous graphs to explicitly cap-

ture the spatial and temporal relationships between the modalities and

represent detailed information about the underlying signal. Using hetero-

geneous graph approaches to address the task of visually-aware acoustic

event classification, which serves as a compact, efficient and scalable way

to represent data in the form of graphs. Through heterogeneous graphs,

we show efficiently modelling of intra- and inter-modality relationships

both at spatial and temporal scales. Our model can easily be adapted

to different scales of events through relevant hyperparameters. Experi-

ments on AudioSet, a large benchmark, show that our model achieves

state-of-the-art performance.

7.2 Future Work

Applying more insights into graph modelling. At first, we just thought

of our proposed graph as a cycle and chain structure. We further explored it by

trying to learn a dynamic structure for each graph in our data. However, prior

knowledge can always strengthen our modelling easily. For instance, in our

graph construction, we only take into consideration temporality as an a priori

element, but there are additional task-based aspects that may be incorporated

to transfer this knowledge into the graph structure and improve its realism.

Make an end-to-end model. While our current model relies on pre-trained

embeddings, which gives the flexibility of choosing any suitable embeddings
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given a task. Nevertheless, our model can be made end-to-end trainable which

will be addressed in a future work.

Better self-supervised learning methods needed. In both our research

and the GNN literature, we found that self-supervised learning can be useful.

However, the performance improvement is not comparable to the CV and NLP.

Studying this literature requires careful consideration of the possibility that

other forms of data are lacking.

Make a multimodal graph. We’ve already demonstrated how using video

modality can improve performance on tasks that are exclusive to audio. That’s

just a tiny hole that allows us to expand it to a more generic multimodal system.

A variety of modalities would be included in our heterogeneous knowledge

graph, and their connections would be represented by their edges. Then this

graph can be used to do analysis in many tasks.

Generalized GNN. Following the most current DL methods, we trained

every model in this thesis and for each application, to accept input graphs of

the same size. GNNs can, however, process graphs of various sizes. The next

step in this research would be to change the methodology for constructing

input graphs to result in input graphs with various node sizes. In this manner,

the GNN would learn to generalise on graphs of various lengths, which is

equivalent to the input of varying lengths for the video or audio. This resolves

the previously significant issue of input data of various sizes.

This thesis set out to expand on the state-of-the-art in audio represent-

ation learning. We have proposed graph-based models in different settings:

supervised, semi-supervised, and self-supervised learning. All of the code and

methods discussed in this thesis are available online at github.com/AmirSh15,

which we hope will facilitate future research towards increasingly more sophist-

icated audio representation learning systems.

7.3 Broader Impact

Our work may be applied to classify speech and acoustics data. Therefore, it

may be used to ‘hear’ and should be used carefully. We used public databases

that are mostly balanced in terms of male and female subjects. However,

they are not balanced considering factors such as ethnicity, language spoken

and other demographic factors. The speech emotion analysis application uses

only four archetypal expressions. We are aware that human emotion is far

more complex and thus do not advocate the use of such systems for sensitive

decision-making areas. We also note that automatic emotion classification from

speech is an evolving area of research, and questions of fairness and universality

remain to be explored.
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Appendix A

First

To further explore our proposed method in Chapter 4, we now present extensive

experimental results and analysis to evaluate the performance of the proposed

method for facial and body emotion recognition.

A.1 Facial Emotion Recognition

A.1.1 Video Databases

We use three large video emotion recognition databases for our experiments.

The databases are chosen based on their popularity in emotion recognition

literature.

The RML database [32] contains 720 videos of 6 basic emotions: anger, disgust,

fear, joy, sadness, surprise collected when the subjects speak. The subjects

are from various ethnic groups and speak different languages.

The eNTERFACE [33] is contains 1170 videos of 42 subjects with six basic

emotion classes as RML. These emotions are the reactions after listening to six

different short stories, where each person reads out 5 phrases based on their

emotional reaction.

The RAVDESS database [217] contains 4904 videos labeled with 8 classes:

anger, calmness, disgust, fear, joy, neutral, sadness and surprise. This is

the largest video emotion database currently available. Samples from each

database are shown in Fig. A.2.

A.1.2 Node Features

The databases we use provide only raw video clips. We choose to use facial

landmark points extracted from the video frames as node attributes. This is

because landmark points are known to effectively capture the facial dynamics

[218]. We extract 68 landmark points at every video frame using a state-of-

the-art landmark detection method [219], resulting into node feature vectors
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Figure A.1: A generalized graph approach to modelling emotion dynamics.
Data samples are transformed to a learnable graph structure, where each node
corresponds to a short temporal segment or frame. A novel graph architecture
(L-GRIN) produces an embedding for the entire graph, facilitating emotion
recognition.

of dimension P = 136.

A.1.3 Implementation Details

We use a 10-fold cross-validation for all three databases, and report the average

recognition accuracy in Table A.1. We fix the length of each input video to 90

frames yielding a graph with M = 90 nodes. The shorter videos are simply

padded by duplicating frames from the beginning of the video (cyclic padding).

Our network weights are initialized following the Xavier initialization. We set

λ1 = λ2 = 0.1 and λ3 = 1 × 10−4 (see Eq. 4.8). We used Adam optimizer

Figure A.2: Sample video frames from the three databases: RML (top row),
eNTERFACE (middle row) and RAVDESS (bottom row). Each column shows
one expression: (left to right) anger, disgust, fear, joy, surprise and sadness.
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vMn1 n2

v1 v2v1 v2 vM

Facial landmarks in 
input video frames Fully-connected graph 

(with learnable adjacency) 

Figure A.3: Graph construction: Given a video of M frames, a fully-connected
graph having M nodes is constructed. Each node corresponds to a video frame,
and is associated with a node attribute vector consisting of the landmark point
locations at the frame. The edge weights are learnable.

with a learning rate of 0.01 and decay rate of 0.5 after each 50 epochs for all

experiments. To initialize the learnable adjacency matrix A, we generate a

random matrix whose elements are drawn from a Normal distribution with

zero mean and unit variance. We used Pytorch for implementing our model

and the baselines, and an NVIDIA RTX-2080Ti GPU for all experiments.

A.1.4 Baselines, State-of-the-art

We compare our model against two competitive and relevant baselines as

follows:

BLSTM. The first baseline is a Bidirectional LSTM (BLSTM), an extension of

the traditional LSTMs [220, 221]. LSTM and its variants have been successfully

used in sentiment analysis in language and speech. This BLSTM comprises 1-

layered bidirectional cells with embedding size 300 followed by a fully connected

layer.

GCN [75]. A natural baseline to compare with our model is a spectral GCN

in its standard form (as in Eq. (4.3)). The original network [75] is designed for

node classification and only yields node-level embeddings. To obtain a graph-

level embedding, we used max and mean pooling at the end of convolution

layers. The GCN uses a binary adjacency matrix constructed following the

method used in graph-based action recognition [78].

In addition to the baselines, we compare with two state-of-the-art graph

classification architectures:

PATCHY-SAN [85] is a recent architecture that learns CNNs for arbitrary

graphs. This architecture is originally developed for graph classification.

PATCHY-Diff [93] is referred to an architecture where PATCHY-SAN is used

in combination with the differentiable pooling layer between graph convolution
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Table A.1: Facial emotion recognition results on three video databases.

Model
Accuracy (%)

Params
RML eNTERFACE RAVDESS

*BLSTM 60.00 58.67 56.14 ∼ 1M

*GCN [75] 76.57 69.81 69.34 ∼ 102K

*PATCHY-SAN [85] 80.00 67.49 73.52 ∼ 52K

*PATCHY-Diff [93] 85.59 76.96 79.83 ∼ 71K

SENet [222] 71.20 79.22 71.06 ∼ 26M

AVEF [173] 82.48 85.69 - -

KCFA [223] 82.22 76.00 - -

OKL [224] 90.83 86.67 - -

TJE [225] - - 72.30 -

*L-GrIN 94.11 87.49 85.65 ∼ 120K

*use same node features

layers proposed recently [93].

SENet [222], Squeeze and Excitation net is a state-of-the-art CNN architecture

recently proposed for facial emotion recognition in videos.

Comparisons are also made with other existing works on the respective

databases: AudioVisual Emotion Fusion (AVEF) [173], Kernel Crossmodal

Factor Analysis (KCFA) [223], Optimized Kernel-Laplacian (OKL) [224] and

Temporal Joint Embeddings (TJE) [225].

A.1.5 Results

Table A.1 compares the performance of L-GrIN with all the methods mentioned

above. Clearly, the proposed model outperforms all the existing methods by a

significant margin, including the graph-based state-of-the-art architectures, such

as PATCHY-SAN and PATCHY-Diff. Our model performs better than BLSTM

- a class of models most commonly used in video-based emotion recognition.

SENet is a very recent CNN architecture developed for emotion recognition,

which also trails our model in terms of performance. When compared to the

GCN baseline [75], L-GrIN improves the recognition accuracy by more than

10% on RML and eNTERFACE, and more than 5% on RAVDESS.

Also note that KCFA, OKL and TJE use both audio and visual information

for recognition. Our model, even though uses only visual information, shows

significant improvement over the audiovisual methods.

Fig. A.4 shows the learned adjacency matrix for the RAVDESS database.

The learned graph structure shows higher values closer to the diagonal i.e., the

weights shared among the neighboring nodes. This indicates higher temporal
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Figure A.4: Learned adjacency matrices for facial and body emotion recognition
showing strong temporal dependency between neighbouring segments. Darker
values indicate higher weights.

dependencies locally and weaker dependency as we go further from a node.

A.2 Body Emotion Recognition

A.2.1 Databases

We use the MPI emotional body expression database [226] for our experiments.

This database contains 1447 body motion samples of actors narrating coherent

stories labeled with 11 emotions: amusement, anger, disgust, fear, joy, neutral,

pride, relief, sadness, shame, and surprise. During their performance, a

mocap system (device model: Xsens MVN) recorded the human motion using

miniature inertial sensors. The system recorded dynamic 3D postures from 22

joints with a sampling rate of 120Hz.

Figure A.5: Motion capture recording set-up for the MPI database showing an
actor posing for (left to right) T pose (reference), neutral and pride pose.
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A.2.2 Node Features

For this database, we use the raw information provided by the mocap system.

Each node contains the 3D positions and orientations (measure in terms of the

Euler angles, pitch, yaw and roll) at a given time-step. These measurements

come with the database. The feature consists of Euler angles from 22 joints

and additional location information of the reference point. We use all the

information (without any preprocessing) as node features, resulting into a

vector of dimension P = 72.

A.2.3 Implementation Details

Each input sample produces a graph of M = 120 nodes, where each node

corresponds to a temporal segment of 120th of a second. Cyclic padding is used

as before. We perform a 5-fold cross-validation and report the average accuracy

in Table A.2. All other network parameters remain the same as before.

A.2.4 Baselines, State-of-the-art

Our model is compared with the baselines (BLSTM and GCN), the state-of-

the-art graph-based architectures (PATCHY-SAN and PATCHY-Diff), and

a recent work on this database, i.e., trajectory learning [172]. The trajectory

learning system [172] models neural motion and analyzes the spectral difference

between an expressive motion and a neutral motion in order to recognize the

body expressions.

A.2.5 Results

Table A.2 shows that L-GrIN outperforms the baselines and state-of-the-art

methods on the MPI body expression database. Graph-based methods continue

to perform well, indicating the effectiveness of graph-based methods for such

tasks. Fig. A.4 shows the learned adjacency A for the MPI database. As before,

the learned graph structure exhibit higher temporal dependencies among the

neighboring nodes.

A.3 Network Analysis

A.3.1 Network Size

Tables A.1 and A.2 list the number of learnable network parameters for the

baselines, state-of-the-art graph-based architectures and the proposed L-GrIN.

As mentioned earlier, a graph network largely reduces the number of learnable

parameters as compared to the BLSTM or CNN architectures such as SENet

(see Table A.1) without compromising the recognition accuracy. Our model has
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Table A.2: Body emotion recognition results on the MPI database.

Model Accuracy (%) Parameters

∗BLSTM 45.52 ∼ 0.9M

∗GCN 56.03 ∼ 92K

∗PATCHY-SAN [85] 48.42 ∼ 80K

∗PATCHY-Diff [93] 55.29 ∼ 71K

Trajectory learning [172] 50.00 -

∗L-GrIN 58.59 ∼ 110K

∗ use same node features

more parameters than the baseline GCN due to the inception layers and other

learnable parameters, but also improves the recognition accuracy significantly.

PATCHY-SAN and PATCHY-Diff have smaller network size compared to

L-GRIN, but both trail L-GrIN in terms of performance on all databases. In

case of facial emotion recognition, we discount the model size of the landmark

detector in the comparison as it is common to all except SENet. For speech

and body emotion recognition, no additional network was required as we used

hand-crafted features and raw data.

A.3.2 Learnable vs. Fixed Pooling

Recall that to obtain a graph-level embedding from node-level embeddings,

L-GrIN learns a pooling function (see Fig. 4.3). To show if learnable pooling

indeed improves the recognition performance, we compare its performance with

various fixed pooling strategies: max pooling, mean pooling and sort pooling

(sortpool) [92]. Table A.3 presents the comparisons on the RML database in

terms of facial emotion recognition accuracy, which clearly shows the advantage

of learnable pooling over fixed pooling strategies. Similar trend is observed for

other databases.

Table A.3: Comparison between learnable and fixed pooling strategies on the
RML database. All experiments in this table use the same (binary) adjacency
matrix for a fair comparison.

Pooling Accuracy (%)

Maxpool 89.76

Meanpool 90.23

Sortpool [92] 83.66

Learnable pool 91.50

89



Table A.4: Comparison between learnable and manually constructed graph
structures. For a fair comparison, all experiments use maxpool to convert node
embeddings to graph embeddings.

Accuracy (%) Params

RML IEMOCAP MPI RML IEMOCAP MPI

Binary 89.5 61.4 53.6 113K 78K 96K

Weighted 62.4 54.3 49.0 113K 78K 96K

Learnable 91.5 65.5 58.9 120K 92K 110K

A.3.3 Learnable vs. Manually Constructed Adjacency

An adjacency matrix represents the pairwise relationship between the graph

nodes. When this information is not available naturally, a common practice is

to manually construct an adjacency matrix. We argued earlier that this may

result in sub-optimal graph structures, which in turn affects the classification

performance. We now compare the performance of leranable adjacency with

two fixed adjacency matrices:

(i) Binary adjacency: a natural choice is a binary adjacency matrix as used for

graph-based action recognition [78]. This is defined as (Ab)ij = 1 if |i− j| = 1

and 0 otherwise, i.e., a node (frame) is connected only to its subsequent and

preceding node in the temporal direction.

(ii) Weighted adjacency: Another adjacency matrix is formed by using the

squared ℓ2 distance between two node attributes as their edge weight. This is

defined as (Aw)ij = ∥ni − nj∥22.
Table A.4 compares the performance of the proposed learnable adjacency

with the two fixed adjacency matrices described above on the RML, IEMOCAP

and the MPI databases. We chose one database from every modality. For

this set of experiments, we used only maxpooling to obtain the graph-level

embeddings for fair comparison. Clearly, the learnable adjacency matrix shows

consistent improvement in accuracy across all databases for a relatively small

increase in model complexity (only 6% additional parameters). The results

show that a learnable adjacency has better at generalizing across databases

and modalities.

A.3.4 Ablation Study

We performed exhaustive ablation experiments to investigate the contribution of

each component we proposed to build L-GrIN. Table A.5 presents the ablation

results on the RML database. We observe that each new component brings

significant improvement (row 2 to row 5) over the performance of standard GCN
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Table A.5: Ablation study on the RML database. Each new component in
L-GRIN contributes towards its performance.

G∗conv Inception Learned A Learned p Accuracy (%)

- - - - 76.57

✓ - - - 80.12

- ✓ - - 87.58

- - ✓ - 79.78

- - - ✓ 82.86

- - ✓ ✓ 84.21

✓ ✓ - - 90.65

✓ ✓ ✓ - 91.50

✓ ✓ - ✓ 91.50

✓ ✓ ✓ ✓ 94.11

[75] which has 76.57% recognition accuracy (the top row in Table A.5). The

introduction of the graph inception layer increases the recognition rate by 11%;

when combined with our new graph convolution layer G∗conv (Eq. (4.4)), the

accuracy increases to 90.65%. Adding the learnable graph structure (learned A)

and learnable pooling bring the accuracy up to 94.11% both contributing to the

accuracy. Removing either of the leanrable components reduces the accuracy

by 2.61%. The ablation results show that each of the proposed components in

our architecture is important, and contributes positively towards its superior

performance. Similar ablation trend was observed for other databases.

A.3.5 Inception Layer Settings

We also investigate the effects of the graph inception layer hyperparameters: (i)

the parameter η corresponding to the size of the graph convolution filters G∗
1 and

G∗
2 in Eq. (4.5), and (ii) the number of graph inception layers in L-GrIN. First,

Table A.6: Analyzing inception layer settings on the RML database.

Effect of filter size (η)

Size of the two filters Accuracy (%)

(16, 32) 90.82

(32, 64) 92.47

(64,128) 94.11

(128, 256) 93.13

Effect of number of inception layers

Number of layers Accuracy (%)

1 91.77

2 94.11

3 90.78
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Figure A.6: Effect of the weight parameters in the loss function; experiments
on the RML database.

we vary the filter dimensions (can be interpreted as scales) in the two inception

layers and note how this correspond to the model’s performance. Results

for the RML database is presented in Table A.6; similar trends have been

observed for other databases. Results in Table A.6 show that we achieve the

best performance for the combination of (64, 128), which is used in our model.

Next, we vary the number of inception layers in the model, each with (64, 128)

filter combination (see Table A.6. We observe that reducing or increasing the

number of inception layers from 2 results in a drop in performance. We chose

to use two inception layers in the proposed model. It is obvious that the model

size increases significantly as we add more inception layers or increase filter

sizes within the layers. We notice a small drop in performance with larger

filter sizes and with higher number of inception layers. This could be possibly

due to over-smoothing and over-mixing of the node features. However, the

over-smoothing effect is not as prominent as in many node classification tasks.

A.3.6 Analysis of the Control Weights

We also examine the impact of the weights controlling the various components

of the loss function in Eq. (4.8), i.e., λ1, λ2 and λ3. Fig. A.6 shows that highest

performance is achieved for λ1 = λ2 = 0.1 and λ2 = 0.0001 (marked red in the
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Table A.7: Cross-corpus performance of our model (L-GrIN) for facial emotion
recognition.

Trained on Evaluated on Accuracy (%)

RAVDESS
RML 81.94

eNTERFACE 75.80

RML
RAVDESS 75.42

eNTERFACE 61.71

eNTERFACE
RML 79.86

RAVDESS 77.51

plots) on the RML database. We use these λ values in our experiments.

A.3.7 Cross-corpus Performance

Methods exhibiting superior performance on one corpus, often fall short when

tested on another corpus having different statistical distributions. We investig-

ated the ability of our model to generalize across databases by evaluating its

cross-corpus performance. To this end, we trained L-GrIN on one database,

followed by fine-tuning a fully-connected layer on the target database, without

changing the graph structure (or other parameters) learned from the training

database.

Results in Table A.7 shows that our model can generalize well producing

consistent results under cross-corpus evaluation. Our cross-corpus results

higher accuracy compared to the same-corpus GCN accuracy. Cross-corpus

results are comparable with the same-corpus performance of PATCHY-SAN.

This shows the strength of the proposed architecture. It is worth noticing

that the RML database (when used for training) does not have neutral and

calmness emotion classes, but our model still recognizes those emotions on

RAVDESS with 67.2% and 73.4% accuracy.

A.3.8 Network Visualization

To get an insight into the learning process of our model, we visualized how

it attends to different nodes. The video data are the most suitable for the

visualization. We use our trained model, and then feed-forward each test video

sample through the network, and identify the node (each node corresponds to a

video frame) that responded most strongly towards the maxpooling layer. This

yields a salient node corresponding to each input. We present the corresponding

video frames - one example per emotion class for RML, eNTERFACE and

RAVDESS databases in Fig. A.7. The results show that the proposed model

is able to learn the salient information from the input graphs such that it is

representative of each emotion.
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Figure A.7: Qualitative results showing the node (frame) for a graph input
that generated the strongest response in our network. One result is displayed
per class for the three databases. This shows that L-GRIN is able to learn the
salient information for each emotion.
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Appendix B

Second

Graph SSL Tasks Evaluation on Graph Data

We next attempt to understand the effectiveness of proposed self-supervised

tasks in Chapter 5 on transductive semi-supervised node classification. This

requires experimenting with databases where the graph structures are known

so as to disentangle the effect of our proposed graph construction methodology.

We use three graph citation databases Cora (2708 nodes, 7 classes) and

Citeseer (3327 nodes, 6 classes) [227] and Pubmed (19717 nodes, 3 classes)

[228] following the standard benchmarking framework [229].

To verify the universality of our SSL tasks, we conduct experiments on

several state-of-the-art graph neural networks: (i) Standard GCN [75], (ii)

Graph Attention Network (GAT) [230] - a powerful variant of GCN, (iii) Graph

Isomorphism Network (GIN) [231] and (iv) GraphMix [232]. Based on the

graph models, we use a joint learning framework where the SSL task as an

auxiliary task and node classification is the primary task. Table ?? compares

the performance of the above graph models when augmented with the three

SSL tasks. Clearly, the SSL tasks (particularly denoising and completion)

improve the accuracy of all models across all database cases (Table B.1). As

mentioned before, the SSL tasks we consider are model-agnostic and thus can

be used to enhance any graph model.
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Table B.1: To show the effectiveness of our proposed framework when the graph
structures are known, we present semi-supervised node classification results (%
accuracy) on benchmark graph databases. This essentially disentangles the
effect of our proposed graph construction methodology from the SSL-based
semi supervised model. The results show that SSL tasks improve over basic
models in almost all cases irrespective of the graph network used.

SSL task Cora Citeseer Pubmed

G
C

N

✗ 80.9± 0.6 70.7± 0.6 79.1± 0.5
denoise 81.1± 0.8 71.1± 0.8 78.4± 0.8

completion 81.6± 0.8 71.6± 0.6 79.2± 0.7
shuffle 81.6± 0.6 70.1± 1.1 78.4± 0.6

G
A

T

✗ 83.1± 0.5 72.1± 0.6 77.5± 0.4
denoise 84.2± 1.0 73.1± 0.5 78.2± 0.5

completion 84.2± 0.4 72.8± 1.1 78.0± 0.5
shuffle 83.2± 0.9 72.6± 0.7 77.7± 0.4

G
IN

✗ 77.2± 0.5 68.1± 0.7 77.0± 0.4
denoise 78.9± 0.8 69.1± 1.4 77.2± 0.3

completion 78.8± 0.6 69.8± 1.2 77.7± 0.3
shuffle 78.6± 1.1 69.3± 0.8 77.3± 0.4

G
ra

p
h

M
ix ✗ 83.8± 0.8 74.3± 0.7 80.6± 0.6

denoise 84.4± 0.7 75.2± 0.5 81.4± 0.4
completion 84.4± 0.7 74.3± 0.7 81.2± 0.3

shuffle 84.2± 0.4 74.4± 0.6 81.9± 0.3
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[69] Bálint Pál Tóth and Bálint Czeba. Convolutional neural networks

for large-scale bird song classification in noisy environment. In CLEF

(Working Notes), pages 560–568, 2016.

[70] Achyut Mani Tripathi and Aakansha Mishra. Self-supervised learning for

environmental sound classification. Applied Acoustics, 182:108183, 2021.

[71] Aren Jansen, Manoj Plakal, Ratheet Pandya, Daniel PW Ellis, Shawn

Hershey, Jiayang Liu, R Channing Moore, and Rif A Saurous. Unsuper-

vised learning of semantic audio representations. In 2018 IEEE interna-

tional conference on acoustics, speech and signal processing (ICASSP),

pages 126–130. IEEE, 2018.

[72] Marco Tagliasacchi, Beat Gfeller, Félix de Chaumont Quitry, and Dominik

Roblek. Pre-training audio representations with self-supervision. IEEE

Signal Processing Letters, 27:600–604, 2020.

[73] Po-Han Chi, Pei-Hung Chung, Tsung-Han Wu, Chun-Cheng Hsieh, Yen-

Hao Chen, Shang-Wen Li, and Hung-yi Lee. Audio albert: A lite bert for

self-supervised learning of audio representation. In 2021 IEEE Spoken

Language Technology Workshop (SLT), pages 344–350. IEEE, 2021.

[74] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals,

and George E Dahl. Neural message passing for quantum chemistry. In

International Conference on Machine Learning (ICML), pages 1263–1272,

2017.

[75] Thomas N. Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. In International Conference on Learning

Representations (ICLR), 2017.

[76] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How

powerful are graph neural networks? In International Conference on

Learning Representations (ICLR), 2019.

[77] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,

and Maosong Sun. Graph neural networks: A review of methods and

applications. CoRR, abs/1812.08434, 2018.

[78] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph

convolutional networks for skeleton-based action recognition. In AAAI

Conference on Artificial Intelligence, pages 7444–7452, 2018.

104



[79] Roei Herzig, Elad Levi, Huijuan Xu, Eli Brosh, Amir Globerson, and

Trevor Darrell. Classifying collisions with spatio-temporal action graph

networks. ICCV Workshop, 2019.

[80] Zhongdao Wang, Liang Zheng, Yali Li, and Shengjin Wang. Linkage

based face clustering via graph convolution network. In Conference on

Computer Vision and Pattern Recognition (CVPR), pages 1117–1125,

2019.

[81] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:

Deep learning on point sets for 3d classification and segmentation. In

Conference on Computer Vision and Pattern Recognition (CVPR), pages

652–660, 2017.

[82] Damien Teney, Lingqiao Liu, and Anton van den Hengel. Graph-

structured representations for visual question answering. In Conference

on Computer Vision and Pattern Recognition (CVPR), pages 3233–3241,

2017.

[83] Oron Ashual and Lior Wolf. Specifying object attributes and relations in

interactive scene generation. In International Conference on Computer

Vision (ICCV), pages 4561–4569, 2019.

[84] Subarna Tripathi, Sharath Nittur Sridhar, Sairam Sundaresan, and

Hanlin Tang. Compact scene graphs for layout composition and patch

retrieval. In Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW), 2019.

[85] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning

convolutional neural networks for graphs. In International Conference

on Machine Learning (ICML), pages 2014–2023, 2016.

[86] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation

learning on large graphs. In Advances in Neural Information Processing

Systems, pages 1024–1034, 2017.

[87] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and

Pierre Vandergheynst. The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular

domains. arXiv preprint arXiv:1211.0053, 2012.

[88] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann Lecun. Spectral

networks and locally connected networks on graphs. In International

Conference on Learning Representations (ICLR), 2014.

105
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jelović, Jason Ramapuram, Jeffrey De Fauw, Lucas Smaira, Sander

Dieleman, and Andrew Zisserman. Self-supervised multimodal versatile

networks. Advances in Neural Information Processing Systems, 33:25–37,

2020.

[134] Rui Qian, Tianjian Meng, Boqing Gong, Ming-Hsuan Yang, Huisheng

Wang, Serge Belongie, and Yin Cui. Spatiotemporal contrastive video

representation learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 6964–6974, 2021.

[135] Shuang Ma, Zhaoyang Zeng, Daniel J. McDuff, and Yale Song. Act-

ive contrastive learning of audio-visual video representations. In 9th

International Conference on Learning Representations, ICLR, 2021.

[136] Aaqib Saeed, David Grangier, and Neil Zeghidour. Contrastive learning

of general-purpose audio representations. In ICASSP, pages 3875–3879.

IEEE, 2021.

[137] Shuang Ma, Zhaoyang Zeng, Daniel McDuff, and Yale Song. Contrastive

learning of global and local video representations. Advances in Neural

Information Processing Systems, 34, 2021.

110



[138] Jianbo Jiao, Yifan Cai, Mohammad Alsharid, Lior Drukker, Aris T

Papageorghiou, and J Alison Noble. Self-supervised contrastive video-

speech representation learning for ultrasound. In International Conference

on Medical Image Computing and Computer-Assisted Intervention, pages

534–543. Springer, 2020.

[139] Simon Jenni and Hailin Jin. Time-equivariant contrastive video rep-

resentation learning. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 9970–9980, 2021.

[140] Yanbei Chen, Yongqin Xian, A Koepke, Ying Shan, and Zeynep Akata.

Distilling audio-visual knowledge by compositional contrastive learning.

In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 7016–7025, 2021.

[141] Miao Liu, Xin Chen, Yun Zhang, Yin Li, and James M. Rehg. Attention

distillation for learning video representations. In 31st British Machine

Vision Conference 2020, BMVC, 2020.

[142] Abhinav Shukla, Stavros Petridis, and Maja Pantic. Learning speech

representations from raw audio by joint audiovisual self-supervision.

arXiv preprint arXiv:2007.04134, 2020.

[143] Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny.
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Košir. Audio-visual emotion fusion (avef): A deep efficient weighted

approach. Information Fusion, 46:184–192, 2019.

[174] Wei Zhang, Xuanyu He, and Weizhi Lu. Exploring discriminative repres-

entations for image emotion recognition with cnns. IEEE Transactions

on Multimedia, 22(2):515–523, 2019.

[175] Haimin Zhang and Min Xu. Recognition of emotions in user-generated

videos with kernelized features. IEEE Transactions on Multimedia,

20(10):2824–2835, 2018.

[176] Gaurav Verma, Eeshan Gunesh Dhekane, and Tanaya Guha. Learning

affective correspondence between music and image. In International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages

3975–3979, 2019.

[177] Min Kyu Lee, Dong Yoon Choi, Dae Ha Kim, and Byung Cheol Song.

Visual scene-aware hybrid neural network architecture for video-based

facial expression recognition. In International Conference on Automatic

Face & Gesture Recognition (FG), pages 1–8, 2019.

[178] Feng Mao, Xiang Wu, Hui Xue, and Rong Zhang. Hierarchical video

frame sequence representation with deep convolutional graph network.

In European Conference on Computer Vision (ECCV), pages 262–270,

2018.
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