
On Parallel 𝑘-Center Clustering

Sam Coy∗
University of Warwick

Coventry, UK
S.Coy@warwick.ac.uk

Artur Czumaj†
University of Warwick

Coventry, UK
A.Czumaj@warwick.ac.uk

Gopinath Mishra‡
University of Warwick

Coventry, UK
Gopinath.Mishra@warwick.ac.uk

ABSTRACT
We consider the classic𝑘-center problem in a parallel setting, on

the low-local-space Massively Parallel Computation (MPC) model,
with local space per machine of O(𝑛𝛿), where 𝛿 ∈ (0, 1) is an
arbitrary constant. As a central clustering problem, the 𝑘-center
problem has been studied extensively. Still, until very recently, all
parallel MPC algorithms have been requiring Ω(𝑘) or even Ω(𝑘𝑛𝛿)
local space per machine. While this setting covers the case of small
values of 𝑘 , for a large number of clusters these algorithms require
large local memory, making them poorly scalable.The case of large
𝑘 , 𝑘 ≥ Ω(𝑛𝛿), has been considered recently for the low-local-space
MPCmodel by Bateni et al. (2021), who gave anO(log log𝑛)-round
MPC algorithm that produces 𝑘 (1 + 𝑜 (1)) centers whose cost has
multiplicative approximation of O(log log log𝑛). In this paper we
extend the algorithm of Bateni et al. and design a low-local-space
MPC algorithm that in O(log log𝑛) rounds returns a clustering
with 𝑘 (1 + 𝑜 (1)) clusters that is an O(log∗ 𝑛)-approximation for
𝑘-center.

CCS CONCEPTS
• Theory of computation → Massively parallel algorithms;
Facility location and clustering.

KEYWORDS
MPC, k-center, clustering, parallel computing, MapReduce

ACM Reference Format:
Sam Coy, Artur Czumaj, and Gopinath Mishra. 2023. On Parallel 𝑘-Center
Clustering. In Proceedings of the 35th ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA ’23), June 17–19, 2023, Orlando, FL, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3558481.3591075

∗Research supported in part by the Centre for Discrete Mathematics and its Applica-
tions (DIMAP), by an EPSRC studentship, and by the Simons Foundation Award No
663281 granted to the Institute of Mathematics of the Polish Academy of Sciences for
the years 2021-2023.
†Research supported in part by the Centre for Discrete Mathematics and its Appli-
cations (DIMAP), by EPSRC award EP/V01305X/1, by a Weizmann-UK Making Con-
nections Grant, by an IBM Award, and by the Simons Foundation Award No. 663281
granted to the Institute of Mathematics of the Polish Academy of Sciences for the
years 2021–2023.
‡Research supported in part by the Centre for Discrete Mathematics and its Applica-
tions (DIMAP), by EPSRC award EP/V01305X/1, and by the Simons Foundation Award
No 663281 granted to the Institute of Mathematics of the Polish Academy of Sciences
for the years 2021-2023.

This work is licensed under a Creative Commons Attribu-
tion International 4.0 License.

SPAA ’23, June 17–19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9545-8/23/06.
https://doi.org/10.1145/3558481.3591075

1 INTRODUCTION
Clustering large data is a fundamental primitive extensively stud-

ied because of its numerous applications in a variety of areas of
computer science and data science. It is a central type of prob-
lem in modern data analysis, including the fields of data mining,
pattern recognition, machine learning, networking and social net-
works, and bioinformatics. In a typical clustering problem, the goal
is to partition the input data into subsets (called clusters) such that
the points assigned to the same cluster are “similar” to one another,
and data points assigned to different clusters are “dissimilar”.

The most extensively studied clustering problems are 𝑘-means,
𝑘-median, 𝑘-center, various notions of hierarchical clustering, and
also variants of these problems with some additional constraints
(e.g., fairness or balance).

While originally the clustering problems have been studied in
the context of classical sequential computation, most recently a
large amount of research has been devoted to the non-sequential
computational settings such as distributed and parallel computing,
mainly because these are the only settings capable of performing
computations in a reasonable time on large inputs, and because
data is frequently collected on different sites and clustering needs
to be performed in a distributed manner with low communication.

In this paper we consider one of the most fundamental clus-
tering problems, the 𝑘-center problem, on the Massively Parallel
Computation (MPC) model. MPC is a modern theoretical model
of parallel computation, inspired by frameworks such as MapRe-
duce [9], Hadoop [21], Dryad [17], and Spark [23]. Introduced just
over a decade ago by Karloff et al. [18] (and later refined, e.g., in
[1, 3, 8, 13]), the model has been the subject of an increasing quan-
tity of fundamental research in recent years, becoming nowadays
the standard theoretical parallel model of algorithmic study.

MPC is a parallel system with m machines, each with s words
of local memory. (We also consider the global space g, which is the
total space used across all machines, g = s ·m.) Computation takes
place in synchronous rounds: in each round, each machine may
perform arbitrary computation on its local memory, and then ex-
change messages with other machines. Each message is sent to
a single machine specified by the machine sending the message.
Machines must send and receive at most s words each round. The
messages are processed by recipients in the next round. At the end
of the computation, machines collectively output the solution. The
goal is to design an MPC algorithm that solves a given task in as
few rounds as possible.

If the input is of size 𝑛, then one wants s to be sublinear in 𝑛
(for if s ≥ 𝑛 then a single machine can solve any problem without
any communication, in a single round), and the total space across
all the machines to be at least 𝑛 (in order for the input to fit onto
the machines) and ideally not much larger. In this paper, we focus

65

https://orcid.org/0000-0001-8500-8690
https://orcid.org/0000-0002-7743-438X
https://orcid.org/0000-0003-0540-0292
https://doi.org/10.1145/3558481.3591075
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3558481.3591075
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558481.3591075&domain=pdf&date_stamp=2023-06-17

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Sam Coy, Artur Czumaj, and Gopinath Mishra

on the low-local-space MPC setting, where the local space of each
machine is strongly sublinear in the input size, i.e., s = O(𝑛𝛿) for
some arbitrarily constant 𝛿 ∈ (0, 1). This low-local-space regime
is especially attractive because of its scalability. At the same time,
this setting is particularly challenging in that it requires extensive
inter-machine communication to solve clustering problems for the
input data scattered over many machines.

In recent years we have seen a number of very efficient, often
constant-time, parallel clustering algorithms that have been rely-
ing on a combination of a core-set and a “reduce-and-merge” ap-
proach. In this setting, one gradually filters the data set by typi-
cally reducing its size on every machine to Õ(𝑘), continuing until
all the data can be stored on a single machine, at which point the
problem is solved locally. Observe that this approach has an in-
herent bottleneck that requires that any machine must be able to
store Ω(𝑘) data points. Intuitively, this follows from the fact that
if a machine sees 𝑘 data points that are all very far away from each
other, it needs to keep track of all 𝑘 of them, for otherwise it might
miss all the information about one of the clusters, which in turn
could lead to a large miscalculation of the objective value. Similar
arguments could be also used to argue that each machine needs to
communicate Ω(𝑘) points to the others (see [6] for a formalization
of such intuition for aworst-case partition of points for𝑘-median,𝑘-
means, and 𝑘-center problems, though the worst-case partition as-
sumption means that this bound does not extend directly to MPC).
Because of that, most of the earlier clustering MPC algorithms, es-
pecially those working in a constant number of rounds (see, e.g.,
[11, 19]), require Ω(𝑘) or even Ω(𝑘) · 𝑛Ω (1) local space. Therefore
in the setting considered in this paper, of MPC with local space
per machine of s = O(𝑛𝛿), the approach described above cannot
be applied when the number of clusters is large, when 𝑘 = 𝜔 (s).
This naturally leads to the main challenge in the design of clus-
tering algorithms for MPC with low-local-space: how to efficiently
partition the data into 𝑘 good quality clusters on an MPC with local
space s ≪ 𝑘 . We believe that this setting is quantitatively different
(and more challenging) from the setting when 𝑘 is smaller (or even
comparable to) the amount of local space s.

In this paper, we focus on the 𝑘-center clustering problem, a stan-
dard, widely studied, and widely used formulation of metric clus-
tering.The problem is, given a set of 𝑛 input points, to find a subset
of size 𝑘 of these points (called centers) such that that maximum
distance of a point to its nearest center is minimized. Specifically,
in this work, we focus on the case where 𝑘 ≫ s and hence, when
𝑘 is quite large relative to 𝑛: one can think of these problem in-
stances as “compressing” the input set of 𝑛 points into 𝑘 points.
Very recently this problem has been addressed by Bateni et al. [2],
who showed one can design anO(log log𝑛)-roundMPC algorithm,
with local space s = O(𝑛𝛿) and global space g = Õ(𝑛1+𝛿),1 that re-
turns an O(log log log𝑛)-approximate solution with 𝑘 + 𝑜 (𝑘) cen-
ters. Our main result is an improved bound in the MPC model:

Theorem 1.1 (Main result stated informally). In O(log log𝑛)
rounds on an MPC, we can compute an O(log∗ 𝑛) approximate solu-
tion to the 𝑘-centers problem using 𝑘 (1 + 𝑜 (1)) centers.

1 Õ (𝑓) hides a polynomial factor in log 𝑓 .

TheMPC has local space s = O(𝑛𝛿) and global space g = Õ(𝑛1+𝜌)
for any constant 𝜌 > 0. The𝑛 input points are inR𝑑 for some constant
𝑑 and we assume that 𝑘 = Ω(log𝑐 𝑛) for a suitable constant 𝑐 . Our
algorithm succeeds with high probability.

The algorithmic framework is based on a repeated application
of locally sensitive sampling: sampling a set of “hub” points, assign-
ing all other points to a nearby hub, and then adding new hubs
to well-approximate the point set. We improve the approximation
factor by a careful examination of the progress of clusters in some
fixed optimal clustering over the course of the algorithm. Due to
the depth of our iteration, clusters no longer satisfy certain prop-
erties with high probability, and carefully bounding the size of the
clusters that fail tomeet certain checks is an important challenge to
overcome in our analysis. Additionally, we provide a more flexible
guarantee on the global space, providing an accuracy parameter
which can be set to reduce global space used at the expense of a
larger approximation ratio (or vice versa).2 This is possible because
of the way we implement locally-sensitive hashing (LSH) in MPC.
We believe our implementation of LSH in MPC could potentially
see further applications, e.g., for other geometric problems.

1.1 Related work
There has been a large amount of work on various variants of

the clustering problems (see, e.g., [22] for a survey of research until
2005), including some extensive study of the 𝑘-center clustering
problem. The 𝑘-center problem is well known to be NP-hard and
simple algorithms are known to achieve a 2-approximation [10, 12,
15]; this approximation ratio is tight unless P = NP [16].

The study of clustering in the context of parallel computing is
extremely well-motivated: as the size of typical data sets continue
to increase, it becomes infeasible to store input data on a single ma-
chine, let alone iterate over it many times as greedy sequential algo-
rithms require (see, e.g., [12]). It comes therefore as no surprise that
there has been a considerable amount of work on 𝑘-center clus-
tering algorithms in MPC. In particular, several constant-round,
constant-approximation algorithms in the MPC setting were given
recently for general metric 𝑘-center clustering, see, e.g., [5, 11, 19].
Much of this work used coresets or similar techniques to approxi-
mate the structure of the underlying data, naturally implying a re-
quirement that the local space satisfies s = Ω(𝑘) per machine and
global space is g = Ω(𝑛𝑘) or Ω(𝑛𝜖𝑘2) [5, 11, 19]. Specifically, Ene
et al. [11] gave a O(1) round 10-approximation MPC algorithm
that uses local space s = O(𝑘2𝑛Θ(1)), Malkomes et al. [19] ob-
tained a 2-round 4-approximation MPC algorithm with local space
s = Ω(

√
𝑛𝑘), and Ceccarello et al. [5] obtained a 2-round (2 + 𝜀)-

approximationMPC algorithm that uses local space s = O𝑑,𝜀 (
√
𝑛𝑘)

for the problem in metric spaces with doubling dimension 𝑑 . As
mentioned earlier, these algorithms are not scalable if 𝑘 is large
relative to 𝑛 (for example, when 𝑘 = 𝑛1/3), making the case of large
𝑘 challenging. Furthermore, as argued by Bateni et al. [2], the case
of large 𝑘 appears naturally in some applications of 𝑘-center clus-
tering, including label propagation used in semi-supervised learn-
ing, or same-meaning query clustering for online advertisement
or document search [20]. Unfortunately, we do not know of any

2In particular, the constant in O(log∗ 𝑛) of Theorem 1.1 depends on 𝜌 .

66

On Parallel 𝑘-Center Clustering SPAA ’23, June 17–19, 2023, Orlando, FL, USA

𝑂 (1)-round, 𝑂 (1)-approximation MPC algorithm that would use
local space s = 𝑜 (𝑘).

In order to address the case of large 𝑘 , Bateni et al. [2] consid-
ered a relaxed version of 𝑘-center clustering for low dimensional
Euclidean spaces with constant dimension. The goal of that work
was to design a scalable MPC algorithm for the 𝑘-center cluster-
ing problem with a sublogarithmic number of rounds of computa-
tion, sublinear space per machine, and small global space. Bateni
et al. [2] showed that in O(log log𝑛) rounds on an MPC with s =
O(𝑛𝛿), one can compute an O(log log log𝑛)-approximate solution
to constant-dimension Euclidean 𝑘-center with 𝑘 (1+𝑜 (1)) centers.
Their algorithm uses Õ(𝑛1+𝛿 · logΔ) global space. Bateni et al. [2]
complemented their analysis by some empirical study to demon-
strate that the designed algorithm performs well in practice.

Finally, in the related PRAMmodel of parallel computation Blel-
loch and Tangwonsan gave a 2-approximation algorithm for𝑘-center
[4]. However, their algorithm requires Ω(𝑛2) processors and it is
therefore difficult to translate the approach to our setting.

1.2 Technical contributions
Our main result in Theorem 1.1 is an extension of the approach

developed in Bateni et al. [2] that significantly improves the quality
of the approximation guarantee. To present these two results in the
right context, wewill briefly describe themain differences between
these two works at a high level.

The approach of Bateni et al. [2] starts with the entire point set
𝑃 as a set of potential centers (solution), and refines it to 𝑃 = 𝑃0 ⊇
· · · ⊇ 𝑃𝜏 , until |𝑃𝜏 | = 𝑘 + 𝑜 (𝑘). The final set 𝑃𝜏 is reported as the
output. It is not difficult to see that if we take an optimal clustering
C∗ for 𝑃 (i.e., C∗ is the optimal solution to the 𝑘-center problem
for 𝑃), then the number of potential centers in any cluster 𝐶 ∈ C∗
reduces over rounds (that is, |𝑃𝑖+1 ∩𝐶 | ≤ |𝑃𝑖 ∩𝐶 |). Let us define a
cluster 𝐶 ∈ C∗ to be irreducible from round 𝑖 , if 𝑖 is the minimum
index such that |𝐶 ∩ 𝑃𝑖 | ≤ 1. Two central properties of the clus-
ter refinement due to Bateni et al. [2] are that after O(log log𝑛)
rounds the size of each cluster in C∗ reduces to Õ(log𝑛), and that
after that, the total number of the points in the reducible clusters
in C∗ reduces after each round by a constant factor, implying that
another O(log log𝑛) rounds suffice to ensure the desired number
of centers (at most 𝑘 due to the irreducible clusters and 𝑜 (𝑘) due
to the reducible clusters) and hence 𝜏 = O(log log𝑛). This is then
complemented by the analysis of the quality of the refinements
which guarantees that each new refinement adds an additive term
of O(opt) to the cost of the solution, giving in total a double log-
arithmic approximation ratio. They further gave a sketch of the
analysis to get an approximation ratio of O(log log log𝑛).

In our paper we substantially improve the approximation factor
to O(log∗ 𝑛) by extending the framework in the following sense.
We show that, after O(log log𝑛) rounds, the size of each cluster in
C∗ reduces to Õ(log𝑛) such that the refinement in each round adds
an additive error of O(opt

log log𝑛) to the cost of the solution. Then,
we show that after additional O(log log log𝑛) rounds, the sizes
of almost all (but not all) clusters in C∗ reduce to a Õ(log log𝑛)
such that the refinement in each round adds an additive error of
O(opt

log log log𝑛) to the cost of the solution. Next, we show that after
another O(log log log log𝑛) rounds, the sizes of almost all clusters

in C∗ reduce to a Õ(log log log𝑛) such that the refinement in each
round adds O(opt

log log log log𝑛) to the cost of the solution, and so on.
We continue this until the sizes of almost all clusters in C∗ reduce
to O(log∗ 𝑛). Observe that the total number of rounds taken so
far is bounded by O(log log𝑛), and we can argue that the current
solution has an approximation ratio of O(log∗ 𝑛). An important
challenge in analyzing this approach is that not all clusters satisfy
these size guarantees with high probability. Indeed, we cannot ob-
tain a high probability guarantee by cluster refinement relying on
random sampling of the already small clusters; we can ensure only
thatmost of the clusters are getting small. Let C∗∗ ⊆ C∗ be the clus-
ters that satisfy the reduction property as discussed above, that is,
such that the number of points in each cluster of C∗∗ is bounded by
O(log∗ 𝑛) currently. We argue that the total number of points in
the reducible clusters in C∗∗ reduces by a constant factor after each
successive round, adding an additive error of O(opt) each time.
This implies that another O(log(log∗ 𝑛)) rounds are good enough
to ensure that we have the desired number of centers at the end.
To bound the total number of centers, we also need to show that
the number of centers in clusters in C∗ \ C∗∗ (that is, the set of
clusters which fail to adhere to a size guarantee at some point dur-
ing the algorithm) is bounded. Note that we cannot track which
clusters succeed or fail (doing so would require us to know an op-
timal clustering), and so we use C∗ and C∗∗ only for the analysis.
In summary, the approach sketched above will reduce the number
of clusters to 𝑘 (1 + 𝑜 (1)), and will ensure that the total number of
rounds spent by our algorithm is O(log log𝑛) and the approxima-
tion ratio of our solution is O(log∗ 𝑛). A more detailed overview is
in Section 2.

Our approach relies heavily on the use of LSH (locality sensitive
hashing), and we provide a flexible implementation of LSH inMPC
which one can configure with an appropriate parameter 𝜌 . Reduc-
ing the value of 𝜌 decreases the amount of global space used by
the algorithm (global space used is 𝑂 (𝑛1+𝜌)) while increasing the
approximation ratio.

1.3 Notation and preliminaries
We now introduce the notation used through the paper.
First, we present the setting of the parameters of ourMPC.The𝑘-

center algorithm in this paper works for any local space s = O(𝑛𝛿)
for a constant 0 < 𝛿 < 1: the setting of 𝛿 has only a constant
factor impact on the running time. Similarly, the MPC can have
any global space g = Õ(𝑛1+𝜌) for some constant 𝜌 > 0: 𝜌 can be
made arbitrarily small, and its setting has a constant factor impact
on the approximation ratio.We sometimes refer toMPCwith these
choices of s and g simply as “MPC” in the rest of this paper.

Let us recall that certain operations, particularly sorting and pre-
fix sum of 𝑛 elements, and broadcasting a value of size < s, can be
computed deterministically in 𝑂 (1) rounds (see [13]).

The input to our problem is a set 𝑃 of𝑛 points inR𝑑 , where𝑑 is a
constant, and an integer parameter 𝑘 < 𝑛. We define 𝑑 (𝑝, 𝑞) as the
Euclidean distance between points 𝑝 and 𝑞 in R𝑑 . We generalize
this notation to the distance between a point and a set: 𝑑 (𝑝, 𝑆) :=
min
𝑞∈𝑆

𝑑 (𝑝, 𝑞) is the minimum distance from 𝑝 to a point in 𝑆 . We

define Cost(𝑃, 𝑆) := max
𝑝∈𝑃

𝑑 (𝑝, 𝑆) as the distance of the point in

67

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Sam Coy, Artur Czumaj, and Gopinath Mishra

𝑃 which is “furthest away” from any point in 𝑆 . Without loss of
generality, we assume that the input set is re-scaled so that the
minimum distance between any two points in 𝑃 is 1; then we let Δ
to be the maximum distance between any two points in 𝑃 .

We denote the set {1, . . . , 𝑡} by [𝑡] and log(𝑖) 𝑛 := log . . . log︸ ︷︷ ︸
𝑖

𝑛

the iterated logarithm of 𝑛. By convention log(0) 𝑛 := 𝑛. The nota-
tions Õ(𝑓) and Θ̃(𝑓) hide polynomial factors in log 𝑓 .

We now define formally the 𝑘-center clustering problem.

Definition 1.2. Let 𝑃 be a set of points in R𝑑 . A clustering C of
𝑃 is a partition of 𝑃 into nonempty clusters 𝐶1, . . . ,𝐶𝑡 . The radius
of cluster𝐶𝑖 is min

𝑥 ∈𝐶𝑖

max
𝑦∈𝐶𝑖

𝑑 (𝑥,𝑦), and the cost of the clustering C is

the maximum of the radii of the clusters 𝐶1, . . . ,𝐶𝑡 .

Definition 1.3 (𝑘-center clustering problem). Let 𝑘, 𝑛, 𝑑 ∈ N
with 𝑘 ≤ 𝑛, and 𝑃 be a set of 𝑛 points in R𝑑 . The 𝑘-center problem
for 𝑃 is to find a set 𝑆∗ ⊆ 𝑃 such that

𝑆∗ = argmin
𝑆⊆𝑃 : |𝑆 |=𝑘

Cost(𝑃, 𝑆).

Moreover, Cost(𝑃, 𝑆∗) is defined as the (optimal) cost of the 𝑘-
center problem for 𝑃 .

We assume throughout the paper that 𝑘 > s. However, our al-
gorithms work as described provided that 𝑘 = Ω((log𝑛)𝑐) for a
suitable constant 𝑐 (which is also the main focus of the work).

1.4 Our results — detailed bounds
We now present in details the main result of this paper:

Theorem 1.4 (Main result). Let 𝑃 be any set of 𝑛 points in R𝑑 and
let opt denote the optimal cost of the 𝑘-center clustering problem
for 𝑃 . There exists an MPC algorithm that in O(log log𝑛) rounds
determines with high probability a set 𝑇 ⊆ 𝑃 of 𝑘 + 𝑜 (𝑘) centers,
such that Cost(𝑃,𝑇) = O(log∗ 𝑛) · opt. The MPC uses local space
s = O(𝑛𝛿) and global space g = Õ(𝑛1+𝜌 · log2 Δ).

Theorem 1.4 follows directly from a more general theorem.

Theorem 1.5 (Generalization of Theorem 1.4). Let 𝛼 be an ar-
bitrary integer, 1 ≤ 𝛼 ≤ log∗ 𝑛−𝑐0 for some suitable constant 𝑐0. Let
𝑃 be any set of 𝑛 points in R𝑑 and let opt denote the optimal cost of
the 𝑘-center clustering problem for 𝑃 . There exists an MPC algorithm
that in O(log log𝑛) rounds determines with high probability a set
𝑇 ⊆ 𝑃 of centers, such that Cost(𝑃,𝑇) = O((𝛼 + log(𝛼+1) 𝑛)) · opt

and |𝑇 | ≤ 𝑘 ·
(
1 + 1

Θ̃(log(𝛼) 𝑛)

)
+ Θ̃((log(𝛼) 𝑛)3). The MPC uses local

space s = O(𝑛𝛿) and global space g = Õ(𝑛1+𝜌 · log2 Δ).

Observe that in Theorem 1.5 we have |𝑇 | = 𝑘 + 𝑜 (𝑘), since we
are assuming 𝑘 = Ω((log𝑛)𝑐) for some suitable constant 𝑐 .

Let 𝛼0 be the solution to the equation 𝛼 = log(𝛼+1) 𝑛; observe
that𝛼0 = Θ(log∗ 𝑛).ThenTheorem 1.4 is a corollary ofTheorem 1.5
when we choose 𝛼 = 𝛼0.

Theorem 1.5 can be seen as a fine-grained version ofTheorem 1.4:
as 𝛼 increases the cost of the solution decreases and number of cen-
ter increases (with the number of rounds always being𝑂 (log log𝑛)).
ThereforeTheorem 1.5 is more amiable in practical scenarios in the

following sense: 𝛼 in Theorem 1.5 can be set to trade off between
the quality of the solution and the number of centers in the solu-
tion. We would also like to highlight that the result of Bateni et al.
[2] is a special case of Theorem 1.5 when 𝛼 = 1 and 𝛼 = 2 to obtain
O(log log𝑛) and O(log log log𝑛) approximation, respectively.

1.5 Organization of the paper
In Section 2 we give a proof of our main result predicated on the

correctness of our main algorithm, and then give an overview of
the subroutines which our main algorithm contains. In Section 3
we explain how LSH (locality-sensitive hashing) on MPC can be
implemented to assign each point 𝑝 ∈ 𝑃 to a hub in𝐻 ⊆ 𝑃 which is
within a constant factor of the closest hub to 𝑝 . In Sections 4 and 5
we prove critical properties of subroutines used in our main algo-
rithm, and then in Section 6 we prove the correctness of our main
algorithm. Finally, Section 7 contains some conclusions. Because
of space constraints, missing proofs are deferred to the full version
[7].

2 TECHNICAL OVERVIEW
Recall thatTheorem 1.4 is our main result andTheorem 1.5 is its

parameterized generalization. Our proof ofTheorem 1.5 (and hence
of Theorem 1.4) relies on the following main technical theorem.

Theorem 2.1 (Main technical theorem proved in this paper).
Let 𝛼 be an arbitrary integer, 1 ≤ 𝛼 ≤ log∗ 𝑛 − 𝑐0 for some suit-
able constant 𝑐0. Let 𝑟 be an arbitrary positive real. Let 𝑃 be any set
of 𝑛 points in R𝑑 and let C𝑟 be a clustering of 𝑃 that has the mini-
mum number of centers among all clusterings of 𝑃 with cost at most
𝑟 and |C𝑟 | = Ω((log𝑛)𝑐) for a suitable constant 𝑐 . There exists an
MPC algorithm Ext-𝑘-CenteR (Algorithm 5) that with probability
at least 1 − 1

(log(𝛼−1) 𝑛)Ω (1)
, in O(log log𝑛) rounds determines a set

𝑇 ⊆ 𝑃 of centers, such that Cost(𝑃,𝑇) = O(𝑟 · (𝛼 + log(𝛼+1) 𝑛)) and

|𝑇 | ≤ |C𝑟 | ·
(
1 + 1

Θ̃(log(𝛼) 𝑛)

)
+ Θ̃((log(𝛼) 𝑛)3). The MPC uses local

space s = O(𝑛𝛿) and global space g = Õ(𝑛1+𝜌 · logΔ).
Algorithm Ext-𝑘-CenteR used inTheorem 2.1 takes two param-

eters: an accuracy parameter 𝛼 and a cost parameter 𝑟 , and pro-
duces the output in a form similar to that required in Theorem 1.5,
except that the number of clusters is equal to the number of cen-
ters in an optimal clustering of 𝑃 with cost at most 𝑟 . This is in
contrast with a standard clustering setting where the number of
clusters is given as input, with no relationship to the cost of the
solution. Therefore, if we knew a constant factor approximation
to the optimal cost to the 𝑘-center problem, then setting it to be
𝑟 in Theorem 2.1, we would get a desired solution as required in
Theorem 1.5. This naturally suggests to run Ext-𝑘-CenteR multi-
ple times in parallel in order to obtain Theorem 1.5. Note that the
success probability of Theorem 2.1 is not high. Hence we first run
Ext-𝑘-CenteR a suitable number of times in parallel to get an al-
gorithm Ext-𝑘-CenteR′whose output and space requirements are
same as that of Ext-𝑘-CenteR, but the success probability is high.
Then we run Ext-𝑘-CenteR′ for 𝑂 (logΔ) choices of 𝑟 (starting
with 𝑟 = Δ and decreasing a constant factor each time) in parallel
to get algorithm Ext-𝑘-CenteR′′ (the algorithm of Theorem 1.5).
Moreover, Ext-𝑘-CenteR′′ reports the output of Ext-𝑘-CenteR′

68

On Parallel 𝑘-Center Clustering SPAA ’23, June 17–19, 2023, Orlando, FL, USA

for the minimum 𝑟 for which we get the number of centers equals
to 𝑘 + 𝑜 (𝑘). The details are in the full version [7].

2.1 Overview of the proof of Theorem 2.1
The idea to proveTheorem 2.1 is based on the framework which

we call locally sensitive sampling. We generate a set𝐻 ⊆ 𝑃 of points
(called hubs) by sampling each point in 𝑃 independently with a
suitable probability, and assign all other points to one of the hubs
based on its locality. Let 𝐵ℎ be the bag of the hub ℎ—-the set of
points associated to a hub ℎ ∈ 𝐻 . We run a variation of a well
known greedy algorithm [12] (for 𝑘-center in the sequential set-
ting) for each bag in parallel to find a set of intermediate centers
𝐶ℎ for hub ℎ such that Cost(𝐵ℎ,𝐶ℎ) = O(𝑟). We again repeat the
procedure by setting

⋃
ℎ∈𝐻 𝐶ℎ as the point set. We continue this

process a particular number of times with a particular choice of
probability and radius parameters, and report the centers, at that
point of time, as the final solution.

This framework was recently used by Bateni et al. [2] to give
an O(log log𝑛)-round MPC algorithm with local space s = O(𝑛𝛿)
and global space g = Õ(𝑛1+𝛿), which computes anO(log log log𝑛)-
approximate solution to 𝑘-center with 𝑘 (1 + 𝑜 (1)) centers, with
high probability. We extend their framework and generalize the
analysis to give an O(log∗ 𝑛) approximate solution as stated in
Theorem 1.4. Note that Theorem 2.1 takes care of Theorem 1.4 via
Theorem 1.5.

The algorithm corresponding to Theorem 2.1 is Ext-𝑘-CenteR
(Algorithm 5 in Section 6). Before describing Ext-𝑘-CenteR, we de-
scribe and contextualize the three subroutineswhich it uses (NeaRest-
Hub-SeaRch, Sample-And-Solve andUnifoRm-CenteR).Themain
algorithm of Bateni et al. [2] uses subroutine Sample-And-Solve
and UnifoRm-𝑘-centeR. We use analogous subroutines Sample-
And-Solve and UnifoRm-CenteR in our algorithm correspond-
ing to Sample-And-Solve and UnifoRm-𝑘-centeR in Bateni et
al. [2], respectively, to achieve the desired result. But there are
some differences which we will discuss when we describe Sample-
And-Solve and UnifoRm-CenteR. Due to our implementation of
NeaRest-Hub-SeaRch, we are able to give a more flexible bound
on global space. We can improve the approximation ratio mainly
due to generalizing their UnifoRm-𝑘-CenteR to UnifoRm-CenteR
in our case and using sophisticated analysis in our main algorithm
that calls UnifoRm-CenteR.

Let us discuss first at a high level what these subroutines achieve
in the context of the framework of locally sensitive sampling (dis-
cussed at the beginning of this section). Intuitively, the purpose of
Sample-And-Solve is to sparsify dense regions of points: it sam-
ples nodes with a given probability and iteratively adds centers in
order to ensure that the cost of the centers remains low. UnifoRm-
CenteR repeatedly uses Sample-And-Solve: its main purpose is
to guarantee that the number of centers in each cluster of some
fixed optimal clustering decreases in a certain way over time.

NeaRest-Hub-SeaRch (𝑄,𝐻). Takes as input a set 𝑄 of at most
𝑛 points and a set of hubs 𝐻 ⊆ 𝑄 . For all points 𝑞 ∈ 𝑄 \ 𝐻 , it
finds a point close(𝑞) ∈ 𝐻 such that 𝑑 (𝑞, close(𝑞)) = O(𝑑 (𝑞, 𝐻)),
with probability at least 1 − 1

𝑛Ω (1) . NeaRest-Hub-SeaRch can be
implemented in MPC with local space s = O(𝑛𝛿) and global space

g = Õ(𝑛1+𝜌 · logΔ) in O(1) rounds. NeaRest-Hub-SeaRch uses
locally sensitive hashing [14] and its implementation in MPC. For
details on NeaRest-Hub-SeaRch, see Section 3.

Sample-And-Solve (𝑄, 𝑝, 𝑟). Takes a set of𝑄 of at most 𝑛 points, a
sampling parameter 𝑝 , and a radius parameter 𝑟 . It produces some
set of centers 𝑆 ⊆ 𝑄 such that Cost(𝑄, 𝑆) = O(𝑟).3 Importantly,
this can be implemented in an MPC with local space s = O(𝑛𝛿)
and global space Õ(𝑛1+𝜌 · logΔ) in O(1) rounds (Lemma 4.1) as,
aside from using NeaRest-Hub-SeaRch to assign points to hubs,
the computation is all done locally. Sample-And-Solve first sam-
ples each point in𝑄 (independently) with probability 𝑝: let 𝐻 ⊆ 𝑄
be the set of sampled points called hubs. Then Sample-And-Solve
calls NeaRest-Hub-SeaRch with input point set 𝑄 and hub set 𝐻 .
After getting close(𝑞) for each 𝑞 ∈ 𝑄 \ 𝐻 , Sample-And-Solve col-
lects all points 𝐵ℎ ⊆ 𝑄 assigned to a hub ℎ ∈ 𝐻 (including hub ℎ)
and selects a set of centers 𝐶ℎ from 𝐵ℎ greedily using a variation
of the sequential algorithm of [12], such that Cost(𝐵ℎ,𝐶ℎ) = O(𝑟).
Finally, the algorithm outputs 𝑆 =

⋃
ℎ∈𝐻 𝐶ℎ . However, there is a

difficulty to overcome: note that |𝐵ℎ | may be𝜔 (𝑛𝛿). So 𝐵ℎ may not
fit into the local memory of a machine. We show that this can be
handled by distributing the points in 𝐵ℎ into multiple machines,
duplicating ℎ across all such machines. See Section 4 for more de-
tails about Sample-And-Solve.

Algorithm Sample-And-Solve in our paper serves essentially
the same purpose as the corresponding algorithm due to Bateni et
al. [2]. The approximation guarantee and number of rounds per-
formed are the same in both cases. However, the global space used
by our algorithm Sample-And-Solve is more flexible in the follow-
ing sense: reducing the value of 𝜌 decreases the amount of global
space used by the algorithm (global space used is Õ(𝑛1+𝜌) · logΔ)
while increasing the approximation ratio.

UnifoRm-CenteR (𝑉𝑡 , 𝑟 , 𝑡). Takes a set 𝑉𝑡 of at most 𝑛 points, a
radius parameter 𝑟 , and an additional parameter 𝑡 ≤ 𝑛. It produces
a set 𝑆 of centers, by calling Sample-And-Solve 𝜏 = Θ(log log 𝑡)
times. 𝑆𝑖−1 is the input to the 𝑖-th call and 𝑆𝑖 is the output of the
𝑖-th call: overall we have 𝑆0 = 𝑉𝑡 and 𝑆𝜏 = 𝑆 (the output of Uni-
foRm-CenteR). The probability and radius parameters to the calls
to Sample-And-Solve are set suitably. From the guarantees we
have from Sample-And-Solve, we have the following guarantee
for UnifoRm-CenteR: (i) it can be implemented in an MPC with
local space s = O(𝑛𝛿) and global space g = Õ(𝑛1+𝜌 · logΔ) in
O(log log 𝑡) rounds (Lemma 5.1), and (ii) Cost(𝑉𝑡 , 𝑆) = O(𝑟 · 𝜏) =
O(𝑟 log log 𝑡) (Lemma 5.2). UnifoRm-CenteR guarantees a reduc-
tion in cluster sizes in an optimal clustering in the following sense.
Consider a fixed clustering C𝑡𝑟 of 𝑉𝑡 that has cost at most 𝑟 . For
𝐶 ∈ C𝑡𝑟 : if |𝐶 ∩𝑉𝑡 | ≤ 𝑡 , then |𝐶 ∩ 𝑆 | = O(log 𝑡 · (log log 𝑡)2), with
probability at least 1 − 1

𝑡Ω (1)
. This is formally stated in Lemma 5.3:

note that this ceases to be high probability when 𝑡 ∈ 𝑜 (𝑛). This
guarantee on the size reduction plays a crucial role when proving
the number of centers reported by Ext-𝑘-CenteR in Section 6. For
more details on UnifoRm-CenteR, see Section 5.

Our UnifoRm-CenteR is a full generalization of the analagous
UnifoRm-𝑘-centeR in Bateni et al. [2]. In particular, UnifoRm-𝑘-
CenteR is a special case of our UnifoRm-CenteR when 𝑡 = 𝑛.
3The constant inside O(·) depends on 𝜌.

69

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Sam Coy, Artur Czumaj, and Gopinath Mishra

This generalization plays a crucial role in the correctness of Ext-𝑘-
CenteR when we call UnifoRm-CenteR multiple times. UnifoRm-
𝑘-CenteR is not robust enough to be called from Ext-𝑘-CenteR
multiple times to achieve the desired result.

Ext-𝑘-CenteR. Thealgorithm consists of two phases, wherePhase 1
consists of 𝛼 subphases and Phase 2 consists of 𝛽 = Θ(log(𝛼+1) 𝑛)
subphases. In the 𝑗-th subphase of Phase 1, that is, in Phase 1.j,
Ext-𝑘-CenteR calls UnifoRm-CenteR(𝑇𝑗−1, 𝑟 𝑗−1, 𝑡 𝑗−1), where𝑇0 =
𝑃 , 𝑟0 = 𝑟

log log𝑛 , 𝑡0 = 𝑛, 𝑡 𝑗 = Θ̃(log(𝑗) 𝑛), and 𝑟 𝑗 = 𝑟
log log 𝑡 𝑗

. Observe
that the guarantees of UnifoRm-CenteR ensure the following:

(i) Phase 1 can be implemented in anMPCwith local space s =
O(𝑛𝛿) and global space g = Õ(𝑛1+𝜌 ·logΔ) in

𝛼∑
𝑗=1

log log 𝑡 𝑗−1 =

O(log log𝑛) rounds;
(ii) Cost(𝑇𝑗−1,𝑇𝑗) = O(𝑟 𝑗−1 log log 𝑡 𝑗−1) = O(𝑟) for each 𝑗 ∈
[𝛼]. Hence, Cost(𝑃,𝑇𝛼) = O(𝑟𝛼).

Now consider Phase 2 of Ext-𝑘-CenteR.
In the 𝑖-th subphase ofPhase 2, that isPhase 2.i, Ext-𝑘-CenteR

calls Sample-And-Solve(𝑇𝛼+𝑖−1, 12 , 𝑟), where 𝑇 = 𝑇𝛼+𝛽 is the fi-
nal output of Ext-𝑘-CenteR. From the guarantee of Sample-And-
Solve, we have

(i) Phase 2 can be implemented in an MPC with local space
s = O(𝑛𝛿) and global space g = Õ(𝑛1+𝛿 · logΔ) in O(𝛽) =
O(log(𝛼+1) 𝑛) rounds;

(ii) Cost(𝑇𝛼+𝑖−1,𝑇𝛼+1) = O(𝑟) for each 𝑖 ∈ [𝛽]. Hence,

Cost(𝑃,𝑇) = Cost(𝑃,𝑇𝛼+𝛽) = Cost(𝑃,𝑇𝛼) + O(𝛽𝑟)

= O(𝑟 · (𝛼 + log(𝛼+1) 𝑛)) .

Combining the guarantees concerning the round complexity,
global space and approximation guarantee of Phase 1 and Phase
2, we get the claimed guarantees on round complexity, global space
and approximation guarantees in Theorem 2.1 (see Lemma 6.1 for
round and global space guarantee and Lemma 6.2 for the guarantee
on approximation factor).

Now, we discuss how we bound the number of centers that Ext-
𝑘-CenteR outputs, that is, |𝑇 |. Consider an optimal clustering C𝑟
of 𝑃 with cost at most 𝑟 . A cluster 𝐶 ∈ C𝑟 is said to be active (af-
ter Phase 1) if

��𝐶 ∩𝑇𝑗 �� ≤ 𝑡 𝑗 for each 𝑗 with 1 ≤ 𝑗 ≤ 𝛼 . We say
𝐶 is inactive, otherwise. Using the guarantee given by UnifoRm-
CenteR concerning the reduction in cluster sizes, we can show
that the total number of centers in 𝑇𝛼 , that are in inactive clus-

ters, is O
(

|C𝑟 |
(log(𝛼) 𝑛)Ω (1)

)
, with probability at least 1 −

𝛼∑
𝑖=1

1
𝑡Ω (1)𝑖−1

(see

Lemma 6.6). Note that 𝑇𝛼 denotes the set of intermediate centers
we have after Phase 1. So, for any cluster 𝐶 ∈ C𝑟 that is active af-
ter Phase 1, it satisfies |𝐶 ∩𝑇𝛼 | ≤ 𝑡𝛼 = Θ̃(log(𝛼) 𝑛). That is, with
probability at least 1 −

𝛼∑
𝑖=1

1
𝑡Ω (1)𝑖−1

, we have the following:

|𝑇𝛼 | ≤ |C𝑟 | · 𝑡𝛼 + O
(

|C𝑟 |
(log(𝛼) 𝑛)Ω (1)

)
.

We define an active cluster 𝐶 ∈ C𝑟 is 𝑖-large if |𝐶 ∩𝑇𝛼+𝑖−1 | ≥ 2.
We show that the total number of intermediate centers in any large

clusters reduces by a constant factor in Phase 2.i, with proba-
bility at least 1 − 1

𝑡Ω (1)𝛼−1
. Note that the total number of interme-

diate centers in all active large clusters, just before Phase 2, is
at most |C𝑟 | · 𝑡𝛼 = |C𝑟 | · Θ̃(log(𝛼) 𝑛), and we are executing 𝛽 =
Θ(log(𝛼+1) 𝑛) many sub-phases in Phase 2. We can show that the
total number of centers in the active large clusters, after Phase
2, is at most |C𝑟 |

Θ̃(log(𝛼) 𝑛)
+ Θ̃((log(𝛼) 𝑛)3), with probability at least

1− 1
𝑡Ω (1)𝛼−1

(Lemma 6.7). Combined with the fact the number of active

small clusters can be at most |C𝑟 | with the bound on number of in-
active clusters in Phase 2, we have the desired bound on |𝑇 |. Full
details of Ext-𝑘-CenteR and its analysis are presented in Section 6.

3 NEAREST HUB SEARCH
Recall that our NeaRest-Hub-SeaRch algorithm takes a set 𝑄

of points and a set 𝐻 ⊆ 𝑄 of hubs. For each 𝑞 ∈ (𝑄 \ 𝐻), we want
to find a hub ℎ ∈ 𝐻 such that the distance between 𝑞 and ℎ is only
a constant-factor more than the distance between 𝑞 and the closest
hub to 𝑞 in 𝐻 : informally, ℎ is “almost” the closest hub to 𝑞 in 𝐻 .

In this section, we use locally sensitive hashing (LSH) [14] to
implement algorithm NeaRest-Hub-SeaRch (𝑄,𝐻) on MPC. Our
implementation of locally sensitive hashing is parameterizable: by
setting the parameter 𝜌 appropriately, one can reduce the global
space while increase the approximation ratio, or vice versa.

First, we begin by recalling the definition of locally sensitive
hashing, introduced in [14]:

Definition 3.1 (Locally sensitive hashing [14]). Let 𝑟 ∈ R+,
𝑐 > 1 and 𝑝1, 𝑝2 ∈ (0, 1) be such that 𝑝1 > 𝑝2. A hash family
H = {ℎ : R𝑑 → 𝑈 } is said to be a (𝑟, 𝑐𝑟, 𝑝1, 𝑝2)-LSH family if for
all 𝑥,𝑦 ∈ R𝑑 the following hold:
• If 𝑑 (𝑥,𝑦) ≤ 𝑟 , then Prℎ∈H (ℎ(𝑥) = ℎ(𝑦)) ≥ 𝑝1;
• If 𝑑 (𝑥,𝑦) ≥ 𝑐𝑟 , then Prℎ∈H (ℎ(𝑥) = ℎ(𝑦)) ≤ 𝑝2.

Consider the following proposition that talks about the exis-
tence of a particular hash family, which will be useful to describe
and analyse NeaRest-Hub-SeaRch (𝑄,𝐻) in Algorithm 1.

Proposition 3.2 ([14]). Let 𝑟, 𝑛 ∈ N and 𝜌 ∈ (0, 1). There exists
a (𝑟, 𝑐𝜌𝑟, (1/𝑛)𝜌 , 1/𝑛)-LSH family, where 𝑐𝜌 is a constant depending
only on 𝜌 .

In NeaRest-Hub-SeaRch (𝑄,𝐻), 𝑄 is a set of at most 𝑛 points
and𝐻 ⊆ 𝑄 is the set of hubs. Our objective is to find a hub for each
point which is at most some constant factor further away than the
nearest hub, rather than finding the hub which is the closest. We
do this by making logΔ guesses about the distance to the nearest
hub, and for each guess trying to find a hub within that distance.

For our logΔ guesses for 𝑟 (the distance to the closest hub), we
take (independently and uniformly at random) 𝐿 = Θ(𝑛𝜌) many
hash functions from a (𝑟, 𝑐𝜌𝑟, (1/𝑛)𝜌 , 1/𝑛)-LSH family and use them
to hash all the points, including the hubs.4 Then we gather all
points with the same hash value on consecutivemachines.We then
need to find, for each point, a hub that is close to it. This is difficult
if the number of hubs mapped to a given hash value is large: if ℎ
4The constant 𝜌 is the same constant as in the exponent of𝑛 in the global space bound.
Recall our tradeoff: choosing a smaller 𝜌 decreases the amount of global space needed,
but increases the approximation ratio.

70

On Parallel 𝑘-Center Clustering SPAA ’23, June 17–19, 2023, Orlando, FL, USA

hubs and 𝑚 points are mapped to the same hash value, then we
have to perform ℎ ·𝑚 distance checks, which is potentially prohib-
itive if ℎ ·𝑚 > s. To overcome this we show that, if many hubs are
mapped to the same hash-value, we are able to discard all but a con-
stant number of them, and retain for each point a hub that is within
a constant factor of the distance of the closest hub. This works be-
cause of the choice of our hash function and by the definition of
LSH. The full algorithm NeaRest-Hub-SeaRch (𝑄,𝐻) is described
in Algorithm 1, and its correctness is proved in Lemma 3.3.

Lemma 3.3 (Nearest hub search). Let 𝑄 be a set of at most 𝑛
points in R𝑑 , 𝐻 ⊆ 𝑄 denote the set of hubs, and 𝑐𝜌 be a suitable con-
stant depending on 𝜌 . There exists an MPC algorithmNeaRest-Hub-
SeaRch (𝑄,𝐻) (as described in Algorithm 1) that with high probabil-
ity, in O(1) rounds, for all 𝑞 ∈ 𝑄 \ 𝐻 , finds a hub close(𝑞) ∈ 𝐻
such that 𝑑 (𝑞, close(𝑞)) < 2𝑐𝜌 · 𝑑 (𝑞, 𝐻). The MPC uses local space
s = 𝑂 (𝑛𝛿) and global space g = O(𝑛1+𝜌 · log2 𝑛 · logΔ).

Algorithm 1: NeaRest-Hub-SeaRch (𝑄,𝐻)
Input: A set 𝑄 of at most 𝑛 points and a set of hubs 𝐻 ⊆ 𝑄 .
Output: For each point in 𝑄 , report close(𝑝) ∈ 𝐻 such that

𝑑 (𝑝, close(𝑝)) ≤ 2𝑐𝜌 · 𝑑 (𝑝, 𝐻), where 𝑐𝜌 is a
suitable constant depending only on 𝜌 .

1 begin
2 for (𝑖 = 1 to 𝐼 = Θ(log𝑛)) do
3 for (j=0 to logΔ) do
4 Set 𝑟 = 2𝑗

5 Take 𝐿 = Θ(𝑛𝜌) many hash function 𝑓1, . . . , 𝑓𝐿
(independently and uniformly at random)
from a (𝑟, 𝑐𝜌𝑟, (1/𝑛)𝜌 , 1/𝑛)-LSH family.

6 for (ℓ = 1 to 𝐿) do
7 Determine 𝑓ℓ (𝑞) for each 𝑞 ∈ 𝑄 .
8 Find the distance of each 𝑞 ∈ 𝑄 with at most

a constant (say 10) number of hubs ℎ ∈ 𝐻
such that 𝑓𝑙 (𝑞) = 𝑓𝑙 (ℎ). If we get such a
ℎ ∈ 𝐻 such that 𝑑 (𝑞, ℎ) ≤ 𝑐𝜌 · 𝑟 , then we
set close𝑖 𝑗ℓ (𝑞) = ℎ and null, otherwise.

9 end
10 Set close𝑖 𝑗 (𝑞) = null if close𝑖 𝑗ℓ (𝑞) = null for

all ℓ ∈ [𝐿]. Otherwise, set
close𝑖 𝑗 (𝑞) = close𝑖 𝑗ℓ (𝑞) for some ℓ ∈ 𝐿.

11 end
12 Set close𝑖 (𝑞) = null if close𝑖 𝑗 (𝑞) = null for all

𝑗 ∈ [logΔ]. Otherwise, close𝑖 (𝑞) = close𝑖 𝑗∗ (𝑞)
such that 𝑗∗ is minimum among all 𝑗 for which
close𝑖 𝑗 (𝑞) is not null.

13 end
14 If there exists a 𝑞 ∈ 𝑄 such that close𝑖 (𝑞) is null for all

𝑖 ∈ [log𝑛], then report Fail.
15 Otherwise, set close(𝑞) = close𝑖 (𝑞) for some 𝑖 ∈ 𝐼 .
16 end

From Algorithm 1, note that we repeat a procedure (lines 3–12
that find an almost closest hub with probability 2/3) 𝐼 = Θ(log𝑛)

times, and report the output we get from any of the instances. Con-
sider Lemma 3.4, that says that, in NeaRest-Hub-SeaRch each
point 𝑞 ∈ 𝑄 finds close(𝑞) ∈ 𝐻 satisfying the required property
with high probability. This will immediately imply the correctness
of Lemma 3.3. We discuss the MPC implementation of NeaRest-
Hub-SeaRch in the full version [7].

Note that close𝑖 (𝑞) (which is either null or a point in 𝐻 such
that 𝑑 (𝑞, close𝑖 (𝑞)) = 𝑂 (𝑑 (𝑞, 𝐻))) denotes the output of NeaRest-
Hub-SeaRch for point 𝑞 ∈ 𝑄 \ 𝐻 and the instance 𝑖 ∈ 𝐼 .

Lemma 3.4. For a particular 𝑞 ∈ 𝑄 \ 𝐻 and 𝑖 ∈ 𝐼 , close𝑖 (𝑞) ∈ 𝐻
is not null and 𝑑 (𝑞, close𝑖 (𝑞)) ≤ 2𝑐𝜌 · 𝑑 (𝑞, 𝐻), with probability at
least 2/3.

Now, consider the way NeaRest-Hub-SeaRch sets the value of
close(𝑞) in lines 14–15 from close𝑖 (𝑞)’s. By Lemma 3.4, we have
close(𝑞) such that it is not null and 𝑑 (𝑞, close(𝑞)) ≤ 2𝑐𝜌 · 𝑑 (𝑞, 𝐻)
with probability at least 1 − 1

𝑛Ω (1) . This is because 𝐼 = Θ(log𝑛).
Applying the union bound over all points in 𝑄 \ 𝐻 , we see that
Lemma 3.3 is implied by Lemma 3.4, except the details of MPC
implementation (which is discussed in the full version [7]).

4 SAMPLE AND SOLVE
In this section, we describe Sample-And-Solve (𝑄, 𝑝, 𝑟), which

is a subroutine in UnifoRm-CenteR and Ext-𝑘-CenteR in Sections
5 and 6, respectively. Sample-And-Solve (𝑄, 𝑝, 𝑟) takes a set 𝑄 of
at most 𝑛 points, a sampling parameter 𝑝 , and a radius parameter
𝑟 , it relies on NeaRest-Hub-SeaRch discussed in Section 3, and
produces a set of centers 𝑆 ⊆ 𝑄 such that Cost(𝑄, 𝑆) = O(𝑟).

Algorithm 2: GReedy (𝑅,ℎ, 𝑟)
Input: Set 𝑅 of at most 𝑛 points; radius parameter 𝑟 ∈ R+.
Output: A set 𝐺 ⊆ 𝑅 of centers.

1 begin
2 Set 𝐺 ← {ℎ}.
3 while (∃ 𝑥 ∈ 𝑅 with 𝑑 (𝑥,𝐺) = min𝑦∈𝑅 𝑑 (𝑥,𝑦) > 4𝑐𝜌𝑟)

do
4 // Here 𝑐𝜌 is the constant as in Lemma 3.3.
5 Let 𝑥 ∈ 𝑅 be the point furthest from 𝐺 ; add 𝑥 to 𝐺 .
6 end
7 Report the set 𝐺 of centers.
8 end

Sample-And-Solve (𝑄, 𝑝, 𝑟) calls algorithm GReedy (𝑅,ℎ, 𝑟) as
a subroutine, which produces a set of centers 𝐺 ⊆ 𝑅 such that
Cost(𝑅,𝐺) = O(𝑟). GReedy (𝑅,ℎ, 𝑟) is a variation of a classic 2-
approximation algorithm for𝑘-center in the sequential setting [12].
In Sample-And-Solve (𝑄, 𝑝, 𝑟), the idea is to sample each point in
𝑄 (independently) with probability 𝑝 to form a set of hubs𝐻 . Then
each point 𝑞 ∈ 𝑄 will be assigned to some hub ℎ ∈ 𝐻 by using
NeaRest-Hub-SeaRch (as described in Algorithm 1). For ℎ ∈ 𝐻 ,
let 𝐵ℎ be the set of points assigned to ℎ (including ℎ itself). We run
GReedy for the points in 𝐵ℎ , to produce a set of centers 𝑆ℎ . Finally,⋃

ℎ∈𝐻 𝑆ℎ is the output reported by Sample-And-Solve. There are
other technicalities – |𝐵ℎ | may be much larger than s. In that case,
we distribute the points in 𝐵ℎ \ {ℎ} across a number of machines,

71

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Sam Coy, Artur Czumaj, and Gopinath Mishra

Algorithm 3: Sample-And-Solve (𝑄, 𝑝, 𝑟)
Input: Set 𝑄 of at most 𝑛 points; probability parameter

𝑝 ∈ (0, 1); radius parameter 𝑟 ∈ R+.
Output: A set 𝑆 ⊆ 𝑄 of centers.

1 begin
2 if

(
|𝑄 | ≤ s = O(𝑛𝛿)

)
then

3 Call GReedy(𝑄,𝑞, 𝑟) for some arbitrary 𝑞 ∈ 𝑄 , and
report the set of centers output by it as 𝑆 .

4 end
5 Sample each point in 𝑄 independently with probability

𝑝 . Points which are sampled form the set of hubs 𝐻 .
6 If 𝐻 = ∅, report Fail.
7 For each point 𝑞 in 𝑄 , assign it to the closest hub in 𝐻

by calling NeaRest-Hub-SeaRch(𝑄,𝐻, 𝜌). We call the
set of points assigned to a hub ℎ ∈ 𝐻 the bag
corresponding to ℎ, and denote it as 𝐵ℎ . Note that 𝐵ℎ
includes ℎ.

8 for (each ℎ ∈ 𝐻) do
9 if (|𝐵ℎ | ≤ s) then
10 Collect 𝐵ℎ on a single machine.
11 𝑆ℎ ← GReedy(𝐵ℎ, ℎ, 𝑟).
12 end
13 else
14 Form bags 𝐵ℎ1

, . . . , 𝐵ℎ𝑤
, keeping ℎ in every 𝐵ℎ𝑖

(𝑖 ∈ [𝑤]) and putting other point in 𝐵ℎ \ {ℎ}
into exactly one of the 𝐵ℎ𝑖 ’s, such that��𝐵ℎ𝑖 �� ≤ s = O(𝑛𝛿) for each 𝑖 ∈ [𝑤].

15 𝑆ℎ𝑖 ← GReedy(𝐵ℎ𝑖 , ℎ, 𝑟), where 𝑖 ∈ [𝑤].

16 𝑆ℎ ←
𝑤⋃
𝑖=1

𝑆ℎ𝑖 .

17 end
18 end
19 Report set of centers 𝑆 =

⋃
ℎ∈𝐻

𝑆ℎ .

20 end

but we send ℎ to each machine, ensuring that the total number of
points assigned to a machine (including ℎ) is less than s—and then
we apply GReedy to the points on each of these machines.

The formal algorithm for Sample-And-Solve is presented in Al-
gorithm 3. The approximation guarantee, round complexity and
space complexity of Sample-And-Solve are stated in Lemma 4.1.
An additional property of Sample-And-Solve is stated in Lemma 4.3
which will be useful in both Section 5 and Section 6.

Lemma4.1 (Approximation guarantee, round complexity and
space complexity of Sample-And-Solve). Consider Sample-And-
Solve (𝑄, 𝑝, 𝑟), as described in Algorithm 3. With probability at least

1 −min
{
𝑒−Ω

(
𝑝 ·𝑛𝛿

)
, 1
𝑛Ω (1)

}
, it does not report Fail, and moreover:

(i) It produces a set of centers 𝑆 ⊆ 𝑄 such that Cost(𝑄, 𝑆) ≤
4𝑐𝜌𝑟 = O(𝑟), where 𝑐𝜌 is the constant as in Lemma 3.3;

(ii) It takes O(1) MPC rounds with local space s = O
(
𝑛𝛿

)
and

global space g = Õ(𝑛1+𝜌 · logΔ).

Remark 4.2. We call Sample-And-Solve from UnifoRm-CenteR
(Algorithm 4) with probability parameter 𝑝 = Ω

(
log𝑛
𝑛𝛿

)
. Therefore,

the success probability of Sample-And-Solve in our case is always
at least 1 − 1

𝑛Ω (1) .

Lemma 4.3 (An additional guarantee of Sample-And-Solve).
Let C𝑟 be a clustering of 𝑄 having cost at most 𝑟 . Then, with high
probability, the following holds for any 𝐶 ∈ C𝑟 : if at least one hub is
selected from𝐶 , then no further point in𝐶 \𝐻 is selected as a center,
that is, |𝑆 ∩𝐶 | = |𝐻 ∩𝐶 |.

5 UNIFORM CENTER ALGORITHM
In this section, we describe UnifoRm-CenteR (𝑉𝑡 , 𝑟 , 𝑡), which

iteratively refines a set of centers to a smaller set of centers, by
calling Sample-And-Solve on a quadratically-increasing probabil-
ity schedule. It calls Sample-And-Solve Θ(log log 𝑡) times. The 𝑖-
th call to Sample-And-Solve is Sample-And-Solve (𝑆𝑖−1, 𝑝𝑖−1, 𝑟)
(in particular): it produces a set 𝑆𝑖 ⊆ 𝑆𝑖−1 of centers as the out-
put, where 𝑆0 = 𝑉𝑡 and the probability parameters are set suit-
ably. The algorithm is given in Algorithm 4; the round complex-
ity, space complexity and approximation guarantee are given in
Lemmas 5.1 and 5.2 — they follow from the guarantees we have
for Sample-And-Solve in Lemma 4.1 and the fact that UnifoRm-
CenteR (𝑉𝑡 , 𝑟 , 𝑡) calls Sample-And-Solve O(log log 𝑡) times. Uni-
foRm-CenteR has an additional guarantee (see Lemma 5.3) relat-
ing to the reduction of cluster sizes.This plays a crucial role in prov-
ing the correctness of Ext-𝑘-CenteR in Section 6. In particular it
helps to bound the number of centers output by Ext-𝑘-CenteR.

Algorithm 4: UnifoRm-CenteR (𝑉𝑡 , 𝑟 , 𝑡)
Input: A set of points 𝑉𝑡 of at most 𝑛 points, a radius

parameter 𝑟 ∈ R+, and an additional parameter
𝑡 ≤ 𝑛.

Output: A set 𝑆 ⊆ 𝑉𝑡 of centers.
1 begin
2 𝑝0 = Θ

(
log𝑛
𝑛𝛿

)
, 𝑠0 = 𝑡 , and 𝑆0 ← 𝑉𝑡 .

3 for 𝑖 = 1 to 𝜏 = Θ(log log 𝑡) do
4 𝑆𝑖 ← Sample-And-Solve (𝑆𝑖−1, 𝑝𝑖−1, 𝑟) .
5 𝑠𝑖 ←

√
𝑠𝑖−1 and 𝑝𝑖 = 1

𝑠𝑖
.

6 end
7 Report 𝑆 = 𝑆𝜏 .
8 end

Lemma5.1 (Round complexity and global space ofUnifoRm-CenteR).
Consider UnifoRm-CenteR (𝑉𝑡 , 𝑟 , 𝑡), as described in Algorithm 4.
The number of rounds taken by the algorithm is O(log log 𝑡) and
the global space used by the algorithm is g = Õ

(
𝑛1+𝜌 · logΔ

)
.

Lemma 5.2 (Approximation guarantee of UnifoRm-CenteR).
Consider UnifoRm-CenteR (𝑉𝑡 , 𝑟 , 𝑡) as described in Algorithm 4. It
produces output 𝑆 such that Cost(𝑉𝑡 , 𝑆) = O(𝑟 · log log 𝑡) .

Lemma 5.3 (Reduction in cluster sizes). Consider UnifoRm-
CenteR (𝑉𝑡 , 𝑟 , 𝑡) as described in Algorithm 4, and a fixed clustering

72

On Parallel 𝑘-Center Clustering SPAA ’23, June 17–19, 2023, Orlando, FL, USA

C𝑡𝑟 of 𝑉𝑡 that has cost 𝑟 . It produces output 𝑆 ⊆ 𝑉𝑡 such that the fol-
lowing holds for any 𝐶 ∈ C𝑡𝑟 : if |𝐶 ∩𝑉𝑡 | ≤ 𝑡 , then with probability
at least 1 − 1

𝑡Ω (1)
, we have |𝐶 ∩ 𝑆 | = O

(
log 𝑡 · (log log 𝑡)2

)
.

PRoof. Let 𝑏𝑖 = (1 + 𝜂)𝑖𝑠𝑖 log 𝑡 · (log log 𝑡)2, where 𝑖 is an non-
negative integer and 𝜂 = Θ

(
1

log log 𝑡

)
. Observe that

𝑏𝜏−1 = (1 + 𝜂)𝜏−1 𝑠𝜏−1 log 𝑡 (log log 𝑡)2 = O
(
log 𝑡 · (log log 𝑡)2

)
.

Using induction on 𝑖 (𝑖 ∈ N), we will show that |𝐶 ∩ 𝑆𝑖 | ≤ 𝑏𝑖−1 for
each 𝑖 with 1 ≤ 𝑖 ≤ 𝜏 , with probability at least 1 − 1

𝑡Ω (1)
. This will

imply the desired result as 𝑆𝑖 is the output after the 𝑖-th iteration,
and 𝑆 = 𝑆𝜏 . Hence, |𝐶 ∩ 𝑆 | ≤ 𝑏𝜏−1 = O

(
log 𝑡 · (log log 𝑡)2

)
.

For 𝑖 = 1,

|𝐶 ∩ 𝑆1 | ≤ |𝐶 ∩ 𝑆0 | = |𝐶 ∩𝑉𝑡 | ≤ 𝑡 ≤ 𝑏0 .

The first inequality follows as 𝑆1 ⊆ 𝑆0; the second equality follows
as 𝑆0 = 𝑉𝑡 ; the third inequality follows from the given condition
that |𝐶 ∩𝑉𝑡 | ≤ 𝑡 ; and the fourth one holds by the definition of 𝑏0.

Suppose the statement holds for each 𝑖 with 1 ≤ 𝑖 ≤ ℓ − 1, that
is, |𝐶 ∩ 𝑆𝑖 | ≤ 𝑏𝑖−1 for each 𝑖 with 1 ≤ 𝑖 ≤ ℓ − 1. Now we argue for
𝑖 = ℓ . If |𝐶 ∩ 𝑆ℓ−1 | ≤ 𝑏ℓ−1, then |𝐶 ∩ 𝑆ℓ | ≤ 𝑏ℓ−1, as 𝑆ℓ ⊆ 𝑆ℓ−1. So,
let us assume that |𝐶 ∩ 𝑆ℓ−1 | > 𝑏ℓ−1.

Consider the ℓ-th iteration of UnifoRm-CenteR: it calls algo-
rithm Sample-And-Solve(𝑆ℓ−1, 𝑝ℓ−1, 𝑟), and produces 𝑆ℓ as the set
of intermediate centers. Let 𝐻ℓ ⊆ 𝑆ℓ−1 be the set of hubs sampled
in the call of Sample-And-Solve(𝑆ℓ−1, 𝑝ℓ−1, 𝑟), where each point
in 𝑆ℓ−1 (independently) included in 𝐻ℓ with probability 𝑝ℓ−1.

Before proceeding, we make two observations:

Observation 5.4. The probability, that at least one point from𝐶∩
𝑆ℓ−1 is in 𝐻ℓ , is at least 1 − 1

𝑡Ω (1)
.

PRoof. The probability, that no point in 𝐶 ∩ 𝑆ℓ−1 (|𝐶 ∩ 𝑆ℓ−1 | >
𝑏ℓ−1) is included in 𝐻ℓ , is at most

(1 − 𝑝ℓ−1)𝑏ℓ−1 =
(
1 − 1

𝑠ℓ−1

)𝑏ℓ−1
≤ 1

𝑡Ω (1)
.

Here, we have used that𝑏ℓ−1 = (1+𝜂)ℓ−1𝑠ℓ−1 log 𝑡 · (log log 𝑡)2. □

Observation 5.5. With probability at least 1 − 1
𝑡Ω (1)

, the number
of points in 𝐶 ∩ 𝑆ℓ−1 that are in 𝐻ℓ is at most 𝑏ℓ−1.

PRoof. By induction hypothesis, |𝐶 ∩ 𝑆ℓ−1 | ≤ 𝑏ℓ−2.The expected
number of points of 𝐶 ∩ 𝑆ℓ−1 that are in 𝐻ℓ is

|𝐶 ∩ 𝑆ℓ−1 | ·
1

𝑠ℓ−1
≤ 𝑏ℓ−2

𝑠ℓ−1

=
(1 + 𝜂)ℓ−2𝑠ℓ−2 log 𝑡 · (log log 𝑡)2

𝑠ℓ−1
= (1 + 𝜂)ℓ−2𝑠ℓ−1 log 𝑡 · (log log 𝑡)2 = 𝜇.

By using Chernoff bound, the probability, that the number of
points of𝐶 ∩ 𝑆ℓ−1 that are in 𝐻ℓ is more than (1 +𝜂)𝜇 = 𝑏ℓ−1, is at

most 𝑒−
𝜂2𝜇
3 ≤ 1

𝑡Ω (1)
. □

Observations 5.4 and 5.5, along with Lemma 4.3, give us that
|𝐶 ∩ 𝑆ℓ | = |𝐻ℓ | ≤ 𝑏ℓ−1 with probability at least 1 − 1

𝑡Ω (1)
. □

6 THE MAIN ALGORITHM
In this section, we present our main algorithm Ext-𝑘-CenteR.

Recall the overall description of Ext-𝑘-CenteR in Section 2. Ext-
𝑘-CenteR has two phases. In Phase 1, it calls UnifoRm-CenteR 𝛼
times, and in Phase 2, it calls Sample-And-Solve 𝛽 times, where
𝛼 is the input precision parameter and 𝛽 = Θ(log(𝛼+1) 𝑛). The for-
mal algorithm is described in Algorithm 5. We prove the round
complexity and space complexity of Ext-𝑘-CenteR in Lemma 6.1,
the approximation guarantee in Lemma 6.2 and the bound on the
number of centers in Lemma 6.3.

Algorithm 5: Ext-𝑘-CenteR (𝑃, 𝑟)
Input: Set 𝑃 of 𝑛 points; tradeoff parameter 𝛼 ; radius

parameter 𝑟 ∈ R+.
Output: A set 𝑇 ⊆ 𝑃 of centers.

1 begin
2 Phase 1:
3 𝑇0 ← 𝑃 , 𝑡0 = 𝑛, and 𝑟0 = log log𝑛.
4 for (𝑗 = 1 to 𝛼) do
5 Phase 1.j:
6 𝑇𝑗 ← UnifoRm-CenteR(𝑇𝑗−1, 𝑟 𝑗−1, 𝑡 𝑗−1).
7 𝑡 𝑗 = Θ(log 𝑡 𝑗−1 · (log log 𝑡 𝑗−1)𝑑+2).
8 // Note that 𝑡 𝑗 = Θ̃(log 𝑡 𝑗−1) = Θ̃(log(𝑗) 𝑛) .
9 𝑟 𝑗 = 𝑟

log log 𝑡 𝑗
.

10 end
11 Phase 2:
12 for (𝑖 = 1 to 𝛽 = Θ(log(𝛼+1) 𝑛)) do
13 Phase 2.i:
14 𝑇𝛼+𝑖 ← Sample-And-Solve(𝑇𝛼+𝑖−1, 12 , 𝑟).
15 end
16 Report 𝑇 = 𝑇𝛼+𝛽 .
17 end

Lemma6.1 (Round complexity and global space of Ext-𝑘-CenteR).
Consider Ext-𝑘-CenteR (𝑃, 𝑡), as described in Algorithm 5.The num-
ber of rounds taken by the algorithm is O(log log𝑛) and the global
space used by the algorithm is g = Õ

(
𝑛1+𝜌 · logΔ

)
.

Lemma 6.2 (Approximation guarantee of Ext-𝑘-CenteR). Let
us consider Ext-𝑘-CenteR (𝑃, 𝑟) as described in Algorithm 5. It pro-
duces output𝑇 ⊆ 𝑃 such that Cost(𝑃,𝑇) = O(𝑟 · (𝛼 + log(𝛼+1) 𝑛)) .

PRoof. Observe that
Cost(𝑃,𝑇) = Cost(𝑇0,𝑇𝛼+𝛽) ≤ Cost(𝑇0,𝑇𝛼) + Cost(𝑇𝛼 ,𝑇𝛼+𝛽) .

It therefore suffices to show that Cost(𝑇0,𝑇𝛼) and Cost(𝑇𝛼 ,𝑇𝛼+𝛽)
are bounded by O(𝑟𝛼) and O(𝑟 · log(𝛼+1) 𝑛), respectively.

For any 𝑗 with 1 ≤ 𝑗 ≤ 𝛼 , note that Ext-𝑘-CenteR (𝑃, 𝑟) calls
UnifoRm-CenteR(𝑇𝑗−1, 𝑟 𝑗−1, 𝑡 𝑗−1) in Phase 1.j and produces𝑇𝑗 as
the output. So, by Lemma 5.2, Cost(𝑇𝑗−1,𝑇𝑗) = O(𝑟 𝑗−1·log log 𝑡 𝑗−1),
which is O(𝑟). Hence,

Cost(𝑇0,𝑇𝛼) ≤
𝛼∑
𝑗=1

Cost
(
𝑇𝑗−1,𝑇𝑗

)
= 𝛼 · O(𝑟) = O (𝑟 · 𝛼) .

73

SPAA ’23, June 17–19, 2023, Orlando, FL, USA Sam Coy, Artur Czumaj, and Gopinath Mishra

For any 𝑖 with 1 ≤ 𝑖 ≤ 𝛽 , note that Ext-𝑘-CenteR (𝑃, 𝑟) calls
Sample-And-Solve(𝑇𝛼+𝑖−1, 1/2, 𝑟) in Phase 2.i and produces𝑇𝛼+𝑖
as the output. So, by Lemma 4.1 (i), Cost(𝑇𝛼+𝑖−1,𝑇𝛼+𝑖) = O(𝑟) .
Hence, as 𝛽 = Θ(log(𝛼+1) 𝑛),

Cost
(
𝑇𝛼 ,𝑇𝛼+𝛽

)
≤

𝛽∑
𝑖=1

Cost (𝑇𝛼+𝑖−1,𝑇𝛼+𝑖) = O(𝑟 · log(𝛼+1) 𝑛) . □

Lemma 6.3 (Number of centers reported by Ext-𝑘-CenteR).
Consider Ext-𝑘-CenteR (𝑃, 𝑟) as described in Algorithm 5. It pro-
duces output𝑇 such that, with probability at least 1− 1

(log(𝛼−1) 𝑛)Ω (1)
,

|𝑇 | ≤ |C𝑟 |
(
1 + 1

Θ̃(log(𝛼) 𝑛)

)
+ Θ̃((log(𝛼) 𝑛)3) .

Here, C𝑟 is a clustering of 𝑃 that has the minimum number of centers
among all possible clustering of 𝑃 with cost at most 𝑟 such that |C𝑟 | =
Ω((log𝑛)𝑐), where 𝑐 is a suitable constant.

Now, we introduce the notion of active and inactive clusters in
the following definition, which is useful in proving Lemma 6.3. In-
active clusters are clusters which, at some point during Phase 1,
fail to reduce in size sufficiently. After the sub-phase during which
they fail to reduce in size sufficiently, we assume that they never re-
duce in size again (since this is the worst case). We are then able to
bound the total number of centers in inactive clusters (Lemma 6.6).
Active clusters, by contrast, always reduce in size as we expect: the
number of centers in active clusters is therefore easy to bound.

Definition 6.4. Let C𝑟 be an optimal clusteringwith cost at most 𝑟 .
For each𝐶 ∈ C𝑟 and 𝑗 with 1 ≤ 𝑗 ≤ 𝛼 , we say𝐶 is inactive inPhase
1.j if |𝐶 ∩𝑇𝑖 | > 𝑡𝑖 for some 𝑖 with 1 ≤ 𝑖 < 𝑗 . Otherwise, if |𝐶 ∩𝑇𝑖 | ≤
𝑡𝑖 for every 𝑖 with 1 ≤ 𝑖 < 𝑗 , 𝐶 is called active in Phase 1.j.

Let C′𝑟 ⊆ C𝑟 be the set of clusters that are active after Phase
1, that is, Phase 1.𝛼 . By the definition of active clusters, for each
𝐶 ∈ C′𝑟 , |𝐶 ∩𝑇𝛼 | ≤ 𝑡𝛼 . Note that Ext-𝑘-CenteR goes over 𝛽 sub-
phases in Phase 2. After Phase 1 and before the start of Phase
2, it has 𝑇𝛼 as the set of intermediate centers. For 1 ≤ 𝑖 ≤ 𝛽 , in
Phase 2.i, we call Sample-And-Solve

(
𝑇𝛼+𝑖−1, 12 , 𝑟

)
, and get 𝑇𝛼+𝑖

as the intermediate centers. For 0 ≤ 𝑖 ≤ 𝛽 ; a cluster 𝐶 ∈ C′𝑟 is said
to be 𝑖-large if |𝐶 ∩𝑇𝛼+𝑖 | ≥ 2. Let Γ𝑖 ⊆ C′𝑟 denote the set of 𝑖-large
clusters, and let 𝑌𝑖 denote the total number of points that are in
𝑖-large clusters, that is, 𝑌𝑖 =

∑
𝐶∈Γ𝑖
|𝐶 ∩𝑇𝛼+𝑖 |.

Note that, in Lemma 6.3, we want to bound the number of cen-
ters in 𝑇 = 𝑇𝛼+𝛽 . We first observe that |𝑇 | can be expressed as the
sum of three quantities:

Observation 6.5. |𝑇 | =
��𝑇𝛼+𝛽 �� = |C𝑟 | + 𝑌𝛽 + ∑

𝐶∈C𝑟 \C′𝑟
|𝐶 ∩𝑇𝛼 |.

PRoof. Observe that since 𝑇𝛼+𝛽 ⊆ 𝑇𝛼 , we obtain,

𝑇𝛼+𝛽 =
∑

𝐶∈C𝑟 \C′𝑟

��𝐶 ∩𝑇𝛼+𝛽 �� + ∑
𝐶∈C′𝑟

��𝐶 ∩𝑇𝛼+𝛽 ��
≤

∑
𝐶∈C𝑟 \C′𝑟

|𝐶 ∩𝑇𝛼 | +
∑
𝐶∈C′𝑟

��𝐶 ∩𝑇𝛼+𝛽 �� .

To bound the second inequality by |C𝑟 | + 𝑌𝛽 , observe that∑
𝐶∈C′𝑟

��𝐶 ∩𝑇𝛼+𝛽 �� = ∑
𝐶∈C′𝑟 :|𝐶∩𝑇𝛼+𝛽 |=1

��𝐶 ∩𝑇𝛼+𝛽 �� + ∑
𝐶∈C′𝑟 :|𝐶∩𝑇𝛼+𝛽 |≥2

��𝐶 ∩𝑇𝛼+𝛽 ��
≤

��C′𝑟 �� + 𝑌𝛽 ≤ |C𝑟 | + 𝑌𝛽 ,

which used that C′𝑟 ⊆ C𝑟 . This yields Observation 6.5. □

In the following lemmas, we bound
∑
𝐶∈C𝑟 \C′𝑟 |𝐶 ∩𝑇𝛼 | and 𝑌𝛽 ,

and (with Observation 6.5) the result of Lemma 6.3 immediately
follows from these bounds. Lemmas 6.6 and 6.7 are technical whose
proofs are in the full version [7] due to paucity of space.
Lemma6.6. With probability at least 1−∑𝛼

𝑖=1
1

𝑡Ω (1)𝑖−1
,
∑
𝐶∈C𝑟 \C′𝑟 |𝐶 ∩𝑇𝛼 |

is O
(

|C𝑟 |
(log(𝛼) 𝑛)Ω (1)

)
, that is, the number of points in 𝑇𝛼 that are

present in clusters that are inactive afterPhase 1 isO
(

|C𝑟 |
(log(𝛼) 𝑛)Ω (1)

)
.

Lemma 6.7. With probability at least 1 − 1
𝑡Ω (1)𝛼−1

, we have 𝑌𝛽 =

O
(
|C𝑟 |
𝑡𝛼
+ 𝑡3𝛼 · log 𝑡𝛼

)
.

PRoof of Lemma 6.3 using Lemma 6.6 and Lemma 6.7. From the
above two lemmas along with Observation 6.5 and the fact 𝑡 𝑗 =
Θ̃(log(𝑗) 𝑛), we have the following bound on |𝑇 | with probability
at least 1 −

𝛼∑
𝑖=1

1
𝑡Ω (1)𝑖−1

≥ 1 − 1
(log(𝛼−1) 𝑛)Ω (1)

:

|𝑇 | ≤ |C𝑟 |
(
1 + 1

Θ̃(log(𝛼) 𝑛)

)
+ Θ̃

(
(log(𝛼) 𝑛)3

)
. □

7 CONCLUSIONS
In this paper we show that even for large values of 𝑘 , the classic

𝑘-center clustering problem in low-dimensional Euclidean space
can be efficiently and very well approximated in the parallel set-
ting of low-local-space MPC. While some earlier works (see, e.g.,
[5, 11, 19]) were able to obtain constant-round MPC algorithms,
they were relying on a large local space s ≫ 𝑘 allowing to success-
fully apply the core-set approach, which permits only limited com-
munication. On the other hand, the low-local-space setting con-
sidered in this paper seems to require extensive communication
between the machines to achieve any reasonable approximation
guarantees. Therefore we believe (without any evidence) that the
number of rounds of order O(log log𝑛) may be almost as good as
it gets. Also, we concede that our algorithm does not achieve a
constant approximation guarantee, but we feel the approximation
bound of O(log∗ 𝑛) is almost as good. Finally, our algorithm does
not resolve the perfect setting of the 𝑘-center clustering in that it
allows in the solution slightly more centers, 𝑘 + 𝑜 (𝑘) centers. The
improvement of these three parameters is interesting open work.

We believe that solely using the technique in this paper, improv-
ing the approximation factor and/or number of rounds may not be
possible (a detailed explanation is in the full version [7]), but the
approach may be useful for related problems in MPC or other mod-
els. An interesting open problem is the extension of our work to
high-dimensional Euclidean space (or a general metric space). We
are not aware of any efficient LSH implementations for high di-
mensional space, and this appears to be the main challenge.

74

On Parallel 𝑘-Center Clustering SPAA ’23, June 17–19, 2023, Orlando, FL, USA

REFERENCES
[1] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavt-

sev. 2014. Parallel Algorithms for Geometric Graph Problems. In Proceedings
of the 46th Annual ACM Symposium on Theory of Computing (STOC). 574–583.
https://doi.org/10.1145/2591796.2591805

[2] MohammadHossein Bateni, Hossein Esfandiari, Manuela Fischer, and Vahab
Mirrokni. 2021. Extreme 𝑘-Center Clustering. In Proceedings of the 35th AAAI
Conference onArtificial Intelligence(AAAI). 3941–3949. https://ojs.aaai.org/index.
php/AAAI/article/view/16513

[3] Paul Beame, Paraschos Koutris, and Dan Suciu. 2017. Communication Steps for
Parallel Query Processing. J. ACM 64, 6 (2017), 40:1–40:58. https://doi.org/10.
1145/3125644

[4] Guy E Blelloch and Kanat Tangwongsan. 2010. Parallel approximation algo-
rithms for facility-location problems. In Proceedings of the twenty-second annual
ACM symposium on Parallelism in algorithms and architectures. 315–324.

[5] Matteo Ceccarello, Andrea Pietracaprina, and Geppino Pucci. 2019. Solving 𝑘-
center Clustering (with Outliers) in MapReduce and Streaming, almost as Accu-
rately as Sequentially. Proceedings of the VLDB Endowment 12, 7 (2019), 766–778.
https://doi.org/10.14778/3317315.3317319

[6] Jiecao Chen, He Sun, David P. Woodruff, and Qin Zhang. 2016. Communication-
Optimal Distributed Clustering. In Proceedings of the 29th Annual Confer-
ence on Neural Information Processing Systems (NIPS). 3720–3728. https://
proceedings.neurips.cc/paper/2016/hash/7503cfacd12053d309b6bed5c89de212-
Abstract.html

[7] Sam Coy, Artur Czumaj, and Gopinath Mishra. 2023. On Parallel 𝑘-Center Clus-
tering. Preprint arXiv:2304.05883 (2023).

[8] Artur Czumaj, Jakub Ła̧cki, Aleksander Ma̧dry, Slobodan Mitrović, Krzysztof
Onak, and Piotr Sankowski. 2018. Round Compression for Parallel Matching Al-
gorithms. In Proceedings of the 50th Annual ACM Symposium on Theory of Com-
puting (STOC). 471–484.

[9] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Process-
ing on Large Clusters. Commun. ACM 51, 1 (January 2008), 107–113. https:
//doi.org/10.1145/1327452.1327492

[10] Martin E. Dyer and Alan M. Frieze. 1985. A Simple Heuristic for the 𝑝-Centre
Problem. Operations Research Letters 3, 6 (1985), 285–288.

[11] Alina Ene, Sungjin Im, and Benjamin Moseley. 2011. Fast Clustering using
MapReduce. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD). 681–689. https://doi.org/10.
1145/2020408.2020515

[12] Teofilo F. Gonzalez. 1985. Clustering to Minimize the Maximum Intercluster
Distance. Theoretical Computer Science 38 (1985), 293–306. Issue 2-3. https:
//doi.org/10.1016/0304-3975(85)90224-5

[13] Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. 2011. Sorting, Search-
ing, and Simulation in the MapReduce Framework. In Proceedings of the 22nd
International Symposium on Algorithms and Computation (ISAAC). 374–383.

[14] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. 2012. Approximate Nearest
Neighbor: Towards Removing the Curse of Dimensionality.Theoretical Computer
Science 8, 1 (2012), 321–350. https://doi.org/10.4086/toc.2012.v008a014

[15] Dorit S. Hochbaum and David B. Shmoys. 1985. A Best Possible Heuristic for
the 𝑘-Center Problem. Mathematics of Operations Research 10, 2 (1985), 180–184.
https://doi.org/10.1287/moor.10.2.180

[16] Wen-Lian Hsu and George L. Nemhauser. 1979. Easy and Hard Bottleneck Lo-
cation Problems. Discrete Applied Mathematics 1, 3 (1979), 209–215. https:
//doi.org/10.1016/0166-218X(79)90044-1

[17] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed Data-parallel Programs from Sequential Building Blocks.
SIGOPS Operating Systems Review 41, 3 (March 2007), 59–72.

[18] Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. 2010. A Model
of Computation for MapReduce. In Proceedings of the 21st Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA). 938–948. https://doi.org/10.1137/1.
9781611973075.76

[19] Gustavo Malkomes, Matt J. Kusner, Wenlin Chen, Kilian Q. Weinberger, and
Benjamin Moseley. 2015. Fast Distributed 𝑘-Center Clustering with Outliers on
Massive Data. In Proceedings of the 28th Annual Conference on Neural Informa-
tion Processing Systems (NIPS). 1063–1071. https://proceedings.neurips.cc/paper/
2015/hash/8fecb20817b3847419bb3de39a609afe-Abstract.html

[20] HaofenWang, Yan Liang, Linyun Fu, Gui-Rong Xue, and Yong Yu. 2009. Efficient
Query Expansion for Advertisement Search. In Proceedings of the 32nd Annual
International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR). 51–58. https://doi.org/10.1145/1571941.1571953

[21] Tom White. 2015. Hadoop: The Definitive Guide: Storage and Analysis at Internet
Scale (4th ed.). O’Reilly Media, Sebastopol, CA.

[22] Rui Xu and Donald Wunsch. 2005. Survey of Clustering Algorithms. IEEE Trans-
actions on Neural Networks 16, 3 (2005), 645–678. https://doi.org/10.1109/TNN.
2005.845141

[23] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and
Ion Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2nd USENIX Workshop on Hot Topics in Cloud Computing (HotCloud).

75

https://doi.org/10.1145/2591796.2591805
https://ojs.aaai.org/index.php/AAAI/article/view/16513
https://ojs.aaai.org/index.php/AAAI/article/view/16513
https://doi.org/10.1145/3125644
https://doi.org/10.1145/3125644
https://doi.org/10.14778/3317315.3317319
https://proceedings.neurips.cc/paper/2016/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/7503cfacd12053d309b6bed5c89de212-Abstract.html
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/2020408.2020515
https://doi.org/10.1145/2020408.2020515
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.4086/toc.2012.v008a014
https://doi.org/10.1287/moor.10.2.180
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1016/0166-218X(79)90044-1
https://doi.org/10.1137/1.9781611973075.76
https://doi.org/10.1137/1.9781611973075.76
https://proceedings.neurips.cc/paper/2015/hash/8fecb20817b3847419bb3de39a609afe-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/8fecb20817b3847419bb3de39a609afe-Abstract.html
https://doi.org/10.1145/1571941.1571953
https://doi.org/10.1109/TNN.2005.845141
https://doi.org/10.1109/TNN.2005.845141

	Abstract
	1 Introduction
	1.1 Related work
	1.2 Technical contributions
	1.3 Notation and preliminaries
	1.4 Our results — detailed bounds
	1.5 Organization of the paper

	2 Technical overview
	2.1 Overview of the proof of theo:main1

	3 Nearest Hub Search
	4 Sample and Solve
	5 Uniform Center algorithm
	6 The main algorithm
	7 Conclusions
	References

