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Abstract
Sequential numericalmethods for integrating initial value problems (IVPs) can be prohibitively expensivewhenhigh numerical
accuracy is required over the entire interval of integration. One remedy is to integrate in a parallel fashion, “predicting” the
solution serially using a cheap (coarse) solver and “correcting” these values using an expensive (fine) solver that runs in parallel
on a number of temporal subintervals. In this work, we propose a time-parallel algorithm (GParareal) that solves IVPs by
modelling the correction term, i.e. the difference between fine and coarse solutions, using a Gaussian process emulator. This
approach compares favourably with the classic parareal algorithm and we demonstrate, on a number of IVPs, that GParareal
can converge in fewer iterations than parareal, leading to an increase in parallel speed-up. GParareal also manages to locate
solutions to certain IVPs where parareal fails and has the additional advantage of being able to use archives of legacy solutions,
e.g. solutions from prior runs of the IVP for different initial conditions, to further accelerate convergence of the method —
something that existing time-parallel methods do not do.

Keywords Gaussian process emulation · Parallel-in-time · Parareal · Initial value problems

Mathematics Subject Classification 65L05 · 65Y05 · 60G15

1 Introduction

1.1 Motivation and background

This paper is concerned with the numerical solution of a
system of d ∈ N ordinary differential equations (ODEs) of
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the form

du
dt

= f
(
t, u(t)

)
over t ∈ [t0, T ], with

u(t0) = u0 ∈ U ⊂ R
d , (1.1)

where f : [t0, T ]×U → R
d is a nonlinear function with suf-

ficiently many continuous partial derivatives, u : [t0, T ] →
U is the time-dependent solution, and u0 is the initial value
at time t0. We seek numerical solutions U j ≈ u(t j ) to
the initial value problem (IVP) in (1.1) on a pre-defined
mesh t = (t0, . . . , tJ ), where t j+1 = t j + �T for fixed
�T = (T − t0)/J .

More specifically, we are concerned with IVPs where: (i)
the interval of integration, [t0, T ]; (ii) the number of mesh
points, J + 1; or (iii) the wallclock time to evaluate the vec-
tor field, f , is so large that such numerical solutions take
hours, days, or even weeks to obtain using classical sequen-
tial integration methods, e.g. implicit/explicit Runge–Kutta
methods (Hairer et al. 1993). Expensive vector fields f can,
for example, arise when (spatially) discretising partial dif-
ferential equations (PDEs) into a system of ODEs. Runtime
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issues also arise when solving IVPswith spatial or other non-
temporal dependencies in that, even though highly efficient
domain decomposition methods exist (Dolean et al. 2015),
the parallel speed-up of such methods on high performance
computers (HPCs) is still constrained by the serial nature
of the time-stepping scheme. Therefore, with the advent of
exascale HPCs on the horizon (Mann 2020), there has been
renewed interest in developingmore efficient and robust time-
parallel algorithms to reduce wallclock runtimes for IVP
simulations in applications spanning numerical weather pre-
diction (Hamon et al. 2020), kinematic dynamo modelling
(Clarke et al. 2020), and plasma physics (Samaddar et al.
2010, 2019) to name but a few. In this work, we focus on the
development of such a time-parallel method.

To solve (1.1) in parallel, onemust overcome the causality
principle of time: solutions at later times depend on solu-
tions at earlier times. In recent years, a growing number of
time-parallel algorithms, whereby one partitions [t0, T ] into
J ‘slices’ and attempts to solve J smaller IVPs using J pro-
cessors, have been developed to speed-up IVP simulations;
see Gander (2015) and Ong and Schroder (2020) for com-
prehensive reviews. We take inspiration from the parareal
algorithm (Lions et al. 2001), a multiple shooting-type (or
multigrid (Gander and Vandewalle 2007)) method that uses
a predictor-corrector update rule based on two numerical
integrators, one coarse- and one fine-grained in time, to itera-
tively locate solutionsUk

j to (1.1) in parallel. At any iteration
k ∈ {1, . . . , J } of parareal, the ‘correction’ is given by the
residual between fine and coarse solutions obtained during
iteration k − 1 (further details are provided in Sect. 2). In
a Markovian-like manner, all fine/coarse information about
the solution obtained prior to iteration k−1 is ignored by the
predictor-corrector rule, a feature present in most parareal-
type algorithms and variants (Elwasif et al. 2011; Ait-Ameur
et al. 2020; Maday and Mula 2020; Dai et al. 2013; Pentland
et al. 2022).Our goal is to demonstrate that such “acquisition”
data, i.e. fine and coarse solution information accumulated
up to iteration k, can be exploited using a statistical emulator
in order to determine a solution in faster wallclock time than
parareal. Making use of acquisition data in parareal is men-
tioned briefly in the appendix of Maday and Mula (2020), in
the context of spatial domain decomposition and high-order
time-stepping, but has yet to be investigated further.

In particular, we use a Gaussian process (GP) emu-
lator (O’Hagan 1978; Rasmussen 2003) to rapidly infer
the (expensive-to-simulate) multi-fidelity correction term in
parareal. The emulator is trained using acquisition data from
all prior iterations, with data from the fine integrator having
been obtained in parallel. Similar to parareal, we derive a
predictor-corrector-type scheme where the coarse integrator
makes rapid low-accuracy predictions about the solutions
which are subsequently refined using a correction, now
inferred from theGP emulator. In addition to using an emula-

tor, the difference between this approach and parareal is that
the new correction term is formed of integrated solutions val-
ues at the current iteration k, rather than k − 1. Supposing
that the fine solver is of sufficient accuracy to exactly solve
the IVP, the algorithm presented in this paper determines
numerical solutions Uk

j that converge (assuming the emu-
lator is sufficiently well trained) toward the exact solutions
U j over a number of iterations. This new approach is particu-
larly beneficial if one wishes to fully understand and evaluate
the dynamics of (1.1) by simulating solutions for a range of
initial values u0 or over different time intervals. Firstly, if
one can obtain additional parallel speedup, generating such
a sequence of independent simulations becomes more com-
putationally tractable in feasible time. Secondly, the “legacy”
data, i.e. solution information accumulated between indepen-
dent simulations, can be used to inform future simulations by
increasing the size of the dataset available to the emulator.
Being able to re-use (expensive) acquisition or legacy data to
integrate IVPs such as (1.1) in parallel is not something, to the
best of our knowledge, that existing time-parallel algorithms
currently do.

In recent years, there has been a surge in interest in the
field of probabilistic numerics (Hennig et al. 2022; Oates
and Sullivan 2019), where “ODE filters” have been devel-
oped to solve ODEs using GP regression techniques. Instead
of calculating a numerical solution on the mesh t , as classi-
cal integration methods do, ODE filters return a probability
measure over the solution at any t ∈ [t0, T ] (Schober et al.
2019; Tronarp et al. 2019; Bosch et al. 2021; Wenger et al.
2021). Such methods solve sequentially in time, condition-
ing the GP on acquisition data, i.e. solution and derivative
evaluations, at competitive computational cost (compared
to classical methods) (Kersting et al. 2020; Krämer et al.
2022). However, integrating IVPs with large time inter-
vals or expensive vector fields using such filters is still a
computationally intractable process. As such, our aim is to
fuse aspects of time-parallelism with the Bayesian methods
showcased in ODE filters—something briefly mentioned in
Kersting and Hennig (2016) and Pentland et al. (2022), but
not yet explored. Whereas ODE filters use GPs to explicitly
model the solution to an IVP, we instead use them to model
the residual between approximate solutions provided by the
deterministic fine and coarse solvers, i.e. the parareal correc-
tion. While themethod proposed in this paper does not return
a probabilistic solution to (1.1), we believe that it constitutes
a positive step in this direction.

1.2 Contributions and outline

The rest of this paper is structured as follows. In Sect. 2,
we introduce parareal, providing an overview of the algo-
rithm and its computational complexity for a scalar ODE. In
Sect. 3, we present our algorithm, henceforth referred to as
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GParareal, in which we describe how a GP emulator, con-
ditioned on acquisition data obtained in parallel throughout
the simulation, is used to refine coarse numerical solutions
to a scalar ODE. In addition, we detail the computational
complexity of GParareal, provide a bound for its numeri-
cal error at a given iteration, and describe the extension for
solving systems of ODEs. Numerical experiments are per-
formed using HPC facilities in Sect. 4. We demonstrate good
performance ofGParareal against parareal in termsof conver-
gence, wallclock time, and solution accuracy on a number of
low-dimensional ODE problems using just acquisition data.
Furthermore, we demonstrate how the GP emulator enables
convergence in cases where the coarse solver is too inaccu-
rate for parareal to converge and show that legacy simulation
data can be used to obtain solutions even faster, retaining
comparable numerical accuracy. We discuss the benefits,
drawbacks, and open questions surrounding GParareal in
Sect. 5.

2 Parareal

Here we briefly recall the parareal algorithm (Lions et al.
2001), first describing the fine- and coarse-grained numeri-
cal solvers it uses, then the algorithm itself, and finally some
remarks on complexity, numerical speed-up, and choice of
solvers. For a full mathematical derivation and exposition of
parareal, refer to Gander and Vandewalle (2007). To simplify
notation, we describe parareal for solving a scalar-valued
autonomous ODE, i.e. f (t, u(t)) := f (u(t)) in (1.1), with-
out loss of generality.

2.1 The solvers

To calculate a solution to (1.1), parareal uses two one-step1

numerical integrators. The first, referred to as the fine solver
F�T , is a computationally expensive integrator that propa-
gates an initial value at t j , over an interval of length�T , and
returns a solution with high numerical accuracy at t j+1. In
this paper, we assume that F�T provides sufficient numeri-
cal accuracy to solve (1.1) for the solution to be considered
‘exact’, i.e. Uj = u(t j ). The objective is to calculate the
exact solutions

Uj = F�T (Uj−1), j = 1, . . . , J , (2.1)

where U0 := u0, without running F�T J times sequen-
tially, as this calculation is assumed to be computation-
ally intractable. To avoid this, parareal locates iteratively

1 Multi-step numerical integrators have been tested with parareal (Ait-
Ameur et al. 2020, 2021). However, they require multiple initial values
to begin integration in each time slice and are not compatible with the
proposed method in Sect. 3.

improved approximations Uk
j , where k = 0, 1, 2, . . . is

the iteration number, that converge toward Uj (note that
Uk
0 = U0 = u0 ∀k ≥ 0). To do this, parareal uses a second

numerical integrator G�T , referred to as the coarse solver.
G�T propagates an initial value at t j over an interval of length
�T , however, it has lower numerical accuracy and is compu-
tationally inexpensive to run compared to F�T . This means
that G�T can be run serially across a number of time slices to
provide relatively cheap low accuracy solutions whilst F�T

is permitted only to run in parallel over multiple slices.

2.2 The algorithm

To begin (iteration k = 0), approximate solutions to (1.1)
are calculated sequentially using G�T , on a single processor,
such that

U 0
j = G�T (U 0

j−1), j = 1, . . . , J . (2.2)

Following this, thefine solver propagates each approximation
in (2.2) in parallel, on J processors, to obtain F�T (U 0

j ) for
j = 0, . . . , J−1.These values are then used (during iteration
k = 1) in the predictor-corrector

Uk
j = G�T (Uk

j−1)︸ ︷︷ ︸
predict

+F�T (Uk−1
j−1 ) − G�T (Uk−1

j−1 )
︸ ︷︷ ︸

correct

, (2.3)

for j = 1, . . . , J .Here,G�T is applied sequentially to predict
the solution at the next time step, before being corrected by
the residual between coarse and fine values found during the
previous iteration (note that (2.3) cannot be calculated in
parallel). This is a discretised approximation of the Newton–
Raphson method for locating the true roots Uj with initial
guess (2.2) (Gander andVandewalle 2007). For a pre-defined
tolerance ε > 0, the parareal solution Uk

j is deemed to have
converged up to time tI if

|Uk
j −Uk−1

j | < ε ∀ j ≤ I . (2.4)

This criterion is standard for parareal (Garrido et al. 2006;
Gander and Hairer 2008), however, other criteria, e.g. taking
the average relative error between fine solutions over a time
slice (Samaddar et al. 2010, 2019) or measuring the total
energy of the system, could be used instead. Unconverged
solution values, i.e. Uk

j for j > I , are updated in future iter-
ations (k > 1) by initiating further parallelF�T runs on each
Uk

j , followed by an update using (2.3). The algorithm stops
once I = J , converging in k (out of J ) iterations. The ver-
sion of parareal described here and implemented in Sect. 4
does not iterate over solutions that have already converged,
avoiding the waste of computational resources (Elwasif et al.
2011; Pentland et al. 2022; Garrido et al. 2006). Extending
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parareal to the full nonautonomous system in (1.1) is straight-
forward: see Gander and Vandewalle (2007) for notation and
Pentland et al. (2022) for pseudocode.

2.3 Convergence and computational complexity

After k iterations, the solution states up to time tk (at min-
imum) have converged, as the exact initial condition (u0)
has been propagated by F�T at least k times. Therefore, if
parareal converges in k = J iterations, the solution will be
equal to the one found by calculating (2.1) serially, at an even
higher computational cost. Convergence2 in k 	 J iterations
is necessary if significant parallel speed-up is to be realised.
Refer to Gander and Vandewalle (2007); Gander and Hairer
(2008) for derivations of explicit parareal error bounds.

Without loss of generality, assume running F�T over any
[t j , t j+1], j ∈ {0, . . . , J − 1}, takes wallclock time TF
(denote time TG similarly for G�T ). Therefore, calculating
(2.1) using F�T serially, takes approximately Tserial = JTF
seconds.Using parareal, the totalwallclock time (in theworst
case, excluding any serial overheads) can be approximated
by

Tpara ≈ JTG︸︷︷︸
Iteration 0

+
k∑

i=1

(
TF + (J − i)TG

)

︸ ︷︷ ︸
Iterations 1 to k

= kTF + (k + 1)

(
J − k

2

)
TG . (2.5)

The approximate parallel speed-up is therefore

Spara ≈ Tserial
Tpara

=
[
k

J
+ (k + 1)

(
1 − k

2J

)
TG
TF

]−1

. (2.6)

To maximise (2.6), both the convergence rate k and the
ratio TG/TF should be as small as possible. In practice,
however, there is a trade-off between these two quanti-
ties as fast G�T solvers (with sufficient accuracy to still
guarantee convergence) typically require more iterations to
converge, increasing k. An illustration of the computational
task scheduling during the first few iterations of parareal vs. a
full serial integration is given in Fig. 1—optimised schedul-
ing of parareal is studied in Elwasif et al. (2011).

Selecting a fast but accurate coarse solver remains a trial
and error process, entirely dependent on the system being
solved. Typically, G�T is chosen such that it has a coarser
temporal resolution/lower numerical accuracy (Samaddar
et al. 2010; Farhat and Chandesris 2003; Baffico et al.
2002; Trindade and Pereira 2006), a coarser spatial resolu-
tion (when solving PDEs) (Samaddar et al. 2019; Ruprecht

2 For parareal to converge, the solvers F�T and G�T must satisfy spe-
cific mathematical conditions (Maday and Turinici 2005; Bal 2005).

2014), and/or uses simplified model equations (Engblom
2009; Legoll et al. 2020; Meng et al. 2020) compared to
F�T . In Sect. 3, we aim to widen the pool of choices for G�T

by using a GP emulator to capture variability in the residual
F�T − G�T and showcase its effectiveness by demonstrat-
ing that GParareal can converge to a solution in cases where
parareal cannot in Sect. 4.

3 GParareal

In this section,wepresent theGParareal algorithm, inwhich a
GP emulator is used in the analogue of parareal’s predictor-
corrector step. Suppose we seek the same high resolution
numerical solutions to (1.1) as expressed in (2.1), denoted
now as Vj instead of Uj . Furthermore, we denote the iter-
atively improved approximations from GParareal as V k

j (as

before, V k
0 = V0 = u0 ∀k ≥ 0).

In parareal, the predictor-corrector (2.3) updates the
numerical solutions at iteration k using a correction term
based on information calculated during the previous iteration
k − 1. We propose the following update rule, again based on
a coarse prediction and multi-fidelity correction, that instead
refines solutions using information from the current iteration
k, rather than k − 1:

V k
j = F�T (V k

j−1) = (F�T − G�T + G�T )(V k
j−1)

= (F�T − G�T )(V k
j−1)︸ ︷︷ ︸

correction

+G�T (V k
j−1)︸ ︷︷ ︸

prediction

,

(3.1)

for 1 ≤ k < j ≤ J . If V k
j−1 is known, the prediction

is rapidly calculable, however the correction is not known
explicitly without running F�T at expensive cost. We pro-
pose using a GP emulator to model this correction term,
trained on all previously obtained evaluations of F�T and
G�T . The emulator returns a Gaussian distribution over
(F�T − G�T )(V k

j−1) from which we can extract an explicit
value and carry out the refinement in (3.1).

In Sect. 3.1, we present the algorithm, giving an expla-
nation of the kernel hyperparameter optimisation process
in Sect. 3.2 and providing error analysis in Sect. 3.3. In
Sect. 3.4, we detail the computational complexity, remark-
ing that given large enough runtimes for the fine solver, an
iteration of GParareal runs in approximately the same wall-
clock time as parareal. Again, to simplify notation, we first
detail GParareal for an autonomous scalar-valued ODE, i.e.
f (t, u(t)) := f (u(t)) in (1.1). The extension to the multi-
variate nonautonomous case is described in Sect. 3.5.
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Fig. 1 Computational task schedulingduring three iterations of parareal
compared with a full serial integration. The coloured blocks represent
the wallclock time any given processor spends on a task. Coarse runs

are shown in yellow, fine runs in blue, and any idle time in white. The
wallclock time is given on the axis at the bottom, indicating both Tpara
and Tserial

3.1 The algorithm

Gaussian process emulator

Before solving (1.1), we define a GP prior (Rasmussen and
Williams 2006) over the unknown correction functionF�T −
G�T . This function maps an initial value x j ∈ U at time t j
to the residual difference between F�T (x j ) and G�T (x j ) at
time t j+1. More formally, we define the GP prior

F�T − G�T ∼ GP(m, κ), (3.2)

with mean function m : U → R and covariance kernel
κ : U × U → R. Given some vectors of initial val-
ues, x, x′ ∈ U J , the corresponding vector of means is
denoted μ(x) = (m(x j )) j=0,...,J−1 and the covariance
matrix K (x, x′) = (κ(xi , x ′

j ))i, j=0,...,J−1. The correction
term is expected to be small, depending on the accuracy of
both F�T and G�T , hence we define a zero-mean process,
i.e. m(x j ) = 0. Ideally, the covariance kernel will be chosen
based on any prior knowledge of the solution to (1.1), e.g.
regularity/smoothness. If no information is available a priori
to simulation, we are free to select any appropriate kernel. In
this work, we use the square exponential (SE) kernel

κ(x, x ′) = σ 2 exp
(
− (x−x ′)2

2�2

)
, (3.3)

for some x, x ′ ∈ U . The kernel hyperparameters, denot-
ing the output length scale σ 2 and input length scale �2,
are referred to collectively in the vector θ and need to be
initialised prior to simulation. The algorithm proceeds as fol-
lows; see Appendix A for pseudocode.

Iteration k = 0

Firstly, run G�T sequentially from the exact initial value, on
a single processor, to locate the coarse solutions

V 0
j = G�T (V 0

j−1), j = 1, . . . , J . (3.4)

Store these solutions in the vector x := (V 0
0 , . . . , V 0

J−1)
ᵀ for

use in the GP emulator.

Iteration k = 1

Use F�T to propagate the values in (3.4) on each time slice
in parallel, on J processors, to obtain the following values
at t j

F�T (V 0
j−1) j = 1, . . . , J . (3.5)

At this stage, we diverge from the parareal method. Given x,
store the values of F�T − G�T , using (3.4) and (3.5), in the
vector

y := (
(F�T − G�T )(x j )

)
j=0,...,J−1. (3.6)

At this point, the inputs x and evaluations y are used to
optimise the kernel hyperparameters θ via maximum likeli-
hood estimation—see Sect. 3.2. Conditioning the prior (3.2)
using the acquisition data x and y, the GP posterior over
(F�T − G�T )(x ′), where x ′ ∈ U is some initial value in the
state space, is given by

(F�T − G�T )(x ′) | x, y ∼ N (
μ̂(x ′), K̂ (x ′, x ′)

)
, (3.7)
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with mean

μ̂(x ′) = μ(x ′)︸ ︷︷ ︸
=0

+K (x ′, x)[K (x, x)]−1( y − μ(x)︸︷︷︸
=0

)
(3.8)

and variance

K̂ (x ′, x ′) = K (x ′, x ′) − K (x ′, x)[K (x, x)]−1K (x, x ′). (3.9)

Now we wish to determine updated solutions V 1
j at each

mesh point. GivenF�T has been run once, the exact solution
is known at time t1. Specifically, at t0 we knowV k

0 = V0 ∀k ≥
0 and at t1 we know V k

1 = V1 = F�T (V 1
0 ) ∀k ≥ 1. At t2, the

exact solution V2 = F�T (V 1
1 ) is unknown, hence we need

to calculate its value without running F�T again. To do this,
we re-write the exact solution using (3.1):

V 1
2 = F�T (V 1

1 ) = (F�T − G�T + G�T )(V 1
1 )

= (F�T − G�T )(V 1
1 )

︸ ︷︷ ︸
correction

+G�T (V 1
1 )

︸ ︷︷ ︸
prediction

. (3.10)

Both terms in (3.10) are initially unknown, but the prediction
can be calculated rapidly at low computational cost while the
correction can be inferred using the GP posterior (3.7) with
x ′ = V 1

1 . Therefore, we obtain a Gaussian distribution over
the solution

V 1
2 ∼ N (

μ̂(V 1
1 ) + G�T (V 1

1 ), K̂ (V 1
1 , V 1

1 )
)
, (3.11)

with variance stemming from uncertainty in the GP emula-
tor. Repeating this process to determine a distribution for the
solution at t3 by attempting to propagate the random variable
V 1
2 using G�T is computationally infeasible for nonlinear

IVPs. To tackle this and be able to propagate V 1
2 , we approx-

imate the distribution by taking its mean value,

V 1
2 = μ̂(V 1

1 ) + G�T (V 1
1 ).

This approximation is a convenient way of minimising com-
putational cost, at the price of ignoring uncertainty in the GP
emulator—see Sect. 5 for a discussion of possible alterna-
tives.

The update process, applying (3.1) and then approximat-
ing the Gaussian distribution by taking its expectation, is
repeated sequentially for later t j , yielding the approximate
solutions

V 1
j = μ̂(V 1

j−1) + G�T (V 1
j−1) for j = 3, . . . , J . (3.12)

This process is illustrated in Fig. 2. Finally, we impose stop-
ping criteria (2.4), identifying which V 1

j for j ≤ I have
converged. Using the same stopping criteria as parareal will

allow us to compare the performance of both algorithms in
Sect. 4.

Iteration k ≥ 2

If the stopping criteria is not met, i.e. I < J , we can itera-
tively update any unconverged solutions by re-applying the
previous steps. This means calculating F�T (V k−1

j ), j =
I , . . . , J − 1, in parallel and then storing new evaluations
ŷ = (

(F�T − G�T )(V k−1
j )

)ᵀ
j=I ,...,J−1, with corresponding

inputs x̂ = (V k−1
I , . . . , V k−1

J−1 )
ᵀ. Hyperparameters are then

re-optimised and the GP is re-conditioned using all prior
acquisition data, i.e. x = [x; x̂] and y = [ y; ŷ], generating
an updated posterior. Here, [a; b] denotes the vertical con-
catenation of column vectors a and b. The update rule is then
applied such that we obtain

V k
j = μ̂(V k

j−1) + G�T (V k
j−1) for j = I + 2, . . . , J .

Once I = J , the solution, the number of iterations k taken
to converge, and the acquisition data x and y are returned. A
key advantage of GParareal is that the acquisition data can
be used in future GParareal simulations (as “legacy data”) to
provide theGP emulator withmore data and therefore exploit
additional speedup—this will be demonstrated in Sect. 4.

3.2 Kernel hyperparameter optimisation

The hyperparameters θ of the kernel κ will need to be opti-
mised in light of the acquisition data y (and corresponding
input data x). We optimise each element of θ such that it
maximises its (log) marginal likelihood (Rasmussen 2003).
To do this, first define g(x) := (F�T − G�T )(x) and
g := (g(x j )) j=0,...,N−1, where N is the current length of
x (and y). Given the evaluations y are noise-free, the like-
lihood of obtaining such data is p( y|g, x, θ) = δ( y − g),
where δ(·) is the multidimensional Dirac delta function. The
marginal likelihood, given x and θ , is therefore

p( y|x, θ) =
∫

p( y|g, x, θ)
︸ ︷︷ ︸

likelihood

p(g|x, θ)
︸ ︷︷ ︸

prior

dg

=
∫

δ( y − g)N (g|0, K (x, x)) dg

= N ( y|0, K (x, x)),

whereN ( y|0, K (x, x))denotes the probability density func-
tion of a multivariate Gaussian distribution evaluated at y,
with mean vector 0 and covariance matrix K (x, x) that
depends on θ , see (3.3). The hyperparameters in θ can then be
estimated numerically by maximising the log marginal like-
lihood using any gradient-based optimiser. Optimisation is

123



Statistics and Computing (2023) 33 :23 Page 7 of 20 23

Fig. 2 Schematic of the first iteration of GParareal. The ‘exact’ solution
over [t0, t3] is shown in black, with the first coarse and fine (parallel)
runs given in yellow and blue respectively. Solid bars represent the
residual between these solutions (3.6). The predictions, i.e. the second
coarse runs, are shown in red and the corresponding corrections from

the GP emulator are represented by the dashed bars. The updated solu-
tions (3.12) at the end of the iteration are represented by the red dots.
Note the black and blue lines in [t0.t1] should overlap but have been
made not to for clarity

carried out once per iteration (up until the hyperparameters
do not change significantly between iterations) and hyper-
parameters from the prior iteration are used as to start the
optimisation at the current iteration.

3.3 Error Analysis

In this section, we are interested in analysing the absolute
error

ekj := |Vj − V k
j |, (3.13)

between the exact and GParareal solution at iteration k and
time t j . We show that this error has an upper bound pro-
portional to the fill distance (defined below) of the dataset
at iteration k. To do this, we now denote the input dataset
at iteration k as xk rather than x (because the dataset size
strictly increases with each iteration of GParareal) and, sim-
ilarly, denote the output dataset y as yk . We also introduce
some assumptions on the solversF�T andG�T , and a known
result on the consistency of the GP posterior mean μ̂ (3.8) to
the true correction function g = F�T −G�T . For clarity, we
re-state the GParareal update rule

V k
j = G�T (V k

j−1) + μ̂(V k
j−1), 1 ≤ k < j ≤ J . (3.14)

3.3.1 Preparatory assumptions and results

First, we state some assumptions on F�T and G�T , as in
Gander and Hairer (2008).

Assumption 3.1 [Exact fine solver F�T ] F�T solves (1.1)
exactly such that

Vj = F�T (Vj−1), j = 1, . . . , J . (3.15)

Assumption 3.2 [One-step coarse solverG�T ] G�T is a one-
step numerical solver with uniform local truncation error
O(�T p+1), for p ≥ 1, such that

F�T (u) − G�T (u) = c1(u)�T p+1 + c2(u)�T p+2 + . . . ,

for u ∈ R and continuously differentiable functions ci (u),
i = 1, 2, . . .. For u, v ∈ R, we can then write

| (F�T (u) − G�T (u)) − (F�T (v) − G�T (v)) | ≤ C1�T p+1|u − v|,
(3.16)

where C1 > 0 is the Lipschitz constant for c1(u).

Assumption 3.3 [Lipschitz coarse solverG�T ] G�T satisfies
the Lipschitz condition

|G�T (u) − G�T (v)| ≤ LG |u − v|, (3.17)

for u, v ∈ R and some LG > 0.

Next, we define the concepts required to state a result
on the consistency of the GP posterior mean. Firstly, we
define the fill distance hxk to be the largest smallest distance
between any point v ∈ U and any point vi ∈ xk , i.e.

hxk := sup
v∈U

inf
vi∈xk

|v − vi |.

It should be clear that each data point vi ∈ xk is also con-
tained in U . Secondly, we define the reproducing kernel
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Hilbert space (RKHS), a Hilbert space Hκ(U) of func-
tions g : U → R with inner product 〈·, ·〉Hκ (U). See Stuart
and Teckentrup (2018) for a more formal definition and
conditions on the inner product itself. We can now state
the following result on the GP posterior mean consistency,
adapted from Wendland (2004,Theorem 11.14).

Theorem 3.4 (GP posterior mean consistency) Suppose
U ⊂ R is a bounded interval and let κ be the SE kernel.
Denote theGP posteriormean, built using xk , yk , and κ (3.8)
as μ̂ and the function being emulated as g ∈ Hκ(U). Then,
for every τ ∈ N, there exist constants h0(τ ) and Cτ > 0 such
that

|g(v) − μ̂(v)| ≤ Cτh
τ
xk |g|Hκ (U) ∀v ∈ U ,

provided that hxk ≤ h0(τ ). Note that |g|2Hκ (U)
= 〈g, g〉Hκ (U).

SeeWendland (2004, Theorem11.14) for amore general ver-
sion of this result that holds whenU ⊂ R

d and for derivatives
of both g and μ̂. It should be noted that Theorem 3.4 holds
when g ∈ Hκ(U), i.e. the function of interest lies within the
RKHS of the SE kernel. If this is not the case, convergence
issues may arise (see Karvonen (2022); Karvonen and Oates
(2022)) and one would need to choose an alternative kernel
function. For consistency results involving Matérn kernels,
see Stuart and Teckentrup (2018).

3.3.2 Error bound for GParareal solutions

Theorem 3.5 (GParareal error bound) Suppose the solvers
used in GParareal satisfy Assumptions 3.1, 3.2, and 3.3, and
that the conditions required for Theorem 3.4 hold. Then,
the absolute error (3.13) of the GParareal solution to the
autonomous scalar-valued ODE, i.e. f (t, u(t)) := f (u(t))
in (1.1), at iteration k and time t j satisfies

ekj ≤
⎧
⎨

⎩

	k
∑ j−(k+1)

i=0 Ai 1 ≤ k < j ≤ J ,

0 0 ≤ j ≤ k ≤ J .

where A = C1�T p+1 + LG and 	k = Cτhτ
xk |g|Hκ (U).

Proof First, consider the case 0 ≤ j ≤ k ≤ J . For j = 0,
recall that V k

0 = V0 ∀k ≥ 0 by definition, hence ek0 = 0 ∀k ≥
0. For j = 1, we seek V 1

1 = F�T (V 1
0 ) which we in fact

know from applying F�T to V 0
0 during the prior iteration

(i.e. k = 0). Therefore, we have that

V 1
1 = F�T (V 1

0 ) = F�T (V 0
0 ) = F�T (V0) = V1

⇒ V k
1 = V1 ∀k ≥ 1

⇒ ek1 = 0 ∀k ≥ 1.

We can repeat this process iteratively up to j = J to show
that

V J
J = F�T (V J

J−1) = F�T (V J−1
J−1 ) = F�T (VJ−1) = VJ

⇒ V k
J = VJ ∀k ≥ J

⇒ ekJ = 0 ∀k ≥ J .

Now, consider the case 1 ≤ k < j ≤ J . Using the update
rule (3.14), that F�T is the exact solver (3.15), and adding
and subtracting the terms g(V k

j ) and G�T (Vj ), we can write

ekj+1 = |Vj+1 − V k
j+1| = |F�T (Vj ) − (G�T (V k

j ) + μ̂(V k
j )

)|
= |F�T (Vj ) − (G�T (V k

j ) + μ̂(V k
j )

) ± g(V k
j ) ± G�T (Vj )|.

Applying the triangle inequality and the definition of g, we
obtain

ekj+1 ≤ |(F�T (Vj ) − G�T (Vj )
)

− (F�T (V k
j ) − G�T (V k

j )
)|

+ |G�T (Vj ) − G�T (V k
j )| + |g(V k

j ) − μ̂(V k
j )|.

On the right hand side, the first term can be bounded using
(3.16), the second by (3.17), and the third using Theorem
3.4, yielding the recursion

ekj+1 ≤ Aekj + 	k,

where A = C1�T p+1 + LG and 	k = Cτhτ
xk |g|Hκ (U).

This recursion can be solved using the initial condition ekj =
0 ∀k ≥ j to obtain the desired result. ��

Theorem 3.5 shows that the error is proportional to the
fill distance at iteration k and that GParareal will recover the
exact solution at time t j after k = j iterations.

Note that this result is rather general in the sense that
we consider the fill distance with respect to the entire space
U ⊂ R, whereas in reality we would measure the fill dis-
tance with respect to a moderately sized compact interval
V ⊂ U in which the solution u(t) lies ∀t ∈ [t0, T ]. Essen-
tially, the accuracy of the GP posterior mean outside of V is
inconsequential to the GParareal scheme because the mean
will never be evaluated outside of V . Also note, the result
will generalise for GParareal applied to systems of ODEs by
using norms and the generalised version of Theorem 3.4 in
Wendland (2004).

3.4 Computational complexity

The complexity of GParareal can be calculated similarly
to that of parareal—refer back to Sect. 2.3 for notation.
In GParareal, an additional cost is incurred when (serially)
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conditioning the emulator on acquisition/legacy data and
optimising the hyperparameters. During the kth iteration,
up to k J evaluations of F�T − G�T have been collected,
hence standard cubic complexity GP conditioning scales like
O(k3 J 3) in terms of floating point operations (andO(k2 J 2)
per hyperparameter). Given a fixed number of time slices J ,
let TGP(k) represent the total wallclock time taken to condi-
tion and optimise hyperparameters of the GP (using up to k J
observations) at iteration k—note this is a strictly increasing
function of k. Ignoring serial overheads, we can write down
the total wallclock time for GParareal as

TGPara ≈ JTG +
k∑

i=1

(
TF + (J − i)TG + TGP(i)

)

= kTF + (k + 1)

(
J − k

2

)
TG + TGP, (3.18)

where TGP := ∑k
i=1 TGP(i). The approximate parallel

speed-up is then given by

SGPara ≈
[
k

J
+ (k + 1)

(
1 − k

2J

)
TG
TF

+ 1

J

TGP
TF

]−1

.

(3.19)

Therefore, in addition to the parareal requirements that k be
as small as possible and TG 	 TF , GParareal requires that
TGP 	 TF in order to maximise parallel speedup. If this is
the case, the complexity of GParareal is approximately the
same as parareal.

This suggests that if k and/or J are large, then the cost of
the emulation may begin to dominate that of the fine solver,
limiting the parallel speedup from GParareal, see Sect. 4.
This, however, need not hinder the usability of GParareal for
a number of reasons. Firstly, time-parallelisation is typically
deployed on problems where additional parallel speedup is
needed beyond that achieved by traditional domain decom-
position, i.e. spatio-temporal PDEs. This means that if P
processors are required for the space-parallel computations
of the PDE and J processors for the time-parallel computa-
tions, then J P processors are required in total. For moderate
to large values of P , only leftover HPC resources are avail-
able to exploit time-parallelism and so J typically cannot be
chosen very large, somewhat limiting how large TGP can be.
Secondly, in the scenario that both TGP and TF are small, one
does not need to use a time-parallel method in the first place,
as F�T can simply be run serially in this case. Thirdly, if
both TGP and TF are large or of a similar order, then one can
reduce TGP by reducing the number of time slices J , thereby
increasing TF at the same time.

Whilst there is no way to control the final value of k
obtained by either parareal or GParareal, there are ways
of reducing TGP using more efficient non-cubic complex-

ity, emulation methods. For example, one could make use
of sparse GPs, parallel matrix inversion methods, or sparse
approximate linear algebra techniques (Schäfer et al. 2021)
to reduce the cost of evaluating the inverse kernel matrix
K (x, x)−1.One could also reduce TGP by clustering the input
data points and training ‘local’ GPs in parallel (Snelson and
Ghahramani 2007) or instead use inducing points to average
over input data points that are located close together in state
space (Quiñonero Candela and Rasmussen 2005; Snelson
and Ghahramani 2006)—see Murphy (2023) for additional
methods. To reduce the, often significant, cost of hyperpa-
rameter optimisation, one may deploy parallel optimisation
routines if available or, as we implement in Sect. 4, stop
the optimisation once additional data no longer improves the
hyperparameter estimates.

3.5 Generalisation to ODE systems

The methodology in Sect. 3.1 can be generalised to solve
systems of d autonomous ODEs. Accordingly, the correction
term we wish to emulate is now vector-valued, i.e. U ⊂ R

d ,
hence we require a vector-valued (or multi-output) GP, rather
than a scalar GP.

The simplest approach is to model each output of F�T −
G�T independently, whereby we use d scalar GPs (shar-
ing the same vector-valued inputs in state space) to emulate
each output. This requires initialising d GP emulators, each
with their own covariance kernel κi (usually the same for
consistency) and corresponding hyperparameters θ i—to be
optimised independently using their own respective obser-
vation datasets y(i), i = 1, . . . , d. In this case, the d GP
emulators can be conditioned/optimised independently of
one another and so we make use of the idle processors to
carry out these computations in an embarrassingly parallel
fashion to reduce the total GP complexity fromO(dk3 J 3) to
O(k3 J 3) each iteration—the same as the scalar case.

The more complex approach is to jointly emulate the out-
puts ofF�T −G�T by modelling cross-covariances between
outputs via the method of co-kriging (Cressie 1993). A num-
ber of co-kriging techniques exist (see Álvarez et al. (2011)
for a brief overview), one of which is the linear model
of coregionalisation that models the joint, block-diagonal,
covariance prior using a linear combination of the separate
kernels κi . Prior testing revealed that using this method did
not improve performance enough to justify the added com-
plexity,O(d3k3 J 3) vs.O(dk3 J 3) in the independent setting
(results not reported). Some applications may require cor-
related output dimensions, hence we note the methodology
here for any interested readers.

As a final note, to solve nonautonomous systems of equa-
tions, i.e. (1.1), there are two possible approaches. One way
is to include the time variable as an extra input to each of the
d scalar GPs—this requires a more carefully selected covari-
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ance kernel. The other way is to re-write the d-dimensional
nonautonomous system as a system of d + 1 autonomous
equations and solve as described above—this is the method
we use in Sect. 4.

4 Numerical experiments

In this section, we present numerical experiments to com-
pare the performance of GParareal and parareal on a
number of low-dimensional ODE systems, namely the
FitzHugh–Nagumo model, the chaotic Rössler system, a
nonautonomous system, and the double pendulum system.
MATLAB code for GParareal, parareal, and the GP emula-
tor as used in the experiments of this section can be found at
https://github.com/kpentland/GParareal.

For simplicity, F�T and G�T are chosen to be explicit
Runge–Kutta methods (RK) of order q, p ∈ {1, 2, 4, 8},
respectively (q ≥ p). Let NF and NG denote the number
of time steps each solver uses over [t0, T ]. For these exper-
iments we built our own cubic complexity GP emulator to
highlight the effectiveness of GParareal using standard out-
the-box methods, postponing the implementation of more
efficient and sophisticated emulation methods to a future
work. In the multivariate setting (recall Sect. 3.5), we use
a scalar output GP emulator (with isotropic SE covariance
kernel) to model each output dimension of F�T − G�T and
assign each one its own processor, reducing the GP emula-
tion costs by a factor of d. Hyperparameter optimisation is
carried out at each iteration, stopping when the (maximal)
absolute difference between hyperparameters is larger than
10−2. The experiments are run on up 512 CPUs.

4.1 FitzHugh–Nagumomodel

In this experiment, we consider the FitzHugh–Nagumo
(FHN) model (FitzHugh 1961; Nagumo et al. 1962) given
by

du1
dt

= c
(
u1 − u31

3
+ u2

)
,

du2
dt

= −1

c
(u1 − a + bu2),

(4.1)

where we fix parameters (a, b, c) = (0.2, 0.2, 3). We inte-
grate (4.1) over t ∈ [0, 40], dividing the interval into J = 40
slices, and set the tolerance for both GParareal and parareal
to ε = 10−6. We use solvers G�T = RK2 and F�T = RK4
with NG = 160 and NF = 1.6 × 105 steps respectively.

In Fig. 3a, we solve (4.1) with initial condition u0 =
(−1, 1)ᵀ using both algorithms. Observe that the accuracy
of GParareal is of approximately the same order as the solu-
tion obtained using parareal—when comparing both to the
serially obtained fine solution (Fig. 3b). Note, however, that

in Fig. 3c, GParareal takes six fewer iterations to converge
to these solutions than parareal does. As a result, GParareal
locates a solution in faster wallclock time than parareal, see
Fig. 3d, with an almost 5-fold speedup vs. the serial solver—
over twice the 2.4-fold speedup obtained by parareal. Note
that we increase NF to 1.6×108 to ensureF�T is expensive
to run and realise parallel speedup in Equation (4.1)(d) (as
both algorithms require TG/TF 	 1).

To compare the convergence of both methods more
broadly, we solve (4.1) for a range of initial values. The
heatmap in Fig. 4a illustrates how the convergence of parareal
is highly dependent, not just on the solvers in use, but also
the initial values at t = 0, taking anywhere from 10 to 15
iterations to converge. For some initial values, parareal does
not converge at all, with solutions blowing up (returning NaN
values) due to the low accuracy of G�T . In direct contrast,
see Fig. 4b, GParareal converges more quickly andmore uni-
formly due to the flexibility provided by the emulator, taking
just five or six iterations to reach tolerance for all the initial
values tested. This demonstrates how using an emulator can
enable convergence even when G�T has poor accuracy.

Until now, GParareal simulations have been carried out
using only acquisition data. In Fig. 5, we demonstrate
how GParareal can use both acquisition and legacy data to
converge in fewer iterations than without the legacy data.
Approximately k J = 5 × 40 = 200 legacy data points,
obtained solving (4.1) for u0 = (−1, 1)ᵀ, are stored and
made available to the GP emulator when solving (4.1) for
alternate initial values u0 = (0.75, 0.25)ᵀ. In Fig. 5a, we
can see that convergence takes two fewer iterations with the
legacy data than without. Accuracy of the solutions obtained
from these simulations is again shown to be of the order of
the parareal solution in both cases—see Fig. 5b. Repeating
the experiment from Fig. 4b with the same legacy data for
a range of initial values we see that k is either unchanged
or improved in all cases, see Fig. 6. It should be noted that
conditioning the GP and optimising hyperparameters using
the legacy data comes at extra (serial) computational cost
and checks should be made to ensure that TF � TGP. These
results illustrate that using GParareal (with or without legacy
data) we can solve and evaluate the dynamics of the FHN
model in significantly lower wallclock time than parareal.

4.2 Rössler system

Next we solve the Rössler system,

du1
dt

= −u2 − u3,

du2
dt

= u1 + âu2,
du3
dt

= b̂ + u3(u1 − ĉ), (4.2)
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Fig. 3 Numerical results obtained solving the FHN model (4.1) for
u0 = (−1, 1)ᵀ. a Time-dependent solutions using the fine solver,
GParareal, and parareal—both GParareal and parareal plotted only at
times t for clarity. b The corresponding absolute errors between solu-
tions from GParareal and parareal vs. the fine solution. c Maximum

absolute errors (2.4) of each algorithm at successive iterations k until
tolerance ε = 10−6 is met. d Median wallclock times (taken over 5
runs) of both algorithms against the number of processors (up to 40).
The inset plot displays the corresponding parallel speedup

Fig. 4 Heat maps displaying the number of iterations taken until convergence k of a parareal and b GParareal when solving the FHN model (4.1)
for different initial values u0 ∈ [−1.25, 1.25]2. Black boxes indicate where parareal returned a NaN value during simulation
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Fig. 5 Numerical simulations solving (4.1) for u(0) = (0.75, 0.25)ᵀ
using GParareal with and without access to legacy data, i.e.F�T −G�T
data obtained solving (4.1) for u(0) = (−1, 1)ᵀ. The parareal simula-
tion of the same problem is also shown for comparison. a Maximum

absolute errors (2.4) against iteration number k until tolerance ε = 10−6

met. b Time-dependent errors of the corresponding numerical solutions
from each simulation vs. the fine solution

Fig. 6 Heat map displaying the decrease in the number of iterations
taken until convergence of GParareal when solving (4.1) for different
initial values u0 ∈ [−1.25, 1.25]2 with legacy data compared to with-
out, i.e. compared to Fig. 4b. Legacy data was obtained by solving (4.1)
for u0 = (−1, 1)ᵀ

with parameters (â, b̂, ĉ) = (0.2, 0.2, 5.7) that cause the
system to exhibit chaotic behaviour (Rössler 1976). We
wish to integrate (4.2) over t ∈ [0, 340] with initial val-
ues u0 = (0,−6.78, 0.02)ᵀ and solvers G�T = RK1 and
F�T = RK4. The interval is divided into J = 40 time
slices, NG = 9× 104 coarse steps, and NF = 4.5× 108 fine
steps. The tolerance is set to ε = 10−6.

In this experiment, rather than obtaining legacy data by
solving (4.2) using alternative initial values (aswedid inSect.
4.1),we instead generate the data by integrating over a shorter
time interval. This is particularly useful if we are unsure how

long to integrate our system for, i.e. to reach some long-time
equilibrium state or reveal certain dynamics of the system, as
is the case in many real-world dynamical systems. For exam-
ple, many dynamical systems that feature random noise may
exhibitmetastability, inwhich trajectories spend (a long) time
in certain states (regions of phase space) before transitioning
to another state (Legoll et al. 2021; Grafke et al. 2017). Such
raremetastabilitymay not be revealed/observed until the sys-
tem has been evolved over a sufficiently large time interval.
We propose integrating over a ‘short’ time interval, assessing
the relevant characteristics of the solution obtained, and then
integrating over a longer time interval (using the legacy data)
if required. Note that to do this, all parameters in both simu-
lations must remain the same, with the exception of the time
step widths—to ensure the legacy data is usable in the GP
emulator in the longer simulation. Suppose we solve (4.2)
over t ∈ [0, 170], then we need to reduce J , NG , and NF
by a factor of two, i.e. use J (2) = J/2, N (2)

G = NG/2, and

N (2)
F = NF/2 in the shorter simulation.
The legacy simulation, integrating over [0, 170], takes

nine iterations to converge usingGParareal (ten for parareal),
giving us approximately k J (2) = 9× 20 = 180 legacy eval-
uations of F�T − G�T (results not shown). Integrating (4.2)
over the full interval [0, 340], GParareal converges in four
iterations sooner with the legacy data than without—refer
to Fig. 7c. In Fig. 7d we can see that using the legacy data
achieves a higher numerical speedup (3.4×) compared to
parareal (1.6×). In Fig. 7a we see the trajectories from each
simulation converging toward the Rössler attractor and Fig.
7b illustrates GParareal retaining a similar numerical accu-
racy to parareal with and without the legacy data. Note the
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Fig. 7 Numerical results obtained solving the Rössler system (4.2) over
t ∈ [0, 340]. a Solutions from the fine solver, GParareal (with legacy
data), and parareal plotted in the (u1, u2)-plane—both GParareal and
parareal plotted only at times t for clarity. bThe corresponding absolute
errors between solutions from GParareal and parareal vs. the fine solu-

tion. c Maximum absolute errors (2.4) of each algorithm at successive
iterations k until tolerance ε = 10−6 is met. d Median wallclock times
(taken over 5 runs) of each simulation against the number of processors
(up to 40). The inset plot displays the corresponding parallel speedup

steadily increasing errors for both algorithms is due to the
chaotic nature of the Rössler system.

4.3 Nonautonomous system

Next, we consider a nonautonomous system of ODEs
to demonstrate how GParareal handles explicit time depen-
dence. We solve

du1
dt

= −u2 + u1
( t

500
− u21 − u22

)
,

du2
dt

= u1 + u2
( t

500
− u21 − u22

)
, (4.3)

over t ∈ [−20, 500]—adapted from Trefethen et al. (2017).
As described in Sect. 3.5, we transform this two-dimensional
nonautonomous system into a three-dimensional autonomous
system by introducing an additional variable u3(t) = t ,

where du3/dt = 1. Given that we know u3(t) explicitly, the
third dimension of F�T − G�T need not be modelled with a
GP. However, given the GPs are run in parallel anyway, this
does not add to the cost of running GParareal.

We select solvers G�T = RK1 and F�T = RK8 with
NG = 2048 and NF = 5.12×105 steps, respectively.We use
J = 32 time slices, initial condition u0 = (0.1, 0.1,−20)ᵀ,
and a stopping tolerance of ε = 10−6. In Fig. 8, we plot
the solutions and corresponding errors generated by each
of the solvers over time. Again, the results illustrate good
convergence to the fine solver solution,withGParareal taking
10 iterations to locate the solution and parareal taking 20.
We suspect that the superior performance of GParareal is
partially due to the almost periodic nature of the solutions in
Fig. 8a, enabling the emulator to reproduce the dynamics of
F�T − G�T quite well.

Next, we run a series of simulations to measure the effect
of increasing the number of time slices J (and hence proces-
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Fig. 8 Numerical results obtained solving the nonautonomous sys-
tem (4.3). a Time-dependent solutions using the fine solver, GParareal,
and parareal—both GParareal and parareal plotted only at times t on

[−20, 150] for clarity. b The corresponding absolute errors between
solutions from GParareal and parareal vs. the fine solution, having con-
verged after 10 and 20 iterations, respectively

Table 1 Wallclock time and
speedup results obtained solving
the nonautonomous system (4.3)
for J ∈ {32, 64, 128, 256, 512},
where kpara and kGPara are the
number of iterations taken for
parareal and GParareal to
converge, respectively. (Top)
Numerical results obtained upon
simulation. (Bottom)
Theoretical results calculated
using (2.5), (3.18), (2.6), and
(3.19). All timings are measured
in seconds

J kpara kGPara TG TF TGP Tserial Tpara TGPara Spara SGPara

32 20 10 1.60E−4 4.23E3 5.37 1.35E5 8.92E4 4.33E4 1.52 3.13

64 31 14 9.80E−5 2.10E3 18.36 1.35E5 6.75E4 3.20E4 2.00 4.21

128 55 16 9.10E−5 1.06E3 2.26E2 1.35E5 6.47E4 1.90E4 2.09 7.13

256 99 18 6.90E−5 5.23E2 1.02E2 1.34E5 5.64E4 1.17E4 2.37 11.42

512 151 15 6.30E−5 2.62E2 1.09E4 1.34E5 4.42E4 2.10E4 3.03 6.39

J Tpara TGPara Spara SGPara

32 8.47E4 4.23E4 1.60 3.20

64 6.52E4 2.95E4 2.06 4.57

128 5.81E4 1.71E4 2.33 7.89

256 5.17E4 9.51E3 2.59 14.07

512 3.95E4 1.49E4 3.39 9.02

sors) on convergence, wallclock times, and speedup—see
Table 1. To do this, we increase the number of fine time
steps to NF = 5.12 × 1010, so that F�T is sufficiently
expensive to observe speedup. We observe a good match
between the numerical and theoretical results, presented in
the top and bottom tables of Table 1, respectively, and visu-
alised graphically in Fig. 9. Firstly, notice that kpara increases
with J whilst kGPara remains largely unaffected, leading to
speedups for GParareal being roughly 2× to 4× that of
parareal, up to J = 256. For both algorithms, the cost of
TG and TF decreases as J increases (due to fewer time steps
per time slice), whilst TGP increases (due to increasing num-
bers of data points each simulation). Note the exception of
TGP = 1.02E2 when J = 256 because hyperparameter opti-
misation converged within a few iterations and was therefore
not carried out after this. Up to J = 256, TGP < TF and so
we observe increasing parallel speedup for GParareal. When

J = 512, the cost of the GP overtakes that of F�T and so
parallel speedup decreases, albeit still being double that of
parareal. Recall that if TGP > TF , we may not opt to use
GParareal in the first place, for the reasons outlined in Sect.
3.4.

4.4 Double pendulum system

Consider now the double pendulum system: a simple pen-
dulum of mass m, rod length �, connected to another simple
pendulum of equal mass m, rod length �, acting under grav-
ity g (see Fig. 10). Four ODEs govern the dynamics of this
system:

du1
dt

= u3,

du2
dt

= u4,
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Fig. 9 Numerical results obtained solving the nonautonomous system
(4.3) for J ∈ {32, 64, 128, 256, 512}. a Wallclock times using the fine
solver (dashed black), GParareal (dashed blue), and parareal (dashed
red). Corresponding theoretical results are given by the solid lines, cal-

culated using (2.5) and (3.18) for parareal andGParareal, respectively. b
The corresponding speedup results using the same lines and colours. The
theoretical results were calculated using (2.6) and (3.19) for parareal
and GParareal, respectively

Fig. 10 A schematic of the double pendulum system

du3
dt

=
−u23 f1(u1, u2) − u24 sin(u1 − u2) − 2 sin(u1)

+ cos(u1 − u2) sin(u2)

f2(u1, u2)
,

du4
dt

=
2u23 sin(u1 − u2) + u24 f1(u1, u2)

+2 cos(u1 − u2) sin(u1) − 2 sin(u2)

f2(u1, u2)
, (4.4)

where f1(u1, u2) = sin(u1−u2) cos(u1−u2) and f2(u1, u2) =
2− cos2(u1 − u2) (Danby 1997). Note that m, �, and g have
been scaled out of (4.4) by letting � = g. The variables u1
and u2 measure the angles between each pendulum and the
vertical axis, while u3 and u4 measure the corresponding
angular velocities.

For this experiment, we select solvers G�T = RK1 and
F�T = RK8 with NG = 3072 and NF = 2.1504 × 105

steps, respectively. We integrate over t ∈ [0, 80], using
J = 32 time slices with a stopping tolerance ε = 10−6.

In Fig. 11, we plot solutions for u1 and u2 over time using
initial conditions u0 = (2, 0.5, 0, 0)ᵀ, i.e. the pendulums are
positioned at some (positive) initial angles and released from
rest. Observe howboth pendulumsmove chaotically,with the
inner pendulum oscillatingwithin [−π, π ] and the outer pen-
dulumoscillating between oddmultiples ofπ , “turning over”
a number of times. We attain good solution accuracy from
GParareal with respect to the fine solution with errors slowly
increasing over time due to the chaotic nature of the system,
much like what was seen in the Rössler experiments in Sect.
4.2. We plot k for various initial angles in Fig. 12 to high-
light the system’s sensitivity to initial conditions. For small
initial angles, GParareal converges sooner than parareal, but
for much larger angles both algorithms use almost all of the
32 iterations to locate a solution (and in some cases, parareal
does not return a solution).

In Table 2 and Fig. 13, we again test the effect of increas-
ing J on wallclock times, speedup, and convergence. To do
this, we increase the number of fine time steps to NF =
2.1504 × 1010. We purposefully choose an initial condition
(u0 above) for which both algorithms converge in approxi-
mately the same number of iterations, so that we can directly
observe how the increasing GP cost affects the performance
of GParareal for large J . Under these circumstances, we can
think of the wallclock time for GParareal as (approximately)
the wallclock time of parareal plus the wallclock time of the
GP conditioning/optimisation. For J ≤ 128, we observe that
TGP < TF and so the speedup of GParareal and parareal are
approximately the same. In these cases, usingGParareal is no
more costly than using parareal, with the additional benefit of
being able to re-use the acquisition data for a future simula-
tion, if needed. For J ≥ 256, we begin to observe TGP ≈ TF

123



23 Page 16 of 20 Statistics and Computing (2023) 33 :23

Fig. 11 Numerical results obtained solving the double pendulum sys-
tem (4.4). a Time-dependent solutions for u1 and u2 using the fine
solver, GParareal, and parareal—both GParareal and parareal plotted
only at times t for clarity. Dashed lines indicate “turning over” angles,

at which either pendulum passes through an odd multiple of π . b The
corresponding absolute errors between solutions from GParareal and
parareal vs. the fine solution, having converged after 23 and 22 itera-
tions, respectively

Fig. 12 Heat maps displaying the number of iterations taken until con-
vergence k of a parareal and b GParareal when solving the double
pendulum system (4.4) for different initial angles (u1(0), u2(0)) ∈

[−2.5, 2.5]2 and initial angular velocities (u3(0), u4(0)) = (0, 0),
i.e. the pendulums are released from rest. Black boxes indicate where
parareal returned a NaN value during simulation

(or larger), so the numerical speedup of GParareal begins to
plateau. We should reiterate, however, that using so many
processors for such a small test problem is quite excessive.

5 Discussion

In this paper,wepresent a time-parallel algorithm (GParareal)
that iteratively locates a numerical solution to a system of
ODEs. It does so using a predictor-corrector, comprised
of numerical solutions from coarse (G�T ) and fine (F�T )
integrators. However, unlike the classical parareal algo-
rithm, it uses a Gaussian process (GP) emulator to infer the

correction term F�T − G�T . The numerical experiments
reported in Sect. 4 demonstrate that GParareal performs
favourably compared to parareal, converging in fewer itera-
tions and achieving increased parallel speedup for a number
of low-dimensional ODE systems. We also demonstrate how
GParareal can make use of legacy data, i.e. prior F�T and
G�T data obtained during a previous simulation of the same
system (using different ICs or a shorter time interval), to pre-
train the emulator and converge even faster—something that
existing time-parallel methods cannot do.

In Sect. 4.1, using just the data obtained during simulation
(acquisition data), GParareal achieves an almost two-fold
increase in speedupover pararealwhen solving theFitzHugh-
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Table 2 Wallclock time and
speedup results obtained solving
the double pendulum system
(4.4) for
J ∈ {32, 64, 128, 256, 512},
where kpara and kGPara are the
number of iterations taken for
parareal and GParareal to
converge, respectively. (Top)
Numerical results obtained upon
simulation. (Bottom)
Theoretical results calculated
using (2.5), (3.18), (2.6), and
(3.19). All timings are measured
in seconds

J kpara kGPara TG TF TGP Tserial Tpara TGPara Spara SGPara

32 22 21 2.53E−4 5.75E3 19.75 1.84E5 1.31E5 1.21E5 1.41 1.52

64 21 23 1.46E−4 2.93E3 17.66 1.87E5 6.29E4 7.00E4 2.97 2.67

128 23 23 1.27E−4 1.46E3 1.20E2 1.86E5 3.85E4 3.56E4 4.84 5.24

256 21 23 9.10E−5 7.35E2 5.45E2 1.89E5 1.66E4 2.04E4 11.36 9.24

512 19 22 7.00E−5 3.69E2 2.26E3 1.89E5 7.58E3 2.25E4 24.90 8.38

J Tpara TGPara Spara SGPara

32 1.26E5 1.21E5 1.45 1.52

64 6.14E4 6.72E4 3.05 2.78

128 3.35E4 3.36E4 5.57 5.54

256 1.55E4 1.75E4 12.19 10.78

512 7.01E3 1.04E4 26.94 18.20

Fig. 13 Numerical results obtained solving the double pendulum sys-
tem (4.4) for J ∈ {32, 64, 128, 256, 512}. a Wallclock times using
the fine solver (dashed black), GParareal (dashed blue), and parareal
(dashed red). Corresponding theoretical results are given by the solid

lines, calculated using (2.5) and (3.18) for parareal and GParareal,
respectively. b The corresponding speedup results using the same lines
and colours. The theoretical results were calculated using (2.6) and
(3.19) for parareal and GParareal, respectively

Nagumo model. Simulating over a range of initial values,
GParareal converged in fewer than half the iterations taken by
parareal and, in some cases, managed to converge when the
coarse solver was too poor for parareal. When using legacy
data, GParareal could converge in even fewer iterations. Sim-
ilar results were illustrated for the Rössler system in Sect. 4.2
but with legacy data obtained from a prior simulation over
a shorter time interval—beneficial when one does not know
how long to integrate a system for. In Sects. 4.3, and 4.4,
GParareal was tested on a larger number of processors (up
to 512), verifying the theoretical computational complexity
results given in Sect. 3.4 and that the cost of the GP needs to
be much smaller than the cost of the fine solver in order for
speedup to be maximised. In all cases, the solutions gener-
ated by GParareal were of a numerical accuracy comparable
to those found using parareal.

In its current implementation, GParareal may, however,
suffer from the curse of dimensionality in two ways. First, an
increasing number of data points, O(k J ), is problematic for
the standard cubic complexity GP implemented here. In this
case, a more sophisticated (non-cubic complexity) emulator
or perhaps usingneural networks could bebeneficial. Second,
trying to emulate a d-dimensional function F�T − G�T is
difficult if the number of evaluation points is not sufficient.
One option to tackle this may be to obtain more acquisition
data by launching more F�T and G�T runs using the idle
processors to further train the emulator at little additional
computational cost. However, as shown in Sect. 3.3, the
accuracy of the GP emulator is strongly controlled by the fill
distance of the set of evaluation points, which is generally
difficult to restrict when d is large. One could think about
using legacy data generated by evaluating F�T − G�T at
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specific input locations (for example, a uniform grid) that
satisfy certain fill distance requirements in the state space.

A. Psuedocode for GParareal

Algorithm 1: GParareal

Initialise: Set counters k = I = 0 and define V k
j , V̂

k
j and Ṽ k

j as
the refined, coarse, and fine solutions at the j th mesh
point and kth iteration respectively (note
V k
0 = V̂ k

0 = Ṽ k
0 = u0 ∀k). If known, initialise any

legacy F�T − G�T input data x, output data y, and
hyperparameters θ .

%Calculate approximate initial values at
each t j by running G�T serially.

1 for j = 1 to J do
2 V̂ 0

j = G�T (V̂ 0
j−1);

3 V 0
j = V̂ 0

j ;

4 end
5 for k = 1 to J do

%Propagate refined solutions (from
iteration k − 1) on unconverged
sub-intervals by running F�T in
parallel.

6 for j = I + 1 to J do
7 Ṽ k−1

j = F�T (V k−1
j−1 );

8 end
9 I = I + 1;

10 V k
I = Ṽ k−1

I for all k ; %copy converged solution
at tI to future k.

11 x = append(x, (V k−1
I , . . . , V k−1

J−1 )
T) ; %collect new

input data.

12 y = append( y, (Ṽ k−1
I+1 − V̂ k−1

I+1 , . . . , Ṽ k−1
J − V̂ k−1

J )T) ;
%collect new output data.

13 θ = GPoptimise(x, y, θ) ; %optimise
hyperparameters.
%Propagate refined solution (at iteration
k) with G�T, then correct using the
expected value of the GP prediction
(3.7) (this step cannot be carried out
in parallel).

14 for j = I + 1 to J do
15 x� = V k

j−1;

16 V̂ k
j = G�T (x�);

17 y� = GPpredict(x, y, θ , x�) ; %returns Gaussian
random variable

18 V k
j = E[y�] + V̂ k

j ;

19 end
%Evaluate the stopping criterion, saving
all solutions up to tI.

20 I = max
n∈{I ,...,N } |V k

i − V k−1
i | < ε ∀i < n;

21 if I = N then
22 return k, V k , x, y, θ ; %if tolerance met for

all time steps, stop.
23 end
24 end

It should also be noted that GParareal may not always
provide faster convergence using legacy data if such legacy
evaluations ofF�T −G�T lay ‘far away’, i.e. over one or two
input length-scales away, from the initial values of interest
in the current simulation. In this case, GParareal would rely
more heavily on its acquisition data. There is no immediate
remedy for such a situation, but using a fallback parareal
correction, as suggested in the next paragraph, could be an
option.

In equation (3.11), we approximate a Gaussian distribu-
tion by taking its expected value, ignoring uncertainty in the
GP posterior forF�T −G�T . In this setting, the GP emulator
is used to interpolate theF�T −G�T data, hence it is perfectly
acceptable to swap it out for any other sufficiently accurate
interpolationmethod, e.g. kernel ridge regression (Kanagawa
et al. 2018). During early iterations of GParareal, when lit-
tle acquisition data are available, the uncertainty in the GP
posterior (i.e the variance) may be large at points of interest.
By retaining the GP posterior uncertainty, one could (ide-
ally) propagate the full uncertainty using the coarse solver
to the next time step and then continue. While this would
produce a probabilistic version of GParareal, this would be
a computationally expensive process that we wish to avoid
at this stage. One alternative to approximating (3.11) by its
expected value could be to draw a random sample instead. A
sampling-based solver such as this would return a stochastic
solution to the ODE, much like the stochastic parareal algo-
rithm presented in Pentland et al. (2022). It is unclear how
this algorithm would perform vs. parareal (or even stochas-
tic parareal), however, it could still make use of legacy data
following successive independent simulations. Another pos-
sible alternative to approximating (3.11) arises if the input
initial value is at least one or two length-scale distances away
from any other known input value in our acquisition dataset.
In this case, we then might expect the GP emulation of the
mean in (3.11) to have high variance and so a fallback to
the deterministic parareal correction for F�T − G�T (see
(2.3)) could be built in as a next best correction to the coarse
prediction in (3.11). Among others, these are two alterna-
tive formulations of GParareal that are worth investigating to
account for the whole Gaussian distribution provided by the
emulator and not just its mean value.

Follow-up work will focus on extending GParareal, using
some of the methods suggested above, to solve higher-
dimensional systems of ODEs in parallel (possibly PDEs). In
the longer term, we aim to develop a truly probabilistic time-
parallel numerical method that can account for the inherent
uncertainty in the GP emulator, returning a probability dis-
tribution rather than point estimates over the solution.
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