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1 Introduction

The extraordinary observation of gravitational waves by the LIGO and Virgo collabora-
tions [1–5], 100 years after Einstein’s prediction, has initiated a new era of exploration of
our universe, with the promise of major discoveries in fundamental areas from black holes to
particle physics. With the increasing precision and scope of current and future experiments,
there is a pressing need for accurate theoretical templates for the gravitational-wave signal.
A similar demand for ever more precise theoretical predictions has boosted the development,
over the last few decades, of highly efficient methods to compute scattering amplitudes of
elementary particles to high perturbative orders.1 It is then remarkable that amplitudes,
and modern methods devised for their computation, have now been put to use in tackling
problems in classical gravity.

The connection with amplitudes was revealed more than 50 years ago in [7, 8], where
corrections to the Newtonian potential were computed from one-loop Feynman diagrams.
Those papers also appreciated that loop diagrams contribute to classical physics, a point
vigorously strengthened in [9, 10]. An amplitude-based approach was applied at the second
Post-Minkowskian (PM) order in [11–14] to compute corrections to the Newtonian potential
using modern amplitude techniques [15, 16]. More recently, several works have pursued this
approach to compute the conservative part of the potential at 3PM [17–23] and 4PM [24–26],
also including radiation [27–31], in the presence of classical spin [32–59] and in theories
where Einstein gravity is modified by higher-derivative interactions [60–66]. The fact that
gravity is a non-renormalisable theory does not prevent one from making predictions:
treating gravity as an effective theory [67], non-local/non-analytic effects arising from
the low-energy theory can be reliably calculated and disentangled from a yet-unknown
ultraviolet completion. Observables that can be computed in this way include the deflection
angle between two heavy objects (black holes or neutron stars), the Shapiro time delay,
and waveforms.

Amplitude techniques have thus emerged as powerful alternatives to a variety of other
approaches, such as the effective one-body formulation [68–73], and the worldline approach

1For a recent review, also including applications to General Relativity, see [6].
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started in [74, 75] and further developed in a relativistic setting in [76–88]. In these
works one performs an expansion in Newton’s constant G while keeping the dependence
on the velocities exact (the PM expansion), which is natural from the quantum field
theory viewpoint, as opposed to the Post-Newtonian (PN) expansion [9, 89–114], also
studied for spinning objects [115–121]. In order to have a sensible perturbative expansion
one must require that GM/b � 1, where M is the typical mass of a heavy object and
b is the impact parameter. Quantum effects can be discarded since the characteristic
Schwarzschild radius of the objects involved is much larger than their Compton wavelengths,
GM � ~/M , which combined with the previous relation requires one to work in a regime
where ~/M � GM � b.

An ideal amplitude-based method tailored to compute classical observables should
possess two features: first, it should easily disentangle quantum corrections from the
classical contribution; and second, it should avoid the subtraction of the so-called hyper-
classical (sometimes called super-classical) terms from complete amplitudes. Indeed, in
the approximation we are considering GM2 is not small, and a resummation of higher
perturbative orders is mandatory. Remarkably, this is achieved in impact parameter space
(IPS) [122–127], where amplitudes are believed to exponentiate, and it is precisely the
IPS amplitudes that turn out to be relevant both for computing classical observables
such as scattering angles and waveforms. The extraction of this “eikonal” exponent at
a certain perturbative order requires a delicate subtraction of terms that reconstruct
the exponentiation at lower perturbative orders; while computing such terms provides a
consistency check of the result, an efficient method should preferably avoid this.

An important step in this direction was taken in [24], where the conservative part
of the potential at 4PM was computed from the radial action. Motivated by the WKB
formalism, in [128] an exponential representation of the S-matrix alternative to the eikonal
was proposed, with a clear procedure to compute the matrix elements of the hermitian
operator N , defined through S := eiN . Alas, such methods still require the computation of
complete amplitudes and a subsequent subtraction.

The approach we follow in the present paper, initiated in [23, 129], is based on a
Heavy-mass Effective Field Theory (HEFT). Specifically, it was proposed in [23] that
classical observables can be computed entirely avoiding the subtraction of iterating terms.
This framework was tested in the conservative sector by deriving the scattering angle for
two heavy spinless objects at 3PM, and in this paper we will show how the HEFT approach
can be used to incorporate radiation emission. The key finding of [23], which makes the
HEFT approach ideally suited for computing classical quantities in gravity, is that only a
particular subset of diagrams contributes to the classical observables, namely those that
are two massive particle irreducible (2MPI). Conversely, diagrams that are two massive
particle reducible compute hyper-classical terms, and in the HEFT approach one simply
drops them from the get go.

The relevance of a heavy-mass expansion arises from the fact that the momenta
exchanged by the heavy particles are much smaller than their masses, thus it is natural to
consider an expansion in the heavy masses. This is precisely the situation one encounters
in heavy-quark effective theory [130–133]. Such a set-up in gravity was first considered

– 2 –



J
H
E
P
0
6
(
2
0
2
3
)
0
4
8

in [38, 47], and in [129] some of the present authors were able to combine the heavy-mass
expansion with the colour kinematic/duality [134–136], producing compact expressions for
amplitudes where the BCJ numerators are manifestly gauge invariant. All-multiplicity
expressions for D-dimensional amplitudes with two heavy scalars and an arbitrary number
of gluons or gravitons were then presented in [137], where the underlying BCJ kinematic
algebra was also related to a quasi-shuffle algebra, further studied in [138–140]. Curiously,
the number of terms in a numerator with n−2 massless particles is the Fubini number
Fn−3, which counts the number of ordered partitions of n−3 elements (or, more mundanely,
Fn is the number of possible outcomes of an n-horse race, including ties). The HEFT
amplitudes enjoy several important properties which make them particularly convenient as
building blocks of loop integrands: in addition to the already mentioned gauge invariance,
the BCJ numerators which build these amplitudes are local with respect to the massless
particles, have poles corresponding to the propagation of the heavy particles, and factorise
into products of lower-point ones on the massive poles.

We now come to discuss the main observable quantity of this paper, that is the
gravitational waveforms produced in the scattering process between two spinless heavy
objects at one loop in the PM expansion. At leading order, the waveforms for spinless
objects were computed in [141–143] and reproduced recently in [79] (and in [80] as a one-
dimensional integral), while in [83, 86] this was generalised to include spin. Waveforms in
the frequency domain were obtained recently in the zero-frequency limit [144] and for generic
frequencies [22] using amplitudes-based techniques.2 A precise definition of waveforms in
terms of amplitudes, which we will employ in this paper, was proposed in [150] and further
studied in [151], based on the KMOC approach [152]. Remarkably, it turns out that the
only input required to compute the waveform is the one-loop HEFT amplitude obtained
from 2MPI diagrams, which is precisely what our HEFT computes efficiently. While this is
perhaps not surprising, since the HEFT allows one to compute directly classical physics,
this is certainly a welcome finding of our investigation.

The first goal of this work is then the computation of the one-loop HEFT, or classical,
amplitude.3 The key ingredients in this computation, which enter the unitarity cuts, are
the HEFT amplitudes with two scalars mentioned earlier, but in addition we find that
amplitudes with four scalars and one and two gravitons are also needed in the evaluation of a
particular class of snail-like cut diagrams. In order to compute these four-scalar amplitudes
we devise a novel incarnation of the BCFW recursion relation, where we shift the momentum
transfers. Such shifts have the advantage of leaving unmodified the linear propagators
corresponding to massive particles within the HEFT amplitudes (with two scalars), and
lead to the large-z behaviour that is necessary to avoid boundary terms in the recursion.

Combining all cuts we first obtain the one-loop HEFT amplitude integrand, which is
reduced using LiteRed2 [155, 156]. There is an additional layer of simplicity introduced
by re-parameterising the heavy momenta in the HEFT using what we will refer to as p̄-
or m̄-variables. Indeed, we can reduce to just one basis of master integrals with a single

2Waveforms have been previously and extensively computed in the PN expansion, see e.g. [145–149].
3The complete amplitude integrand was computed in [153, 154], but for our purposes it is convenient to

compute it directly in the HEFT, bypassing a potentially involved extraction of its classical part.
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iε prescription, i.e. any linear propagator will appear with a principal value prescription
without the need to distinguish between ±iε prescriptions. The expression for our integrand
is obtained using D-dimensional amplitudes and thus is valid in D dimensions. We then
proceed to evaluate all relevant integrals around D=4 using the method of differential
equations [157–160] in canonical form [161], adapted to the study of classical gravitational
dynamics [19]. The integrated result for our amplitude is infrared divergent, and the
divergence is in agreement with Weinberg’s universal formula [162]. A number of further
highly non-trivial checks on our result are also presented, including subtle cancellations of
several spurious singularities.

Armed with the result for the integrated amplitude, we then proceed to compute the
spectral waveform (or waveform in the frequency domain) which is, schematically,

W ∼
∫
d4q1d

4q2 δ
(4)(q1+q2−k)δ(p1·q1)δ(p2·q2) eiq1·b M(1)

5,HEFT(q1, q2;h) , (1.1)

whereM(1)
5,HEFT(q1, q2;h) is the one-loop HEFT amplitude with the emission of a graviton of

momentum k and helicity h, once again obtained from only 2MPI diagrams, similarly to the
conservative case. Interestingly, the spectral waveform defined above is infrared divergent,
as is the one-loop amplitude; this was already noted in [149], where it was observed that in
the time domain this divergence can be absorbed by a redefinition of the time variable and
is thus, reassuringly, unobservable. We can then restrict to the finite part of the one-loop
amplitude, and move on to evaluate numerically the two-dimensional integral that gives the
spectral waveform. We do this for several values of the mass ratios of the heavy objects
and as a function of the frequency ω of the emitted gravitational wave. Finally, we Fourier
transform the spectral waveforms to obtain the time-domain waveforms in the far-field
region. A convenient quantity to compute is the Newman-Penrose scalar Ψ4 [163], which
represents the second time derivative of the gravitational strain in the far-field region. The
results of our numerical evaluations are presented in a number of plots in the frequency
and time domains for various mass ratios of the heavy objects. The interested reader can
find Mathematica notebooks with expressions for the HEFT amplitudes at tree level with
one and two emitted gravitons, and at one loop with one emitted graviton in our Gravity
Observables from Amplitudes GitHub repository.

The rest of the paper is organised as follows. In section 2 we briefly review the five-point
kinematics of the process at hand, introducing the parameterisation employed in subsequent
calculations. In section 3 we provide a self-contained introduction to the HEFT expansion
we use, including a few illustrations thereof: the HEFT expansion of Weinberg’s soft factor,
and that of the gravitational Compton amplitude. Section 4 discusses our new recursion
relations, providing expressions of the classical gravitational amplitudes with four scalar and
up to two gravitons required in later sections. In section 5 we perform the key computation
of the paper: that of the one-loop HEFT amplitude with four scalars and one graviton
using unitarity. All cuts are then merged into a single integrand, which is reduced to master
integrals using LiteRed2 [155, 156]. The final result for the integrand is shown in (5.40)
and (5.41). The relevant family of master integrals is presented in section 6. Section 7
discusses the final integrated result for the one-loop amplitude, shown in (7.1), along with

– 4 –

https://github.com/QMULAmplitudes/Gravity-Observables-From-Amplitudes
https://github.com/QMULAmplitudes/Gravity-Observables-From-Amplitudes


J
H
E
P
0
6
(
2
0
2
3
)
0
4
8

several consistency checks of our computation. In section 8 we move on to discuss the
waveforms. We begin by reviewing the KMOC approach to such quantities, and show how
to compute waveforms from the HEFT. We then calculate waveforms numerically for several
mass ratios, in the frequency and time domains, illustrating our results in several plots.
Section 9 summarises our conclusions and prospects for future work. A few appendices
complete the paper: in appendix A we present a detailed evaluation of the integrals listed
in section 6 using the method of differential equations; in appendix B we review Weinberg’s
classic result for the infrared-divergent part of one-loop amplitudes in gravity and extract
its classical part, which we use in the main text as one of the checks on our results; in
appendix C we show in an example that the exponentiation in impact parameter space of
two massive particle reducible diagrams occurs also in the presence of radiation; and finally,
in appendix D we give details of one of the unitarity cuts used in our calculation.

Note added. While this paper was in preparation, we became aware of [164] and [165],
which appear concurrently with our work and partly overlap with it. The key results of
these papers are in agreement. We thank the authors for communication and for sharing
copies of their drafts prior to publication.

2 Kinematics of the five-point scattering process

We are interested in computing the scattering amplitudes of two heavy scalars of masses
m1 and m2, accompanied by the emission of a graviton of momentum k:

p1 = p̄1 + q1
2

p2 = p̄2 + q2
2 p′2 = p̄2 −

q2
2

p′1 = p̄1 −
q1
2

k = q1 + q2 (2.1)

Here we have introduced the convenient “barred” variables [19, 166], defined as

p1 = p̄1 + q1
2 , p′1 = p̄1 −

q1
2 ,

p2 = p̄2 + q2
2 , p′2 = p̄2 −

q2
2 .

(2.2)

The advantage of this parameterisation is that, using the on-shell conditions, one can
show that

p̄1·q1 = p̄2·q2 = 0 , (2.3)

i.e. the momentum transfers q1,2 are exactly orthogonal to the barred momenta p̄1,2 of the
heavy scalars. It is also useful to introduce barred masses,

m̄2
i := p̄2

i = m2
i −

q2
i

4 , (2.4)
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where i runs from one to the number of heavy particles (two in this case), and p̄i:=m̄iv̄i.
As we shall see in section 3, the HEFT perturbative expansion is organised in powers of
the m̄i. We also mention that it will sometimes be useful to write the qi in terms of the
radiated momentum k and a single, average momentum transfer q as

q1 = q + k

2 , q2 = −q + k

2 , with q := q1 − q2
2 . (2.5)

To describe our five-point scattering process, we need to specify five independent Lorentz-
invariant products, which we choose as

y := v1·v2 ≥ 1 , q2
i ≤ 0 , wi := vi·k ≥ 0 , i = 1, 2, (2.6)

where as usual we define the four-velocities using pi=mivi, with v2
i =1.

To show that wi≥0 and q2
i ≤0, we simply go to a frame where vi=(1,~0) (for fixed i)

and k=(ω, 0, 0, ω). Then vi·k = ω ≥ 0, and from momentum conservation one finds that
q2
i ≤ 0 in the heavy-mass limit (this can be checked by going again to the rest frame of
particle i). Furthermore, y is the relativistic factor 1√

1−~̇x2
, where ~̇x is the relative velocity

of one of the two massive bodies in the rest frame of the other. For example, we can choose
the rest frame of particle 1, where vµ1 = (1, 0, 0, 0), and then vµ2 = y(1, ~̇x). Hence, y≥ 1,
where y=1 corresponds to the static limit. We will also regularly use barred versions of
these invariants, namely w̄i := v̄i·k and ȳ := v̄1·v̄2.

In the following, we will denote the HEFT amplitudes with two or four heavy particles
(plus any number of gravitons), as A and M respectively. Complete amplitudes will be
denoted as A and M . Finally, all of the amplitudes in this paper will be matrix elements of
i T where we write the S-matrix as S=1 + i T .

3 Basics of the HEFT perturbative expansion

In this section, we give a short introduction and review of the salient features of the HEFT
perturbative expansion. As an invitation to the subject, we illustrate this expansion by
applying it to several examples: first, to the three-point and four-point gravity amplitudes
with two heavy particles, and then to the Weinberg soft factor for the emission of a soft
graviton in two-to-two scattering — the process which is the main focus of this paper.
We then outline the computational strategy used to compute loop corrections to classical
quantities in general relativity, following [23]. A final related application will be discussed
in appendix B in connection with the structure of infrared divergences of gravitational
amplitudes at loop level.

3.1 The three-point amplitude

Our first simple example is the gravitational three-point tree-level amplitude

p1 A3 p1′

q

, (3.1)

– 6 –
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which is given by4

A3 = −iκ(p1·εq)2 . (3.2)

The two massive scalars carry momenta p1 and p1′ , with p2
1=p2

1′=m2 while the graviton has
momentum q and polarisation tensor εµq ενq . If all of the momenta are real in Minkowski
signature then momentum conservation and the on-shell conditions imply that q=0. However,
this amplitude is still non-zero since the polarisation vector εq is well-defined in the limit
of zero graviton energy. Additionally, we will frequently use amplitudes like the above in
unitary cuts and BCFW diagrams, where it is necessary to make the momentum q complex
and non-zero.

We now wish to perform the HEFT expansion of this amplitude and therefore we use
the barred variables [19, 166] introduced in the previous section

p1 = p̄+ q

2 , p1′ = p̄− q

2 , (3.3)

which satisfy p̄·q = 0. Furthermore, we define the barred mass and velocity as

p̄ = m̄v̄ , with m̄ =

√
m2 − q2

4 . (3.4)

Expanding the three-point amplitude (3.2) for large m̄, while keeping q fixed, we find that
there is only one term, which is of order m̄2

A3(q, p̄) := −iκ m̄2(v̄·εq)2 =

p1 H p1′

q

. (3.5)

We define this O(m̄2) term as the three-point HEFT amplitude, and we always label such
amplitudes in diagrams with the letter “H”.

3.2 The gravity Compton amplitude and its HEFT expansion

We now move on to the tree-level gravitational Compton amplitude, which was derived
e.g. in [12].

p1 A4 p1′

`1 `2

(3.6)

As before the massive scalars carry momenta p1 and p1′ , with p2
1=p2

1′=m2, and the two
gravitons have momenta `1,2, with `21,2 = 0. Momentum conservation relates these as
p1=p1′+`1+`2, and for later convenience we also introduce q:=`1+`2. The four-point

4In this work we define Newton’s constant as G = κ2/(32π).
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Compton amplitude in the full theory can be written in a way that makes its double-copy
structure manifest:

A4 = iκ2

16

(
N2

12
D12

+ N2
21

D21
+
N2

[12]
D

)
, (3.7)

where the denominators and numerators are

D12 = −2(p1·`1) + iε ,

D = q2 + iε ,

N12 = 2
[
2(p1·ε1)(p1 − `1)·ε2 + (p1·`1)(ε1·ε2)

]
.

(3.8)

Here (D21, N21) = (D12, N12)`1↔`2 and N[12] = N12 − N21. It is also useful to note that
(D12 +D21)ε=0=− q2 = −Dε=0.

Remarkably, one can combine the terms in (3.7) into the compact expression

A4 = iκ2

16
(D12N21 +D21N12)2

D12D12D
= i 4κ2 (p1·F1·F2·p1)2

D12D21D
, (3.9)

where the numerator is the square of the corresponding Compton amplitude in Yang-Mills,
and we introduced the linearised field strength tensors Fµνi = `µi ε

ν
i − `νi ε

µ
i .

In order to perform the HEFT expansion of the Compton amplitude it is essential to
make the Feynman iε prescription explicit, as we will see below, and to once again use the
barred variables

p1 = p̄+ q

2 , p1′ = p̄− q

2 . (3.10)

As previously stated these satisfy p̄·q = 0 which avoids inconvenient feed-down terms in the
expansion arising from dot products of the form p1·q = q2/2. Using the barred variables,
we can rewrite the denominators as

D12 = −2(p̄·`1) + iε− q2

2 ,

D21 = −2(p̄·`2) + iε− q2

2 = 2(p̄·`1) + iε− q2

2 .

(3.11)

Again, we write p̄ := m̄v̄ and expand the massive propagators for large m̄ keeping the
momenta of massless particles fixed:

1
D12

= 1
−2(p̄·`1) + iε

+ q2

2(−2p̄·`1 + iε)2 + · · · ,

1
D21

= 1
2(p̄·`1) + iε

+ q2

2(2p̄·`1 + iε)2 + · · · ,
(3.12)

and

1
D12D21D

=− 1
(q2+iε)2

( 1
D12

+ 1
D21

)
= 1

(q2+iε)2

[
iπ δ(p̄·`1)− q2

4(p̄·`1)2

]
+· · · . (3.13)
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One can then use this to expand the quantity (p1·F1·F2·p1)2

D12D21D
in (3.9). The delta-function

supported term gives

iπ
δ(p̄·`1)(p1·F1·F2·p1)2

(q2 + iε)2 = i π

4 δ(p̄·`1)
[
(p̄·ε1)(p̄·ε2)− 1

4(q·ε1)(q·ε2) + q2

8 (ε1·ε2)
]2

= i π

4 δ(p̄·`1) (p̄·ε1)2(p̄·ε2)2 + · · · .
(3.14)

This is of O(m̄3), while the dots correspond to terms of order O(m̄) which are not relevant
for classical physics and can be dropped. The term with the squared linearised propagator,
of O(m̄2), is given by

− (p̄·F1·F2·p̄)2

4(q2 + iε)(p̄·`1)2 . (3.15)

Combining (3.14) and (3.15), also reinstating the coupling constant dependence, we arrive at

A4 = A4,m̄3 +A4,m̄2 , (3.16)

with

A4,m̄3 = −iκ2m̄3[− iπ δ(v̄·`1) (v̄·ε1)2(v̄·ε2)2] = πA3(`1, p̄) δ(p̄·`1)A3(`2, p̄) , (3.17)

A4,m̄2 := A4(`1, `2, p̄) = −iκ2m̄2
(
v̄·F1·F2·v̄
v̄·`1

)2 1
q2 + iε

. (3.18)

The normalisation of (3.17) and (3.18) is consistent with the three-point HEFT amplitude
we found in the previous section. We now define the HEFT amplitude involving two massive
scalars as the term in the HEFT expansion which is homogeneous in m̄ and of O(m̄2).
Hence, the amplitude A4 in (3.18) is the HEFT four-point Compton amplitude. This
can also be obtained via the double copy [134, 135] from its Yang-Mills counterpart, as
shown in [23]. The two terms in the expansion of the Compton amplitude in (3.16) can be
expressed diagrammatically as follows,

p1 A4 p1′

`1 `2

=

p1 H H p1′

`1 `2

+

p1 H p1′

`1 `2

(3.19)

where the line cut in red corresponds to the delta function πδ(p̄·`1) in (3.17). Note that
the ordering of the two three-point HEFT amplitudes on either side of the red cut does
not matter.

We can now make a few observations on the general structure of the expansion we have
just seen in this example:
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1. While the HEFT amplitude is O(m̄2), we have also found a term (3.17) with two
three-point amplitudes joined by a “cut propagator”. This term is of O(m̄3), and we will
refer to it as the “hyper-classical term”. Note that m̄ =

√
m2 − q2

4 , hence this parameter
does not have a fixed ~ scaling, which is however recovered in the large-m limit.5 In this
terminology, the HEFT amplitude is then the classical amplitude.

2. Propagators of massless particles are untouched by the HEFT expansion, and hence
are treated with the standard Feynman iε prescription. However, our HEFT amplitude
contains squared linearised propagators, and it is clear from the preceding derivation (see
e.g. (3.12) and (3.13)) that such propagators appear with the derivative of the principal
value prescription6

− d

dx
PV

(1
x

)
= 1

2
( 1

(x+ iε)2 + 1
(x− iε)2

)
. (3.20)

For instance, in (3.13), by 1/(p̄·`1)2 one really means the combination
1
2
( 1

(p̄·`1 + iε)2 + 1
(p̄·`1 − iε)2

)
. (3.21)

We will see in section 3.4 how these features extend to generic amplitudes. We also comment
that when we reduce our integrands using integration by parts identities (IBP), we are
left with a basis of master integrals which contain only a single power of the linearised
propagators. These can then be treated with the standard principal value prescription.

3.3 Weinberg soft factor and its HEFT expansion

An interesting limit of the five-particle process introduced in section 2 is the soft limit where
the graviton momentum k → 0. In [162] it was shown that in this limit the amplitude
factorises into the elastic four-point amplitude (without the graviton) multiplied by the
universal Weinberg soft factor. Note that this statement for the leading soft singularity
holds at all loop orders in gravity, and will be used in section 7 as a consistency check of
our one-loop result.

We now want to apply our HEFT expansion to this soft factor, which will decompose
into a delta-function supported term and a HEFT term. The kinematics of our scattering of
two heavy bodies with the emission of one graviton has been described earlier in section 2.
In terms of the variables introduced there, Weinberg’s factor for the emission of a soft
graviton has the form [162]

SW = κ

2 εµν(k)
[

p′µ1 p
′ν
1

p′1·k + iε
+ p′µ2 p

′ν
2

p′2·k + iε
− pµ1p

ν
1

p1·k − iε
− pµ2p

ν
2

p2·k − iε

]
, (3.22)

where we have kept the Feynman iε. Next, we rewrite it using the barred variables introduced
in (2.2). One then expands the denominators using

1
x+ iε

= PV
(1
x

)
− iπδ(x) , (3.23)

5Further comments on the subtle distinction between the 1/m̄ and the ~ expansions can be found in
section 3.5.

6This is known as the Hadamard’s partie finie regularisation.
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and
[
(p̄i−qi/2)·k

]−1 → (p̄i·k)−1[1 + 1
2(qi·k)/(p̄i·k)

]
+ · · · for large p̄i := m̄iv̄i, where we

retain only terms up to O(m̄−2
i ). We also set q1 =−q2 :=q where appropriate. Doing so one

obtains delta-function supported (or hyper-classical) term

SδW = −κ i πεµν(k)
[
p̄µ1 p̄

ν
1 δ(p̄1·k) + 1↔ 2

]
, (3.24)

along with the HEFT part of the soft factor (effectively derived by setting all the iε to zero):

SHEFT
W = −κ2 εµν(k)

[
p̄µ1q

ν + p̄ν1q
µ

p̄1·k
− p̄µ1 p̄

ν
1

q·k
(p̄1·k)2 − 1↔ 2

]
. (3.25)

A few comments are in order here.
1. First, we observe that the convenience of the barred variable stems from the fact

that SW is neatly decomposes into the sum of the two terms (3.24) and (3.25). Using
unbarred variables, the result would be given by the sum of the unbarred versions of (3.24)
and (3.25) and in addition we would also have the “feed-down” term

∆SW = κ

2 iπεµν(k)
[
(pµ1qν + pν1q

µ)δ(p1·k) + pµ1p
ν
1(q·k)δ′(p1·k) − 1↔ 2

]
. (3.26)

2. The expansion of SW→SδW +SHEFT
W parallels that of the amplitudes, see our previous

example (3.17)–(3.18) and the general discussion in the next section. In particular, SδW and
SHEFT

W are of O(m̄) and O(m̄0), respectively.
3. Finally, we note that SHEFT

W can be recast in the interesting forms7 [167]

SHEFT
W = κ

2
1
q·k

[(
p̄1·F ·q

)2
(p̄1·k)2 −

(
p̄2·F ·q

)2
(p̄2·k)2

]
, (3.27)

and

SHEFT
W = κ

2
p̄1·F ·p̄2

(p̄1·k)(p̄2·k)

(
p̄1·F ·q
p̄1·k

+ p̄2·F ·q
p̄2·k

)
, (3.28)

where a·F (k)·b :=(a·k)(ε·b)− (b·k)(a·ε) and εµν(k) :=εµ(k)εν(k) as usual. Note that SHEFT
W

is O(k−1) and linear in q.

3.4 Diagrammatics of the HEFT expansion with one heavy source

We now summarise some of the key aspects of the HEFT expansion of tree amplitudes
with two massive scalars of mass m and an arbitrary number of gravitons, following the
discussion of [23].

In gravity we must sum over all possible orderings of gravitons scattering off a heavy
particle: for instance, we have contributions coming from the following two schematic
Feynman diagrams,

p1 p1′

· · · · · ·
`1L

`iL
`1R

`jR

+

p1 p1′

· · · · · ·
`1R

`jR `1L
`iL

(3.29)

7Note that the pole in q·k in is spurious but allows for this compact expression.
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where the scalar propagators in the diagrams above are i

(p1 −QL)2 −m2 + iε
and

i

(p1 −QR)2 −m2 + iε
, with

QL := `1L + · · ·+ `iL , QR := `1R + · · ·+ `jR . (3.30)

Switching to barred variables (3.10), as required by the HEFT expansion,

p1 = p̄+ q

2 , p1′ = p̄− q

2 , (3.31)

with q = QL +QR, we can rewrite the propagators as

i

−2p1·QL+Q2
L+iε

= i

−2p̄·QL−q·QL+Q2
L+iε

' i

−2p̄·QL+iε
(
1− q·QL−Q

2
L

2p̄·QL

)
+· · · ,

i

2p2·QL+Q2
L+iε

= i

2p̄·QL−q·QL+Q2
L+iε

' i

2p̄·QL+iε
(
1+ q·QL−Q2

L

2p̄·QL

)
+· · · ,

(3.32)

where we used p̄·q = 0. Combining the two diagrams in (3.29) using (3.32) leads to a
factor of8

i

−2p̄·QL + iε

(
1− q·QL −Q2

L

2p̄·QL

)
+ i

2p̄·QL + iε

(
1 + q·QL −Q2

L

2p̄·QL

)
= π δ

(
p̄·QL

)
+ i

q·QL −Q2
L

2(p̄·QL)2 .

(3.33)

The first contribution arising from (3.29) has the form

π δ
(
p̄·QL

)
Ai+2(1L . . . iL, p̄)Aj+2(1R . . . jR, p̄) , (3.34)

and we denote it diagrammatically as

p1 p1′

· · · · · ·
`1L

`iL
`1R

`jR

(3.35)

The cut line in the middle stands for the delta function in (3.34), and the two blobs
represent complete amplitudes, which can then be HEFT-expanded by applying this
procedure recursively. Among the terms arising from (3.29), the maximally connected one
is that where the blobs are themselves HEFT amplitudes, denoted as Ai+2(1L . . . iL, p̄) and
Aj+2(1R . . . jR, p̄). This contribution is of O(m̄3), where a factor of m̄−1 comes from the
delta function and each of the two HEFT amplitudes is of O(m̄2). The second term in
the second line of (3.33) will instead give a new contribution to the HEFT amplitude with
iL + jR gravitons.

8Cfr. (3.13), where we carried out this procedure in the specific example of the Compton amplitude.
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In conclusion, a generic amplitude with two massive lines and n−2 gravitons can be
expanded as

n−2∑
h=1

∑
P∈P(n−2,h)

( h−1∏
j=1

π δ(m̄v̄·`Pj )
)
Ai1+2(P1, p̄) · · · Aih+2(Ph, p̄) + · · · , (3.36)

where P(n−2, h) denotes the partitions of n−2 gravitons into h non-empty subsets, and the
summation is over all partitions with h=1, . . . , n−2. Finally, Pj denotes the jth subset of
graviton indices of a given partition P with length ij and total momentum `Pj .

A few comments are in order before concluding this section.
1. The term with h=1 has no delta function, and is the HEFT amplitude. As discussed

earlier, it is of O(m̄2). A practical way to obtain HEFT amplitudes is to set ε=0 in all
massive propagators in a generic tree-level amplitude, and then expand it, retaining only
terms of O(m̄2).

2. A term in the HEFT expansion involving a product of h HEFT amplitudes (connected
by h−1 cut propagators) is precisely of order O(m̄h+1). This is a key feature of the HEFT
expansion, which allows for a clear organisation of the calculation in powers of the m̄s.

3. The integrands constructed using HEFT amplitudes contain linearised propagators
raised to powers, such as that in the last term of the second line (3.33). As was the case for
four-points in section 3.2, these are regularised using the derivative of the principal value
prescription. Note that no modifications are done to the massless propagators, which follow
the usual Feynman iε prescription.

4. The dots in (3.36) stand for terms that are subleading in the HEFT expansion and
which are not relevant for classical physics.

5. Finally, similar combinations of diagrams such as in (3.29) that give rise to cut
propagators have appeared in several other works, e.g. [21, 23, 126, 168–170]. Importantly,
in [23] and in this work, by using the 1/m̄ expansion we have achieved a fully systematic
and general HEFT expansion, free from unpleasant feed-down terms (such as (3.26)), up to
and including terms that are relevant for classical physics.

3.5 ~ vs HEFT (or 1/m̄) expansion

The HEFT expansion is closely related, but subtly distinct from the ~ expansion, and
here we briefly outline some of the differences, also highlighting the advantages of the
HEFT expansion.

In the expansion around small values of ~, one scales Newton’s constant as G→G/~
and the graviton momenta (or sums thereof) as k → ~k while keeping their wavenumbers
fixed [152]. Equivalently, one can take the heavy-mass limit m→∞: the graviton momenta
then scale as O(m0) and hence are subleading compared to any massive momentum p=mv
which scales as O(m). The expansion in inverse powers of the masses is therefore equivalent
to the expansion in small ~. This prescription is conceptually clean but has some unpleasant
features. The on-shell conditions for the incoming, pi, and outgoing, pi′=pi ± q massive
momenta p2

i = p2
i′ = m2

i imply that pi·q = ∓q2/2 ∼ O(~2). Hence, contracting massless
momenta with massive ones leads to expressions that in general do not have a homogeneous
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degree in ~. As a consequence, the hyper-classical part of an amplitude will generate terms
that feed down to the classical part of the same amplitude. Going to increasingly higher
orders in the loop expansion, one will be faced with a proliferation of such feed-down terms
from hyper-classical contributions.9

As we have seen in the preceding sections, the natural expansion parameters in the
HEFT are the inverse barred mass variables 1/m̄i, and each term of the expansion has a fixed
degree in m̄i. An advantage of the HEFT expansion is that in terms of the barred variables
introduced in section 2, momentum conservation implies the exact statement p̄i·qi=0. As a
consequence, the HEFT expansion is free of feed-down terms from hyper-classical terms such
as those appearing in the conventional ~ expansion. Of course, the HEFT expansion still
contains hyper-classical terms, for example those in (3.19). However, these are subtracted
in the classical observables we wish to compute, as we shall see explicitly in section 8.

As can be seen from their definition (2.4), the barred masses do not themselves have a
fixed scaling in terms of ~, therefore each term in the HEFT expansion does not have a
fixed scaling in ~. Of course an expansion in ~ can be obtained from the HEFT expansion
instantaneously by using (2.4). In other words, the HEFT expansion is a reorganisation of
the ~ expansion.

4 Tree-level amplitudes with four heavy scalars from a BCFW recursion

4.1 Diagrammatics of the HEFT expansion with four heavy scalars

To compute the classical five-point one-loop amplitude we will also require HEFT amplitudes
involving four external scalars, in addition to the two-scalar HEFT amplitudes discussed
above. The HEFT expansion for these amplitudes is a natural extension of the two scalar
case. We start with an amplitude involving four scalars and n−4 gravitons, denoted Mn,

p1

p2

Mn

p2′

p1′

...

k1

kn−4

. (4.1)

To perform the HEFT expansion of the amplitude above amplitude we expand in both
the barred masses m̄1 and m̄2 associated with the two massive lines. The analysis of the
massive propagators is essentially identical to the two scalar case in section 3.4, except that
there are now two such massive lines in every diagram.

9An example of feed-down terms is provided in (3.26).
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The simplest example is the elastic process, for which we only need to keep the leading
order in the large-m̄i expansion

M4 =

p1

p2

H

p2′

p1′

+ · · · (4.2)

where + · · · are subleading terms which are irrelevant for classical physics. This leading-
order contribution scales like m̄2

1m̄
2
2 and is what we define as the HEFT amplitude with four

heavy scalars: M4. We will see how to calculate this amplitude in the next section explicitly,
but for now let us continue with another example of the four-scalar HEFT expansion.

The tree-level five-point amplitude, with four scalars and one graviton, when expanded
in the large-m̄i limit, contains iteration terms. These appear since the amplitude contains
massive propagators which, when expanded, give delta functions exactly as in (3.33). As
usual, we can write the expansion of this amplitude diagrammatically as follows

M5 =

p1

p2

H

p2′

H p1′

k +

p1

p2

H

p2′

p1′

H

k +

p1

p2

H

p2′

p1′

k + · · ·

(4.3)

where the three-point amplitudes are the HEFT amplitudes we found in (3.5). The red cut
line denotes the same delta function as in the two-scalar case: πδ(p̄i·k) where i = 1, 2 if the
first/second scalar line is cut. The new object here is the four-scalar one-graviton HEFT
amplitude, denotedM5, which scales as m̄2

1m̄
2
2 and will be calculated in the next section.

For amplitudes like those in (4.1) with more radiated gravitons, the HEFT expansion
proceeds analogously. There are iteration terms containing delta functions, and a term
containing no delta functions which is O(m̄2

1m̄
2
2). This O(m̄2

1m̄
2
2) term is what we define as

the HEFT amplitude with four scalars and n−4 gravitons, and we denote it as Mn. As
before, in diagrams these are labelled with the letter “H”.

4.2 The HEFT BCFW recursion relation

Here we present a novel and highly efficient method to construct HEFT amplitudes with
two pairs of scalars and any number of gravitons valid in D dimensions. In order to do so
we will use a D-dimensional version of BCFW on-shell recursion relations [171, 172] with a
carefully chosen shift that leaves unmodified the linearised propagators of massive particles,
and only invokes factorisation channels that involve gravitons. The only required inputs
are the HEFT amplitudes with a single pair of massive scalars available in any dimension
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and for any multiplicity [129, 137, 139], and the well-established factorisation on poles
corresponding to massless propagators.

We now describe the shift using the kinematic setup and conventions introduced in (2.1)
for one radiated graviton. If there are several radiated gravitons we simply replace

q1 + q2 = k −→ q1 + q2 =
n−4∑
i=1

ki := K , (4.4)

where the ki are the graviton momenta and the corresponding polarisation vectors are
denoted by εi.

A convenient choice for the D-dimensional shifts turns out to be one where, unlike in
the usual BCFW recursion [171, 172], one shifts the internal momenta q1 and q2:

q1 → q̂1 = q1 + zr ,

q2 → q̂2 = q2 − zr ,

p1

p2 H p2′

H p1′

zr

zr

zr

(4.5)

where z ∈ C and r is a null vector obeying

r2 = 0 , p̄1,2·r = 0 , r·εi = r·ki = 0 , (4.6)

for all gravitons i = 1, . . . , n. The first condition makes the shifted propagators scale as
z−1 for large z; the second and third condition are important to guarantee that the shifted
amplitude M(z) → 0 as z → ∞ as we show below. Naively, (4.6) seems to impose too
many constraints on r to allow for a non-trivial solution. The way out is to demand that r
lives in a space whose dimension is larger than the spacetime dimension D. For this to be
useful our knowledge of HEFT amplitudes in any dimension is crucial. The solution for the
shifts involves qi·r, which need to be nonvanishing, hence also the qi must live in this larger
spacetime, while the null vector r lives only in the extra dimensions. Note that our shifts
differ from those employed in [173], which also addressed the computation of amplitudes
with massive scalars and up to two gravitons, however before taking the classical limit.

Importantly, it is easy to see that the HEFT amplitudes appearing in the on-shell
diagrams are completely unaffected by the shifts because of their structure and the condi-
tions (4.6). This makes these diagrams particularly efficient to compute HEFT amplitudes
as we will demonstrate for n=0, 1, 2 gravitons in sections 4.4, 4.5 and 4.6.

4.3 Proof of large-z behaviour

In the following we want to show that HEFT or classical amplitudes with two pairs of
scalars vanish as z →∞ and hence there is no problematic boundary term.
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We will infer the large-z behaviour from general properties of the Feynman rules and
the special properties of the shift vector r introduced above. First, these amplitudes scale
as m̄2

1m̄
2
2 and subleading powers in m̄i will always be dropped.10

A generic Feynman diagram contributing to a four-scalar multi-graviton process involves
two two-scalar-m-graviton vertices, with masses m̄1 and m̄2, respectively, and up to n multi-
graviton vertices connected by graviton propagators. In order to find the large-z behaviour
we only need to trace the momentum flow of the shifted momenta q̂i through a given
diagram, where i labels the various propagators that can appear.

Let us consider a Feynman diagram with s−1 pure multi-graviton vertices and s

graviton propagators with shifted momenta, connected to two vertices with pairs of massive
scalars. Each propagator will contribute a factor of 1/q̂2

i which scales as 1/z, and hence the
propagators produce a total factor of z−s. Next there are s−1 multi-graviton vertices which
are quadratic in the momenta of internal or external gravitons. Each vertex potentially
contains two factors of shifted momenta q̂i. These either contract with ki, εi or p̄i, which
removes the z-dependent term in any q̂i because of (4.6); or, the two shifted momenta
contract with each other, which gives a factor linear in z. Hence, in the worst case one
gets an overall scaling of z−szs−1 = z−1 for a diagram with s propagators. Finally, the
two-scalar-multi-graviton vertices scale as m̄2

i , from two powers of p̄i. Even when the shift
modifies the p̄i, the associated z-dependent corrections are subleading in the 1/m̄i expansion
and cannot contribute to the HEFT amplitude. In conclusion, the HEFT amplitudes have
favourable large-z behaviour under the BCFW shifts introduced above for any multiplicity.
Therefore we can bootstrap any classical amplitude with two pairs of massive scalars from
a BCFW-like recursion of the multi-graviton Compton classical amplitudes.

4.4 Four-point amplitude: elastic scattering

This corresponds to the classical 2 → 2 amplitude without radiation. In this case q2 =
−q1 := −q and q̂ = q + zr. The on-shell condition q̂2 = 0 is solved by z = −q2/(2q · r),
however this shift only appears in the polarisation vectors in the BCFW subamplitudes due
to the judicious choice of shift vector r.

There is a single on-shell diagram in the q2-channel and the ingredients are the three-
point amplitudes (3.5)

A3(q̂, p̄i) = −iκ(p̄i·εq̂)2 , i = 1, 2 , (4.7)

and this diagram can be evaluated instantly as11

M4 =
∑
h

(−iκ)(p̄1·εq̂)2 i

q2 (−iκ)(p̄2·ε−q̂)2 = −iκ
2m̄2

1m̄
2
2

q2

∑
h

(v̄1 · εq̂)2(v̄2 · ε−q̂)2

= −iκ2 m̄
2
1m̄

2
2(ȳ2 − 1

D−2)
q2 ,

(4.8)

10Note that in a full Feynman diagram computation including the Feynman iε prescription we also
produce “hyper-classical” terms with higher powers of m̄i and δ-functions, as discussed in section 4.1. Such
contributions involve products of simpler, lower-point HEFT amplitudes and δ-functions, and hence we do
not discuss them here as they are easily accounted for.

11We remind the reader that in this paper we denote as A andM the amplitudes containing two or four
massive scalars, respectively.
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where in the last step the sum over internal graviton polarisations was performed using12

∑
h

εµa−q̂ε
νa
−q̂ε

µb
q̂ ε

νb
q̂ = 1

2
[
ηµaµbηνaνb + ηµaνbηνaµb − 2

D − 2η
µaνaηµbνb

]
, (4.9)

where dφ has the following values for the cases of pure gravity or N = 0 supergravity:

dφ =


1

D − 2 gravity,

0 N = 0 supergravity.
(4.10)

From (4.9), it follows that ∑
ha

(ε̄−q̂·v)2f(εq̂) = f |v −
1

D − 2f |η , (4.11)

where by f |v, f |η we denote replacing εµq̂ ενq̂ inside f by vµvν and ηµν , respectively.

4.5 Five-point amplitude: process with one radiated graviton

D1 =

p1

p2 H p2′

H p1′

kq̂1 , D2 =

p1

p2 H p2′

H p1′

kq̂2 . (4.12)

In figure (4.12) we have drawn the two recursive diagrams that contribute to the
five-point HEFT amplitude,M5. The on-shell conditions give q̂2

1 = q2
1 + 2z1q1·r = 0 and

q̂2
2 = q2

2 − 2z2q2·r = 0 with the solutions z1 = −q2
1/(2q1·r) and z2 = q2

2/(2q2·r). The two
diagrams give contributions of the form

Di = i
Ni

q2
i

, i = 1, 2 , (4.13)

where the numerators Ni are obtained from appropriate products of a three-point and a
four-point HEFT amplitude and performing the relevant state sums. As was noted earlier
in the elastic case, the three-point amplitudes are not modified by the BCFW shifts of the
qi. This is also true for the new ingredient we need in this case, namely the four-point
HEFT amplitude. In the first diagram of figure 4.12 this amplitude has the form, referring
to (3.6),

A4(−q̂1, k, p̄2) = − iκ2

(−2k·q̂1)

(
p̄2·Fk·F−q̂1 ·p̄2

p̄2·k

)2
= − iκ2

(−2k·q1)

(
p̄2·Fk·F−q1 ·p̄2

p̄2·k

)2
, (4.14)

where we are allowed to replace q̂1 by q1 because r·k = r·εk = r·p̄i = 0. However, note that
the polarisation vector in F−q1 remains εq̂1 . We can also set k·q1 = k·q, where q = (q1−q2)/2
is the average momentum transfer defined in (2.5).

12For an interesting discussion of completeness relations see [174].
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With these preliminaries, we can now compute N1:

N1 = −κ3∑
h

(p̄1·εq1)2 (p̄2·Fk·F−q1 ·p̄2)2

(−2k·q)(p̄2·k)2

= κ3m̄2
1m̄

2
2

(2k·q)w̄2
2

{[
ȳ(v̄2·Fk·q) + w̄2(v̄1·Fk·v̄2)

]2
− 1
D − 2(v̄2·Fk·q)2

}
,

(4.15)

where we have used (4.11) to perform the state sum. Similar manipulations give

N2 = − κ
3m̄2

1m̄
2
2

(2k·q)w̄2
1

{[
ȳ(v̄1·Fk·q) + w̄1(v̄1·Fk·v̄2)

]2
− 1
D − 2(v̄1·Fk·q)2

}
, (4.16)

in terms of which the five-point amplitude with one radiated graviton is

M5(k, p̄1, p̄2) = i
N1
q2

1
+ i

N2
q2

2
. (4.17)

This result matches the form [175] of the classical five-point tree-level amplitude, first
computed in [27]. Note that both N1 and N2 contain the spurious pole 2k·q which cancels
when we sum the contributions from both BCFW diagrams.

4.6 Six-point amplitude: process with two radiated gravitons

In the six-point case, four distinct recursive diagrams contribute and they are given by

D1 =

p1

p2 H p2′

H p1′

k1

k2

q̂1 , D2 =

p1

p2 H p2′

H p1′

k1

k2

q̂2 . (4.18)

D3 =

p1

p2 H p2′

H p1′

k1

k2

t̂1 . D4 =

p1

p2 H p2′

H p1′

k1

k2

t̂2 , (4.19)

with t1 = q1−k1, t2 = q1−k2. Once again we solve the on-shell conditions for the deformed
momenta q̂2

1 = q̂2
2 = t̂21 = t̂22 = 0 to get the value of the z-pole for each BCFW diagram.

We then calculate each diagram by gluing together the appropriate subamplitudes via a
state sum. These amplitudes include yet another new ingredient: the five-point single heavy
source HEFT amplitude, again derived in [23]

p̄− q/2Hp̄+ q/2

`2`1 `3

. (4.20)
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This five-point HEFT amplitude can be written compactly in terms of a set of BCJ
numerators [23, 129, 137] as follows

A5(`1, `2, `3, p̄) = −iκ3
(

(N ([[1, 2], 3], p̄))2

`212`
2
123

+ (N ([[1, 3], 2], p̄))2

`213`
2
123

+ (N ([[3, 2], 1], p̄))2

`223`
2
123

)
(4.21)

The first of these numerators is given by

N ([[1, 2], 3], p̄) = −(p̄·F1·F2·p̄)(`12·F3·p̄)
p̄·`1p̄·`12

− (p̄·F1·F3·p̄)(`1·F2·p̄)
p̄·`1p̄·`13

+ (p̄·F1·F2·F3·p̄)
p̄·`1

(4.22)

and the rest are related by permuting the massless legs `1, `2, `3. Hence the six-point
tree-level HEFT amplitude with two heavy sources and two radiated gravitons is

M6(k1, k2, p̄1, p̄2) = i
N1
q2

1
+ i

N2
q2

2
+ i

N3
(q1 − k1)2 + i

N4
(q1 − k2)2 , (4.23)

where we have defined numerators Ni for each BCFW diagram in the same manner as
before. As was the case for the five-point amplitude, the BCFW shift in q̂1 simply drops
out of the amplitude for the same reasons as before.

5 One-loop five-point amplitude via unitarity

5.1 Strategy of the calculation

In this section we construct the one-loop integrand via unitarity cuts, by gluing tree-level
HEFT amplitudes. The classical amplitude is obtained from two massive particle irreducible
(2MPI) diagrams, which are of O(m̄3

1m̄
2
2) and O(m̄2

1m̄
3
2). These two terms are simply related

by swapping 1↔ 2, hence we focus here on the former. We will confirm in section 8 that
these are precisely the terms needed for the waveforms.

We also mention in passing that the O(m̄3
1m̄

3
2) hyper-classical diagrams, corresponding

to two massive particle reducible HEFT diagrams, factorise when Fourier transformed to
impact parameter space. This was seen in the conservative case in [23], and also happens
in the presence of radiation, as we show in appendix C.

The HEFT tree amplitudes that enter the unitarity cuts have either two or four
massive scalars plus several gravitons, and have been described in section 3.4 and section 4,
respectively. They are all manifestly gauge invariant since the dependence on the graviton
polarisations occurs only through the corresponding linearised field strength tensors. The
three-point HEFT amplitude (3.5) is an exception which depends directly on the polarisation
tensor, but it is nevertheless gauge invariant.

The cut diagrams contributing to the classical amplitude at O(m̄3
1m̄

2
2) are

C1 =

p1

p2 H p2′

H H p1′

k
`1 `2

, C2 =

p1

p2 H p2′

H H p1′

k
`1 `3

, (5.1)
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and the following cuts which subsume the above cuts

C3 =

p1

p2

H

p2′

H p1′

k`2
, C4 =

p1

p2

H

p2′

H p1′

k

`3
. (5.2)

There are also HEFT diagrams where the graviton is emitted from an incoming leg, for
example the following swapped version of diagram C1 (and similarly diagram C3)

p1

p2 H p2′

H H p1′

k . (5.3)

However this gives exactly the same contributions as C1, which can be seen explicitly using
the loop momentum reparameterisation `1 → `3 = −`1 − q1 and the following property of
the HEFT delta function

δ(v̄1·`1) = δ(v̄1·`3) , (5.4)

where we have used (2.3). Thus we just need to multiply the contributions of diagrams C1
and C3 by a factor of 2. Note that whenever we cut two gravitons as in C1 and C2 we also
include a symmetry factor of S = 1

2! for the two identical particles crossing the cut. As
noted earlier the contribution of m̄2

1m̄
3
2 is obtained by swapping q1 ↔ q2 and p1 ↔ p2.

We now have to combine carefully the information from the various cuts to construct
the complete integrand. Naively summing the cut integrands from all the diagrams leads to
an over-counting since there are terms in the full integrand detected by more than one of
the cuts above. The correct procedure, called cut merging, ensures that terms detected in
several cuts are only counted once.

An example of this issue is the particular contribution to the full integrand contained
in the overlap of all cut diagrams. It is easy to see that it corresponds to the following
triple cut with all massless propagators present:

p1

p2 H p2′

H H p1′

k
`1

`2

`3

. (5.5)

There is also a mirror version of this diagram where the emitted graviton appears on the
left of the diagram, but this makes an identical contribution.
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D1 D2 D3 D4 D5
`2 v̄1·` (`+ q1)2 (`− q2)2 v̄2·`

Table 1. Propagator basis.

We denote the operation of cut merging as a union

Cm̄3
1m̄

2
2

= (2 ∗ C1) ∪ C2 ∪ (2 ∗ C3) ∪ C4 , (5.6)

and we find that the contributions in the overlap of diagrams 2 ∗ C1 and C2 are also exactly
identical to the triple cut diagram (5.5). Similarly, we found explicitly that the contributions
detected by cut C1 and C2 are exactly contained as a subset of the contributions from cuts
C3 and C4. The exact identification and matching of overlap terms is facilitated by the use
of a minimal set of independent scalar products, as we will be explain in more detail in the
next section.

The integrand found in this process is given by a linear combination of tensor integrals.
As we show in the next sections this bare integrand can be reduced further in a two-step
process: first, we will convert the tensor integrals into a sum of loop momentum independent
coefficients times scalar integrals, second, we will reduce the scalar integrals to a family of
master integrals using integration by parts relations (IBP).

The relevant (master) integrals are scalar one-loop Feyman integrals of the form

ja1,1,a3,a4,a5 =
∫

dD`

(2π)D
−iπδ( v̄1 · `)

(`2 + iε)a1 [(`+ q1)2 + iε]a3 [(`− q2)2 + iε]a4(v̄2 · `)a5
, (5.7)

with the propagator structure coming from the pentagon master topology

p1

p2 p′2

p′1

k`1

`3

`2

, (5.8)

where the top line corresponds to a linearised massive propagator taken to some integer
power,13 while the bottom line is a HEFT delta function which is present in all diagrams.
In the following we will refer to the propagators by the labels Di as defined in table 1 and

13In the family of master integrals the linearised massive propagator D5 corresponding to the top line
always appears with power a5 = 1 and is regulated with the principal value prescription. If a5 > 1, it is
regulated according to (3.21) and its generalisation to higher powers, however such integrals can always be
reduced to master integrals with a5 = 1.
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in this notation the master topology is given by

p1

p2 p′2

p′1

k

D2

D5

D1

D3

D4

. (5.9)

By using a minimal basis of scalar products and using all possible identities, we can merge
integrands in different cuts before performing IBP reductions.

We will study the various cuts in more detail momentarily, but already at this stage
we can identify the topologies that occur in the various overlaps of cut diagrams. The
overlap terms between cut diagrams C1 and C2 are precisely those with the pentagon master
topology (5.9), where all the massless propagators are present (possibly with higher powers
of some propagators) and also the box topology where we collapse the massive propagator
D5. The overlap terms between cut diagrams C3 and C4 include in addition the box topology
where we collapse just propagator D1.

The final step is the reduction to a basis of master integrals using IBP relations. We will
describe our basis in full in section 6, where we also present explicit results for each integral.

5.2 Cut one

For the first diagram (5.1), which we have denoted by C1, the integrand is

C1 =

p1

p2 H p2′

H H p1′

k
`1 `2

=
∫
dD`1
(2π)D δ(v̄1·`1)

∑
h1,h2

Ah1,h2
4 (`1, `2, v̄2)A−h1

3 (−`1, v̄1)A−h2
4 (−`2, k, v̄1)

`21`
2
2

. (5.10)

In the above and for the remainder of this section we suppress the explicit Feynman iε

and principal value prescriptions as they can be reinstated unambigously. The three and
four-point amplitudes with two scalars and one or two radiated gravitons are given in (4.7)
and (3.18).

First we perform the sum over intermediate states `1 and `2 in D dimensions using

∑
h

εµa−pε
νa
−pε

µb
p ε

νb
p = 1

2 (PµaµbP νaνb + PµaνbP νaµb)− dφPµaνaPµbνb , (5.11)

– 23 –



J
H
E
P
0
6
(
2
0
2
3
)
0
4
8

where

Pαβ = ηαβ − pαqβ + pβqα

p·q
, (5.12)

for some reference momentum q, and with dφ defined in (4.10). Note that if the dilaton is
included in the state sum, then the polarisation tensors εαβ = εαεβ are no longer traceless.
Since the HEFT amplitudes are manifestly gauge-invariant, we are entitled to make the
simplification Pαβ → ηαβ [174] in (5.11). This corresponds to the state sum shown and
used already earlier in (4.9). Using the full projector (5.12) with reference momentum
q, however, also allows an intermediate check since the reference momentum can be seen
to drop out of the result explicitly. In addition, some care is needed when dealing with
diagrams involving a three-point graviton amplitude, which is not written in terms of field
strengths — an example of this situation is the diagram (5.5), and in such cases we need to
use the full projector Pαβ given in (5.12).

Once we have performed the state sum, the integrand is a function of

A·Fk·B, A·B, (5.13)

where A,B can be any of the vectors `1, q1, q2, v̄1, v̄2. The scalar products involving field-
strength tensors Fk are not all independent due to the identities [176]

A·Fk·B k·C + C·Fk·A k·B +B·Fk·C A·k = 0 ,
A·Fk·A = 0 ,
k·Fk·B = 0 ,

(5.14)

where A,B,C can be any vector. The first of these relations is simply the Bianchi identity
in momentum space, and the last two follow trivially from the antisymmetry of Fk and the
fact that k is on shell. Using these relations we can write the integrand in terms of the
independent tensor structures which involve products of a pair of field strengths taken from
the following list, where we have fixed the second vector contracted into Fk to always be v̄2,

`1·Fk·v̄2, q1·Fk·v̄2, v̄1·Fk·v̄2 . (5.15)

In all of our calculations the internal cut lines are in D dimensions, while external momenta
are kept in four dimensions. Four-dimensional external kinematics allows us to rewrite
the tensor structure q2·Fk·`1 by expanding Fk in terms of a basis formed by taking anti-
symmetric products of the vectors v̄1, v̄2, q1, q2:

Fαβk = a v̄
[α
1 v̄

β]
2 + b v̄

[α
1 q

β]
1 + c v̄

[α
1 q

β]
2 + d v̄

[α
2 q

β]
1 + e v̄

[α
2 q

β]
2 + f q

[α
1 q

β]
2 , (5.16)

and then solving the linear system for the coefficients a, b, c, d, e, f . The coefficients are
then written in terms of the traces

q1·Fk·v̄2 , v̄1·Fk·v̄2 , (5.17)

and hence we will be left with an integrand made of products of these structures.
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The fact that the external kinematics is restricted to four dimensions implies even
more identities due to the vanishing of the Gram determinant G(v1, v2, q1, q2, εk). This is
equivalent to the fact that any fully anti-symmetrised tensor with more than four Lorentz
indices must vanish in four dimensions. This gives for example the following identity
involving Fk

F
[µν
k v̄ρ1 v̄

σ
2 q

τ ]
1 = 0 , (5.18)

and contracting relations like this with the Fk, v̄1, v̄2, q1, q2 gives us an additional relation
between tensor structures that we use to simplify the integrand further. The additional
relation we generate is quadratic in the field strengths and allows us to reduce the possible
combinations of field strengths that appear in the integrand to two such traces,

q1·Fk·v̄2 v̄1·Fk·v̄2, (v̄1·Fk·v̄2)2 . (5.19)

Now one can rewrite all scalar products in the numerator depending on the loop momentum
`1 in terms of inverse powers of propagators (assuming the cut conditions). This gives a fully
tensor-reduced integrand which can be written in terms of loop momentum independent
coefficients ci and scalar integrals which are sub-topologies of the master topology (5.9),
possibly with higher powers of propagators.

We then perform IBP reduction using LiteRed2 [155, 156] and assuming the cut
conditions of cut diagram C1. We find the following four master integrals,

I1 := j11010 = , I3 := j11011 = , (5.20)

I5 := j11110 = , I6 := j11111 = ,

and therefore the contributions are given by a sum of these integrals multiplied by their
coefficients, which we write as

C1 = c1
2 I1 + c3

2 I3 + c5
2 I5 + c6

2 I6, (5.21)

where the overall factor of 1/2 was introduced for convenience since this contribution is
doubled up when we include the swapped graph 5.3.

5.3 Cut two

For the second diagram, the integrand C2 is given by

C2 =

p1

p2 H p2′

H H p1′

k
`1 `3

(5.22)

=
∫
dD`1
(2π)D δ(v̄1·`1)

∑
h1,h3

Ah1,h3
5 (`1, `3, k, v̄2)A−h1

3 (−`1, v̄1)A−h3
3 (−`3, v̄1)

`21`
2
3

. (5.23)
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In addition to the three and four-point HEFT amplitudes required up until now, we now
also need the five-point tree-level HEFT amplitude which is given in (4.21).

The analysis and simplification of this diagram follows the same steps as for cut
C1, however now there seem to emerge new graph topologies which are distinct to those
contained in (5.8). Explicitly, propagator structures like the following can appear

T1 =

p1

p2 p′2

p′1

k

`1

`4

`3 , T2 =

p1

p2

k

p′2

p′1

`1 `3
, (5.24)

where `4 = `1 + k and all massive propagators are linearised. In fact, in the m̄ expansion of
the HEFT, both of these topologies can be rewritten into the form of (5.8) as we now shall
demonstrate.

The origin of topology T1 can be seen by expanding the five-point HEFT amplitude in
terms of BCJ numerators using (4.21)

C2 =
∫
dD`1
(2π)D δ(v̄1·`1)

∑
h1,h3

−iκ3A
−h1
3 (−`1, v̄1)A−h3

3 (−`3, v̄1)
`21`

2
3

×

(
(N ([[`1, `3], k], v̄2))2

q2
1q

2
2

+ (N ([[`1, k], `3], v̄2))2

`24q
2
2

+ (N ([[`3, k], `1], v̄2))2

`22q
2
2

)
. (5.25)

The BCJ numerators N themselves never contain any massless propagators, hence all terms
in the topology T1 must come from the denominator 1/l24q2

2 associated with the second
BCJ numerator above. Thus, we can eliminate the topology T2 by reparameterising the
loop momentum for this particular (second) term as `1 → −`1 − q1, which at the level
of the integrand is equivalent to the replacements `1 ↔ `3, `4 ↔ `2. This leaves us with
the expression

C2 =
∫
dD`1
(2π)D δ(v̄1·`1)

∑
h1,h3

−iκ3A
−h1
3 (−`1, v̄1)A−h3

3 (−`3, v̄1)
`21`

2
3

×

(
(N ([[`1, `3], k], v̄2))2

q2
1q

2
2

+ 2(N ([[`3, k], `1], v̄2))2

`22q
2
2

)
. (5.26)

We would like to note that the rewriting above relies on the HEFT specific condition v̄1·q1=0
imposed by the delta function and the principal value prescription for the linearised massive
propagators in the HEFT. The delta function (regularised linear propagators) are even
(odd) when the sign of the momentum is flipped, and this allows manipulations which
otherwise would change the iε prescription.
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Next, we consider the terms in cut C2 belonging to the topology T2 which can appear
in either of the two remaining BCJ numerators

C2|T2=
∫
dD`1
(2π)D

δ(v̄1·`1)
`21`

2
3(v̄2·`1)(v̄2·(`1 + q1))

g(`1) , (5.27)

where g(`1) is shorthand for the rest of the integrand. The topology T2 can contain two
powers of linearised massive propagators, for example, 1/(v̄2·`1)2. However, in what follows
we will assume for simplicity only single powers as the analysis in either case is the same.
The first step is to perform partial fractions on the two linearised propagators to yield

C2|T2=
∫
dD`1
(2π)D

δ(v̄1·`1)
`21`

2
3(v̄2·`1)

g(`1)
v̄2·q1

−
∫
dD`1
(2π)D

δ(v̄1·`1)
`21`

2
3(v̄2·(`1 + q1))

g(`1)
v̄2·q1

. (5.28)

Next we again re-parameterise loop momentum by `1 → −`1 − q1, but only in the second
term above,

C2|T2=
∫
dD`1
(2π)D

δ(v̄1·`1)
`21`

2
3(v̄2·`1)

g(`1) + g(`3)
v̄2·q1

, (5.29)

which is a subtopology of (5.8). Graphically this process can be written as

p1

p2

k

p′2

p′1

`1 `3

partial−−−−→
fraction

p1

p2

k

p′2

p′1

`1 `3

+

p1

p2

k

p′2

p′1

`1 `3

`1
→
−
`1 −

q1

(5.30)

and, as has been explained above, such manipulations are possible because we have principal
valued and/or delta function cut linear massive propagators.

Hence, as was the case for cut C1, the integrand from cut C2 contains the same basis of
propagators Di given in table 1 and corresponding to the master topology (5.9). We then
follow the same method: first, tensor reduce to scalar integrals in this master topology, and
second, perform IBP reduction assuming the cut conditions of diagram C2 to get a set of
master integrals. In this case these we get the box I5, the pentagon I6 previously found in
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cut C1, and two additional topologies

I2 := j11100 = , I4 := j11101 = . (5.31)

To summarise, the contributions from cut C2 are

C2 = c2 I2 + c4 I4 + c5 I5 + c6 I6 , (5.32)

where the coefficients c5 and c6 exactly match those found from cut C1.

5.4 Cut three — the first “snail” diagram

In the above cuts, which gave contributions C1 and C2, we always cut the massless propagator
D1 with momenta `1. There are, however, other unitarity cut diagrams relevant for classical
physics that are O(m̄3

1m̄
2
2) in the HEFT expansion. These are the diagrams C3 and C4

which only involve a single cut massless propagator and a single HEFT cut of the massive
scalar on the bottom line of (5.33). These new diagrams probe all the master integrals
found in cuts one and two but also involve four new master integrals with the collapsed
massless propagator D1. We find these new contributions to be crucial for capturing the
full infrared divergence of the classical five-point one-loop amplitude. That is, with these
contributions the infrared-divergent part of our amplitude is given by a five-point tree HEFT
amplitude multiplied by a infrared phase, which exactly matches Weinberg’s prediction [162].
We explain this matching in detail in appendix B, and now move on to computing the
contributions from these new diagrams.

The first new cut we consider is C3 in (5.2) which we replicate below for convenience

C3 =

p1

p2

H

p2′

H p1′

k`2
, (5.33)

which features the gluing of a four-point tree-level HEFT amplitude with two scalars
into a new ingredient, the five-point tree level HEFT amplitude with four scalars. This
five-point amplitude was derived in section 4 using BCFW recursion relations and is given
in (4.15), (4.16) and (4.17). The contribution from cut C3 is then given by

C3 =
∫
dD`1
(2π)D δ(v̄1·`1)

∑
h2

Mh2
5 (`2, v̄1, v̄2)A−h2

4 (−`2, k, v̄1)
`22

. (5.34)

Next we perform the state sum, tensor reduce the result and finally perform IBP reduction
to a set of MIs. In addition to the master integrals found in cut diagram C1, we also have
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to include the following master integrals

Ĩ1 := j01010 = ,

Ĩ2 := j01011 = ,

Ĩ4 := j01111 = .

(5.35)

The contributions from this cut are then given by

C3 = C1 + c̃1
2 Ĩ1 + c̃2

2 Ĩ2 + c̃4
2 Ĩ4, (5.36)

which include the contributions from cut C1 as expected. Once again these contributions
will be doubled up when we include also the swapped graphs in (5.3).

5.5 Cut four — the second “snail” diagram

In addition to cut C3 we also have contributions coming from cut diagram C4 which involves
gluing in the six-point tree-level HEFT. The cut diagram has the form

C4 =

p1

p2

H

p2′

H p1′

k

`3
. (5.37)

The six-point tree-level amplitude with four scalars and two radiated gravitons was derived
in section 4. Computing this contribution is more involved than the previous cut diagrams,
hence we relegate the details to appendix D.

Cut diagram C4 contains those master integrals probed by cut C2 but in addition the
box Ĩ4 previously found from cut C3 and the following new master integral

Ĩ3 := j01101 = . (5.38)

The contributions from cut diagram C4 are then given by

C4 = C2 + c̃3 Ĩ3 + c̃4 Ĩ4, (5.39)

and contain those contributions coming from cut C2 as expected and where c̃4 matches the
same coefficient appearing in cut C3.
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5.6 Final result before integration

We can now merge the contributions from all the cuts according to (5.6) and present the
one-loop five-point amplitude at order m̄3

1m̄
2
2 in the HEFT expansion in terms of the master

integrals and their coefficients:

M(1)
m̄3

1m̄
2
2

= (2 ∗ C1) ∪ C2 ∪ (2 ∗ C3) ∪ C4 =
4∑
i=1

c̃iĨi +
6∑
i=1

ciIi . (5.40)

The contribution at order m̄2
1m̄

3
2 can be found by swapping labels of the massive lines 1↔ 2

in the above amplitude and together these contributions completely determine the classical
one-loop five-point amplitude,14

M(1)
5,HEFT = (Mm̄3

1m̄
2
2

+Mm̄2
1m̄

3
2
)|m̄i→mi . (5.41)

In the next section, we outline our strategy used to evaluate the master integral topolo-
gies (6.3) and present complete analytic results in dimensional regularisation (around
D=4). In section 7 we will then discuss the full, integrated result of the one-loop five-point
amplitude.

6 The one-loop integrals from differential equations

6.1 The structure of the integrals

The integrals we are considering have the form15

ja1,1,a3,a4,a5 = µ4−D
IR

∫
dD`

(2π)D
−iπ δ(v̄1 · `)

(`2 + iε)a1 [(`+ q1)2 + iε]a3 [(`− q2)2 + iε]a4
PV 1

(v̄2·`)a5
,

(6.1)
where

− iπ δ(x) = 1
2

( 1
x+ iε

+ 1
−x+ iε

)
, PV 1

x
= 1

2

( 1
x+ iε

− 1
−x+ iε

)
. (6.2)

We compute the master integral (MI) basis using LiteRed2 [155, 156]. The full list of MIs
from the merger of the contributions from the cuts in section 5 are

Ĩ1 = j01010 = , Ĩ2 = j01011 = ,

Ĩ3 = j01101 = , Ĩ4 = j01111 = ,

14The m̄3
1m̄

3
2 (or hyper-classical) contribution will not be needed but can be computed as discussed in

appendix C.
15The definitions of the integrals I1 and I2 in the ancillary files differ from those in the main text (in

(6.3) and below in (6.4)) by a factor of 1/2. The coefficients of these integrals will also change accordingly
so that the complete expression for the amplitude is the same here as in the paper.
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I1 := j11010 = , I2 = j11100 = ,

I3 := j11011 = , I4 = j11101 = ,

I5 := j11110 = , I6 := j11111 = , (6.3)

where we dubbed with a tilde the integrals which have pinched the massless propagator D1
in (5.9). These are new types of integrals that appear in the bremsstrahlung process, and
their contribution is fundamental for the infrared behaviour of the amplitude, as will be
discussed in appendix B.

In general, these integrals depend on the five kinematic variables (ȳ, w̄1, w̄2,−q2
1,−q2

2)
introduced in (2.6). The strategy to compute the integrals is the following:

1. The delta function and the principal value make most of the integrals finite. Then it
is easy to evaluate the integrals by direct integration of Feynman parameters, except
for Ĩ4, I5 and I6.

2. We consider the two remaining box MIs, Ĩ4, I5, and their sub-topologies separately
setting up the differential equations for a single kinematic variable for each of them
(ȳ and w̄1, respectively).

3. We find the ε-canonical form [161] for each of these two linear systems of differential
equations and solve them (details can be found in appendix A).

4. We then compute the asymptotic behaviour (boundary value) near a codimension-one
surface in the space of the kinematic variables (ȳ∼1 and w̄1∼0, respectively), using
the method of regions by [177–179].

5. Finally, since we are interested in the scattering amplitude to order O(ε0), we can
write the pentagon I6 as a linear combination of the four boxes [158], as we show
later in this section.

6.2 The analytic form of the master integrals

In the following, we present the analytic expression of the MIs in dimensional regularisation
up to O(ε):

Ĩ1 =− w̄1
8π

[
1+
(
iπ+2−γE+logπ−log w̄2

1
µ2

IR

)
ε̃

]
, Ĩ2 =−

iπ−2log
(√

ȳ2−1+ȳ
)

16π
√
ȳ2−1

,

Ĩ3 =− i

16
√
ȳ2−1

, Ĩ4 = 1
32πw̄1w̄2ε̃

+
iπ−log w̄2

2
µ2

IR

32πw̄1w̄2
,
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I1 =−
iπ−2log

√
−q2

2+w̄2
1+w̄1√

−q2
2

16π
√
−q2

2 +w̄2
1

, I2 =− i

16
√
−q2

1

,

I3 =
iπ−2log

(√
ȳ2−1+ȳ

)
16π(−q2

2)
√
ȳ2−1

, I4 = i

16(−q2
1)
√
ȳ2−1

,

I5 = 1
32π

(
−q2

1
)
w̄1ε̃

+
iπ−2log q2

1
q2
2
−log w̄2

1
µ2

IR

32π
(
−q2

1
)
w̄1

, (6.4)

where, for convenience, we defined ε̃ = ε e(γE−log π)ε, γE is the Euler-Mascheroni constant
and µIR is the infrared scale introduced in dimensional regularisation. We have expanded
the Ĩ1 integral up to and including O(ε) since its coefficient arising from IBP reduction
is infrared divergent. The final integral to be computed is the pentagon I6, which can be
decomposed in terms of the boxes I3,4,5 and Ĩ4 [180, 181]:

I6 = −2q2
2w̄1w̄2ȳ + 2q2

1w̄
2
1 − q4

2 ȳ
2 + q2

1q
2
2 ȳ

2 + q4
2 − q2

1q
2
2

2
(
−2q2

1q
2
2w̄2w̄1ȳ + q4

1w̄
2
1 + q4

2w̄
2
2
) I3

+ −2q2
1w̄1w̄2ȳ + 2q2

2w̄
2
2 − q4

1 ȳ
2 + q2

1q
2
2 ȳ

2 + q4
1 − q2

1q
2
2

2
(
−2q2

1q
2
2w̄2w̄1ȳ + q4

1w̄
2
1 + q4

2w̄
2
2
) I4

+ −q
2
1w̄2w̄1ȳ − q2

2w̄2w̄1ȳ + q2
1w̄

2
1 + q2

2w̄
2
2 − 2w̄2

2w̄
2
1

−2q2
1q

2
2w̄2w̄1ȳ + q4

1w̄
2
1 + q4

2w̄
2
2

Ĩ4

+ −q
4
1w̄1ȳ + q2

1q
2
2w̄1ȳ − 2q2

1w̄
2
1w̄2 + q2

1q
2
2w̄2 − q4

2w̄2
−2q2

1q
2
2w̄2w̄1ȳ + q4

1w̄
2
1 + q4

2w̄
2
2

I5 .

(6.5)

The infrared-divergent part of I6 and its imaginary part take a particularly simple form:

I6 = − 1
32π(−q2

1)w̄1w̄2ε̃
+O(ε̃ 0) , (6.6)

Im I6 = − 1
32(−q2

1)w̄1w̄2
− 1

16 q2
1q

2
2
√
ȳ2 − 1

+O(ε̃) . (6.7)

7 Final result after integration and checks

Our final result before integration was written in (5.40) and (5.41). The expression for
the one-loop amplitude in (5.40) is expanded in our basis of master integrals, with the
ten coefficients ci and c̃i potentially having spurious Gram determinant singularities at
εµνρσ v̄

µ
1 v̄

ν
2q
ρ
1q
σ
2 = 0. Instead, we chose to present the result in terms of the functions that

appear in the integrals, which makes the analytic structures more transparent:

M(1)
m̄3

1m̄
2
2

= dIR
ε

+ R + iπ i1 + iπ√
ȳ2 − 1

i2 + c1,0 I1 + c2,0 I2

+ lw̄1 log w̄2
1

µ2
IR

+ lw̄2 log w̄2
2

µ2
IR

+ lq log q
2
1
q2

2
+ lȳ

log
(√

ȳ2 − 1 + ȳ
)

√
ȳ2 − 1

+O(ε0) ,
(7.1)

where the coefficients dIR, R, ii, li are rational functions of the kinematics variables and are
homogeneous in the linearised field strength Fµνk , and µIR is an infrared scale. In particular,
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each of the coefficients is a linear combination of the various cis and c̃is and we notice these
combinations are always manifestly free of spurious Gram determinant singularities. Here
we are considering the amplitude in dimensional regularisation up to terms O(ε0) and the
second subscript of the coefficients specify the power of ε in their Laurent expansion.

A first non-trivial check of our amplitude is to confirm that the coefficients of:

1. the infrared divergences dIR,

2. the logarithms of the infrared scale −(lw̄1 + lw̄2),

3. the associated imaginary part i1

are all the same, as dictated by unitarity and the Callan-Symanzik equation (for a recent
discussion, see [182]):

dIR = i1 = −lw̄1 − lw̄2 = 8q2
1w̄2w̄

2
1 c̃1,−1 + q2

1 c̃4,0 + 2w̄2c5,0 + c6,0
128π

(
−q2

1
)
w̄1w̄2

= − iκ
2

32πm̄1w̄1M(0)
5,m̄2

1m̄
2
2
.

(7.2)

The fact that the infrared-divergent part is proportional to the tree-level amplitude can
be also seen as a direct consequence of Weinberg’s exponentiation of infrared divergences,
which is reviewed in appendix B:

M2→3|IR-div = e
iG
ε

(−m̄1m̄2
(2ȳ2−1)√
ȳ2−1

−m̄1w̄1−m̄2w̄2)
M2→3|finite . (7.3)

The second imaginary contribution i2 is also proportional to the tree-level amplitude:

i2 = q2
1q

2
2 (c̃2,0 + c̃3,0) + q2

1c3,0 + q2
2c4,0 + c6,0

64q2
1q

2
2

= iκ2

64π
m̄1w̄1ȳ (2ȳ2 − 3)

(ȳ2 − 1) M(0)
5,m̄2

1m̄
2
2
,

(7.4)

but is not accompanied by corresponding infrared-divergent or scale dependent terms. To
understand the difference compared to the previous case, we need to take into account the
m̄ expansion. Indeed, we have shown in section 3 that this expansion implies the use of the
principal value prescription for the linear propagators, which in turn has the effect to make
the otherwise divergent integrals Ĩ2, Ĩ3, I3 and I4 finite, without altering their imaginary
part. Then, i2 in (7.4) should be thought of as the imaginary part corresponding to infrared
divergent/scale dependent contributions that have been moved to iteration terms.16

Moreover, the amplitude (7.1) has spurious singularities in the physical region which
have to cancel when we combine different logarithmic contributions near the poles. First of
all, let us emphasise that the argument of the logarithm and the square roots appearing in
I1 and I2 are positive in the physical region, as discussed in section 2.

16This can be checked explicitly by expanding Weinberg’s soft phase in terms of the pi variables, instead
of p̄i to order m3

1m
2
2 or m2

1m
3
2.
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At leading order in the soft limit, i.e. O(ω−1), only the two-massless triangles contribute,
and they reproduce exactly Weinberg’s soft factor in the HEFT (3.28):

c1I1 + c2I2 = κ

2
v̄1·Fk·v̄2
w̄1 w̄2

(
v̄1·Fk·q
w̄1

+ v̄2·Fk·q
w̄2

)
M(1)

4,m̄3
1m̄

2
2

+O(ω0) , (7.5)

q ' q1 ' −q2 as in section 3.3 andM(1)
4,m̄3

1m̄
2
2
is the classical four-point one-loop amplitude:

M(1)
4,m̄3

1m̄
2
2

= iG2 m̄3
1m̄

2
2

6π2(5ȳ2 − 1)√
−q2 . (7.6)

Finally, we notice that:

1. lw̄2 and lȳ have a double pole at ˆ̄y1 = w̄2
1+w̄2

2
2w̄1w̄2

≥ 1 ,

2. lw̄2 , lq and lȳ have a double pole at ˆ̄y2 = (q2
1w̄1)2+(q2

2w̄2)2

2q2
1q

2
2w̄1w̄2

≥ 1 ,

3. c1, c2 and lq have a pole of order four at17 ˆ̄w1 = |q
2
1−q

2
2|

2
√
−q2

1
,

4. the rational terms R have single poles in both ˆ̄y1 and ˆ̄y2 and a pole of order three
in ˆ̄w1.

For example, near ȳ ' ˆ̄y1, the logarithms simplify as

log
(√

ȳ2 − 1 + ȳ
)

√
ȳ2 − 1

=
2w̄1w̄2 log w̄1

w̄2

w̄2
1 − w̄2

2
+ 4w̄2

1w̄
2
2
w̄2

1 − w̄2
2 +

(
w̄2

1 + w̄2
2
)

log w̄2
w̄1(

w̄2
1 − w̄2

2
) 3

(
ȳ − ˆ̄y1

)
+ · · · ,

(7.7)
and one can show that the double poles and the logarithms cancel when we combine lw̄2

and lȳ. Nevertheless, the leftover term has still a simple pole in ȳ ' ˆ̄y1. This pole is only
cancelled once we take into account the rational contribution R, which is needed to restore
locality and cancel spurious poles [183, 184]. The spurious singularities in ȳ ' ˆ̄y2 and
w̄1 ' ˆ̄w1 share the same fate, even though showing it explicitly is more involved because
the terms to be combined are more complicated.

As a final check, the present authors and those of [164] have performed independent
comparisons of their two results for the one-loop amplitude, finding perfect agreement.

8 Waveforms from the HEFT

8.1 Blitz review of the KMOC approach

In this section we review the connection between waveforms and amplitudes following the
KMOC approach [150–152]. The two heavy objects are taken to be in an initial state

17The combination −4q2
1w̄

2
1 −

(
q2
1 − q2

2
)2 is non-negative. Indeed, if we choose the frame where v̄1 =

(1, 0, 0, 0) and k = ω(1, 0, 0, 1), then this becomes 4ω2(q2
1,x + q2

1,y). This means that the poles sit in the
physical configuration for which ~k, ~q1 and ~q2 are taken to be aligned (modulo boosts), which is expected to
be smooth. Likewise, one can show that ŷ1 corresponds to ~k being orthogonal to ~q2 in the rest frame of
particle 1.
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represented as

|ψ〉in :=
∫
dΦ(p1)dΦ(p2)ei(p1·b1+p2·b2)φ(p1)φ(p2)|p1p2〉in , (8.1)

where the wavefunctions φ(p1) and φ(p2) are peaked around the classical values of the
momenta. We use the same conventions as [150],

dΦ(p) := dDp

(2π)D−1 δ
(+)(p2 −m2) , |p〉 := a†(~p)|0〉 , (8.2)

with [a(~p), a†(~p ′)] = (2π)D−1(2Ep)δ(D−1)(~p − ~p ′), for the massive objects. Similarly, for
gravitons we choose

dΦ(k) := dDk

(2π)D−1 δ
(+)(k2) , |kh〉 := a†h(~k)|0〉 , (8.3)

with
[
ah(~k), a†h′(~k ′)

]
= (2π)D−1(2Ek)δ(D−1)(~k − ~k ′)δhh′ , where h denotes the helicity.

The waveform we are interested in is related to the expectation value of the Riemann
tensor [150–152],

〈Rout
µνρλ(x)〉ψ := out〈ψ|Rµνρλ(x)|ψ〉out = in〈ψ|S†Rµνρλ(x)S|ψ〉in

= in〈ψ|Rµνρλ(x)|ψ〉in + 2Re i in〈ψ|Rµνρλ(x)T |ψ〉in + in〈ψ|T †Rµνρλ(x)T |ψ〉in ,
(8.4)

where S = 1 + iT and Rµνρλ(x) is the Riemann tensor, evaluated at the position x of the
observer, in the far future of the event. Expanding Rµνρλ(x) as

Rµνρλ(x) = κ

2
∑
h

∫
dΦ(k)

[
ah(~k)e−ik·xk[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k) + h.c.

]
, (8.5)

one finds that in〈ψ|Rµνρλ(x)|ψ〉in = 0, and [150–152]

in〈ψ|Rµνρλ(x)T |ψ〉in

= κ

2
∑
h

∫
dΦ(p1)dΦ(p2)dΦ(p′1)dΦ(p′2)dΦ(k)φ∗(p′1)φ∗(p′2)φ(p1)φ(p2)

e−ik·x+i(p1−p′1)·b1+i(p2−p′2)·b2 k[µε
(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k) 〈p′1p′2kh|T |p1p2〉

= κ

2
∑
h

∫
dΦ(k) e−ik·xk[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k)

∫
dΦ(p1)dΦ(p2)φ(p1)φ(p2)

∫
dDq1

(2π)D−1
dDq2

(2π)D−1 δ(2p̄1·q1)δ(2p̄2·q2)ei(q1·b1+q2·b2)〈p′1p′2kh|T |p1p2〉

φ∗(p1−q1)φ∗(p2−q2) ,

(8.6)

where we introduced barred variables in the delta functions as in (2.2). In the last
equality we have also changed integration variables from (p′1, p′2)→(q1, q2). Approximating
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φ(pi−qi)→φ(pi), with i = 1, 2, we obtain

in〈ψ|Rµνρλ(x)T |ψ〉in = κ

2

∫ 2∏
j=1

dΦ(pj) |φ(p1)|2|φ(p2)|2

∑
h

∫
dΦ(k)e−ik·x k[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k)

∫
dDq1

(2π)D−1
dDq2

(2π)D−1 δ(2p̄1·q1)δ(2p̄2·q2)ei(q1·b1+q2·b2)〈p′1p′2kh|T |p1p2〉 .

(8.7)

Next we consider the term in〈ψ|T †Rµνρλ(x)T |ψ〉in in (8.4). It can be rewritten in a similar
form to the previous one noting that

in〈ψ|T †Rµνρλ(x)T |ψ〉in = κRe
∑
h

∫
dΦ(k)e−ik·x k[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k) in〈ψ|T †ah(~k)T |ψ〉in .

(8.8)

Following identical manipulations as before and combining the two non-vanishing contri-
butions from (8.4), we arrive at the following expression for the expectation value of the
Riemann tensor:

〈Rout
µνρλ(x)〉ψ

=κRe
{
i

∫ 2∏
j=1

dΦ(pj) |φ(p1)|2|φ(p2)|2
∑
h

∫
dΦ(k)e−ik·x k[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k)

∫ 2∏
j=1

dDqj
(2π)D−1 δ(2p̄1·q1)δ(2p̄2·q2)ei(q1·b1+q2·b2)

[
〈p′1p′2kh|T |p1p2〉−i〈p′1p′2|T †ah(~k)T |p1p2〉

]}
.

(8.9)

Of course one can also follow the same procedure for hµν(x). With the free-field expansion

hµν(x) = κ
∑
h

∫
dΦ(k)

[
ah(~k)ε(h)∗

µ (~k)ε(h)∗
ν (~k)e−ik·x + h.c.

]
, (8.10)

one quickly arrives at18

〈hout
µν (x)〉ψ

= 2κRe
{
i

∫ 2∏
j=1

dΦ(pj) |φ(p1)|2|φ(p2)|2
∑
h

∫
dΦ(k)e−ik·x ε(h)∗

µ (~k)ε(h)∗
ν (~k)

∫ 2∏
j=1

dDqj
(2π)D−1 δ(2p̄1·q1)δ(2p̄2·q2)ei(q1·b1+q2·b2)

[
〈p′1p′2kh|T |p1p2〉−i〈p′1p′2|T †ah(~k)T |p1p2〉

]}
.

(8.11)

18In our conventions the linearised Riemann tensor is Rµνρλ= 1
2

(
∂ρ∂νhµλ+∂λ∂µhνρ−∂λ∂νhµρ−∂ρ∂µhνλ

)
.
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Note that 〈Rout
µνρλ(x)〉ψ or 〈hout

µν (x)〉ψ are effectively computed using

〈ψ|S†ah(~k)S|ψ〉 = 〈ψ|iah(~k)T + T †ah(~k)T |ψ〉 ,

〈ψ|S†a†h(~k)S|ψ〉 = 〈ψ| − iT †a†h(~k) + T †a†h(~k)T |ψ〉 ,
(8.12)

where from now on we will drop the subscript “in” in the state |ψ〉.

8.2 From KMOC to HEFT

Our next task is to compute the quantity that appears in (8.9),

〈p′1p′2kh|T |p1p2〉 − i〈p′1p′2|T †ah(~k)T |p1p2〉 , (8.13)

at one loop in the PM expansion. The first term is the complete amplitude, where we note
that in our conventions

〈p′1p′2kh|i T |p1p2〉 := (2π)Dδ(D)(q1 + q2 − k)M5(q1, q2;h) , (8.14)

where we have also indicated the dependence on the polarisation h of the graviton. Next
we insert a sum over intermediate states in the second term in (8.13),

〈p′1p′2|T †ah(~k)T |p1p2〉 =
∑
n

〈p′1p′2|T †|n〉〈n|ah(~k)T |p1p2〉 =
∑
n

〈p′1p′2|T †|n〉〈n, kh|T |p1p2〉 .

(8.15)

The first intermediate state contributing at one loop is |n〉 = |r1r2〉 with r1, r2 being two
scalars, ∑

r1,r2

〈p′1p′2|T †|r1r2〉(0)〈r1r2k
h|T |p1p2〉(0) , (8.16)

where the superscripts in (8.16) denote the loop order. This contribution is (after an
expansion in m̄i) nothing but a two massive particle reducible diagram, shown below
in (8.17):

p1

p2

H

p2′

H

p1′

k

(8.17)

This contribution is of O(m̄3
1m̄

3
2) and is thus hyper-classical compared to the classical

one-loop amplitude computed in section 5. Therefore subtracting the expression in (8.15)
from (8.13) has the effect to peel the hyper-classical contribution off the complete one-loop
five-point matrix element. In our HEFT approach, the subtraction of such terms is achieved
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by simply dropping all two massive particle reducible diagrams, very similarly to what was
done in [129] in the elastic case; in other words, the HEFT directly computes the classical
part of (8.13). This is clearly one of the strengths of the HEFT.

One could also consider the case where |n〉 = |r1r2k̃
h̃〉, with an additional intermediate

graviton but these all give a vanishing contribution because of the kinematics. Finally, there
are also hyper-classical iteration diagrams such as those in (4.3) involving a three-point
HEFT amplitude with an external graviton. These terms are also not 2MPI and hence are
also subtracted by pieces in (8.16), this time involving a disconnected five-point amplitude.
However, even if these terms were not subtracted, they only involve zero-energy gravitons
and hence do not contribute to 〈Rout

µνρλ(x)〉ψ, but would to 〈hout
µν (x)〉ψ.

Two brief comments are in order here. First, we note that hyper-classical contribu-
tions such as (8.16) exponentiate in impact parameter space, which we show explicitly in
appendix C. We also note that a similar one-loop cancellation in the expression of the
waveforms at that order was advocated in [151], which studied generalisations of the eikonal
in the presence of radiation [144, 185, 186].

Summarising, we have found that the quantity of interest is directly the one-loop matrix
element computed in the HEFT from 2MPI diagrams, which we calculated in sections 5
and 6, and summarised in section 7:

i
(
〈p′1p′2kh|T |p1p2〉(1)−i

∑
r1,r2

〈p′1p′2|T †|r1r2〉(0)〈r1r2k
h|T |p1p2〉(0)

)
= (2π)Dδ(D)(q1+q2−k)M(1)

5,HEFT ,

(8.18)

where M(1)
5,HEFT is given in (5.41). We can then use this result to evaluate the earlier

expressions (8.9) and (8.11) for the expectation value of the Riemann tensor and the
gravitational field.

8.3 From HEFT to waveforms

Combining (8.9) and (8.11) with (8.18), we can write the one-loop expectation value of the
Riemann tensor or the metric in terms of the 2MPI five-point HEFT amplitude:

〈Rout
µνρλ(x)〉ψ = κRe

[
i

∫ 2∏
j=1

dΦ(pj) |φ(p1)|2|φ(p2)|2

∑
h

∫
dΦ(k)e−ik·x k[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k) W̃

]
,

(8.19)

and

〈hout
µν (x)〉ψ=2κRe

[
i

∫ 2∏
j=1

dΦ(pj) |φ(p1)|2|φ(p2)|2
∑
h

∫
dΦ(k)e−ik·x ε(h)∗

µ (~k)ε(h)∗
ν (~k) W̃

]
,

(8.20)
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where W̃ = W̃ (~b, kh) is given by19

W̃ (~b, kh) := −i
∫

dDq1
(2π)D−1

dDq2
(2π)D−1 δ(2p1·q1)δ(2p2·q2)ei(q1·b1+q2·b2)〈p′1p′2|S†ah(~k)S|p1p2〉 .

(8.21)
At one loop, this expression reduces to

W̃ (1)(~b, kh) := −i
∫
dµ(D) ei(q1·b1+q2·b2) M(1)

5,HEFT(q1, q2;h) , (8.22)

and we have defined

dµ(D) := dDq1
(2π)D−1

dDq2
(2π)D−1 (2π)Dδ(D)(q1 + q2 − k)δ(2p1·q1)δ(2p2·q2) . (8.23)

As usual, kh denotes a graviton with helicity h=±. Note that having eliminated any
hyper-classical terms from the waveform, we are now free to express the HEFT amplitude
in terms of unbarred variables since any feed-down terms will be quantum.

W̃ (~b, kh) is directly related to the waveforms, but before making this connection more
precise we would like to pause and make a few comments:

1. Dependence on ~b. First, the dependence of (8.22) on ~b can be made more ex-
plicit: changing variables from (q1, q2) to the variables (q, k) introduced in (2.5), we can
rewrite (8.22) as

−iei
b1+b2

2 ·k
∫

dDq

(2π)D−2 δ
(
2p1·

(
q+k

2
))
δ
(
2p2·

(
−q+k

2
))

eiq·(b1−b2)M(1)
5,HEFT

(
q+k

2 ,−q+
k

2 ;h
)
,

(8.24)

showing a non-trivial dependence on b:=b1 − b2 and a simple phase dependence on the
average impact parameter (b1 + b2)/2. Alternatively, one may observe that under a
translation (b1, b2)→(b1+a, b2+a), (8.22) picks a factor of eik·a, hence it is sufficient to
compute the quantity

−i
∫
dµ(D) eiq1·b M(1)

5,HEFT(q1, q2;h) . (8.25)

We will henceforth set b2=0 and b1=b and drop the overall phase in (8.24).

2. Infrared (in)finiteness of the gravitational waveform. The one-loop HEFT
amplitudeM(1)

5,HEFT in (8.22) contains infrared divergences, which in gravity give a non-
vanishing contribution to the waveform. This is in agreement with earlier computations
performed in the PN expansion [75]. While such divergent phases drop out of quantities
such as cross sections, they are still present in the waveform, which is linear in the classical
(or HEFT) amplitude. The question then arises as to what is their fate. The answer was
suggested in [149], where the waveform in the time-domain was considered and it was noted
that the divergent phase simply shifts time (in the exponential e−ik·x in (8.9)) by an amount

19The factor of −i cancels the i which is present in our definition of amplitudes as matrix elements of i T ,
see (8.14).
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proportional to 1/ε. Using the classical limit of Weinberg’s formula computed in (B.10), we
see that this shift has the form

t→ t− G(p1 + p2)·n
ε

, (8.26)

with kµ=ω nµ. Physically this time shift is not relevant as ultimately we only deal with time
differences — we measure time with respect to when an experimenter begins tracking the
wave signal. As a consequence, we can safely drop the infrared divergences in the one-loop
amplitude.

It is also interesting to note that, by contrast, the electromagnetic analogue of the
classical waveform is free of infrared divergences. Indeed, the infrared-divergent Coulomb
phase in QED [162], evaluated in the HEFT expansion is e

i
4πε e1e2

y√
y2−1

+O(m−2
i )

, and only
has hyper-classical contributions. The absence of classical infrared divergences in QED has
a very clear physical interpretation: the photon does not interact electromagnetically with
the system at large distances, while the graviton is influenced by the total (ADM) mass of
the binary system. For example, this difference is crucial when computing the waveshape
of [151] at next-to-leading order, which is finite in electrodynamics but infrared-divergent
in gravity.

In conclusion, we can just focus on the simpler four-dimensional integral

W (1)(b, kh) := −i
∫
dµ(4) eiq1·b M(1)

5,HEFT,fin(q1, q2;h) , (8.27)

whereM(1)
5,HEFT,fin is the infrared-finite part of the expression given in (5.41), and dµ(4) is

the measure introduced in (8.23) evaluated for D=4. We will then safely use W in (8.27)
within (8.19) and (8.20) instead of W̃ .

8.4 Waveforms and Newman-Penrose scalar from the HEFT

In the previous section we saw that 〈Rout
µνρλ〉ψ can be written as in (8.19), which for

convenience we recast here as20

〈Rout
µνρλ(x)〉ψ = i

κ

2
∑
h

∫
dΦ(k)

[
e−ik·x k[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k) W (b, kh)

− eik·x k[µε
(h)
ν] (~k)k[ρε

(h)
λ] (~k) W ∗(b, kh)

]
.

(8.28)

At large observer’s distance r:=|~x|, the exponentials in (8.28) oscillate very fast. Introducing
the retarded time u:=t−r, one can rewrite the plane waves e∓ik·x using k·x=ω(t−rx̂·n̂)=
ωu+ωr(1− cos θ). A well-known stationary phase approximation argument [187] then gives∫

dΦ(k)e∓ik·xf(ω, ωn̂)→ ∓ i

4πr

∫ +∞

0

dω

2π e∓iωuf(ω, ωx̂) , (8.29)

20From now on we drop the integrations
∫∏2

j=1 dΦ(pj) |φ(p1)|2|φ(p2)|2 as we are assuming that the
wavefunctions φ(pi) are peaked around the classical value of the momenta of the heavy objects, and are
furthermore simply spectators in the evaluations.
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where f(~k)=f(ω, ωn̂) is a function of the graviton momentum ~k; note that after the
minimisation, the direction n̂ of ~k is aligned to that of ~x. Using this result we can
then rewrite

〈Rout
µνρλ(x)〉ψ

r→∞= κ

8πr
∑
h

∫ +∞

0

dω

2π
[
k[µε

(h)∗
ν] (~k)k[ρε

(h)∗
λ] (~k)W (b, kh)e−iωu

+ k[µε
(h)
ν] (~k)k[ρε

(h)
λ] (~k) W ∗(b, kh)eiωu

]
k=ω(1,x̂)

.

(8.30)

Several quantities can now be introduced to describe the waveforms. One that is commonly
used in the study of gravitational waves is the Newman-Penrose scalar [163]

Ψ4(x) := NµMν ∗NρMσ ∗〈W out
µνρσ(x)〉 . (8.31)

Here W is the Weyl tensor, in our case equal to the Riemann tensor, and

Nµ = ζµ , Mµ = ε(+)
µ , M∗µ = ε(−)

µ , (8.32)

where ζ is a reference vector chosen such that ζ·ε(±)=0, and ζ·n=1. Ψ4(x) is often used to
illustrate the gravitational waveform [188–190], and is also the quantity considered in the
open-source numerical relativity code GRCHombo [191, 192].

Starting from (8.30), we can now compute Ψ4(x). In the far-field domain it has the
form

Ψ4(x) r→∞−→ Ψ0
4(x)
|~x |

, (8.33)

where

Ψ0
4(x) = κ

8π

∫ +∞

0

dω

2π ω2
[
W (b; k−)e−iωu +

[
W (b; k+)]∗eiωu

]
k=ω(1,x̂)

, (8.34)

where u is the retarded time, and the ε(±)
µ vectors satisfy

ε(+) ∗
µ = ε(−)

µ , ε(±)·ε(±) ∗ = −1 , ε(±)·ε(∓) ∗ = 0 . (8.35)

This is the result we will use to compute waveforms in the time domain.
Three final comments are in order here.

1. We recall that W was defined in (8.27). It is constructed out of the finite part of the
2MPI HEFT amplitude, which contains only classical physics.

2. Furthermore, we observe that at tree level

W (0)(b, k±) =
[
W (0)(−b, k∓)

]∗
, (8.36)

which follows from the form of the tree-level five-point amplitude and the definition
of W in (8.27).

– 41 –



J
H
E
P
0
6
(
2
0
2
3
)
0
4
8

3. Finally we comment that a quantity widely used to characterise the waveforms is
the gravitational strain h, of which Ψ4 is the second derivative with respect to the
retarded time u, Ψ4=d2h/du2. This can also be obtained from our previous formulae:

h(x) = − κ

8π|~x |

∫ +∞

0

dω

2π
[
W (b; k−)e−iωu +

[
W (b; k+)]∗eiωu

]
k=ω(1,x̂)

. (8.37)

In the next section we will perform numerical integrations and will present various plots of
W (b, k±) and ω2W (b, k±) which will illustrate the waveforms in the frequency domain; we
will then move on to show the waveforms in the time domain as obtained from (8.34). Note
that from now on we will refer to W (b, k±) simply as the spectral waveform.

8.5 Set-up of the integration for waveforms

In this section we address the computation of the one-loop waveform introduced in (8.27),
which enters the Newman-Penrose scalar Ψ0

4 (8.34). A convenient way to perform the
integrations in (8.27) was discussed in [150]. After integrating out q2 using the delta
function, one can parameterise the remaining integration variable q1 as (renaming q1 → q

for notational simplicity),

q = z1v1 + z2v2 + zvṽ + zbb̃ , (8.38)

where

v1 = p1
m1

, v2 = p2
m2

, ṽ = v√
−v2

, b̃ = b√
−b2

, (8.39)

and

v = ε(• v1 v2 b) , with v2 = b2(y2 − 1) . (8.40)

Choosing b to be the asymptotic impact parameter, we also have that b·v1 = b·v2 = 0. The
Jacobian is then d4q =

√
y2 − 1

∏
a=1,2,v,b dza, so that

dµ(4) → 1
(4π)2

√
y2 − 1
m1m2

∏
a=1,2,v,b

dza δ
(
z1 + yz2

)
δ
(
z2(y2 − 1) + w2

)
. (8.41)

The delta functions set

z1 = y

y2 − 1w2 , z2 = − w2
y2 − 1 , (8.42)

hence (8.27) becomes21

W = −i
(4π)2m1m2

√
y2 − 1

∫
dzvdzb e

−izb
√
−b2 M(1)

5,HEFT,fin

∣∣∣
z1= y

y2−1
w2 , z2=− w2

y2−1

. (8.43)

We also note that

q2 = − w2
2

y2 − 1 − z
2
v − z2

b . (8.44)
21The zb integration can, in principle, be performed analytically by closing the integration contour in the

lower-half plane. Therefore, this integration can be rewritten as a sum over residues on poles and integrals
over discontinuities on branch cuts using Cauchy’s theorem. To compute the waveform in the time domain,
it is convenient to perform the ω integration first, which evaluates to (derivatives of) a delta function and a
PV of u− zb

√
−b2 for the real and imaginary part of the amplitude, respectively.
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8.6 Waveform for binary scattering

We now move on to evaluate the waveforms numerically using our one-loop result for the
HEFT amplitude. For completeness we will first briefly review the tree-level waveforms,
before considering the one-loop case. In the following we parameterise the kinematic data as

v1 = (1, 0, 0, 0) ,

v2 = (y,
√
y2 − 1, 0, 0) ,

k = ω(1, sin θ cosφ, sin θ sinφ, cos θ) ,

ε(±) = 1√
2

(0, cos θ cosφ∓ i sinφ, cos θ sinφ± i cosφ,− sin θ) ,

(8.45)

therefore working in the rest frame of the first heavy object. We also choose the impact
parameter as b=

√
−b2(0, 0, 1, 0). The polarisation vectors ε(±) are related to the graviton

polarisation tensors corresponding to positive/negative helicity as

ε(±±) = ε(±) ⊗ ε(±) = εTT,+ ± i εTT,× , (8.46)

where we have also written the relation of the polarisation tensors of ± helicity to the two
standard transverse-traceless (TT) polarisation tensors plus (+) and cross (×).

8.6.1 Tree level

At tree level the waveform is given by

W
(0)
± = −i

∫
dµ(4) eiq1·b M(0)

m̄2
1m̄

2
2

:= m1m2W
(0)
±,m1m2

= (m1 +m2)2χ(1− χ)W (0)
±,m1m2 ,

(8.47)

whereM(0)
m̄2

1m̄
2
2
is the classical tree-level five-point amplitude, obtained by taking the m̄2

1m̄
2
2

term in the HEFT expansion which was computed in section 4.5. W± is shorthand for
W (b, h±), and the subscript m1m2 indicates the mass dependence of the corresponding
term. We have also introduced

χ := m2
m1 +m2

, (8.48)

which parameterises the relative mass ratio of the two massive objects. The hyper-classical
terms at tree-level in (4.3) are subtracted in the calculation of the waveform, as explained
in section 8.2. This has also been noted in [193]. As mentioned previously, this allows us to
work with mi and vi instead of their barred versions, since any feed-down terms we generate
will be quantum.

In figure 1 we plot the quantities ω2W
(0)
± (ω, n̂) at θ → π

4 , φ →
π
2 , y → 2, where we

stripped off an overall dimensionful factor of κ
3(m1+m2)2χ(1−χ)

(4π)2(−b2) ; these appear in the integrand
of the Newman-Penrose scalar (8.34). In figure 2 we then plot the Newman-Penrose scalar
in the time domain given in (8.34) (up to a factor of κ4(m1+m2)2χ(1−χ)

(4π)4(−b2)3/2 ), as a function of
u/
√
−b2, where u is as usual the retarded time.
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Figure 1. Spectral version of the Newman-Penrose scalar at tree level. The two plots show different
circular polarisations of the graviton.
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Figure 2. Newman-Penrose scalar Ψ0
4 in the time domain at tree level as a function of the rescaled

retarded time u/
√
−b2.

At tree level the waveforms depend on the mass ratio χ only through the prefactor
χ(1− χ) in (8.47). Thus, they are maximised when both masses are equal, for a given total
mass. As such we have only plotted the equal-mass case in figures 1 and 2.

Finally, we mention that tree-level waveforms for non-spinning objects were derived
in [79, 143] in the time domain, see also [22] for a derivation in the frequency domain
and [80] for a one-parameter integral representation of the time-domain waveform.

8.6.2 One loop

In the present section we evaluate numerically the following quantity,

Ŵ (1)(b, kh) := −i
∫
dµ(4) eiq1·b

[
M(1)

m̄3
1m̄

2
2

+M(1)
m̄2

1m̄
3
2

− iG
(
m̄1w1 log w2

1
µ2

IR
+ m̄2w2 log w2

2
µ2

IR

)
M(0)

m̄2
1m̄

2
2

]
fin
,

(8.49)
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Figure 3. Spectral version of the Newman-Penrose scalar at one loop for positive-helicity graviton,
and for mass ratios χ = 0.1, 0.5, 0.9.

where the subscript “fin” means that we are dropping all infrared divergences in the
corresponding amplitudes, as discussed near (8.27). This corresponds to isolating the new
contributions of the one-loop amplitude from the lower order in the PM expansion and the
tails [145, 149]:

eiθtail(µIR,ω)M(0)
m̄2

1m̄
2
2
, (8.50)

with22

θtail(µIR, ω) = G
(
m̄1w1 log w2

1
µ2

IR
+ m̄2w2 log w2

2
µ2

IR

)
. (8.51)

We now present the result of the waveform23

Ŵ
(1)
± := m2

1m2Ŵ
(1)
±,m2

1m2
+m1m

2
2Ŵ

(1)
±,m1m2

2

= (m1 +m2)3 χ(1− χ)
[
(1− χ)Ŵ (1)

±,m2
1m2

+ χŴ
(1)
±,m1m2

2

]
.

(8.52)

As before, W± is shorthand for W (b, h±) and the subscripts m2
1m2, m1m

2
2 indicate the mass

dependence of the corresponding terms. In the plots displayed below we will show results
for several values of χ.

We begin by plotting the quantity ω2W± which is the spectral version of the Newman-
Penrose scalar (8.34), for various choices of χ. For the positive-helicity waveform at θ → π

4 ,
φ→ π

2 , and y → 2 this is shown in figure 3, where we stripped off a dimensionful factor of
κ5(m1+m2)3

(4π)4(−b2)3/2 .
The corresponding negative-helicity waveform is shown in figure 4. In the frequency

domain, the most interesting part of the spectrum is contained in the region ω
√
−b2 ∈ [0, 20].

Beyond that, the amplitude is very small and tends to zero as ω →∞. At one loop, the
dependence on the mass ratio χ follows the same pattern as at tree level, in that the

22From the field theory viewpoint such exponentiation is natural. Indeed, we know from [162] that the
infrared divergences exponentiate as per (7.3) and we expect them to be accompanied by an infrared-running
logarithm, i.e. schematically 1

ε
→ 1

ε
− log

(
− ω2

µ2
IR

)
.

23Recall that dµ(4) is proportional to (m1m2)−1.
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Figure 4. Spectral version of the Newman-Penrose scalar at one loop for negative-helicity graviton,
and for mass ratios χ = 0.1, 0.5, 0.9.
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Figure 5. The one loop contribution to the Newman-Penrose scalar Ψ0
4 in the time domain for

equal masses as a function of the rescaled retarded time u/
√
−b2.

equal-mass case has the largest waveform due to the prefactor χ(1− χ) in (8.52). However,
due to the two terms in (8.52) the χ-dependence of the waveform is not as simple, as
figures 3 and 4 show. This is a new feature at one loop.

The time-domain waveform is obtained using (8.34) by performing a numerical Fourier
transform. For example, in the equal-mass case, corresponding to χ = 0.5, the result is
shown in figure 5 (up to an overall factor of κ

6(m1+m2)3

(4π)6(−b2)2 ). The small oscillations are due to
the use of a finite frequency domain in the numerical computations and vanish when the
range of frequencies is enlarged.

9 Conclusions

The HEFT approach provides a powerful method to compute classical effects both in the
conservative sector [23] and in the presence of radiation. It has the clear advantage of
computing directly classical quantities, leading to integrals with linearised propagators
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and well-defined iε prescription that can either be computed directly or using differential
equations. It holds the promise to be efficiently applicable to higher PM orders and to
other problems.

Several issues are left to investigate. Having computed the graviton emission amplitude
in a scattering process, it is important to determine the corresponding one for bound
states. It would be remarkable if an analytic continuation similar to that of [194–196] or a
generalisation of the Bethe-Salpeter equation approach of [197] could be applicable also to
waveforms.

A number of concrete problems can also be tackled with our method and results: one
could determine the one-loop waveforms fully analytically at one loop, or study the radiated
energy, power and angular momentum. Going in a different direction, there are intriguing
differences and complementarities between the HEFT approach initiated in [23] and pursued
in this paper, and the eikonal approach [22, 122–126, 144, 151, 185, 186, 198, 199]. In
the former, which appears to be intimately related to the N operator discussed in [128],
experience so far indicates that classical contributions can be computed directly without
pollution either from quantum or hyper-classical terms, which can be discarded at the
diagrammatic level. Clarifying the relationship between these approaches would be highly
desirable. We hope to come back to some of these questions in the near future.
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A Integrals from differential equations

A.1 The differential equation for ja1,1,a3,a4,0 with respect to w1

The subset of MIs which appear in our basis as sub-topologies of j1,1,1,1,0 are

~j1 =


j0,1,0,1,0
j1,1,0,1,0
j1,1,1,0,0
j1,1,1,1,0

 , (A.1)

and the differential equation with respect to w1 in D = 4− 2ε looks like

∂~j1
∂w1

= (A0 + εA1)~j1 , (A.2)

where

A0 =



1
w1

0 0 0
− 1
w1(w2

1−q
2
2) − w1

w2
1−q

2
2

0 0

0 0 0 0
− 2
w1

[
4w2

1q
2
2+(q2

1−q
2
2)2
] 0 0 − 1

w1

 , (A.3)

A1 =



− 2
w1

0 0 0
2

w1(w2
1−q

2
2)

2w1
w2

1−q
2
2

0 0

0 0 0 0
4

w1

[
4w2

1q
2
2+(q2

1−q
2
2)2
] 4(2w2

1+q2
1−q

2
2)

w1

[
4w2

1q
2
2+(q2

1−q
2
2)2
] − 4(q2

1−q
2
2)

w1

[
4w2

1q
2
2+(q2

1−q
2
2)2
] − 2(q2

1−q
2
2)2

w1

[
4w2

1q
2
2+(q2

1−q
2
2)2
]


.

(A.4)

If we normalise the integrals in the basis through the transformation

~j1 → ~j′1 = S−1
1 ~j1 , (A.5)

with

S1 =



4w1ε
2ε−1 0 0 0

0 1√
w2

1−q
2
2

0 0

0 0 1√
−q2

2
0

0 0 0 − 1
q2
2w1

 , (A.6)

the system of differential equations takes the canonical form

∂~j′1
∂w1

= εAres~j
′
1 , (A.7)
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with

Ares =


− 2

w1
0 0 0

4√
w2

1−q2
2

2w1
w2

1−q2
2

0 0

0 0 0 0

− 8q2
2w1

4w2
1q2

2+(q2
1−q2

2)2 −
4q2

2(2w2
1+q2

1−q2
2)√

w2
1−q2

2

[
4w2

1q2
2+(q2

1−q2
2)2] − 4

√
−q2

2(q2
1−q2

2)
4w2

1q2
2+(q2

1−q2
2)2 −

2(q2
1−q2

2)2

w1
[

4w2
1q2

2+(q2
1−q2

2)2]

 .

(A.8)
In order to make the singularities of the integrals manifest, we need to rationalise the system
of differential equations and write it in dlog forms. We define

w1 =
√
−q2

2
α2 − 1

2α ,

(−q2
1) = (−q2

2)β ,
(A.9)

with α ≥ 1. Then, the system of differential equation can be written in term of forms as

d~j′1(α, ε) = ε dA′res(α) ~j′1(α, ε) , (A.10)

where we omitted any dependence on the kinematic variables other than α, and

dA′res(α) =


−2 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −2

 dlog(α2 − 1) +


0 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

 dlog(α2 + 1) +


2 0 0 0
4 −2 0 0
0 0 0 0
2
β2 − 2

β2 0 0

 dlog(α)

+


0 0 0 0
0 0 0 0
0 0 0 0
− 1
β2

1
β2

1
β 1

 dlog(α+ β) +


0 0 0 0
0 0 0 0
0 0 0 0
− 1
β2 − 1

β2 − 1
β 1

 dlog
(
α+ 1

β

)

+


0 0 0 0
0 0 0 0
0 0 0 0
− 1
β2

1
β2 − 1

β 1

 dlog(α− β) +


0 0 0 0
0 0 0 0
0 0 0 0
− 1
β2 − 1

β2
1
β 1

 dlog
(
α− 1

β

)
.

(A.11)

The solution to the differential equations are given by

~j1(α, ε) = S1(α) · Peε
∫ α
α0
dA′res(α) · S−1

1 (α0) ·~j1(α0, ε) , (A.12)

where ~j1(α0, ε) is a chosen boundary value of the Feynman integral which needs to be fixed,
Pe

ε
∫ α
α0
dA′res(α) is a path-ordered exponential.

Finally, we are left with the evaluation of the boundary value of the I5 integral and we
choose to compute its asymptotic behaviour near the singular point α ∼ 1 (w1 ∼ 0), using
the geometric approach to the method of regions [178] implemented in the Mathematica

– 49 –



J
H
E
P
0
6
(
2
0
2
3
)
0
4
8

package asy2.1.m [179]:

j1,1,1,1,0 =
iΓ
[
4−D

2

]
(4π)D/2

∫ +∞

−∞
dx2

∫ +∞

0
d3x1,3,4 δ

(
1−
∑
l

xl

)
(x1+x3+x4)4−D

(
x2

2−q2
1x1x3−q2

1x1x4−2w1x2x4−iε
)D

2 −4

α∼1∼ i

√
πΓ

[
7−D

2

]
(4π)D/2

(−q2
2)

D−7
2 (α−1)D−5

∫ +∞

0
d3x1,3,4 δ (1−x4)(x1+x3+x4)4−D

(
x1x4+x1x3β

2−x2
4−iε

)D−7
2

=−i
2
√
πΓ

[
7−D

2

]
(4π)D/2(D−5)2 e

−iπD−5
2 (−q2

2)
D−7

2 (α−1)D−5
[

2F1

( 1 1
6−D ;β2

)

−π(D−5)β
2(D−5) (1−β2)4−D

sinπD

]
,

(A.13)

where in the second step we performed the x2 integration, redefined (x1, x3, x4) →(
x1,

x3
(α−1)2 ,

x4
(α−1)2

)
keeping only the leading term in the α ∼ 1 expansion and used the

Cheng-Wu theorem [200] to make the integration on x4 trivial. The ε-expansion in D = 4−2ε
gives us the boundary value of the integral we are after.

A.2 The DEs for j0,1,a3,a4,a5 with respect to y

The subsets of MIs which appear in our basis as sub-topologies of j0,1,1,1,1 respectively are

~j2


j0,1,0,1,0
j0,1,0,1,1
j0,1,1,0,1
j0,1,1,1,1

 , (A.14)

and the differential equations with respect to y in D = 4− 2ε are

∂~j2
∂y

= (B0 + εB1)~j2 , (A.15)

where

B0 =


0 0 0 0
1

w1−w1y2
1

1
y
−y 0 0

0 0 1
1
y
−y 0

1
4w2

1w2y−2w1(w2
1+w2

2) 0 0 0

 , (A.16)

B1 =


0 0 0 0

− 2
w1−w1y2

2y
y2−1 0 0

0 0 2y
y2−1 0

1
w3

1−2w2
1w2y+w1w2

2

w1y−w2
w1(w2

1−2w1w2y+w2
2)

w2y−w1
w2(w2

1−2w1w2y+w2
2) −

2w1w2
w2

1−2w1w2y+w2
2

 . (A.17)
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If we perform the change of basis with

S2 =



ε
2ε−1 0 0 0

0 1
w2
√
y2−1

0 0

0 0 1
w2
√
y2−1

0

0 0 0 1
w3

2

 , (A.18)

the systems of differential equations take the canonical form. Moreover, we can rationalise
the system of differential equations and write it in terms of dlog forms through the following
change of variables:

y = 1 + x2

2x , 0 < x ≤ 1 ,

α′ = w1
w2

.
(A.19)

Then, we find
d~j′2 = ε dD′res(x) ~j′4 , (A.20)

where we omitted any dependence on the kinematic variables other than x and

dB′res(x) =


0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 0

 dlog(x+ 1)(1− x) +


0 0 0 0
− 1
α′ −2 0 0
0 0 −2 0
1

4α′ 2
1

2α′
1

2α′ −1

 dlog(x)

+


0 0 0 0
0 0 0 0
0 0 0 0

− 1
4α′ 2

1
2α′ −

1
2α′ 1

 dlog
(
x− α′

)
+


0 0 0 0
0 0 0 0
0 0 0 0
− 1

4α′ −
1
2

1
2 α

 dlog
(
x− 1

α′

)
.

(A.21)

At this point, we only need a boundary value of the Ĩ4 integral. We choose to compute its
value around the regular point x ∼ 1 (y ∼ 1):

j0,1,1,1,1 =
iΓ
[
4−D

2

]
(4π)D/2

∫ +∞

−∞
dx2

(∫ +∞

0
dx5−

∫ 0

−∞
dx5

)∫ +∞

0
d2x3,4 δ

(
1−
∑
l

xl

)

(x3+x4)4−D
(
x2

2+x2
5−2w1x2x4+2w2x3x5+2yx2x5−iε

)D
2 −4

x∼1∼ i

√
πΓ

[
7−D

2

]
(4π)D/2

wD−6
1

(∫ +∞

0
dx5−

∫ 0

−∞
dx5

)∫ +∞

0
d2x3,4 δ (1−x4)(x3+x4)4−D

(
2x4x5+2x3x5α−x2

4−iε
)D−7

2

=−i
2
√
πΓ

[
7−D

2

]
(4π)D/2(D−5)2 e

−iπD−5
2 wD−6

1

[
2F1

( 1 1
6−D ;α

)

−π(D−5)α
(D−5) (1−α)4−D

sinπD

]
.

(A.22)
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B Infrared divergences and heavy-mass expansion

In this appendix, we review the classic result of [162] for the infrared divergences in gravity
and consider its limit in the large mass expansion.

B.1 Weinberg’s formula for infrared divergences of gravitational amplitudes

In [162], Weinberg presented a compact formula for the resummation of infrared divergences
in gravitational amplitudes arising from the exchange of virtual soft gravitons, in addition
to re-deriving similar formulae for photons in electrodynamics, reproducing (and in part
upgrading) the work of [201, 202].

There are two types of contribution: first, each pair of particles in the initial or final
state contributes an infrared-divergent phase e−iWij log( λΛ), where

Wij = G
mimj(1 + β2

ij)

βij
√

1− β2
ij

= G(pi·pj)
1 + β2

ij

βij
. (B.1)

Here

βij :=

√√√√1−
m2
im

2
j

(pi·pj)2 (B.2)

is the relative velocity of any one particle in the rest frame of the other, and λ is an infrared
cutoff (see below for a translation to dimensional regularisation). This phase is usually
discarded in the computation of observables such as cross sections but will be important for
us. In addition there is a divergent contribution of the type e

∑
i,j
Bij log( λΛ), where

Bij = G

2πηiηj
mimj√
1− β2

ij

1 + β2
ij

βij
log 1 + βij

1− βij

= G

2π
∑
i,j

ηiηj(pi·pj)
1 + β2

ij

βij
log 1 + βij

1− βij
,

(B.3)

where ηi = ±1 depending on whether the particle is outgoing (+) or incoming (−). In this
case the sum is over all pairs of particles, including the case i = j.

If one of two particles in a pair is massless, say particle î, then βîj → 1. In this case
Weinberg’s formulae simplify to

Wîj → 2G(pî·pj) , Bij →
2G
π
ηîηj(pî·pj) log

(2(pî·pj)
µ2

)
, (B.4)

with the result being independent of the choice of µ after summing over j; indeed, a shift in
µ2 changes

∑
j Bîj by an amount proportional to pî·

∑
j ηj = −ηîp

2
î

= 0. Note that we can
combine Wîj and Bîj into one quantity valid for all kinematic regimes, by replacing the
exponent by

2G
π
ηiηj(pi·pj) log

(
− ηiηi(pi·pj) + iε

)
, (B.5)

where as usual log
[
− (s+ iε)

]
= log(s)− iπ for s > 0.24

24Note that (B.5) is equivalent to the known universal form of infrared divergences for massless gravitons
found in [203] after replacing 2(pî·pj)ηiηj → sij . Note that in the conventions that we are using, all energies
are positive.
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We also comment that to express Weinberg’s formula in dimensional regularisation. we
need to make the replacement

log
(
λ

Λ

)
→ (4π)ε

Γ(1− ε)
Λ−2ε

2ε . (B.6)

Note that both sides of (B.6) are negative.

B.2 The large-m̄ expansion of Weinberg’s formula

We now apply Weinberg’s formulae to the process we are describing. We will first discuss
the phase and then the real contribution.

The phase contribution arises from pairs of particles either in the initial or final states.
Thus we have to consider the pairs (1, 2), (1′, 2′), (1′, k), (2′, k).

We will use (B.3), and compute the quantities βij for the various cases. Because we
want to perform a HEFT expansion, in order to be able to compare to the result of our
calculation we need to expand p1·p2 and p′1·p′2 around p̄1·p̄2, that is an expansion in m̄i.
We begin with the contributions from the pairs (1, 2), (1′, 2′). These take the form

W12 = W1̄2̄ + ∆ , W1′2′ = W1̄2̄ −∆ , (B.7)

hence the contribution from pairs (1, 2), (1′, 2′) is simply

e−2iW1̄2̄ log( λΛ) , (B.8)

where W1̄2̄ is obtained from (B.1) by replacing p1, p2 with p̄1, p̄2. When we expand the
exponential in powers of G, its contribution will be of order m̄3

1m̄
3
2 in the large mass

expansion. Then, there is no need to compute it — as we have explained in appendix C,
such hyper-classical contributions are obtained simply from the exponentiation of lower-order
amplitudes.

Next we consider the pairs (1′, k), (2′, k). Because one of the particles is massless we
can use the first of (B.4). The result is then simply 2G(p′1 + p′2)·k = 2G(m̄1w̄1 + m̄2w̄2),
with the corresponding contribution to the phase being

e−2iG(m̄1w̄1+m̄2w̄2) log( λΛ) , (B.9)

which, once expanded, will appear in the large-mass expansion of the amplitude at the
order we are considering. Translating to dimensional regularisation, the expected infrared
divergence at one loop is

− iG(m̄1w̄1 + m̄2w̄2)
ε

M(0)
5 , (B.10)

whereM(0)
5 is the classical tree-level five-point amplitude.

One can repeat the same calculation for the real part of the exponent. In this case
one has to sum over all pairs of particles, and a short calculation shows that contributions
cancel in pairs, both at order m̄3

1m̄
3
2, m̄3

1m̄
2
2 and m̄2

1m̄
3
2.
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C Factorisation in impact parameter space

The purpose of this section is to show that also in the presence of radiation, HEFT diagrams
that are two massive particle reducible factorise in impact parameter space.25 To this end,
consider the one-loop five-point diagram with two cut massive lines shown below:

p2 = p̄2 + q2
2

p1 = p̄1 + q1
2

H

p2′ = p̄2 − q2
2

H k

p1′ = p̄1 − q1
2

δ(p̄2 · `)

δ(p̄1 · `)

. (C.1)

In impact parameter space, it becomes

M̃2MPR
5 (~b) =

∫
dDq1d

Dq2 δ
(D)(q1 + q2 − k)δ(p̄1·q1)δ(p̄2·q2) ei(q1·b1+q2·b2)∫

dD` δ(p̄1·`)δ(p̄2·`)M4(`)M5(q1R, q2R) ,
(C.2)

where we have identified the four-point tree amplitude with momentum transfer ` and the
five-point tree amplitude with shifted momentum transfers

q1R = q1 − ` , q2R = q2 + ` . (C.3)

As usual, we adopt the parameterisation of the kinematics introduced in (2.2) (and in the
four-point case we set k = 0). As a first step we define what we mean by Fourier transforms
to impact parameter space for four- and five-point tree-level amplitudes. At four points we
then define

M̃4(~b) :=
∫
dDq1d

Dq2 δ
(D)(q1 + q2)δ(p̄1·q1)δ(p̄2·q2) ei(q1·b1+q2·b2)M4(q1)

=
∫
dDq δ(p̄1·q)δ(p̄2·q) eiq·(b1−b2)M4(q)

=
∫
dDq δ(p̄1·q)δ(p̄2·q) eiq·(b1−b2)

p̄1 + q
2 p̄1 − q

2

M4

p̄2 − q
2 p̄2 + q

2

,

(C.4)

while at five points

M̃5(~b) :=
∫
dDq1d

Dq2 δ
(D)(q1+q2−k)δ(p̄1·q1)δ(p̄2·q2)ei(q1·b1+q2·b2)M5(q1, q2)

=
∫
dDq1d

Dq2 δ
(D)(q1+q2−k)δ(p̄1·q1)δ(p̄2·q2)ei(q1·b1+q2·b2)

p̄1+ q1
2 p̄1− q1

2

M5

p̄2+ q2
2 p̄2− q2

2

k .

(C.5)
25See also section 4 of [151] for a related discussion.
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We now turn to exposing the factorised structure of (C.2). In order to do so we change the
order of integrations and observe that on the support of δ(p̄1·`)δ(p̄2·`) we can rewrite

p̄1·q1 → p̄1·(q1 − `) = p̄1·q1R ,

p̄2·q2 → p̄2·(q2 + `) = p̄2·q2R .
(C.6)

Then, changing also integration variables from (q1, q2) → (q1R, q2R), where q1 + q2 =
q1R + q2R = k, and using

q1·b1 + q2·b2 = q1R·b1 + q2R·b2 + `·(b1 − b2) , (C.7)

we can rewrite (C.2) as

M̃2MPR
5 (~b) =

∫
dD`δ(p̄1·`)δ(p̄2·`)ei`·(b1−b2)M4(`)∫
dDq1Rd

Dq2R δ
(D)(q1R+q2R−k)δ(p̄1·q1R)δ(p̄2·q2R)ei(q1R·b1+q2R·b2)M5(q1R, q2R)

=M̃4(~b)M̃5(~b) ,
(C.8)

where we have used (C.4) and (C.5).
In conclusion, when transformed to impact parameter space, the particular two massive

particle reducible diagram considered in (C.1) is a product of two tree-level amplitudes
in impact parameter space. This shows that factorisation is made manifest by the HEFT
expansion in impact parameter space also in the radiative case.

A short comment is in order here. In the four-point case (C.4), the delta functions
impose that q lives in the (D−2)-dimensional subspace orthogonal to p̄1 and p̄2, hence
M̃4(~b) will depend only on the projection ~b⊥ of ~b living in the same subspace. For the case
of M̃5(~b) in (8.24), the particular orthogonal subspace is slightly different because of the
presence of k within the delta functions. This is a general feature of five-point kinematics
and beyond.

D Details of the C4 calculation

Here we present the details of the computation of C4. Starting from the cut diagram (5.37),
if we simply plug in the HEFT amplitudes as before we obtain∫

dD`

(2π)D δ(v̄1·`1)
∑
h3

Mh3
6 (`3, k, v̄1, v̄2)A−h3

3 (−`3, v̄1)
`23

. (D.1)

An unpleasant feature of the above integrand is that it contains divergences of the form

δ(v̄1·`1)
v̄1·`3

= −δ(v̄1·`1)
v̄1·`1

, and δ(v̄1·`1)
v̄1·`1(v̄1·`1 − v̄1·q2) (D.2)

which come from the linearised massive propagators present in the six-point
HEFT amplitude.

To deal with these divergences we perform the following steps:
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1. First we consider C4 without the delta function δ(v̄!·`1) and then expand the integrand
in powers of v̄1·`1.

2. Then we only keep the (v̄1·`1)0 term in the expansion which has no divergences.

3. Finally, we reinstate the δ(v̄1·`1).

Despite this procedure being rather ad hoc, the resulting expression for C4 merges exactly
with the other cut diagrams. In addition, the resulting amplitude built using C4 passes
many nontrivial checks (see section 7) including the cancellation of spurious poles involving
the new contribution from this cut diagram.

To make the calculation of C4 more rigorous here we outline how to calculate C4 using
the forward limit, which will turn out to be equivalent to the simplified procedure above.
First, we find the cut tree-level amplitude with three pairs of massive particles

E(q1, q2, q3, p̄1, p̄2, p̄3) =

p1

p2

H

p2′

p1′

H

p3′

p3

k1

(D.3)

=
∑
h3

Mh3
6 (−q3, k, p̄1, p̄2)A−h3

3 (q3, p̄3)
q2

3
(D.4)

For each massive line, we define a momentum transfer qi := pi − pi′ and hence momentum
conservation for this amplitude can be written as q1 + q2 + q3 = k. Both massive particles
p1 and p3 have the same mass p2

1 = p2
1′ = p2

3 = p2
3′ = m2

1, and we can define barred masses
in the usual way: m̄i :=

√
m2
i − q2

i /4. Thus the cut we are considering above is a cut in q3,
and is homogeneous in the masses with scaling m̄2

1m̄
2
2m̄

2
3.

Once we have this cut amplitude we take the forward limit on the two massive lines
p1′ and p3 to form the loop diagram in (5.37). This method was also used in the worldline
formalism [28] to compute classical radiation in dilaton gravity and Yang-Mills theory.
The forward limit process is most clearly described by writing the amplitude in impact
parameter space, which we obtain by performing a Fourier transform with respect to each qi

∫ ( 3∏
i=1

dDqi e
iqi·bi

)
δ(p̄1·q1)δ(p̄2·q2)δ(p̄3·q3)

δ(D)(q1 + q2 + q3 − k) E(q1, q2, q3, p̄1, p̄2, p̄3) .
(D.5)

The first step is to reparameterise the momentum transfer as q1 → q1 − q3 which also shifts

p̄1 = p1 −
q1
2 → p1 −

q1
2 + q3

2 = p̄1 + q3
2 . (D.6)
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Applying this to the cut amplitude in impact parameter space we have∫ ( 2∏
i=1

dDqi e
iqi·bi

)∫
dDq3 e

iq3·(b3−b1)δ((p̄1 + q3
2 )·(q1 − q3))δ(p̄2·q2)δ(p̄3·q3)

δ(D)(q1 + q2 − k) E(q1 − q3, q2, q3, p̄1 + q3
2 , p̄2, p̄3) .

(D.7)

Note that this removes the appearance of q3 in the momentum-conserving delta function.
Next we take the forward limit by taking p3 → p1′ which amounts to the replacement

p̄3 = p3 −
q3
2 → p1 + q3

2 − q1 = p̄1 −
q1
2 + q3

2 . (D.8)

Since we are identifying particles 1 and 3 we will also identify their impact parameters
b3 → b1. Applying the forward limit we find∫ ( 2∏

i=1
dDqi e

iqi·bi

)
δ(p̄1·q1)δ(p̄2·q2)

∫
dDq3 δ(p̄1·q3 −

q3
2 (q1 − q3))

δ(D)(q1 + q2 − k) E
(
q1 − q3, q2, q3, p̄1 + q3

2 , p̄2, p̄1 −
q1
2 + q3

2
)
,

(D.9)

which crucially is not singular. However, the above expression is no longer homogeneous
in the mass m̄1 =

√
m2

1 − q2
1/4 and must be re-expanded in the large-m̄1 limit. Before

performing this expansion we note that now the integrals over q1 and q2 simply transform
the HEFT amplitude with four scalars to impact parameter space, and hence can be stripped
off, leaving us with26∫

dD`1 δ
(
p̄1·`1+ `1

2 ·(`1+q1)
)
δ(D)(q1+q2−k)E

(
−`1, q2, q3, p̄1+ q1

2 + `1
2 , p̄2, p̄1+ `1

2
)
,

(D.10)
where we have reparameterised the momentum as q3 = −`3 = `1 + q1 to make contact with
our usual loop integration variables in (D.1). To recover C4 the final step is to perform the
large-m̄1 expansion on (D.10). However, we will perform this expansion in a specific way in
order to make contact with the simplified procedure for computing C4 described above:

1. First we only expand E as m̄1 → ∞ and never use the delta function in (D.10) to
simplify the expression. To leading order, this yields the term E(−`1, q2, q3, p̄1, p̄2, p̄1)
which is O(m̄4

1m̄
2
2). This is exactly the naive integrand in (D.1), without the delta

function.

2. Next, we use the delta function in (D.10) to replace all instances of p̄1·`1 in E with
`1·(`1 + q1)/2, which results in many terms with differing powers of m̄1. When this
replacement happens to a denominator, for example,

1
p̄1·`1

= 2
`1·(`1 + q1) , (D.11)

the power of m̄1 is increased and a spurious massless pole is introduced. These poles
must cancel, which is why expanding E to only the leading order is justified.

26We note that this expression for the forward limit is similar to expressions found in e.g. [204–206] and it
would be interesting to investigate this further.
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3. Now expanding the delta function in (D.10) we can write

δ
(
p̄1·`1 + `1

2 ·(`1 + q1)
)

= δ(p̄1·`1) + · · · (D.12)

where + · · · are terms involving derivatives of the delta function δ′(p̄1·`1). These
derivative terms can be dropped since, by construction, the expression for E no longer
depends on p̄1·`1.

4. Finally, we re-expand the expression δ(p̄1·`1)E in powers of m̄1 to find that the leading
term is of O(m̄3

1m̄
2
2), as expected.

The result of this process is exactly the same as the naive method described at the start of
this appendix. As was the case for C2, we now need to perform additional loop momentum
reparameterisations in order to write C4 in the topology (5.8).

As a final remark, we note that it would be possible to compute the entirety ofM(1)
m̄3

1m̄
2
2

in one fell swoop following the above method if we had instead started from the full tree-
level six-scalar one-graviton amplitude at order m̄2

1m̄
2
2m̄

2
3. This would bypass the use of

generalised unitarity completely. One can compute this tree-level amplitude using the BCFW
method presented in section 4 and generalising it to six scalars. However, unsurprisingly,
we found this amplitude contains a very large number of terms, so we find it more practical
to split up the calculation using multiple cut diagrams and generalised unitarity.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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