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Development and international validation of custom-
engineered and code-free deep-learning models for 
detection of plus disease in retinopathy of prematurity: 
a retrospective study
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Mariam Al-Feky, Hagar Khalid, Daniel Ferraz, Juliana Vieira, Rodrigo Jorge, Shahid Husain, Janette Ravelo, Anne-Marie Hinds, Robert Henderson, 
Himanshu I Patel, Susan Ostmo, J Peter Campbell , Nikolas Pontikos, Praveen J Patel, Pearse A Keane, Gill Adams, Konstantinos Balaskas

Summary
Background Retinopathy of prematurity (ROP), a leading cause of childhood blindness, is diagnosed through interval 
screening by paediatric ophthalmologists. However, improved survival of premature neonates coupled with a scarcity 
of available experts has raised concerns about the sustainability of this approach. We aimed to develop bespoke and 
code-free deep learning-based classifiers for plus disease, a hallmark of ROP, in an ethnically diverse population in 
London, UK, and externally validate them in ethnically, geographically, and socioeconomically diverse populations in 
four countries and three continents. Code-free deep learning is not reliant on the availability of expertly trained data 
scientists, thus being of particular potential benefit for low resource health-care settings.

Methods This retrospective cohort study used retinal images from 1370 neonates admitted to a neonatal unit at 
Homerton University Hospital NHS Foundation Trust, London, UK, between 2008 and 2018. Images were acquired 
using a Retcam Version 2 device (Natus Medical, Pleasanton, CA, USA) on all babies who were either born at less 
than 32 weeks gestational age or had a birthweight of less than 1501 g. Each images was graded by two junior 
ophthalmologists with disagreements adjudicated by a senior paediatric ophthalmologist. Bespoke and code-free 
deep learning models (CFDL) were developed for the discrimination of healthy, pre-plus disease, and plus disease. 
Performance was assessed internally on 200 images with the majority vote of three senior paediatric ophthalmologists 
as the reference standard. External validation was on 338 retinal images from four separate datasets from the USA, 
Brazil, and Egypt with images derived from Retcam and the 3nethra neo device (Forus Health, Bengaluru, India).

Findings Of the 7414 retinal images in the original dataset, 6141 images were used in the final development dataset. 
For the discrimination of healthy versus pre-plus or plus disease, the bespoke model had an area under the curve 
(AUC) of 0·986 (95% CI 0·973–0·996) and the CFDL model had an AUC of 0∙989 (0∙979–0∙997) on the internal test 
set. Both models generalised well to external validation test sets acquired using the Retcam for discriminating healthy 
from pre-plus or plus disease (bespoke range was 0∙975–1∙000 and CFDL range was 0∙969–0∙995). The CFDL model 
was inferior to the bespoke model on discriminating pre-plus disease from healthy or plus disease in the USA dataset 
(CFDL 0·808 [95% CI 0·671–0·909, bespoke 0·942 [0·892–0·982]], p=0·0070). Performance also reduced when 
tested on the 3nethra neo imaging device (CFDL 0·865 [0·742–0·965] and bespoke 0·891 [0·783–0·977]).

Interpretation Both bespoke and CFDL models conferred similar performance to senior paediatric ophthalmologists 
for discriminating healthy retinal images from ones with features of pre-plus or plus disease; however, CFDL models 
might generalise less well when considering minority classes. Care should be taken when testing on data acquired 
using alternative imaging devices from that used for the development dataset. Our study justifies further validation of 
plus disease classifiers in ROP screening and supports a potential role for code-free approaches to help prevent 
blindness in vulnerable neonates.
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Introduction 
Retinopathy of prematurity (ROP) is a proliferative 
retinal vascular disease, typically affecting preterm 

neonates with low-birthweight. Following landmark 
findings from the multicentre CRYO-ROP study 
in 1988, ROP has become a largely treatable disease 
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when sight-threatening features are promptly recog-
nised.1 One such feature is plus disease, a condition 
characterised by abnormal posterior retinal vessel 
dilatation and tortuosity.1 Plus disease is highly 
prognostic of ultimate sight loss and its presence 
mandates urgent treatment as stipulated by inter-
national consensus and guidelines.2

In high-income countries, ROP has traditionally been 
identified through screening programmes with interval 
paediatric ophthalmologist-led clinical examination for 
neonates at risk. For example, the American Academy of 
Pediatrics recommends screening for all infants with a 
birthweight of 1500 g or less or a gestational age of 
30 weeks or less.3 However, concerns exist over the 
sustainability of such programmes. Screening ROP 
examinations are done by clinicians with substantial 
subspecialty-level experience and improved survival of 
preterm infants owing to advances in neonatal medicine4 

might not be complemented with a corresponding 
growth in the paediatric ophthalmology workforce. 
Indeed, over half of neonatologists in a USA-based 
national survey reported a scarcity of available eye care 
specialists as a barrier to ROP screening.5 There is 
growing evidence that telemedicine approaches might 

provide a more efficient model for care delivery.6 
However, such approaches are still limited by the 
availability of sufficiently trained diagnosticians, a 
predicament of even greater extent in low-income and 
middle-income countries (LMICs).7

Automated plus disease identification through deep 
learning, a subfield of artificial intelligence (AI) inspired 
by biological neural networks, might be one strategy for 
improving access to rapid specialist expertise. Since the 
first report on using deep learning for plus disease 
detection in 2016,8 the field has matured with the 
development and validation of several models with high 
levels of diagnostic accuracy.9–13 However, several 
challenges remain for such models to progress from 
high in silico diagnostic accuracy to safe real-world 
deployment.14 ROP is the most common cause of vision 
loss in children on a global level, yet the natural history 
of the disease varies between ethnic groups and there is 
no harmonisation in guidelines for ROP screening, 
reinforcing the need for development and validation of 
models on datasets from areas with the greatest 
geographical diversity possible. Firstly, most of the 
literature describing deep learning for ROP thus far has 
emerged from North America and Asia, reflecting 
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Research in context 

Evidence before this study
We searched PubMed, MEDLINE, Scopus, Web of Science, 
Embase, and arXiv for studies from database inception up to 
Nov 21, 2022, using the keywords “retinopathy of 
prematurity”, “plus disease”, “fundus photographs”, “machine 
learning”, “artificial intelligence (AI)”, and “deep learning”. Only 
study reports written in English were included into the search 
and reviewed. Abstracts in English from reports written in 
other languages were also reviewed. We focused particularly on 
geographical setting, selection criteria for neonatal 
examinations, sociodemographic characteristics, reference 
standard, model development, and comparison with human 
experts. Diagnostic accuracy was generally high across reports. 
Almost all studies emerged from North America and Asia. 
Several studies did not stipulate the inclusion criteria for 
neonatal examination or used thresholds substantially 
different from internationally recognised retinopathy of 
prematurity screening programmes. Only one study using a 
code-free deep learning platform was identified and no 
comparisons were seen between code-free and bespoke 
architectures. Two studies had examined generalisability across 
different imaging devices, and external validation in a 
substantially disparate population from the development 
dataset population was only seen for two models. Comparison 
with experts was typically limited to few senior paediatric 
ophthalmologists.

Added value of this study
We report on the diagnostic accuracy of both bespoke and 
code-free deep learning models for plus disease across an 

ethnically and socioeconomically diverse population of 
premature babies explicitly fulfilling standardised screening 
criteria in the UK. Bespoke and code-free approaches had similar 
performance when discriminating healthy from pre-plus 
disease or plus disease retinal images; however, the code-free 
model performed inferior to the bespoke model on detection of 
the minority class pre-plus disease. Overall, performance on the 
internal test set of both models was similar to senior paediatric 
ophthalmologists who regularly conduct retinopathy of 
prematurity screening. Both models generalised well to 
independent external validation test sets from the USA, Brazil, 
and Egypt but performance dropped when evaluated on images 
from a different neonatal camera on the task of discriminating 
healthy from pre-plus disease or plus disease images.

Implications of all the available evidence
Both bespoke and code-free deep learning approaches confer 
acceptable performance for the discrimination of healthy and 
pre-plus disease or plus disease. For resource-limited settings, 
where hardware and deep learning resources might be scarce, 
code-free approaches might provide an alternative option for 
local teams to develop, validate, and potentially deploy in their 
own populations. This approach might be of particular appeal 
for retinopathy of prematurity where risk of dataset shift upon 
generalisation is high—the natural history of the disease differs 
between ethnic groups, image capture devices might vary 
between different institutions, and screening criteria are 
heterogeneous. Further work into the implementation and 
effectiveness of integrating such classification models into 
screening programmes are warranted.
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so-called health data poverty where population 
demographics and health-care infrastructure are such 
that people from minority ethnic groups and socio-
economically deprived back grounds, might be under-
represented in clinical AI development.15 In a condition, 
such as ROP, whereby natural history of the disease 
varies between ethnic groups, a mismatch between 
development and deploy ment populations may lead to 
poor generalisation upon deployment.16,17 Secondly, 
guidelines for ROP screening (ie, birthweight and 
gestational age) are well-established in North America 
and western Europe; however, most published reports 
outside these regions have either not articulated the 
specific criteria for examination or used thresholds that 
might not be appropriate for population health 
screening settings; for example, one report involved 
development data from any baby younger than 
37 weeks,13however in the USA screening only occurs 
for those aged 30 weeks or younger and in the UK the 
threshold, as of March 2022, is age <31 weeks. Thirdly, 
models developed using deep learning frameworks 
frequently generalise poorly when tested on images 
derived from different devices to the images in the 
development dataset, and yet only one model for plus 
disease detection has been validated using images not 
acquired on the Retcam.18,19 Particularly in the setting 
of LMICs, the high cost of some devices has been 
prohibitive to their purchase, use, and wider 
deployment.20,21

Even when there is greater vigilance to such issues of 
dataset shift, many institutions still might not have the 
technical and hardware resources to develop such tools, 
especially in LMICs, where a predicted increase in ROP 
rates has led some to refer to sub-Saharan Africa as the 
new frontier of ROP.22 One potential solution for 
mitigating dataset shift concerns is local development, 
validation, and deployment of automated plus disease 
identification via code-free deep learning (CFDL) tools. 
Since initially described for medical imaging tasks 
in 2018, applications of CFDL have been used across a 
range of retinal diseases, yet comparisons with traditional 
bespoke deep learning design are few in the medical 
literature.23,24

In this study, we first aimed to develop and internally 
validate both bespoke and CFDL plus disease classifiers 
optimised for a UK population using a real-world training 
dataset. We used retinal images of neonates eligible for 
ROP screening according to The Royal College of 
Ophtha lmologists (RCOphth) criteria from a large single 
site serving an ethnically and socioeconomically diverse 
region of London, UK, where health care is free at the 
point of delivery under the provisions of the National 
Health Service (NHS). Secondly, we aimed to compare 
CFDL to bespoke modular architectures, hypothesising 
that CFDL models would confer similar levels of 
performance in the detection of plus and pre-plus disease 
and for assessing imaging quality. Thirdly, we aimed to 

externally validate both CFDL and bespoke models on 
four independent datasets from two LMICs (Brazil and 
Egypt) and the USA, including one composed of images 
obtained using a different device.

Methods 
Dataset and participants 
In this retrospective cohort study, consecutive infant 
retinal images were acquired between Jan 1, 2008, and 
Jan 31, 2018, as part of routine care, at Homerton 
University Hospital NHS Foundation Trust, London, UK.

Images were acquired on all babies within the 
designated study period who fit the 2008 RCOphth 
screening criteria for ROP (note the RCOphth guidelines 
were changed in March 2022).25 In brief, any baby who 
was either born at less than 32 weeks gestational age or 
has a birthweight of less than 1501 g is recommended to 
undergo screening for identification of ROP in the 2008 
guidelines. 

Anonymised retinal images were acquired using the 
Retcam version 2 device (Natus Medical, Pleasanton, CA, 
USA) in a range of fixation targets (eg, superior 
and posterior pole) with a maximum field of view 
of 130 degrees. Images were manually filtered by 
one ophthalmologist (MR) for those with capture fixation 
on the posterior pole. Image pixel resolution was 
1600 × 1200 with 24-bit colour depth.

This study received research and development 
institutional review board approval from the Moorfields 
Eye Hospital Research and Development Department 
(BALK1004) and from the UK Health Research 
Authority (IRAS ID 253237). Because the study is 
limited to working with data only, the UK Health 
Research Authority deemed that ethics approval was 
not required. Consent was not deemed as required 
because the study was related to research on 
retrospectively acquired anonymised data. Reporting is 
in line with the TRIPOD statement.26

Procedures
Image grading was based solely on the retinal image; 
that is, no additional clinical data (eg, birthweight) were 
provided during grading. The reference standard was 
based on a hierarchical grading scheme: each image was 
independently graded by two junior ophthalmologists 
with 3 years of ophthalmology experience as either 
ungradable (opaque media due to corneal opacities, 
cataract, vitreous opacification or haemorrhage, poor 
patient fixation limiting the field of view for detection of 
pathological manifestations, or image artefacts), healthy, 
pre-plus disease, or plus disease. Two pairs of junior 
ophthalmologists (JT, SB, CH, and CK) took part in this 
study. Disagreements between junior ophthalmologists 
were resolved by a senior paediatric ophthalmologist 
(GA) with over 25 years of experience, who was masked 
to the grading of the junior ophthalmologists (appendix 3 
p 6).

See Online for appendix 3
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We exercised two main approaches for model devel-
opment hypothesising that the architectures (bespoke 
and CFDL) would confer similar performance. All models 
were trained firstly for the binary classification of image 
gradability (defined as sufficient image quality for a 
clinician to give a confident decision on the absence or 
presence of plus disease) and secondly for multi-
classification into healthy, pre-plus disease, and plus 
disease. The bespoke model was built on a DenseNet201 
for PyTorch, Architecture 20 convolutional neural 
network architecture that was pre-trained on the 
ImageNet database (March 11, 2021 update; appendix 3 
p 3). Training of the bespoke model was through five-fold 
cross validation; more precisely, the development dataset 
was split at a patient level into five folds with four folds 
for training and one fold for tuning. Iteration using each 
fold as validation led to the development of five models 
which were aggregated to an ensemble where the model 
decision was an average of the output of all five models. 
To explore the feasibility of code-free deep learning for 
plus disease detection, we additionally evaluated a CFDL 
model using the Google Cloud AutoML Vision Application 
Programming Interface (API), as described previously.23 
Models were trained using 40 node hours as 
recommended by the API.

Performance of the gradability model was evaluated on 
an internal test set of 308 images of 308 eyes (200 gradable 
and 108 ungradable) from 155 babies. For the main task 
of discriminating healthy, pre-plus disease, and plus 
disease, the internal validation test set consisted of 
200 images from 200 eyes of 112 infants. We deliberately 
oversampled pre-plus and plus disease cases in the 
internal test set to give more stable estimates of model 
performance on these classes. Some images were 
therefore excluded from the development dataset to avoid 
data leakage (patients were not in both development and 
test sets). The reference standard was the majority class 
of three senior paediatric ophthalmologist consultants 
(A-MH, RH, and HIP; range of experience: 21–45 years). 
In the case of equal disagreement between the three 
classes, we took the most severe label. To contextualise 
the model performance, the internal validation test set 
was additionally graded by seven other clinicians, 

consisting of one paediatric ophthalmology consultant, 
one paediatric ophthalmology fellow, four junior 
ophthalmology residents, and a neonatal nurse specialist 
(SH, JT, SB, CH, CK, MR, and JR; appendix 3 p 6). All 
misclassification errors (defined as those whereby the 
model output class with the highest probability differed 
to the reference standard) were visually inspected and are 
reported. Additionally, to aid model explainability, we 
developed saliency maps (techniques for attributing 
model decision-making to specific image pixels) using 
five techniques (appendix 3 p 3).

Image gradability models were externally validated on 
a Retcam-based dataset from Alexandria University 
Hospital, Egypt, consisting of 14 ungradable and 
46 gradable images whereby the reference standard was 
image-based categorisation by a single paediatric 
ophthalmologist (HK). Models discriminating presence 
of plus disease were externally validated on four separate 
datasets: three from LMICs and one from the USA. 
Three datasets were acquired using the same imaging 
device as per the development dataset (Retcam) and 
one using the 3nethra neo device (Forus Health, 
Bengaluru, India). For the three datasets from the 
LMICs, the presence of plus disease was graded in a 
binary fashion—ie, either healthy or pre-plus disease 
and plus disease. Hence, performance metrics for those 
three only incorporated a single area under the curve 
(AUC) metric. The reference standard for all external 
validation datasets from the LMICs was defined through 
a combination of both binocular indirect ophthalmoscopy 
and image-based grading. The Imaging and Informatics 
in ROP (i-ROP) dataset is a previously described 
independent USA-based test set from the i-ROP study.27,28 
The i-ROP dataset consisted of 100 Retcam images 
(54 healthy, 31 pre-plus disease, and 15 plus disease) of 
70 neonates collected from July 1, 2011, to Dec 31, 2014, 
with the reference standard diagnosis as previously 
described. The Brazil dataset consists of 92 images 
(20 plus or pre-plus disease and 72 healthy) from 
46 neonates acquired at the University of São Paulo, 
Brazil from Jan 1, 2020, to Aug 31, 2022, using the 
Retcam device. The Egypt Retcam dataset consisted of a 
total of 45 images (32 plus or pre-plus disease and 
13 healthy) from 45 neonates acquired between 
Jan 1, 2020, and Aug 31, 2022, at the Alexandria 
University Hospital, Alexandria, Egypt. The Egypt 
3nethra dataset consists of 101 images (71 plus or pre-
plus disease and 30 healthy) from 33 neonates acquired 
between April 1, 2018, and August 31, 2022, at the 
Department of Ophthalmology, Ain Shams University 
Hospitals and Al Mashreq Eye Centre, Cairo, Egypt. 
Images were captured using the 3nethra neo, a wide-
field camera device providing a maximum 120-degree 
field of view manufactured by Forus Health. Further 
information about the external validation datasets, 
including ethnicity data and reference standard, is 
provided in appendix 3 (p 7). 

Internal External

Development 
(n=6141)

Test  
(n=200)

i-ROP 
(n=100)

Brazil 
(n=92)

Egypt Retcam 
(n=45)

Egypt 3nethra neo 
(n=101)

Healthy 5771 (94·0%) 111 (55.5%) 54 (54·0%) 72 (78·3%) 13 (28·9%) 30 (29·7%)

Pre-plus 
disease

235 (3·8%) 43 (21·5%) 31 (31·0%) NA NA NA

Plus disease 135 (2·2%) 46 (23·0%) 15 (15·0%) NA NA NA

Pre-plus or 
plus disease*

NA NA NA 20 (21·7%) 32 (71·1%) 71 (70·3%)

Data are n (%). i-ROP=Imaging and Informatics in Retinopathy of Prematurity. NA=not applicable. *For datasets from 
Brazil and Egypt the images were labelled as presence of pre-plus or plus disease, or healthy. 

Table 1: Distribution of class for the development, internal test, and external test datasets

For more on DenseNet for 
PyTorch see https://arxiv.org/

abs/1608.06993

For more on ImageNet see 
https://www.image-net.org/

For more on the Google Cloud 
AutoML Vision Application 
Programming Interface see 

https://cloud.google.com/vision/
docs/reference/rest#service:-

vision.googleapis.com

https://arxiv.org/abs/1608.06993
https://www.image-net.org/
https://cloud.google.com/vision/docs/reference/rest#service:-vision.googleapis.com
https://cloud.google.com/vision/docs/reference/rest#service:-vision.googleapis.com
https://arxiv.org/abs/1608.06993
https://arxiv.org/abs/1608.06993
https://www.image-net.org/
https://cloud.google.com/vision/docs/reference/rest#service:-vision.googleapis.com
https://cloud.google.com/vision/docs/reference/rest#service:-vision.googleapis.com
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Outcomes 
The primary outcome was classification accuracy for the 
diagnosis of plus disease, pre-plus disease, or healthy for 
the disease detection models in external validations and 
classification accuracy for the binary classification of 
image gradability (gradable or ungradable) for the 
gradability models. Secondary outcomes were inter-
reater reliability for the development dataset, internal 
validation of the disease detection models, misclass-
fication errors audit, performance comparison between 
the bespoke and code-free disease detection models, and 
model explainability through saliancy maps.

Statistical analysis
Inter-rater reliability between two graders was assessed 
with the quadratic weighted Cohen κ statistic and for 
more than two graders intraclass correlation coefficient 
(ICC) was used (appendix 3 p 4). Model performance was 
estimated through sensitivity, specificity, and AUC using, 
where needed, a one-versus-all approach and 95% CIs 
calculated through bootstrapping. To emulate the likely 
use case of the image gradability and disease detection 
models, we also provided performance metrics at a set 
specificity and sensitivity of 1, respectively (ie, 100% of 
images considered ungradable would be classified as 
such, and 100% of images with disease would be 
identified). For visualising the sensitivity and specificity 
trade-off across different operating points, we generated 
ROC curves for the bespoke and CFDL models. Bespoke 
and CFDL models were compared using either the non-
parametric approach described by DeLong and 
colleagues,29 a nonparametric approach for comparing 
two or more correlated AUCs, or, for test sets which had 
multiple images per patient, the clustered bootstrap 
technique to account for clustering.30 All statistical testing 
was two-tailed with the level of significance set at p<0·05. 
Analyses were conducted in Python version 3.6.9 and R 
version 4.1.0.

Role of the funding source 
The funders of the study had no role in the study design, 
data collection, data analysis, data interpretation, or 
writing of the manuscript.

Results 
47 158 consecutive infant retinal images were acquired 
between Jan 1, 2008, and Jan 31, 2018. The final dataset 
consisted of 7414 posterior pole images of 1370 infants. 
Individual-level ethnicity and socioeconomic deprivation 
data were not collected; the aggregate ethnicity of the 
cohort were: 44% were White, 33% were Black, 13% were 
south Asian, 4% were other Asian, 5% were Chinese, and 
1% were other. 

The class distribution across the development, internal 
validation, and external validation datasets are shown in 
table 1. Of the original development dataset of 
7414 images, 487 (6·6%) were considered ungradable. 

A further 786 images were removed as they represented 
images of patients who were in the test set, leaving a final 
development dataset of 6141 images. Example images of 
the three classes are shown in appendix 3 (p 9).

Quadratic-weighted κ values between the two pairs of 
junior ophthalmologists on the development dataset 
were 0·433 (95% CI 0·404–0·462) and 0·500 
(0·461–0·540). Regarding the internal test dataset of 
200 images, the ICC between all graders was high at 
0·977 (0·972–0·982). The ICC between the three senior 
paediatric ophthalmologists who formed the reference 
standard was 0·954 (0·941–0·964), which was higher 
than resident ophthalmologists (0·801 [0·751–0·842]). 
Pairwise weighted κ between the ten graders, the majority 
of three senior paediatric ophthalmologists, and models 
on the internal validation set are shown in figure 1.

On the internal test set, the bespoke model achieved an 
AUC of 0·979 (95% CI 0·966–0·990) for discriminating 
gradable from ungradable images. At a specificity of 1, 
the sensitivity was 0·775 (0·710–0·910). On external 
validation, the AUC was 0·998 (0·991–1∙000). The 
bespoke model achieved AUCs of 0·986 (0·973–0·996), 
0·927 (0·884–0·962), and 0·974 (0·951–0·991) for the 
discrimination of healthy, pre-plus disease, and plus 
disease versus the code-free model and the human expert 
raters that assessed the internal validation dataset, 
respectively (figure 2). Performance against health-care 

Majority

Bespoke
CFDL

CR1
CR2

CR3
CR4 JR1

AHP1 JR2 JR3 JR4 JR5

JR5

JR4

JR3

JR2

AHP1

JR1

CR4

CR3

CR2

CR1

CFDL

Bespoke

Majority 1·00 0·77 0·53 0·84 0·90 0·78 0·82 0·82 0·65 0·80 0·57 0·48 0·56

0·77 1·00 0·55 0·76 0·70 0·71 0·78 0·79 0·62 0·73 0·59 0·46 0·53

0·53 0·55 1·00 0·59 0·56 0·38 0·56 0·54 0·49 0·57 0·63 0·30 0·46

0·84 0·76 0·59 1·00 0·73 0·62 0·81 0·81 0·59 0·71 0·54 0·46 0·53

0·90 0·70 0·56 0·73 1·00 0·68 0·79 0·77 0·72 0·79 0·65 0·43 0·60

0·78 0·71 0·38 0·62 0·68 1·00 0·66 0·69 0·59 0·66 0·45 0·53 0·56

0·82 0·78 0·56 0·81 0·79 0·66 1·00 0·96 0·71 0·79 0·69 0·49 0·59

0·82 0·79 0·54 0·81 0·77 0·69 0·96 1·00 0·69 0·78 0·65 0·49 0·59

0·65 0·62 0·49 0·59 0·72 0·59 0·71 0·69 1·00 0·67 0·67 0·45 0·54

0·80 0·73 0·57 0·71 0·79 0·66 0·79 0·78 0·67 1·00 0·69 0·45 0·54

0·57 0·59 0·63 0·54 0·65 0·45 0·69 0·65 0·67 0·69 1·00 0·37 0·45

0·48 0·46 0·30 0·46 0·43 0·53 0·49 0·49 0·45 0·45 0·37 1·00 0·40

0·56 0·53 0·46 0·53 0·60 0·56 0·59 0·59 0·54 0·54 0·45 0·40 1·00
0

0·2

0·4

0·6

0·8

1·0

Figure 1: Matrix of pairwise quadratic-weighted κ values
The majority label is based on the majority vote between CR1, CR2, and CR3 so those labels are not independent. 
CRs are the three senior paediatric ophthalmologists who provided the reference standard. AHP=allied health 
professional. CFDL=code-free deep learning. CR=consultant rater. JR=junior rater. 
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profess ionals is shown in table 2. For the detection of 
healthy versus pre-plus or plus disease, the specificity 
was 0·691 (95% CI 0·562–0·944) at a set sensitivity of 1. 
Quadratic-weighted κ between the reference standard 
and bespoke model was 0·77 (0∙66–0∙87). The bespoke 
model achieved similar AUCs on the external validation 
datasets acquired using the Retcam device (0·975 
[95% CI 0·942–0·997] for Brazil and 0·976 [0·928–1∙000] 
for Egypt; table 3) but the performance reduced to an 
AUC of 0·891 (0·783–0·977) on the Egyptian 3nethra neo 
dataset.

The CFDL model achieved an AUC of 0·982 (95% CI 
0·970–0·992) for discriminating gradable from 
ungradable images with a sensitivity of 0·850 
(0·785–0·915) when setting the specificity to 1. On 
external validation, the AUC was 0·977 (0·941–0·999). 
For the task of healthy, pre-plus disease, and plus disease 
detection versus the bespoke model and expert human 

raters that assessed the internal validation dataset, the 
AUCs of the CFDL model on the internal test set were 
0·989 (0·979–0·997) for healthy, 0·932 (0·896–0·964) 
for pre-plus disease, and 0·988 (0·976–0·996) for plus 
disease (figure 2). At a set sensitivity of 1, the specificity 
for discrimination of healthy versus pre-plus or plus 
disease was 0·775 (0·674–0·899). Quadratic-weighted κ 
between the reference standard and CFDL model was 
0∙53 (95% CI 0∙41–0∙66). Performance on the external 
validation datasets was generally high for datasets where 
image acquisition was using the Retcam (table 3). A 
reduction in AUC performance to 0·865 (0·742–0∙965) 
was noted when tested on the Egypt 3nethra neo dataset.

In general, performances were similar between the 
bespoke and CFDL models for all tasks on the internal 
test set and in the external validations from Brazil and 
Egypt. In the i-ROP external validation test set, there 
was evidence that the bespoke model had superior 

Figure 2: Receiver operating characteristics curves for the bespoke and CFDL models on the internal test set
AUC=area under the curve. CFDL=code-free deep learning. 
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Bespoke (AUC 0·986)
CFDL (AUC 0·989)

Bespoke (AUC 0·927)
CFDL (AUC 0·932)

Bespoke (AUC 0·974)
CFDL (AUC 0·988)

Healthy Pre-plus disease Plus disease

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

Bespoke model* 0·973 0·900 (0·640–0·978) 0·860 0·860 (0·612–0·943) 0·522 0·981 (0·948–1·000)

CFDL model* 0·973 0·843 (0·700–0·978) 0·860 0·866 (0·796–0·930) 0·522 1·000 (0·994–1·000)

CR4 0·973 0·955 0·860 0·841 0·522 0·987

JR1 0·964 0·955 0·860 0·873 0·652 0·987

AHP1 0·928 0·865 0·674 0·860 0·696 0·987

JR2 0·964 0·921 0·744 0·930 0·826 0·968

JR3 0·964 0·775 0·442 0·866 0·587 0·961

JR4 0·748 0·989 0·372 0·834 0·935 0·799

JR5 0·901 0·843 0·558 0·796 0·522 0·961

Data are sensitivity, specificity, or specificity (95% CI). CR4 is the consultant rater who was part of the group of seven additional raters for the internal validation of the models 
but not part of the three consultant raters who provided the reference standard. AHP=allied health professional. CFDL=code-free deep learning. CR=consultant rater. 
JR=junior rater. *Sensitivity of the bespoke and CFDL models were matched to CR4. 

Table 2: Performance metrics using the majority vote of the three most senior paediatric ophthalmologists (CR1, CR2, and CR3) as reference standard
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diagnostic accuracy to the CFDL model for the detection 
of pre-plus disease (0·942 [95% CI 0·892–0·982] vs 
0·808 [0·671–0·909], p=0·0070; table 3). Some of this 
difference could be explained by the ensembling 
approach adopted with the bespoke model; however, 
even individual model outputs were higher than the 
CFDL output (appendix 3 p 8).

Figure 3 shows a matrix of cohort labels for the 
misclassifications in the internal test set. Most misclass-
ifications were when the majority considered the image 
as pre-plus disease. The CFDL model frequently made a 
binary decision between plus disease or healthy 
(appendix 3 p 5). Examples of misclassification errors are 
shown in appendix 3 (p 10). Examination of saliency 
maps suggested that pixels involving retinal vasculature, 
particularly areas of tortuosity and engorgement, 
influenced the model output (appendix 3 p 11).

Discussion 
In this study, performance of both the bespoke and CFDL 
models for the discrimination of healthy versus plus or 
pre-plus disease was similar to senior clinicians currently 
undertaking ROP screening. Both models generalised 
well on international external validation datasets using 
the same imaging device (Retcam); however, the CFDL 
model performed less well than the bespoke model on 
the task of detecting pre-plus disease. Both models had a 
reduction in performance when tested on a separate 
imaging device, the 3nethra neo. Although deployment 
of such models requires a thorough evaluation of 
effectiveness, our diagnostic accuracy results highlight 
the potential for automated plus disease diagnosis. In the 
UK, neonatal units are currently leveraging Retcam-
based neonatal screening approaches as well as use of 
CFDL platforms for in-house development of automated 
deep-learning classification systems for ROP screening.

Previously, we evaluated the feasibility of code-free 
deep learning methods for medical image classification 
tasks, reporting similar diagnostic accuracy to 
contemporary state-of-the-art models.23,31 In the current 
study, we show similar performance in most tasks 
between pre-trained bespoke model architectures and an 
automated deep learning approach (neural architecture 
search) provided through the Google Cloud. CFDL 
approaches have limitations in their ability to interrogate 
and adapt specific details about model architecture. For 
example, we adopted a cross-validation and ensembling 
approach for our bespoke models, but these cannot be 
implemented within CFDL. Indeed, our individual 
bespoke models performed worse than the ensemble 
model, however they still exceeded that of the CFDL on 
the i-ROP external validation dataset (appendix 3 p 7). 
However, CFDL does provide an alternative option for 
model development when specialist data science 
expertise and access to high-performance computing 
resources (eg, graphics processing units) might be 
scarce. This scarcity is the case in LMICs, such as in 

sub-Saharan Africa, where a relative increase in access to 
specialist neonatal care has led to improved preterm 
neonatal survival and consequent escalation in the 
incidence of ROP.32 Moreover, particularly in a disease 
such as ROP, whereby there is evidence that the natural 

Bespoke model AUC 
(95% CI)

CFDL model AUC 
(95% CI)

p value*

Internal test set

Gradability 0·979 (0·966–0·990) 0·982 (0·970–0·992) 0·49

Healthy 0·986 (0·973–0·996) 0·989 (0·979–0·997) 0·52

Pre-plus disease 0·927 (0·884–0·962) 0·932 (0·896–0·964) 0·78

Plus disease 0·974 (0·951–0·991) 0·988 (0·976–0·996) 0·089

i-ROP external test set

Healthy 1·00 (0·998–1·000) 0·995 (0·981–1·000) 0·33

Pre-plus disease 0·942 (0·892–0·982) 0·808 (0·671–0·909) 0·0070†

Plus disease 0·976 (0·938–1·000) 0·989 (0·967–1·000) 0·40

Brazil external test set‡

Healthy versus pre-plus or plus disease 0·975 (0·942–0·997) 0·969 (0·919–1·000) 0·73

Egypt external test set (Retcam)‡

Healthy versus pre-plus or plus disease 0·976 (0·928–1·000) 0·990 (0·964–1·000) 0·34

Egypt external test set (3nethra neo)‡

Healthy versus pre-plus or plus disease 0·891 (0·783–0·977) 0·865 (0·742–0·965) 0·31

AUC=area under the curve.  CFDL=code-free deep learning. i-ROP=Imaging and informatics in Retinopathy of 
Prematurity. *Hypothesis testing was either through the DeLong test or cluster bootstrapping (for multilevel data). 
†Considered statistically significant. ‡For the Brazil and Egypt datasets the reference standard consisted of presence of 
pre-plus and plus disease versus healthy and hence there is only one binary classification AUC metric.

Table 3: Comparison of performance between bespoke and CFDL approaches across internal and external 
test sets
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Figure 3: Matrix heatmap showing disagreements between the model and graders within the internal test set.
Each row indicates a different observation or image, columns indicate different graders, and colours indicate 
different classes (healthy, pre-plus disease, and plus disease). Cases are ordered vertically by the mean severity from 
all ten graders. Horizontally, graders are listed from left to right by sensitivity. All four CRs were included. AHP=allied 
health professional. CFDL=code-free deep learning. CR=consultant rater. JR=junior rater. 
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history might differ between ethnic groups and by 
socioeconomic status,16,17,33 models developed in one 
setting might generalise poorly to another due to 
distributional shift.14 For example, among nine studies in 
a recent systematic review of deep learning classifiers, no 
development datasets included neonates from South 
America or Africa.34,35 Local training facilitated through 
CFDL approaches might provide some mitigation, 
allowing neonatal units in poorly resourced regions to 
develop models optimised to their specific populations.

Inter-observer variability within our study was generally 
in line with previous reports, however, a novel element of 
our study was to examine clinicians with a range of 
experience.27,28,36,37 Senior clinicians (ie, consultant ophthal-
mologists) showed greater levels of agreement with each 
other than junior clinicians and agreement varied between 
the pairs of junior clinicians. Inter-observer agreement in 
plus disease diagnosis even among senior ophthal-
mologists is known to be moderate,27,36 which introduces 
challenges when establishing a rigorous reference 
standard. Chen and colleagues38 have suggested three 
means for improving the reproducibility of reference 
standards based on subjective interpretation: increasing 
the expertise of graders, increasing the number of graders 
for each case, and ensuring the disagreement resolution 
process is unbiased. Our study, which leveraged 
independent gradings from two junior ophthalmologists 
with at least 3 years of ophthalmology experience and 
arbitration by a senior ophthalmologist, aspired to an 
unbiased resolution process minimising groupthink. 
However, as the model matures towards real-world 
deployment, the ground truth is likely to be defined 
through a larger number of graders with greater 
experience. Some alternative strategies have been 
investigated by other groups: the i-ROP Research 
Consortium combined image labelling from multiple 
graders with ancillary information from clinical 
examination.11,39 Such labels are robust but can be 
pragmatically challenging because they require 
prospective data collection using standardised protocols 
for examination. Moreover, work by the same group has 
also suggested that image-based diagnostic accuracy 
specifically for plus disease might actually exceed that of 
ophthalmoscopy examination.40 Another option might be 
to consider colour fundus photography segmentation 
tools for automating the extraction of quantitative 
retinovascular indices, such as venular calibre and 
arteriolar tortuosity, and use these as surrogates of disease.

Disagreements between graders and the bespoke and 
CFDL models primarily involved cases labelled as 
pre-plus disease. For example, almost all misclass-
ifications in the internal test set were where the majority 
vote was pre-plus disease. Despite a seemingly high 
AUC of 0∙932 (95% CI 0·896–0·964) for the 
discrimination of pre-plus disease by the CFDL model, it 
would usually output either plus disease or healthy. This 
nuance becomes apparent on (1) external validation in 

the i-ROP dataset whereby the bespoke model had 
significantly better performance than the CFDL model 
for pre-plus disease detection and (2) inspecting the 
weighted κ values where the agreement between the 
majority vote and bespoke (κ 0·77) was markedly superior 
to that between the majority vote and CFDL (κ 0·53). It 
might be that CFDL is more sensitive to situations with 
uneven class representation during training. A solution 
might be to consider that plus disease represents one 
end of a spectrum of proliferative retinovascular disease 
and a continuous vascular severity score might be more 
suitable for modelling, a strategy supported by the latest 
consensus statement from the International Class-
ification of Retinopathy of Prematurity.41 Recent work by 
the i-ROP Research Consortium has validated a 
quantitative score and shown use for monitoring disease 
progression, predicting treatment-requiring ROP, and 
for post-treatment disease regression.42–44

Several limitations should be considered when inter-
preting our results. First, due to information governance 
restrictions, we did not explicitly collect individual-level 
data on potential confounders of model performance, 
such as sex and ethnicity, in our development dataset. 
Although the dataset is derived from a diverse population, 
we could only report summary information on ethnicity. 
Formal analyses stratified by these potential confounders 
would elucidate their contribution in model inference 
and inform concerns over algorithmic fairness. Second, 
grading of the dataset was restricted to image quality and 
the presence of pre-plus or plus disease. Although, in our 
development dataset the detection of retinal lesions 
(eg, haemorrhage) in the area captured by the Retcam 
image was very low, it is conceivable that the models 
could use these features as shortcut signals. Future work 
could explicitly annotate images for retinal lesions as 
well as provide test performance results in groups 
stratified by their presence or absence. Third, our study 
leveraged a hierarchical grading approach with the first 
grader as junior ophthalmologists, yet inter-observer 
variability of ROP diagnosis among even senior 
ophthalmologists was moderate. Strategies for improving 
the ground-truth process through other approaches, as 
mentioned earlier, could be used for follow up work 
before deployment. Fourth, grading of image quality and 
selection of images centred on the optic nerve was 
manually performed in this study. Although we 
developed models for image gradability, we did not 
explicitly assess model performance stratified by levels of 
image quality or integrate quality assessment into a 
patient workflow. Before any clinical implementation, 
further consideration on integrating image quality 
control and its consequent impact on diagnostic accuracy 
should be considered, as per other work in diabetic 
retinopathy and ROP.12,45,46 Fifth, we benefitted from a 
relatively large dataset for training both our bespoke and 
CFDL models although other units may not have access 
to large datasets. It remains unclear how many images 
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constitute a sufficient sample size for modelling plus 
disease classification; however, most reports have used 
several thousands of images. There currently is no 
openly available large dataset of neonatal retinal images; 
however, one potential solution gaining appeal might be 
training deep learning models with use of real alongside 
synthetic neonatal images. This approach has been 
shown to lead to similar model performance with models 
trained exclusively on real images in a recent study.47 
Finally, our models generalised well when using the 
same imaging device as the development dataset 
(Retcam); however, it should be noted that the individual 
external validation datasets (especially for image 
gradability) are relatively small. A major impetus for the 
development of automated deep-learning ROP screening 
is the substantial variability in neonatal care practice 
patterns in different health-care settings, whereas all 
infants in our development dataset had access to UK 
neonatal care, which could potentially induce some bias. 
The models’ performance on external validations, 
however, is indicative of low bias and high generalisability 
of our models. Further external validation is always 
helpful in the process of accruing evidence of the models’  
broader generalisability. For example, infants with severe 
ROP in China tend to be larger and older.48 

In summary, automated plus disease detection through 
deep learning provides levels of diagnostic accuracy 
similar to senior paediatric ophthalmology clinicians in 
neonates undergoing ROP screening according to the 
RCOphth criteria. The strong performance of bespoke 
modular architectures can be emulated by automated 
deep learning tools, especially in the binary classification 
task of discriminating referrable from non-referrable 
disease. Such code-free options might provide an option 
for LMICs, where an intersection of rising rates of ROP, 
scarce resources, and few clinicians with the appropriate 
specialist expertise could result in an increase in rates of 
childhood blindness. Although further validation and 
studies of effectiveness across different populations are 
needed before deployment, deep learning might provide 
a tool for mitigating the risk of lifelong sight impairment 
in these young patients.
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