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1 | INTRODUCTION

Nonlinear instrumental variable (IV) regression is a vital tool for estimating the causal effect of exposure on certain
outcomes. In fact, virtually all legitimate techniques for causal inference can be seen as manifestations of instrumen-
tal variables, including but not limited to randomized clinical trials (considered a perfect instrument), intention-to-treat
analysis (stemming from random incentive allocation), natural experiments, and regression discontinuity.! A valid instru-
mental variable meets the following assumptions: it has a significant effect on the treatment (i.e., relevance). It does not
influence the outcome directly, through channels other than the treatment (i.e., the exclusion restriction), and a valid
instrument is not associated with the unobserved characteristics that affect the outcome (i.e., exogeneity). Under these
assumptions, the IV approach recovers consistent coefficients of interest. Traditionally, the techniques to estimate the
causal parameter in the IV approach are well-suited for low and middle-scale data.?* These techniques most often fail
with high-dimensional instruments* and struggle to extract meaningful insights when instruments sparsely relate to each
other. Several papers investigate the approach with many, possibly correlated and sparse instrumental variables.>”
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For predictive tasks, contemporary research has predominantly centered on narrow deep neural networks,3!! which
are distinguished by their "self-featurizing” basis functions. In other words, feature extraction and dimension reduction
are integrated into the pattern-matching algorithm. However, there are limitations to this approach, including a lack
of theoretical understanding, difficulty in quantifying uncertainty, and limited capacity for probabilistic reasoning. To
enhance the efficiency of deep neural networks, some authors introduce linear methods as a precursor to implementing
a deep learning model.'>!? use partial least squares (PLS) to extract features before learning the output with deep neural
networks. PLS is a linear method that selects relevant dimensions that are particularly relevant for predicting the outcome.

To mitigate the issues inherent to high-dimensional instrumental variables, we propose deep partial least squares for
IV regression. One can view our approach as merging two cultures of machine learning tools and statistical inference.!#1¢
Specifically, we employ linear techniques, such as partial least squares to identify meaningful instruments and form
predictors that are ensemble averages of deep learners. We show that, under several data-generating process assumptions,
the method exhibits desirable large sample properties.

A traditional approach to estimating the IV regression is a two-stage least-squares (2SLS) technique. In the first stage,
valid instrumental variables predict the treatment. In the second stage, we estimate the effect of the predicted treatment
(and possibly other control variables) on the outcome of interest.!” When the relation of the treatment and instruments is
nonlinear,? show that the 2SLS method is inconsistent.'® uses a re-centered and re-scaled outcome variable and proves the
consistency of the method for censored and truncated data®!° use predicted treatment residuals in addition to the treat-
ment and other exogenous variables in the second-stage regression. Controlling for residuals in the outcome regression
has a long history.?%2* The methods introduced by References 3,19 can also be identified as control function methods.

Our goal in this article is to extend the deep partial least squares (DPLS) method to extract relevant instruments in the
first stage. More importantly, when the observed outcome variables consist of errors, we show that the method is consis-
tent under a re-centered and re-scaled outcome described by Reference 18 or after controlling for the predicted residuals
in the second stage regression as illustrated by Reference 21. The first layer of DPLS consists of a partial least squares
method to extract features via hyperplanes in a high-dimensional setting. The subsequent layers efficiently post-process
them based on ReLU networks as a deep learner.?3 PLS is an attractive method for feature extraction. However, as an
alternative, the generalized method of moments (GMM?2*) can also be applied to our feature selection stage to provide
variance stabilized estimators. This results in a statistical improvement on traditional stochastic descent estimators that
are commonplace in machine learning (see, e.g., Reference 25).

Several related articles apply instrumental variables to address challenges and research questions in business and
industry.?® examine the effect of job training program participation on earnings. By comparison,?” investigate the effect of
401(k) participation on wealth.?® mine text sentiment from user-generated comments on an online service platform, and
subsequently estimate the impact of (predicted) sentiment on buyers’ purchasing decisions.? estimate the effect of the
airline ticket price on demand. Another related article*® builds a boosted tree model to identify minimum wage workers
based on their demographics, and then examines the effect of minimum wage policies on labor market outcomes for these
workers. In this article, we revisit the effect of childbearing on women’s labor supply.3' The instruments consist of the
second and third kids being twins and the interactions with parental characteristics that are relevant for predicting the
mother’s labor supply.

In addition, we conduct two simulation experiments to demonstrate the predictive performance of DPLS in IV regres-
sion. The aim of these experiments is to mimic high-dimensional and sparse data, most often prevalent in business,
finance, and economics. In the first experiment, we consider a high-dimensional IV space, where some of the instruments
are redundant for predicting the treatment. The instruments are uncorrelated with each other. In the second experiment,
we extend the first one by introducing a network structure among the instruments, as proposed by Reference 32. In this
setup, the instruments are sparsely correlated, and some of them are not related to the treatment. Our aim is to illustrate
whether DPLS can identify relevant instruments and improve prediction accuracy in both scenarios.

Statistical properties of deep neural networks are sparse but growing.3® discuss theoretical foundations of sparse
rectified-linear-unit (ReLU) networks and the advantage of using Spike-and-Slab prior as an alternative to Dropout. They
show that the resulting posterior prediction of ReLU networks with Spike-and-Slab regularization converge to a true func-
tion at a rate of log®(n)/n=X for 5 > 1 and a positive constant K (with n number of observations).>* provide a theoretical
connection between the Spike-and-Slab priors and Ly norm regularization. They demonstrate that the regularized esti-
mators can result in improved out-of-sample prediction performance. To emphasize the advantages of regularization in
deep neural networks, discuss theoretical and empirical justifications (as well as challenges) for the horseshoe prior.

By comparison,® derive the sharp upper bound for the number of activation function regions in ReLU neural
networks. They find that this number in practice is far from the maximum possible and depends on the number of
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neurons in the network, rather than the depth. A recent paper by Reference 37 provides groundbreaking results on
the asymptotic theory of deep neural networks. Under the assumption that the number of hidden layers, that is, the
depth of the network, grows with the sample size, they provide a high probability convergence rate for ReLU neural
networks.

Our paper sheds light on the dimension reduction importance in sparse ReLU networks. Specifically, DPLS provides
a simple, interpretable framework for modeling instrumental variables when the policy (treatment) and outcome are
measured with errors. DPLS consists of a system of equations that can theoretically be viewed as an infinite sequential
generalization of 2SLS. Beyond the consistency of this method, we demonstrate that the shrinkage in the first layer can
substantially improve prediction performance in an instrumental variable regression with many instruments.

The results based on simulated experiments and the application show that DPLS significantly outperforms other
related methods. Specifically, the first stage prediction performance improvement of DPLS relative to OLS, LASSO,
and DeepIV?® is more than 79%, 57%, and 22%, respectively. We find that a deep, multi-layered structure of DPLS signifi-
cantly increases predictive performance and representation learning ability. To incorporate the uncertainty of the model
coefficients, we also consider the extension of DPLS to a Bayesian framework and discuss implications.

One area for future research is the study of full uncertainty quantification. It is well known that posterior distributions
for IV regression require careful assessment dating back to Reference 39 (see also References 40-42 that discuss parameter
uncertainty and variable selection in linear factor models).** provide a fully Bayesian model for posterior uncertainty for
causal inference using Bayesian Additive Regression Trees (BART) to model the nonlinearity in the outcome equation.
This provides a gold standard for comparison to a Bayesian DPLS method.

The rest of the paper is outlined as follows. Section 2 describes our general nonlinear IV model and specific Tobit
variation. In Section 3, we discuss dimensionality reduction with partial least squares. In Section 4, we introduce deep
partial least squares and examine the asymptotic theory. Section 5 illustrates the applications of the method. Finally,
Section 6 concludes with directions for future research.

2 | NONLINEARIV MODEL

One goal in this article is to predict the outcome y* that possibly nonlinearly depends on a policy (treatment) p* and
predictors x for each observationi=1 ... ,n:

Y =p*p+xp+u. €))
We assume, neither y* nor p* are directly observable. Instead, they consist of errors. Define the following variables

(v*,y) € R = the potential and observed outcome variables,

(p*.p) € R = the potential and observed policy variables,
x € R* = observable features,
z € R™ = instrumental variables,

(u,w,v,e) € R = latent/error variables that affect (y*, p*, p,y), respectively,
m+k<n.

Instead of (1), we have access to the following structural equation model:

p=p*+v,
P* = ga + xaz) + w,
y=1(0%) +e. ®))

g(-) and 7(-) are potentially non-linear continuous functions, possibly deep learners.® z(-) is a known transformation.
In this study, we define the Tobit model z(y*) = 1(y* > 0) - y*. The errors v and ¢ are assumed to be uncorrelated with
any other latent error. However, policy p* is allowed to correlate with u. Covariates x are typically independent of w, v
and u. § and p, represent the effects of p* and x on y, while @ and «a;, are the effects of instruments z and covariates x on
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the policy p*, correspondingly. The errors w and u are correlated. For example, consider, y is a customer’s decision to buy
an airline ticket (observed for a particular group of customers), and p* is the price of this ticket. In that case, policy p* is
said to be endogenous when, conditional on x, (p*, u) correlate, that is, E(u|x, p*) # 0. For example, ticket prices might
increase during conferences that are unobservable to a researcher, and in that case, E(p*ul|x) # 0. Classical estimation
methods, such as OLS, will lead to a spurious positive relation between prices and sales.

Define the joint error = w + v. Moreover, from (2) we see that p* = p —v. In that case, (1) becomes

Yy =pp+xpi + &, 3

where & = u — vf. Then by combining (3) and (2), we get:

y=t(Pf+xp+$&) t+e,
D = gZa + xaz) +n, 4

where the latent errors £ and # are correlated through w. The structural equation model in (4) defines the nonlinear IV
framework. In a traditional nonlinear IV setup (when z(-) is an identity function), the presence of valid instruments g
that satisfy Assumptions 1-3 allows us to predict the unbiased mean outcome.

Assumption 1 (Relevance). Instruments z strongly relate to policy p, that is, the density of p, F(p|z,x), is
not constant in z.

Assumption 2 (Exclusion Restriction). z is conditionally orthogonal to outcome y:

zLyl (x,p,$).

Assumption 3 (Exogeneity). z is conditionally orthogonal to the latent error term é&:

zLE|x.

Specifically, when y = pf + xf, + € with € = £ + ¢, valid instruments efficiently separate information in p that is unre-
lated to &, and result in the consistent estimate of the effect of the policy on the outcome (f). For example, if the fuel cost
represents an instrument for ticket prices, and is unrelated to conferences, it can recover the exogenous variation in ticket
prices and correctly estimate the negative relation between prices and ticket sales.

Under Assumptions 1-3, a standard approach to estimating § is a 2SLS method. The method entails predicting p in
the first stage ("treatment network"”). Then the predicted policy p replaces p in the outcome equation, and we estimate a
second stage regression ("outcome network”) with another consistent method.?7-31

Define the predicted mean outcome:

E@lx,z) = E[f(p,0)|x, 2] + E[&]x]. ©)

Then we can evaluate the effect of a marginal change in policy (e.g., prices) from py to p; on the outcome of interest
(treatment effect):

E@lp1,x) — EQ|po,x) = Elf (p1,%)|x, 2] — E[f(po,x)|x, z].

The issue is that z(.) typically is not an identity function. In such nonlinear regression models, latent errors are no longer
additively separable from the true regressors (p and u are still related), and hence, the true relationship breaks down with
errors in variables. The orthogonality condition of the instruments and the outcome error is violated: E (z(y — pf#)|x) # 0.
As a result, the 2SLS estimator fails to be consistent for nonlinear errors-in-variables models.** Moreover, when instru-
ments and/or covariates are close to the number of observations and nonlinearly relate to the policy and outcomes, OLS
is no longer an efficient solution of (4).

The goal of this paper is to predict outcome y* with the policy that depends on many instruments g and regressors Xx.
To do so, we extend deep partial least squares with a recentered and rescaled outcome!'® and additionally illustrate it with
a control function approach.3

85U80|7 SUOWIWOD aA1e8ID 3|qeo(dde aup Aq pausench afe sejoiie O ‘8sn J0 SajnJ Joj AriqiT8uIUO /8|1 UO (SUORIPUOD-pUe-SW.eI W00 A 1M Ake.d [puljuo//Sdny) SUoRIpUoD pue sw.e 1 8y} 88s *[£202/90/2z] Uo Ariqiaulluo A8|im ‘Ariqi ofealyd JO AiseAn Aq 28/z quse/z00T 0T/I0p/Wo0" A 1M Akeid Ul juo//Sdny Wo. papeojumod ‘0 ‘S20r9zsT



NAREKLISHVILI ET AL. W] LEY 5
2.1 | Prediction in low-dimensional data

In this section, our attention is directed towards predicting the outcome using a Tobit model, wherein (y*) = 1(y* > 0)y*.
We demonstrate that by recentering and rescaling the outcome, two-stage least squares (2SLS) can yield a consistent
estimator of #. Alternatively, the control function approach can provide a valid prediction of the outcome.

2.1.1 | 2SLS with the Tobit model

To establish consistency, we impose an essential assumption regarding the underlying process responsible for generating
the observed data.

Assumption 4 (Elliptical distribution). (y*,z) have a joint elliptical (or Gaussian in the simplest setting)
distribution.

Assumption 4 requires that the instrumental variables and the outcome are jointly elliptically distributed. The
assumption can be strong in many settings. Though References 14 and 18 show that the results are robust to significant
deviations from the assumption. This assumption can also be relaxed and generalized to other distributions (see e.g.,
Reference 45).

Define the recentered and rescaled output variable that mimics the unobserved outcome y*,

J=w{'0—w2), where yi = cov(y,y*)/vary*), y, = Ey) — y1 EQ™).

Specifically, y is the ratio of the covariance between y and y* to the variance of y*, while y, is the intercept term when
we consider a linear projection of y on y*. Next, consider a linear projection of z on y*

cov(z,y*)

Ezly™) = E@) + W

b —Eo")I

Hence,
E(zly*) - E@@) = y(* — EQ™)), (6)
where y = cov(z, y*)/var(y*) L. By Stein’s lemma,*® we can calculate the covariance of instruments and rescaled output as
cov(z,3) = yy 'cov(z,y) = vy 'Epe (E [ = E@)yly*]) - (7)

Conditional expectations are linear under elliptical contours. Additionally, E(y|y*) = (y*), y = cov(z,y*)/var(y*),
and replacing the last equality from (7) with (6) gives

cov(z. ) =y 'Ep (EGO* —EG*)y*)
= yy; E(O” - EQMY) = ry; covy*,y)
1 COV(Z, y*)

=y WCOV@,Y*) = w1 cov(z,y )y = cov(z, y*).

For additional details, see Reference 18 2SLS first regresses p on z and x to get the predicted policy p. Define Z = [z, x]
and p = P,Z where P, = Z(Z' Z)"'Z" is the projection matrix onto the instrumental variable space (including covariates).
In addition, define P = [p, x] and let e = J — pp be the residual from the re-scaled regression, then

cov(z, e|x) = cov(z,§ — pfIx) = cov(z,y* — pp|x) = cov(z, ulx) = 0.

The re-scaled instrumental variable estimator is given by

MM = Z"p,2)P, 2"y = P"Py Py )

!Elliptical contours allow for discrete outcomes.

85U80|7 SUOWIWOD aA1e8ID 3|qeo(dde aup Aq pausench afe sejoiie O ‘8sn J0 SajnJ Joj AriqiT8uIUO /8|1 UO (SUORIPUOD-pUe-SW.eI W00 A 1M Ake.d [puljuo//Sdny) SUoRIpUoD pue sw.e 1 8y} 88s *[£202/90/2z] Uo Ariqiaulluo A8|im ‘Ariqi ofealyd JO AiseAn Aq 28/z quse/z00T 0T/I0p/Wo0" A 1M Akeid Ul juo//Sdny Wo. papeojumod ‘0 ‘S20r9zsT
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From the above, we then have E(ﬂ ) = f, with g, = [B, fc] and E(J) = Pp,. Note that ﬂ 1s a (m + k) x 1 vector,

where the first element is the policy effect on outcome.

2.1.2 | Estimating the proportionality constants
In the Tobit case, the constants ¢, ¢», can be calculated theoretically from the model as
¢ =D (6) and ¢, = 6, P(5),

where @ () and ¢(6) are the cumulative and probability density functions of a normally distributed random variable,
respectively, and

6= yXﬂ/ay and (ay ) = 0' + pTE .
Reference 18 shows that, with the truncated outcome variable, we can obtain their estimators:
1 n
g=0==) 1(y > 0),
: , ;
W, =6y¢ where d = ¢ (®7'(%))).

The estimator of the variance of the outcome variable is given as

6,% = Z(yl 2

n c(k)

where
ety = & - (- 27 ( D)1 - D) + >~ (D)D),
and ® = §, and ¢ are the cumulative and probability density functions of a normally distributed random variable, respec-

tively. 1(y > 0) is a binary variable and equals one if the outcome is positive!® shows that the scaling constant {;, and the
estimator /?GMM defined in (8) are asymptotically jointly normally distributed, with

Vil —wi) = N 0,1 — 1)), ©)

~GMM
V(g™ — p) = N (0,2, — @1 - ®)ppT). (10)
Based on Reference 24, X, is the variance of the standard GMM estimator and can be computed as follows?:

AAN=T =

S, =n(P'2GZ"P)y'P' ZG(nAYGZ P(P' 2GZ"P),

A= ;Zagzizi , with & =§-pP§™™,
i

C=H (ﬁ—l - ZTZ/ZTAZ) f,

H=2".

2See also Reference 47 for the discussion of a GMM estimator for the IV regression.
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2.2 | Control function approach

An alternative approach to estimate the parameters is a control function approach.? Instead of substituting the predicted
policy in the second stage regression, we control for the predicted residuals of the first stage:

71\ =p-—- ﬁ’ (11)
y=1(pf +1p,) + X, (12)

where the residuals of the treatment network 7 can be predicted by any consistent method. Note that €25} is not identical
to £ due to the substitution of &£ with 7. The control function approach can be viewed as a special case of 2SLS. Specifically,
the inclusion of 77 in the outcome equation of (4) allows us to control for the correlation of y and &, and predict the outcome.

3 | DIMENSIONALITY REDUCTION

S ~GMM . . . .
The estimation of in (8) rests on the assumption that the number of instruments (as well as independent variables)
is strictly lower than the number of observations. Throughout the proof, we maintain this assumption.

Assumption 5. The number of covariates is strictly smaller than the number of observations, m + k < n,
where m is the dimension of the instruments and k is the number of covariates.

. . . . . AGMM -
Nevertheless, when the dimension of the independent variables is close to N, f captures the unwanted variation
reflected in the predicted policy p.*® Since Z are independently and identically distributed elliptical random variables with
covariance X,;,'* shows that

cov(Z, p) = cov(Z,f(U)) = cov(Z, U)cov(f(U), U) /var(U) = kZ ay, (13)

where Z = [z,x], U = Za, with a, = [a, ay], and the constant k = cov(f(U), U)/var(U). Based on this result,'* shows that
the OLS coefficient is a consistent estimate of @ up to a proportionality constant. In this article, we show that the deep
partial least squares method has the same property.

3.1 | Partial least squares

Partial least squares is a dimensionality reduction method that generalizes and combines features from the principal
component analysis and multiple regression.*

Consider the augmented instrumental variable Z = [z,x] with the dimension n x (m + k), where m and k are the
dimensions of instruments and covariates, respectively. The policy p =P is a nx 1 vector as before. PLS can be
summarized by the following relationship:

Z =TV +F,
P=UQ+E, 14)

where T and U are n x L projections (scores) of Z and P, respectively. V and Q are orthogonal projection matrices (load-
ings). Maximizing the covariance between the augmented instruments and the policy leads to the first PLS projection

pair (v1, q1):
max (ZV1)T(PQ1)
v.q

subject to ||v1]| = ||q1]| = 1.

The corresponding scores are t; = Zv; and u; = Pq. It is clear that the directions (loadings) for the policy P and the aug-
mented instruments Z are the right and left singular vectors of Z p, respectively. PLS in the next step performs an ordinary
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regression of U on T, namely U = Tf. Then the next projection pair (v,, q») is found by calculating the singular vectors of
the residual matrix (Z — t,v])"(P — Tpq"). Lastly, the final regression of interest is U = TJ (the tutorial® contains further
details).

The key property of PLS is that it is consistent for estimating parameters of interest even in the presence of nonlinearity
via a sequence of covariance calculations®! first observed this in the Probit regression>? show the consistency of PLS based
on the result of Reference 14. One desirable property of PLS is that it has a closed-form solution. The PLS estimator of «
is given as follows:33->*

™S = RR' SRR s, (15)

where R = (Szp> SzzSzps - ,ng_lszp) is the (m + k) X g matrix of the Krylov sequence with a (m + k) X (m + k) matrix S,
and a (m + k) X 1 vector s,, defined as follows:

_Z'a-u"/nz

Szz 9
n—-1
_ (Z-E@))"(P-E(P))
@ n—1 ’

where I is an identity matrix and 1 is a matrix of ones. Intuitively, PLS searches for factors that capture the highest
variability in Z, and at the same time maximizes the covariance between Z and P. If the number of factors equals the
dimension of instruments, g = m + k, the method is equivalent to OLS.>?

4 | DEEP PARTIAL LEAST SQUARES FOR IV REGRESSION
A useful generalization of PLS is to consider a deep-layered feed-forward neural network structure:

pY =fza™),
ﬁ@) — f(p(l)&(Z))’

p(L) :f(p(L—l)&(L)), (16)
where f(-) = max(-, 0) is a rectified linear unit (ReLU) activation function. Note that Z = [z, x] as before and aSisa gx1
vector where q is the number of PLS factors in the treatment network. To reduce the dimensionality of the instruments,
we predict the treatment in the first layer by PLS. The parameters ) in subsequent layers # = 2, ... , L can be identified
by OLS or PLS. The following proposition shows that the parameters are consistent in each layer up to a proportionality
constant.

Proposition 1. Let S, and s, converge in probability to X, (the population variance of z) and oy, (the popula-
tion covariance of z and p) when n — oo. Moreover, let there exist a pair of eigenvectors and eigenvalues (vj, A;) for
which 6, = Zinlijj (with yj non-zero foreachj =1, ... ,M). Assume also E(|g(U)|) < oo and E(U|g(U)]) < oo
and g =M. Then & = {a"™5,a®, ... ,a™} are consistent up to a proportionality constant.

Proof. We follow the approach by Reference 52. Let a* = X o,p. Define R = (0, z;04p, ... ,Zgz_lczp). Then,
based on the assumption that S,; - X, and s, — o, when n — co, we have:

a’S - R(RTZ,R) ™' a* in probability when n — oo.

The assumptions g = M and oy, = Zjl\ilijj imply that a* is contained in the space spanned by R. Conse-

quently, Z;Z/ *a* is contained in the space spanned by R* = Z;z/ ’R. Therefore,

R*R* R*)'R* £ 2a* = =%,
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and

R(R* R*)'R"Sya* = a*.
Hence, &"% — o*. Equation (13) implies that 6, = kZ;a, and therefore, ¢
(13). This proves that the PLS in the first layer is consistent.

Now, consider the second layer # = 2. If @' is estimated by either OLS or PLS, (13) directly imply that
a® = ka. Next, to run OLS (or PLS) of p on p'¥, we construct

— X764y = ka. k is defined in

PP = max(za’™s, 0) = max(zka, 0) = k max(za®, 0) = kz®.

The model then becomes

¥ = max(kzVkya?,0) = k - kymax(zVa®, 0) = k?z?. 17)

By induction, we can consistently estimate « in each subsequent layer, up to L. See Reference 55 for the
detailed discussion of such a deep learning structure.
Lastly, we note that the consistent estimator of the effect of the treatment on the outcome is defined as

o _ <(P(L))TP(L))—1(1—)(L))T~, (18)

where P* is the augmented treatment [p,x] predicted by layer L. Moreover, the predicted outcome is y =
= AGMM

Pp .
Define é" as the predicted residuals from the treatment network in layer L and consider, p = [p, é", x].
Then, similarly for 2SRI:

i = 6" p"y. (19)
andy = pﬁGMM. [
4.1 | Prediction and Bayesian shrinkage

One possible extension of deep partial least squares is a quantification of uncertainty in the density of the outcome. Our
probabilistic model takes the form:

JIfs P~ pGIf.P),
f = g(Pﬂp) +e,

where y is an n x 1 rescaled and recentered outcome variable as before, P = [p, x] is an n x (1 + k) augmented (predicted)
policy. f, = [, fx] is a (1 + k) X 1 vector of coefficients in the outcome network. Here g is a deep partial least squares
method. To estimate parameters in the first layer, the method uses the SIMPLS algorithm.>® Subsequent layers use the
stochastic gradient descent (SGD) method>’ for optimizing and training the parameters.

The key result, due to References 14 and 52, is that f, can be estimated consistently, up to a constant of proportion-
ality using PLS, irrespective of the nonlinearity of g. Given a specification of g, the constant of proportionality can also
be estimated consistently with \/ﬁ-asymptotics. It is worth noting that typically, standard SGD methods will not yield
asymptotically normally distributed parameters. However, they can substantially increase the precision of the coefficients
of interest.

Suppose that we wish to predict the outcome at a new level P*. Then, we can use the predictive distribution to make
a forecast as well as provide uncertainty bounds:

Ve ~D (y I g(P*ﬁfPLS))
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The advantage of modeling a probabilistic model is the flexibility and the possibility to incorporate uncertainty in the
. . e AGMM . . e
parameters of interest. We approximate the posterior distribution of g with its asymptotic distribution based on the
. . - .\ ~GMM
Bernstein-Von Mises theorem (see e.g., References 58,59). Define Data = (¥, p, z, ), then the densities P(f |Data) and
P(yfr;) come from a normal distribution with the mean and variance depicted in (9). To shrink the effect of redundant
instruments in the treatment network, we consider a Ridge regression estimator:®

aRi%e = (7" 7 + 1,)*Z"p. (20)
. L . . . . ADPLS , pi
However, as pointed out by a referee, this still underestimates the uncertainty due to the estimation of By s &Rldge).

A fully Bayesian model with a non-uniform prior density of the coefficients can increase the precision of uncertainty
bounds.

5 | APPLICATIONS

In this section, we evaluate the predictive performance of the DPLS-IV method relative to benchmark methods. We gen-
erate synthetic data to mimic the high-dimensional and sparse nature of instruments as described by Reference 61. To
illustrate how well the method captures the complex nonlinear and sparse relation of covariates, our design mimics their
setup. In addition to synthetic designs, this section illustrates findings on data provided by Reference 31. Throughout the
experiments, we split data into two partitions. To find optimal parameters in each method, we use one sub-sample (further
partitioned into train and validation data) and illustrate prediction performance measures on the other. We implement
the experiments in R and the code to replicate our findings is available upon request.

5.1 | Sparse uncorrelated instruments

The data-generating process is summarized by the following structural equation model:

Yy=f@B+xP+&) +e,
p = g(za + sigmoid(z?)y + xay) + w,
wiu ~ N(0,3),
e ~ N(0,02),
z~ N(0,%,), x ~N(0,Z,),
@ @, 75 By b ~ N0, 1). (21)

(21) holds for each observation i = 1, ... n, where n = 1000. w and £ are correlated and jointly normally distributed with

a mean vector 0 and a variance-covariance matrix X = (_3608;;)7 _000%%7> . In this simulation setup, g and f are modeled

by ReLU (or leakyReLu).%? In addition to a n X 50 matrix of instruments z, the treatment p contains nonlinear transfor-
mations of z based on the sigmoid function. To introduce sparsity in the design, out of 50 instruments, 10 are redundant.
In particular, only forty instruments are relevant for predicting the treatment p. x is an n X 25 matrix of covariates, and 20
of them have no influence on outcome y. ¥, and X, represent covariance matrices of z and x, respectively. In this setting,
the covariance between the instruments is small (0.001) and the features x are uncorrelated.

Figure 1 visualizes predictions of the policy p in the treatment network (Figure Al in Appendix A.0.1 shows pre-
dicted outcome y). In each case, g and f represent a rectified linear unit function. A visual inspection of Figures 1 and Al
verifies that DPLS-IV results in more accurate predictions relative to the other methods. In this setting, DeepIV® is the
second-best alternative. According to Figures 1 and A1, predictions of the treatment, p, appear to have a higher variability
compared to the outcome predictions. This is not surprising, as p contains instruments in addition to x. Note that, even
though prediction performance measures of DeepIV are close to those of DPLS-IV, Table Al in Appendix A.0.1 shows
that, compared to DeepIV, DPLS-IV is more robust to changes in the activation function.

85U80|7 SUOWIWOD aA1e8ID 3|qeo(dde aup Aq pausench afe sejoiie O ‘8sn J0 SajnJ Joj AriqiT8uIUO /8|1 UO (SUORIPUOD-pUe-SW.eI W00 A 1M Ake.d [puljuo//Sdny) SUoRIpUoD pue sw.e 1 8y} 88s *[£202/90/2z] Uo Ariqiaulluo A8|im ‘Ariqi ofealyd JO AiseAn Aq 28/z quse/z00T 0T/I0p/Wo0" A 1M Akeid Ul juo//Sdny Wo. papeojumod ‘0 ‘S20r9zsT



NAREKLISHVILI ET AL. 11
WILEY——"
100 . 100 .
75 75 "f.# °
.6:..
a 50 o 50 e
25 25 %
0 0 o
-100 100 -100 -50 0 50 100
predicted p (OLS) predicted p (PLS)
OLS PLS
100 . 100 .
75 75 ’-_")-:
(';'3:
a 50 o 50 3
2
25 25
0 0 ° e
-100 -50 100 -100 -50 0 50 100
predicted p (DeeplV) predicted p (LASSO)
DeeplV LASSO
100
75 . i.-l..
.&;-E'.,
a 50 .;'}-g: o
Y.
25
0
-100 -50 0 50 100
predicted p (DPLS-1V)
DPLS-1IV
FIGURE 1 First stage prediction performance. The X-axis depicts predicted treatment p, and the Y-axis represents true values of p.

DPLS-IV denotes the method introduced in this study. We use test data for evaluating the methods.

To evaluate the effectiveness of different methods, we examine their out-of-sample R? and root mean squared error
(RMSE) as we increase the parameter values of X. The results, as depicted in Figure 2, demonstrate that DPLS-IV exhibits
robustness to increasing errors and is capable of accounting for the endogeneity of p reflected in the covariance of error
terms w and &. Furthermore, our analysis, as shown in Table 1, indicates that DPLS-IV outperforms OLS, PLS, LASSO, and
DeeplV methods by a significant margin. These findings suggest that DPLS-IV holds considerable promise as a powerful
and reliable tool for predicting outcomes in the presence of endogeneity and measurement error.

To illustrate the predictive power of DPLS-IV, Figure 3 compares coefficients estimated by the OLS and PLS methods in
the treatment network. Parameters estimated by PLS are closer to their true values relative to OLS. Additionally, Figure 4
shows the absolute bias of these parameters. According to Figure 4, the cumulative distribution function of the absolute
bias of the parameters recovered by PLS stochastically dominates the ones based on OLS and LASSO. Specifically, smaller
values of the absolute bias of the coefficients are more likely under PLS, relative to OLS and LASSO. The sum of the
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FIGURE 2 R?and RMSE for increasing values of cov(v, €). The black circles represent the estimated values which are combined with
the dotted lines. Each color corresponds to the corresponding R? and RMSE in the treatment and outcome networks. Specifically, R? and
RMSE;, denote prediction performance measures in a treatment network. R; and RMSE, are the prediction performance measures in the
outcome network.

TABLE 1 Prediction performance of DPLS-IV relative to other methods.

Measures PLS OLS DeeplIV LASSO DPLS-IV
Treatment network

R? 0.751 0.688 0.932 0.753 0.956
RMSE 10.603 21.540 5.789 10.497 4.508

Outcome network
R? 0.932 0.933 0.889 0.933 0.938
RMSE 1.668 1.718 4.573 1.670 1.622

Note: We present out-of-sample R?> and RMSE. To present the maximum prediction performance of OLS, PLS and LASSO in the outcome network, we use
residuals predicted by DPLS-IV in the first stage.

®e ° - ° ;';
1 . 2 “o 1 o \/( °
ore . Rye
o2 ; -
30 o ce et . 30 ':1.4'..
o .’ o » {
-1 - “ i o -1 ° /‘f :
” - y e
- . ,°
) ) o7
-2 -1 0 1 2 -2 -1 0 1 2
a(oLs) G(PLS)
OLS PLS

FIGURE 3 Estimated coefficients and their corresponding true values in the treatment network. The X-axis shows coefficients
predicted by OLS (left) and PLS (right), and the Y-axis depicts the corresponding true values.

absolute bias is the smallest under PLS (14.406), followed by LASSO (15.233). OLS leads to the highest value of the sum
of the absolute bias (21.610).

To introduce uncertainty in the parameters of interest, we extend DPLS-IV to a Bayesian setup and compare it to a
classical Bayesian IV approach.

Table 2 shows that Bayesian DPLS-IV (with ReLU as an activation function and two hidden layers) significantly out-
performs its’ linear counterpart. Figure 5 verifies that the Bayesian DPLS-IV closely replicates the density of the original
outcome variable.
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FIGURE 4 Empirical cumulative distribution functions (CDF) of the absolute bias of the parameters estimated by PLS, OLS, and

LASSO.

TABLE 2 Prediction performance of Bayesian DPLS-IV and IV methods.
Measures Bayesian IV
Outcome network
R? 0.778
RMSE 4.375

Note: The measures are computed based on the mean prediction out of 10,000 predicted outcome variables.
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FIGURE 5 The density of the original and predicted outcome variables (on the test data).
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FIGURE 6 A network with 100 nodes.

5.2 | Instruments with the network structure

The second simulation closely follows the network data structure described by Reference 61. The data-generating pro-
cess is the same as shown in (21). However, the instrumental variable network comes from the preferential attachment
algorithm.?? Each node of the network represents one feature. The resulting network follows a power-law degree dis-
tribution, and thus, is scale-free. That means, only a few instruments in the network have a relatively large number of
"neighbors”. The distance between two instruments is the shortest path between them in the network. We calculateap X p
(p = 50) pairwise distance matrix D. Next, this distance matrix is transformed into a covariance matrix ,; = 0.7%@,
where (i, j) represents the element in each row i and column j of a matrix D (i,j = 1, ... , p). Figure 6 shows an example
of such a network with 100 nodes.

For comparability, DPLS-IV and DeeplV consist of the same number of layers and neurons in each layer. In par-
ticular, the input layer consists of 200 neurons; the hidden layers consist of 200, 100, and 50 neurons, respectively.
We use ReLU as an activation function. Figure 7 shows cumulative distribution functions of the predicted outcome
variable and the absolute bias of the estimated coefficients (right) in the treatment network. Based on the results in
Figure 7, the outcome predicted by DPLS-IV is closer to the CDF of the simulated outcome variable. Moreover, DPLS-IV
yields a CDF of the absolute bias of the parameters that stochastically dominates the CDF of the other benchmark
methods.

We also investigate prediction performance in the outcome network. Table 3 shows R? and RMSE of DPLS-IV relative
to other methods. In this setting, DPLS-IV outperforms other benchmark methods.

Additionally, we compare a Bayesian DPLS-IV to a Bayesian IV approach. Bayesian DPLS-IV consists of two hidden
layers and a ReLU activation function. Note that, the RMSE based on the mean predicted outcome out of 10,000 predic-
tions increases (2.262) relative to DPLS-IV. However, R? is unchanged (0.941). Figure 8 shows predicted outcome values
against their true counterparts. Bayesian DPLS-IV leads to outcome predictions that are closer to the true values.

5.3 | Labor supply of women

Reference 31 examines the effect of childbearing on women’s labor supply. They use a mixed sibling-sex composition
and twins as instruments for the size of the family. To illustrate the method, our analysis uses 1980 U.S. Census data
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FIGURE 7 Left-CDF of the outcome variable; Right-CDF of the absolute value of the bias of the parameters (estimated by the
corresponding method) in the treatment network.

TABLE 3 Prediction performance of DPLS-IV relative to other methods.
Measures PLS OLS DeeplV LASSO DPLS-IV
Outcome network
R? 0.940 0.930 0.912 0.942 0.944
RMSE 1.631 1.846 2.108 1.609 1.585

Note: We present out-of-sample R?> and RMSE. To present the maximum prediction performance of OLS, PLS, and LASSO in the outcome network, we use
residuals predicted by DPLS-IV in the first stage.

that include all women with two or more children. The model that we are going to estimate is defined by the following
structural equation model:

y=f(kids- g +xp, + &) + &.
kids = g(twins - a + twins - xy + xay) + w, (22)

where y is the outcome variable and measures the logarithm of hours worked per week by the mother. The outcome is
observed when the age of the mother is more than the average age of the mothers in the population. In particular,

y = log(hourswm) x I(agem > E(agem)), (23)

where [(agem > E(agem)) is an indicator variable and equals one if the age of the mother is more than the population
mean, and zero otherwise. The treatment, kids, is the number of total kids in a family. twins represents an instrumental
variable and equals one if the second and third children are twins, otherwise zero. Additionally, we use interactions of
the instrument with covariates, twins - x as instruments for the number of kids. The covariates include the gender and
age of the first and second child, the mother’s age, marital status, race, education, and the age of the mother when she
first gave birth. See Reference 31 for a detailed summary of the variables.

The prediction performance advantage of DPLS-IV is also clearly evident in Table 4. The first stage prediction perfor-
mance of DPLS-IV is similar in each method, however, R? (RMSE) is considerably high (low) in the outcome network. It
is worth noting that the measures become substantially worse in the outcome network compared to the ones in the treat-
ment network. One of the potential reasons is that the outcome distribution is bimodal. Figure A2 presents the original
density of the outcome variable and the density of the outcome predicted by Bayesian DPLS-IV. Figure A2 shows that
Bayesian DPLS-IV successfully captures the bimodal nature of the outcome.
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FIGURE 8 Predicted outcome y and the corresponding 95% confidence intervals.

TABLE 4 Prediction performance of DPLS-IV relative to other methods.
Measures PLS OLS DeeplV LASSO DPLS-IV
Treatment network
R? 0.204 0.205 0.226 0.205 0.233
RMSE 0.655 0.655 0.647 0.647 0.644
Outcome network
R? 0.532 0.536 0.771 0.536 0.772
RMSE 12.838 12.782 8.980 12.780 8.960

Note: We present out-of-sample R? and RMSE. To present the maximum prediction performance of OLS, PLS, and LASSO in the outcome network, we use
residuals predicted by DPLS-IV in the first stage.

We also investigate the layer-by-layer transformation of the proposed method. Figure 9 illustrates the feature repre-
sentation of the original outcome y (on the test data), the score matrix (T), and the final feed-forward neural network
layer in DPLS-IV. We consider the projection of features on two distinct classes of the outcome variable. In particular,
when y > 0, we label it as a class 1, and when y = 0, it represents a class 0. Figure 9 shows that the intermediate layers in
DPLS-1V significantly improve the representation of the original covariate space. The borders of the two classes become
highly evident in the last layer of DPLS-IV.

6 | DISCUSSION

In this article, we propose deep partial least squares for reducing the dimension of the instrumental variable space. The
deep partial least squares method efficiently extracts features based on partial least squares and further processes the
input with a feed-forward deep learner. The method is well-tailored for correlated instruments with sparse and nonlinear
structures. More importantly, deep partial least squares are consistent, up to a proportionality constant.

The applications on synthetic data as well as the application to the effect of childbearing on the mother’s labor supply3!
show that the deep partial least squares method outperforms other related methods. Moreover, a flexible number of layers
allows us to efficiently capture nonlinearities embedded in the instrumental variable network.

An interesting extension of this work is to consider a Bayesian model with various priors on the coefficients of inter-
est.%* consider asymptotic properties of Bayes risk with the horseshoe prior. We believe, investigating different prior beliefs
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FIGURE 9 Feature representation of DPLS-IV based on the t-SNE algorithm,® with the perplexity parameter equal to 50. Features are

reduced to two distinct classes of the outcome y, with a class 1 when y > 0, and 0 otherwise. The final layer represents the predicted y of
individual neurons in the last layer of DPLS-IV. For computational benefits, we randomly sample 1000 observations from the original data.

can result in the increased predictive performance of deep partial least squares. Another useful extension is to draw appli-
cations to eminent domain with judge characteristics as instruments. In addition to prediction problems, the consistency
of DPLS allows us to address the estimation of the treatment effect. In the future, we plan to demonstrate the precision

of the treatment effect and compare it to other benchmark algorithms.
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APPENDIX
A.1 Prediction performance measures with LeakyReLu
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FIGURE Al The second stage prediction performance. The X-axis depicts predicted outcome y, and the Y-axis represents true values

of y. DPLS-IV denotes the method introduced in this study. We use test data for evaluating the methods.
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FIGURE A2 The original distribution of the outcome variable and the one predicted by Bayesian DPLS-IV. Bayesian DPLS-IV consists

of two hidden layers and a ReLU activation function.

TABLE Al Prediction performance of DPLS-IV relative to other methods.
Measures PLS OLS LASSO DeeplIV
Treatment network
R? 0.757 0.696 0.760 0.939
RMSE 10.503 21.404 10.398 5.498
Outcome network
R? 0.933 0.933 0.934 0.878
RMSE 1.666 1.720 1.667 2.224

DPLS-IV

0.957
4.449

0.938
1.623

Note: We present out-of-sample R? and RMSE. To present the maximum prediction performance of OLS, PLS, and Tobit in the outcome network, we use
residuals predicted by DPLS-IV in the first stage. We use LeakyReLU to simulate the outcome variables. DPLS-IV consists of an input layer with 50 neurons,
and a hidden layer with 30 neurons. DeepIV consists of 100 neurons in the input layer, followed by three hidden layers with 100, 100, and 30 neurons,

respectively. We use ReLU to activate neurons in DeepIV and DPLS-IV.
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