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Abstract. Koala retrovirus (KoRV) epidemiology varies across koala (Phascolarctos cinereus) 
populations with distinct differences in viral prevalence, sequence diversity, and disease impact. Curiously 
the more genetically restricted southern populations are less impacted by KoRV with the virus not 
endogenized in its replication competent form in these animals. These southern animals do, however, 
have replication defective recKoRV variants in their genomes indicating historical exposure to KoRV and 
recKoRV. Whether southern animals are inherently resistant to KoRV infection and endogenization is 
not clear. It is also not clear whether the current regional epidemiological patterns will persist or whether 
exposure to animals with infectious KoRV or cross-breeding between different genetic populations will 
change the KoRV prevalence with time.

Introduction
Both koala (Phascolarctos cinereus) genetics and koala 
retrovirus (KoRV) prevalence vary regionally across 
Australia, with a stark demarcation between a more 
genetically diverse “northern” group (New South Wales and 
Queensland) and a genetically restricted “southern” group 
(Victoria and South Australia). These groups of animals also 
display markedly different disease profiles, with putatively 
KoRV-related disease syndromes at a much lower rate in 
the southern animals. All northern animals ever studied 
have endogenous KoRV-A alongside varying prevalence of 
other KoRV genotypes that do not appear to be endogenous. 
Endogenous KoRV loci are shared amongst closely related 
individuals but are not fixed across the species. Northern 
koalas also have multiple copies of defective KoRV variants 
in their genomes, where the central portion of the KoRV 
genome has been replaced by another koala retro-element 
termed Phascolarctid endogenous retroelement (PhER). 
These are known as recKoRVs and are also not fixed.

The southern animals were re-established from off-shore 
island colonies after localized extinction in the 1920’s with 
a marked genetic bottleneck evident. Southern animals 
display varying KoRV prevalence without endogenous 
KoRV loci. Those animals that are KoRV positive tend to 
have lower viral loads than their northern counterparts. It was 
previously thought that many of these animals were KoRV 
free; however, recent work has demonstrated that many 
(perhaps all) animals that test negative for the KoRV pol gene 
PCR (the most used diagnostic for all KoRV variants) have 
recKoRV variants within their genomes. These are distinct 
from the recKoRV variants in the northern animals with an 
additional indel of unidentified DNA between the KoRV 
gag and PhER sequences. It is not clear at this stage what 
the significance of this is for potential to cause disease. It is 
possible that the presence of these variants inhibits infectious 
KoRV (as happens with defective endogenous retroviruses 
in other species). It is also possible that southern animals 
are simply not born tolerized to KoRV-A (or other variants) 
and are better able to control virus replication via their 
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immune responses. Ancestors of the founder populations of 
the southern animals must have been infected with KoRV at 
some stage to have accumulated recKoRVs in their genomes 
but why KoRV-A is not also endogenous in these animals or 
what the implications are for cross-breeding of animals at 
border areas between populations is still unknown.

Discussion
Koala retrovirus is an unusual pathogen in that it is currently 
undergoing the transition between being an infectious 
transmissible virus and a retrotransposon carried by its 
host’s genome (Tarlinton et al., 2006). Retroviruses are 
single stranded RNA viruses that make a DNA copy of 
themselves that is integrated in the host cell’s DNA as part 
of their lifecycle. If this copy is integrated into a germ line 
cell (sperm, ova or progenitor of these in early stage zygotes) 
it becomes inherited. This process is surprisingly common 
with all vertebrates to date having multiple endogenous 
retroviruses integrated into their genomes. However, most 
have become attenuated with time, accumulating mutations 
that render them non-functional as a virus (Symer & Boeke, 
2010). The process of re-integration into the genome 
can continue for some time after the original infectious 
virus becomes extinct, with the retroviral genomic copies 
forming a “fossil” record of a host’s past viral exposure in 
evolutionary history.

KoRV is one of a small group of viruses that have both 
infectious forms currently circulating and accumulated 
host germline copies of the virus. This greatly complicates 
assigning attribution for disease pathogenesis in populations 
where animals are born with inherited germline copies of the 
virus. Though it is now apparent that both the accumulation 
of new somatic insertions of KoRV and the inheritance of 
viral insertions near or in oncogenes is the trigger for the 
very high rates of haematopoietic neoplasia seen in koalas 
(McEwen et al., 2021).

Koala populations have been through multiple bottlenecks 
with a marked population contraction approximately 
30–40,000 years ago. Several distinct geographical barriers 
are evident in studies of koala population genetics with five 
distinct geographical clusters: North Queensland, South 
East Queensland, Mid-North Coast New South Wales, 
South Coast New South Wales and Victoria/South Australia 
(Johnson et al., 2018). The most recent and dramatic genetic 
segregation was the bottleneck in the southern population 
induced by hunting pressures upon European colonization. 
Most of the southern population was effectively extinct by 
approximately 1920, and this region was repopulated from 
a very small number of animals that had been removed to 
offshore island sanctuaries (Ruiz-Rodriguez et al., 2016). 
Consequently, the southern (Victoria/South Australia) 
population has a markedly lower genetic diversity than the 
other populations (Johnson et al., 2018; Ruiz-Rodriguez et 
al., 2016; Neaves et al., 2016).

This split in general koala conservation genetics is 
also evident in the distribution of their koala retrovirus 
complement, with marked differences evident between 
northern and southern koala populations (Sarker et al., 2019, 
2020) as well as structuring of retroviral diversity at local 
population levels in the northern animals (Quigley et al., 
2018). To date, all animals in the northern populations have 
the originally described variant of koala retrovirus known 
as KoRV-A, thought to be the endogenous variant with an 
attenuated CETAG envelope (env) protein motif (Quigley et 
al., 2018, 2021a) along with a defective variant of this strain 
with a frameshift mutation and stop codon in env (Quigley et 

al., 2021b). Diagnostic tests used for KoRV are usually PCR 
or qPCR based tests designed to detect KoRV polymerase 
(pol) or env genes (Tarlinton et al., 2005; Stephenson et al., 
2021). Many animals in southern populations do not have 
KoRV based on these tests. KoRV-A is detected in some 
southern animals but at a rate and copy number per genome 
equivalent in individuals that implies it is solely exogenous 
(Speight et al., 2020; Legione et al., 2016). This is further 
supported by the increased prevalence (in animals that test 
positive for KoRV) of the presumed exogenous variant of 
KoRV-A with the more virulent CETAG motif (Quigley et 
al., 2021b).

Other strains of KoRV, based on sequencing of the 
hypervariable region of the surface unit of the env gene, have 
been described (Legione et al., 2016). These have never been 
detected without concurrent detection of KoRV-A, and it is 
not clear whether they circulate independently of KoRV-A or 
not (Sarker et al., 2019; Quigley et al., 2021b; Joyce et al., 
2021). These also vary locally in different populations, with 
a general decrease in viral diversity and load evident further 
south in the koala population range (Sarker et al., 2019; 
McEwen et al., 2021). There has been much speculation 
as to whether these variants, particularly the B variant, are 
associated with increased virulence or differences in disease 
prevalence (Zheng et al., 2020; Xu et al., 2013; Waugh et al., 
2017) but this has not been borne out in all studies (Quigley 
et al., 2019; Robbins et al., 2020).

The emerging picture from many groups’ work on KoRV 
variants and prevalence is one of a distinct split between 
Victoria/South Australia animals and northern animals, with 
KoRV present in both endogenous and exogenous forms in 
the northern koalas but as an exogenous virus with reduced 
diversity in the southern animals. This coincides with 
different disease prevalence rates between these populations, 
with both neoplasia and clinical chlamydial disease at much 
lower rates in southern populations (Sarker et al., 2020; 
Quigley et al., 2021b; Fabijan et al., 2020).

The other set of KoRV variants present in the koala 
genome, known as recKoRVs, are recombinants between 
KoRV and an older retrotranspon, Phascolarctid endogenous 
retroelement (PhER) (Hobbs et al., 2017; Löber et al., 2018). 
This type of recombination between exogenous retroviruses 
and genomic transposons is well-described in other animal 
models such as cats and mice (Chiu & VandeWoude, 2021; 
Young et al., 2012) and can have considerable impact on the 
creation of viral variants with altered pathogenesis. These 
arise because of the way retroviruses replicate, involving 
jumps between two copies of viral RNA during the reverse 
transcription process, making them extremely prone to 
integrating other retroviral or even non-retroviral RNA 
into their genomes (Symer & Boeke, 2010). The recKoRVs 
were described as part of the koala reference genome 
analysis (Hobbs et al., 2017; Löber et al., 2018) and vary 
in copy number among animals, they are not functional 
as viruses and are unlikely to be able to retrotranspose 
themselves within the genome as they do not encode a 
complete reverse transcriptase reading frame. Our recent 
work has demonstrated that southern animals that test 
negative for KoRV with pol gene PCR or qPCR (and that 
would have previously been considered KoRV free) have 
recKoRV variants in their genomes (Tarlinton et al., 2021). 
These variants were found in all animals tested though do 
not appear to be fixed, with some loci (but not all) shared 
between animals from disparate genomic locations. They are 
not the same as those identified in northern animals, with 
the addition of an unidentified sequence between the KoRV 
gag and PhER reverse transcriptase sequence.
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It is not clear what the significance of these recKoRV 
isolates are in koalas. They have most likely arisen and been 
transmitted alongside infectious KoRV variants as has been 
described for defective oncogene containing retroviruses in 
other species (Rubin, 2011). This implies that the ancestors 
of today’s southern animals likely had infectious and or 
endogenous KoRV variants that were lost due to the extreme 
genetic bottleneck that the founder populations underwent 
during translocations. There is an additional possibility 
that the presence of these recKoRV variants may inhibit 
replication of infectious KoRV. Blockade of infectious virus 
has been described for endogenous retroviruses in other 
species including sheep and mice (Viginier et al., 2012; 
Nethe et al., 2005) and is thought to potentially be a driver of 
positive selection for endogenization of particular retroviral 
loci in genomes.

Elucidation of whether recKoRVs in southern animals 
have any effect on the lifecycle of infectious KoRV variants 
awaits further experimental work. This is not just an 
academic or evolutionary biology curiosity, in that these 
differences in KoRV prevalence and the linked prevalence of 
disease neatly distinguish the two largest genetic groups of 
animals in the range of the species. The recent bushfire events 
and translocations of animals associated with emergency 
responses and recovery have highlighted the fragility of 
the koala population in many areas. Consideration must be 
given to whether mixing of genetic populations should be 
avoided or whether this may have unintended consequences 
for either further population bottlenecks or infectious disease 
prevalence.
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