Manuscript version: Author’s Accepted Manuscript
The version presented in WRAP is the author’s accepted manuscript and may differ from the
published version or, Version of Record.

Persistent WRAP URL:
http://wrap.warwick.ac.uk/167539

How to cite:

Please refer to published version for the most recent bibliographic citation information.
If a published version is known of, the repository item page linked to above, will contain
details on accessing it.

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution 4.0 International

license (CC BY 4.0) and may be reused according to the conditions of the license. For more
details see: http://creativecommons.org/licenses/by/4.0/.

Publisher’s statement:
Please refer to the repository item page, publisher’s statement section, for further
information.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk.

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/167539
http://creativecommons.org/licenses/by/4.0/
mailto:wrap@warwick.ac.uk

Stochastic parareal: an application of probabilistic methods to
time-parallelisation

Kamran Pentland*!, Massimiliano Tamborrino?, D. Samaddar3, and L. C. Appel3

Y Mathematics Institute, University of Warwick, Coventry, CV4 7AL, United Kingdom
2Department of Statistics, University of Warwick, Coventry, CV4 7AL, United Kingdom
3Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire, OX14 3DB,
United Kingdom

July 8, 2022

Abstract

Parareal is a well-studied algorithm for numerically integrating systems of time-dependent
differential equations by parallelising the temporal domain. Given approximate initial values
at each temporal sub-interval, the algorithm locates a solution in a fixed number of iterations
using a predictor-corrector, stopping once a tolerance is met. This iterative process combines
solutions located by inexpensive (coarse resolution) and expensive (fine resolution) numerical
integrators. In this paper, we introduce a stochastic parareal algorithm aimed at accelerating the
convergence of the deterministic parareal algorithm. Instead of providing the predictor-corrector
with a deterministically located set of initial values, the stochastic algorithm samples initial values
from dynamically varying probability distributions in each temporal sub-interval. All samples
are then propagated in parallel using the expensive integrator. The set of sampled initial values
yielding the most continuous (smoothest) trajectory across consecutive sub-intervals are fed into
the predictor-corrector, converging in fewer iterations than the deterministic algorithm with a given
probability. The performance of the stochastic algorithm, implemented using various probability
distributions, is illustrated on low-dimensional systems of ordinary differential equations (ODEs).
We provide numerical evidence that when the number of sampled initial values is large enough,
stochastic parareal converges almost certainly in fewer iterations than the deterministic algorithm,
maintaining solution accuracy. Given its stochastic nature, we also highlight that multiple sim-
ulations of stochastic parareal return a distribution of solutions that can represent a measure of
uncertainty over the ODE solution.

Keywords. parareal, time-parallel integration, probabilistic numerics, sampling-based solver, multivariate
copulas
1 Introduction

In its most basic form, parallel computing is the process by which an algorithm is partitioned into a number
of sub-problems that can be solved simultaneously without prior knowledge of each other. More widespread

*Corresponding author: kamran.pentland@warwick.ac.uk

mailto:kamran.pentland@warwick.ac.uk

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

parallelism is becoming increasingly necessary in many different fields to reduce the computational burden
and thus overcome the physical limitations (i.e. space, power usage, clock speeds, cooling, and financial costs)
arising on machine hardware. Complex models in science often involve solving large systems of ordinary or
partial differential equations (ODEs or PDEs) which, in the case of spatio-temporal PDEs, can be parallelised
using existing domain decomposition methods. We refer to [1] for an overview. Although very efficient for high
dimensional systems, these methods are reaching scale-up limits, and wallclock speeds often bottleneck due to
the temporal integration. For instance, modern algorithms used to simulate Edge Localised Modes in turbulent
fusion plasmas can take anywhere between 100-200 days to integrate over a time interval of just one second [2].

These sequential bottlenecks in time have motivated the research and development of time-parallel integra-
tion methods for systems of ODEs and PDEs over the last 55 years or so (see [3, 4, 5] for reviews). These methods
provide a way to integrate initial value problems (IVPs) over long time intervals where solutions would be unob-
tainable using existing sequential algorithms. One approach to integrate in a non-sequential manner, similar to
spatial parallelisation, is to discretise the time interval into N sub-intervals upon which N sub-problems are
solved in parallel using existing numerical methods. The solution at a given time step, however, depends upon
the solution at the previous step(s). This creates a problem prior to the parallel integration as N — 1 of the N
initial values (from which to begin integration in each sub-interval) are unknown a priori. Existing algorithms
that attempt to locate these N — 1 initial values by direct or iterative means have been collectively referred to as
multiple shooting methods [6, 7, 8, 9, 10].

Our focus is on one multiple shooting method in particular: parareal [8]. This algorithm uses a combination
of coarse and fine grained (in time) numerical integrators to provide parallel speedup, and has been tested
successfully on problems spanning molecular [11] and fluid dynamics [12, 13, 14], to stochastic differential
equations [15, 16] and fusion plasma simulations [2, 17]. The popularity of parareal is due to its relatively
straightforward implementation and demonstrable effectiveness in speeding up the integration of IVPs. The
algorithm iteratively locates a numerical solution at each sub-interval using a predictor-corrector scheme, derived
by discretising the Newton-Raphson method. The algorithm stops once a tolerance is met with convergence
guaranteed under certain mathematical conditions — more detail on the algorithm is provided in Section 2.
Much work has gone into analysing the numerical convergence of this method [18, 19, 20, 21], combining it with
spatial decomposition techniques [22], and developing variants that utilise idle processors [23] and adaptive
time-stepping [24]. However, given fixed fine and coarse integrators, the method itself is strictly deterministic
and little work has gone into trying to reduce the number of iterations k; € {1,..., N} that parareal takes to solve
a particular IVP. Our primary focus is on reducing k; and henceforth we refer to it as the ‘convergence rate’. In
scenarios where parareal struggles to converge in k; < N iterations, reducing k; by even a few iterations, say to
ks < k4, can lead to significant parallel gains (roughly a factor k;/k;), enabling faster numerical integration.

The purpose of this work is to extend the parareal algorithm using probabilistic methods to converge in
fewer than k; iterations for a given system of ODEs. To achieve this, we introduce a stochastic parareal algorithm.
Instead of integrating forward in time from a single initial value (given by the predictor-corrector) in each
sub-interval, a pre-specified probability distribution (see sampling rules in Section 3.2) is used to generate M
candidate initial values that are simultaneously integrated forward in time in parallel. At each sub-interval, one
optimal initial value (from the M samples) is selected sequentially such that the most continuous trajectory is
chosen across consecutive sub-intervals. These initial values are then fed directly into the predictor-corrector —
the idea being that this stochastically generated set of values provides a better guess to the solution than those
found purely deterministically. For example, suppose running the predictor-corrector with initial values x(°)
yields convergence in k, iterations, generating the sequence of solutions {x(®),x(1), .. x(k#)} Instead of starting
with x(?), suppose we sample initial values from a probability distribution and choose some “better" starting
point which is close to, say, x for some i € {1,...,k;—1}. Then the sequence generated by the predictor-corrector
would instead be approximately {x(i),x(i”),...,x(kd)}, converging in k; — i iterations. Therefore, given a fixed
number of samples M, the stochastic parareal algorithm will converge in fewer than k; iterations with some
non-zero probability.

This idea of propagating multiple initial values in each sub-interval in parallel is not new. In the first
major work proposing the time-parallel integration of IVPs, Nievergelt [9] discussed choosing M initial values
deterministically. The method for determining the solution from this ensemble of trajectories was to combine
two of the M samples in each sub-interval using an interpolation coefficient determined from the preceding

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

sub-interval. Whilst an excellent first incursion into the field, for nonlinear problems this direct method suffered
from interpolation errors and questions remained on how to efficiently scale this up to systems of ODEs. We
generalise the original idea of Nievergelt by combining it with the parareal algorithm, generating the M initial
values at each sub-interval using probability distributions based on information known about the solutions at
the current iteration.

The paper is organised as follows. In Section 2, we recall the parareal algorithm and its properties from a
multiple shooting viewpoint, including a known modification that will enable us to extend the algorithm to
incorporate stochastic sampling. In Section 3, we introduce the stochastic parareal algorithm. Following an
explanation of its key features, we elucidate how a variety of different sampling rules can be flexibly interchanged
in order to carry out the sampling. In Section 4, we conduct numerical experiments to illustrate the performance
of stochastic parareal against its deterministic counterpart using the different sampling rules. Findings are
presented for three ODE systems of increasing complexity, with two additional examples given in the Appendix.
Results indicate that for sufficiently many samples, stochastic parareal almost certainly beats the convergence
rate of the deterministic algorithm and generates (stochastic) solutions of comparable numerical accuracy.
For the multivariate ODEs, results show that performance is improved by generating correlated, as opposed
to uncorrelated, random samples. In Section 5, conclusions are drawn and avenues for future research are
discussed.

2 The parareal algorithm

Following previously outlined descriptions of the parareal algorithm [20, 8], henceforth referred to as “parareal’
or P, consider a system of d € N ODEs

% = f(u(t),t) on te[Ty,Ty], with u(Ty)=u’ (1)
where f : RY x [Ty, Ty] — R? is a smooth multivariate (possibly nonlinear) function, u : [Ty, Ty] — R the time-
dependent vector solution, and u® € R? the initial values at Ty. Decompose the time domain into N sub-intervals
such that [Ty, Ty] = [To, T1] U --- U [Ty_1, Ty], with each sub-interval taking fixed length AT := T, - T,,_; for
n=1,...,N (see Figure 1 for a schematic).

Having partitioned the time domain, N smaller sub-problems

du,
dt

:f(un(t|Un)'t) on te[T, T,1) with u,(T,) =0, (2)

for n=0,...,N —1 can theoretically be solved in parallel on N processors, henceforth denoted P, ..., Py. Each
solution u,(t|U,) is defined over [T}, T,,;1] given the initial values U,, € R? at t = T,,. Note however that only the
initial value Uy = uy(T,) = u® is known, whereas the rest (U, for n > 1) need to be determined before (2) can be
solved in parallel. These initial values must satisfy the continuity conditions

Uy=u’ and U,=u,(T,|U,;) for n=1,...,N, (3)

TTTTTTTTTTTTTT g oT

Ty T 15 T'n-2 Tn-1 TN

Figure 1: Schematic of the time domain decomposition. Three levels of temporal discretisation are shown:
sub-intervals (size AT), coarse intervals (size 0T), and fine intervals (size 0t). Note how the discretisations align
with one another and that 6t < 0T < AT in our implementation.

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

T T T T3 T T Ts

Figure 2: First iteration of the parareal algorithm to numerically evaluate the solution of a scalar ODE, either
available or obtained via the fine solver (black line). The first runs of G and F are given in yellow and blue
respectively; and the second run of G in red. The red dots represent the solution after applying the predictor-
corrector (5).

which form a (nonlinear) system of N + 1 equations that ensure solutions match at each T,, ¥n > 1. System (3) is
solved for U,, using the Newton-Raphson method to form the iterative system

Ukt =, (4a)
aun—l
aUn—l

forn=1,...,N,where k=0,1,2,... is the iteration number. This system contains the unknown solutions u,, and
their partial derivatives, which even if known, would be computationally expensive to calculate.

To solve (4) and evaluate u,, at discrete times, P utilises two numerical integrators. The first is a numerically
fast coarse integrator G that integrates over [T, T,,;1] using initial values U,,. The second is a fine integrator F that
runs much slower compared to G but has much greater numerical accuracy, chosen such that it integrates over
the same interval [T, T,,, ;] with initial values U,,. In our implementation, the difference between fast and slow
integration is guaranteed by setting the time steps for G and F as 0T and 6t respectively with o0t < 6T (recall
Figure 1). The key principle is that, if used to integrate (1) over [T, Tyy] serially, 7 would take an infeasible
amount of computational time, hence the need to use P in the first place. Therefore G is permitted to run
serially across multiple sub-intervals rapidly, whereas the slower solver F is only permitted to run in parallel
on sub-intervals. This is a strict requirement for running P, else numerical speedup will not be achieved.

Given that (4a) is known a priori for all k, Lions et al. [8] approximate the first term in equation (4b) using
the fine solver F (U’:H) and the second term by a coarse finite difference of the derivative using g(U’;,j) —Q(Ulflf1).

UI:1+1 = un—l(Tn|U1I;—1) + (T71|U]7<1—1)[U£t% _Ul:l_l]’ (4b)

One could instead approximate the derivative using a fine finite difference }'(Uﬁf}) - f(Uﬁ_l), however (4b)
then becomes a sequential calculation using just F — exactly what we wish to avoid. Assuming G meets the
conditions required for (4b) to converge (see Section 2.1), using the coarse approximation becomes reasonable
and enables the parallel computation of (4b) [20]. The result is that an initial guess for the initial values UY
(found using G) is improved at successive parareal iterations k using the predictor-corrector update rule

Ukt = gukth y F(UF_)-gUk) for n=1,.,N. (5)
Pseudocode for an implementation of P is given in Algorithm 1 alongside a graphical description of the first

iteration in Figure 2. During the ‘zeroth’ iteration, G is applied to u’, generating initial values U9 Vn e {1,...,N}

4

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

sequentially (lines 1-6). Immediately following, F is run in parallel from these initial values to generate a
more accurate set of fine solution states 132 (lines 8-11). Next, G is run in the first time sub-interval, from the
known initial value, to ‘predict’ the solution IAJ% at Ty. It is subsequently ‘corrected’ using rule (5), and the
predictor-corrector solution U} is found at T;. This prediction and correction process (lines 12-16) repeats
sequentially until U} is found Vn € {1,...,N}. After checking if the stopping criteria has been met (lines 17-21),
the algorithm either starts the next iteration or stops.

Algorithm 1 Parareal (P)

1: Set counters k = I = 0 and define UX, Uk and Uk as the predictor-corrector, coarse, and fine
solutions at the n'" time step and k*" iteration respectively (note that U'é = U'g = U’(‘) =u’ Vk).
2: // Calculate initial values at the start of each sub-interval T, by running G serially on processor P;.

fork=1to N do
// Propagate the predictor-corrector solutions (from iteration k — 1) on each sub-interval by
running F in parallel on processors Py,q,...,Py.
90 forn=1+1toN do
: Ok =FUkh
11: end for
12: // Propagate the predictor-corrector solution (at iteration k) with G on any available processor.
Then correct this value using coarse and fine solutions obtained during iteration k — 1 (this step
cannot be carried out in parallel).
13: forn=I1+1toN do
14: Uk =g(Uut)
15 Uk = ol ok gk
16: end for
17: // Check whether the stopping criterion is met, saving all solutions up to time step T; before the
next iteration. If tolerance is met for all time steps, the algorithm stops.

3: forn=1to N do
4 0Y=6(0°)
5: Ug = fjg

6: end for

7:

8:

18: I= max ||U£‘—Ui.<*1||oo<£\7’i<n
ne{l+1,..,N}

19: if I == N then

20: return k, Uk

21: endif

22: end for

2.1 Stopping criteria and other properties
The algorithm is said to have converged up to time Tj if
Uy -U Ml <& Vn<l, (6)

for some small fixed tolerance € — noting that || - ||, denotes the usual infinity norm [21, 17]. Taking the relative,
instead of absolute, errors in (6) would also be appropriate, however, in our numerical experiments the results
(not reported) did not change. Once I = N, we say P has taken k; = k iterations to converge, yielding a solution

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

with numerical accuracy of the order of the F solver. In its original formulation, P iteratively improves the
solution across all time steps, regardless of whether they have converged or not, up until the tolerance has
been met for all T,,. The modified formulation presented here however only iterates on the solutions for the
unconverged sub-intervals [23, 17]. This has no effect on the convergence rate k; and becomes especially
important once we introduce the stochastic modifications in Section 3.

It should be clear that at least one sub-interval will converge during each iteration k, as F will be run
directly from a converged initial value. Therefore it will take at most k; = N iterations for P to converge,
equivalent to running F over the N sub-intervals serially (yielding zero parallel speedup). To achieve significant
parallel speedup, multiple sub-intervals need to converge during an iteration so that k; < N. Assuming G
takes a negligible amount of time to run compared to the parallel components (along with any other serial
computations), an approximate upper bound on the speedup achieved by P is N/k;.

One challenge in attempting to minimise k;, hence the overall runtime of P, is to identify optimal solvers F
and G for implementation. Whereas F is assumed to have high-accuracy and be computationally expensive to
run, G must be chosen such that it runs significantly faster (usually orders of magnitude) than F whilst being
sufficiently numerically accurate to converge in as few iterations as possible. Usually G is chosen such that its
solutions have lower numerical accuracy, coarser temporal resolution, and/or reduced physics/coarser spatial
resolution (when solving PDEs). There is currently no rigorous method for choosing the two solvers, however
they should be chosen such that the ratio between the time taken to run F over [T,, T,,;1] and the time taken to
run G over the same interval is large.

In this paper, we fix both F and G as explicit! fourth-order Runge-Kutta methods (henceforth RK4) for ease
of implementation. More detailed analysis on the mathematical conditions required for P to converge, i.e. for
the numerical solution U,, to approach the fine solution, can be found in [25, 20, 8, 22].

3 A stochastic parareal algorithm

In this section, we introduce the stochastic parareal algorithm, an extension of parareal that incorporates
randomness and utilises its well-studied deterministic convergence properties to locate a solution in k, < k;
iterations. A summary of additional notation required to describe the algorithm, henceforth referred to as P, is
provided in Table 1.

The idea behind P is to sample M vectors of initial values aﬁ’l,..., afbM, at each unconverged sub-interval

T,, in the neighbourhood of the current predictor-corrector solution UX from a given probability distribution
(with sufficiently broad support) and propagate them all in parallel using F. Given a sufficient number of
samples is taken, one will be closer (in the Euclidean sense) to the true root that equation (5) is converging
toward. Among them, we select an optimal &X by identifying which samples generate the most continuous
trajectory, at the fine resolution, in phase space across [T, Ty |- Therefore, at each iteration, we stochastically
“jump" toward more accurate initial values and then feed them into the predictor-corrector (5). For increasing
values of M, the convergence rate k; will decrease, satisfying k, < k; with probability one — shown numerically
in Section 4.

3.1 The algorithm

Suppose again we aim to solve system (1), adopting the same conditions, properties, and notation as discussed
in Section 2. Py follows the first iteration (k = 1) of P identically — see line 1 of Algorithm 2. This is because
information about initial values at the different temporal resolutions (i.e. results from F and G) are required to
construct the appropriate probability distributions for sampling. Following the convergence check, we assume
(for the purposes of explaining the stochastic iterations) that only the first sub-interval [Ty, T} | converged during
k =1, leaving N — 1 unconverged sub-intervals. At this point we know the most up-to-date predictor-corrector
solutions U} ¥n € {1,..., N} and the stochastic iterations can begin (henceforth k = 2).

I'When solving the stiff ODE systems in Section 4, the initial values at ¢ = 0 are chosen such that explicit methods work.
For greater numerical stability, one could alternatively use implicit solvers at extra computational cost.

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

Table 1: Additional notation used to describe the stochastic parareal algorithm.

Notation | Description
n Index of the time sub-interval T,,, n=0,...,N.
k Iteration number of P and P, k=1,...,N.
ks Total iterations taken for stochastic parareal to stop and return a solution, ks € {1,..., N}.
M Number of random samples taken at each T},.
(1)5—1 The d-dimensional probability distribution used to sample initial values at time T}, and iteration k.
aﬁ;,lz The m™ d-dimensional sample from distribution Clel at time T}, and iteration k, m=1,..., M.
&,’Yl The selected d-dimensional sample from aﬁ’_ll,..., ai‘&&l at time T,, and iteration k.
ukT The d-dimensional vector of marginal means at time T}, and iteration k.
ok-1 The d-dimensional vector of marginal standard deviations at time T}, and iteration k.
pﬁ;jl Pairwise correlations coefficients between i and j™ components of the M fine resolution propa-
gated samples at time T, and iteration k.
R,ﬁ_l The symmetric positive semi-definite d x d correlation matrix with elements pﬁi_jl at time T}, and
iteration k. '
I The d x d identity matrix.
xk-T The symmetric positive semi-definite d x d covariance matrix at time T}, and iteration k.

At any unconverged T, (n > 1), we sample M vectors of initial values, denoted a,’;;% form=1,...,M. The
first sample is fixed as the predictor-corrector UX™!, to ensure that P, = P when M = 1. The other M — 1 initial
values are sampled from a pre-specified d-dimensional probability distribution ®X~! with finite marginal means
kit = (yﬁ;l,...,yﬁgl)T, marginal standard deviations ¢! = (0,’1‘1’1,..., U,]l(;l)T, and correlation structure given by
the matrix RX!. These quantities depend upon the information available at iteration k — 1, i.e. a combination
of U’,‘,‘l,]-“(U’,‘l‘l), Q(Ulfl‘l) and G(UX2), see Section 3.2. The correlation matrix R’fl‘l is introduced to take into
account the dependence between components of the ODE system (lines 3-9). The elements of R, for k > 3, are
defined using the Pearson correlation coefficient

M D) i)y) ()
Pt = met O 2 X000 =XT) e, a), (7)

\/ M () —f“))?\/z%:l(x;f) —xlin2

where
(i) by 1 i)
= Flalt)6, # == k) (8)

and]-“(aﬁ:im)(i) denotes the ith element of]-'(afl:im). The coefficients p’,;:],l in (7) are essentially the estimated
pairwise correlation coefficients of the M d-dimensional fine resolution propagations of the sampled initial
values at T, from the previous iteration, i.e. f(aﬁ:il),...,]:(a’:l:iM). Note that other types of linear correlation
coefficient could also be chosen. Since each }"(aﬁ:im) is not available at iteration k = 2, we set R’ffl =Ifork=2,
i.e. we sample from a multivariate distribution with uncorrelated components.

Following this, the sampling and subsequent propagation using F can begin in parallel (lines 10-22). Given
the solution between [Ty, T}] has converged, F will run from the converged initial value at T}, with sampling
starting from T, onward (see Figure 3). All sampled initial values are then propagated forward in parallel using
F, requiring at least M(N —2) + 1 processors (M samples times N — 2 unconverged sub-intervals plus running F
once in [T, T,]).

Of the M sampled initial values at each T, (1 > 1), only one is retained, denoted by @51, chosen such that it
minimises the Euclidean distance between the fine solution and the sampled values (lines 23-28). To do this,

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

A
u(t
" F(u?) F(U9)
g(Un) o U : L :
! : : e Sampling rule:
° o, Flal,) : o o o)
G(ak) m ./
1
1
0_1] ?\._._—/.
| O———=
1 ~
1
Zoom Ty

Ty T, Ty T3 T, t

Figure 3: An illustration of the sampling and propagation process within P; following iteration k = 1. The
fine solution is given in black, the k = 0 fine solutions in blue, the k = 1 coarse solutions in red, and the k = 1
predictor-corrector solutions as red dots. With M = 5, four samples /. ,, (green dots) are taken at T, and T3 from
distributions with means U, and U}, and some finite standard deviations respectively. These values, along with
U, and U1 themselves, are propagated in parallel forward in time using F (green lines). The optimally chosen
samples @), (refer to text for how these are chosen) are then propagated forward in time using G (yellow lines).

start from the converged initial values at T, given by the fine solver: F (Uk_l) Calculate the Euclidean distance

between]-"(Uk_l) and each of the M samples a’z‘_ll, Lay 1\}1 The sample minimising this distance is chosen as

75 !. Repeat for later T, minimising the distance between F (&~ Rk ~1) and one of the samples a’fl 2+ k - This
process must be run sequentially and relies on the modlﬁcatlon to P made in Section 2 — that solutlons are not
altered once converged. Referring again to Figure 3, the corresponding coarse trajectories of these optimally
chosen samples @5~! must also be calculated to carry out the predictor-corrector step (lines 29-32).

At this point, the set of initial values {aé LI df\, 11} has been selected from the ensemble of random samples,
effectively replacing the previously found UX~!. The coarse and fine propagations of these values are now used

in the predictor-corrector (lines 33-37) such that

(9)

Using the same stopping criteria (6) from P (lines 38-42), the algorithm either stops or runs another stochastic
parareal iteration.

As a final remark, instead of minimising the distance between }'(a,_ 1) and one of the samples aﬁ 11, . af; 1\}1'
one could think about doing some sort of interpolation to choose a more optimal point than the M samples In
this setting, however, this is not possible because we require not just the exact starting condition, which would
be the optimally chosen sample, but also its value having been propagated by F (which we only have for the M
samples).

3.2 Sampling rules

The probability distributions ®%~! incorporate different combinations of available information about the initial
values at different temporal resolutions, i.e. the coarse, fine, and predictor-corrector initial values g(Uﬁj)

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

Algorithm 2 Stochastic parareal (7P;)

1: Run P (Algorithm 1) until the end of iteration k = 1.
2: fork=2to N do

3: // Calculate correlation matrices (only if 4 > 1).
& RK1=Tvn
5. if k > 3 then
6: forn=I+1toN-1do
7: Calculate RX"! using f(aﬁ:il),...,]-"(aﬁ:iM) (recall (7)).
8: end for
9: end if
10: // Initial value sampling and propagation. Both line 11 and the nested for loop below (lines
12-22) run in parallel on Py, ..., Pyy(n-1-1)+1, i-e. all runs of 7 must be in parallel.
11: 0’1‘3 =]:(U]I‘_l) // propagate converged initial value at T; on P,
122 forn=I+1toN-1do
13: form=1to M do
14: if m ==1 then
15: afll_ll = Uk-1 // first ‘sample’ is fixed to the predictor-corrector
16: U110 = f(aﬁ’_ll) // temporarily store propagated values
17: else
18: aﬁ;}l ~ ®k-1 // sample initial value randomly, see Section 3.2
19: 0n+1,m = f(aﬁ,_rrlz)
20: end if
21: end for
22: end for
23: // Select the most continuous fine trajectory from the ensemble sequentially.
24: forn=I+1toN-1do
25: J = argmin ||0‘];le - Ok,
jefl,... M}
26: ak-1 = aﬁ}l // store optimal initial value
27: ﬁﬁ;ll = I~J,1+1J // store most optimal fine trajectories
28: end for
29: // Run G from the optimal samples (can run in parallel).
30 forn=I+1toN-1do
31: Ukl = g(ak 1)
32: end for
33: // Predict and correct the initial values.
34: forn=1+1toN do
B UL=g(Uy)
36: Uk =0k14+0k -0k
37: end for
38: // Check whether the stopping criterion is met.
39: I= max ||U§<—U§‘_1||Oo <eVi<n
ne{l+1,...,N}
40: if I == N then
41: return k, U
42: end if
43: end for

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

Q(Uﬁ:%), F(Uﬁj), and Uﬁ‘l respectively. This information is used to define the marginal means and standard
deviations in the ‘sampling rules’ outlined in the following subsections. Note how the distributions vary with
time T, and k, so that the accuracy of the distributions increase as the initial values in P; are iteratively improved.
Using Gaussian and copula distributions, we analyse the performance of different sampling rules within P; in
Section 4. This will give us a more comprehensive understanding on whether the choice of distribution family
®k-1 or the parameters pk~!, o5~1, and RK"! have the greatest impact on the convergence rate k,. In all tested
cases, we observe that taking correlated samples significantly improves the performance of P; compared to the

independent setting.

3.2.1 Multivariate Gaussian

First, we consider perturbing the initial values using stochastic “noise", i.e. considering errors compared to the
true initial values to be normally distributed, a standard method for modelling uncertainty. The initial values

a,ﬁ;}l are sampled from a multivariate Gaussian distribution A (uk~1, ¥5-1), where (XX)ij = p,];;jl O',I,(i_l 0,’1‘;1 is the

dxd positive semi-definite covariance matrix. As marginal means p~! we choose either the fine resolution values
]—"(Uﬁ:%) (prior to correction) or the predictor-corrector values UK. For the marginal standard deviations, we
choose of~1 = Ig(Uﬁj) — Q(Ulf,j)l as they are of the order of the corrections made by the predictor-corrector and
each marginal decreases toward zero as the algorithm converges (as expected). For the correlation coefficients,
pfl;jl, we calculate the linear correlation between the F propagated samples using Pearson’s method — recall (7).
Note that |- | denotes the component-wise absolute value. Testing revealed that alternative marginal standard
deviations [UX~! —UK-2| and I}'(Uﬁj) - g(Uﬁ‘,j)| did not span sufficiently large distances around yﬁ‘l in order for
sampling to be efficient, i.e they required much higher sampling to perform as well as oX~! = |Q(Uﬁj) - g(Uﬁj)l
(results not shown). The samples a,’;",,% ~ N(y’,‘l‘l,):],‘l_l) are taken according to the following sampling rules:

Rule 1: ™! = F(U]) and of ™! = |G(U}}) - GUL)
Rule 2: w7~ = Uf™ and o} =[G(UST}) - G(UST})l

Note that a linear combination of the rules or taking half the samples from each appears to work well, with
performance similar to the individual rules themselves (results not shown).

3.2.2 Multivariate copula

Alternatively, we consider errors that may have a different (possibly non-Gaussian) dependency structure. We
consider another multivariate distribution, known as a copula, with uniformly distributed marginals scaled
such that they have the same value as the marginal means and standard deviations in Section 3.2.1.

A copula C: [0,1] — [0,1] is a joint cumulative distribution function, of a d-dimensional random vector, with
uniform marginal distributions [26]. Sklar’s theorem [27] states that any multivariate cumulative distribution
function with continuous marginal distributions can be written in terms of 4 uniform marginal distributions and
a copula that describes the correlation structure between them. Whilst there are numerous families of copulas,
we consider the symmetric ¢t-copula, C?, the copula underlying the multivariate ¢-distribution, which depends
on the parameter v and the correlation matrix RK™!. We fix v = 1 so that samples have a higher probability of
being drawn toward the edges of the [0,1]¢ hypercube, see [26]. Note that v — co can be thought of as sampling
from the Gaussian copula.

Correlated samples x = (x1,..., x4) ~ C! that are generated in [0, l]d then need to be re-scaled such that
each marginal is uniformly distributed in an interval [x;,7;] C R, with mean y; and standard deviation o;
for i € {1,...,d}. By definition, a marginal uniform distribution on [x;,y;] has mean (x; + ;)/2 and variance
(v —x;)?/12 which we set to p; and o7 respectively. Solving these equations, we find that the desired marginals

)T

are uniform distributions on [y; -V30;, Ui+ \/gai]. Thus, setting 2V30; xi+ Ui -V30; guarantees that the generated
samples x ~C' have the same marginal means y; and standard deviations o; as the Gaussian distributions. This
allows us to compare performance results in Section 4. The t-copula sampling rules (Rule 3 and Rule 4) are

10

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

therefore defined component-wise as ai‘l;ﬁ(i) =2V30,x;i + Hi— V3o, forie(l,...,d}, with x ~C! and parameters
u; and o; chosen to be identical to Rule 1 and Rule 2 respectively.

Note that this copula construction can be extended to other families of copulas (e.g. the Gaussian copula)
and to copulas with different marginal distributions (e.g. Gaussian, t, or logistic marginals). Therefore, sampling
from the Gaussian multivariate distributions in Section 3.2.1 can be considered a special case of these more
general copulas.

3.3 Convergence

Independent simulations of P, will return a numerical solution U¥ which, along with k;, vary stochastically —
since the optimal initial values chosen will vary between simulations. Given the randomness in these quantities,
we can discuss the convergence of P in two ways.

Firstly, consider convergence in terms of minimising the random variable k; by studying P(k, < k;). Given
there are no analytical results for P guaranteeing that k; < N for any given problem, proving that P(k; < k;) =1,
or at least E(k,) = Zi\il kP(ks = k) < k; seems to be analytically intractable. However, we can qualitatively discuss
P(k < k;) and E(k,) with respect to the number of samples M. Consider the following cases:

s M=1
Running P is equivalent to running P, hence the convergence of P; follows from that of P and therefore
E(ky) = ks = k.

* 1<M<oo
For finitely many samples, we estimate the discrete probability distributions P(k; = k) and observe, in
all numerical experiments (see Section 4), that P(k; < k;) — 1 for M = 10. Moreover, we observe that
P(ks < k) increases and E(ks) decreases for increasing M — with E(k;) < k; for all values of M tested.

* M-

If we were able to take infinitely many samples, P; effectively samples every possible value in the support
of @, i.e. every initial value that has a non-zero probability of being sampled from ®. Therefore, if O
has infinite support, e.g. the Gaussian distribution, all possible initial values in RY are sampled and
propagated, hence the fine solution will be recovered almost surely in E(k;) = k; = 2 iterations. Note this
is the smallest value k; can take to converge assuming convergence does not occur following the first
iteration — although the algorithm could be modified such that convergence occurs almost surely in k; = 1
iterations as M — co. In Section 4.1, we illustrate this property numerically by taking a large number of
samples for a single realisation of P,.

In the scenario that P, converges in k; = N iterations (irrespective of the value of M), it will return the fine
solution just as P does when k; = N (having propagated the exact initial value at Ty sequentially N times using
F).

Secondly, consider convergence in terms of the stochastic solution UX (9) approaching (in the mean-square
sense) the fine solution U,, as k increases. In the numerical experiments in Section 4, we did not observe a case
where P, fails to converge to the fine solution. In fact, we observe tight confidence intervals on the numerical
errors between UX and U, upon multiple realisations of P, (see Figure 7 and Figure 9). We may expect P, to fail
to converge (i.e. solutions blow up) in cases in which P also fails — typically this means that a more accurate
coarse solver is required for both algorithms. It should be noted, however, that because P; samples M initial
values, only M’ out of the M propagated solutions may blow up in each time sub-interval, due to the poor coarse
solver, and so P; could in fact locate a solution in cases where P cannot — although this is not tested here.

3.4 Computational complexity

At each iteration, P, runs the fine solver more frequently than P, albeit still in parallel, and therefore requires a
larger number of processors. The first iteration of P, requires N processors, however once sampling begins in
k > 2, it requires at most M(N —I — 1)+ 1 processors — assuming I sub-intervals converge during k = 1. Whilst

11

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

Iteration k = 2 Iteration k = 3

ICI]'IMIMIMIMIMIEICICIClllQMIQMIMI
! ! ! | ! | ! — i 1 I I ! I !

Th Ty T T3 T, T5 T T To Ty 15 15 Ty T5 T T

Figure 4: Illustration of a possible processor configuration if two sub-intervals were to converge between
iterations two and three of P,. The letter C denotes a converged sub-interval, the number 1 denotes a sub-
interval where we propagate the converged initial value from the preceding sub-interval using F, and the letter
M denotes the number of samples taken in an unconverged sub-interval.

we assume processors are in abundance, this number scales directly with M and so it is important to keep M to
a minimum if limited processing power is available in practice.

As the stochastic iterations progress, the number of processors required, i.e. M(N —I —1) + 1, decreases
as the number of converged sub-intervals, I, increases — leaving a growing number of processors idle. Each
additional sub-interval that converges leaves M idle processors that we can re-assign to do additional sampling
and propagation. We assign each set of M idle processors to the earliest unconverged sub-interval with the least
number of samples, ensuring all processors are working at all times to explore the solution space for the true
initial values (see Figure 4 for an illustration). We do not explicitly write the pseudocode for re-assigning the idle
processors in Algorithm 2 (lines 10-22) to avoid additional complexity — the process is, however, implemented
in the numerical experiments in Section 4.

In terms of timings, an iteration of P, takes approximately the same wallclock time as one of P. In this
regard, we assume that the extra serial costs in P, e.g. correlation estimation, selecting optimal samples, and
the extra G runs, take negligible wallclock time when compared to a single run of F. Therefore, the wallclock
time for P; will be lower than for P if k; < k;. This comes at a cost of requiring O(MN) processors rather than N
to solve the problem. However, it should be highlighted that if P, converges in even one less iteration than P,
we avoid an extra run of F which may save a large amount of wallclock time.

4 Numerical results

In this section, we compare the numerical performance of P and P, on systems of one, two, and three ODEs of
varying complexity>. Both algorithms use RK4 methods to carry out integration, with G using time step 6T and
F using time step ot, the latter at least 75 times smaller than the former. We quantify the performance of P
by estimating the distributions of k; for each sampling rule and by measuring the accuracy of the stochastic
solutions against those obtained serially with F. Since a limited number of processors were available for these
experiments, the results are based not on calculating wallclock runtimes but on comparing the convergence
rates k; and k; — which are independent of the number of processors used. Additional results for these test cases,
as well as two further test problems, are given in the Appendix.

4.1 Scalar nonlinear equation

First, we consider the nonlinear ODE

d
% = sin(uy) cos(uy) — 2uy + e /1%sin(5¢) + In(1 + t) cos(t), (10)

2To increase efficiency further we also attempted to store previously sampled and propagated fine trajectories to use
in future iterations of the algorithm, however, they did not improve performance. This was because only the most recent
samples were ever chosen in each iteration (results not shown).

3 All algorithms were coded in MATLAB and simulations were run using HPC facilities at the University of Warwick. Samples
code for both P and P; can be found in the public repository at https://github.com/kpentland/StochasticParareal.

12

https://github.com/kpentland/StochasticParareal

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

2 T
0L

F solution 10

15 | o P solution A]

[U* — U

—e— Error (P;)

t Tteration (k)
(a) (b)

Figure 5: (a) Numerical solution of (10) over [0,18] using F serially and a single realisation of P;. Note that
only a subset of the fine times steps of the P solution are shown for clarity. (b) Errors at successive iterations
of P (black line) and ten independent realisations of P, (blue lines). Horizontal dashed red line represents the
stopping tolerance ¢ = 107!, Note that both panels use P, with sampling rule 1 and M = 3.

with initial value #;(0) = 1 [7]. Discretise the time interval t € [0,100] using N = 40 sub-intervals, coarse time
steps 6T = 100/80, and fine time steps 6t = 100/8000. Numerical solutions to (10) are shown on the interval
[0,18] in Figure 5a. Deterministically, P locates a solution in k; = 25 iterations using error tolerance ¢ = 10719,
P, converges in a varying number of iterations k,, with P(k; < k;) = 1 — see Figure 5b for the convergence of ten
independent simulations using M = 3. From this plot, we can see that by taking just three samples, P, reduces
the number of iterations by almost a factor of two — from 25 to approximately 14 (on average).

When M is increased above one, P; begins generating stochastic solutions that converge in a varying number
of iterations k. In order to accurately compare k; with the discrete random variable ks, we run 2000 independent
simulations of P; to estimate the distribution of k, for a given M. Upon estimating these distributions, it was
found that P(k; < 25) = 1 for each of the four sampling rules (for all M > 1), meaning that by doubling the
number of processors we can beat parareal with probability one. The estimated distributions of k;, using
sampling rule 1 (the other rules perform similarly), as a function of M are given in Figure 6a. The stacked bars
represent the estimated discrete probability of a simulation converging in a given number of iterations. The
results show P; converging in just five iterations in the best case — demonstrating P; has the potential to yield
significant parallel speedup, given sufficiently many samples are drawn. Figure 6b emphasises the power of the
stochastic method, showing that the estimated expected value E(k;) decreases as M increases, with the estimated

standard deviation sd (k) = \/Zi\il (k —E(ks))?P(ks = k) decreasing too. The improved performance of P; as M

increases reflects what was discussed in Section 3.3. In particular, we ran a single realisation of P, with M = 100,
observing that P, converged in four iterations (result not shown), confirming that k,; continues to decrease for
increasing M. By looking at Figure 6b, we see that sampling rule 1 yields the lowest expected values of k, for
small values of M, with all sampling rules performing similarly for large M.

To verify the accuracy of the stochastic solutions, we plot the difference between the mean of 2000 indepen-
dent realisations of P; and the serially calculated F solution in Figure 7. Also shown is the confidence interval
given by two standard deviations of the stochastic solutions (which is at most O(10~!1)) and the error generated
by P. Accuracy is maintained with respect to the fine solution across the time interval, even more so than the
P solution. See Appendix A for numerical results of P, applied to a stiff scalar nonlinear ODE. In this case,
the stiffness of the equation demands a higher value of M to improve k; — something we also observe for the
Brusselator in Section 4.2.

13

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

[y

25
0.9 I —e—Rule 1]
L —&—Rule 2| |
058 i & Rule 3|
0.7 20 i ——o—Rule 4 1
£06 < []
5 3 L]
z 05 &
£ 715 | .
A 04 3 0]
03 s<ke<?) Mg | |
' P (7 <k, <10) L J
0.2 P10 < k, < 15) 10 - 1
I P(15 < k, < 25) - 1
0.1 L]
0 I 4
N VYD X000 RN L OO0 5 ; !
U PR OO OO
AL 10° 10t 102 10°
Number of samples (M) Number of samples (M)

(a) (b)

Figure 6: (a) Estimated discrete distributions of ks as a function of M for sampling rule 1. (b) Estimated
expectation of ks as a function of M, calculated using estimated distributions of k; for each sampling rule
with error bars representing + two standard deviations sd (k). Distributions in both panels are estimated by
simulating 2000 independent realisations of P; for each M.

-11

x10
5 T T T T T T T T T
4+ |
3 L —
2 L | —
1 - B —

é 0 - - o — - r v
Ep= | |
2L |
-3 [——P error 7
4l Mean P; error %
Mean Py error + two std. devs.

-5 1 1 1 | | | |

0 10 20 30 40 50 60 70 80 920 100

t

Figure 7: Errors of P (red) and mean P; (black) solutions against the serial F solution over time. The mean error
is obtained by running 2000 independent realisations of P; with sampling rule 2 and M = 4 — the confidence
interval representing the mean + two standard deviations is shown in light blue.

14

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

4.2 The Brusselator system

Next, consider the Brusselator system

% :A+u12u2—(B+1)u1, (11a)
du
d_tz :Bul —Lllzuz, (llb)

a pair of stiff nonlinear ODEs that model an auto-catalytic chemical reaction [28]. Using parameters (A, B) = (1, 3),
trajectories of the system exhibit oscillatory behaviour in phase space, approaching a limit cycle (as t — co) that
contains the unstable fixed point (1,3)T. Now that d > 1, we use bivariate distributions to sample the initial
values — meaning we can compare the effects of including or excluding the correlations between variables. System
(11) is solved using initial values u(0) = (1,3.07)T over time interval t € [0,15.3] with N = 25, 5T = 15.3/25, and
ot =15.3/2500 [29]. The numerical solution to (11) in phase space and convergence of the successive errors are
reported in Appendix B. With these parameters and a tolerance of ¢ = 107%, P takes k, = 7 iterations to stop and
return a numerical solution.

The estimated distributions of k, for sampling rule 1 are given in Figure 8a. Even though P takes just k; =7
iterations to stop, we observe that P; can still reach the desired tolerance in 5 or 6 iterations — albeit requiring
larger values of M. We believe this is due to the stiffness of the system and poor accuracy of the explicit G solver —
results presented for the stiff ODE in Appendix A appear to confirm this. Using adaptive time-stepping methods
could be a way to reduce the value of M needed to converge in fewer k; [24]. The solid lines in Figure 8b show
that, using sampling rules 1 or 3, P; only requires M ~ 10 to beat parareal almost certainly, i.e. to guarantee
that P(k; <7) — 1. Sampling rules 1 and 3 outperform 2 and 4 in this particular system. Note, however, the
stark decrease in performance if instead uncorrelated samples are generated within P (dashed lines). This
demonstrates the importance of accounting for the dependence between variables in nonlinear systems such as
(11). Observe again, in Figure 9, how the mean P, solutions attain equivalent, or better, accuracy than the P
solutions, with standard deviations at most O(107).

Further results of P, applied to (11) and an additional two-dimensional nonlinear system are presented in

1 & & & & - oo
- Peu o
09 r o)
Ve
0.8 - J
0.7 J
£06 |
;g 0.5 1
£ —e—Rule 1
A 041 —e—Rule 2 |
—e—Rule 3
0.3
Pk, =5) —e—Rule 4 1
0.2 Pk, = 6) — & —Rule 1 (uncorrelated)
Pk, =7) — © —Rule 2 (uncorrelated)|
0.1+ —e—P(k,<7) — © —Rule 3 (uncorrelated)| |
0 O — & —Rule 4 (uncorrelated)
N UOY X000 DN RO LD 0 ! !
M SR RO OO O IO
RS 10° 10t 102
Number of samples (M) Number of samples (M)
(a) (b)

Figure 8: (a) Estimated discrete probabilities of ks as a function of M for sampling rule 1. (b) Estimated
probability that the convergence rate k; is smaller than k; = 7 as a function of M for the sampling rules
with (solid lines) and without (dashed lines) correlations. Distributions were estimated by simulating 2000
independent realisations of P; for each M.

15

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

7 7

5 x10 5 x10
— P error — P error
4r Mean P; error 1 4 Mean P; error 1
3l Mean P, error £ two std. devs. | 3l Mean P; error £ two std. devs. |
2 r 8 2 r 8
1r 8 1r 8
§ 0 4 g 0 —
M 5| o
1 b 11t]
2+ 4 2r .
3r 4 -3r 3
4t 1 4 1
5 | | | -5 | | |
0 5 10 15 0 5 10 15
t t

(a) (b)

Figure 9: Errors of P (red) and mean P; (black) solutions against the F solution. The mean error is obtained
by running 2000 independent realisations of ; with sampling rule 4 with M = 200 — the confidence interval
representing the mean + two standard deviations is shown in light blue. Panel (a) displays errors for the u;
component of the solution whilst (b) displays the u, component.

Appendix B and Appendix C respectively. Observe again that for the less stiff system in Appendix C, we require
less sampling to improve k; compared to the Brusselator — further highlighting the demand for higher M in stiff
systems to improve the convergence rate.

4.3 The Lorenz system

Finally, we consider the Lorenz system

du
d—tlzyl(uz—ul% (12a)
du
d_t2:7/2u1—1/llu3—1/12, (12b)
du
d_t3 = Uy = Y3u3, (12¢)

a simplified model for weather prediction [30]. With the parameters (1,72, ¥3) = (10,28,8/3), (12) exhibits
chaotic behaviour where trajectories with initial values close to one another diverge exponentially. This will test
the robustness of P, as small numerical differences between initial values will mean that errors can grow rapidly
as time progresses. We solve (12) using initial values u(0) = (-15,-15,20)" over the interval [0, 18], discretised
using N = 50 sub-intervals and time steps 6T = 18/250 and &t = 18/18750. With a tolerance of ¢ = 1078, P takes
kg = 20 iterations to converge.

Running P; to compare the performance of the sampling rules, we see again in Figure 10a that taking
correlated samples is much more efficient than not and that only M = 10 samples are required to beat parareal
with probability one. For the chaotic trajectories generated by (12), sampling close to the predictor-corrector,
rules 2 and 4, yields superior performance compared to rules 1 and 3 for small values of M. Figure 10b displays
estimated distributions for varying M using sampling rule 2 — yielding a best convergence rate k; = 16 for
approximately 25% of runs with M = 1000. These results demonstrate the robustness of 7, and that the sampling

16

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

1 o—o
1
0.9 Al
0.9 r ' g
0.8
081 P (&, — 16)
07 - 07T I P (k, = 17)
206 | -P(ks = 18) i
=06 = [CCOP(ks =19)
205 | P (k, = 20) |
V05 S P(k, < 20
& —e—Rule 1 ° —o—P(k, <20)
N / Rule 2 A 04
& 04 —e—Rule]
—e—Rule 3 0.3 -
0.3 —eo—Rule 4 B
— o —Rule 1 (uncorrelated) 0.2
0.2 — & —Rule 2 (uncorrelated) | | 01 L
01 — o —Rule 3 (uncorrelated) | | '
‘ — © —Rule 4 (uncorrelated) 0
0¢é . | N VYD X000 LD LL O
A OSSR RO OO OO
10° 10! 102 NPT RS
Number of samples (M) Number of samples (M)
(a) (b)

Figure 10: (a) Estimated probability that the convergence rate k; is smaller than k; = 20 as a function of M
for the sampling rules with (solid lines) and without (dashed lines) correlations. Distributions were estimated
by simulating 2000 independent realisations of P, for each M. (b) Estimated discrete probabilities of k; as a
function of M for sampling rule 2.

and propagation process is not impeded by the exponential divergence of trajectories. Additional results of P
applied to (12) are given in Appendix D.

5 Conclusions

In this paper, we have extended the parareal algorithm using probabilistic methods to develop a stochastic
parareal algorithm for solving systems of ODEs in a time-parallel manner. Instead of passing deterministically
calculated initial values into parareal’s predictor-corrector, stochastic parareal selects more accurate values
from a randomly sampled set, at each temporal sub-interval, to converge in fewer iterations. In Section 4, we
compared performance against the deterministic parareal algorithm on several low-dimensional ODE systems of
increasing complexity by calculating the estimated convergence rate distributions (upon multiple independent
realisation of stochastic parareal) with increasing numbers of random samples M. By taking just M =~ 10
(correlated) samples, the estimated probability of converging sooner than parareal approached one in all test
cases. Similarly, we observed numerical convergence toward the fine (exact) solution with accuracy of similar
order to parareal and, in the spirit of probabilistic numerics [31, 32], obtained a measure of uncertainty over the
ODE solution upon multiple realisations of the algorithm.

The probability that stochastic parareal converges faster than standard parareal depends on a number of
factors: the complexity of the problem being solved, the number of time sub-intervals (N), the accuracy of the
coarse integrator (G), the number of random samples (M), and the type of sampling rule in use. Sampling rules 1
and 3 (sampling close to the fine solutions) outperformed rules 2 and 4 (sampling close to the predictor-corrector
solutions) for the ODE systems in Section 4.1, Section 4.2, and SM1. The reverse was true, however, for the
systems in Section 4.3 and SM3, making it difficult to determine an optimal rule for a general ODE system.
To overcome having to choose a particular sampling rule, one could linearly combine different rules or even
sample from multiple rules simultaneously. We would suggest sampling from probability distributions with
infinite support, i.e. the Gaussians (rules 1 and 2), so that samples can be taken anywhere in R? with non-zero
probability. Having finite support may have created difficulty for the uniform marginal t-copulas (rules 3 and 4)
because samples could only be taken in a finite hyperrectangle in R? — problematic if the exact solution were to

17

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

lay outside of this space.

When solving stiff ODEs (see Section 4.2 and SM1), results indicated that stochastic parareal demanded
increasingly high sampling to converge sooner than parareal than for non-stiff systems. For example, we observe
that when taking M = 100 samples in the non-stiff scalar ODE in Figure 6, the expected convergence rate
decreases from 25 to 7 whereas for the stiff scalar ODE in SM1, the rate only drops from 8 to 6. A similar
observation can be made in the two-dimensional test cases in Section 4.2 (stiff) and SM3 (non-stiff). These results
exemplify the role that system complexity, e.g. stiffness or chaos, plays in the performance of both algorithms.
In SM1, stochastic parareal was also shown to perform more efficiently for problems that deterministic parareal
itself struggles with, i.e. cases in which the accuracy of the coarse integrator G is poor. In SM3 it was also
observed that, for low sample numbers (M = 2), stochastic parareal actually converged in one more iteration
than parareal in less than 2.5% of cases. This suggests there may be minimum number of samples required to
beat parareal in some situations — something to be investigated with further experimentation.

In summary, we have demonstrated that probabilistic methods and additional processors can, for low-
dimensional ODEs, be used to increase the parallel scalability of existing time-parallel algorithms. Next we need
to investigate possible improvements and generalisations. For example, determining whether the algorithm
scales for larger systems of equations — essential if it is to be used for solving PDE problems. Moreover, whether
we can design adaptive sampling rules that do not need to be specified a priori to simulation. Finally, we would
aim to make use of the whole ensemble of fine propagated trajectories rather than using only one — avoiding
the waste of valuable information about the solution at the coarse and fine resolutions. An approach in this
direction has recently been proposed [33], making use of ideas from the field of probabilistic numerics to adopt
a more Bayesian approach to this problem.

Acknowledgements

This work has partly been carried out within the framework of the EUROfusion Consortium and has received
funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement
No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commis-
sion. KP is funded by the Engineering and Physical Sciences Research Council through the MathSys II CDT
(grant EP/S022244/1) as well as the Culham Centre for Fusion Energy. For the purpose of open access, the
author has applied a CC BY public copyright licence to any Author Accepted Manuscript version arising. The
authors would also like to acknowledge the University of Warwick Scientific Computing Research Technology
Platform for assistance in the research described in this paper and the anonymous reviewers for their insightful
comments on improving this manuscript.

References

[1] A. Toselli and O. Widlund. Domain Decomposition Methods — Algorithms and Theory. Springer New York,
2005.

[2] D.Samaddar, D. P. Coster, X. Bonnin, L. A. Berry, W. R. Elwasif, and D. B. Batchelor. Application of the
parareal algorithm to simulations of ELMs in ITER plasma. Comput. Phys. Commun., 235:246-257, 2019.

[3] K. Burrage. Parallel and sequential methods for ordinary differential equations. The Clarendon Press Oxford
University Press, Burlington, MA, USA, 1995.

[4] M.]. Gander. 50 Years of Time Parallel Time Integration. In Multiple Shooting and Time Domain Decomposi-
tion Methods, pages 69-113. Springer International Publishing, 2015.

[5] B. W. Ong and J. B. Schroder. Applications of time parallelization. Comput. Vis. Sci., 23:1-11, 2020.

[6] A.Bellen and M. Zennaro. Parallel algorithms for initial-value problems for difference and differential
equations. J. Comput. Appl. Math., 25:341-350, 1989.

18

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[24]
[25]

[26]
[27]

P. Chartier and B. Philippe. A parallel shooting technique for solving dissipative ODE’s. Computing,
51:209-236, 1993.

J. L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps pararéel. C. R. Math.
Acad. Sci. Paris - Series I: Math., 332:661-668, 2001.

J. Nievergelt. Parallel methods for integrating ordinary differential equations. Communications of the ACM,
7:731-733, 1964.

P. Saha, J. Stadel, and S. Tremaine. A Parallel Integration Method for Solar System Dynamics. The
Astronomical Journal, 114:409, 1997.

L. Baffico, S. Bernard, Y. Maday, G. Turinici, and G. Zérah. Parallel-in-time molecular-dynamics simulations.
Phys. Rev. E, 66:4, 2002.

P. E. Fischer, F. Hecht, and Y. Maday. A parareal in time semi-implicit approximation of the navier-stokes
equations. Lect. Notes Comput. Sci. Eng., 40:433-440, 2005.

I. Garrido, M. S. Espedal, and G. E. Fladmark. A convergent algorithm for time parallelization applied to
reservoir simulation. Lect. Notes Comput. Sci. Eng., 40:469-476, 2005.

J. M.E. Trindade and J. C.F. Pereira. Parallel-in-time simulation of two-dimensional, unsteady, incompress-
ible laminar flows. Numerical Heat Transfer, Part B: Fundamentals, 50:25-40, 2006.

S. Engblom. Parallel in time simulation of multiscale stochastic chemical kinetics. Multiscale Model. Simul.,
8:46-68, 2009.

F. Legoll, T. Lelievre, K. Myerscough, and G. Samaey. Parareal computation of stochastic differential
equations with time-scale separation: a numerical convergence study. Comput. Vis. Sci., 23:1-18, 2020.

D. Samaddar, D. E. Newman, and R. Sanchez. Parallelization in time of numerical simulations of fully-
developed plasma turbulence using the parareal algorithm. J. Comput. Phys., 229:6558-6573, 2010.

G. Bal. On the convergence and the stability of the parareal algorithm to solve partial differential equations.
Lect. Notes Comput. Sci. Eng., 40:425-432, 2005.

G. Bal and Y. Maday. A “Parareal” Time Discretization for Non-Linear PDE’s with Application to the
Pricing of an American Put. In Recent Developments in Domain Decomposition Methods, pages 189-202.
Springer, Berlin, Heidelberg, 2002.

M. J. Gander and S. Vandewalle. Analysis of the parareal time-parallel time-integration method. SIAM J.
Sci. Comput., 29:556-578, 2007.

Y. Maday and G. Turinici. A parareal in time procedure for the control of partial differential equations. C.
R. Math. Acad. Sci. Paris, 335:387-392, 2002.

Y. Maday and G. Turinici. The parareal in time iterative solver: A further direction to parallel implementa-
tion. Lect. Notes Comput. Sci. Eng., 40:441-448, 2005.

W. R. Elwasif, S. S. Foley, D. E. Bernholdt, L. A. Berry, D. Samaddar, D. E. Newman, and R. Sanchez. A
dependency-driven formulation of parareal: Parallel-in-time solution of PDEs as a many-task application.
In MTAGS’11 - Proceedings of the 2011 ACM International Workshop on Many Task Computing on Grids and
Supercomputers, Co-located with SC’11, pages 15-24, New York, New York, USA, 2011. ACM Press.

Y. Maday and O. Mula. An adaptive parareal algorithm. J. Comput. Appl. Math., 377:112915, 2020.

M.]. Gander and E. Hairer. Nonlinear convergence analysis for the parareal algorithm. Lect. Notes Comput.
Sci. Eng., 60:45-56, 2008.

R. B. Nelsen. An Introduction to Copulas. Springer New York, 2006.

A Sklar. Fonctions de Répartition a n Dimensions et Leurs Marges. Publications de L'Institut de Statistique
de L'Université de Paris, 8:229-231, 1959.

19

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

[28] R. Lefever and G. Nicolis. Chemical instabilities and sustained oscillations. J. Theoret. Biol., 30:267-284,
1971.

[29] L.N. Trefethen, A. Birkisson, and T. Driscoll. Exploring ODEs. SIAM, Philadelphia, USA, 2017.
[30] E.N. Lorenz. Deterministic Nonperiodic Flow. J. Atmos. Sci., 20:130-141, 1963.

[31] P. Hennig, M. A. Osborne, and M. Girolami. Probabilistic numerics and uncertainty in computations. Proc.
R. Soc. Math. Phys. Eng. Sci., 471:20150142, 2015.

[32] C.]J. Oates and T.J. Sullivan. A modern retrospective on probabilistic numerics. Stat. Comput., 29:1335-
1351, 2019.

[33] K. Pentland, M. Tamborrino, T. J. Sullivan, J. Buchanan, and L. C. Appel. GParareal: A time-parallel ODE
solver using Gaussian process emulation, 2022. arXiv:2201.13418.

[34] M. W. Hirsch, S. Smale, and R. L. Devaney. Differential Equations, Dynamical Systems, and an Introduction to
Chaos. Academic Press, 3rd edition, 2013.

20

https://arxiv.org/abs/2201.13418

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

Appendix

In the following sections we illustrate some additional results using stochastic parareal.

A Scalar Bernoulli equation

Consider the nonlinear non-autonomous Bernoulli equation

%:%u —tzulz, (13)
with initial value u;(0) = 2 on t € [0,10]. We discretise using N = 20 sub-intervals and time steps 6T = 10/20
and 6t = 10/2000. Equation (13) permits the analytical solution u;(t) = (1 +t)2/(t>/5+ t*/2 + t3/3 + 1/2), tending
to zero as t — co. Observe the spacing between equidistant time steps of the true F solution and the P; solution
to (13) in Figure 11a, highlighting the stiffness of the solution at early times. Given the stopping tolerance
e =10710, observe in Figure 11b how P converges in k; = 8 iterations deterministically whilst P, converges in
ks € {5, 6} iterations for each of the ten independent realisations shown with M =1000.

Figure 12a shows the estimated distributions of ks using sampling rule 1. As expected, if M =1, convergence
is deterministic (i.e. P; = P) and hence P(k; = 8) = 1. As M increases however, P(k; = 8) decreases rapidly to zero
whilst P(k; < 8) increases from zero to one with just M =~ 5 samples. This demonstrates that P; requires very
few samples to begin converging in fewer iterations than P, and that k; assumes low values with increasing
probabilities for increasing M. The stiffness of (13) appears to demand much larger values of M to continually
reduce k; when compared to the non-stiff scalar example in subsection 4.1.

In Figure 12b we report the expected values of k; for each sampling rule. This shows that for low values of
M, using either a Gaussian or t-copula sampling rule makes little difference to performance. More interestingly,
rules 1 and 3, centred around the fine solutions, outperform rules 2 and 4, which are centred around the
predictor-corrector. Further testing revealed that varying the fine time steps within P; had little impact on these

4 & T T T . 10°
up solution O P, solution ¢ —e— Error given by P
% F solution — & — Errors given by P
10 2 L
lur — 7| 104k
——-lm Rl

1 6

& 107 F
=
|
B 12 10®F
~
~
~
N
< 1
~3 .y 10 -10
4 6 8 10
10-12 L
6 8 10 1 2 3 4 5 6 7 8
t Iteration (k)

(a) (b)

Figure 11: (a) Analytical solution u; of (13) plotted against the serial F solution and a single realisation of P;.
Note that only a subset of the fine times steps of the numerical solutions are shown for clarity. Inset: displays
the numerical errors of 7 and P; compared to u;. (b) Errors at successive iterations of P (black lines) and ten
independent realisations of P (blue lines). The horizontal dashed black line represents the tolerance ¢ = 10710,
Both panels use P, with sampling rule 3 and (a) M = 30 and (b) M =1000.

21

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

l @ v - v - 9
0.9 r)
0.8 r 4 8¢
07| EEP (-, =)]
N P (K, = 6) 3
£ 06 Pk, =1) ’%7
2 5l Pk, = 8) |3
2 —o—P(k, <8) H
& 04 1 1<6
0.3 H e
0.2 H 1 —e—Rule 1
51 —&—Rule 2
0.1 1 1 ~ & Rule3
0 —&—Rule 4
D 2T B SO SO SR DA I I S I A SN 4
AR RO OO OIR OO
N ST W 9 \'Q 10 0 10 1 10 2 10 3
Number of samples (M) Number of samples (M)

(a) (b)

Figure 12: (a) Estimated discrete distributions of kg as a function of M for sampling rule 1. (b) Estimated
expectation of k, as a function of M, calculated using estimated distributions of k, for each sampling rule with
error bars representing + two standard deviations sd(k;). Distributions were estimated by simulating 2000
independent realisations of P; for each M.

probabilities. On the contrary, Figure 13 shows how increasing the number of coarse steps in the interval [0,10]
from 20 to 60 drastically decreases the probabilities of P; converging sooner than P. Increasing the number of
coarse steps increases the accuracy of the G solver, hence P reaches the stopping tolerance in fewer iterations
ky. This result suggests that whilst P can still converge faster than P by using more samples, it works more
efficiently for particular problems where k is relatively large (i.e when P obtains low rates of parallel speed up).

Finally, we calculated errors between the mean P; solution with respect to the F solution (Figure 14a) and

the analytical solution u; (Figure 14b). In both cases, we observe how the mean solution attains comparable
accuracy to P and both the fine and analytical solutions.

22

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

Probability
© ©o o © o © o ©
N w ey 2] (o)) ~ [ee] © [N

10° 10! 10? 10°
Number of samples (M)

Figure 13: Estimated probabilities that the convergence rate k; is smaller than k; as a function of M using
sampling rule 3. Each curve shows P(k, < 8) (black), P(k; < 5) (red), and P(k; < 4) (blue) using coarse steps
0T =10/20,10/40,10/60 respectively - noting that P converges in k; = 8,5, 4 iterations for these coarse steps
respectively. As before, 2000 independent realisations of P; were run for each M.

-10
-12 4% 10

x 10

0.8 r
0.6
0.4 r

0.2

Error
o
T % T
Error

-0.2
-04 r
0.6 1 —— P error) 4 P error
08 & Mean P, error | 5L Mean Py error |
' Mean Py error + two std. devs. Mean P, error + two std. devs.
1 L ! ! ! 6 L L | |
0 2 4 6 8 10 0 2 4 6 8 10
t t

(a) (b)
Figure 14: Errors of P (red) and mean P; (black) solutions against (a) the F solution and (b) the analytical

solution u#;. The mean error is obtained by running 2000 independent realisations of P; with sampling rule 1
with M =10 - the confidence interval representing the mean + two standard deviations is shown in light blue.

23

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

B The Brusselator system

The additional results here complement subsection 4.2. The numerical solutions to system (4.2) in the phase
plane are given in 15a alongside the errors at successive iterations of five runs of P, in 15b. In Figure 16 we
report the expected value of k, as a function of M for each of the sampling rules. This result suggests that larger
values of M are required to reduce E(k) even further for this stiff system.

5 \ w \ \
F solution | —e— Error given by P
o Ps solution 10° . — o —Errors given by Py | 3

U Tteration (k)
(a) (b)
Figure 15: (a) Numerical solution of system (4.2) in the phase plane using F and P;. Note again that only a
subset of the fine times steps of the (mean) P, solution are shown for clarity. (b) Errors at successive iterations of

P (black lines) and five independent realisations of P (blue lines). Horizontal dashed black line represents the
tolerance ¢ = 107%. Both panels run P, with sampling rule 1 and M = 10.

24

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

—&—Rule 1 — e —Rule 1 (uncorrelated)

75 = —@&—Rule 2 — & —Rule 2 (uncorrelated) |
—&—Rule 3 — © —Rule 3 (uncorrelated)
—& —Rule 4 — © —Rule 4 (uncorrelated) | |

76

6.5

E(k,) + 2sd(k,)
[}

4 1 1
10° 10! 10° 10
Number of samples (M)

Figure 16: Estimated expectation of k; as a function of M, calculated using estimated distributions of k; for each
sampling rule with error bars representing + two standard deviations sd(k;) shown for correlated (solid lines)
sampling rules. Uncorrelated sampling rules are shown with dashed lines without error bars. Distributions are
estimated by simulating 2000 independent realisations of P for each M.

C ‘Square limit cycle’ system

Consider the system

% = —51n(u1)(cosl(ul) +cos(u2)), (14a)
d
% = —sin()(Coi(gZ) —cos(ul)), (14b)

whose solutions, for initial values within the box [0, 7t] x [0, 7t], converge toward a square-shaped limit cycle on
the edges of the box (see Figure 17a) [34]. The system is solved on t € [0, 60], starting at u(0) = (3/2,3/2)T, using
N = 30 sub-intervals and time steps 6T = 60/30 and 6t = 60/3000. As shown in Figure 17b, P takes k; = 20
iterations to converge with tolerance ¢ = 1078 whilst the ten realisations of 7, shown take between 17 < k, < 19.

Contrary to the previous two-dimensional test problem, Figure 18a shows that sampling close to the
predictor-corrector values (rules 2 and 4) yield lower expected values of k;. In this case, the bivariate Gaussian
outperforms the t-copula, however the reverse is true for rules 1 and 3. Results using uncorrelated samples
have been shown to generate inferior performance hence are not shown here. The detailed distributions of k; in
Figure 18b, using sampling rule 2, show a best performance of k; = 14 with 100 samples and P(k; < 20) =1 for
M =~ 10. They do, however, reveal that in a limited number of cases, using two samples, P; can in fact take more
than k; = 20 iterations to converge (ks = 21 in this small fraction of realisations). This suggests that there may be
a minimum number of samples required to beat the convergence rate of parareal for some systems of equations —
something to be investigated in future work.

25

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

L F solution | |
3.5
O Ps solution 100k €
3]
25 | 1 107f 3
.| |
. -4 [J
S 1l g 10
|
1l |2
2 10} 1
0.5 J —e—Error given by P \T \
— o —Errors given by P A A\
| b
-0.5 8 |
I I I I I I I L L 10-10 I I I 1
-0.5 0 0.5 1 15 2 2.5 3 3.5 0 5 10 15 20
uy Iteration (k)

(a) (b)

Figure 17: (a) Numerical solution of (14) over [0, 60] using F serially and P;. Note again that only a subset of
the fine times steps of the (mean) P; solution are shown for clarity. (b) Errors at successive iterations of P and
ten independent realisations of P,. Dashed black line represents the tolerance ¢ = 1078, Note that both panels
use P, with sampling rule 2 and M = 20.

D The Lorenz system

The additional results here complement subsection 4.3. Figure 19 displays E(k;) against M, indicating that for
the Lorenz system, generating correlated samples close to the predictor-corrector solutions (sampling rules 2
and 4) yield the lowest expected values of k,. In Figure 20, we plot the absolute errors between the mean P;
solution and the fine solver. Notice that accuracy is maintained with respect to the parareal solution in this
chaotic system, even as the errors grow with increasing time.

26

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

E(k,) £ 2sd(k,)

1
0.9
0.8
0.7
206
205+
2
A 04 r
0.3 [|| P (14 <k, < 16)
02 | I P(16 <k, < 18)
) P18 <k, < 20)
15 —i—Ru]e3 1 0.1+ -P(ks = 20)
—&—Rule 4 + 0 7-P(k;$ > 20)
14 :
hS - S o) Q Q Q Q Q Q
100 10t 102 A A
Number of samples (M) Number of samples (M)

(a) (b)

Figure 18: (a) Estimated expectation of k; as a function of M, calculated using estimated distributions of k;
for each sampling rule with error bars representing + two standard deviations sd(k;). (b) Estimated discrete
distributions of k; as a function of M for sampling rule 2. Distributions were calculated by simulating 2000
independent realisations of P for each M.

21

20.5

20¢

19.5

19

18.5

E(k,) + 2sd(k,)

18

—&—Rule 1 — o —Rule 1 (uncorrelated) [
—&—Rule 2 — & —Rule 2 (uncorrelated
17 H—@—Rule 3 — & —Rule 3 (uncorrelated
—& —Rule 4 — © —Rule 4 (uncorrelated

17.5

Rar e Na e

16.5
10° 10t 10?
Number of samples (M)

Figure 19: Estimated expectation of k; as a function of M, calculated using estimated distributions of k, for each
sampling rule with error bars representing + two standard deviations sd (k) shown for correlated (solid lines)
sampling rules. Uncorrelated sampling rules are shown with dashed lines without error bars. Distributions are
estimated by simulating 2000 independent realisations of P for each M.

27

K. Pentland, M. Tamborrino, D. Samaddar, and L. C. Appel Stochastic parareal

10°
107
10-10
10-15

ity CITOT

I'l_iv"l""l""

10°
10

: 10-10
10-15

iy CITOT

——F error
Mean P, error _ E
Mean P, error £ two std. devs. =

10°
10
10-10
10-15

Uy CITOT

Figure 20: Absolute errors of P (red) and mean P, (black) solutions against the F solution in each component:
uy (top), u, (middle), and u3 (bottom). The mean error is obtained by running 2000 independent realisations of
P; with sampling rule 2 with M = 500 — the confidence interval representing the mean + two standard deviations
is shown in light blue.

28

	Introduction
	The parareal algorithm
	Stopping criteria and other properties

	A stochastic parareal algorithm
	The algorithm
	Sampling rules
	Multivariate Gaussian
	Multivariate copula

	Convergence
	Computational complexity

	Numerical results
	Scalar nonlinear equation
	The Brusselator system
	The Lorenz system

	Conclusions
	Scalar Bernoulli equation
	The Brusselator system
	`Square limit cycle' system
	The Lorenz system

