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A B S T R A C T

Deep learning models have advanced the state of the art of monaural speech separation. However, the
performance of a separation model considerably decreases when tested on unseen speakers and noisy
conditions. Separation models trained with data augmentation generalize better to unseen conditions. In this
paper, we conduct a comprehensive survey of data augmentation techniques and apply them to improve the
generalization of time-domain speech separation models. The augmentation techniques include seven source-
preserving approaches (Gaussian noise, Gain, Time masking, frequency masking, Short noise, Time stretch,
and Pitch shift) and three non-source preserving approaches (Dynamix mixing, Mixup, and Cutmix). After
hyperparameter search for each augmentation method, we test the generalization of the augmented model
by cross-corpus testing on three datasets (LibriMix, TIMIT, and VCTK), and identify the best augmentation
combination that enhances generalization. Experimental results indicate that a combination of several non-
source preserving strategies (CutMix, Mixup, and Dynamic mixing) resulted in the best generalization
performance. Finally, the augmentation combinations also improved the performance of the speech separation
model even when fewer training data are available.
1. Introduction

Speech separation is the task of isolating two or more overlapping
speech utterances from a mixed speech signal with multiple speakers
talking simultaneously. The mixed speech signal can be further cor-
rupted by environmental noise which can make the separation task
more difficult. A robust separation model would benefit applications
such as automatic speech recognition, hearing aids and voice assistants.

In comparison to multi-channel approaches that exploit the spatial
information of sound sources (Wang, 2014; Wang and Cavallaro, 2018),
single-channel speech separation is a more challenging task (Wang and
Chen, 2018). Deep neural networks (DNN) are at the forefront for
speech separation and can be broadly categorized into time–frequency
domain approaches (Kolbæk et al., 2017; Hershey et al., 2016; Wang
et al., 2018b; Williamson et al., 2015; Wang et al., 2022) and time-
domain approaches (Luo and Mesgarani, 2018; Luo and Nima Mes-
garani, 2019; Luo et al., 2020; Chen et al., 2020; Nachmani et al.,
2020). Time–frequency approaches convert the mixture waveform into
the time–frequency domain using the short-time Fourier transform
(STFT), separate time–frequency features for each source, then re-
construct the source waveforms by inverse STFT. They usually use
the original phase of the mixture to synthesize the estimated source
waveforms, which retain the phase of the noisy mixture (Kolbæk et al.,
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2017; Hershey et al., 2016). This strategy imposes an upper limit on the
separation performance. Many methods have been proposed to retrieve
the clean phase (Wang et al., 2018b), or are based on the use of complex
spectrograms in order to solve this issue (Williamson et al., 2015; Wang
et al., 2022). Time-domain approaches perform end-to-end separation
by directly modeling the mixture waveform with an encoder–decoder
framework, and have made great progress and attracted significant
attention in recent years (Luo and Nima Mesgarani, 2019; Luo et al.,
2020).

DNN approaches (Luo and Nima Mesgarani, 2019; Luo et al., 2020;
Chen et al., 2020) have shown remarkable improvement compared to
traditional signal processing methods such as computational auditory
scene analysis (Brown and Wang, 2005) and non-negative matrix fac-
torization (Schmidt and Olsson, 2006) in separating mixed speech from
the benchmark speech separation WSJ0-2mix(clean) dataset (Hershey
et al., 2016). However, the performance of separation models drops
in real-world conditions with noise (Wichern et al., 2019; Maciejewski
et al., 2020) and when tested on speakers and noise types outside
the training conditions (Cosentino et al., 2020; Kadioglu et al., 2020).
Although performance improvement has been reported when using
cascaded models (Maciejewski et al., 2020; Liu et al., 2020) (separate
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model for separation and enhancement), this improvement is modest
and requires almost doubling the number of network parameters.

A model has good generalization if similar performance is obtained
when tested on data outside training distribution (Kadioglu et al.,
2020; Hendrycks et al., 2020). Lack of generalization typically stems
from overfitting the model on the training dataset. Generalization of
models can also be improved with regularization techniques such as
dropout (Srivastava et al., 2014), early stopping, weight decay and
batch normalization (Zhang et al., 2017; Ioffe and Szegedy, 2015).
However, models trained with one or more of these regularization
strategies were found to underperform with new test subsets outside
their training conditions (Kadioglu et al., 2020). Increasing the rep-
resentational capacity of the model by adding the number of layers
or using a wider network could improve the generalization of mod-
els (Zagoruyko and Komodakis, 2016). Other techniques to improve
generalization include model optimization (Pariente et al., 2020b),
transfer and meta learning (Wu et al., 2021). However, engineering
changes to the model, such as finding a new architecture (e.g. Dual-
path network (Luo et al., 2020)) is harder than refining the training
data itself (Wei et al., 2020).

Data augmentation has been extensively used to improve the gen-
eralization (Ko et al., 2015; Wei et al., 2018) and to prevent the
overfitting (Hendrycks et al., 2020; Wei et al., 2020). Performance
improvement can be obtained when a model is trained with multiple
augmentations with optimal hyperparameters (Cubuk et al., 2019;
Lim et al., 2019; Zhang et al., 2020; Cubuk et al., 2020). AutoAug-
ment (Cubuk et al., 2019) and its extensions (Lim et al., 2019; Zhang
et al., 2020; Cubuk et al., 2020; Ho et al., 2019) primarily focused
on training a model that learns a combination of augmentations and
its hyperparameters. However, training such a model (e.g. AutoAug-
ment (Cubuk et al., 2019)) requires extensive computational resources
as opposed to using a predefined set of augmentations.

In this paper, we conduct a comprehensive survey of data augmen-
tation strategies and empirically evaluate the ability of ten methods
to improve the generalization performance of time-domain separation
models. The contribution and novelty of the paper is summarized
below.

• First, we apply variants of Mixup (Alex et al., 2021) and Cut-
Mix (Yun et al., 2019), which were originally proposed in the
computer vision domain, to the speech separation problem, and
achieve the top two performance among all the individual aug-
mentation methods.

• Second, we conduct an ablation study to identify the best hyper-
parameters for each individual augmentation method.

• Third, we improve the generalization performance by empirically
searching for the best strategy for combining various augmen-
tation methods. We identify that the combination of Mixup,
CutMix and Dynamic mixing augmentation gives the best
generalization result.

We apply the augmentation strategies to the training of two popular
time-domain speech separation models: DPRRN (Luo et al., 2020) and
ConvTasNet (Luo and Nima Mesgarani, 2019), and evaluate the per-
formance of the augmented speech separation model via intra-corpus
and cross-corpus testing on three speech datasets (LibriMix (Cosentino
et al., 2020), TIMIT (Garofolo, 1993) and VCTK (Veaux et al., 2016)).

The paper is organized as follows: We discuss related works on data
augmentation in Section 2, and formulate the problem in Section 3.
We adapt the various augmentation methods to speech separation in
Section 4, and evaluate the generalization performance in Section 5.
Finally, conclusions are presented in Section 6.
2

2. Related work

2.1. Speech separation in noisy environments

In recent years, the introduction of WHAM! (Wichern et al., 2019)
and LibriMix (Cosentino et al., 2020) datasets has accelerated the
research of speech separation in noisy environments (Gao et al., 2017).
WHAM! dataset is an extension of WSJ0-2mix (clean) dataset with
ambient noise samples from bars, restaurants and coffee shops. How-
ever, Cosentino et al. (2020) highlighted the performance drop when
models trained on WSJ0-2mix and WHAM! were evaluated on other
datasets, such as their proposed LibriMix dataset. LibriMix dataset
was reported to have lower generalization error than models trained
on WHAM! and WSJ0-2mix dataset (Cosentino et al., 2020). This
improvement was attributed to the larger size of the dataset, variability
in recording conditions and the presence of a higher and diverse
range of unique speakers in the LibriMix corpus. Despite the im-
provement in generalization when using LibriMix datasets (Cosentino
et al., 2020) for training there is still a lack of generalization when
evaluated outside its test corpus, especially on unseen noisy conditions.
Additionally, WHAM! (Wichern et al., 2019), VCTK (Veaux et al.,
2016) and LibriMix (Cosentino et al., 2020) all use the same noise
corpus (WHAM (Wichern et al., 2019)) in their test subset and thus
is not a thorough test of generalization.

A summary of the deep learning models tested on WHAM! and
LibriMix dataset has been presented in Table 1. Fig. 1 presents the
tradeoff between the performance and number of parameters for speech
separation models in clean (WSJO-2mix (Hershey et al., 2016)) and
noisy (WHAM (Wichern et al., 2019)) conditions. For both clean and
noisy conditions, time domain models largely tend to outperform fre-
quency domain models. Wavesplit (Zeghidour and Grangier, July 2021)
was reported to have the best separation performance in both clean
and noisy environments on WHAM and LibriMix datasets. However,
Wavesplit uses speaker-ids as additional information during training
and also has a significantly high number of parameters (29M) as com-
pared to other time-domain models (Luo and Nima Mesgarani, 2019;
Luo et al., 2020; Chen et al., 2020). On the other hand, DPTNet (Chen
et al., 2020) has the best performance vs model parameters tradeoff.
However, DPTNet has very high training time compared to other state-
of-the-art time domain separation models e.g. DPRNN (Luo et al., 2020)
which makes it impractical for research works with extensive ablation
experiments.

Furthermore, from Table 1 we can infer that using cascaded variants
of TasNet and Deep CASA models results in only 0.6 and 1 dB SI-SNRi
performance improvement with doubling the number of parameters
which is further highlighted in Fig. 1 with an ‘‘L’’ shape.

2.2. Augmentations

Data augmentations have been extensively used in varying machine
learning domains (e.g. vision (Shorten and Khoshgoftaar, 2019)/au-
dio (Wei et al., 2020)). Data augmentation can encode additional priors
other than the once introduced by the choice of model architecture by
altering/enhancing the available training data which can enhance the
robustness of a model to unseen conditions.

Data augmentation for speech separation can be divided into source-
preserving and non-source-preserving augmentations. Most separation
augmentation approaches are source preserving in nature, i.e. the
augmentation is only applied to the input mixtures and the ground-
truth sources are maintained after an augmentation operation is ap-
plied (e.g. SpecAugment (Park et al., 2019)). Non-source preserving
augmentation modifies both the input mixture and its ground truth
sources with the augmentation. An example of non-source preserving
augmentation is Mixup (Zhang et al., 2018a) which linearly mixes both
input and its ground truth. Table 2 provides a summary of various
augmentations.
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Table 1
Summary of speech separation models tested for speech separation in noisy environments on WHAM (8 KHz) (Wichern et al., 2019) and
LibriMix (8 KHz noisy) (Cosentino et al., 2020) datasets.

Ref Algorithm Domain Params[M] SI-SNRi

FD TD WHAM LibriMix

Liu et al. (2020) Chimera++ (Wang
et al., 2018a)

✓ 29.6 9.9 –

Liu et al. (2020) Chimera++ casc.
(Wang et al., 2018a)

✓ 59.2 10.3 –

Wu et al. (2020) A2PIT (Luo and
Mesgarani, 2020)

✓ – 10.9 –

Wu et al. (2020) SADDEL (Wu et al.,
2020)

✓ – 12.0 –

Maciejewski et al. (2020) TasNet (Luo and
Mesgarani, 2018)

✓ 32.0 12.0 –

Maciejewski et al. (2020) TasNet casc. (Luo and
Mesgarani, 2018)

✓ 64.0 12.6 –

Maciejewski et al. (2020) ConvTasNet (Luo and
Nima Mesgarani,
2019)

✓ 5.1 12.7 11.7

Pariente et al. (2020b) Filterbank (Pariente
et al., 2020b)

✓ 5.1 12.9 –

Liu et al. (2020) Deep CASA (Liu and
Wang, 2019)

✓ 12.8 13.4 –

Liu et al. (2020) Deep CASA casc. (Liu
et al., 2020)

✓ 25.6 14.4 –

Nachmani et al. (2020) DPRNNa (Luo et al.,
2020)

✓ 3.7 13.9 12.0

Nachmani et al. (2020) DPRNN gated
(Nachmani et al.,
2020)

✓ 7.5 15.2 –

Zeghidour and Grangier
(July 2021)

Wavesplitb (Zeghidour
and Grangier, July
2021)

✓ 29.0 15.4 15.1

Zeghidour and Grangier
(July 2021)

Wavesplitb + DM
(Zeghidour and
Grangier, July 2021)

✓ 29.0 16.0 15.2

Chen et al. (2020) DPTNet (Chen et al.,
2020)

✓ 2.7 – –

Subakan et al. (2021) SepFormer (Subakan
et al., 2021)

✓ 26.0 – –

KEY: FD — frequency domain, TD — time domain, SI-SNRi — Scale invariant Signal to distortion ratio improvement, casc. — cascaded. Params
— number of parameters in million(M) in the network. Fields marked as ‘–’ are the ones for which data was not found/published.
aAsteroid (Pariente et al., 2020a) implementation.

bUses speaker-ids as additional information.
Fig. 1. Relationship between the number of parameters (in million (M)) and per-
ormance of model (SI-SNRi) in clean (WSJ0-2mix (Hershey et al., 2016)) and
oisy (WHAM! (Wichern et al., 2019)) conditions. Blue and red markers represent
requency and time domain models, respectively. Clean: ; Noisy: ; Cascaded

network: . Models: 1. DPCL 2. Chimera++ 3. TasNet 4. ConvTasNet 5. Filterbank
. Deep CASA 7. DPRNN 8. DPRNN-gated 9. Wavesplit 10. DPTNet 11. SepFormer.
ote: Artificial space has been created between ConvTasNet (Luo and Nima Mesgarani,
019) and Filterbank (Pariente et al., 2020b) for ease of viewing.
3

A mini-survey of data augmentation techniques for audio (Wei
et al., 2020) reported source preserving augmentations to have a
very limited impact in improving the audio classification accuracy.
Tested source preserving augmentations included: Gaussian noise;
Time stretch; Pitch shift and Time and Frequency masking
(SpecAugment Park et al., 2019) augmentations. Whereas, non-source
preserving augmentations: SpecMix (Kim et al., 2021); Mixup and
their proposed Mixed Frequency Masking had the most perfor-
mance improvements; 1.14 and 1.28 mean average precision percent-
age improvement respectively to the baseline and thus performance not
being very substantial.

Some augmentation techniques used in the audio domain have
been borrowed from the vision domain. For example, SpecAug-
ment (Park et al., 2019) where random bands of time and frequency
bins are masked is very similar to Cutout (DeVries and Taylor,
2017) and Random erasing (Zhong et al., 2020) augmentation. Yun
et al. (2019) combined Cutout (DeVries and Taylor, 2017) and
Mixup (Zhang et al., 2018a) augmentation and proposed CutMix (Yun
et al., 2019) where instead of removing the data points and replacing
them with zeros (Cutout (DeVries and Taylor, 2017)) or Gaussian
noise (Summers and Dinneen, 2019), they are replaced with data points
from other training examples. Drawing inspiration from CutMix, Kim
et al. (2021) proposed SpecMix augmentation for audio classification
and enhancement where the augmentation was applied to spectral
features. They reported both SpecAugment and Mixup to perform
worse than Un-augmented models for the speech enhancement task
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Table 2
Various augmentation techniques can be used to train the machine learning model.
Checkmark (✓) on SS (Speech separation) column indicates whether the augmentation
was found to be applied in previous research for speech separation.

Type Method SS Ref

Source
preserving

Gaussian noise ✓ Salamon and Bello (March 2017)
Time stretch ✗ Salamon and Bello (March 2017)
Pitch shift ✗ Salamon and Bello (March 2017)
SpecAugment ✓ Park et al. (2019)
Cutout ✗ DeVries and Taylor (2017)
SamplePairing ✗ Inoue (2018)
GANs ✗ Shrivastava et al. (2016)
Smart Augmentation ✗ Lemley et al. (2017)

Non-source
preserving

Mixup ✓ Zhang et al. (2018a)
Cutmix ✗ Yun et al. (2019)
SpecMix ✗ Kim et al. (2021)
Between-class ✗ Tokozume et al. (2018b)
Dynamic mixing ✓ Zeghidour and Grangier (July 2021)

while SpecMix slightly improves the enhancement performance. This
is interesting as speech enhancement is closely related to the problem of
speech separation, which refers to the task of separating the signal of in-
terest from a mixture that can either be corrupted with another speech
signal (speech separation), noise (speech enhancement), or both (Wang
and Cavallaro, 2020; Mukhutdinov et al., 2023). However, one cannot
assume that an augmentation operation that does well for enhancement
tasks will do well for separation tasks and vice-versa. For example,
mixed sample data augmentation (Harris et al., 2021) approaches
such as Mixup which involves adding other speech utterances to the
training sample could have a different impact on a model that is being
primarily trained to remove noise (speech enhancement) as compared
to a separation model whose primary task is to separate speakers from
the mixture.

Similar to Mixup, Between-class learning (Tokozume et al.,
2018a) originally proposed for sound recognition (Tokozume et al.,
2018b) involves mixing two samples belonging to different classes
with a random ratio which are then input into a model which is
trained to predict the mixing ratio. Additionally, Between class
learning was reported to have the ability to constrict the shape
of feature distribution which helps in improving the generalization
of the model (Tokozume et al., 2018a). Along similar lines in Sam-
plePairing (Inoue, 2018) new training samples are generated by
overlaying the target image with another image from the training
dataset. However, different from Mixup, SamplePairing uses the
label of the target image therefore not mixing up labels (Inoue, 2018).
Also, weights by which the target image is mixed with other image
is fixed in SamplePairing, unlike Mixup where the weights are
randomly drawn from a beta distribution (Zhang et al., 2018a). Similar
to the aforementioned works, Smart augmentation (Lemley et al.,
2017) takes multiple training samples from the same class as input to
a generative model to output new training data which can reduce the
validation loss for the model designed for the underlying task. Although
this strategy is employable for the classification tasks, it is not feasible
for the source separation task which is a regression problem.

3. Problem definition

Let 𝑥(𝑡) be a single-channel mixture of the clean speech of 𝐶 ≥ 2
speakers, {𝑦1(𝑡),… , 𝑦𝐶 (𝑡)}, and noise 𝑛(𝑡), i.e.

𝑥(𝑡) =
𝐶
∑

𝑐=1
𝑦𝑐 (𝑡) + 𝑛(𝑡). (1)

We aim to train a separation model  (⋅) to retrieve from the mixture
the individual speech signals, {�̂�1(𝑡),… , �̂�𝐶 (𝑡)}.

The model processes the input signal 𝑥(𝑡) in short segments. Let a
time-domain segment be

�̄� = [𝑥(1),… , 𝑥(𝑊 )]T, (2)
4

where 𝑊 is the length of the segment and (⋅)T represents the transpose.
The separation model is trained in a mini-batch style. Each mini-

batch contains 𝐵 segments of speech mixture, i.e.

𝑿 = [�̄�1,… , �̄�𝒃,… , �̄�𝐵], (3)

where �̄�𝑏 = [𝑥𝑏(1),… , 𝑥𝑏(𝑊 )]T. The corresponding ground truth 𝒀 is
represented as

𝒀 = [�̄� 1,… , �̄� 𝑏,… , �̄� 𝐵], (4)

where �̄� 𝑏 = [𝒚𝑏1 ⋯ , 𝒚𝑏𝐶 ] with 𝒚𝑏𝑐 = [𝑦𝑏𝑐 (1)⋯ 𝑦𝑏𝑐 (𝑊 )]T.
We apply augmentation to the training data to improve the gener-

alization of the model. Data augmentation on a min-batch is shown in
Fig. 2(a). The speech mixture and the ground truth post-augmentation
can be represented as:
{

𝑿𝑎𝑢𝑔 = [�̄�𝑎𝑢𝑔_1,… , �̄�𝑎𝑢𝑔_𝑏,… , �̄�𝑎𝑢𝑔_𝐵]
𝒀 𝑎𝑢𝑔 = [�̄� 𝑎𝑢𝑔_1,… , �̄� 𝑎𝑢𝑔_𝑏,… , �̄� 𝑎𝑢𝑔_𝐵]

. (5)

Using the augmented mixture as input, the separation network
generates a mini-batch of predicted waveforms �̂� , which can be rep-
resented similarly as Eq. (4). The model is trained to minimize the loss
between the ground-truth 𝒀 𝒂𝒖𝒈 and the prediction �̂� , the loss function
is defined as

(𝒀 𝑎𝑢𝑔 , �̂� ) =
𝐵
∑

𝑏=1

𝐶
∑

𝑐=1
SI-SNR(𝒚𝑎𝑢𝑔_𝑏𝑐 , �̂�𝑏𝑐 ), (6)

where, for a ground-truth 𝒚𝑎𝑢𝑔 and prediction �̂�, the scale-invariant
signal-to-noise ratio (SI-SNR) is defined as (Luo and Nima Mesgarani,
2019; Le Roux et al., 2019)

SI-SNR(𝒚𝑎𝑢𝑔 , �̂�) = 10 log10
‖�̃�‖2

‖�̂� − �̃�‖2 , (7)

where �̃� = ⟨�̂�,𝒚𝑎𝑢𝑔⟩𝒚𝑎𝑢𝑔
‖𝒚𝑎𝑢𝑔‖2 and ⟨�̂�, 𝒚𝑎𝑢𝑔⟩ denotes the inner product.

The whole procedure is illustrated in Fig. 2(a). We aim to find
the best augmentation strategy that improves the generalization of the
speech separation model (e.g. DPRNN in Fig. 2(b)). All augmentations
are applied with a probability of 0.5 unless stated (see Section 5.1).

4. Augmentations for separation

4.1. Source-preserving augmentations

In this subsection, we present seven traditional source-preserving
augmentations: Gaussian noise, Gain, Time and Frequency
masking, Short noise, Time stretch, Pitch shift. Fig. 3
depicts example results obtained from these augmentation methods.

4.1.1. Gaussian noise
Gaussian noise augmentation adds gaussian noise to the mix-

ture. Adding gaussian noise to the mixture during training can reduce
the model’s performance sensitivity to mixtures with gaussian noise.
Let us use the 𝑏th segment in the mini-batch (5) as an example. The
augmented data is represented as
{

�̄�𝑔𝑠_𝑏 = �̄�𝑏 + 𝐴𝒈
�̄� 𝑔𝑠_𝑏 = �̄� 𝑏

, (8)

where �̄�𝑏 and �̄�𝑔𝑠_𝑏 are the original and augmented mixture, respec-
tively; 𝒈 is the gaussian noise with normal distribution and 𝐴 is the
amplitude, which is randomly sampled from a uniform distribution as

𝐴 =  (𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥). (9)

The ablation of the hyperparameters (𝐴𝑚𝑖𝑛, 𝐴𝑚𝑎𝑥) will be given in
able 4.
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Fig. 2. Data augmentation pipeline for speech separation. We use DPRNN (Luo et al., 2020) as our speech separation model. Details of DPRRN model architecture are presented
in Fig. 2(b).

Fig. 3. Spectral representation of the seven source-preserving augmentations.
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4.1.2. Gain
Gain augmentation varies the amplitude of the mixture randomly

with a scaling factor. This augmentation aims to increase the robustness
of the model to the loudness variation of the mixture. Let us use the 𝑏th
egment in the mini-batch (5) as an example. The augmented data is
epresented as

�̄�𝑔𝑛_𝑏 = 𝐺�̄�𝑏
�̄� 𝑔𝑛_𝑏 = �̄� 𝑏

, (10)

here �̄�𝑏 and �̄�𝑔𝑛_𝑏 are the original and augmented mixture, respec-
ively; 𝐺 is the scaling factor randomly drawn from an uniform distri-
ution as

=  (𝐺𝑚𝑖𝑛, 𝐺𝑚𝑎𝑥). (11)

he ablation of the hyperparameters (𝐺𝑚𝑖𝑛, 𝐺𝑚𝑎𝑥) for gain augmentation
can be seen in Table 4.

4.1.3. Time masking
Time masking is masking out consecutive time steps from the

waveform (Park et al., 2019). Time masking augmentation can make
the separation model robust in scenarios where a small segment of the
audio signal is dropped while recording. Let us use the 𝑏th segment in
the mini-batch (5) as an example. The augmented data is represented
as
{

�̄�𝑡𝑚_𝑏 = 𝑀𝑇 ◦�̄�𝑏
�̄� 𝑡𝑚_𝑏 = �̄� 𝑏

, (12)

where �̄�𝑏 and �̄�𝑡𝑚_𝑏 are the original and augmented mixture, respec-
tively; 𝑀𝑇 is a binary mask of the same shape as �̄�𝑏, and ◦ denotes
element-wise product.

The 𝑊 -element vector 𝑴𝑇 is defined as

𝑴𝑇 (𝑛) =

{

0, if 𝑇0 ≤ 𝑛 ≤ 𝑇0 + 𝑇1

1, otherwise
, (13)

where 𝑛 ∈ [0,𝑊 − 1], 𝑇1 is the duration of value-0 segment and is set
as

𝑇1 =  (0, 𝑇𝑚𝑎𝑥𝑊 ), (14)

and 𝑇0 is the start index of the value-0 segment and is set as

𝑇0 =  (0,𝑊 − 𝑇 ). (15)

𝑇𝑚𝑎𝑥 ∈ [0,1] is the maximum length of the value-0 segment as a frac-
tion of the whole length of the segment. Ablation of the hyperparameter
𝑇𝑚𝑎𝑥 has been given in Table 4.

4.1.4. Frequency masking
Frequency masking augmentation masks out consecutive fre-

quency bins from the mixture (Park et al., 2019). Using frequency
masks can increase the robustness of the separation model when sep-
arating mixtures recorded in a cheap microphone, with the speaker
at a distance, which can cause the audio signal to have little bass.
Also, when the microphone recording the mixture is very close, the low
frequency will dominate the spectrum which will be similar to high-
frequency components being masked. Let us use the 𝑏th segment in the
mini-batch (5) as an example. The augmented data is represented as
{

�̄�𝑓𝑚_𝑏 = BS(�̄�𝑏)
�̄� 𝑓𝑚_𝑏 = �̄� 𝑏

, (16)

where �̄�𝑏 and �̄�𝑡𝑚_𝑏 are the original and augmented mixture, respec-
tively; BS(.) denotes a bandstop filtering.

The bandstop filter is defined as

BS𝑓 =

{

0, if 𝐹0 ≤ 𝑓 ≤ 𝐹0 + 𝐹1 , (17)
6

1, otherwise
where 𝑓 ∈ [0, 𝐹𝑅∕2] with 𝐹𝑅 being the sampling rate 𝐹1 is the width
f the stop band and is set as

1 =  (0, 𝐹𝑚𝑎𝑥𝐹𝑅∕2), (18)

nd 𝐹0 is the start frequency of the stop band and is set as

0 =  (16, 𝐹𝑅∕2 − 𝐹1). (19)

The band stop filter is implemented as a Butterworth filter with
rder 6 (a default value in the Python Scipy library). 𝐹𝑚𝑎𝑥 ∈ [0,1] is the
aximum width of the stop band as a fraction of the whole frequency

rea. Ablation of the hyperparameter 𝐹𝑚𝑎𝑥 will be given in Table 4.

.1.5. Short noise
The short noise augmentation adds a short burst of noise samples

rom the noise set of Xu et al. (2015) to the mixture.1 This can
upposedly help with situations where a small burst of noise occurs in
etween mixtures. Let us use the 𝑏th segment in the mini-batch (5) as
n example. The augmented data is represented as

�̄�𝑠𝑛_𝑏 = �̄�𝑏 + �̂�𝒗
�̄� 𝑠𝑛_𝑏 = �̄� 𝑏

, (20)

here �̄�𝑏 and �̄�𝑡𝑚_𝑏 are the original and augmented mixture, respec-
ively; 𝒗 is the additive short noise and �̂� is the amplitude.

The additive short noise 𝒗 is generated as follows. Suppose We have
short noise segment �̄� ∈ R𝑇𝑠×1, we first add fade in and fade out effect

o the noise signal with

̄ ′ = �̄�◦�̄�, (21)

here �̄� ∈ R𝑇×1 is a gain vector defined as

̄ (𝑛) =

⎧

⎪

⎨

⎪

⎩

𝑭 𝑖𝑛, if 0 ≤ 𝑛 ≤ 𝑇𝑖𝑛
𝑭 𝑜𝑢𝑡, if 𝑇𝑜𝑢𝑡 ≤ 𝑛 ≤ 𝑇𝑠
1, otherwise

, (22)

here 𝑭 𝑖𝑛 ∈ R𝐼×1 and 𝑭 𝑜𝑢𝑡 ∈ R𝐽×1 are series of evenly spaced numbers
rom 0 to 1 and 1 to 0 respectively. The Hyperparameters 𝐼 and 𝐽 are
ampled from a uniform distribution as:

𝐼 =  (𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥)
𝐽 =  (𝐽𝑚𝑖𝑛, 𝐽𝑚𝑎𝑥)

. (23)

alues of (𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥) is set as (40,640) and (𝐽𝑚𝑖𝑛, 𝐽𝑚𝑎𝑥) is set as (80,800)
hich are the default values in Audiomentations library.2 We add �̄�′ to

̄ 𝑏 at an SNR as

NR𝑠𝑛 =  (SNR𝑚𝑖𝑛, SNR𝑚𝑎𝑥). (24)

inally, the faded noise sample �̄�′′ is added to the mixture to obtain
hort noise-augmented mixture as follows:

̄ 𝑠𝑛𝑏 =

{

�̄�𝑏 + �̄�′′ if 𝑠 ≤ 𝑡 ≤ 𝑇
�̄�𝑏 otherwise

, (25)

here 𝑠 is the start time of the short noise which is randomly sampled
rom a uniform distribution.

1 The 104 noise types for training are N1-N17: Crowd noise; N18-N29:
achine noise; N30-N43: Alarm and siren; N44-N46: Traffic and car noise;
47- N55: Animal sound; N56-N69: Water sound; N70-N78: Wind; N79-N82:
ell; N83-N85: Cough; N86: Clap; N87: Snore; N88: Click; N88-N90: Laugh;
91- N92: Yawn; N93: Cry; N94: Shower; N95: Toothbrushing; N96-N97:
ootsteps; N98: Door moving; N99-N100: Phone dialing. To compare with the
esults of [32], N101: AWGN, N102: Babble, N103: Restaurant, N104: Street,
ere also used.
2
 https://github.com/iver56/audiomentations

https://github.com/iver56/audiomentations
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4.1.6. Time stretch
Time stretch augmentation speeds up or slows down the mixture

ithout changing the pitch which can make the separation model
obust to varying speed perturbations in the audio signal (Arakawa
t al., 2019). Let us use the 𝑏th segment in the mini-batch (5) as an

example. The augmented data is represented as
{

�̄�𝑡𝑠_𝑏 = (�̄�𝑏, 𝑟𝑠)
�̄� 𝑡𝑠_𝑏 = �̄� 𝑏

, (26)

where �̄�𝑏 and �̄�𝑡𝑚_𝑏 are the original and augmented mixture, respec-
tively; (⋅) is a phase-vocoder (Laroche and Dolson, 1999) that changes
the playing speed of the signal with a ratio 𝑟𝑠, i.e. speeding up for 𝑟𝑠 > 1
and slowing down for 𝑟𝑠 < 1. The rate parameter 𝑟𝑠 is drawn randomly
from a uniform distribution as

𝑟𝑠 =  (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥). (27)

It is important to note that we choose the rate parameter such
that the mixture is not heavily sped up or slowed down as it would
destroy the semantics of the mixture while training the network against
the ground truth speakers present in the mixture. Ablation of the
hyperparameters (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥) has been given in Table 4.

4.1.7. Pitch shift
Pitch Shift augmentation varies the pitch of the mixture. Vary-

ing the pitch of the mixture during training can make the model
robust to speakers with their voice having varying phase characteris-
tics (Arakawa et al., 2019). Let us use the 𝑏th segment in the mini-batch
(5) as an example. The augmented data is represented as
{

�̄�𝑝𝑠_𝑏 = (�̄�𝑏, 𝑆𝑝)
�̄� 𝑝𝑠_𝑏 = �̄� 𝑏

, (28)

where �̄�𝑏 and �̄�𝑝𝑠_𝑏 are the original and augmented mixture, respec-
tively; (⋅) is the Pitch shift operation given the semitone param-
eter 𝑆𝑝.

Pitch shift has a parameter called bins per octave, which is
set to 12 as it ensures that 1 step equals one semitone. We shift the
waveform by a fixed number of steps 𝑆𝑝, which is randomly drawn
from a uniform distribution as

𝑆𝑝 =  (𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥), (29)

where 𝑆𝑚𝑖𝑛 and 𝑆𝑚𝑎𝑥 are minimum and maximum semitones.
The Pitch shift operation is conducted as follows. We first

ompute a rate parameter 𝑟𝑠 as:

𝑠 = 2−(𝑆𝑝∕12). (30)

he rate parameter 𝑟𝑠 is used to get a time-stretched signal as described
n Section 4.1.6, i.e.

̄ 𝑝𝑠_𝑏 = (�̄�𝑏, 𝑟𝑠), (31)

inally, we resample �̄�𝑝𝑠 with a sampling rate of 𝑆′
𝑟 = 𝑆𝑟∕𝑟𝑠 to obtain

he pitch shifted signal.
Ablation of the hyperparameters (𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥) will be given in Ta-

le 4.

.2. Non-source preserving augmentations

In this section, we present three non-source preserving augmenta-
ion strategies, including one existing method (Dynamix Mixing) and
n extension of (Mixup and CutMix) augmentations.
7

4.2.1. Dynamic mixing
Dynamic mixing augmentation has been used as an augmentation

technique in audio speech separation (Subakan et al., 2021). This
augmentation strategy attempts to expose the model to a wider range
of mixtures. Instead of using fixed training data, Dynamic mixing
creates new mixtures from available training data on the fly for each
epoch.

We select 𝐶 unique source segments from the speech corpus �̂�1,… ,
̂𝐶 to create the augmented data as:

�̄�𝑑𝑚_𝑏 = �̂�𝑏1 +⋯ + �̂�𝑏𝐶
�̄� 𝑑𝑚_𝑏 = [�̂�𝑏1 ,… , �̂�𝑏𝐶 ]

. (32)

The 𝐶 sources are selected by sampling from the speech corpus by
randomly selecting 𝐶 distinct indices as:

𝑖𝑐 =  (0, ) ∶ 𝑛 = 1,… , 𝑐,… , 𝐶, (33)

where  is the total number of mixtures in the speech separation
dataset which is 13900 which is the number of mixtures in the train-
100 split of LibriMix (Cosentino et al., 2020) dataset. Thus, during each
epoch, the model sees new training data instead of having fixed training
data for each epoch. Dynamic mixing augmentation is applied with
a probability of 𝑃 for each sample in the mini-batch. Ablation of the
impact of 𝑃 has been presented in Table 4.

4.2.2. Mixup
Mixup enhances the available training distribution by creating aug-

ented examples from the training mini-batch. Mixup is a domain ag-
nostic augmentation technique that can increase the model’s robustness
to mixtures with babble-like noises as it involves convex combinations
with pairs of mixtures and its sources (Zhang et al., 2018a). We pro-
pose two variations of Mixup augmentation: Complete Mixup (CP),
which generate augmented mixture and ground-truth, and Data-only
Mixup (DO), which generates augmented mixture only (Alex et al.,
2021).

For Complete Mixup, let us use the 𝑏th segment in the mini-batch
(5) as an example. The augmented data is represented as
{

�̄�𝑐𝑝_𝑏 = 𝜆�̄�𝑖𝑏 + (1 − 𝜆)�̄�𝑗𝑏
�̄� 𝑐𝑝_𝑏 = 𝜆�̄� 𝑖𝑏 + (1 − 𝜆)�̄� 𝑗𝑏

, (34)

where 𝑖𝑏 and 𝑗𝑏 are randomly sampled indices from [1, 𝐵] and are used
to generate the 𝑏th augmented segment. The scalar 𝜆 is drawn from a
beta distribution 𝑏𝑒𝑡𝑎(𝛼, 𝛽) and controls the weights between the two
components. Fig. 4(a) illustrates how Mixup augmentation is applied
on a mini-batch. Fig. 4(b) illustrates the relationship between (𝛼, 𝛽) and
𝜆.

Data-only Mixup (DO) is similar to Complete Mixup, but
operates on the mixture only. This is essentially close to adding babble
noise in form of mixtures from other samples in the mini-batch. We
expect this augmentation to increase the model’s robustness in presence
of speech-like noises. The augmented data can be represented as
{

�̄�𝑑𝑜_𝑏 = 𝜆�̄�𝑖𝑏 + (1 − 𝜆)�̄�𝑗𝑏
�̄� 𝑑𝑜_𝑏 = �̄� 𝑖𝑏

. (35)

Ablation of the hyperparameters (𝛼, 𝛽) will be given in Table 4.

4.2.3. CutMix
CutMix augmentation was initially proposed as an augmentation

technique for the image domain (Yun et al., 2019). CutMix augmen-
tation is a combination of Cutout and Mixup augmentation and
involves masking out certain regions of the image followed by replacing
the masked-out portion with a patch from another image from the same
mini-batch. CutMix augmentation can make the model robust against
corruption in input mixture (Yun et al., 2019).
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Fig. 4. Mixup augmentation.
Fig. 5. Cutmix data augmentation on a mini-batch for 2 speaker mixture: Cutmix
combines two distinct mixtures 𝒙𝑖𝑏 ,𝒙𝑗𝑏 and their ground truth speaker waveforms
𝐲𝑖𝑏1

, 𝐲𝑖𝑏2
and 𝐲𝑗𝑏1

, 𝐲𝑗𝑏2
to produce new mixtures �̄�𝑐𝑚_𝑏 and its ground truth speakers

�̄� 𝑐𝑚_𝑏1
and �̄� 𝑐𝑚_𝑏2

. The rectangular block consists of binary masks 𝑀 and 1−𝑀 which
undergo an elementwise multiplication operation with the audio signal.

Let us use the 𝑏th segment in the mini-batch (5) as an example. The
augmented data is represented as
{

𝒙𝑐𝑚_𝑏 = 𝑴◦�̄�𝑖𝑏 + (1 −𝑴)◦�̄�𝑗𝑏
𝒀 𝑐𝑚_𝑏 = 𝑴◦�̄� 𝑖𝑏 + (1 −𝑴)◦�̄� 𝑗𝑏

, (36)

where 𝑖𝑏 and 𝑗𝑏 are randomly sampled indices from [1, 𝐵] and are used
to generate the 𝑏th augmented segment, 𝑴 is a binary mask of the same
length as �̄�𝑖𝑏 .

The binary mask can be computed as follows. We first calculate a
threshold 𝜏 which determines the portion of a segment to be mixed,
8

i.e.

𝜏 =  (0, 𝜏𝑚𝑎𝑥), (37)

where 𝜏𝑚𝑎𝑥 is a scalar that determines the maximum portion in samples
of �̄�𝑗𝑏 that will be mixed with �̄�𝑖𝑏 . Following this we determine start (𝜏𝑠)
and end (𝜏𝑒) point at which segment from �̄�𝑗𝑏 will be added to the

masked segment of �̄�𝑗𝑏 as
{

𝜏𝑠 =  (0,𝑊 − 𝜏)
𝜏𝑒 = 𝜏𝑠 + 𝜏

. The binary mask 𝑴 ∈

{0,1}𝑊 ×1 is obtained as

𝑴(𝑛) =

{

1, 𝜏𝑠 < 𝑛 < 𝜏𝑒
0, otherwise

. (38)

Fig. 5 illustrates the process of CutMix augmentation.
Augmented examples from CutMix tend to be more perceptually

perceivable compared to Mixup (Yun et al., 2019). Although, It has
been argued that while training a model, the machine’s perception
takes precedence over that of humans (Summers and Dinneen, 2019).
The ablation of the hyperparameters 𝜏𝑚𝑎𝑥 has been given in Table 4.

5. Experiments & discussion

5.1. Experimental setup

We compare various augmentations discussed in Section 4 to the
Un-Augmented model. Un-Augmented model refers to where the input
mixture has not been altered before passing to the network for training.
We start by doing a hyperparameter search for all the augmentations
to determine the best-performing hyper-parameter for the particular
augmentation. All augmentations are randomly applied to 50% of the
mini-batches during training except for Dynamic Mixing where we
do ablation with varying probability values as it does not have any
other hyper-parameter associated with the augmentation. We train our
separation models for 2 speaker separation (𝐶 = 2) on segments of
length 3 seconds with a sample rate 𝑆𝑟 = 8000 totaling to (𝑊 =
24000) samples. All models are trained for 𝐸𝑚𝑎𝑥 = 300 epochs unless
specifically stated.

We use three datasets (Librimix (Cosentino et al., 2020), TIMIT
(Garofolo, 1993) and VCTK (Veaux et al., 2016)) and consider two
types of evaluation: intra-corpus and inter-corpus. The former uses
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n

Table 3
Information about the datasets used in the experiment.

Dataset Split Hours Speakers Noise corpus

LibriMix
(Cosentino
et al., 2020)

train-100 58 251 WHAM (Wichern
et al., 2019)

LibriMix
(Cosentino
et al., 2020)

test 11 40 WHAM (Wichern
et al., 2019)

VCTK
(Yamagishi
et al., 2019)

test 9 109 WHAM (Wichern
et al., 2019)

TIMIT
(Garofolo,
1993)

test 10 630 Env. Noise Corpus
(Xu et al., 2015)

Librimix for both training and testing; while the latter uses Librimix
for training and uses TIMIT and VCTK for testing. For training, all
the models are trained on train-100-noisy (58 h) subset of Libri2mix
dataset (Cosentino et al., 2020). Libri2mix (train-100-noisy) consists
of artificially generated mixtures from the Librispeech corpus with the
addition of ambient noise samples from the WHAM (Wichern et al.,
2019) test set. The resulting noisy mixtures have a mean SNR of
−2 dB with a standard deviation of 3.6 dB (Cosentino et al., 2020). We
generate Libri2mix (11 h), VCTK-2mix (9 h) and TIMIT-2mix (10 h)
for testing. The mixtures in the VCTK test data were created in the
same way as the LibriMix noisy samples. The mixture in the TIMIT test
data was generated by first randomly mixing utterances from different
speakers followed by adding environmental noises from the evaluation
set of Xu et al. (2015) at each SNRs with an SNR range from −5 to 20 dB
with a step size of 5. All utterances were sampled at 8 kHz, because
speech intelligibility mainly requires the information below 4 kHz. For
this work, intra-corpus training was restricted to models trained on
Librimix as both TIMIT and VCTK test subsets were too small to get
a fairly trained separation network. A summary of the three datasets
used has been presented in Table 3. It is important to note that the
test sets of LibriMix and VCTK datasets are drawn from the same noise
corpus (WHAM (Wichern et al., 2019)). Whereas, the test set of the
TIMIT dataset is drawn from a different noise corpus (Environmental
Noise Corpus (Xu et al., 2015)).

We use the DPRNN (Luo et al., 2020) model, which is a state-of-the-
art time-domain speech separation model for all our experiments. We
use the Asteroid framework’s (Pariente et al., 2020a) implementation of
DPRNN (Luo et al., 2020) as shown in Fig. 2(b), DPRNN model has an
encoder-masker-decoder architecture. The 1-D convolutional encoder
learns a 2-D representation from the given mixture. This 2-D feature
representation is divided into 3-D chunks which are then processed by
the masker network in a dual-path manner where the masker network
performs Intra and Inter chunk processing for local and global modeling
of chunks, respectively, to output individual masks for each source in
the mixture. Finally, the 1-D transpose convolutional decoder outputs
the individual waveforms for each source in the mixture. Dual-path
models (Luo et al., 2020; Chen et al., 2020) have been reported to have
better separation performance with a lower number of parameters size
as compared to the vanilla time-domain models (Luo and Mesgarani,
2018; Luo and Nima Mesgarani, 2019). But it should be noted that
this performance improvement is only substantial when the stride
and kernel size in the 1-D convolutional encoder is low (Luo et al.,
2020). Using lower kernels, stride sizes (e.g. kernel size 2 and stride 1)
significantly increases the training time by 1 to 1.5 days on Nvidia Tesla
V100 GPU as opposed to using a kernel size 16 and stride 8. Thus we
chose a kernel size of 16 and stride 8 for the 1-D convolutional encoder
in DPRNN to accommodate for the aforementioned trade-off.

For performance evaluation, we use the SI-SNR improvement mea-
sure (Luo and Nima Mesgarani, 2019) as the primary evaluation metric,
which is defined as the difference between the input and output SI-
9

SNR (cf. Eq. (7)) of one segment. Unlike other performance measures
such as signal-to-distortion ratio (SDR), SI-SNRi is scale-invariant and
thus suitable for speech applications where proper scaling of the speech
signal is not ensured (Wang and Chen, 2018). Additionally, we evaluate
the models with best-performing hyperparameters using perceptual
evaluation of speech quality (PESQ) and Short-time objective intelli-
gibility (STOI) which measure the quality and intelligibility of speech
respectively. PESQ [−0.5, 4.5] and STOI [0, 1] are widely used in
speech enhancement research works and some speech separation re-
search. Both PESQ and STOI have been reported to be closely related to
how humans perceive speech (Zhang et al., 2018b) with higher values
indicative of better quality and intelligibility respectively.

5.2. Hyperparameter selection

We start by doing a hyperparameter search on each augmentation to
identify the best set of hyper-parameters for speech separation. We re-
tain the hyperparameters for the best-performing augmentations for our
later experiments based on this hyperparameter search. Additionally,
we compare the performance of augmented models with Un-augmented
models to get an intuition on augmentations that improve separation
performance. Un-Augmented DPRNN model has an SI-SNRi of 12.00 dB
on the test set of the LibriMix dataset. It is important to note that in this
Section 5.2 all results presented are models trained on (train-100) split
of the LibriMix dataset and tested on the test set of LibriMix dataset.
Results of this hyperparameter search are presented in Table 4.

Gaussian Noise: For ablation of hyperparameters for Gaussian
oise augmentation we vary the maximum amplitude (𝐴𝑚𝑎𝑥) with

which Gaussian noise is added. The value of 𝐴𝑚𝑎𝑥 is progressively
decreased from 0.120 to 0.015. Results indicate that increasing 𝐴𝑚𝑎𝑥
decreases the separation performance which is expected as adding gaus-
sian noise of higher amplitude severely distorts the resulting augmented
mixture. We get the best result from 𝐴𝑚𝑎𝑥 = 0.015.

Gain: Results indicate that varying the scale in which gain is ap-
plied does not lead to many variations in separation performance. This
is because DPRNN (Luo et al., 2020) model internally uses batch nor-
malization (Ioffe and Szegedy, 2015) which makes the model invariant
to the loudness of the mixture.

Dynamic Mixing: We test various probabilities with which Dy-
namic mixing can be applied to the mini-batch. Results indicate that
increasing the probability of augmentation decreases the separation
performance. This is because when the probability of the augmentation
is higher, the lower the chances the model sees the same training
data throughout training epochs. The empirical results indicate that
Dynamic mixing, when applied with a probability of 0.25 and 0.5,
improves the performance over the Un-Augmented model. The best
performance is obtained when Dynamic mixing is applied with a
probability of 0.5.

Time masking: For the ablation of Time masking, we vary the
maximum amount of time segments that can be masked as a fraction of
the total length of the segment which is determined by 𝑇𝑚𝑎𝑥 in Eq. (12).
Also, when there is a higher chance for a larger amount of input mixture
to be masked e.g 𝑇𝑚𝑎𝑥 = 0.40 the performance of the augmented model
starts to deteriorate. In our experiments, we get the best separation
performance with 𝑇𝑚𝑎𝑥 = 0.20.

Frequency masking: Similar to Time masking, in case of
Frequency masking, increasing 𝐹𝑚𝑎𝑥 decreases the performance of
the separation model. Performance degradation with excessive mask-
ing is expected as the model will have less of a mixture to predict
the sources from. In our experiments, we get the best separation
performance with 𝐹𝑚𝑎𝑥 = 0.77.

Short noise: In the case of Short noise augmentation, we
vary the SNR range in which short noises are added. Results indicate
that separation performance deteriorates when short noise is added at
very low SNR. This might be happening because of two reasons. Firstly,
the test set of the LibriMix dataset has noises from a different noise

corpus (WHAM (Wichern et al., 2019)) than the one used for Short
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Table 4
Ablation of hyperparameters of various data augmentations used to train DPRNN (Luo et al., 2020) model tested on
noisy Librimix dataset.
Ref Augmentation SI-SNRi Eq. no. Hyperparameters

𝐴𝑚𝑖𝑛 𝐴𝑚𝑎𝑥

Salamon and Bello (March 2017) Gaussian noise

11.24

(9) 0.001

0.120
11.58 0.060
11.87 0.030
12.00 0.015

𝐺𝑚𝑖𝑛 𝐺𝑚𝑎𝑥

– Gain
11.89

(11)
−6 6

11.85 −12 12
11.80 −12 24

𝑇𝑚𝑎𝑥

Park et al. (2019) Time masking

11.14

(12)

0.60
11.45 0.40
12.04 0.20
12.02 0.10

𝐹𝑚𝑎𝑥

Park et al. (2019) Frequency masking

11.09

(16)

0.50
11.01 0.25
11.77 0.10
11.63 0.05

𝑃

Zeghidour and Grangier (July 2021) Dynamic mixing

12.04

(32)

0.25
12.11 0.50
11.75 0.75
6.75 1.00

SNR𝑚𝑎𝑥 SNR𝑚𝑖𝑛

– Short noise

11.49

(24)

−10 0
11.64 −6 6

11.34
0

6
11.70 12
12.06 24

𝑆𝑚𝑖𝑛 𝑆𝑚𝑎𝑥

Salamon and Bello (March 2017) Pitch Shift 2.49 (29) −4 4
4.26 1 2

𝑟𝑚𝑖𝑛 𝑟𝑚𝑎𝑥

Salamon and Bello (March 2017) Time stretch 7.96 (27) 0.8 1.25
9.85 0.9 1.00

𝛼 𝛽

Alex et al. (2021) Complete Mixup

11.69

(34)

1 1
11.70 1 3
11.51 1 8
11.64 3 1
11.70 3 3
11.64 3 8
11.97 8 1
11.70 8 3
11.57 8 8

𝛼 𝛽

Alex et al. (2021) Data-only Mixup

1.17

(35)

1 1
7.60 1 3
5.89 1 8
11.55 3 1
11.31 3 3
7.12 3 8
12.00 8 1
11.51 8 3
11.26 8 8

𝜏𝑚𝑎𝑥

Yun et al. (2019) CutMix

11.98

(37)

800
12.11 2000
12.01 4000
11.88 8000
11.86 12000
noise augmentation (Env noise corpus (Xu et al., 2015)). Secondly,
the SNR range of added short noises may not match that of the test set
10
of the LibriMix dataset. The best results on the test set of LibriMix are
obtained when using SNR = 0 dB and SNR = 24 dB.
𝑚𝑖𝑛 𝑚𝑎𝑥
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Fig. 6. Results from evaluating various augmentations with best-performing hyperparameters in intra-corpus tests using DPRNN (Luo et al., 2020) model trained and tested on
oisy Librimix dataset.
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Pitch shift: From the ablation of hyper-parameters of Pitch
hift augmentation we can infer that Pitch shift augmentation
everely deteriorates the separation performance as compared to the
n-Augmented model. Therefore, for our later experiments, we will

orgo this augmentation.
Time stretch: Similar to Pitch Shift augmentation, Time

stretch augmentation also severely distorts the separation perfor-
mance and thus we do not consider this augmentation for our later
experiments.

Mixup: The hyperparameter 𝜆 ∈ [0,1] in Eq. (34) indicates the
amount mixed from 𝒙𝑖𝑏 and 𝒙𝑗𝑏 to obtain a new mixture 𝒙∗𝑏 . Ablation of
hyperparameters 𝛼 and 𝛽 for the two distinct variants of Mixup: Com-
plete Mixup and Data-only Mixup from our previous work (Alex
et al., 2021) has been presented in Table 4. It can be observed that
Complete Mixup is less sensitive to the variation of 𝛼 and 𝛽 as
compared to Data-only Mixup. Also, as the probability of the 𝜆
value from the 𝛽 distribution gets closer to 1, separation performance
is improved as the loss function Eq. (35) is conditioned to optimize the
most dominant source in the mixture. Our results indicated that the
best results were achieved with 𝛼 = 8 and 𝛽 = 1 for both Complete
and Data-only Mixup.

CutMix: Ablation of the maximum number of samples (𝜏) that will
be added from the randomly selected mixture from the mini-batch to
the mixture to be augmented. Results indicate that the performance
of the CutMix augmented models on average are largely invariant to
𝜏 and improves the separation performance over the Un-Augmented
model. We suppose this is because mixtures used to perform CutMix
augmentation are from the same mini-batch and thus there is not much
variation in the data used for training even when 𝜏 value is higher. We
get the best results using CutMix augmentation with 𝜏𝑚𝑎𝑥 = 2000 (0.25
).

From our initial hyper-parameter ablation experiments of vari-
us augmentation techniques presented in Section 5.2, we present
he results from best-performing hyper-parameters for all augmen-
ations when tested on the test set of LibriMix dataset in Fig. 6.
one of the augmentations significantly outperform the Un-augmented
odel. More specifically, Time stretch and Pitch shift aug-

mentations were the worst-performing augmentations. Complete and
ata-only Mixup, Time masking, Time--Frequency mask-

ing, Gaussian noise had comparable performance to the Un-
augmented model. On the other hand, CutMix, Dynamic mix-
ing and Short noise showed very minor improvements over the
11

Un-augmented model. a
5.3. Combining augmentations

We test combining various individual augmentation operations to
the combination of Dynamic mixing and CutMix augmentation.
We choose the best-performing hyperparameters (Table 4) for each
augmentation to test whether the combination of augmentations leads
to improved separation performance.3 Based on results presented in
Table 5 we can concur that separating mixtures from the TIMIT dataset
is the hardest as both speech and noise corpus are different than that
used in LibriMix dataset. The Un-augmented model has an SI-SNRi
of 7.64 dB on the TIMIT dataset compared to 12.00 dB for LibriMix.
Additionally, the UnAugmented model on TIMIT has approximately
0.16 lower PESQ than LibiMix and VCTK datasets which is indicative
of the lower perceptual quality of separated speech from the test set
of TIMIT dataset as compared to the LibriMix dataset. On the other
hand, since the VCTK dataset has the same noise corpus as the LibriMix
dataset with only the speech corpus being different; separation models
performance tested on the VCTK dataset is much closer (10.95 dB SI-
SNRi, 2.24 PESQ, 0.77 STOI) to that of the models tested with LibriMix
dataset.

We get the best separation performance in terms of SI-SNRi on the
TIMIT dataset with Data-only Mixup (9.06 dB) which is very closely
matched with (CmixDoDmix) (9.04 dB). Data-only Mixup particularly
has better performance on the TIMIT dataset. However, Data-only
ixup only has comparable performance on the LibriMix dataset and
nly a slight (0.36 dB) SI-SNRi improvement on the VCTK dataset as
ompared to the Un-Augmented model. On the other hand, we were
ble to improve upon the separation performance from Data-only
ixup on both LibriMix (0.56 dB) and VCTK (0.68 dB) datasets with
ynamic mixing + CutMix (CmixDmix) augmentation combina-

ion relative to the Un-Augmented model. Separation performance is
urther enhanced by adding Data-only Mixup to CmixDmix (Cmix-
oDmix). Augmentation combination CmixDoDmix has the best aver-
ge performance across the three tested datasets. Specifically, on the
CTK dataset, CmixDoDmix achieves; 0.73 dB SI-SNRi, 0.01 STOI, and
.06 PESQ improvement over the Un-Augmented model. Whereas, on
he TIMIT dataset CmixDoDmix has comparatively better inter-corpus
erformance improvement with 1.40 dB SI-SNRi, 0.02 STOI, and 0.14
ESQ improvement over the Un-Augmented model on TIMIT dataset.
mproved performance on the inter-corpus TIMIT and VCTK datasets
s indicative of improved generalization of the separation model with
arying speech and noise corpus.

3 Audio samples of separated mixtures with a model trained using various
ugmentations can be found at http://www.eecs.qmul.ac.uk/~linwang/demo/
ugmentation.html.

http://www.eecs.qmul.ac.uk/~linwang/demo/augmentation.html
http://www.eecs.qmul.ac.uk/~linwang/demo/augmentation.html
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Table 5
Results from combining augmentation techniques on LibriMix, VCTK, and TIMIT datasets.
Augmentation SI-SNRi[dB] STOI PESQ
DM CM DO CP GN SN TM FM Intra-corpus Inter-corpus Intra-corpus Inter-corpus Intra-corpus Inter-corpus

LibriMix VCTK TIMIT LibriMix VCTK TIMIT LibriMix VCTK TIMIT
- – – – – – – – 12.00 10.95 7.64 0.86 0.77 0.77 2.23 2.24 2.06
- – – – – – – x 11.63 10.68 7.77 0.85 0.77 0.77 2.19 2.18 2.06
- – – – – – x – 12.04 10.6 7.47 0.85 0.76 0.76 2.21 2.18 2.05
- – – – – x – – 12.06 11.23 8.03 0.86 0.77 0.77 2.23 2.26 2.09
x – – – – – – – 12.11 11.08 7.55 0.85 0.77 0.76 2.23 2.24 2.07
- x – – – – – – 11.97 10.84 7.76 0.86 0.77 0.77 2.23 2.22 2.06
- – – x – – – – 12.00 11.02 7.96 0.85 0.77 0.77 2.23 2.24 2.06
- – x – – – – – 12.00 11.31 9.06 0.85 0.78 0.79 2.22 2.26 2.13
- – – – – – x x 12.05 11.00 7.46 0.85 0.77 0.77 2.22 2.22 0.55
x x – – – – – – 12.56 11.63 8.27 0.86 0.78 0.78 2.30 2.30 2.17
x x – x – – – – 12.26 11.34 8.46 0.86 0.77 0.78 2.25 2.25 2.15
x x x – – – – – 12.55 11.68 9.04 0.86 0.78 0.79 2.30 2.30 2.20
x x – – x – – – 12.31 11.20 8.28 0.86 0.77 0.78 2.26 2.24 2.14
x x – – – x – – 12.29 11.35 7.93 0.86 0.77 0.77 2.27 2.29 2.11
x x – – – – x – 12.13 10.99 7.71 0.85 0.77 0.77 2.23 2.21 2.08
x x – – – – – x 11.50 10.78 7.34 0.84 0.77 0.76 2.13 2.15 2.03
x x – – – – x x 11.80 10.8 7.80 0.85 0.77 0.77 2.17 2.17 2.09
x x – – – x x – 12.02 10.91 8.36 0.85 0.77 0.77 2.22 2.21 2.12
x x – – – x – x 12.15 11.34 8.90 0.86 0.78 0.79 2.24 2.25 2.18
x x – – – x x x 11.93 10.87 8.48 0.85 0.77 0.78 2.21 2.19 2.12

KEY: DM — Dynamic mixing, CM — CutMix, DO — Data-only Mixup, CP — Complete Mixup, GN — Gaussian noise, SN — Short noise, TM — Time masking,
FM — Frequency masking. Symbol x indicates that the augmentation was used in the combination and – indicates that the augmentation was excluded from the
augmentation combination.
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From investigating the PESQ and STOI values in Table 5 we can
onclude that the minor quantitative improvements for the separation
ask are hard to interpret. Additionally, Zhang et al. (2018b) reported
ery minor PESQ and STOI improvements with their separation models
espite directly using both metrics as loss functions while training their
eparation model. Also, most recent research works primarily report SI-
NRi as the primary evaluation metric (Luo et al., 2020; Luo and Nima
esgarani, 2019; Zeghidour and Grangier, July 2021; Subakan et al.,

021; Michelsanti et al., 2021). To this end, we will be using SI-SNRi
s our primary evaluation metric of focus for the rest of the paper.

Among the source preserving augmentations listed in Fig. 6; Short
noise augmentation showed the best performance improvement on
TIMIT dataset (0.39 dB) with comparable performance to the Un-
Augmented model on LibriMix and VCTK datasets. We can attribute
this singular performance improvement of Short noise augmenta-
tion on the TIMIT dataset to the similar noise types (environmental
noises 1) used to augment mixtures in short noise augmentation. To
further see if we could leverage Short noise augmentation we
conducted experiments by combining other augmentations with short
noise augmentation. But we only observe performance improvements
when Short noise is combined with time and frequency masking
ugmentation on the TIMIT dataset. Specifically, Short noise aug-

mentation when combined with Frequency masking gives the most
SI-SNRi improvement (1.26 dB) on the TIMIT dataset. However, it
must be noted that none of the augmentations which used Short
noise augmentation for one of the augmentation combinations leads
to substantial performance improvement on LibriMix/VCTK datasets.
Along similar lines combining SpecAugment augmentations with one
or more other augmentations on average leads to deteriorated sepa-
ration performance on the three datasets. Results on the combination
of SpecAugment with CmixDmix are in line with results obtained
with SpecAugmented models where Frequency masking tends to
perform the worst.

In summary, when using a single augmentation for training, there
does not seem to be any relationship between the use of source and
non-source preserving augmentation and the performance of the speech
separation model. Also, intra-corpus experiments indicated Dynamic
Mixing and CutMix augmentation to have the joint best separation
performance. Both Dynamic mixing and CutMix augmentation in-
troduces the model to novel mixtures in each epoch as compared to
other augmentations such as SpecAugment that apply signal transfor-
mations to the original mixture leading to a slightly different variation
12
of the original mixture. Dynamic mixing and CutMix augmentation
when combined with Data-only Mixup gave the best generalization
performance across the three tested datasets which can be attributed
to having distinctively different mixtures in the training while the
augmented mixture being semantically meaningful as compared other
augmentations such as Complete Mixup.

5.4. Training with a different model

To verify the transferability of results obtained with the DPRNN
model with a separation model that uses a different model architecture
we apply the augmentations to ConvTasNet (Luo and Nima Mesgarani,
2019). ConvTasNet (Luo and Nima Mesgarani, 2019) is a time do-
main speech separation model which uses convolutional architecture
as opposed to DPRNN (Luo et al., 2020) which is based on dual-path
recurrent architecture. The results from the above comparison have
been depicted in Table 6 and Fig. 7. We see consistent performance
improvement across the best-performing augmentations (CmixDmix,
CmixDoDmix) in both models across multiple datasets.

However, we also observe inconsistent performance among multi-
ple individual augmentations (Time/Frequency masking, Gain)
which is in line with the lack of transferability of augmentations
reported by Longpre et al. (2020) when they compared LSTM based
networks to Transformer based networks for classification and natural
language processing tasks. However as an anomaly, Short noise
augmentation despite being largely domain-specific augmentation im-
proves separation performance (SI-SNRi) on TIMIT dataset with Con-
vTasNet (0.39 dB) and DPRNN (1.31 dB) model. This can be attributed
to the presence of similar noise types in the short noise subset to that
of the one used by the TIMIT dataset.

Another observed pattern was a combination of task agnostic aug-
mentations e.g (DataOnlyMixup, CmixDmix, CmixDoDmix) seem
o lead to the best out-of-domain generalization. Here, task-agnostic
ugmentations refer to augmentation operations that can be applied
o a training sample regardless of their domain (e.g. image/audio/
anguage). Similar results were obtained by Longpre et al. (2020) where
hey reported task agnostic augmentations to have a maximal impact
hen the unseen test conditions might not be well represented in the
reliminary training subset. Therefore, we observe the maximum SI-
NRi improvement of 1.64 dB (DPRNN), 1.40 dB (ConvTasNet) over
he Un-Augmented model using CmixDoDmix when testing on samples
rom the TIMIT dataset.
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Table 6
Separation metric SI-SNRi [dB] and 𝛥SI-SNRi [dB] measured as the performance improvement over the Un-Augmented model when using multiple augmentations to
train 2 models (DPRNN (Luo et al., 2020), ConvTasNet (Luo and Nima Mesgarani, 2019)) tested on 3 datasets (LibrMix, VCTK, TIMIT).
Augmentation Intra-corpus Inter-corpus

LibriMix VCTK TIMIT
DPRNN ConvTasNet DPRNN ConvTasNet DPRNN ConvTasNet DPRNN ConvTasNet DPRNN ConvTasNet DPRNN ConvTasNet
SI-SNRi 𝛥 SI-SNRi SI-SNRi 𝛥 SI-SNRi SI-SNRi 𝛥 SI-SNRi

Un-Augmented 12.00 11.32 0.00 0.00 10.95 9.95 0.00 0.00 7.64 6.51 0.00 0.00
Gaussian noise 12.00 11.33 0.00 0.02 10.91 9.79 −0.04 −0.16 7.52 6.83 −0.12 0.32
Gain 11.88 11.29 −0.12 −0.02 10.82 9.91 −0.13 −0.04 7.14 7.09 −0.50 0.58
Time masking 11.92 11.04 −0.08 −0.28 10.60 9.55 −0.35 −0.39 7.47 6.83 −0.17 0.32
Frequency masking 11.77 11.36 −0.23 0.04 10.68 10.22 −0.26 0.27 7.77 5.89 0.13 −0.62
Dynamic mixing 12.11 11.25 0.11 −0.07 11.08 10.19 0.13 0.25 7.55 7.07 −0.09 0.56
Short noise 12.06 11.47 0.06 0.16 11.23 10.05 0.28 0.10 8.03 7.82 0.39 1.31
Pitch shift 4.26 2.95 −7.74 −8.36 2.64 2.57 −8.30 −7.38 −1.60 −0.26 −9.24 −6.77
Time stretch 9.80 9.85 −2.15 −1.51 8.64 8.34 −2.31 −1.61 5.44 5.86 −2.20 −0.64
Complete Mixup 11.97 11.06 −0.03 −0.25 11.02 9.45 0.07 −0.50 7.96 6.24 0.32 −0.27
Data-only Mixup 12.00 11.23 0.00 −0.08 11.31 9.96 0.36 0.01 9.06 8.12 1.41 1.61
LutMix 12.11 11.38 0.11 0.06 10.84 10.30 −0.10 0.35 7.76 7.66 0.12 1.15
CmixDmix 12.54 11.90 0.54 0.59 11.63 11.07 0.69 1.12 8.27 7.93 0.63 1.42
CmixDoDmix 12.55 11.67 0.55 0.35 11.68 10.79 0.73 0.84 9.04 8.15 1.40 1.64
Fig. 7. Performance improvement from the Un-Augmented model (𝛥SI-SNRi) using the 2 models (ConvTasNet & DPRNN) from using various augmentations for training; tested on
3 Datasets (LibriMix, VCTK, TIMIT).
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Fig. 8. SI-SNRi vs Percentage training data with CutMix + Dynamic Mixing
ugmentation with varying amounts of training data tested on LibriMix dataset.

.5. Training with fewer training data

To test if the performance improvement brought about by aug-
entations is due to the large dataset that we have, we perform an

blation by training the DPRNN model (Luo et al., 2020) with varying
13
amounts of training data [5, 10, 20, 25, 35, 40, 50, 60, 80, 100%] using
CmixDmix augmentation, which is our best-performing augmentation
on LibriMix dataset. The results in Fig. 8 indicate that the model trained
using CmixDmix augmentation on average can outperform the Un-
augmented model. Also, the amount of gain is very stochastic with an
average improvement of 0.61 dB with a standard deviation of 0.27 dB.
It can also be noted that the performance of the separation model starts
to aggressively drop after the 25% data mark.

5.6. Discussion

Data-only Mixup performs the best among individual augmen-
ations when tested on intra-corpus scenarios. Along similar lines,
ata-only Mixup when combined with CutMix and Dynamic

mixing (CmixDoDmix) lead to the best overall performance for
both inter and intra-corpus testing. Mixup based methods have been
reported to increase the robustness of the model by showing adversarial
examples during training (Harris et al., 2021). Adversarial examples in
our case are mixtures that are further distorted by other mixtures in the
same mini-batch via linear interpolation. Additionally, Mixup based
methods have also been reported to improve generalization by limiting
the memorization ability of the model (Liang et al., 2018). On the
other hand, CutMix unlike Data-only Mixup, does not semantically
distort audio. CutMix prevents the model from overfitting on the train-
ing dataset by increasing the number of observable data points in the
training sample (Harris et al., 2021). The higher number of observable
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Fig. 9. Speaker separated from a mixture in the TIMIT dataset using model trained with various augmentations.
data points in our case is analogous to more speakers in a sample
mixture in a mini-batch. The above assessment is supported by the
quantitative results obtained using CutMix and Data-only Mixup
augmentations where CutMix does not seem to improve separation
performance on intra-corpus testing with TIMIT dataset which contains
highly extreme noise conditions which are quite dissimilar to the one in
WHAM noise subset used in LibriMix and VCTK dataset. However, Data-
only Mixup seems robust against these noise types due to being trained
on mixtures with artifacts from other mixtures in the mini-batch.

Furthermore, we analyze spectrograms (Fig. 9) of a separated
speaker waveform from a mixture in the TIMIT dataset corrupted by
guitar noise. Almost all the augmentations presented in Fig. 9 can get
close to the spectral representation of the ground-truth speaker wave-
form. But separated CutMix and Un-Augmented waveforms seem to
bring in minor artifacts from the other waveform at the beginning of the
separated waveform. It is also evident that none of the augmentations
presented in Fig. 9 are fully able to remove the noise from the separated
waveform. This could perhaps be due to the nature of the noise
here which resembles speech formants. Furthermore, the experimental
results presented in Section 5.4 indicate that combining mutually
exclusive operations of interpolation and masking from Data-only
Mixup and CutMix (CmixDoDmix) not only improved inter and
intra-corpus separation performance but also increased the robustness
of the performance across the two tested models (DPRNN (Luo et al.,
2020), ConvTasNet (Luo and Nima Mesgarani, 2019)).

Future work would involve developing an augmentation search
policy-based method for predicting the schedule, magnitude, and prob-
ability of augmentation combination for each epoch than having fixed
augmentation hyperparameters for all the epochs of training. This re-
search can help to narrow down the search space for such augmentation
policy search-based methods for speech separation and therefore bring
down the training and computational resources required to identify the
best augmentation strategy for training speech separation models.

In this paper we employ a simple experimental search-based strat-
egy to determine the best augmentation combination that leads to
increased generalization for speech separation in noisy environments.
In addition to this, several more advanced research works have at-
tempted to use a combination of data augmentation operations to
improve the performance of machine learning models (Cubuk et al.,
2019; Lim et al., 2019; Cubuk et al., 2020; Hendrycks et al., 2020;
Wang et al., 2021). For instance, AutoAugment (Cubuk et al., 2019)
trains a child network with a sequence of augmentation operations
14
generated from a recurrent neural network (RNN). Validation accu-
racy from the child network is used as a reward signal to optimize
the RNN to produce a better sequence of augmentations over time.
Fast AutoAugment (Lim et al., 2019) improves on the speed of
the search algorithm used to find the most effective augmentation
policies by using a density matching method and splitting the training
data and training each split in a distributed manner. Top-performing
augmentation policies are selected from each split and a combination
of best-performing policies is used to re-train the model on the entire
dataset. Adversarial AutoAugment (Zhang et al., 2020) extended
AutoAugment (Cubuk et al., 2019) by training a network to gener-
ate adversarial augmentation policies to make the target model more
robust. It optimizes the policies directly on the target dataset instead
of using smaller subsets of datasets and models, thus reducing the
computational cost of training auxiliary models. Population-Based
Augmentation (Ho et al., 2019) predicts a schedule of augmentation
policies that can be applied during training over the epochs than
having a fixed augmentation policy. AugMix (Hendrycks et al., 2020),
RandAugment (Cubuk et al., 2020) further reduce the search space by
stochastically applying a sequence of augmentations. The abovemen-
tioned methods typically require large computations to automatically
search for the most efficient way to combine multiple augmentations.
The design of automatic augmentation to speech separation would be
an interesting research direction in the future.

6. Conclusion

We conducted a comparative study of various augmentation tech-
niques to improve the cross-corpus generalization of two speech sepa-
ration models (DPRNN (Luo et al., 2020), ConvTasNet (Luo and Nima
Mesgarani, 2019)). The study evaluated ten individual augmentation
methods and various combination strategies with intra-corpus and
inter-corpus testing based on three speech datasets (LibriMix, TIMIT,
VCTK). It was shown that while augmentation cannot significantly
improve the separation performance for intra-corpus testing, it can
improve the separation performance effectively for inter-corpus test-
ing, which is the main objective of the model generalization. Among
individual augmentations, Data-only Mixup achieves the best inter-
corpus generalization performance. Among the augmentation combina-
tions, CmixDoDmix, which is a combination of three augmentations,
CutMix, Data-only Mixup and Dynamic mixing, achieves the
best inter-corpus generalization performance. Both Dynamic mixing
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and CutMix augmentation exposes the model to completely new mix-
tures in each iteration of training than having a transformed version of
the same mixture as in most augmentation operations. This stochastic
introduction of new training samples seems to be the key to having
better generalization across multiple datasets. It was also shown that
the combined augmentation (e.g. CmixDmix as a combination of Dy-
amic mixing and CutMix) can improve the separation performance
hen the speech separation model is trained with fewer data.

In future work we will investigate the performance of the aug-
entation methods on more state-of-the-art speech separation models,

.g. the time-domain DPTNet model (Chen et al., 2020) and the time–
requency domain TF-Gridnet model (Wang et al., 2022). We will
nvestigate the performance of the augmentation methods on models
eparating more than two overlapped speakers and working in a wider
requency range (e.g. sampling rate 16 kHz). In this paper, we empir-
cally proposed a simple strategy to combine different augmentation
ethods. Future work would develop an automatic and smarter strat-

gy for the combination of augmentation methods to further improve
he generalization of the model.
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