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Abstract 

 
This thesis focuses on the development and implementation of a theory for a computation- 

ally creative musical performance system aimed at producing virtuosic interpretations of 

musical pieces for performance on bass guitar. This theory has been developed and for- 

malised using Wiggins’ Creative Systems Framework (CSF) and uses case-base reasoning 

(CBR) and an engagement-reflection cycle to adorn monophonic musical note sequences 

with explicit performance directions, selected to maximise the virtuosity when performed 

using a bass guitar. 

A survey of 497 bass players’ playing competences was conducted and used to develop a 

playing complexity rating for adorned musical pieces. Measures of musical similarity used 

within the case-base reasoning were assessed by a listening test of 12 participants. A study 

into the perceived difficulty of bass performances was also conducted and an appropriate 

model of perceived bass playing difficulty determined. The complexity rating and perceived 

playing difficulties are utilised within the heuristic used by the system to determine what 

performances are considered to be virtuosic. The output of the system was rendered on a 

digital waveguide model of an electric bass, that was updated with newly developed digital 

waveguide synthesis methods for advanced bass guitar playing techniques. These audio 

renderings were evaluated with a perceptual study of 60 participants, the results of which 

were used to validate the heuristic used within the system. 

This research makes contribution to the fields of Computational Creativity (CC), AI 

Music Creativity, Music Information Retrieval and Musicology. It demonstrates how the 

CSF can be used as a tool to aid in designing computationally creative musical performance 

systems, provides a method to assess musical complexity and perceived difficulty of bass 

guitar performances, tested a suitable musical similarity measure for use within creative 

systems, and made advances in bass guitar digital waveguide synthesis methods. 



4  

 

———Extended Abstract——— 

This thesis focuses on the development and implementation of a theory for a computa- 

tionally creative musical performance system aimed at producing virtuosic interpretations 

of musical pieces for performance on bass guitar. Much of the work into computationally 

performed music and music perception has focused on expression, seen as the extra vari- 

ations in performance parameters that a human adds to a performance beyond what has 

been notated within the musical score.  Like expression, here, virtuosity is being treated  

as a property of a performance. However, unlike expression, virtuosity can not simply be 

added to a performance by the performer. Virtuosity instead is a property of a performance 

that can be attributed by members of the audience who witness the performance, and is 

based on whether the performer demonstrate a mixtures of high levels of musicianship, the 

traditional and cultural understanding surrounding the instrument and the musical pieces 

being performed, and also whether it has receive high praise from institutions, experts and 

critics of the field. 

An overview the playing techniques that can be applied to the instrument are given.     

A Bass Playing Ontology has been developed that incorporates this information. This 

ontology has been used to inform the rest of the work within this thesis relating to bass 

playing.   An overview of computational creativity,  and the creative system’s framework   

is provided. Related work within the areas of expressive musical performance systems, 

music analysis toolkits and libraries, musical complexity and playing difficulty, and bass 

guitar analysis and synthesis methods are outlined. A summary of the literature relating  

to musical virtuosity is also provided. The definition of virtuosity being used within this 

thesis is defined along with a formalised definition of musical performance. 

A survey of 497 bass players was conducted where each were asked to report their 

competency in performing a range of techniques and musical direction on a bass guitar as 

well as their views on virtuosity, bass guitar virtuosos and what they considered to be the 

hardest pieces of music to play on bass guitar. Thematic analysis of participants responses 

identified 144 codes relating to virtuosity and virtuosos, which were further categorised into 

22 themes. A list of the top 20 hardest basslines and bass guitar virtuosos were also able to 

be formed from response. A measure of playing experience was proposed based upon the 

total number of years a someone had played an instrument for, the most common length  

of one of their practice sessions and how often they would practice. This information, 

along with playing competences, were utilised in developing the methods to calculate the 

complexity of playing a piece of music on a bass guitar. 

Two methods for calculating the playing complexity of a piece of music have been 

defined and tested. The first is a formalisation and adaptation of musical complexity 
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calculation approach from the literature called musiplectics, to make it more suitable for 

measure bass guitar playing complexity. The second is a novel approach based on Euclidean 

vectors, where complexity can be calculated from the vector’s magnitude. Both methods 

require the individual complexities of playing techniques and musical performance elements 

to be defined. Six different approaches were used to determine these values based upon the 

playing competences and measurements of playing experience. Each approach with each 

set of complexity values were used to calculated the complexity of a pieces of music within 

a Bass Guitar Grade syllabus, the resulting complexities calculated were correlated to the 

pieces’ Grade Levels using Pearson’s r, Spearman’s ρ and Kendall’s τ , and a strong positive 

linear correlation was found for all but one approach and value set. This allowed for the 

establishment of an appropriate model for calculating the playing complexity of a notated 

piece of music. A listening test was used to determine the relative bass playing difficulties 

of a set of eight audio excerpts from different recorded basslines. The playing complexities 

of these audio excerpts were calculated and correlated against the difficulty relationships 

determined by the listening test. From this an appropriate model for calculating the playing 

difficulty of a piece of notated music on a bass guitar was identified from the complexity 

calculations. 

A measure of musical similarity based upon the melodic features calculated using the 

FANTASTIC toolkit and rhythmic features, calculated using the SynPy toolkit is proposed 

for use within computationally creative systems. The proposed similarity measure was 

assessed by a listening test, and determined as being suitable for use within the context of 

computationally creative systems. 

A theory for the production of virtuosic interpretations of musical pieces has been 

developed and formalised using Alvarado and Wiggins’ Engagement-Reflection Creative 

Systems Framework  (ER-CSF) model.   This theory uses case-base reasoning (CBR) and   

an engagement-reflection cycle to adorn musical note sequences with explicit performance 

directions, selected to maximise the perceived virtuosity when performed. This theory  

was implemented within a computationally creative musical performance system that can 

adorn, with specific levels of virtuosity, monophonic musical note sequences for perfor- 

mance on a bass guitar. All performances are able to be rendered on a digital waveguide 

model of an electric bass, that has been updated with new digital waveguide synthesis 

methods for advanced bass guitar playing techniques. Detailed musical score to digital 

waveguide parameter mappings each playing technique have also been developed that in- 

cludes these advanced playing techniques is outlined. The operation and output from the 

system was evaluated with a perceptual study, where the results were then used to validate 

the parameterisation settings of the system. 
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This research makes contribution to the fields of Computational Creativity (CC), AI 

Music Creativity, Music Information Retrieval and Musicology. It demonstrates how the ER-

CSF can be used as a tool to aid in designing computationally creative musical perfor- 

mance systems, provides a method to assess musical complexity and perceived difficulty  

of bass guitar performances, tested a suitable musical similarity measure for use within 

creative systems, and made advances in bass guitar digital waveguide synthesis methods. 
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Chapter 1 

 

Introduction 

 
1.1 Research Area 

This work has sought to answer the question: 
 

How can a computer, as judged by a human audience, demonstrate virtuosity  

in computational performances with a synthesized bass guitar? 

through the development of a theory of musical bass guitar performance, and its subsequent 

implementation within a computationally creative performance system named Adorn-o, 

that renders the performances it produces on a digital waveguide model of bass guitar. 

The bass guitar has been selected in part due to the experience and knowledge pos- 

sessed by the author, which includes close to two decades of playing experience, over a 

decade of formal tuition on the instrument, as well a being a recipient of the Queen Mary 

University of London’s Music Scholarship award for jazz electric bass. The bass guitar  

itself however also presents unique benefits over e.g. a piano, due in part to the wide range 

of timbres that can be produced through many different playing techniques. Such depth of 

playing techniques and the resulting timbral adjustments are important features of musical 

expression (identified in the context of the clarinet by Barthet et al. (2010)), offering many 

different technical playing approaches to the instrument.  This  in  turn offers up  a range 

of opportunities to explore playing technique within a performance. Which are important 

when addressing the notion of virtuosity, which within this work, follows Howard (1997, 

2008) and his discussions and interpretation of virtuosity, summarised as “a judgment of 

merit over results achieved by the combination of exceptional musicianship and technical 

proficiency” (Howard, 1997, p.47). 
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The prerequisites for a judgement of virtuosity to be made are as follows: 

 
A Domain that includes the musical instrument’s repertoire, educational institutions and 

musical practices relating to the instrument/musical piece being performed. 

A Performer capable of self-reflection and conveyance of meaningful expression or sym- 

bolic significance. 

An Audience that is appreciative and that ultimately decides if the performance is vir- 

tuosic or not, based upon their understanding of the performer, domain, their own 

sensibilities and expertise. 

These perquisites form what Howard (1997, 2008) calls the terrain of virtuosity. The 

work presented intrinsically draws upon the notions within and of this terrain of virtuosity. 

It has been used to guide the investigations into, and subsequent developments that have 

lead to the construction of Adorn-o. This has lead to a computational model of virtuosity 

being proposed and implemented within Adorn-o, which, through evaluation of Adorn-o’s 

output, enabled this models validity to be tested. 

A question that may be raised though, is why a model of virtuosity was developed and 

tested through the lens of a computationally creative system, and not a formal musicological 

study? 

The computationally creative approach has been chosen due to the similarities between 

how creative artefacts are valued  and virtuosity is judged.  Wiggins et al. (2015) argue  

that value and novelty in creative artefacts, like virtuosity, are dependent not just on the 

creator, but also on the observer and the context in which the observation is made. Thus, 

direct comparisons can be made between performer and  creator,  audience  and  observer, 

and domain and context. Following this, virtuosity has a traceable nature (Pachet, 2012; 

Howard, 1997, 2008) in that the preparations, practice, discussions, influences, teaching, 

etc., that guide how a musician approaches a performance can all, in theory,  be tracked  

and observed. 

So, why not also simulate this with a creative system designed to create musical perfor- 

mances in ways that are heavily inspired by this traceable and established process?  This  

is what has been done within the work presented here, although the focus has been limited 

to the ways musicians utilise their previously learnt musical performance knowledge in the 

production of new performances. 
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1.2 Thesis structure 

The thesis structure is as follows: 

Chapter 2 provides a more detailed account of the related and background work, this 

includes: an overview of Howard’s work on virtuosity (Howard, 1997, 2008); an 

introduction to computational creativity (Boden, 1998, 2004), the Creative Systems 

Framework (CSF) (Wiggins, 2006a), the Engagement-Reflection Creative Systems 

Framework (ER-CSF) model (Alvarado and Wiggins, 2018) and issues of bias against 

computer produced artefacts; a brief overview of computational modelling of musical 

performance, Case-base Reasoning (CBR) and computer performance systems that 

use CBR; an introduction to musiplectics (Holder et al., 2015) and models of musical 

playing complexity and difficulty; an overview of FANTASTIC (Müllensiefen, 2009) 

and SynPy Song et al. (2015) musical feature analysis toolkits;  and a glossary of  

bass guitar terms, and related information which includes a overview of the relevant 

bass related research which includes and overview of the digital waveguide synthesis 

method used. 

Chapter 3 proposes the Bass Guitar Performance Ontology. The production of a musical 

performance is formalised, and the vocabulary, axioms and the taxonomy of playing 

techniques which are part of the Bass Guitar Performance Ontology are presented. 

Chapter 4 presents the results of a survey of bass players’ playing competences and views 

on virtuosity and virtuosos. The competencies collected by this survey have been used 

within the development of the models of playing complexity and perceived playing 

difficulty within Chapter 6. The information collected relating to virtuosity and 

virtuosos have been utilised within the creation of the case-database used by Adorn-

o. 

Chapter 5 presents an A B paired listening test that was conducted where eight audio 

excerpts were compared, in A B pairs. Participants indicated, which  out  of  two 

audio excepts, A and B, they judged to be more difficult to play  on  bass  guitar. 

Based upon the votes from the listening test these were ordered by difficulty. These 

orderings of playing difficulty determined by the voters form the dataset which is 

used in Chapter 6 within the validation of the models of perceived playing difficulty. 

Chapter 6 extends the work of (Holder et al., 2015) where the formulation of and per- 

ceptual validation of a model of bass playing complexity and perceived bass playing 

difficulty is presented. 
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Chapter 7 presents a study investigating the suitability of using the musical features 

calculated by FANTASTIC (Müllensiefen, 2009) and SynPy Song et al. (2015) as a 

measure of musical similarity within creative systems. 

Chapter 8 introduces and presents Adorn-o, an exploratory creative system for the com- 

putational creation of virtuosic bass guitar performances. Adorn-o design and de- 

scription, in terms of the ER-CSF is presented, and in doing so a formalised theory  

for the production of virtuosic bass guitar performances is presented. This theory 

includes a proposed model of virtuosity, which is also presented along with Adorn-o’s 

implementation and output generation by means of an updated (to allow simulation 

of advanced bass guitar playing techniques) and sonically tuned version of Kramer  

et al. (2012)’s digital waveguide model. 

Chapter 9 presents an investigation into the proposed model of virtuosity using Adorn-o. 

Chapter 10 outlines the conclusions being drawn from this work along with a proposal 

and outline of future work. 

 
1.3 Contributions to Knowledge 

The main contributions of this thesis are: 

• A computational model of virtuosity following Howard (1997, 2008)’s formulation of 
the terrain of virtuosity. 

• A theory for the creation of virtuosic bass guitar performances, based on case-based 

reasoning (CBR) and formalised using the Engagement-Reflection Creative Systems 

Framework (ER-CSF) Model (Alvarado and Wiggins, 2018). 

• A demonstration of how the Engagement-Reflection Creative Systems Framework 

(ER-CSF) Model (Alvarado and Wiggins, 2018) can be used as a tool to aid in 

designing computationally-creative musical performance systems. 

• A formalisation and expansion of the ‘musiplectics’ approach by (Holder et al., 2015) 

where the values of the complexity weights have been empirically determined based 

upon musicians’ self-reported playing competency on the instrument. 

• A perceptually-validated computational method for assessing musical playing com- 
plexity and perceived difficulty of bass guitar performances. 
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• An assessment of a measure of musical similarity, that uses both FANTASTIC (Mül- 

lensiefen, 2009) and SynPy Song et al. (2015) musical features, for use within creative 

systems. 

• Advances in bass guitar digital waveguide synthesis methods. 

 
1.4 Associated publications 

Portions of the work detailed in this thesis have been presented in national and international 

scholarly publications, as follows (journal publications highlighted in bold): 

• Chapter 3:  A previous version of Section 3.2 was  presented at Audio Mostly ’17         

( AM’17) (Goddard et al., 2017) and accepted for in the Journal of the Audio 

Engineering Society(Goddard et al., 2018). 

• Chapter 7: Accepted for publication in the Journal of the Audio Engineering 

Society(Goddard et al., 2018). 

• Chapter 8: A previous version of Section 8.2 within this chapter was presented at 
Audio Mostly ’17 ( AM’17) (Goddard et al., 2017). 
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Chapter 2 

 

Background and Related Work 

 
2.1 Virtuosity 

Virtuosity has many interpretations within colloquial speech. Almost anything of superla- 

tive achievement can be described as virtuosic (Howard, 2008). Within the areas of musical 

performance, a common image of virtuosity is that of a highly animated and energetic con- 

cert pianist performing any of number pieces from masterful classical composers such as 

Bach, Mozart, Rachmaninov, Liszt, Chopin and many others. This notion is further rein- 

forced with films such as “Virtuosity” 1 which documents the 14th Van Cliburn International 

Piano Competition. This view is quite apt in demonstrating the notion of virtuosity as 

being attributed to a performance. 

Howard (1997, 2008) argues for virtuosity to be considered the performance requires: 

a performer who is capable of self-reflection, the conveying of meaningful expression or 

symbolic significance and an appreciative audience. It is the audience who ultimately 

decides if a performance is virtuosic or not, and they make this judgement based upon their 

understanding of the domain the music and performance is in, the performer, and individual 

expertise, knowledge and sensibilities. Greater importance is given to the judgements made 

by critics, institutions and experts. 

This judgement is summarised by V.A. Howard (1997) as: 

 
“Virtuosity is a judgement of merit over results achieved by the combination of 

exceptional musicianship and technical proficiency. Judgements of virtuosity 

whether of a single performance or a performer, are like a Seal of Approval 

bested by the critical community.” - V. A. (Howard, 1997, p.47) 

1https://www.medici.tv/en/documentaries/van-cliburn-virtuosity-christopher-wilkinson/ 

https://www.medici.tv/en/documentaries/van-cliburn-virtuosity-christopher-wilkinson/
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However, what contributes to making a performance virtuosic, and how can computer 

performance systems aid in investigating this as well as demonstrating performance vir- 

tuosity? This section addresses these questions, through explaining, what Howard (2008) 

describes as, virtuosity’s “logical geography”. By which Howard (2008) means the concepts 

relating to, contained within as well as situating the concept of virtuosity as opposed to 

arguing for a strict definition of the word. 

 
2.1.1 Problems with Defining Virtuosity 

A strict definition of virtuosity is being avoided due in part to the complex concepts con- 

tained within the term, but also because attempts at defining it have either been too broad 

or contradictory. If looking towards the dictionary a virtuoso’s first definition is that of  

“one who excels in the technique of an art, especially : a highly skilled musical performer 

(as on the violin)” 2, all definitions within the online dictionaries checked referenced an 

exceptional musician within the definition. However, virtuosity can also be viewed nega- 

tively, and be treated as excessive attention to technique (Howard, 2008), views that have 

been supported within the responses of the study conducted in Chapter 4. This indicates 

that virtuosity, as a concept, is complicated. 

This work does not seek a strict definition of the term, instead this complexity is 

embraced. As virtuosity and virtuosic are terms that will be referred to throughout, here, 

and in following Howard (1997, 2008), virtuosity is taken to be a quality attributed to a 

musical performance, with performances that have been attributed this quality denoted as 

being virtuosic. A virtuoso is a performer who regularly produces virtuosic performances, 

or displays the qualities that allow for the attribution of virtuosity when performing. 

For completeness a performance within this work is taken to be the realisation of a 

musical piece. The types of pieces being considered here are all allographic works, in that 

there is a score that is realised by means of performance. But there can be autographic 

performances, where the performance is attributed to a person, although these generally 

will fall into the categories of improvised music. Allographic works have been selected to 

allow for comparisons between performance of the same work to be made. 

 
 
 
 
 
 
 

2https://www.merriam-webster.com/dictionary/virtuoso,https://www.dictionary.com/browse/ 

virtuosohttps://www.dictionary.com/browse/virtuoso 

https://www.merriam-webster.com/dictionary/virtuoso
https://www.dictionary.com/browse/virtuoso
https://www.dictionary.com/browse/virtuoso
https://www.dictionary.com/browse/virtuoso
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2.1.2 The Terrain of Virtuosity 

Howard (2008) argues that virtuosity arises from a combination of factors relating to the 

performer producing the performance, the domain the performance is situated within and 

the audience of the performance. When the right combination of factors from each of these 

areas is present,  then members of the audience may subjectively judge the performance  

as demonstrating virtuosity or being virtuosic. Thus, it is the audience that ultimately 

decides what performances have or display virtuosity and those that do not. However, a 

performance requires a performer, and it will likely be situated within a domain, or body 

of comparable works, and these will influence the audience’s judgement of the performance 

and help them reach their opinion of the performance. It is these areas which form the 

terrain of virtuosity. 

 
2.1.2.1 The Domain 

The full domain of electric bass is quite extensive,  especially given the relatively young  

age of the instrument. Its mass-produced introduction in 1951, by Leo Fender,3 has meant 

that it has been present and situated heavily within pop music. However, due, in part to 

being a modernised and louder version of a double bass, the domain of electric bass leans 

heavily on western jazz and classical music traditions. 

However, Howard (2008) notes the domain will generally be more specific to a style, 

tradition, culture or institution. Each with its own specific notions of what is or is not 

virtuosic. For example, a virtuosic reggae performance will take a different form to a vir- 

tuosic jazz-fusion bass part. When considering a virtuosic jazz-fusion performance within 

the domain of reggae,  it may no longer be viewed as virtuosic.  This is similarly the case    

if a reggae performance was to be viewed within the domain of jazz-fusion. The opposite  

of this effect could also be possible, in that combining these performance domains might 

instead demonstrate an even greater level of virtuosity, due to the extra steps necessary  

for a bass player to perform such a feat. This process could also result in a performance 

that is not seen as being virtuosic from a reggae perspective, but is when viewed from a 

jazz-fusion one. This is just one example to highlight how the domain and its traditions  

and expectations of works within inform how virtuosity is judged. 

3https://en.wikipedia.org/wiki/Bass_guitar#1950s 
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2.1.2.2 The Audience 

There are many different types of audience member, each of whom’s opinion, whilst valid 

for that individual, is not generally weighted evenly when considering if a performance on 

a whole is virtuosic. The more familiar or experienced the member of the audience is with 

the performance, the performer, the domain etc. the more weight should be given to their 

judgements or criticism of the performance Howard (2008). As such, generally the opinions 

of critics, institutions: such as music schools, and teachers are valued more highly than a 

member of the general public who have no specific expertise relative to the performance. 

This is because experienced or knowledgeable members of the audience will be more likely 

to notice what makes a performance virtuosic, or see performance faux pas that makes a 

performance not as impressive as it may appear to a casual audience member. 

To complicate matters the inequality of experience between the different types of audi- 

ence membership, could mean that a performance that would not be seen as virtuosic is, 

and ones that would be is not, purely on the makeup of who is in the audience. This also 

doesn’t account for any biases and individual may have, and other general influences on 

subjective opinions. 

 
2.1.2.3 The Performer and Performance 

As a performance needs to be performed, and excluding some niche exceptions, a per- 

formance requires a performer. Whilst it is possible for a virtuosic performance to be 

performed by a novice musician, a more experienced one will more consistently produce 

virtuosic performances. This is because a high level of technical skill is almost always a 

necessity. However, how the performer deploys their technique when performing a piece 

(Howard, 2008) is also of great importance along with any  experimentation of the piece  

in preparation for performance (Fisk, 1996). The better developed the performer’s critical 

judgement, imagination and control over their technical skills and facilities, the better a 

performer is able to navigate, shape and finally perform a piece. All this is more commonly 

termed as ’musicianship’, the level of which a performer processes will generally correlate 

with virtuosic performances (Howard, 2008). 

To develop musicianship a performer needs to practice, and likely seek tutorship from a 

suitable teacher that is able to guide their development. They will no doubt be influenced 

by any collaborators they may work with, critical receptions to their work and their own 

experience within the immediate domain of their works. The individual performer also 

needs suitable ‘virtues’ which allow them to maintain the required regimes needed for this 

development and coping skills to take on criticism and guidance Howard (2008). Natural 
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talent, the ability to understand the instrument and performance charisma to help convey 

all this to the audience will also help too! 

 
2.1.2.4 Summary 

Thus, even when placing the burden of judgement on the audience to decide if a perfor- 

mance is virtuosic or not, there is a great number of factors which contribute to producing 

the performance, and to inform the audience’s opinions about it. To investigate virtuosity 

involves tracing all these factors, and ideally forming connections that can be explained in 

terms of their contribution to the performance, and justification of virtuosic qualification. 

 
2.2 Virtuosity and Computers 

How does, or even can, virtuosity relate to computer performance? This is an issue which 

Howard (2008) only addresses by drawing a distinction between a computer or machine 

doing the performance, and a human. Where each are placed into two distinct categories  

of performance. Howard’s view of computers is liken to animals, specifically an analogy to 

a cheetah pursuing and then catching its prey. Whilst this requires a great degree of skill, 

reflexes, adaptation to the situation and is impressive to watch, Howard (2008) does not 

consider this virtuosic. This is because the cheetah is relying on instinct, as if following a 

set of rules, it doesn’t sit back after catching its prey to reflect on how it might have done  

so differently, or have a critical reception of its peers. Howard (2008) views computers, or 

machines used to generate musical performances in a similar way  to the cheetah,  except  

a computer is carrying out, or performing a set of instructions given by its programmer, 

that then creates the performance. 

There are many musical performance systems that are based on rules such as the set of 

performance rules developed at KTH (Bresin et al., 2002; Friberg et al., 2006). There also 

are more sophisticated approaches which rely on machine learning methods such as work 

by Bresin (2000) where the KTH rules are compared to performances created using an 

artificial neural-network. As well as work by Widmer et al. (2009), which applies machine 

learning to piano performance, albeit their greater intention is to find more sophisticated 

performance rules through the use of machine learning approaches. Following Howard 

(2008), performances produced using such systems would be excluded from ever being 

considered virtuosic. However, a question can then be raised, if the computer system 

producing the performances was able to reflect upon the performances produced, would 

this be enough to at least allow the performances to be considered as potentially virtuosic? 
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There are methods, situated within the area of computational creativity,  that  have 

been developed to allow a system to reflect, or review its output.  Without this element     

of reflection, a point raised by Bundy (1994); Agres et al. (2016) and others, systems are 

only generative. 

Within the field of computationally creative poetry Colton et al. (2012) included a 

rudimentary mechanism for a creative poetry system to provide commentary on the poems 

generated. Where the system provides a rating for the “Appropriateness", “Flamboyance", 

“Lyricism" and “Relevancy" of the poems generated. The work of Pérez y Pérez (1999) 

provides another example in their MEXICA system which creates story outlines. MEXICA 

contains mechanisms that allow for reflection over what it has produced, which enables it 

to maintain consistency and coherence within the story outlines. Both Colton et al. (2012) 

and Pérez y Pérez (1999) work follow a corpus-based approach, however, unlike Colton et al. 

(2012), MEXICA (Pérez y Pérez, 1999) uses case-based reasoning within this process. 

Case-based reasoning (CBR), explained in more detail in Section 2.5, is a process that 

solves new problems by using the solutions of similar problems.  As part of the process  

the solution being used is checked to make sure it does in fact solve the problem. This 

checking is akin to reflection, especially when combined with adjusting the poor solution so 

that it becomes a true solution for the problem. More sophisticated methods of reflection 

can adjust the process of selecting the solution too, such ideas are explored within the 

development of Adorn-o (See Section ??). 

CBR has been used within musical performance systems, such as the SaxEx system by 

Arcos et al. (1998), where CBR is used to add expression to a ‘flat’ inexpressive perfor- 

mances. Other musical CBR systems, including SaxEx are further explained in Section 2.5. 

The idea is raised here as these systems demonstrate the opportunity to develop reflec- 

tive computer music performance systems, and even more general computer approaches 

situated within the area of virtuosity that would not be immediately discounted/excluded 

from producing virtuosic performance. This is of course assuming the audience is unbiased 

towards computers (an issue expanded upon in Section 2.3.6). 

However, the main advantages of approaching virtuosity from the perspective of com- 

puter performance are the insights that can be gained into human performance. These 

insights also have the potential to help better understand the notions of virtuosity as well. 

This is particularly highlighted by Pachet (2012), where his ‘Virtuoso’ system is designed 

to perform the technicality required for virtuosity, leaving the user in control over the 

higher level decisions of the performance. This allows for isolated scrutiny of these de- 

cisions, which highlights how computers, and computer performance systems can aid in 

investigations into virtuosity 
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Computers have the advantage that, in theory, nothing is implicit, every action can be 

traced and logged.  Therefore it is possible to follow each step a computer takes to create  

a musical performance. This is not possible when considering the steps a human takes. In 

many cases a person will not be completely aware of how they themselves are formulating 

their approaches to experimentation of preparation of piece (Fisk, 1996). If a computer 

was able to display performance virtuosity, exactly how this happened could be dissected, 

and likely help inform the learning of other musicians. 

The final point that will be raised here is that of superhuman capabilities, specifically 

the thoughts of Collins (2002). Where computer performance systems have been developed 

to aid in performing music that is not physically possible for a human to play. This can  

open up a whole extra dimension for composers who wish to focus on complexity, such as 

that of Ferneyhough (Collins, 2002). But this digresses away from performance and into 

the realm of composition! 

 
2.3 Computational Creativity and Creative Systems 

2.3.1 Types of Creative Behaviour 

Here Computational Creativity (CC) is taken to be: 

 
“The philosophy, science and engineering of computational systems which, by 

taking on particular responsibilities, exhibit behaviours that unbiased observers 

would deem to be creative.” - Colton and Wiggins (2012) 

Creative behaviours can be differentiated into exploratory creativity and transforma- 

tional creativity. Both methods of creativity rely upon the notion of a conceptual space. 

This notion,  from the perspective of Boden (1998, 2004),  is a space that contains a set     

of artefacts (or creative products),  referred to as concepts.  A conceptual space has a set  

of rules which determine the types of artefacts it contains. Exploratory creativity is the 

process of producing artefacts that are known to be possible within the conceptual space, 

yet might not have previously been produced. As there are many different types of arte- 

facts, there are also many different conceptual spaces. Within this work only the ideas of 

exploratory creativity are being addressed. 

However, for completeness, there is also transformational creativity that can occur by 

creating artefacts which contain properties from two or more different conceptual spaces 

(combinatorial creativity). Transformational creativity can be achieved through changing 

how a conceptual space is explored, or through changing the language used to describe the 
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conceptual space and its artefacts Wiggins (2006a,b). In more practical terms, exploratory 

creativity can be seen as producing artefacts within a given paradigm, whilst transforma- 

tion creativity is a shift in that paradigm. What this may entail in relation to Adorn-o, 

virtuosity and musical performance is, however, beyond the scope of this work. 

 
2.3.2 Valuing a Creative Artefact 

Musical performances are the artefacts of consideration. determining whether the per- 

formance displays virtuosity or not is a way of assigning value to these performances. 

Generally though artefacts may not all be created equally, and thus have different values. 

Precisely what contributes to an artefact being valued is summarised by Wiggins et al. 

(2015) as: 

“... a relation between an artefact, its creator and its observers and the context 

in which creation and observation takes place.” Wiggins et al. (2015) 

There is also a distinction to be made between value and novelty. It is possible to have 

arefacts be valued that are not novel, and artefacts to only be valued because they are 

novel. Wiggins et al.’s definitions of value and novelty can be directly compared with the 

terrain of virtuosity where the  performer  is  like  the  creator,  the  audience  the  observer,  

and domain the context. Thus notions of value within CC are being treated as directly 

applicable to virtuosity. 

 
2.3.3 The Creative Systems Framework 

Wiggins, proposes a clarification and formalised abstract representation of exploratory 

creative systems, as described by Boden (2004), called the Creative Systems Framework 

(CSF) Wiggins (2006a,b). The purpose of which is to help to describe creative systems. 

The creative systems framework is based upon the following septuple: 

 
(U , L, [[.]], ((., ., .)), R, T , E) (2.1) 

the symbols of which, and related symbols that fully express the framework are as 

provided in Table 2.1. 

The ruleset R defines a kind of artefact and forms the rules that define the conceptual 

space in which all artefacts of that kind can be found.  A conceptual space for a given R 

can be created through the following formalisation of Boden’s conceptual space by Wiggins 

and Forth (2018): 

{c | c ∈ U ∧ [[R]](c) ≥ 0.5} (2.2) 
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Table 2.1: Creative System Framework Symbols 
 

: A Universe, of all possible concepts 
(artefacts) which can be both partial 
and complete, real or abstract, and also 
includes the notion of an empty concept 

(T). 
C : Conceptual Spaces which are non-strict 

subsets of U which include ¸ and T. 
cx : Concepts, where ∀c1, c2 ∈ U. c1 c2 

T : An empty concept. 
: Set of rules that constrain a single 

from . 
: A set of rules for traversing a , this 

includes search heuristics. 
: A set of evaluation rules to evaluate or 

assign value to any concept in . 
: A language, which contains an alphabet 

that is used to express concepts (cx), 
and the rule sets: , and . Where 

, , .    is required 
to be sufficiently expressive to allow for 
metalevel modification of , T and . 

[[.]] : A function generator which maps a sub- 
set of to a function that associates 
concepts in with real numbers [0,1]. 

., ., . : A further function generator that maps 
three subsets of to a function that 
generates a new sequence of concepts, 
from an existing one. 

U 

E 

L 
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Concepts are deemed part of a conceptual space if the results of applying functions 

generated by the function generator [[.]] to R, when compared to U, is greater than a real 

valued comparator. In the Equation 2.2 this is a value of 0.5. 

New artefacts are discoverable through traversing the conceptual space. T is a set of 

rules which define how this traversal occurs. To perform the traversal of the conceptual 

space requires that T be interpreted by ((., ., .)). Equation 2.3 shows the usage of ((., ., .)) as 

a function acting upon a sequence of known concepts/artefacts, cin, to produce a sequence 

of new concepts, cout.  R and E are included in the interpretation function to allow for 

reasoning over the type and value of artefacts that are being traversed by T . However, 

they are not a requirement of ((., ., .)), by removing R from the interpretation it is possible 

to generate artefacts not bound by the rules of R, and removing E allows for the generation 

of artefacts which is not guided by any evaluation. 

 
cout = ((R, T , E))(cin) (2.3) 

The final unexplained symbol in Equation 2.1 is E. This is a set of rules which define, 

appropriately contextualised, the evaluation of generated artefacts or concepts. Value is 

determined from a set of functions generated by interpreting E with [[]]. By effectively 

utilising the results of E, reflection upon the artefacts being produced by the creative 

system is possible. Following from this a further useful mechanism is the function ◊, 

defined such that: 
 

∞ 

F◊(X) = F (X) (2.4) 
n=0 

With F being a set-valued function of sets. Using this equations with suitable sub- 

stitutions, such as those provided in Equation 2.5, it is possible to generate all valued 

artefacts that are possible given a specific R and T . 

 

[E] ((R, T , E))(T) (2.5) 

The final part of the CSF is the allowance for Transformational Creativity. This is 

enabled by allowing for R, T and potentially E to be redefined by the system whilst it is 

operating. This can be done by defining meta-level operators, RL, TL, and EL which act 

upon and can change the rules defined in R, T and E, and using in place of R, T and E 

in the septuple of Equation 2.1. The meta-level operators require that L be sufficiently 

expressive to allow for the modification of R, T and E. For a more thorough discussion 

please refer to works of Wiggins (2006a,b). 
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2.3.4 The Engagement-Reflection Creative Systems Framework (ER- 

CSF) Model 

Alvarado and Wiggins (2018) describe an extension to the CSF to allow for modelling        

of an Engagement-Reflection (ER) cycle, the Engagement-Reflection Creative Systems 

Framework (ER-CSF) Model. The ER cycle was  originally proposed by Sharples (1970) as 

a description of the creative writing process. It has two parts: engagement and reflection. 

Engagement is the process of creating a chain of ideas, usually through free association 

with no specified goal in mind, and in writing, putting those to text. Reflection is the 

process of “sitting back” and reflecting on these ideas, forming and transforming ideas and 

planning what new material to create, along with its organisation (Alvarado and Wiggins, 

2018). Creators cycle between engagement and reflection until they are satisfied with what 

they have produced. 

The ER-CSF allows for the operational distinctions between engagement and reflection, 

whilst still accounting for the fact that both processes are working in combination towards 

the completion of a singular task. This is done through introducing separate rule sets for 

engagement and reflection, shown below, where E indicates engagement and R indicates 

reflection. 

 

R −→ RE, RR 

T −→ TE, TR 

E −→ EE, ER 

Within the CSF, the conceptual space is created by applying the functions generated 

by [[R]] to concepts (c) in U, and as outlined in Equation 2.2, only allowing concepts where 

the results of the functions are greater than or equal to a real world value. However, within 

the ER-CSF, because there are separate R’s for engagement, RE , and reflection, RR, there 

are also separate conceptual spaces for engagement: CE defined using RE in place of R 

and CR defined using RR in place of R within Equation 2.2. These are summarised as 

follows: 

 
 

CE = {c | c ∈ U ∧ [[RE ]](c) ≥ 0.5} 

CR = {c | c ∈ U ∧ [[RR]](c) 
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2.3.5 Describing Types of Creative System Behaviours 

The strengths of the CSF and ER-CSF is in the describing of creative system implementa- 

tions. Through using this formalisation of exploratory creativity, it is possible to describe 

certain types of behaviour that a creative system may exhibit.   In doing so it enables       

the evaluation of its creative potential. Two types of behaviour highlighted by Wiggins 

(2006a,b) are that of uninspiration and aberration. 

Uninspiration is where a creative system is unable to produce a valued, according to   

E, artefact. This can take the form of hopeless uninspiration where there are no valued 

artefacts within U. Conceptual uninspiration, where there are no valued artefacts within 

the conceptual space. Or, generative uninspiration where no valued artefacts are reachable 

via the traversal method, T . Encountering these types of behaviours indicate an issue in 

the formulation of the system, which can be overcome by making adjustments to R, T and 

even E. In the case of hopeless uninspiration, E may need adjusting to allow for artefacts 

within U to have value. Where there is conceptual uninspiration, R is likely not well 

formed thus it should be adjusted so that the conceptual space encompass artefacts within 

U that are valued by E. In the case of generative uninspiration T requires adjustment so 

that it can find artefacts in R that are valued according the E. 

Aberrations are artefacts which do not conform to the rules for a given conceptual space 

but may still be valued under E. Creative systems that can identify aberrations and adapt 

the formulations of R, T and E in light of them are capable of transformational creativity. 

As the choice has been made to exclude the possibilities for transformational creativity 

within Adorn-o (Chapter 8,) the interested reader is directed to Wiggins (2006a,b) for an 

overview and discussion of this concept. 

 
2.3.6 Biases Against Computationally Created Artefacts 

When discussing the observers of creative artefacts, and the value they ascribe, or as is the 

case within this thesis, the audience and if they judge a performance as being virtuosic, 

there is an assumption made that the observer/audience is unbiased. This assumption 

however does not appear to hold true when considering computer created artefacts. Colton 

et al. (2014) highlights the biases people have towards computer produced artefacts. These 

biases largely trend towards a negative bias, although it is noted people can be biased in 

favour of computers too. 

This issue of bias has been notable when considering ‘Turing Style’ evaluation methods. 

These methods have human observers compare a mix of artefacts, and are asked to identify 

the human and computer produced ones, without any additional context Colton et al. 
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(2014). In experiments by Moffat and Kelly (2006) and Eigenfeldt et al. (2012) both found 

that participants preferred human composed music, with Colton et al. (2014) and Pease 

and Colton (2011) supporting this bias against computer produced artefacts extending into 

all domains when human-computer comparisons are being made. 

There are many reasons for this bias against computers, from simple dismissal to more 

complex considerations, including the questioning of what exactly it means to be creative 

within a social and cultural context,  as well as scientific.  Although the CFS is a means        

of describing creative behaviours, this still does not prevent the artefacts produced by a 

system capable of such behaviours from being considered uncreative by observers because 

of this bias. 

One method to help address this bias proposed by Colton et al. (2014), is to have 

creative systems also produce some textual artefact that describes and frames the artefacts 

they produce. The motivation for this is to follow how human can artists present their 

work, outlining their own sources of inspiration, motivation, the messages the artwork 

contains or is to convey etc. The notion very much is in line with the rise of research into 

Explainable Artificial Intelligence.4 Not considered by Colton et al. (2014) are this issues 

that any description or framing produced by a computer is in effect also a creative artefact, 

and would thus also require framing in a similar way, which in turn requires framing ad- 

infinitum. This is not to dismiss the notion of creative systems being developed with means 

of evaluating their creations, or indeed being capable of describing what they produced, 

in-fact this is only encouraged,  and supported within the CSF. It does however  present      

a potential issues with directly following Colton et al. (2014)’s proposed solution to the 

issues of computer artefact bias. However, the primary rational beyond this notion is to 

promote computer produced artefacts are their own classification of artefacts, and as such, 

treating them as being different from human produced ones. Such an approach would also 

appear to be supported by Collins (2002) and the notions of superhuman capabilities within 

musical performance. Indeed, within this work, the distinction between computer produced 

performances, and human produced performances (the creative artefacts of interest) is 

readily accepted. Adorn-o itself is primarily an investigatory tool to allow for investigations 

into the notions of virtuosity, not as a means of directly replicating human virtuosity. This 

though does not prevent comparisons between the performances produced by Adorn-o and 

human produced performances to be made, only that when asking a human audience to 

evaluate the performances produced by Adorn-o they are not asked to do so. 

4https://en.wikipedia.org/wiki/Explainable_artificial_intelligence 

https://en.wikipedia.org/wiki/Explainable_artificial_intelligence
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2.4 An Overview of Computer Systems for Expressive 

Musical Performance (CSEMPs) 

The development of MIDI (Musical Instrument Digital Interface) allowed for sequences of 

musical notes to be easily played back via sequencer and/or computers. These renditions 

were timing accurate and produce 100% repeatable results allowing for music to be per- 

formed without the need for a person to be playing it as opposed to symbolically notated 

musical scores. Unfortunately, the presentation of these sequenced pieces was lacking in 

musicality, being played with a robotic precision and were sterile and flat in character 

(Kirke and Miranda, 2009). Attempts to solve this problem have looked into modelling 

musical performances (Widmer and Goebl, 2004), and in developing Computer Systems 

for Expressive Musical Performance (CSEMPs) that are designed to introduce human-like 

performance parameters into computer generated performances with varying degrees of 

success. 

Investigations into performance research started in the 1930s (Goebl et al., 2008) and 

has been extensively reviewed by Gabrielsson (1999, 2003). This research has been aided 

and extended through advances in technology such as diskkalvier5 and more advanced 

audio analysis techniques Widmer and Goebl (2004); Kirke and Miranda (2009). 

Within most, if not all of research into performance, the approach to make a computer 

performance less robotic and sterile is to “humanise” it by introducing the “humanising” 

factor of expression. Expression is identified as the deviations a performer deliberately 

makes from a scored piece of music (Widmer and Goebl, 2004). These deviations can be 

parameterised, non-exclusively, by parameters such as the micro timings and dynamics of 

individual notes, phrasing structure, modulations (if permitted by the instrument), and 

level of rubato. Research has therefore focused on modelling this form of expression as well 

as implementing these models within computer performance systems. It is through these 

implementations that demonstrations and testing of the model’s validity (Widmer and 

Goebl, 2004; Kirke and Miranda, 2009) are possible. This has resulted in many CSEMPs 

Kirke and Miranda (2009) being developed based on many different modelling approaches. 

Approaches to modelling expression can be categorised as rule based, mathematical based 

and induction based (Widmer and Goebl, 2004). Rule based methods use rules in 

relation to the score to manipulate performance parameters, which are generally timing 

and dynamics, to introduce expression in a performance. Rules can be developed in two 

ways, “analysis-by-synthesis” and “analysis-by-measurement”. The former, is by creating 

5https://en.wikipedia.org/wiki/Disklavier 

https://en.wikipedia.org/wiki/Disklavier
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the rules, and synthesising the performance, then adjusting or modifying the rule to better 

produce the expected or desired outcome of the rule. The latter, uses performance mea- 

surements to create the rules (Widmer and Goebl, 2004).  The KTH model (Bresin et al., 

2002; Friberg et al., 2006), mentioned in Section 2.2, is an example of a rule based model. 

Mathematical based models, as their name suggests uses mathematic theories of music 

to inform a performance model, an example being the Mazzola model (Widmer and Goebl, 

2004). Induction based approaches use machine learning to find relationships in perfor- 

mance data which can be used to create new performances, or abstracted to general rules, 

analogous to analysis-by-measurement rule based approaches (Widmer and Goebl, 2004). 

Examples of this approach are given by Widmer and Goebl (2004). Inductive machine 

learning approaches were used with the YQX performance system (Widmer et al., 2009) 

which had success within the performance rendering competition RENCON.6 Case-based 

reasoning methods, such as the work of Arcos et al. (1998) with their SaxEx system also 

fall into this category of induction based modelling. 

Performance models can be left as a model, but more commonly these models are used 

to develop a CSEMP.  A CSEMP is different from a model in that it is capable of rendering,  

or producing a performance from an input score automatically or, if some parameters or 

score is needed to be tuned/annotated by a person, semi-automatically. A CSEMP can 

explicitly be built around a model, such as the Director Musice system (Bresin  et  al., 

2002), which is a CSEMP that implements the KTH model.  It is not always  the case that     

a model needs to proceed the CSEMP. Full models take time to develop.  The KTH model,  

for example, has contributions to it from over a 20 year period. Thus,  CSEMPs can  be  

built from theories about a performance, or suitable approaches, and in these cases the 

performance model ends up being implicit within the system. 

The more open question surrounding the development of CSEMPs, and models of 

performance, is how to test their validity Widmer and Goebl (2004); Kirke and Miranda 

(2009). Methods for this will vary depending on the model and the kind of performances 

being produced, for example: if the CSEMP is to work on previously unseen pieces, or if it 

is to recreate existing performances. With the latter, measuring the differences between the 

original performance and the CSEPMs version is possible. However, problems arise when 

trying to qualify if the differences are musically acceptable as in these circumstances it is 

unknown if minor changes in parameters may result in a dramatic change in the reception 

of a performance. Other methods involve members of the general public, expert listeners, 

or both, assessing the output of the CSEMP and rating its musicality.  Unfortunately not     

all systems are rigorously tested Kirke and Miranda (2009), thus much of the comparisons 

6http://renconmusic.org/ 

http://renconmusic.org/
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between CSEMPs are based on their technical implementations, and limitations are viewed 

from limitations inherent within the assumptions used to develop the performance model 

Widmer and Goebl (2004); Kirke and Miranda (2009). 

 
2.5 Case-Based Reasoning and Musical Performance Systems 

2.5.1 Case-based Reasoning 

Case-based reasoning (CBR) is an approach that uses solutions to previous problems to 

solve new ones. As all performing musicians use their own previous experiences, knowledge 

and ability to develop a musical performance. CBR is seen as being analogous to the 

learning process of musicians, whereby they use their experience, knowledge and skills 

gained from previously learnt pieces of music in the learning and playing new ones. 

The CBR process has four steps: retrieve, reuse, revise and retain (Aamodt and Plaza, 

1994). When presented with a new problem, a case which relates to a similar problem will 

be retrieved from the case database. A case consists of a problem, its solution and possible 

annotations that indicate how the solution came about. The solution of the retrieved case 

will then be reused as a solution to the newly presented problem. The retrieved solution 

will then be tested, to ensure it does solve the problem, and be revised to address any 

failings.  Once the revised solution successfully solves the new problem,  a new case will  

be created and retained within the case database. The basic outline of a CBR system is 

shown in Figure 2.1. 
 

Figure 2.1: The basic outline of a general case-based reasoning system. 

 
 

2.5.2 Case-based Reasoning in Musical Performance Systems 

As defined in Scholes (1960), musical interpretation in music is “the act of performance 

with the implication that in this act the performer’s judgement and personality necessarily 

have their share”. When applying case-based reasoning (CBR) as an approach to generating 
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musical performances, a performance for a (normally) new, previously unseen musical piece 

is produced by considering the previous performances of similar musical pieces. CBR has 

been used to great effect in CSEMPs, such as SaxEx Arcos et al. (1998); de Mántaras and 

Arcos (2002) and DISTALL Tobudic and Widmer (2003, 2004, 2006). 

The application of CBR to musical performances also presents an additional benefit of 

being able to retain the implicit performance information used by musicians that greatly 

contributes to their musicianship, interpretation and subsequent approaches to expression. 

CSEMP approaches that derive rules which are applied on a note-by-note basis have great 

difficultly formulating explicit rules for this implicit performance information. Because 

CBR cases combine both the problem and solution, any implicit information is retained 

within each case, which is a benefit to musical performance system, as it means explicit 

encoding of implicit musicianship is not required for performance to be produced. 

Case-based reasoning has been shown as an effective method to produce performances 

by (Arcos et al., 1998; de Mántaras and Arcos, 2002) with their SaxEx system. Building on 

this work from Suzuki et al. (1999); Tobudic and Widmer (2003, 2004, 2005, 2006); Wid- 

mer and Tobudic (2003) has utilised case-based reasoning within two additional CSEPMs, 

Kagurame (Suzuki et al., 1999), and DISTALL (DIstance on SeTs of Appropriate Linkage 

Level) (Tobudic and Widmer, 2003, 2004, 2005, 2006; Widmer and Tobudic, 2003). Within 

each of these approaches a collection of previous performances have been analysed and de- 

constructed to form cases. When the systems are required to produce a new performance, 

aspects that are musically similar in the new piece are found from the cases and these     

are used to produce the new performance. This approach has the advantage of retaining  

all the implicit performance information. Thus the approach is able to account for more 

subtle performance characteristics, for example, the differences in personal playing style 

(Tobudic and Widmer, 2005). 

The SaxEx system stands out from Kagurame and DISTALL, not only being the first 

CSEMP to use case-based reasoning, but also because the system produces expressive 

saxophone performance of jazz standards (Arcos et al., 1998). SaxEx takes monophonic, 

inexpressive audio recordings of a saxophone performances and its midi score and uses 

spectral modelling synthesis (SMS) to introduce expression into the recording. Cases within 

the systems are analysed saxophone performances, that have been analysed by SMS and 

have had performance parameters, such as dynamics and timings, along with articulations 

such as vibrato extracted. Performances are matched to a score, and also categorised by 

affective labels. Case-retrieval utilises Generative Theory of Tonal Music (Lerdahl and 

Jackendoff, 1983), to analyse the input score and then retrieve performance parameters 

which match or have been applied to musically similar passages.  Emotional specification 
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of the output is also possible meaning that the emotional categorisation is considered by 

the case-retrieval method. The sound examples provided on the SaxEx website7 are quite 

convincing. However, there has been no formal evaluation of the system’s output. 

Kagurame (Suzuki et al., 1999) and DISTALL (Tobudic and Widmer, 2003, 2004, 2005, 

2006; Widmer and Tobudic, 2003) are more standard CSEPMs in that they both produce 

piano performances. However, each do this in different ways. 

Kagurame (Suzuki et al., 1999) works with sequences of notes, and annotated phrases 

within scores as its primary method of determining similarities to its base-cases. Hierarchies 

of longer phrases are constructed from shorter ones selected from the most similar cases. 

Unlike SaxEx, Kagurame doesn’t implement or use any musical theory within its analysis  

of a piece. The structural information of the score and annotated phrases are needed, but 

all music theory is never explicitly addressed. 

Instead the focus is on performance conditions, e.g. mood, style, performer etc. Perfor- 

mance conditions are keywords, and each is assigned a value between zero and one. Suzuki 

et al. (1999) explains how values are assigned through an example using the ’performer’ 

performance condition. If a phrase is performed by musician A, then it has the performance 

condition “Performer A” which equals 1. If musician B, produces an imitation of musician 

A’s phrase, then it will have the performance conditions ‘Performer A’ and “Performer B”. 

The value of “Performer B” in the second phrase will be close to if not 1, and “Performer  

A” will be closer to zero (Suzuki et al., 1999). 

Smaller phrases, such as half-bars are combined into whole bars, and multiple bars into 

sections. In each of these cases the performance conditions of the smaller phrases contribute 

to the performance conditions of the combined phrases to form a performance condition 

vector. Similarity of performance conditions can then be calculated from a resemblance 

equation (Suzuki et al., 1999). The system also uses Musical Expression Patterns (MEPs) 

(Suzuki et al., 1999) which are quantified by ratios of performance parameters. The MEP  

of a larger phrase is the average MEP of each of the smaller phrases contained within it. 

When a new phrase is to be constructed, each segment will have a target MEP calculated 

from the score information. Segments from the system’s base-cases which have the highest 

scoring similarity are then selected. 

Kagurame was tested using 21 short etudes, and performance data for these pieces was 

collected by having a single educated human musician play each of the pieces in a romantic 

and classical style (Suzuki et al., 1999).  One piece was  selected as the target piece and   

the remaining 20 used to form the base-cases of the system. The system outputs were 

evaluated through listening tests and judged to be almost human-like with acceptable as 

7http://www.iiia.csic.es/Projects/music/Saxex.html 

http://www.iiia.csic.es/Projects/music/Saxex.html
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a naturally expressed performance (Suzuki et al., 1999). 

The work on DISTALL  differs from that of Kagurame in that a much  greater focus      

has been given to the system evaluation within in the work. The system, as its name 

describes matches cases based on distance measures between two sets of first-order logic 

(FOL) predicates. These predicates generally are musical phrases with sequences of notes 

being literals and musical information stored within predicates (Tobudic and Widmer, 

2003). Musical pieces and performances are analysed and deconstructed into a series of 

multi-level polynomial expression curves which form the FOL predicates. The system then 

attempts to predict tempo and dynamics curves for phrases. Like Kagurame,  DISTALL  

uses these phrases to construct a piece (Tobudic and Widmer, 2005) by finding example 

phrases from the systems base-cases that have the closest matching set of expression curves 

to the target phrase of the performance being created (Tobudic and Widmer, 2005). 

The evaluation process for DISTALL was very rigorous. The distance measurements 

used by the system were evaluated against k-nearest-neighbour clustering, where the al- 

gorithms used to measure distance in DISTALL performed  better  (Tobudic  and  Wid-  

mer, 2006). As well as performing leave-one-piece-out cross validation and listening tests, 

through which the system was found to be successful at not only creating expressive per- 

formance, but also being able to capture personal artistic performance styles of famous 

artists (Tobudic and Widmer, 2003, 2004, 2005, 2006). 

Whilst the success of each performance likely depends upon the choice of musical sim- 

ilarity and case formation, all do demonstrate that CBR is an effective method for use 

within musical performance systems. 

 
2.6 Assessing the Playing Complexity and Difficulty of a 

Musical Instrument and/or Piece of Music 

Much of the related work investigating the playing difficulty and complexity of musical 

pieces focus was to aid in developing recommender systems for musical learning and edu- 

cation (Tandon and Tandon, 2015; Véronique Sébastien, 2012; Macrae and Dixon, 2011; 

Holder et al., 2015; Barthet et al., 2011).  With emphasis placed on developing measures  

to allow beginner players to identify suitable musical scores to learn(Véronique Sébastien, 

2012; Holder et al., 2015; Barthet et al., 2011).  Other  work Liou  et al.  (2010); Heijink  

and Meulenbroek (2003) has instead focused on the complexity of certain musical aspects, 

with rhythm (Liou et al., 2010) and guitar fretting (Heijink and Meulenbroek, 2003) be-  

ing specifically investigated. In the following, works related to musical and biomechanical 
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complexity are explained first, then an approach called “musiplectics” is outlined (Holder 

et al., 2015), after which works relating to computing playing difficulty are discussed. 

 
2.6.1 Musical and Biomechanical Complexity 

Investigations into complexity fall into two categories. Either the focus is on the musical 

complexity of a piece from a listening/perceptual perspective (Liou et al., 2010; Thul, 2008; 

Pease et al., 2018; Percino et al., 2015), or on the complexity of the actions required to  

play it (Heijink and Meulenbroek, 2003; Holder et al., 2015). 

Rhythmic complexity has been modelled with various mathematical approaches (Liou 

et al., 2010; Thul, 2008). However, investigations into more general models of rhythmic 

complexity (Thul, 2008) found that mathematical models only accurately modelled how 

humans understood a rhythm, not how difficult they found it to be. More success was 

found when the measure being used was used to investigate if the properties of the music 

conformed to a particular perpetual effect,  as in Liou et al. (2010) where an L-system8        

is used to determine the rhythmic complexity of a piece of music to aid in investigating   

the ‘Mozart effect’.9. The changes in complexity within musical genres has also been 

investigated (Pease et al., 2018; Percino et al., 2015) where complexity was based upon the 

musical instrumentation of a piece of music. This was then compared to sales of popular 

music, to identify consumer preferences within instrumentation complexity. 

Heijink and Meulenbroek (2003) instead focused on the biomechanical basis of the 

complexity, specifically the biomechanical complexity of posture and movement within 

guitar playing. For guitar playing three factors that contributed to the biomechanical 

complexity were identified (Heijink and Meulenbroek, 2003): 

• The position of the hand on the guitar neck, where hand positions at either extreme 

of the guitar neck are presumed to be most complex. 

• finger span, where a large finger span is assumed to be complex. 

• hand repositioning within note sequences. 

Heijink and Meulenbroek (2003) conducted a behavioural study that manipulated these 

three factors.  It was confirmed that these three factors do form the basis of complexity    

in guitar playing. However, in addition to these, further playing scenarios and behaviours 

were discussed that would also impact the playing complexity. These included deviations 

8https://en.wikipedia.org/wiki/L-system, lass accessed 14/09/2020 
9This is the effect where a person’s cognitive performance in a task is improved if they have listened to 

music by Mozart of Bach, before performing the task, when compared to not having listened to the music. 

https://en.wikipedia.org/wiki/L-system
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from using the biomechanically easiest approach, and the effect of focusing on the cogni- 

tively easiest option instead. The example provided by Heijink and Meulenbroek (2003) of 

this was in playing the same melodic piece at different pitch heights, where biomechanically 

it may be easier to change the fingering pattern, and reduce shifting distances, however 

repeating the same fingering pattern and moving this around the neck, although biome- 

chanically inefficient, would be cognitively simpler. Also noted by Heijink and Meulenbroek 

(2003) was that within their study, musical techniques to facilitate timbre and expressive 

changes were not considered, and these again would impact the fingering patterns and 

movements. Thus, the paper concluded that both the cognitive and musical constraints 

imposed on a player were at least as important as the biomechanical ones. It should also  

be noted that no numerical method of calculating or valuing the biomechanical complexity 

was addressed by Heijink and Meulenbroek (2003). 

 
2.6.2 Musiplectics 

Musiplectics is a term coined by Holder et al. (2015) that combines the words music and 

plectics, the greek word for the study of complexity. It is a systematic and objective 

approach, inspired by the idea of computational complexity theory, for determining the 

playing complexity of an entire piece of music for a given instrument.   In musiplectics,   

the complexity of a musical piece is determined by the musical elements present within 

the piece. Each element is assigned a numerical weight relating to how complex it is to 

play/perform.  The more complex an element is the higher its complexity value.   Holder   

et al. (2015) specifically refer to using ‘especially important’ musical elements which are 

then grouped to include: musical notes, intervals, dynamics, articulations, key signatures 

and note durations. 

Holder et al. (2015) outlines a full set of complexity weights for beginner level clarinet 

playing. The values of these weights were determined by clarinet teachers. Weights were 

given to musical elements in the following: the range of the instrument the note is played in, 

intervals and the range they are performed in, dynamics, articulations and key signatures. 

Note durations were not given individual weights. Instead a note duration multiplier was 

applied to the total sum of the musiplectics value for the notes and the total sum of the 

musiplectics value for the intervals. 

Holder et al. (2015)’s approach to calculating the musiplectics value of a piece of music 

is completed by taking the initial weight of the first musical note and multiplying it by the 

weights of any additional musical elements that are applied to that note. This calculation is 

then completed for every other musical note and for every interval in the piece. The values 
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for the notes are then summed together and multiplied by the note duration multiplier. 

Intervals are also summed together and multiplied by the note duration modifier. These 

two values are then added together to give the total musiplectic value for the piece of 

music. 

Following the development of this calculation, Holder et al. (2015) analysed the Royal 

Conservatory grade pieces, from Grade 1 to Grade 10. They found that the calculated 

complexity increased with the grade level, which is how it should be, as playing difficulty 

increases with each grade.   This result indicates that there is promise in the musiplec-   

tics approach, however, given the initial work was limited in scope to beginner clarinet, 

additional work is requried to expand and adapt the principles to other instruments. 

 
2.6.3 Playing Difficulty 

Largely within the literature difficulty has being computed to aid in musical education 

(Tandon and Tandon, 2015; Véronique  Sébastien,  2012;  Chiu  and  Chen,  2012; Barthet 

et al., 2011). Specifically, to give beginners a way to assess the playing difficulty of a 

musical score, and thus select pieces to learn based upon the difficulty level they feel is 

most appropriate for their learning development. The methods used to calculate difficulty 

vary,  some,  such as within the hottabs system (Barthet et al., 2011),  which focused on   

the rhythmic accompaniment of a piece and based the difficulty on a single metric (e.g. 

chord difficulty), whilst other approaches from Tandon and Tandon (2015); Chiu and Chen 

(2012); Véronique Sébastien (2012); Nakamura and Yoshii (2018) relied on analysis of many 

different features of the musical piece. 

Within the hottabs system the difficulty of the rhythmic accompaniment of a piece was 

determined by the number of unique chords used within a piece (Barthet et al., 2011). This 

is because the hottabs systems is largely a guitar tab recommender for beginners, focusing 

on chord vocabulary development. The hottabs  system  clusters  guitar  tabs,  based  on 

the number of unique chords, into three categories: easy, medium and difficult. These 

categories were then presented as tag clouds to its user, where each tag showed the name 

of the website the tab came from as well as the chord vocabulary of the piece. The purpose 

was to aid those, who already had a chord vocabulary, to find songs that could be played 

with their vocabulary, or find songs that could aid in expanding it. Barthet et al. (2011) do 

note that including a measure of chord difficulty based around the fingering patterns would 

be beneficial, but had not implemented it within the system at the time of publication. 

Tandon and Tandon (2015) present another guitar tablature recommender system. 

Their focus was instead on modelling a person’s playing level/perception of difficulty, and 
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then using it to recommend guitar tabs to that person based on the level of difficulty they 

wanted a piece to have. A set of features that could cause difficulty to guitar players were 

identified. Each feature’s values were determined either by the value of a feature, e.g. bpm, 

the number of occurrences of the feature, distribution of elements across and per measures, 

or ratios between contrasting playing elements. These features accounted for: the number 

of measures, notes, rests, tempo, playing speed, note durations, repetitions, time signature 

distributions, uncommon time signatures, chords, accidentals and note alterations, com- 

paring note ranges, duration modification to notes (e.g. staccato, slurs, syncopations) and 

guitar techniques (e.g. hammer-on, pull-offs, slides, palm mutes etc.). 

Tandon and Tandon (2015) developed a predictive model which they trained using 50 

popular songs that were segmented into short 10-bar segments. Then 50 randomly selected 

segments were presented to a user who rated each segment’s difficulty on a scale of 1 to 5, 

with “1” being the easiest and “5” being the most difficult. The features that correlated with 

the user’s difficulty were identified using Symmetric Kullback-Leibler Divergence (SKL) 

(Tandon and Tandon, 2015). These features were then presented to the user to aid to 

explain to them what they found difficult as well as using what they found difficulty as a 

basis for recommending guitar tabs to the user. 

The use of multiple features to determine playing difficulty is also used by Chiu and 

Chen (2012); Véronique Sébastien (2012); Nakamura and Yoshii (2018). Whilst the focus of 

each was on piano playing instead of guitar, their feature analysis and selection approach is 

similar to Tandon and Tandon (2015). Chiu and Chen (2012); Véronique Sébastien (2012) 

and Nakamura and Yoshii (2018) analyse features relating to the music and its score along 

with instrument specific playing techniques that were required when playing the piece. 

Both Chiu and Chen (2012) and Véronique Sébastien (2012) also, like Tandon and Tandon 

(2015), employed methods to identify the main features that contributed to how difficulty 

was judged within their respective data sets. 

Chiu and Chen (2012) trained a set of regression models on two datasets of piano MIDI 

files. In each the difficulty of the piece was measured between ‘1’ (easiest) to ‘8+’ (the 

hardest). The first dataset, labelled as PS, comprised of 159 pieces and the difficulty of 

each was determined by https://www.pianostreet.com/, an online membership service 

which provides sheet music and learning resources for piano. The second, labelled as EN, 

comprised of 184 pieces and the difficulty was determined by http://www.8notes.com, 

this is another online sheet music resource website. Both websites organise the sheet music 

by five different playing difficulty levels. It should be noted that for both pianostreet and 

8notes, the exact criteria used to categorise a piece’s playing difficulty were not specified. 

The regression models were optimised for each dataset by minimising the mean squared 

https://www.pianostreet.com/
http://www.8notes.com/
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error between the reported difficulties within each dataset and a predicted value of difficulty 

produced by the regression calculation. Once these models were trained the RReliefF 

algorithm (Robnik-Šikonja and Kononenko, 1997) was then used to rank how important 

different features were to the calculation. To find the optimal least number of features 

required to calculate the difficulty, the regression calculations were performed using the 

top-k features. Through this process the top five features identified were the entropy,  

range and average musical pitch, as well as a hand displacement rate (which checked the 

number of times the distance between two successive notes was larger than a set number 

of semitones) and playing speed. Chiu and Chen (2012) noted that the best performance  

of their difficulty measure in R2 statistics reached 39.9% and 38.8% for the PS and EN 

datasets respectively. These scores would indicate that the methods used by Chiu and 

Chen (2012) are not a strong model for the piano playing difficulty within each of the 

datasets. 

Véronique Sébastien (2012) began instead by identifying seven features that were im- 

portant to difficulty based on instrument knowledge. These were: playing speed, fingering, 

hand displacement, polyphony, harmony, irregular rhythm and length. A set of 50 pieces 

were analysed and Principle Component Analysis (PCA) was performed to compare the 

relationships between the identified features. Clustering around these features was also 

performed to observe if certain pieces had similar features. However, the difficulty of 

pieces was ultimately calculated in a similar way  to the Musiplectics approach (Holder     

et al., 2015), where each feature’s value was converted to a mark between ‘1’ and ‘4’, with 

‘1’ indicating beginner level and ‘4’ indicating virtuoso level.  Piano teachers were asked   

to rate different features within different pieces with these marks. Conversion between the 

feature’s value and its difficulty mark was then constructed for each feature, and used to 

determine difficulty of a piece of music. Véronique Sébastien (2012) evaluated their diffi- 

culty measures against the difficulty rankings of three piano teachers, and discovered that, 

in addition to the technical features they had identified, expressive features and musicality 

also effected how these piano teachers judged a piece’s difficulty. 

In a divergence from the more common educational/e-learning approaches, Nakamura 

and Yoshii (2018) instead focused on developing a difficulty measure to be used as a metric 

in the automatic re-arrangement of ensemble scores to piano scores. Nakamura and Yoshii 

(2018) did not explicitly identify features, instead probabilist generative models of piano 

scores were used. A Markov model was constructed for pitch sequences playable by one 

hand, two of these models were combined to model the use of both playing hands. Three 

different two hand models, each using a different probability distribution were created. One 

based on the note transition probability being equal for all notes, one that instead modelled 
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transitions to notes that are closer as being more likely with Gaussian distributions, and    

a third that instead modelled fingering motions and hand geometry to determine the note 

transition probability. The performance difficulty was chosen to be the time rate of the 

probabilistic cost of the note sequence based on the two-hand model, and each of the three 

probability distributions were evaluated. 

An objective assessment of the re-arrangements produced was conducted which com- 

pared three types of performance errors: playing a note with the incorrect pitch, playing 

an extra note and missing out a note within the performance of a piece of music with       

the difficulty measure. Difficulty values were calculated for each onset time and compared 

with the number of performance errors within a time range, ∆t, around the onset time. 

Due to the fact that timing errors were not notated within the performance dataset that 

was being used, timing errors of notes were not considered. Nakamura and Yoshii (2018) 

determined that the model using Gaussian distributions best generalised to their dataset. 

They hypothesised that this was due to the model being simpler, with only one training 

parameter, and the relatively small dataset size used for the training. Nakamura and Yoshii 

(2018) also suggest and that with a more substantive large-scale piano fingering dataset,   

a more complex model, with better generalisation could be trained. 

 
2.7 Musical Similarity Tool Kits 

Musical similarity within this work refers to a measure of how similar two sequences of 

musical notes are to each other, usually based upon human determined factors. Within  

this work the focus is on finding measures of similarity based upon the symbolic note 

information. Finding a suitable general measures of symbolic musical similarity is an 

ongoing challenge, with many different approaches being proposed as part of the Music 

Information Retrieval Evaluation Exchange (MIREX) symbolic musical similarity challenge 

(Velardo et al., 2016). Adorn-o requires a means of measuring musical similarity, for this 

tasks two musical feature tools kits have been selected. The first being FANTASTIC 

(Müllensiefen, 2009), which along with melodic feature analysis methods also can be used 

to determine the similarity between features. The second is SynPy (Song et al., 2015), 

which measures syncopation of rhythmic phrases, and is being used to compensate for 

FANTASTIC’s lack of rhythmic  feature  analysis.  Both  toolkits  have  been  selected  in  

part, because both are based upon perceptual musical features,  the source code for both  

is accessible, and, at least in FANTASTIC’s case, also contains a  measure  of  similarity 

based upon the euclidean distance between the melodic feature vectors of symbolic music 

sequences. 
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2.7.1 FANTASTIC 

FANTASTIC stands for Feature ANalysis Technology Assessing STatistics (In  a  Cor-  

pus) Müllensiefen (2009). It is a program written in R10 that analyses symbolic repre- 

sentations of monophonic melodies by computing features. The values of these features 

represent different aspects of musical structure, making use of concepts from descriptive 

statistics,  music theory and music cognition Müllensiefen (2009).  FANTASTIC  also has  

the option to compute corpus-level features with respect to a corpus of melodies, however 

this functionality of the toolkit is not used within this work. 

FANTASTIC provides its own similarity function, which can compute the similarity 

between two or more melodies, based upon one or more computed features. When using 

only numeric features, the Euclidean distance, shown in Equation 2.6, where d is the 

distance between two multi-dimensional points, p and q, is used to compute the similarity 

between melodies. 

 

d(p, q) = (p1 − q1)2 + . . . + (pn − qn)2 (2.6) 

FANTASTIC’s similarity function calculates the z-value11 which Müllensiefen (2009) 

refers to as “so-called z - standardisation”, for the feature values before the Euclidean 

distance is calculated. The z-value is calculated by: 

z = 
x − µ 

σ 

where x is the feature, µ is the feature mean and σ is the feature variance. This 

standardisation is applied to ensure an equal weighting is applied to all features when 

calculating the similarity. 

To be able to use Euclidean distance as a measure of similarity, only the numeric 

features from FANTASTIC can be used. This excluded the use of the two contour, and 

melodic mode categorical features. In testing on the datasets used within Chapter 6, 7 and 9 

there were issues computing features dependent on polynomial contour calculations so these 

features were also excluded from use.  The remaining features relating to absolute pitch   

or notes, pitch intervals, note durations, global lengths melodic step and interpolation 

contours were all selected to be used. This gave a total of 26 features being utilised from 

the FANTASTIC toolkit. 

 
 
 

10http://www.r-project.org 
11https://en.wikipedia.org/wiki/Standard_score#Calculation 

http://www.r-project.org/
https://en.wikipedia.org/wiki/Standard_score#Calculation
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FANTASTIC accepts Music-CSV (MCSV)  files  Frieler  (2005)  as  input.  These  MSCV 

files contain the symbolic representations of monophonic melodies. The MELCONV soft- 

ware by Klaus Frieler has been used within this work to convert monophonic MIDI files to 

the MCSV format. 

 
2.7.2 SynPy 

FANTASTIC does not handle rests within music; all note duration times are repre- 

sented as inter-onset intervals (IOIs) and the features computed are only  related to the  

IOI duration values. Basslines are the primary focus within the work, and the melodic 

content contained within can be quite static. In such cases rhythmic variation is a greater 

differentiating factor between pieces. Because of this, rhymic features from SynPy, a python 

toolkit for syncopation modeling Song et al. (2015), have been selected as a way to include 

additional rhythmic features within the measure of musical similarity. 

In SynPy seven different models for syncopation are implemented. Each model com- 

putes a numerical measure that relates to the syncopated-ness of the rhythm that is being 

analysed.  The mean syncopation measures for each model has been combined with the   

26 melodic features of FANTASTIC and both are used to compute the musical similarity 

between Basslines. 

The measure of musical similarity using the features from these toolkits, and FANTAS- 

TIC’s similarity function has been assessed within Chapter 7, and utilised within Adorn-o 

(see Chapter 9). 

2.8 Bass Guitar Background Information 

2.8.1 Glossary of Bass Guitar Instrument Terms 

The electric bass guitar, more commonly referred to as a bass guitar, or bass is a solid 

bodied stringed instrument that features magnetic pickups to allow for the instrument to 

be amplified to high sound volume levels without it feeding back. There are many different 

styles of bass guitars each with different pickup types and configurations, as well as also 

featuring hollow or semi-hollow bodies, and all can be built with a variety of different tone 

woods. 

The following is an glossary of terms relating to the bass guitar. 

 
2.8.1.1 Bridge 

The bridge of a bass guitar raises and supports the strings from the body of the instrument. 
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2.8.1.2 Frets 

Bass guitars can either be fretted, having metal fret wire mounted to the fretboard of the 

instrument at equal temperament semi-tone intervals, or fretless, where there is no metal 

frets and the fretboard is left smooth. 

 
2.8.1.3 Pickups 

A bass guitar’s pickups are situated on its body, under the strings between the neck and 

bridge. They are (normally) formed from a magnetic core wrapped in a coil of copper  

wire. A bass’ pickups allow for the instrument to be amplified to high sound volume levels. 

There are many different types of pickups and different configurations. 

 
2.8.1.4 Scale Length 

The scale length of a bass guitar is the measurement between the bridge of the instrument 

and the string nut. The most common bass guitar scale lengths fall between the range of 

30-36+ inches to accommodate the lower frequencies the instrument produces. A 34 inch 

scale is the most common for 4 string basses, 35 inch is becoming more standard for 5 and 

6 string bass guitars that have a low B string and 33 inches is generally used for tenor 

basses. However, basses with any numbers of strings can be built with many different scale 

lengths. 

 
2.8.1.5 Strings 

They will also be strung with strings that have a flexible core of steel that is then wrapped 

by tightly coiled additional wire, the material of which can vary but is commonly stainless 

steel or nickel plated steel. 

 
2.8.1.6 String Nut 

This holds and raises the strings over the neck of the instrument. It is more simply referred 

to as the ‘nut’. 

 
2.8.1.7 Tuning 

The standard tunings for 4,  5 and 6 string basses are shown in Table  2.2.   In addition       

to these standard tunings,  there are a whole host of alternative and drop tunings that  

have been and are used. Drop tunings are when one of more strings are tuned to a lower 

pitch, the most common being drop ‘D’ tuning, where the low E string is tuned down from 
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E1, 41.204 Hz to D1, 36.708 Hz. Alternative tunings are where one or more strings are 

tuned to entirely different pitches, these will generally follow a musical requirement, such 

as tuning a string so that certain harmonic pitches are playable, or tuning strings to ease or 

facilitate the playing of particular chord voicing. However, the exploration of the musical 

applications that alternative and drop tunings provide is beyond the work. 
 

4 String 5 String 5 String (tenor) 6 String Note Frequency (Hz) 
 

 5 6 C3 130.813 
4 5 4 5 G2 97.999 
3 4 3 4 D2 73.416 
2 3 2 3 A1 55.000 
1 2 1 2 E1 41.204 

 1  1 B1 30.868 

Table 2.2: Standard Bass Guitar Tunings 

 
 

2.8.2 Glossary of Bass Guitar Playing Techniques 

The following is a non-exhaustive list of playing techniques that can be played on the bass 

guitar presented in alphabetical order that includes a description of what the technique is 

along with basic instruction on how it is preformed on the instrument. 

 
2.8.2.1 Accent 

An accented note is played with more excitation force, and thus is louder than a non- 

accented note. 

 
2.8.2.2 Artificial Harmonic 

An artificial harmonic is produced by playing a harmonic of a fretted note. This is usually 

done by dampening the harmonic node with either the thumb or index finger of the plucking 

hand, and plucking the string with another digit or pick. 

 
2.8.2.3 Bend 

This is where the fretting hand pushes the string up or down whilst still maintaining contact 

with the fret. This sharpens the pitch of the note by the amount of bend introduced into  

the string. 
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2.8.2.4 Chords 

Chords are 3 or more notes played simultaneously. 

 
2.8.2.5 Dead-note 

This is played in a similar way to a harmonic. However, a dead-note can be played in any 

position that is not an integer fraction of the length of the string. When performing a dead-

note, the string will be muted, and a percussive thud with some tonality relating to the 

fretting position is heard. Dead-notes can be played at harmonic positions by pressing the 

string hard enough to make contact with the frets, but not enough to have the fretted note 

sound clearly,  or by  dampening the string at an additional location along the string.  A 

common way to do this is by resting the fingers not used to play the dead-note on the 

string behind where the dead-note is to be played. 

 
2.8.2.6 Double Stop 

A double stop is when two notes are played simultaneously. In bass playing these are more 

commonly the upper chord voicing or the root and main chord extensions. Double stops 

are not traditionally viewed as chords themselves, although they outline salient harmonic 

information, they do not provide enough information on their own/in isolation to remove 

any harmonic ambiguity. 

 
2.8.2.7 Double-Thumbing 

The double thumb technique, is an extension of the slap technique. Instead of the side of 

the thumb knuckle  striking the string against the fretboard,  the tip of the thumb  is used  

in a picking motion, just below the fretboard of the instrument. Like the slap technique,  

the thumb is kept rigid and the motions are controlled by  the wrist,  elbow and shoulder  

of the plucking arm, which allows for significantly more power to be applied to the string 

than a regular thumb pluck, resulting in the string being displaced enough to also make 

contact with the frets of the instrument. 

 
2.8.2.8 (One, Two and Three) Finger Plucking 

The fingers of the plucking hand are used to displace the strings.  On release the string   

will recoil, causing an oscillation that is detected by the pickup producing the output for 

the instrument. 
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Two finger plucking is when the index and middle fingers alternate in plucking the 

string. Three finger plucking is when the index, middle and ring fingers alternate in 

plucking the string. 

 
2.8.2.9 Ghost Note 

A ghost note is a note with a rhythmic value, but no discernible pitch. These are similar, 

and sometimes inter-changeable with dead-notes, however a ghost note on bass is usually 

played more softly than a dead-note, with less attack and volume. 

 
2.8.2.10 Grace Note 

A grace note is a short/brief played before a main melodic note. It functions as an orna- 

mentation to the note that follows it.  Grace notes will usually connect to the following  

note through a slide, hammer-on or pull-off, depending on the pitch of the grace note. 

 
2.8.2.11 Hammer-on 

After a note is plucked, a note of a higher pitch is fretted with enough force that the note 

sounds without it needing to be plucked. 

 
2.8.2.12 Harmonic 

A natural harmonic is played by gently touching (fretting) the string with the fretting finger 

at an integer ratio along the string,  then plucking it.  This forms a standing wave  along   

the string cancelling any vibrations which have an anti-node at the place the harmonic is 

played. A clearer tone is produced, with a higher perceived fundamental frequency. 

 
2.8.2.13 Left-Handed-Slap 

The left hand uses a hand slapping motion to slap the strings against the fretboard. This 

produces a percussive effect. 

 
2.8.2.14 Legato 

Notes are performed with smooth transitions, these transitions will normally be played 

with hammer-on, pull-offs or slides to complete the effect. 

 
2.8.2.15 Letting a Note Ring 

A note is plucked and then left to decay at its natural decay rate. 



74  

 

2.8.2.16 Palm-muting 

The palm is rested against the strings to dampen the notes producing a rounder, more 

percussive thumping timbre. Strings can be plucked, picked and slapped, although picked 

and plucked are far more common when muting. 

 
2.8.2.17 Picking 

This technique is playing with a pick. A pick is sharper and harder than a persons fingers 

and results in a brighter timbre with faster attack. 

 
2.8.2.18 Plucking 

This is where the fingers of the plucking hand are used pluck the strings. Normally the 

index, middle and thumb are used. In standard playing the string will be plucked by the 

index, then by  the middle finger in an alternating motion.  The thumb  can be used when    

a softer attack is desired. A more advanced technique is to use three fingers to pluck the 

string. This technique plucks first with the ring finger, then the middle finger, then first 

finger, before returning to the ring finger to start the pattern again. Chords can be played 

by plucking multiple strings at the same time with thumb and fingers. 

 
2.8.2.19 Pop 

A finger pulls the string upwards from the fretboard, releasing it to strike back against the 

frets. 

 
2.8.2.20 Pull-off 

After a note is played, and whilst the string is still in contact with the fretboard a plucking 

motion is performed by the finger holding the string down. This should be done in such as 

way that when the finger is removed from the string, a note of lower pitch is then heard. 

 
2.8.2.21 Slap 

The thumb is used to strike the string, bouncing it off the fretboard, creating a percussive 

metallic sound. 
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2.8.2.22 Slide 

This is where the fretting hand moves from the current note being played to a different  

fret whilst keeping the string in contact with the frets/fretboard. 

 
2.8.2.23 Staccato 

The note is played sharply, and detached, usually resulting in a halving of its notated 

duration. 

 
2.8.2.24 Tap/Tapping 

This is similar to a hammer-on but a note is not needed to have been plucked before. This 

can be performed by one, or both hands. 

 
2.8.2.25 Tenuto 

The note is held for the entirety of its notated duration. This will result in there be no 

discernible break, or micro pause between the note and the next one played. 

 
2.8.2.26 Thumb Pluck 

The thumb is used to pluck the string. 

 
2.8.2.27 Two Handed Tapping 

Two handed tapping is where both hands are tapping notes, so none are plucked. Expres- 

sion styles can still be performed as well as hammer-ons and pull-offs. 

 
2.8.2.28 Trill 

A trill is performed by rapidly alternating between two notes. This is usually performed 

using either hammer-on and pull-offs or using a slide. 

 
2.8.2.29 Vibrato 

This is modulating the string by changing its frequency. There are many ways of doing  

this, more commonly this is done by bending the string.  However,  the tuning pegs can  

also be turned and the neck of the bass pulled back to change the string length and create 

vibrato. A quick sequence of multiple hammer-on each followed by pull-offs, or quickly 

sliding between the same notes also creates vibrato. 
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2.8.3 Bass Guitar Synthesis via Digital Waveguide Synthesis 

A digital waveguide is a physical modelling synthesis technique that utilises forward and 

backward delay-lines to simulate the displacement of a travelling wave moving through an 

acoustic medium (Smith, 1992). This technique is commonly used in the simulation of 

stringed instruments, where additional dispersion and dampening filters are added to the 

delay-lines to obtain the desired frequency response that best matches the instrument being 

simulated. Additionally complex sounds and interactions can also be simulated within the 

waveguide through the addition of filters, scattering junctions, gain-stages and other more 

specialised or bespoke approaches.  For  example:  the simulation of dampening a string  

for dead-notes and harmonics (Pakarinen, 2005) which is implemented using a modified 

loss function at the point of dampening, fret to string collision which requires its own 

interaction model (Evangelista, 2011) and modelling the displacement that different types 

of string excitation create (Rank and Kubin, 1997) that require additional functions to 

simulate the displacement shapes. 

Kramer et al. (2012) extends on the work into the simulation of pianos and acoustic 

guitars (Karjalainen and Laine, 1991; Matti Karjalainen and Tolonen, 1998; Smith, 2010) 

and combines existing work from Rank and Kubin (1997); Pakarinen (2005); Evangelista 

and Eckerholm (2010) that simulate different playing techniques into a single waveguide 

model for electric bass. Kramer et al. (2012) also uses a parametric FIR filter by van 

Walstijn (2010) to simulate the correct amount of loss within the model, an inharmonicity 

filter to simulate the effect of the electromagnetic pickups as well as a linear interpolator 

to allow for fractional delay-line lengths to be used to allow the waveguide  to be tuned     

to pitches that require non-integer delay-line lengths. Different combinations of the dis- 

placement function developed by Rank and Kubin (1997), modified loss function by van 

Walstijn (2010) and fret collisions by Evangelista (2011) are used to simulate different 

plucking techniques. Different combinations of the displacement function, the amount of 

delay line modulation, facilitated by the linear interpolator, and the use of different damp- 

ing models including those by Pakarinen (2005) are also used to simulate the different 

expression techniques. 

The model developed by Kramer et al. (2012) is of a particular focus as the sound 

quality is considerably high for a fully synthesised bass guitar sound.12. Compared to 

commercial offerings such as MODO Bass13 or Native Instrument’s Komplete instru- 

12This evaluation is based upon the author’s subjective judgements of the sound examples which can be 
found at http://www.idmt.fraunhofer.de/en/business_units/smt/bass_synthesis.html 

13https://www.ikmultimedia.com/products/modobass/ 

http://www.idmt.fraunhofer.de/en/business_units/smt/bass_synthesis.html
https://www.ikmultimedia.com/products/modobass/
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ments,14 the model developed by Kramer et al. (2012) simulates a greater number of 

techniques. The code is also available from the following code repository:https://github. 

com/jakobabesser/bass_guitar_waveguide_model which allows for even greater control 

over low level parameters for detailed timbre adjustments. This makes the model very 

suitable for use within this work. 

The techniques the model is capable of synthesising Kramer et al. (2012) are described 

in a taxonomy of bass playing techniques explained in detail by Abeßer (2014) and shown 

in Table 2.3. As a note, this taxonomy appears to exclusively have plucking gestures 

performed by the plucking hand, and expression styles performed by the fretting hand. 

When looking towards virtuosity, there are additional methods of plucking that the fretting 

hand can perform, such as hammer-ons and pull-offs as well as slapping, and tapping: 

either one-handed or two-handed, are not included within this playing taxonomy, and not 

explicitly mentioned in descriptions of the physical model. 

 
 

Plucking Style Expression Styles  

Classes Classes Sub-Classes 

Finger Style (FS) Normal (NO)  

Picked (PK) Harmonics (HA)  

Muted (MU) Dead-note (DN)  

Slap-thumb (ST) Vibrato (VI) Slow Vibrato (VIS) 
  Fast Vibrato (VIF) 
Slap-pluck (SP) Bending (BE) Quarter-tone Bending (BEQ) 
  Half-tone Bending (BEH) 
 Slide (SL) Slide-up (SLU) 
  Slide-down (SLD) 

 

Table 2.3: Taxonomy of Bass Playing Techniques from Abeßer (2014). Plucking styles 
describe how the string is excited, and expression styles how the fretting hand manipulates 
the sound, whilst the string is ringing. 

 
 

2.8.4 Bass Guitar Notation 

Bass guitar notation requires specialised musical notation due to the many different play- 

ing techniques that are possible. Within this work, when bass guitar notation has been 

required, Guitar Pro15 Version 6 has been used. This is specialised guitar and bass no- 

14https://www.native-instruments.com/en/specials/komplete/vst-bass-guitar/ 
15https://www.guitar-pro.com/ 

https://github.com/jakobabesser/bass_guitar_waveguide_model
https://github.com/jakobabesser/bass_guitar_waveguide_model
https://www.native-instruments.com/en/specials/komplete/vst-bass-guitar/
https://www.guitar-pro.com/
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tation software that includes specific symbolic notations that are conventionally used to 

notate different bass guitar techniques. Due to the specialisation of notation, Guitar Pro 

uses its own proprietary file format which allows for bass are guitar scores notated in the 

software to be saved and shared. There are many websites dedicated to hosting user made 

transcriptions, many of which are shared using the Guitar Pro File format. One of the 

largest of such websites is Ultimate Guitar16, which has been used as the primary source 

when forming the case-database used within Chapter 9. 

 
2.8.5 Bass Guitar Education and Institutions 

Parts of The Trinity College  London  Rock  and  Pop  Grade  syllabus  (Trinity  Rock  and 

Pop Exams, 2012i,a,b,c,d,e,f,g,h) has been utilised within this work as a reference dataset. 

The grade syllabus for bass guides the development of fundamental techniques and musical 

concepts through adapted versions of pop songs. Each grade is examinable and a recognised 

musical qualification. 

 
2.9 Summary 

The key arguments from Howard (1997, 2008)’s work on virtuosity were outlined and dis- 

cussed in relation to computational musical performances (Section 2.1). Computational 

creativity, the Creative Systems Framework (CSF) and the Engagement-Reflection Cre- 

ative Systems Framework (ER-CSF) model were introduced and summarised in Section 2.3. 

The approaches for the computational modelling of music were outlined in Section 2.4. An 

overview of the Case-based Reasoning (CBR) process was provided and a summary of how 

it has been used within musical performance systems was outlined in Section 2.5. 

Previous work relating to musical playing complexity and difficulty were outlined and 

a formalisation of the musiplectics approach by Holder et al. (2015) was presented in 

Section 2.6. An overview of two musical feature tool kits: FANTASTIC and SynPy, being  

used was provided in Section 2.7. A glossary of bass guitar terms and playing techniques, 

an overview of the digital waveguide model that has been improved upon in Section 8.3.3, 

a summary of the bass guitar notational software and bass guitar educational institutions 

and resources that have been used was all provided in Section 2.8. 

 
 
 
 

 
16https://www.ultimate-guitar.com/ 

https://www.ultimate-guitar.com/
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Chapter 3 

 

Defining The Bass Guitar 

Performance Ontology 

 
3.1 The Need for a Bass Guitar Performance Ontology 

This thesis is intrinsically related to how a bass guitar is played. This knowledge, whilst 

readily available within educational, historical and auto/biographical literature is not for- 

mally specified within a way that is machine understandable. A system capable of computa- 

tional musical bass guitar performances, such as Adorn-o, not only requires this knowledge, 

but also a means of manipulating and reasoning over it. This need has lead to the Bass 

Guitar Performance Ontology being developed. 

Previous ontologies relating to musical instruments and performance analysis (Kolozali 

et al., 2011; Sebastien et al., 2010) have focused on the knowledge relating to instrument 

classification, identification and annotating musical scores with musical performances ac- 

tions. In both instances semantic web technologies have been leveraged to allow for easier 

ways of accessing this knowledge. Of relevance here is the the musical performance on- 

tology (Sebastien et al., 2010) which describes piano performances for students from the 

perspective of a teacher. The purpose of this ontology is to be an aid in the learning pro- 

cess of the instrument. The ontology is constructed to encode explanations relating to the 

technical execution of certain note passages and for the conveyance of, or understanding of 

musical intention. These areas form the main classes of the Music Performance ontology 

(Sebastien et al., 2010) allowing the information within to be presented to piano students. 

There is an implicit assumption that these performance aspects will be interpreted by a 

human, and thus the information within the ontology acts as a guide to allow a student     

to learn and ultimately produce the performance of the piece. If the performance has 
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already been performed, possibly recorded,  or similarly,  The Music Ontology (Raimond  

et al., 2007) can be used as a means of cataloguing information related to the performance 

within machine readable ways. For each ontology however the missing component is the 

production of the performance itself. 

The Bass Guitar Performance Ontology is presented as a method of describing both 

what musical performance techniques a performer used with a performance and the exact 

way in which those techniques were performed. This is a different approach from the Mu- 

sical Performance Ontology (Sebastien et al., 2010), in that here the results of intentional 

performance concepts, gestural and musical practice (all of which the Music Performance 

Ontology describes) are not encoded, instead the actions taken by the musician are en- 

coded. Thus, the Bass Guitar Performance Ontology is a means of describing the technical 

execution of a musical performance. 

A deliberate decision was taken to not represent conceptual components of the per- 

formance e.g. a performer’s musical intentions, notions of expressive intent  etc.  Instead,  

it has been assumed that such concepts would (and should) manifest within the musical 

performance through both the choice of performance techniques used, and in the way that 

these techniques are performed. Thus, allowing the Bass Guitar Performance Ontology to 

be a purely descriptive, yet comprehensive representation of bass guitar performances that 

is machine understandable and manipulatable. At least in terms of the technical executions 

of musical performance techniques.1 

 
3.2 Formalising the Production of a Musical Performance 

For a performance to be described, it must first be produced.  The production of a mu-  

sical performance is formalised as follows. A set of (musical) notes, N , is defined, whose 

members are triples: 

(pitch,  onset  time, duration), 

A set of all possible (musical) performance techniques,  T , is defined,  whose members  

are constants, each of which uniquely identifies one performance technique. 

A set of adorned (musical) notes, N , is defined, whose members are pairs, (n, A), where 

n ∈ N and A ⊂ T : 

N = N × T ∗, 

where S∗ denotes the power set of S. - change S to a different letter. 

1Within this work the Bass Guitar Performance Ontology is not currently connected to, or implemented 
within semantic web technologies. 
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An adornment is defined as a musical performance technique, a ∈ A. Each adornment 

requires its own execution specifications that describes both how and the result of applying 

the adornment to a note. 

A knowledge bass K, is defined as a set of sequences of adorned notes. A selection 

function, σ, selects a sequence of adorned notes, k ∈ K, that will inform the production of 

a musical performance for a sequence of notes: 

σ : 
→−
N × 

(→−
N 

)∗ 

1→ 
→−
N , 

where 
→−
X  denotes the set of sequences of elements of X. 

An adornment application function, α, maps a sequence of notes, a sequence of adorned 

notes and a set of performance techniques to a sequence of adorned notes: 

α : 
→−
N × 

→−
N × T ∗ 1→ 

→−
N . 

The operation of Adorn-o can be summarised as a function,  A,  that maps a sequence  

of notes, a knowledge base and set of performance techniques to a sequence of adorned 

notes: 

A : 
→−
N × 

(→−
N 

)∗ 

× T 1→ 
→−
N . 

For the musical performances of interest within this work, and that are produced in  

the version of Adorn-o presented in Section 8.2, A leaves the elements of the note sequence 

unchanged, and selects appropriate members of t ⊆ T to add to each note, of which there 

is always at least one. However, this does not preclude different versions of this function 

that might adjust the parameters of the note to match the adornments. Thus, 

 
A(n, K, t) = α n, σ(n, K), t . 

where K ⊆ 
→−
N , n ∈ 

→−
N  and t ⊆ T . 

Musical performances can be realised by following the execution specifications of the 

adornments within the adorned notes formed by A(n, K, t). Within this formulation, a 

distinction is made between the interpretation of a sequence of musical notes, and the 

interpretation of the adornments which has been made to decouple the performer’s inten- 

tions and interpretations from their technical execution. This is to create a firm distinction 

between the musical interpretation, and technical execution without preventing their corre- 

lation. By having this distinction between interpretation and technical execution the sound 

production method can be treated as a technically excellent musical performer, capable of 



82  

 

directly and precisely following the adornment execution specifications, when performing a 

musical performance. Within computational musical performance systems this allows for 

the sound production method to be treated as, and remain purely, a rendering process. 

 
3.3 Defining a Set of Bass Guitar Performances 

A set of bass guitar performances  is defined as 
−
N
→
B , 

−
N
→
B  ⊂ 

→−
N  where: 

−
N
→
B  = {a ∈ 

→−
N |ai = (ni, Ai), Ai ⊂ B}, 

where B is a set of bass guitar playing techniques, B ⊂ T , and xi is the ith element in 

sequence x. 

Adorn-o can produce a bass guitar performance, b ∈ 
−
N
→
B , as follows: 

b = A(n, KB, B), 

where KB ⊆ 
−
N
→
B  and n ∈ 

→−
N . 

3.4 The Bass Guitar Performance Ontology 
 

The taxonomy of the bass guitar performance techniques that form B is outlined in Ta- ble 

3.1.  A vocabulary has been defined to specify the adornments within b, ∀b ∈ 
−
N
→
B , along 

with a set of axioms that ensures the described adornments are performable by a physical 

bass guitar. These three components form The Bass Guitar Performance Ontology. 

 
3.4.1 Bass  Guitar  Performance  Techniques Taxonomy 

The full taxonomy of the Bass Guitar Performance Ontology is shown in Table 3.1. Within 

this taxonomy bass guitar performance techniques are first classified by which hand per- 

forms the technique, either the plucking (the hand that strikes the string, traditionally the 

right hand) or the fretting (the hand that frets the notes, traditionally the left hand), then 

by the execution method: finger, thumb or pick that is used for the playing technique. 

Techniques are further categorised into one of the following: Excitation, Modification, 

Modulation, Accent and Dynamic. 

The Excitation technique category is for playing techniques that are used to produce 

sound on the instrument. The Modification category is for techniques that are performed 

by modifying or adjusting excitation techniques, for example dead notes or harmonics 
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which are performed through modification of the fretting pressure, or palm muting which 

is a modification to the plucking hand so that  the  strings  are  also  dampened  when a 

note is played. Modifications have been split into timbral and dampening modifications. 

Dampening (or in the case of letting a note ring, not dampening) modifications adjust the 

sustain of the note. Timbral modification adjust the timbral of the note being played. The 

third category, Modulation, contains techniques which cause a change in the pitch of the 

note. The Accent  and Dynamic categories contains accents and dynamics (articulations  

and volume changes). 

Techniques within the same category, played by the same hand and digit are considered 

to be mutually exclusive as only one of the techniques within this category can be physically 

played by a single person on the instrument at a time. The exceptions to this are the 

timbral and dampening modifications, where one timbral, and one dampening modification 

technique can be applied simultaneously and modulations, where multiple modulations can 

be applied at the same time. There are also some additional inter-category and inter-note 

restrictions to techniques that are defined later within the vocabulary and axioms of the 

ontology. Bass guitar performances are specified through the combinations of different 

excitations, modifications, modulations, accents and dynamics that are applied to the 

musical notes being performed. 



 

8
4 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fretting-hand Slap pre-bend Fermata 
pre-bend-release 

Trill hammer-on/off 
slide 

 

Slide (gliss) legato 
shift 
in from above 
in from below 
out downward 
out upward 

Table 3.1: The Taxonomy Bass Guitar Playing Techniques that form B ⊂ T 

Hand 
Execution 

Method 

 

Type 

Techni que 

Subclass 

Mo 

Timbral 

dification 

Dampening 

Mo 

Type 

dulation 

Subclass 

Accent Dynamics 

Plucking Finger Finger Pluck  1 Finger Pluck None None   None ppp 
    2 Finger Plucking Artificial- Palm-muting   Accent pp 
     Harmonic      

    3 Finger Plucking     Heavily- p 

         Accented  

  Pop        mp 
  Raking        none 

  Tapping        mf 

 Multiple Chords  Double Stop      f 
 Fingers   3 Note Chord      ff 

 + Thumb   4 Note Chord      fff 

 Thumb Thumb Pluck        sfz (forced) 

  Slap        Crescendo 

  Double Thumb  Upstroke      Diminuendo 

    Downstroke       

 Pick Using a pick  Upstroke       

    Downstroke       

Fretting Finger None   None None None  None  

  Hammer-on   Fretting Let-ring Vibrato  Staccato  

  Pull-off   Harmonic  Bend bend Tenuto  

  Two-Handed Tap-  Dead-note   bend-release Legato  

  ping         
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3.4.2 Defining the Adornment Vocabulary 

The adornment vocabulary is formed of classes and class relationships specified using se- 

mantic triples.2 The adornment class is defined, which has an execution-method specified, 

and by extension the extremity that the execution-method is attached to outlined. The five 

categories from the taxonomy form sibling subclasses of the adornment class where: 

• The excitation subclass defines adornments that cause audible output. Its graphical 

representation and relationships are presented in Figure 3.1. 

• The modification subclass defines adornments that change the timbre of the excita- 

tion. Its graphical representation and relationships are presented in Figure 3.2. 

• The modulation subclass class defines adornments that causes a frequency modula- 

tion of the note being adorned. Its graphical representation and relationships are 

presented in Figure 3.3. 

• The accent subclass defines adornments that change the articulation of the excitation. 

Its graphical representation and relationships are presented in Figure 3.4. 

• The dynamic subclass defines adornments that relate to the volume of the perfor- 

mance, including the intensity of the excitation and amplitude modulations. Its 

definition is self-contained with all values being provided within Table 3.1. 

 
The note the adornment is adorned to is itself a class which contains a pitch, onset and 

duration. The adornment adorning the note is specified by the is-adorned-by  relationship.  

A note can be adorned by multiple adornments as long as there are no taxonomical contra- 

dictions between the playing techniques or contradictions to the restrictions outlined in the 

following sections. Figure 3.5 provides a graphical summary of the adornment vocabulary, 

including class hierarchy and semantic triple relationships. 

 
 
 
 
 
 
 
 
 
 

 
2https://en.wikipedia.org/wiki/Semantic_triple 

https://en.wikipedia.org/wiki/Semantic_triple
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Figure 3.1: Graphical Representation of the Excitation Adornment Subclass 
 
 
 
 
 
 
 
 
 
 

 

is-type 

 
 
 
 

Figure 3.2: Graphical Representation of the Modification Adornment Subclass 

Excitation 

plucking-excitation-is fretting-excitation-is 

Fretting Plucking 

is-palm-muted 

Modification 

is-let-rung 

Palm Mute 

Technique 

Let Ring 
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Fret 
In 

Duration 
trill-between 

duration-between-notes has-type 

Trill Slide 

Depth 
has-a 

has-subclass has-subclass 

Vibrato has-subclass Modulation 

has-a 

Rate has-subclass 

Bend 

has-a 
has-a 

Bend Type 
Value 

has-a 

is-followed-by 

Bend Point 

has-a has-a 

has-a 

Vibrato 
Position 

 
 
 
 
 
 
 
 
 

has-type 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3.3: Graphical Representation of the Modulation Adornment Subclass 
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has-dynamic-accent 

 

 

Figure 3.4: Graphical Representation of the Accent 
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Figure 3.5: Graphical Representation of the Adornment Class 

Duration 
adjusted-by 
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is-followed-by 
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Time 

Pitch has-pitch Note 
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Dynamic articulated-as 
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3.4.3 Additional Parameters required to specify adornments 

The main adornment class, and its subclasses specify the type of technique being adorned 

to the note. There are however parameters which both relate to classes, or are properties 

of the adornment class/subclasses. The comprehensive list of these parameters, values  

and scope is provided within the Bass Guitar Performance Ontology class definitions in 

Appendix A.1. Here though a summary, including relevant axioms of the main properties 

and parameters is provided. 

When playing a bass guitar, most if not all performance techniques manipulate the 

instruments strings in some way. A bass guitar has multiple strings (commonly four)  

which are referred to by both number and the pitch they are tuned to. Thus, a set of all 

possible strings, S, is defined, whose members are pairs: 

(string number, string tuning). 

A  set  of  string  sets,  
→−
S  is  defined  as  a  sequence  of  strings,  with  each  string  number 

corresponding to the string’s index within the string set. For example str1 corresponds to 

the  first  string  in  string  set  str ∈ 
→−
S ,  and  has  string number = 1,  str2 corresponds  to  the 

second string and string number = 2 etc. A four string bass guitar’s standard tuning is 

described using a string set as follows: 

 

sstandard = {s1 = (1, 43), s2 = (1, 38), s3 = (3, 33), s4 = (4, 28)} (3.1) 

where sstandard ∈ 
→−
S  and the string numbering traditionally starts with the higher pitched 

strings, tuning values are specified with MIDI note pitches. 

For  bi = (ni, Ai),  bi ∈ b,  b ∈ 
−
N
→
B  and  stri = (i, string tuning),  the  following  axioms  are 

applied that define the relationships between strings, notes and frets: 

• ni is-played-on-string stri. 

• ni is-fretted-at f . 

• An open string a special case of f = 0. 

• pi is the pitch of ni. 

• Where Modification = None and Modulation = None, string tuning + f = pi. 

Which is to say, for a note to be played, it needs to be played on a string, and fretted at a 

fret. Open strings, which do not have a fret, as defined by specifying the fret as fret zero. 
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The pitch of a note (when not adjusted by a modification or modulation) is determined by 

the string tuning and the fret (both specified using MIDI notes). 

When an note is performed, it needs to be played on a string,  and fretted at some  

(fret) location. This information combined with the adornments provided both the how 

and where a musical note is being performed on a bass guitar. Each string and fret position 

is unique and only one note can be played at any location specified in this way at any single 

time instance. Thus ∀bi, bj ∈ b, wherej /= i: 

• ni ∈ bi is-played-on-string strx, 

• nj ∈ bj is-played-on-string stry, 
 

• If onset time of bi equals the onset time  of bj: x y, 
 

• If x = y: the onset time of bi does not equal the onset time of bj, 
 

which is to say no two notes can be played on the same string at the same time and where 

bi ∈ b, bj ∈ b and b ∈ 
−
M
→

.  If these axioms are broken then the performance is performable 

on a physical/real bass guitar. 

 
3.4.4 Adornment Application Restrictions 

The Bass Guitar Performance Ontology has been primarily designed to describe perfor- 

mances that are performable by a single human, on real-world bass guitars. Anatomical 

and physical constraints prevent certain combinations of adornments over certain sequences 

of notes from being applied. The axioms that follow have been formed primarily by fol- 

lowing the notational restrictions imposed within the guitar pro software, in addition to 

relying on practical playing experience.3 

 
3.4.4.1 Open String Adornment Restrictions 

An open string was defined as a special case where the fret number, f , is equal to zero. 

Open strings restrict the techniques that can be played. This includes not being able to 

apply the following adornments: 

• ‘Tapping’, ‘Hammer-on’ and ‘Fretting-hand Slap’ excitation technique as these re- 
quire a physical frets to be performed, 

3These restrictions are imposed if, as is the case within this work, the focus is on humanly performable  
bass guitar performances. Removing some, or all restrictions would allow for super-human bass guitar 
performances, such as those outlined by Collins (2002). 
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• the ‘Slide’ ‘in-from-below’ and ‘out-downward’ modulations, as there are no pitches 

lower than the open string to slide in from or outwards too, 

• the ‘Bend’ modulation, as an only fretted notes can be bent,4 

• the ‘Harmonic’ and ‘Artificial-Harmonic’ modifications, as harmonics require the 

dampening of a harmonic node to be played. 

 
This is summarised with the additional axioms: 

• ni ∈ bi is-excited-by e. 

• e timbre-adjusted-by d. 

• pi is-modulated-by m. 

• if f = 0: 

– e /= Tapping. 

– e /= Hammer-on. 

– e /= Fretting-hand Slap. 

– d /= Harmonic. 

– d /= Artificial-Harmonic. 

– m /= Bend. 

– if m = Slide: 

∗ m has-type in, in /= in-from-above. 

∗ m has-type out, out /= out-downward. 

where bi ∈ b, b ∈ 
−
M
→

. 

3.4.4.2 Pitch Adornment Restrictions 

Only certain pitch values can by played as a harmonic or artificial harmonic.  Harmonics  

are played at fractional lengths along an open string. Artificial harmonics, are played  at  

the same fractional lengths as harmonics, but instead  of being played  on a open string,  

are fractional lengths relative to a fretted note.  The application of the ‘Harmonic’ and 

4Changing the pitch of a open string, via adjustments to the tuning peg, or physically bending the 
instruments neck are considered methods of vibrato, and thus are applicable to an open string. 
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‘Artificial-Harmonic’ modification techniques are therefore limited to only notes whose 

pitches also have a harmonic/artificial harmonic equivalent. 

A set of possible pitches that can be played as a harmonic, Hp  for a given set of strings, 
→−
S , is defined whose members are determined by the possible_natural_harmonic_pitches()5 

function, defined within the implementation of Adorn-o. 

A set of all possible pitches that can be played as an Artificial Harmonic, AHp for a given 

set of strings, 
→−
S , is defined whose members are determined by the possible_artificial_harmonic_pitches 

function, defined within the implementation of Adorn-o. 

The following axioms are applicable to harmonic and artificial harmonics: 

• e timbre-adjusted-by d. 

• pi is-modulated-by m. 

• if pi ∈/ Hp : d /= Harmonic. 

• if pi ∈/ AHp : d /= Artificial Harmonic. 

• if e timbre-adjusted-by Harmonic: 

– e /= Hammer-on. 

– e /= Pull-off. 

– e /= Fretting-hand Slap. 

– m /= Bend. 

– m /= Slide. 

– m /= Trill. 

• if e timbre-adjusted-by Artificial Harmonic: 

– e /= Tapping. 

– e /= Hammer-on. 

– e /= Pull-off. 

– e /= Fretting-hand Slap. 

  –  m /= Trill.  

5This function is defined within: https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/ 

cbr/reuse.py 
6This function is defined within: https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/ 

cbr/reuse.py 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/reuse.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/reuse.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/reuse.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/reuse.py
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3.4.4.3 Inter-note Adornment Restrictions 

Hammer-on and Pull-off excitation techniques can only be applied to proceeding notes 

(they need to have a note played before them). A Hammer-on can only be applied to a  

note, that is played on the same string as the previous note, and the previous note has  

been fretted at a lower numbered fret. A pull-off can only be applied to a note, that is 

played  on the same string as the previous note, and the previous note has been fretted at  

a higher numbered fret. Thus forming the following axioms: 

• bi ∈ b 

• bi+1 ∈ b 

• bi is-followed-by bi+1. 

• ni ∈ bi is-played-on-string str1 ∈ S. 

• ni+1 ∈ bi+1 is-played-on-string str2 ∈ S. 

• ni ∈ bi is-fretted-at f 1. 

• ni+1 ∈ bi+1 is-fretted-at f 2. 

• ni ∈ bi is-excited-by ex1. 

• ni+1 ∈ bi+1 is-excited-by ex2. 

• ex2 /= Hammer-on if: 

– stri /= str2 

– f 1 > f 2 

• e2 /= Pull-of if: 

– str1 /= str2 

– f 1 < f 2 

where b ∈ 
−
M
→

. 

Sliding between notes is also normally restricted to be between notes on the same 

string. However as well as sliding between notes, sometimes slides are just directional and 

do not have a pitch (fret) target. Such slides can be used to cross strings and allow for 

slides between notes on different strings. This means that, when sliding between any two 
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notes on a bass guitar, the slide techniques and trajectories need to actually allow for slides 

between these notes. The revise_slide_shift()7 is defined and implemented within Adorn-o 

which ensures all slides can be performed between any two notes on the bass guitar. The 

axioms relating to slides are encoded within this function. 

 
3.4.5 Modulation Restrictions 

The trill modulation is performed by rapidly alternating between two different notes. As 

shown earlier both harmonics and artificial harmonics cannot be performed with a trill, 

this is further extended to ‘Dead-note’.  Thus meaning that a ‘Trill’  modulation can only    

be performed is the timbral modification is equal to ‘None’. Additionally, ‘Trill’ cannot be 

performed with a single tap, and are usually performed using both hands (‘Two-Handed 

Tapping’). The ‘Dead-note’ timbral modification also imposes further modulation restric- 

tion on slides, in  that a  slide  modulation  cannot be applied  simultaneously  along  with  

a ‘Dead-note’ timbral modification. These restrictions are summarised by the following 

axioms: 

• ni ∈ bi is-excited-by e 

• e timbre-adjusted-by d 

• pi is-modulated-by m 

• if m = ‘Trill’ : 

– d /= ‘Tapping’ 

– d = ‘None’ 

• if d = ‘Dead-note’ : 

– m /= ‘Slide’ 

3.4.6 Grace Notes 

Grace notes (see Section 2.8.2.10) have been included within the Bass Guitar Performance 

Ontology. A grace-note is a new subclass of (adornment ) within the bass guitar per- 

formance ontology, that falls outside of the main taxonomy. A grace note specifies an 

additional note to be played before the note it has been adorned to. It is specified in 

7The implementation of the function is found in: https://github.com/callumgoddard/Adorn-o/blob/ 

main/Adorn_o/cbr/revision.py 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
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relation to the note it has been adorned to and that note’s adornments. The pitch of a  

grace note is defined by the difference between in pitch between it and the pitch of the 

note it is adorned to.  A grace note’s onset-time is determined by  its duration.  A grace  

note cannot have a duration: 

• greater than or equal to the duration of the note it is adornment to, 

• greater than or equal to the duration of the note previous to the one it is adornment 

to. 

These rules are checked using the revise_grace_note_duration()8 function. 

A grace note is always played before the note it has been adorned to,  and can be  

played on the beat, or before it. A grace note does  have  its  own  modifications,  and  

certain transitional techniques may be performed connecting the grace-note to the fully 

adorned note, referred to as grace note transitions. The full specification of the grace note 

class is provided along with the full Bass Guitar Performance Ontology class definitions in 

Appendix A.1. 

 
 
 
 
 
 
 
 
 
 

Figure  3.6:  Grace Note 

 
 

3.4.7 Accounting for Musical Structure 

Musical structure, as more commonly defined through sheet music9 is accounted for through 

the addition of the musical measure: measure and song: song classes to the adornment 

vocabulary. Figure 3.7 summarises the relationships between the (song ), (measure), (note) 

and (adornment ) classes. The measure metadata which contains the: key signature, time 

8The implementation of the function is found in: https://github.com/callumgoddard/Adorn-o/blob/ 

main/Adorn_o/cbr/revision.py 
9https://en.wikipedia.org/wiki/Sheet_music 
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https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
https://en.wikipedia.org/wiki/Sheet_music
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signature, tempo and measure number properties, is also included as is the title of the song 

and composing artist variables. 
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Figure 3.7: The hierarchy relationships of the classes accounting for musical structure. 

 
 

3.4.8 Default Performance 

For a piece of music to be performed,  performance techniques must be applied to make,  

at the very least the musical notes audible. A default performance is when the minimally 

required adornments are applied to a sequence of notes to make it a musical performance. 

For a bass guitar this means that every musical note is adorned with an excitation tech- 

nique, and, a fretting timbral modification (which is removed/ignored if an open string is 

being played). Within Section 8.2.5, this is further defined so that excitation and mod- 

ification techniques are the simplest (following the playing complexity values determined 

within Chapter 6) to perform. This is summarised with the following axioms that define a 

default performance: 

• ∀bi ∈ b: 

– ni ∈ bi is-excited-by e 

– ni ∈ bi is-fretted-at f . 
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– e timbre-adjusted-by d. 

– e = ‘Two Finger Plucking’ 

– 
d = 

‘Fretting’ if  f < 0 

‘Fretting’ otherwise. 

3.4.9 Formal Specification and Implementation 

The Bass Guitar Performance Ontology has been implemented using python, as part of 

Adorn-o. The ontology classes and relationships have been implemented using named 

tuples10 from the collections module. The implementation code containing the class struc- 

tures and relationships implementation can be found at: https://github.com/callumgoddard/ 

Adorn-o/blob/main/Adorn_o/parser/API/datatypes.py. An example performance,  en- 

coded both within the API datatype representation and JSON format is provided in Ap- 

pendix A.2. A specification of the classes is provided in Appendix A.1, and the value 

ranges of each of the properties found within each class are outlined in Appendix A.3. The 

full Adornment Vocabulary of the Bass Guitar Performance Ontology is specified using 

Extended Backus-Naur Form11 in Appendix A.4. 

Within the implementation of Adorn-o presented in Chapter 8, PyGuitarPro12 gui- 

tar pro files parsed into the guitarpro.models.Song data structure are parsed and rep- 

resented using the Bass Guitar Performance Ontology datatypes. Syntax checking for 

the Bass Guitar Performance Ontology is currently implemented as part of the case- 

based reasoning revision step with Adorn-o. The full code for this step can be found 

at:           https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision. 

py, within the revise() function, which returns a wellformed bass guitar performance 

following the Bass Guitar Performance Ontology’s axioms. Figure 3.8 outlines an example 

of how to do this, as well as check, and correct the parsed data to be well formed according 

to the Bass Guitar Performance Ontology’s axioms. 

 
 
 
 
 
 
 
 

 
10https://docs.python.org/3/library/collections.html#collections.namedtuple 
11https://en.wikipedia.org/wiki/Extended_Backus\T1\textendashNaur_form 
12https://pyguitarpro.readthedocs.io/en/stable/# 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/datatypes.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/datatypes.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://en.wikipedia.org/wiki/Extended_Backus%20Naur_form
https://pyguitarpro.readthedocs.io/en/stable/
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import adorn_o 
import g u i ta r p r o 

 
g p 5 _ f i l e  =  ’ g u i ta r _ p r o _ f i l e . gp5 ’ 
gp 5song = g u i ta r p r o . p ars e ( g p 5 _ f i l e ) 
bgpo_ representation = adorn_o . p a r s e r . API . g e t_ f u n cti o n s . get_song_data ( gp 5song ) 

 
Figure 3.8: Code example outlining how to parse a guitar pro file into the Bass Guitar 
Performance Ontology representation. 

 
3.5 Verification 

The Bass Guitar Performance Ontology has been verified to account for all restrictions and 

performance notations that can be encoded within a Guitar Pro 5 (.gp5) file format13. 

 
3.6 Summary 

A musical performance was formalised as the application of adornments (playing techniques 

with strict definitions for how they are to be performed) to a sequence of musical notes. 

This formalisation, and the need for a machine understandable representation of a bass 

guitar performance directed the development of The Bass Guitar Performance Ontology, 

which is a descriptive ontology for bass guitar performances. The Bass Guitar Performance 

Ontology contains a taxonomy of bass guitar techniques and vocabulary, including axioms 

is defined which allow for machine understandable descriptions of bass guitar performances 

to be produced. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

13https://pyguitarpro.readthedocs.io/en/stable/pyguitarpro/format.html#module-guitarpro.gp5 
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Chapter 4 

 

Surveying Online Bass Player 

Communities’ Playing Competencies 

and Views on Virtuosity 

 
4.1 Survey Aims 

The Bass Playing Performance Ontology provides precise technical descriptions of a mu- 

sical bass guitar performance, providing a means for conducting detailed analysis of, and 

inferences over performances. Within the context of this thesis, the focus of these in- 

ferences is virtuosity. Following Howard (2008), such inferences would need to be done 

through navigation of the “terrain of virtuosity”, and cover the areas of the domain of the 

instrument, the audience of the performance and the performer of the performance. The 

Bass Playing Performance Ontology, covers much of the technical aspects relating to the 

domain of bass playing, and the perspectives of the audience are largely considered within 

Chapter 9 when testing the output Adorn-o. The perspectives on repertoire, playing con- 

ventions and performance from the performers themselves are however lacking.  A survey  

of online bass playing communities was conducted to aid in gathering information relating 

to these areas. 

The survey’s respondents were all musicians who played the bass guitar, aka bass 

players. Questions asked each bass player about their background and playing experience 

as well as their: playing competencies; perspectives and opinions on hard bass lines; their 

associations and views of virtuosity. The aims of the survey were as follows: 

• To collect bass playing competence data that can be used in the development of a 
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bass guitar playing complexity model. 

• To outline the main themes bass players associate with virtuosity on the bass guitar. 

• To identify bass players who are considered, by other bass players, to be virtuosos. 
 

The objectives of the survey were as follows: 

 

• Ask bass players about their playing experience on bass guitar. 

• Ask bass players how competent they are at performing each bass guitar, and music 
performance technique described in the Bass Guitar Performance Ontology. 

• Ask if any techniques or musical elements were missing from the questions, and 
therefore missing from the Bass Guitar Performance Ontology. 

• Ask bass players what they consider to be the hardest Bassline or lines to play. 

• Ask bass players what they associate with virtuosity. 

• Ask bass players who they consider to be virtuosos and who their favourite players 

are. 

 
4.2 Methodology 

The survey was conducted in May-June 2016 using Google Forms. It was distributed by 

email, posted to the UK bass forum: http//:www.basschat.co.uk and the bass guitar 

subreddit: http//:www.reddit.com/r/bass, shared to several bass guitar related groups  

on the social network site Facebook, as well as directly to some professional bass players, 

who in turn helped to share the survey. It was run between 11/5/2016 and 6/6/2016, a 

period of 26 days, and was open towards anybody over the age of 16 that could play the 

bass guitar. 

 
4.2.1 Survey Questions 

The survey itself had 11 sections including the research information and informed con- 

sent questions. The demographics questions asked were used to ascertain a respondents 

knowledge of and experience with the instrument. competence questions were used as a 

self-reported assessment of a respondents technical playing ability. The combination of 

experience and technical playing ability has been used in Section ?? to infer the playing 

http://www.basschat.co.uk/
http://www.reddit.com/r/bass


101  

 

complexity of the different aspects of bass guitar playing. Given the focus of this survey 

was on technical ability, experience and knowledge of an instrument, metrics such as the 

Goldsmiths Musical Sophistication Index Müllensiefen et al. (2014) would not sufficiently 

capture this information and thus were not used. 

Respondents were first asked basic demographic information questions followed by ques- 

tions relating to how long they had played bass for, practise schedules, how they would 

describe their playing, what genres they play more, what they think are their playing 

achievements are, what qualifications they had and if they had or have regular lessons.  If  

a respondent previously had lessons they were then asked further details relating to how 

long they had lessons for, the type of lessons, what they learnt and if they used any addi- 

tional learning resources. If they had not had lessons it was assumed the respondent was 

self-taught and they were asked what resources they used to learn the instrument. If the 

respondent indicated they were a teacher, they were asked how long they had been teach- 

ing for, total number of students, weekly teaching hours and asked what levels of students 

they taught. These questions were asked to ascertain the overall playing experience of 

participants and musical contexts where this experiences was gained from/applied to. 

After the demographic, playing background, bass education and teaching experience in- 

formation questions were asked, respondents were presented with a series of sections where 

they were asked to indicate their competence in a multitude of aspects of bass playing.   

For each aspect respondents were asked to indicate their competence level according to the 

following five point competence scale: 

None: The respondent could not or did not know how to perform what was being asked  

in the question. 

Low: The respondent had started learning what was being asked in the question, or were 

able to play it only as part of a practice exercise or similar. 

Moderate: The respondent could perform what was being asked within some musical 

contexts. 

High: The respondent could perform what was being asked well in most musical contexts, 

but there are some cases where they could not. 

Complete: - The respondent could perform what was being asked in any musical context 

that required it. 

An additional ‘Unsure’ response was added to the question when asking respondents 

to indicate their competence in applying specific musical terminologies. This was to allow 
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the respondent to indicate that their uncertainty of what was being asked. The collection  

of this data fulfilled the first aim of the study. 

The bass playing aspects which the survey focused on were based on the techniques 

described in the Bass Guitar Performance Ontology (Section 3.4. The aspects were broken 

down into the following categories: 

• Techniques - all excitation and modification techniques outlined in the The Bass 
Guitar Performance Ontology. 

• Dynamics - Very soft to very loud plus crescendos and diminuendos 

• Articulations - accenting, staccato, tenuto, legato and playing the notes without 
articulation 

• Expressive Techniques - all modulation techniques in the The Bass Guitar Perfor- 
mance Ontology. 

• Pitch Intervals - ranging from a unison interval to 21 semitones1 

• Shifting distance - ranging from a distance of a single fret to 12+ frets 

• Playing in certain Fretboard Areas - the neck was divided evenly into areas spanning 
five frets starting at the open string. 

• Playing Speed - playing to a click track ranging in tempo from 36 to 300 clicks per 

minute at intervals of approximately 10% speed increase. Audio click tracks were 

presented to respondents. 

• Key Signatures - All 12 major and minor keys. 

• Time Signatures - 11 time signatures were selected ranging from regular to irregular. 
 

For each category respondents were asked to indicate their competence level for all  

the aspects within the category, after which they were also asked to indicate or suggest 

anything that might have been missed out. 

The click rates for the Playing Speed category were selected so that the intervals be- 

tween the the presented rates was based upon the just-noticable difference measure, along 

with timing perception information from Momeni (2012); London (2004). Click rates were 

calculated for each 10ms increment in click interval for interval durations between 120ms 

1This is the reasonable range of intervals playable without shifting on a 4 string bass guitar. 
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and 240ms, as the just-noticable different in tempo changes within this click interval du- 

ration is 10ms (Momeni, 2012; London, 2004). Click rates generated for the click intervals 

ranging from 240ms up to 3512ms, were created at 5% increments, which is the just- 

noticable difference for these intervals (Momeni, 2012; London, 2004). This gave a range  

of click track speeds that ranged from 17 to 500 clicks per minute. The final selection of 

click rates used for the study were taken from this generated range of click tracks. From 

the set of click tracks produced, a set of 23 tempos was selected that covered the range of 

35 to 300 beats per minute. These selected click tracks were spaced throughout the tempo 

range so that any tempo within this range would have a click track that was within its just-

noticable threshold. This was to allow tempo competencies to be inferred for non- rated 

tempos, by using the competencies from the closest rated one, as there would be no 

noticeable difference between the two. 

The last section of the survey asked respondents what they considered to be the most 

challenging or difficult Bassline to play, if they had a favourite bassist, who were they and 

why, what they associated with the terms virtuoso and virtuosity and if there were any 

bass players they would describe as being a virtuoso. The collection of this data fulfilled 

the second and third aims of the study. 

 
4.2.2 Population 

There was a total of N(503) respondents, of these n(3) were duplicate responses, and n(2) 

people did not consent to participate. Duplicate and incomplete responses were removed 

leaving a total of N(498) responses. There were n(476) male, n(16) female and n(6) who 

preferred to not disclose their gender. 

The mean age  of  respondents  was  32.75  years  (s.d.  =  13.47).  The  mean  number 

of years respondents had played bass for was 13.63 years (s.d. = 13.10). Respondents’ 

practice/playing sessions lasted on average 108.95 minutes (s.d = 75.34). 

The most common bass guitar played by respondents was 4 String (Fretted), which 

n(407) respondents played. An overview of the basses played and number of respondents 

that played them is shown in Figure 4.1. The majority of respondents also practiced 

regularly, with n(190) practicing daily and n(461) practicing at least once a week. The full 

practice regularity of respondents is shown in Figure 4.2. 
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Figure 4.3: Bar Chart of the most played genres and number of respondents that play them. 

 
There were 91 genres that respondents said they most commonly or primarily played. The genre that respondents most 

commonly or primarily played was rock with n(319) respondents indicating this was the genre they played most. Second was 

jazz which was played by n(154) respondents. Third was funk which was played by n(114) respondents. Fourth was metal 

which was played by n(86) respondents and fifth was pop which was played by n(85) respondents. A bar chart of the genres 

and number of respondents that played each is shown in Figure 4.3. 

There were n(185) respondents who previous had, or were currently having regular bass lessons. The mean number of 

years respondents had had lessons for was 2.92 years (s.d. = 2.51). The most common type of lesson respondents had was 

private.  The full list of the type of lessons respondents had is shown in Figure 4.5.  In addition to lessons, respondents used     

a variety of other sources for learning the instrument. These are shown in Figure 4.4. 

There were n(96) respondents who were teachers with a mean teaching experience of 35 years (s.d. = 3.10). The mean 

number of students that were taught was 43.3 (s.d. = 148). The level of experience of the students they taught ranged from 

beginners through to experts. 

There were n(181) respondents who had a bass guitar or musical theory related qualification, the highest qualification 

held by respondents were a a PhD n(1) or masters degree n(12). The lowest bass related music qualification was Grade 1  

Bass Guitar n(22), and the most common qualification was a Bachelor Degree or equivalent n(57). The full breakdown of 

qualifications is provided within the Appendix in Table B.1. 
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Overall respondents presented a broad range and largely diverse range of bass playing 

experience. This provides a level of confidence in considering the collected competencies 

to be competencies of general bass playing, and not of specific genres, playing contexts or 

specific educational backgrounds. 

However, there is a clear gender imbalance, with only 3.4% or respondents identifying 

as female. This would indicate that within the communities surveyed there is a significantly 

larger proportion of male bass players, compared to female bass players who engaged with 

this study. It is unclear from the responses if the survey itself dissuaded female bass players 

from responding or more likely, that there is an extreme underrepresentation of female bass 

players within the online bass communities targeted by the survey, or a combination of both 

these factors. It is also unclear if this lack of female representation is a trend within the 

larger bass playing community. The work of Sergeant and Himonides (2019) would suggest 

that it is, as although they have  focused on orchestral instruments,  there is an 80% to  

20% ratio of male to female double bass players participating within orchestras. This 

gender imbalance is also prevalent within popular music,  and the music industry2  which  

is argued to stem from historical and cultural reasons that have actively prevent women’s 

participation within music (Sergeant and Himonides, 2019). This evidence would suggest 

theres factor are likely contributing to wider representation issues, and that whilst viewed 

as extremely important to address, the means and methods of doing so unfortunately lay 

beyond the scope of this work. 

From a data collection perspective, there are concerns raised over drawing conclusions 

representative of both genders, when the data collected has been collected from such a 

predominant male participant pool. There are two aspects which could be effected, the 

first is any gendering or gender bias that male performers or listeners may impart on the 

music, the second is if gender is a factor when considering self reported playing ability, or 

in the case of this study, competence. 

Work specifically investigating how gender and gendering may be present within music 

have found that musical structures (Sergeant and Himonides, 2014, 2016) are not inherently 

gendered, nor that an individual performer imparts their own "own-sex-specific qualities to 

the music" (Sergeant and Himonides, 2014). If any gendering does occur it is contributed 

subjectively by the listener of the music, with tempo of the music primarily relating to 

these judgements (Sergeant and Himonides, 2014, 2016). This therefore does not present 

a concern for this study and the gender imbalance of participants. 

Investigations into fine motor skills of preschool children, do indicate that gender dif- 

ferences may exist with boys having better manipulative skills, and girls having better 

2https://assets.uscannenberg.org/docs/aii-inclusion-recording-studio-20200117.pdf 

https://assets.uscannenberg.org/docs/aii-inclusion-recording-studio-20200117.pdf
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balance and locomotor skills (Iivonen and Sääkslahti, 2014). However, when comparing 

musical aptitude and gross motor skills no significant differences have been found (Polla- 

tou et al., 2005), although specific rhythmic differences may be present as Pollatou et al. 

(2005) found that girls performed between in four out of six rhythmic ability tests. This 

therefore suggest that more generally that the gender imbalance within the responses may 

only effect competencies relating to tempo, and/or time signatures, with no other aspects 

of playing effected due to the gender of performer. 

There is however evidence of gender being a factor when considering perceived compe- 

tence within conservatory musicians where the “perceived competence was marginally lower 

among women conservatoire students than among men” (Valenzuela et al., 2020, pp.15). 

Given this study is based upon reported competence levels, this does require investigation 

to determine if female respondents competence levels differ significantly from male partici- 

pants. Therefore, additional one-way analysis of variance (ANOVA) has been conducted on 

each reported competence to determine if gender as a factor causes a significant difference 

in the reported playing competencies. 

Further more, the qualitative aspects of the survey will be separated by gender. These 

aspects relate the to hardest basslines, ideas of virtuosity and virtuosos. As whilst there 

may be a significantly smaller number of female players and those who indicated they 

preferred to not disclose there gender, their perspectives and views are equally valid and 

should not be overshadowed by the vastly greater number of male responses. 

 
4.2.3 Data Analysis Methods 

The analysis of the survey can be broken down into the following parts: 

1. Processing respondents’ playing background information. 

2. Determining a measure of respondents’ playing experience. 

3. Thematic Analysis. 

4. One-way ANOVA analysis comparing gender as a factor between reported compe- 

tence levels. 

5. Comparing the skew of reported competence level information to determine its suit- 

ability for use to inferring the complexity of bass guitar playing techniques. 

6. Correlating the reported competence level information to total playing time to de- 

termine its suitability for use to inferring the complexity of bass guitar playing tech- 

niques. 
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7. Tallying up virtuoso suggestions. 

8. Tallying up hard Bassline suggestions. 

 
4.2.3.1 Processing respondents’ playing background information 

The spreadsheet of answers was exported from Google Forms as a CSV file and the data 

processed and analysed using a  combination  of  Python,3  Pandas,4  and  R.5  The analysis 

of respondents’ playing background information was completed first by using python to 

clean up the data,  and as part of the thematic analysis to aggregate codes into themes    

and correct typos within the data. R was used to generate summary statistics and graphs, 

which are presented in section 4.2.2, testing the correlations between measures of playing 

experience and for statistical testing and analysis of the competence levels. 

 
4.2.3.2 Determining a measure of respondents’ playing experience 

Respondents’ playing experience was calculated based upon their playing background in- 

formation. A measure of a respondents’ playing experience was required as, the following 

assumptions have been made about the playing complexity of playing or executing some- 

thing on the bass guitar: 

1. Someone who has been playing longer, and also done more learning is more experi- 

enced. 

2. Techniques or musical things that only have high competence levels reported by more 

experienced respondents are more complex. 

The measure of a respondent’s playing experience was set using the total playing time 

they had with the instrument. This is calculated using Equation 4.1. 

 

Total  Playing Time(Playing Years ∗ Practice  Session Minutes  ∗ Rate)/60 (4.1) 

Where Playing Years is the number of years a respondent has been playing bass, Prac- 

tice Session Minutes is the number of minutes a respondent spent in a typical practise or 

playing session, Rate is a value which was selected based upon how often a respondent 

3https://www.python.org/ 
4http://pandas.pydata.org/ 
5https://www.r-project.org/ 

https://www.python.org/
http://pandas.pydata.org/
https://www.r-project.org/
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played/practised and is shown in Table 4.1. The constant 60 is used to convert the total 

playing time from minutes to hours. 

Table 4.1: Table showing the Rate values for total playing time calculation 
 

Practice Schedule Rate 

Daily 365 

2-3 times a week 2.5 ∗ 365 

4-5 times a week 4.5 ∗ 365 

Once a week 365 

 

2-3 times a month 12 ∗ 2.5 

Monthly 12 

Less than once a month 6 

Unclear 2 

Never 1 

 
To test the suitability of total playing time as an experience measure, Kendall’s Tau-b 

Distance6 was calculated between it and the following measures of experience: 

• The number of years a respondent had lessons for was treated as an experience 
measure. 

• The highest qualification held (ordered based upon the Regulated Qualifications 
Framework (RQF) and Framework for Higher Education Qualification (FHEQ)) 

• Teaching experience which included: the number of years teaching, number of stu- 
dents, highest student level and weekly teaching hours. 

 
Each of these measures of experience were correlated with the total playing hours. 

Experience measures with a strong correlation to the total playing hours could then be 

discarded as their effect would be accounted for in the total playing hours experience 

measure. It was hypothesised that all measures of experience would strongly correlate 

with the total playing hours. 

6https://en.wikipedia.org/wiki/Kendall_tau_distance 

https://en.wikipedia.org/wiki/Kendall_tau_distance
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4.2.3.3 Thematic Analysis 

Thematic analysis, as outlined by Braun and Clarke (2006) was selected as the main method 

to analyses the qualitative data collected by the survey. This is a reflexive method of 

thematic analysis used “for identifying, analysing, and reporting patterns (themes) within 

data.”(Braun and Clarke, 2006, pp.6). Braun and Clarke (2006) outline six phases to a 

thematic treatment (analysis) of a dataset, these are: 

Phase 1: data familiarisation through reading. 

Phase 2: initial code generation based upon the semantic content of the data. 

Phase 3: codes are grouped together into themes. 

Phase 4: themes are reviewed. 

Phase 5: themes are defined and named. 

Phase 6: themes are reported. 

 
Themes, within the context of this work, capture patterned comments and responses 

towards virtuosity and virtuosos in answer to open ended questions relating to what respon- 

dents associate with virtuosity and and calling someone a virtuoso. Due to the subject 

nature of virtuosity, all size of themes were considered to be valid within the analysis. 

Codes were formed from the semantic (explicit level) understanding of participants re- 

sponses, and themes were formed from these codes through an inductive approach. This 

meant the themes determined were formed from the data, and thus strongly linked to it. 

Within thematic analysis it is not uncommon to perform multiple passes over the data at 

each phase, or multiple phases. Each pass performed is intended to refine the codes/themes 

being identified within the data. 

A mixture of Google Sheets and Python scripts were used to aid in the treatment of     

all data sets. All initial coding was done with a Google  Sheets  spreadsheet.  Multiple 

coding passes were made for each question. In the first pass the answers were given initial 

codes, during the subsequent passes the codes were refined and consolidated. Further 

refinement of the code mapping was done in python where the spelling of codes were 

corrected, keywords or phrases further consolidated and codes with the same semantic 

meanings combined. Codes where then assigned themes. The number of respondents 

indicating a code is reported for the total number of respondents as well for individual 

genders. 
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4.2.3.4 One-way ANOVA analysis comparing gender as a factor between re- 

ported competence levels. 

A one-way Analysis of Variance (ANOVA) test was conducted with gender as a factor 

between respondents competence levels for each musical competence question asked. This 

was conducted to test if the reported competencies between male and female respondents 

were considered to be from different sample sets, and thus significantly different.  This  

has been conducted following the evidence presented by (Valenzuela et al., 2020), where 

reported competencies of female music conservatory students where found to be reported 

slightly lower than their male counter parts. 

 
4.2.3.5 Comparing the skews of reported competence level information 

Skewness is a measure of asymmetry within a distribution. It is hypothesised that easier 

techniques will have competence ratings skewed towards “Complete” (negative skew), whilst 

harder techniques would be skewed towards “None” or “Low” (positive skew). When ordered 

by skew, the competence ratings within each category should provide an ordering. This is 

taken as an indication that some measure of playing difficulty is implicit and thus can be 

inferred from the competence ratings.7 

 
4.2.3.6 Correlating the reported competence level information to total playing 

time 

The more experienced someone is, usually the more competent they become. Also the more 

difficult or harder something is to play, the more experience required to become competent 

at the activity. The latter aspect is addressed in Chapter 6, the former is tested, to ensure 

the property holds true by testing the correlation between reported competence and the 

measure of total playing experience. Pearson’s Correlation Coefficient has been used to test 

if there is a linear relationship between reported competence and total playing experience. 

Spearman’s Rank Correlation Coefficient has been used to test if there is a monotonic re- 

lationship between reported competence and total playing experience. A degree of positive 

correlation, as determined by both correlation coefficients between reported competence 

and total playing experience is taken as indicative of this relationship holding true. 

7Kurtosis was not needed to be compated as the competence ratings were limited to a five point Likert  
scale response, where no outliers were possible. 
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4.3 Results 

4.3.1 Respondents’ Playing Experience 

The comparison of respondent’s playing experiences have not included a separate gender 

comparison,  as previously identified in Section 4.2.2,  gender has not been found to ef-  

fect musical aptitudes and playing abilities. Also educational programs, institutions and 

curriculum are not segregated by gender, neither are teachers. 

The teaching experience measures were all cross correlated with each other using 

Kendall’s Tau-b test which is  suitable  for  ordinal  data.  The  results  are  shown  in  Ta- 

ble 4.2 where all correlation values are above 0.85 (with a value of 1 indicating perfect 

correlation) indicating that all the teaching experience measures are very highly correlated 

with each other. Thus, the number of years a respondent had been teaching was chosen as 

the single main experience measure to represent teaching experience. 

Table 4.2: Table of Kendall’s Tau-b Correlations between teaching factors 
 

 teaching.time no.students weekly.teaching.hours student.level 
teaching.time 1.00 0.95 0.85 0.95 

no.students 0.95 1.00 0.88 0.96 
weekly.teaching.hours 0.85 0.88 1.00 0.89 

student.level 0.95 0.96 0.89 1.00 

 
The Kendall’s τ correlation between the total playing hours and years a respondent has 

lessons for was 0.246 (p <0.001) which rejects the null hypothesis that the two values are 

not correlated. The Kendall’s τ correlation between total playing hours and highest music 

qualification a respondent had was 0.184, (p <0.001) which rejects the null hypothesis 

that the two values are not correlated. The Kendall’s τ correlation between total playing 

hours and number of years a respondent had been teaching for was 0.251, (p <0.001) which 

rejects the null hypothesis that the two values are not correlated. These findings support 

the hypothesis that all measures of playing experience correlate with the total playing 

hours. This, therefore allows for the total playing hours to be useable as a measure of each 

respondent’s playing experience. 

The distribution of the total playing time experience measure was tested, to determine 

the type of distribution.The density plot, histogram and the q-q normal plot of the total 

playing time are shown in Figures 4.6, 4.7 and 4.8 respectively. The distribution has a 

positive skewness of 3.32 and a kurtosis of 16.50,  which indicates that the distribution    

is quite distorted from a normal distribution. This is supported by the Shaprio-Wilk 

normality test where w = 0.604 (p =0.604) indicating that the distribution significantly 
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deviates from a normal distribution. 

From visual inspection of the distribution plots, the data appears to follow a log-normal 

distribution. This is evidenced by the plots of the log transformation of the total playing 

time, shown in Figures 4.9, 4.10 and 4.11. These indicate that after performing a log 

tranform the data does tend to a normal distribution. Following this transformation the 

skew became slightly negative with a value of of −0.350 and a kurtosis of 2.933. The 

Shaprio-Wilk normality test, whilst still not high enough to confirm the null hypothesis 

that the data is normally distributed w = 0.990 (p =0.990), suggests that the data does 

tend to a normal distribution once log transformed. 

Although when log transformed, the measure of total playing time tends to a normal 

distribution, due to the slightly negative skew present in the log transform, the appropriate 

non-parametric statistical test will be used when required. The median will also be used  

as a measure of the average to prevent the mean misrepresenting the information, again, 

due to the slightly negatively skew in the log transformed data. 
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Figure 4.6: Distribution plot for Total Playing Time 
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Histogram with Normal Curve of Total Playing 
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Figure 4.7:  Histogram plot for Total Playing Time 
 
 
 
 
 
 

 
Normal Q−Q Plot of Total Playing Time 
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Figure 4.8: Q-Q Normal plot for Total Playing Time 
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Density Plot of Log Total Playing Time 
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Figure 4.9: Distribution plot for Total Playing Time 
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Figure 4.10: Histogram plot for Total Playing Time 
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Normal Q−Q Plot of Log Total Playing Time 
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Figure 4.11: Q-Q Normal plot for Total Playing Time 

 
An overview of the  total  playing  time  per  disclosed  gender  is  shown  in  Table 4.3. 

A Wilcoxon rank sum test with continuity correction was conducted between Male and 

Female total playing times. It was found that the alternative hypothesis was true (p = 

0.079 <0.05), indicating that there are significant differences between the male and female 

total playing times. It can be seen that female respondents have a greater range of playing 

experience, but that overall, female respondents had a lower amount of playing experience 

compared to the male respondents. 

Table 4.3: Total Playing Time 
 

Gender Min. 1st Qu. Median 3rd Qu. Max. 
 

Male 0 39420 125100 350400 1319000 
Female 2700 20800 60220 147800 2069000 
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4.3.2 Thematic Coding and Analysis of Qualitative Data 

There were a total of 144 codes from the thematic analysis of the question: “What do you 

associate with the term virtuosity and calling someone a virtuoso?”. The themes that were 

constructed out of these codes can be found in Table 4.4. 

Table 4.4: Table of themes and their codes. The Total Participants, Male Participants, 
Female Participants and Undisclosed Gendered Participants responses coded are indicated 
within the brackets. 

 

Theme Code 
 

Technical  (211,  201, 8, 2) accuracy (15, 14, 1, 0) 

consistent (4, 4, 0, 0) 

control (12, 12, 0,  0) 

dexterity (3, 3, 0, 0) 

intentional.playing (1, 1, 0, 0) 

not.technical (1, 1, 0, 0) 

perfection (20, 20, 0, 0) 

purposeful (1, 1, 0, 0) 

skill (37, 33, 3, 1) 

technical (74, 71, 2, 1) 

technique (38, 36, 2, 0) 

technique.over.musicianship (4, 4, 0, 0) 

technique.over.taste (1, 1, 0, 0) 

Ability (174, 166, 5, 3) ability (11, 9, 1, 1) 

ability.to.play.anything (41, 40, 1, 0) 

able.to.play.at.a.high.level.with.little.guidance.or.practice (2, 2, 0, 0) 

can.do.things.no.one.else.can (12, 11, 1, 0) 

competent (17, 17, 0, 0) 

fast.learner (8, 8, 0, 0) 

good.ear (4, 4, 0, 0) 

incredibly.adept (1, 1, 0, 0) 

limitless (2, 2, 0, 0) 

natural (37, 34, 2, 1) 

proficiency (13, 13, 0, 0) 

talented (26, 25, 0, 1) 

Mastery (118, 114,  2, 2) accessable (1, 1, 0,  0) 

efficient (1, 1, 0, 0) 

effortless (12, 12, 0, 0) 

fluency (10, 10, 0, 0) 

makes.hard.parts.seem.easy (8, 7, 0, 1) 

mastery (73, 71, 2, 0) 

play.with.ease (5, 5, 0,  0) 

practiced.a.lot (4, 4, 0, 0) 

smooth.playing (4, 3, 0, 1) 

Musicianship (80, 79, 1, 0) appropriate (2, 2, 0, 0) 

can.fullfil.all.musical.roles.simultaneously (1, 1, 0, 0) 

doesn.t.over.playing (1, 1, 0, 0) 
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Table 4.4 continued from previous page 

Theme Code 
 

interpretation (6, 6, 0, 0) 

multi.instrumentalist (1, 1, 0, 0) 

musical (21, 21, 0, 0) 

musical.awareness (8, 8, 0, 0) 

musicality.over.technique (2, 2, 0, 0) 

musicianship (8, 7, 1, 0) 

not.a.good.musician (1, 1, 0, 0) 

not.always.tasteful.musical.choices (1, 1, 0, 0) 

respects.the.music (18, 18, 0, 0) 

tasteful.playing (10, 10, 0, 0) 

Personal Characteristics (68, 67,  0, 1) adaptable (12, 12, 0, 0) 

amazing (1, 1, 0, 0) 

attractive (1, 1, 0, 0) 

authenticity (2, 2, 0, 0) 

dedicated (12, 12, 0,  0) 

moral.individual (1, 0, 0, 1) 

passionate (2, 2, 0, 0) 

patience (1, 1, 0, 0) 

sophisticated (1, 1, 0,  0) 

transcendent (2, 2, 0, 0) 

versatile (30, 30, 0, 0) 

willing.to.learn (1, 1, 0, 0) 

willingness.to.teach (1, 1, 0, 0) 

younger.people (1, 1, 0, 0) 

Knowledge and Understanding (57, 54, 2, 1) expertise (1, 1, 0, 0) 

instrument.knowledge (1, 1, 0, 0) 

knowledge (11, 10, 1, 0) 

musical.knowledge (12, 12, 0, 0) 

musical.understanding (11, 10, 1, 0) 

playing.is.only.understood. 

by.accomplished.musicians (1, 1, 0, 0) 

understanding (15, 15, 0, 0) 

understanding.of.the.instrument (5, 4, 0, 1) 

Creative and Inventive  (50, 48, 2, 0) artist (2, 2, 0, 0) 

creative (8, 8, 0, 0) 

creative.note.choices (2, 2, 0, 0) 

innovate (11, 10, 1,  0) 

interesting (1, 1, 0,  0) 

not.same.as.creative (1, 1, 0, 0) 

originality (2, 2, 0, 0) 

pushes.boundaries (12, 12, 0, 0) 

re.invents.the.instrument (4, 4, 0, 0) 

writing.ability (7, 6, 1, 0) 

Rhythm and Tempo  (48, 43,  5, 0) feel (8, 8, 0, 0) 

groove (6, 4, 2, 0) 

lacking.feel (4, 4, 0, 0) 
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Table 4.4 continued from previous page 

Theme Code 
 

sense.of.rhythm (2, 2, 0, 0) 

speed (27, 24, 3, 0) 

speed.over.musicality (1, 1, 0, 0) 

Accomplishment (43, 43, 0, 0) accomplishment (5, 5, 0,  0) 

being.the.best (17, 17, 0, 0) 

exceptional (17, 17, 0, 0) 

good.player (3, 3, 0, 0) 

stand.out.from.others (1, 1, 0, 0) 

Performance (40, 38,  1, 1) ensemble.player (1, 1, 0, 0) 

great.tone (2, 2, 0, 0) 

improvisation (8, 7, 1, 0) 

make.instrument.sing (1, 1, 0, 0) 

overplaying (1, 1, 0, 0) 

performance (8, 7, 0, 1) 

playing.too.well (1, 1, 0, 0) 

soloing (13, 13, 0, 0) 

successful.playing.music (5, 5, 0, 0) 

Expression (38, 38,  0, 0) communicates.emotion. 

and.expression.through.their.playing (12, 12, 0, 0) 

emotional.depth (3, 3, 0, 0) 

expressive (23, 23, 0, 0) 

Negativity (31, 30,  1, 0) avoidance (1, 1, 0, 0) 

elitist (1, 1, 0, 0) 

insulting.termonology (4, 4, 0, 0) 

overrated (1, 1, 0, 0) 

overused (2, 2, 0, 0) 

pretentiousness (2, 2, 0, 0) 

role.of.bass.not.suited.for.virtuosity (4, 4, 0, 0) 

selfserving (5, 5, 0, 0) 

unappealing (1, 1, 0, 0) 

uninteresting (5, 4, 1, 0) 

unlistenable (2, 2, 0, 0) 

unmusical (1, 1, 0, 0) 

unnecessary (1, 1, 0, 0) 

very.little (1, 1, 0, 0) 

Nothing (30, 28,  2, 0) don.t.know (17, 16, 1, 0) 

nothing (13, 12, 1, 0) 

Unique (22, 22,  0, 0) recognisable (1, 1, 0, 0) 

unique (12, 12, 0, 0) 

unique.voice (9, 9, 0, 0) 

Named Bass Players (20, 16,  3, 1) jaco.pastorius (6, 5, 1, 0) 

james.jamerson (1, 1, 0, 0) 

les.claypool (1, 1, 0, 0) 

marcus.miller (1, 1, 0,  0) 

robert.trujillo (1, 1, 0, 0) 
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Table 4.4 continued from previous page 

Theme Code 
 

stanley.clarke (2, 1, 1,  0) 

victor.wooten (8, 6, 1,  1) 

Type of Music (18, 14, 4, 0) complex.music (13, 11, 2, 0) 

heavy.metal (1, 0, 1, 0) 

requires.high.quality.music (1, 1, 0, 0) 

style (3, 2, 1, 0) 

Audience Perception (18, 18,  0, 0) admiration (1, 1, 0, 0) 

awesome (3, 3, 0, 0) 

engaging.for.the.listener (7, 7, 0, 0) 

impressive (1, 1, 0, 0) 

improve.the.sound.of.the.music (4, 4, 0, 0) 

inspirational (2, 2, 0, 0) 

Classical Associations (7, 6,  1, 0) classical.composers (1, 1, 0, 0) 

classical.music (1, 1, 0, 0) 

emulation.of.a.classical.guitar.style (1, 1, 0, 0) 

mozart (2, 2, 0, 0) 

playing.vivaldi.bach.on.bass (1, 0, 1, 0) 

vivaldi (1, 1, 0, 0) 

 

4.3.3 Investigating gender as a factor between reported competence 

levels. 

A Kruskal-Wallis one-way analysis of variance was conducted to compare the reported 

competence levels (the ordinal dependent variable) between male and female respondents 

(the independent variable). First the competence ratings were converted to numeric factors 

where: “None” = 1, “Low” = 2, “Moderate” = 3, “High” = 4 and “Complete” = 5. All  

“Unsure”  responses were excluded from the analysis.  The kruskal.test from the stats   

R library was used to perform the statistical test using the numeric factors.  The  full 

results for each competence question ask are provided within the Appendix in Table B.15. 

Where significance was found, this indicated that the reported competencies for male and 

female respondents are considered to come from different sample populations, and thus are 

different. 

There were significance differences found between the self-reported competencies for 

the following playing techniques and expressive techniques: ‘Thumb Pluck’ (p = 0.042 

<0.05), ’Using a Pick’ (p = 0.007 <0.01), ‘Palm Muting - Using a Pick’ (p = 0.018 <0.05), 

’Two Handed Tapping’ (p = 0.016 <0.05), ‘Artificial Harmonic’ (p = 0.016 <0.05) and 

‘Slide’ (p = 0.022 <0.05). 
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There were no significant differences found between male and female reported compe- 

tencies for dynamics, accents, intervals, shift distance and key signature musical elements. 

There were however significant differences found between playing ‘Between 12th and 17th’ 

(p = 0.003 <0.01) and ‘18th fret and beyond’ (p = 0.005 <0.01); playing speed competen- 

cies for:  300 (p = 0.002 <0.01), 272 (p = 0.002 <0.01), 250 (p = 0.004 <0.01), 227 (p = 

0.001 <0.01), 206 (p = 0.012 <0.05), 187 (p = 0.004 <0.01) and 153 (p = 0.027 <0.05); 

and for playing in time signature: ‘12/16‘ (p = 0.037 <0.05). 

 
4.3.4 Investigating Technique Competencies 

In total, respondents provided a competence ratings for 137 different elements relating to 

bass playing. Bar plots of the reported competencies, grouped by each question section  

are provided within the Appendix in Figures B.1 to B.17.  Box plots of the total playing  

time of participants for each reported competencies, grouped by each question section are 

provided within the Appendix in Figures B.2 to B.18. 

The skewness of the ratings for each element were calculated from the numeric factors 

with unsure responses removed using the skewness function from the e1071 R library. 

Elements with a strongly negative skew were considered easier than more positively skewed 

ones. Pearson’s r Correlation Coefficient and Spearman’s ρ Rank Correlation Coefficient 

were both calculated between the total playing time or all participants and the numeric 

factors with unsure responses removed using the cor.test from the stats R library. Skew, 

Pearson’s r and Spearman’s ρ, along with the numeric factor median, grouped by each 

question section are provided within the Appendix in Tables B.5 to B.14. 

All elements could be ordered by competence rating skew, indicating that the implicit 

playing difficulty can be inferred from the collected self-reported competencies.  When  

the Pearson’s Correlation Coefficient was calculated between competencies levels and total 

playing time there were significantly positive correlations for the majority of techniques 

and musical elements in all categories except: playing speed, fret area, shift distance, inter- 

vals and articulations. When the Spearman’s Rank Correlation Coefficient was calculated 

between competencies levels and total playing time, there was a significantly positive cor- 

relation found for all techniques and musical elements. This indicates that the reported 

competencies have a monotonic relationship with playing experience. This indicates that 

for the collected competencies, the property that the more experienced someone is, usually 

the more competent they become holds true. 
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4.3.5 Virtuoso Bass Players 

There were a total of n(369) who provided an response, many of which suggested multiple 

players. In total there were 158 bass players named as being considered virtuosos. The  

top 25 players, along with the number of times they were suggested can be seen in Table 

4.5. It can be seen there is agreement on the top two virtuosos between genders, with 

female respondents considering Jaco Pastorious more often than Victor Wooten, compared 

to male and those preferring to not disclose their gender who considered the opposite. The 

full table of virtuoso bass players and the number of times they were suggested can be 

found within Appendix B.3 in Table B.3. 

Table 4.5: Top 25 suggested virtuosos and the number of times they was suggested. 
 

Bass Player 
Voters 

 Total Male Female Undesclosed 

Victor Wooten 168 162 3 5 
Jaco Pastorius 137 129 7 3 
Les Claypool 35 34  1 
Marcus Miller 33 32  1 
Geddy Lee 28 25 1 1 
Stanley Clarke 27 25 1 2 
James Jamerson 26 25 1 1 
Michael Manring 26 25   

Billy Sheehan 24 22 2 1 
John Myung 23 22   

Flea 18 18  1 
Jeff Berlin 13 13   

John Entwistle 13 12   

Pino Palladino 13 12  1 
Anthony Jackson 12 12  1 
Hadrien Feraud 12 12   

John Patitucci 12 12   

Mark King 10 10   

Steve Lawson 10 10   

Charles Mingus 9 8   

Cliff Burton 8 6 2 1 
John Paul Jones 8 7 1  

Larry Graham 8 7 1  

Chris Squire 7 5 2  

Edgar Meyer 7 7   
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4.3.6 Hardest Basslines 

There were a total of n(253) respondents who suggested Basslines that considered to be 

the most difficult/complex ones to play. In total there were 141 Basslines suggested. 

Basslines with 2 or more votes are shown in Table 4.6, with the full list of basslines and 

votes presented within Appendix B.4 in Table B.4. Where it can be seen that largely both 

gender’s agreed on what they considered to be the hardest basslines. 

Table 4.6: Top Basslines voted two or more times as being the most difficult to play. 
 

Bassline 
Voters 

 Total Male Female 

YYZ - Rush 24 21 3 
Donna Lee - Jaco Pastorius 21 19 2 
Portrait of Tracy - Jaco Pastorius 12 11 1 
Tommy The Cat - Primus 12 11 1 
Teen Town - Weather Report 10 10  

Hit Me With Your Rhythm Stick - The Blockheads 8 8  

Havona - Weather Report 7 7  

Chromatic Fantasy - Jaco Pastorius 6 5 1 
Hysteria - Muse 6 4 2 
What is Hip? - Tower of Power 5 5  

Amazing Grace - Victor Wooten 4 4  

Flight of the Bumblebee 4 4  

Dance of Eternity - Dream Theater 3 3  

Giant Steps - John Coltrane 3 2 1 
Jerry was a Racecar Driver - Primus 3 3  

2112 - Rush 2 2  

Actualise - Evan Brewer 2 2  

Anesthesia (Pulling Teeth) - Metallica 2 2  

Boogie on Reggae Woman - Stevie Wonder 2 2  

Classical Thump - Victor Wooten 2 2  

Darling Dear - Jackson 5 2 2  

Detroit - Marcus Miller 2 2  

La Villa Strangiato - Rush 2 2  

Lessons in Love - Level 42 2 2  

Master Blaster - Stevie Wonder 2 2  

Maxwell Murder - Rancid 2 1 1 
My Name is Mud - Primus 2 2  

Nobody Wierd Like Me - RHCP 2 1 1 
Panic Attack - Dream Theater 2 2  

Schism - Tool 2 2  

Show of Hands - Victor Wooten 2 2  

Sinister Minister - Bela Fleck and the Flecktones 2 2  

Sir Duke - Stevie Wonder 2 1 1 
The Chicken - Jaco Pastorius 2 2  

The Enormous Room - Micheal Manring 2 2  

What’s Going On? - Marvin Gaye 2 2  
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4.4 Discussion and Summary 

Overall respondent’s to the survey had a large variety of different playing experience, as 

measured by the total playing time metric, as well as having diverse playing background 

and playing experience gained from many different sources. There was however a clear 

gender imbalance, which was largely discussed in Section 4.2.2. Following this discus-  

sion, evidence presented by Valenzuela et al. (2020), which identified female conservatory 

musicians reported slightly lower competencies than their male counter parts, a one-way 

ANOVA analysis was conducted for each competence.  Disclosed gender (male,  female)  

was used as the factor for the one-way ANOVA. Where significant differences were found 

between ratings, the median competence rating was lower for female respondents. 

However, whilst there were differences found between genders that support the find- 

ings of (Valenzuela et al., 2020), all elements where significant differences were found are 

either non-essential playing or expressive techniques, or are applied in more demanding 

playing contexts. For context ‘Slide’ is and expressive choice that is considered an in- 

termediate technique. ‘Thumb Pluck’, ‘Using a Pick‘ and by extension  ‘Palm  Muting  - 

Using a Pick’ are all alternative plucking methods to 1, 2 and 3 finger plucking and not 

required techniques for someone playing the bass guitar, provided they can pluck with their 

fingers. ‘Two Handed Tapping’ and ‘Artificial Harmonic’ are extremely advanced playing 

techniques, usually used within solo playing and more technically demanding genres. The 

time signature (12/8) and very fast playing speeds, are also advanced playing conditions. 

Given that female respondents overall playing experience was skewed to include less ex- 

perienced bass players, these differences are likely due to 1) the smaller number of female 

respondents and 2) many of those respondents being less experienced bass players. Female 

respondents also had the largest range of playing experience, which, given the supporting 

evidence found, that supports the argument that competence improves with playing expe- 

rience, this would suggest that, assuming these female participants continue playing, they 

will develop higher playing competencies. 

Of note, the fact that differences where found with one time signatures and tempos, 

would appear to follow Pollatou et al. (2005), in there being rhythmic differences between 

male and female players. These differences may have been exacerbated by the lower playing 

experience of the female participants. There were no significant differences found for any 

other musical element, supporting Pollatou et al. (2005) in finding no differences between 

musical aptitude, and gross motor skills between genders. 

This would therefore suggest that, whilst there is a gender imbalance between the 

respondents, this gender imbalance does not prevent the data being used as representative 
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of all bass players. The competence ratings themselves are used within Chapter 6 to develop 

weights which are used within the developed model’s or bass guitar playing complexity and 

perceived playing difficulty. 

The results of the thematic analysis support the notion that judgement of virtuosity  

are multifaceted, in places contradictory and subjective. These would also follow Howard 

(2008, 1997), and their definitions of historical and cultural attitudes towards general musi- 

cal virtuosity. These results are therefore taken as to indicate that virtuosity is achievable 

on the bass guitar. The largest themes to emerge from the analysis where ‘Technical’, 

‘Ability’, ‘Mastery’ and ‘Musicianship’. This indicates that there  is  a  large  emphasis  

placed upon the technical aspects of bass playing when bass players think of virtuosos. 

Within this thesis many of the different themes of virtuosity uncovered through the the- 

matic analysis are addressed.  Starting the ‘Technical’,  ‘Ability’ and ‘Mastery’, the models  

of playing complexity and difficulty developed within Chapter 6 can be seen as addressing 

these themes. Notions of ‘Musicianship’ relate to musical similarity, and are investigated in 

Chapter 7. ‘Knowledge and Understanding’ are represented within the Bass Playing Ontol- 

ogy presented in Chapter 3, and in the virtuoso suggestions and hardest basslines reported 

by respondents. Notions of ‘Creativity and Innovation’ and ‘Performance’ are addressed in 

the design and implementation of Adorn-o within Chapter 8. The design of Adorn-o also 

requires and uses the results of the previous chapter investigations, thus it can be seen that 

Adorn-o combines all these themes of virtuosity within a single computationally creative 

performance system for bass guitar. 

Finally the hardest bassline was YYZ by Rush, which is a track infamous for its dif- 

ficulty, due to the track itself containing a mixture of odd time signatures and contains 

several fast chromatic runs and bassfills. This was followed by Donna Lee by Jaco Pasto- 

rius, who was the second highest rated virtuoso behind Victor Wooten. Whilst these are 

largely re-affirmations of commonly accepted views held by bass players, the fact that the 

results didn’t deviate from these ideas is reassuring, in terms of representing bass play-  

ers perspective. It would appear that both gender’s hold similar views on both virtuosos 

and hardest basslines, however with such a small female sample size, further work seek- 

ing female bass player’s views most definitely is required to confirm this.  There are also   

a predominately large number of male virtuosos listed, however following the discussion 

within Section 4.2.2,  this is not unexpected due to there being a greater representation    

of male bass players. These lists however form the initial selection suggestions for the 

case-database that was used within the evaluation of Adorn-o within Chapter 9. 
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Chapter 5 

 

Perceived Bass Playing Difficulty 

Study 

 
5.1 Motivation, Aims and Hypothesis 

A study was conducted into how difficult people judge bass playing to be from listening to 

audio excerpts. The purpose of this study was to collect data that could be used to aid in 

the development of an automatic assessment of how difficult a piece of music is perceived 

as being to play on the bass guitar. 

For this study, bass playing difficulty is defined as a judgement of the bass playing, 

specifically relating to the ability level required to both understand what is required to be 

able to play bass part, as well as what this actually entails when the bass part is played    

on a bass guitar. Additionally an audio excerpt is judged to be perceived as more difficult 

than another if, when presented in a pair-wise comparison, the percentage of voters voting 

the audio excerpt more difficult than the other is greater than 50%. This forms the H1 

hypothesis for this study which is as follows: 

 
H1 : votes percent > 50%, p <= .05. 

 
The Null hypothesis is then that the audio excerpt, when presented in a pair-wise compar- 

ison, is not perceived as being more difficult than the other, and is summarised as: 

 

H0 : vote percent <= 50%, p > .05. 
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5.1.1 Method 

A pairwise listening test was designed and implemented using the Web Audio Evaluation 

Tool (Jillings et al., 2015). Participants were presented with A B pairs of audio excerpts. 

Each participant was required to listen to each excerpt in its entirety, after which they  

were then asked to select the excerpt they judged to be more difficult. Every combination 

of audio excerpt pairs were presented to each participant. Both the ordering of excerpt 

combinations and excerpt presentation order within each question was fully randomised 

using the Web Audio Evaluation Tool randomisation settings. 

 
5.1.1.1 Participants 

There were N(64) participants, of these n(60) were recruited through academic and musical 

mailing lists, bass focused social media groups and online forums.  There were a total of   

12 individuals (10 male, 2 female) invited to participate via direct email who primarily 

produced online bass educational content. These individuals were directly contacted as, 

through their public facing teaching material, each demonstrated a very high level of mu- 

sical proficiency and knowledge of the instrument. Of the online educators invited, n(4) 

consented to participate and have been identified as Expert Listeners. 

From those participants who consented, like within the study undertaken in Chapter 4, 

there is a clear gender imbalance skewed heavily towards male participants. The gender 

ratio of participants’ who consented to participate is however similar to that of the bass 

player demographic survey undertaken in Chapter 4. This would suggest there is a clear 

male bias, at the very least within the recruitment channels used, in relation to bass guitar 

players. There is, as noted in Section 4.2.2, a trend of female under representation within 

other musical contexts, and this would suggest that the male bias would extend beyond  

the recruitment channels. Further work to investigate the number of female bass players 

within the general population is however required to confirm these speculations, as well as 

to identify why this clear male bias is present. This is a clear issue of social importance to 

such investigations, and this work does not wish to diminish this importance, however such 

investigations are beyond the scope of this thesis. As such, whilst more female responses 

would be very much welcome, in terms of generalising the results from a predominately 

male focused voter group,  in terms of musical aptitude and gross motor skills,  Pollatou   

et al. (2005) outline that there is evidence that supports no inherent differences between 

male and females.  Therefore,  the high number of male participants should not impact   

the overall findings of the study, when applied generally to bass playing perceptions of 

difficulty. 
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In addition to their gender, participants were asked questions pertaining to their musical 

background. From the demographic questions asked within the study the participants were 

separated into different groups based upon their musical background. The information used 

to form each group of participants is presented in Table 5.2. The demographic information 

for the full set of participants, and each of the separate sub groups is presented in Table 5.1. 

Table 5.1: Participant Grouping Demographic Information 
 

Group Size Male Female M Age Age SD M Total Playing Hours Total Playing Hours SD 

Full N(64) 95.31% 4.69% 37.95 12.12 4061.32 8181.71 

Expert Listeners n(4) 100.00% 0.00% 34.75 6.24 6080.47 7238.94 

Ordinary Listeners n(60) 95.00% 5.00% 38.17 12.41 3926.71 8277.64 

Only Musicians n(61) 95.08% 4.92% 38.36 12.24 4249.94 8337.30 

Non-Expert Musicians n(57) 94.74% 5.26% 38.61 12.55 4121.48 8450.57 

Bass Players n(50) 98.00% 2.00% 39.76 11.64 5090.63 9004.51 

Non-Expert Bass Players n(46) 97.83% 2.17% 40.20 11.94 5004.56 9203.27 

Other Instrument Players n(11) 81.82% 18.18% 32.00 13.44 428.62 410.99 

Do not play an Instrument n(3) 100.00% 0.00% 29.67 4.93 225.94 391.34 

Teachers n(21) 85.71% 14.29% 36.43 13.84 3768.47 4483.96 

Expert Listener Teachers n(3) 100.00% 0.00% 34.67 7.64 7025.87 8558.08 

Non-Expert Bass Teachers n(12) 91.67% 8.33% 40.50 15.33 4405.45 3834.60 

Bass Teachers n(15) 93.33% 6.67% 39.33 14.10 4929.54 4815.95 

Other Instrument Teachers n(6) 66.67% 33.33% 29.17 10.98 865.81 1152.13 

Non-teachers n(43) 100.00% 0.00% 38.70 11.29 4204.33 9527.46 

Non-teachers who play an instrument n(40) 100.00% 0.00% 39.38 11.37 4502.71 9820.30 

Non-teaching Bass Players n(33) 100.00% 0.00% 39.79 10.89 5379.48 10628.84 

Non-teaching Non-expert Bass Players n(32) 100.00% 0.00% 39.94 11.03 5446.20 10791.89 

Non-Teaching Other Instrument Players n(7) 9.33% 0.00% 37.43 14.20 369.39 412.19 

M  = mean, SD  = standard deviation. 



 

Teach 

 
 
 
 
 
 
 

 

Table 5.2: Participant sub group hierachy. 
 

 

 
Participant Groups 

Demographic information used to segment the group 
 

 

Expert Play Play Other Play No 
Listener Bass instruments Instrument 

 
 

Full N(64) x x x x x 

Expert 
Listeners n(4) 

 

Ordinary 
Listeners n(60) 

Only 
Musicians n(61) 

Non-expert 
Musicians n(57) 

Bass Players n(50) x x x 
Non Expert 

Bass Players n(46) 
Other Instrument 

Players n(11) 

Do  not Play 
an  Instrument n(3) 

Teachers n(21) x 
Bass Teachers n(15) x x 

Expert Listener 
Teachers n(3) 
Non Expert 

Bass  Teachers n(12) 
Other Instrument 

Teachers n(6) 

Non-teachers n(43) x x x x 
Non-teachers who 

play an instrument n(40) 
Non-teaching 

Bass Players n(33) 
Non-teaching 
Non-expert x 

Bass Players n(32) 
Non-teaching Other 

Instrument Players n(7) 

x x x x 

x x 

x x x 

x x x 

1
3

0 

x x 

x 

x 

x x 

x x 

x x 

x x x 

x x 

x 
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5.1.1.2 Materials 

To allow the study to be completed within a reasonable time, eight audio excerpts, each 

containing four bars of bass playing were selected to be used within this study. The 

excerpts were selected so that between each of them, a large range of different techniques, 

genres, styles - including solo playing, playing complexity and other musical elements were 

represented. It was also decided that the bass playing should be presented within context, 

that is to say, if the bassline was a part within a song, the other instruments/parts/vocals 

would also be present. In these scenarios the bass part was mixed to be of a higher audio 

level, and therefore be the predominant instrument in the excerpt. Table 5.3 shows the 

audio excerpts that were selected. 

Table 5.3: Audio Excerpts used in the perceived bass playing study, where there is more 
than one reference, the isolated bass audio was mixed into the full audio track. 

 

Audio Audio Audio 

Excerpt ID Excerpt Period Excerpt Sources 
 

Atl Thinking Out Loud Ed Sheeran 0:24 - 0:36 Yamakawa (2015b,c) 
Aww Who Did You Think I Was John Mayer 1:18 - 1:23 Yamakawa (2015h,f) 
Asz Schizm Tool 0:30 - 0:36 mugr (2014) 
Asy Seven Days Sting 0:05 - 0:11 Pertybass (2016) 
Acs Circus Dirty Loops 1:16 - 1:24 Yamakawa (2015e,a) 
Amm Sugar - Bass Solo Micheal Manring 2:02 - 2:10 Music (2010) 
Ahe Had Enough Mr Big 0:11 - 0:23 mrbig0910 (2012) 
Ary Release Yourself Graham Central Station 0:18 - 0:24 Yamakawa (2015g,d) 

 

 
5.1.1.3 Procedure 

Ethical approval for the study was obtained through Queen Mary University of London 

(QMUL) Research Ethics Committee, ref: QMREC1575. 

The listening test was hosted online using QMUL’s School of Electronic Engineering 

and Computer Science (EECS) Department’s openshift web  hosting platform.  The URL  

was accessible to all members of the public, and shared on bass and music related email 

lists, web forums and social media platform groups. 

Once a participant navigated to the URL where the WAET listening test was being 

hosted, they were first presented with a statement of consent which was required to be 

answered. Participants could accept the statement of consent, by pressing a button labelled 

“agree" where they would then be presented with the contents of the study. If participants 

pressed a button labelled “disagree” they were presented with the end screen of the study. 

After agreeing to participate, participants were presented with instructions on how to 
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complete the study. This primarily focused on informing participants on how to play the 

audio for each excerpt, and then how to select the audio excerpt they judged to be most 

difficult.  The instructions also included a definition of playing difficulty and a reminder   

on and of what the participants should be judging. Once the participants had read this 

information and pressed the start button they were then asked to complete some demo- 

graphic questions. These were: Gender, Age,  if they played  Bass Guitar, and if they did  

how long (in years) they had played for, how often (on average) did they practice and how 

long (on average) did they practice for each time, if they didn’t play bass did they play 

another instrument, and if they taught the bass guitar and/or any another instruments. 

Once these questions had been answered, participants were presented with 28 A B 

comparison questions. Participants were required to listen to each excerpt in full at least 

once, before they could select the excerpt they they judged to be most difficult to play on   

a bass guitar. In total participants were required to listen to a minimum of 10 minutes of 

audio, at their own pace. Due to this it was not anticipated listeners would experience any 

listening fatigue. Once participants had answered all the comparison questions they were 

then presented with a screen that thanked them for participating and confirmed submission 

of their responses. 

 
5.1.2 Results 

Participants’ votes within each of the groups were compared using Fleiss’ κ rating for mul- 

tiple voters. The results for each group are show in Table 5.4. Following the interpretation 

by Landis and Koch (1977) of Fleiss’ κ, there was moderate agreement in all groups except 

for the ‘Expert Listeners’ and ‘Expert Listener Teachers’ groups which had a fair agree- 

ment and the ‘Non-Expert Bass Teachers’ which had substantial agreement. All groups 

except for the ‘Do not play an Instrument group’ also had significance indicating that the 

votes within the group were likely not random. 

The voting results for the full participant group are presented in Tables 5.5, all partic- 

ipant sub groups’ votes can be found to Appendix C.1.  Where,  for each,  the percentage    

of voters that voted the row audio excerpt (identified by the Audio Excerpt IDs originally 

presented in Table 5.3), to be more difficult than the column audio excerpt is provided. 

For each pair of excerpts a binomial test was performed on the voting results using the 

R function binom.test. This tested if the bias  towards  one audio  excerpt  over  another  

was significant given the sample size. This information was used to test hypothesis H1 : 

vote percent > 50%, p <= .05. Within each table where the percentage of votes between 

pairs of excerpts is greater than 50% with a level of significance less than or equal to p < .05 
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Table 5.4: Fleiss’ κ rating for each grouping of participants 
 

Groups Number of Raters Fleiss’ κ z p 

Full N(64) .53 176.68 <.001 

Expert Listeners n(4) .37 6.76 <.001 

Ordinary Listeners n(60) .54 168.52 <.001 

Only Musicians n(61) .55 174.68 <.001 

Non-Expert Musicians n(57) .56 166.52 <.001 

Bass Players n(50) .55 143.74 <.001 

Non-Expert Bass Players n(46) .56 135.56 <.001 

Other Instrument Players n(11) .56 30.99 <.001 

Do not play an Instrument n(3) .14 1.85 .06 

Teachers n(21) .56 60.64 <.001 

Expert Listener Teachers n(3) .43 5.55 <.001 

Non-Expert Bass Teachers n(12) .62 37.44 <.001 

Bass Teachers n(15) .56 43.19 <.001 

Other Instrument Teachers n(6) .59 16.98 <.001 

Non-teachers n(43) .52 116.44 <.001 

Non-teachers who play an instrument n(40) .55 114.68 <.001 

Non-teaching Bass Players n(33) .56 95.98 <.001 

Non-teaching Non-expert Bass Players n(32) .56 93.05 <.001 

Non-Teaching Other Instrument Players n(7) .52 17.96 <.001 

 
for one of the audio excerpts then the null hypothesis, H0 : vote percent <= 50%, that 

states that there is no perceived playing difficulty between the excerpts, could be rejected. 

Rejecting the null hypothesis indicates that the perceived difference in playing difficulty, 

with the more difficult excerpt of the pair being signified by the vote percentage being 

greater than 50%, is likely not due to random chance. 

From the votes for each group of participants the audio excerpts were then ranked/ordered 

from least to most difficult. This was done first by only considering relationships where 

there was a significant bias for one excerpt being voted more difficult than another, form- 

ing partial orders.  These orders and the groups they could be formed for are shown in  

Table 5.6. The relationships between all excerpt pairs within each group were then con- 

sidered,  regardless of the significance.  The orders that could be formed,  and the groups   

for which the were formed for are shown in Table 5.7. 
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Table 5.5: Percentage of participants, with significance levels reported, from “Full" Group 
voting the excerpt in the row as being more difficult than the excerpt in the column. 

 
 

 
Atl 

Asy 

Aww 

Asz 

Acs 

Ary 

Atl Asd Aww Asz Acs Ary Amm Ahe 

 
 
 
 

 
52% 

 

 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Amm 94%∗∗∗ 94%∗∗∗ 91%∗∗∗ 89%∗∗∗ 61% 56% 

Ahe 95%∗∗∗ 97%∗∗∗ 91%∗∗∗ 
89%∗∗∗ 61% 61% 52% 

 

88%∗∗∗   

95%∗∗∗ 86%∗∗∗ 

95%∗∗∗ 86%∗∗∗ 61%  

98%∗∗∗ 97%∗∗∗ 92%∗∗∗ 81%∗∗∗ 

100%∗∗∗ 92%∗∗∗ 88%∗∗∗ 86%∗∗∗ 
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Table 5.6: Partial Orders and the groups they could be formed for based on the significant 
bias between audio excerpts. 

 

Groups Significant Partial Order/s 
 

Full Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Expert Listeners 
Ordinary Listeners Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Only Musicians Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Non-Expert Musicians Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Bass Players Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Non-Expert Bass Players Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Other Instrument Players  (Atl Asy ) < (Aww Asz ) < (Ary Ahe ) 

Aww < Acs 

Asz < Amm 

Do not play an Instrument 
Teachers Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Expert Listener Teachers 
Non-Expert Bass Teachers Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Bass Teachers Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Other Instrument Teachers  Atl < Asy < (Aww , Asz , Ahe , Ary , c, Amm ) 

Aww < (Ary c) 
Non-teachers Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 

(Acs Ary ) < Ahe 

Non-teachers who play an instrument Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 

(Acs  Ary  ) < Ahe 

Non-teaching Bass Players Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 
Non-teaching Non-expert Bass Players  Atl < Asy < (Aww Asz ) < (Acs Ary Amm Ahe ) 

Ary  < Ahe 

Non-Teaching  Other Instrument Players (Atl Asy ) < (Aww Acs) 
Asz  < Ahe 

The Audio Excerpts relating to the IDs are presented in Table 5.3 



 

 
 
 
 
 
 

 

Table 5.7: The full non-significant difficulty orderings (from least to most) of audio excerpts for each grouping of participants 
and the Unique Order Group they have been assigned to. 

 

Difficulty Ranking 
 

Groups 8 7 6 5 4 3 2 1 Unique Order Group 

Full Atl Asy Aww Asz Acs Ary Amm Ahe 1 
Expert Listeners Atl = Asy Aww Asz  no order further order   

Ordinary Listeners Atl Asy Aww Asz Acs Ary Amm Ahe 1 
Only Musicians Atl Asy Aww Asz Acs Ary Ahe Amm 2 

Non-Expert Musicians Atl Asy Aww Asz Acs Ary Amm Ahe 1 
Bass Players Atl Asy Aww Asz Ary Acs Ahe Amm 3 

Non-Expert Bass Players Atl Asy Aww Asz Ary Acs Ahe Amm 3 
Other Instrument Players Atl Asy Aww Asz Acs Amm Ary Ahe 4 
Do not Play an Instrument Atl Asy Asz Amm Aww no order further order   

Teachers Atl Asy Aww Asz Ahe no order further order   

Expert Listener Teachers Asy Atl Aww Ahe Asz Acs Ary Amm 5 
Non-Expert Bass Teachers Atl Asy Aww = Asz no ordering for Ary , Ahe and c Amm  

Bass Teachers Atl Asy Aww Asz Ahe Ary Acs Amm 6 

Other Instrument Teachers Atl = Asy Aww Asz no order further order   

Non-teachers Atl Asy Aww Asz Acs Ary Amm Ahe 1 
Non-teachers who play an instrument Atl Asy Aww Asz Acs Ary Amm Ahe 1 

Non-teaching Bass Players Atl Asy Aww Asz Ary Acs Ahe Amm 3 
Non-teaching Non-expert Bass Players Atl Asy Aww Asz Acs = Ary Ahe Amm 7 

Non-Teaching Other Instrument Players Atl Asy Aww Acs Asz Ary Amm Ahe 8 
The Audio Excerpts relating to the IDs are presented in Table 5.3 

1
3

6 
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5.1.3 Discussion 

The main purpose of this study was to collect data that could be used to aid the devel- 

opment of an automatic assessment of perceived playing difficulty. The significant partial 

order/s and difficulty rankings both can be used for this. Additionally different orderings 

were obtained not just for the full group of participants but also for different sub groups. 

This further allows for the potential of different versions of the automatic assessment of 

perceived difficulty to be developed that assess the difficulty based upon the different 

demographic backgrounds of the listening test participants. 

More generally, the results indicate that participants seemed to share the same broad 

notions of playing difficulty. This is because for the majority of participant groups, with  

the exceptions of ‘Other Instrument Players’ n(11) and ‘Non-Teaching Other Instrument 

Players’ n(7) participant groups, the audio excerpts could be classified into four different 

difficulty levels based upon the significant vote percentages as follows: 

 

first level   = {Atl, Asy} (5.1) 

second level  = {Asy} (5.2) 

third level   = {Aww, Asz} (5.3) 

fourth level  = {Acs, Ary, Amm, Ahe} (5.4) 

In the cases of ‘Other Instrument Players’ and ‘Non-teaching Other Instrument Player’ 

the lack of significance in their votes implies that more participants are needed, as non- 

significant orderings were able to be obtained for these groups. It is possible that these 

groups of participants notions of playing difficulty do not allow them to be able to finely 

distinguish the playing difficulty of the presented audio excerpts, that they maybe do not 

have a generalised understanding of bass playing difficulty, or that from their perspective 

the difficulty is of a similar level across all excerpts. More participants are required to 

further investigate and test these speculations. 

Full orderings of audio excerpts could be produced for all groups except for the ‘Ex- 

pert Listeners’ n(4) and ‘Do not Play an Instrument’ n(3) participant groups, whilst only 

partial orders could be formed for the ‘Teachers’ n(21), ‘Non-Expert Bass Teachers’ n(12) 

and ‘Other Instrument Teachers’ n(6) participant groups. When the full orderings for all 

participant groups were compared, eight different (unique) difficulty orderings were found. 

The biggest variations between these unique difficulty orderings were due to differences 

in order of the Acs, Ary, Amm and Ahe audio excerpts, all of which fall into the fourth 
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playing difficulty level. These four audio excerpts were also the ones that could not be 

ordered for the ‘Teachers’ n(21), ‘Non-Expert Bass Teachers’ n(12) and ‘Other Instrument 

Teachers’ n(6) participant groups. These results lend their support to, not only the notions 

of difficulty being subjective, but that also the notions are to some extent informed based 

on an individuals’ background. It is also likely that as pieces increase in difficulty,  there  

are more ways the difficulty could be compared, potentially resulting in overall similar 

perceived playing difficulty,  but for different reasons.  As this study was  only focusing on  

a general perceived difficulty, how difficulty was being compared by participants could not 

be investigated. It is therefore possible that participants regarded each of the Acs, Ary,  

Amm and Ahe audio excerpts as being similar in overall difficulty, but different groups of 

participants judged certain playing aspects as being more difficult in one or more of these 

excerpts compared to the others. However, further investigation is required to confirm  

this speculation. For  the ‘Expert Listeners’ n(4) and ‘Do not Play an Instrument’ n(3),  

these groups of participants also did not have any significant partial orders, which is an 

indication that the groups were too small. 

Also to be noted is that, as these full orders use non-significant results there is the 

possibility that each full order produced for each participant group is in fact a random 

permutation of the non-significant excerpt relationships. Again, further testing with more 

participants would be needed to explore this. 

 
5.2 Summary 

An A B paired listening test was conducted where participants indicated,  which out of   

two  audio excepts,  A and B, they judged to be more difficult to play on bass guitar.  A   

total of eight excerpts were compared and based upon the votes from the listening test 

these were ordered by difficulty. Binomial tests were conducted to determine if any bias 

present within the votes was significant, based upon the total number of votes. From the 

instances where this was significant, the audio excerpts could be ordered into four distinct 

levels of difficulty. When non-significant voting biases were considered a full ordering of 

the excerpts was able to be obtained. These orderings of playing difficulty, determined by 

the votes, form the dataset which is used in Chapter 6 within the validation of the models 

of perceived playing difficulty. 
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Chapter 6 

 

A Model of Bass Playing Complexity 

and Perceived Difficulty 

 
6.1 The Relationship between Playing Complexity, Perceived 

Difficulty and Virtuosity 

How a performer demonstrates their playing ability is a contributing factor to people’s 

judgements of virtuosity. The prevalence of associating virtuosity with themes relating to 

playing ability, within the qualitative analysis in Section 4.3.2 supports this,  indicating  

that playing ability is an important consideration when forming a judgement on whether a 

performance is considered virtuosic or not. Current methods of assessing playing abilities 

generally fall within academic institutions and through musical syllabus, where the focus  

is on the player’s capabilities in performing music that has either been composed, or previ- 

ously agreed upon to require certain demands from the player. There are no standardised 

approaches for assessing the musical piece in terms of what playing abilities are required 

to perform it. 

One way to demonstrate a high level of playing ability is by producing a performance  

of a piece of music that requires a high playing competence.   In other words,  one that       

is difficult to play. However, as noted by Chiu and Chen (2012), there are challenges in 

classifying a musical piece’s difficulty. The biggest issue being that difficulty is subjective, 

different people find different aspects, techniques and musical elements of pieces to be  

difficult.  A beginner bass player  will likely find aspects of bass playing to be difficult that  

a more experienced player would not. Difficulty can also vary across a piece with some 

parts being easier than others. There are also many different aspects that could contribute 
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to the difficulty of a piece, these can be for example: the harmony, playing technique, 

biomechanical demands, rhythm and cognitive loading aspects of a performance. These 

contributing factors are also linked to another factor that will influence the difficulty of a 

piece: Complexity. 

Complexity can be differentiated from difficulty by considering it as a character of a 

thing (Heijink and Meulenbroek, 2003; Holder et al., 2015) whereas difficulty is a judgement 

on that thing. For examples, the posture and finger movement required in fretting positions 

to perform a piece will have a certain biomechanical complexity (Heijink and Meulenbroek, 

2003) that is consistent between different players. How someone finds maintaining the 

correct playing posture or performing the finger movements though is a judgement of how 

difficult these actions are for that for that particular person. 

How complexity and difficulty influence judgments of virtuosity aren’t fully known, 

raising the questions: 

1. How much does the demonstration of correctly performed complex elements, pas- 

sages, playing technique or even whole musical pieces, that are considered difficult 

by audience members, contribute to them judging a performance to be virtuosic? 

2. Is there a threshold in complexity, where performances of pieces below this threshold 

would not ever be considered virtuosic? 

To begin to answer these questions within the context of bass performance, a way to, 

and a measure of the complexity of bass playing is needed, as well as a way to determine 

the judged difficulty of a piece of music when played on bass guitar. Both areas appear to 

have not been investigated from the bass guitar perspective. However, there is related work 

into calculating playing complexity, one for piano (Nakamura and Yoshii, 2018) and one for 

clarinet (Holder et al., 2015). There are also works into determining the difficulty of pieces 

of music for piano Véronique Sébastien (2012) and guitar (Tandon and Tandon, 2015; 

Barthet et al., 2011). An overview of these related works and others has been previously 

provided in Section 2.6. 

In Section ?? two approaches to calculating the complexity of bass playing are outlined 

and then, in Section 6.6, compared against an established musical syllabus for teaching bass 

guitar. The calculated complexity of these excerpts were also compared, in Section 6.7, to 

the difficulty rankings as determined by the study conducted in Chapter 5 to determine 

what complexity calculations also reflected judgements of bass playing difficulty. 
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6.2 Expanding and Adapting Musiplectics to develop the Bass 

Guitar Musiplectic (BGM) Calculation 

In calculating complexity and difficulty, two lines of works  have  presently  been  taken. 

The first line of works develop a model based on musical or instrument knowledge,  that   

is then validated (Holder et al., 2015; Liou et al., 2010; Heijink and Meulenbroek, 2003; 

Véronique Sébastien, 2012; Nakamura and Yoshii, 2018). The second line of works build 

and train a model from data sets of musical scores where the complexity/difficult is clas- 

sified (Chiu and Chen, 2012; Tandon and Tandon, 2015). 

Many of the datasets that are available for bass guitar e.g. IDMT-SMT-BASS, made 

available by (Abeßer et al., 2010), containing isolated note recordings, and IDMT-SMT- 

BASS-SINGLE-TRACKS, made available by Abeßer et al. (2013), containing 17 bass guitar 

recordings of realistic basslines from blues, funk, rock, bossa nova, forró and hip hop, as 

well as many others are focused towards Music Information Retrieval tasks. Thus, for the 

second approach, of training a model of complexity a new dataset is required. There are 

however issues in creating a dataset focused on bass guitar playing complexity. 

There are many websites that provide bass transcriptions categorised by difficulty. 

However, these largely only use the three categories of: Beginner, Intermediate and Ad- 

vanced    -    https://www.songsterr.com/,    https://www.ultimate-guitar.com/,    or    levels 

1, 2, 3 - https://www.studybass.com/study-guide/. If this work was  focusing,  as  pre- 

vious work has (Holder et al., 2015; Liou et al., 2010; Heijink and Meulenbroek, 2003; 

Véronique Sébastien, 2012; Nakamura and Yoshii, 2018; Chiu and Chen, 2012; Tandon 

and Tandon, 2015), on supporting the learning of beginner/lower level musicians, such a 

dataset classification would be sufficient. However, the complexity measure required within 

this work needs to be able to discern pieces of the highest playing complexity, and a three 

category difficulty scale does not have the required resolution to do this. Thus, instead 

of building and training a model of bass playing complexity, one has instead been empiri- 

cally determined from the bass guitar musical instrument knowledge gathered through the 

survey conducted in Chapter 4. 

The musiplectics approach by Holder et al.  (2015)’s  (summarised  in Section 2.6.2) 

has been selected as a starting point for developing such model. As, while originally the 

approach focused on the clarinet, Holder et al. (2015) proposed the musiplectics approach 

as a systematic and objective method to calculating playing complexity for any instrument. 

Within the musiplectics approach, the complexity of a piece is determined by the mu- 

sical elements present within a piece of music. Each element is assigned a numerical value 

https://www.songsterr.com/
https://www.ultimate-guitar.com/
https://www.studybass.com/study-guide/
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N 

 

(complexity weight) which corresponds to how complex that element is to play/perform. 

The higher the value, the more complex the element is. Elements are grouped together by 

type, e.g. dynamics, interval, key signatures etc.  This approach was  selected because of  

the consideration of the individual musical elements as opposed to musical features. Other 

approaches that have utilised musical features derived from a notated score, e.g. Chiu and 

Chen (2012) have not demonstrated the effectiveness of utilising higher level features in 

the calculation of playing complexity. Also, measuring complexity based upon the actual 

musical elements that inform what a musician is required to play more closely aligns with 

the information a musician would experience/judge the complexity of the music too. 

 
6.2.1 Formalising the Musiplectics Approach by Holder et al. (2015) 

Holder et al. (2015) does not provide a formalised equation, only a working description of 

this calculation. Which consists of the following: 

• take the playing position weight of the first musical note in the piece of music, 

• multiply it by the weights of any additional musical elements that are applied to that 

note, 

• do this for every other individual note within a piece of music, 

• sum the values of the notes together and multiply by the note duration multiplier, 

• take the musical interval range weight of the first interval, 

• multiply it by the weights of any additional musical elements that are applied to that 
interval, 

• sum the values of the intervals together and multiply by the note duration multiplier, 

• sum together the total note and interval values to give the total musiplectic value for 

the piece of music. 

The note duration multiplier, ndm, is described by Holder et al. (2015) as being calculated 

by dividing the total amount of notes, N , by the total number of beats, B, and multiplying 

the total by the number of beats per second, BPS. Equation 6.1 is a formalisation this 

description. 

 
ndm =  

B 
× BPS (6.1) 
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Along with a musical note’s playing position weight, and interval’s range weight Holder 

et al. (2015) outlined the following ‘important musical elements’ which can be applied to 

each note and interval: dynamic, articulation, key signature.  Therefore,  following Holder 

et al. (2015)’s description, a formalisation of the Musiplectic approach is thus, 
 

N I 

(
     

mnn × dn × an × ksn) × dm + (
     

mii × ksi × di) × ndm, (6.2) 

where N is the total number of notes, mnn is the musical note playing position weight for 

note n, dn is the dynamic weight for note n, an is the articulation weight for note n, ksn is 

the key signature weight for note n, I is the total number of intervals, mii is the musical 

interval range and position weight for the interval i, ksi is the key signature weight for 

interval i, di is the dynamic for interval i. ndm is the note duration multiplier, which is 

calculated by dividing the total amount of notes, N , by the total number of beats, B, and 

multiplying the total by the number of beats per second, BPS, and is computed as per 

Equation 6.1. 

For completeness Holder et al. (2015) outlines how it is possible to calculate the av- 

erage complexity of a piece. Holder et al. (2015) provides an example where the average 

complexity per second (ACPS) is calculated as: 
 

 

ACPS = 
B 

BPS 
(6.3) 

where B is the total number of beats and BPS is the beats per second for the piece. 

 
6.2.2 Changes Required to Adapt the Formalised Musiplectic Approach 

to Better Suit Bass Guitar Playing. 

When an example bass guitar performance, e.g. Figure 6.1,1 is considered. The musiplectic 

approach to calculating its complexity would be as follows. The musical note playing 

position is determined by the tab2 notation presented below the musical stave. Dynamics 

and articulation can also be accounted for as  is the key  signature  (C Major).  However,  

the time signature and rhythmic complexity is not accounted for within the note duration 

multiplier, both of which are extremely important to bass playing, and contribute to the 

1This example also serves as a demonstration why simple features, e.g. notes per bar, or rate of notes  
would be a poor individual measures of playing complexity.  Here the notes per bar, and rate of notes are       
the same in each measure, however there are clear differences between the measures. Notably between the 
musical intervals and dynamic rhythmic stresses being applied. 

2https://en.wikipedia.org/wiki/Tablature#Guitar_tablature 

n=1 i=1 

https://en.wikipedia.org/wiki/Tablature#Guitar_tablature
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playing complexity of a piece.3 Bass specific playing techniques are also not accounted for. 

 

 
Figure 6.1: Excerpt from Figure E.17, presented here as an example of a notated bass 
guitar performance. 

 
A Bass Guitar Musiplectic (BGM) approach has been developed by expanding and 

adapting Holder et al. (2015)’s original musiplectic approach, allowing it to better capture 

the playing complexity of bass guitar performances. These expansions and adaptations are 

as follows: 

• The important group of musical elements used within the musiplectic equation are 

determined from the Bass Playing Ontology outlined in Section 3.4. 

• Complexity weights of these elements have been determined empirically based upon 
the bass playing competence data gathered in Section 4.3.4. 

• The musiplectic equation has been adapted to include note and interval durations 
and have complexity weights assigned to these durations. 

• The equation has been adjusted so that complexity weights of elements are combined 
in ways that better match the demands of bass playing. 

Referring to the Bass Guitar Performance Ontology outlined in Section 3.4 the ‘impor- 

tant musical elements’ of bass guitar playing are shown in Table 6.1. Within the table, the 

musical element group is defined, the symbol used within the formalised BGM equation, a 

description of the elements, and the ‘default’ element, that is primarily used when forming 

the ‘default’ performance of a piece of music (See Section 3.4.8). 
 

3This is further supported with YYZ, being voted as the hardest bassline to play as part of the survey 
conducted in Chapter 4, which was likely due in part to the complex time signature of the piece. 
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Table 6.1: The groups of the important musical elements of bass guitar playing. 
 

Musical Element Group Symbols Description ‘Default’ Element 

Playing Techniques pt The playing techniques group is 

formed from the excitation and 

modification techniques from the 

Bass Guitar Performance Ontol-  

ogy. 

Expressive Techniques et, ei The expressive techniques group et 

is formed from the expressive tech- 

niques from the Bass Guitar Per- 

formance Ontology that are ap- 

plied to a single note. Expressive 

techniques ei that are performed 

between two notes e.g. slides are 

applied to musical intervals. 

Articulation  Techniques at The articulation is formed from the 

articulation techniques from the 

Bass Guitar Performance Ontol- 

ogy. 

Dynamics dy, di The dynamics group dy is formed 

from the dynamic techniques from 

the Bass Guitar Performance On- 

tology and applied  to  notes,  the  

di is formed of only crescendo and 

diminuendo dynamics and is ap- 

plied to musical intervals. 

Durations du, ioi  Duration is the real time duration 

of a note du or musical interval ioi. 

Time Signatures ts         Time signature  (ts) of  the bar  the 

note is in 

Beats Per Minute bpm The tempo (in beats per minute) 

of the bar the note is in. 

Intervals in Musical interval between two con- 

secutive notes 

Key signatures ks Key Signature of bar where the in- 

terval ends. 

Shifting distance sd The distance (in frets) that the 

fretting hand position needs to 

move to the play the musical in- 

terval 

Fret Postions fp, fpi Where  on  the  neck  a  note fp or 

musical interval  fpi is being played 

two finger plucking 

 
 

 
no expression 

 
 
 
 
 
 

no articulation 

 
 

mezzo forte 

 
 
 
 
 

705ms 

4/4 

85 

 
0 semitones 

C Major 

0 frets 

 
 

between open string 

and 4th fret 
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B 

 

In addition to adding these musical elements, the equation used to compute the com- 

plexity has also been adapted. As follows: 

1. By distinguishing between (a) elements that relate to notes and (b) elements that 

relate to relationships between notes. This is somewhat implied with the distinction 

between notes and intervals in Holder et al. (2015)’s musiplectic equation, but this 

distinction is now an explicit within the musiplectic equation for bass guitar playing 

(BGM). 

2. Note durations have been given a weighting based on the actual duration of the note. 

3. The weighting effect of a musical element is only be applied to the other elements 

that it has had a direct effect on. For example the key signature weighting only being 

applied to intervals and the other pitched elements it effects. 

The playing complexity of a bass guitar performance, bass guitar, b ∈ 
→−
B ,4  calculated using 

the BGM as follows. 

 
6.2.3 Defining the Bass Guitar Musiplectic (BGM) Function. 

A musiplectic complexity weight  mapping function, O, is defined, where each member is   

a function that maps a playing technique from within a musical element group ∈ T 5 to a 

positive real number: 

O : T 1→ R>0 

The musiplectic complexity weight value for a playing technique, can be computed 

using the appropriate musiplectic complexity weight mapping function for the musical 

element group that the playing technique is found in. For example to find the musiplectic 

complexity weight value for ‘2 finger plucking’, the musiplectic complexity weight mapping 

function for the playing technique musical element group would be used. A separate 

musiplectic complexity weight mapping function is defined for each musical element group6 

in Table 6.1. These separate functions allow for the complexity to be compute for musical 

4Where  
−→ 

is  a  set  of  bass  guitar  performances,  originally  defined  in  Section  3.3. 
5Where T is a set of playing techniques defined within Section 3.2. 
6Later, once the complexity weight sets have been derived, there is then a separate function for each 

complexity weight set too. 
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elements within each of their respective musical element groups as follows: 

 
Opt(t) = ptt ∈ R>0|t ∈ T ∩ pt, 

Oet(t) = ett ∈ R>0|t ∈ T ∩ et, 

Oat(t) = att ∈ R>0|t ∈ T ∩ at, 

Ody(t) = dyt ∈ R>0|t ∈ T ∩ dy, 

Odi(t) = dit ∈ R>0|t ∈ T ∩ di, 

Odu(t) = dut ∈ R>0|t ∈ T ∩ du, 

Ots(t) = tst ∈ R>0|t ∈ T ∩ ts, 

Obpm(t) = ptt ∈ R>0|t ∈ T ∩ bpm, 

Oin(t) = ptt ∈ R>0|t ∈ T ∩ in, 

Oks(t) = ptt ∈ R>0|t ∈ T ∩ ks, 

Osd(t) = ptt ∈ R>0|t ∈ T ∩ sd, 

Ofp(t) = ptt ∈ R>0|t ∈ T ∩ fp, 

 
where x ∩ y is the intersection of sets x and y. 

For each note, within a piece of music: bi, where bi = (ni, Bi), and bi is the ith element 

of  sequence  b ∈ 
→−
B ,  the  following  is  computed  using  each  of  the  musiplectic  complexity 

weight mapping functions: 

• The product of the complexity weights of every playing technique Bi ∩ pt: 

∀t∈Bi∩pt 

bi,pt = Opt(t)|bi = (ni, Bi). 
t 

 

• The product of the complexity weights of every expressive technique Bi ∩ et: 

∀t∈Bi∩et 

bi,et = Oet(t)|bi = (ni, Bi). 
t 

 

• The product of the complexity weights of every articulation technique Bi ∩ at: 

∀t∈Bi∩et 

bi,at = Oat(t)|bi = (ni, Bi). 
t 
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• The product of the complexity weights of every dynamic technique Bi ∩ dy: 

∀t∈Bi∩dy 

bi,dy = Ody(t)|bi = (ni, Bi). 
t 

 

• The complexity weight of the real time duration of note ni : 
 

bi,du = Odu(ni)|bi = (ni, Bi). 

• The complexity weight of the time signature of the bar note ni is in: 
 

bi,ts = Ots(ni)|bi = (ni, Bi). 

• The complexity weight of the tempo (in bpm) of the bar note ni is in: 
 

bi,bpm = Obpm(ni)|bi = (ni, Bi). 

• The complexity weight of fret position note ni is played at: 
 

bi,fp = Ofp(ni)|bi = (ni, Bi). 

The playing complexity, NPCi of a single note, bi ∈ b is formed from the product of 

each of the musical element group’s playing complexities: 

NPC(bi) = bi,pt × bi,et × bi,at × bi,dy × bi,du × bi,ts × bi,bpm × bi,fp, 

where bi is the ith element of sequence b ∈ 
→−
B . 

The total note playing complexity TNPC is formed by taking sum of each single note’s 

playing complexity, NPC(bi): 
 

 
where b ∈ 

→−
B . 

 
TNPC(b) = 

∀bi∈b 

NPC(bi) 

bi 
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The complexity of musical elements that correspond to elements that relate to rela- 

tionships between notes is calculated as follows. 

• A musical interval is defined as the difference between pitches of notes ni and ni+1: 
 

pitch(ni+1) − pitch(ni). 

The complexity of a musical interval is computed using the musicplectic complexity 

weight mapping function Oin as follows: 

bi,in = Oin(pitch(ni+1) − pitch(ni)|bi = (ni, Bi), bi+1 = (ni+1, Bi+1). 

• The duration of a musical interval is determined as the inter-onset-inteval, or the 

difference between the onset times of notes ni and ni+1: 

 
onset(ni+1) − onset(ni). 

The complexity of a musical interval’s duration is computed using the musicplectic 

complexity weight mapping function Oioi as follows: 

bi,ioi = Oioi(onset(ni+1) − onset(ni)|bi = (ni, Bi), bi+1 = (ni+1, Bi+1). 

• The shifting distance required to play a musical note interval is determined by the 
distance (in frets) between notes ni and ni+1: 

 
\ fret(ni+1) − fret(ni) \ 

where \ a \ is the absolute value of a. The complexity of a musical interval’s shifting 

distance is computed using the musicplectic complexity weight mapping function Osd 

as follows: 

bi,sd = Osd(|fret(ni+1) − fret(ni)|)|bi = (ni, Bi), bi+1 = (ni+1, Bi+1). 

• The playing position of the musical note interval is determined by the greater of the 

fret position between notes ni and ni+1. If ni is played on a the same or higher fret 

than ni+1, the playing complexity is calculated by Ofpi for fret(ni). If ni+1 is played 
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dicressendo if d ∈ Bi > d ∈ Bi+1, 

  

 

on a higher fret than ni, the playing complexity is calculated by Ofpi for fret(ni+1): 

 
 

bi,fpi 

 
 

= Ofpi 

 
 

(Bi, B 

 
 

 
i+1 ) = 

Ofp(fret(ni)) if fret(ni) ≥ fret(ni+1), 

Of p(fret(ni+1)) if fret(ni) < fret(ni+1), 

 

(6.4) 

 

• The dynamics of a musical interval is determined by comparing the dynamic adorned 

to note bi with the dynamic adorned to bi+1. If there is an increase in loudness, the 

complexity of a crescendo is applied to the musical interval, if there is a decrease, the 

complexity of a diminuendo is applied. If there is no change in volume the complexity 

of the dynamic adorned to both bi and bi is used. 
 
 
 

bi,di = Odi(Bi, Bi+1) = didiminuendo if d ∈ Bi < d ∈ Bi+1, 

did if d ∈ Bi = d ∈ Bi+1, 

(6.5) 

 

where d is the dynamic adornment, dix is the complexity weight value for dynamic 

x and where bi = (ni, Bi), bi+1 = (ni+1, Bi+1). 

• The key signature complexity of a musical interval is determined by: 
 

bi,ks = Oks(ni)|bi = (ni, Bi). 

• The complexity of the expressive techniques applied across a musical interval is de- 
termined by: 

bi,ei = 
∀t∈Bi∩ei 

 
t 

Oei(t)|bi = (ni, Bi). 

The playing complexity, IC, for the relationships between a pair of notes, bi and bi+1 

(where  bi  =  (ni, Bi),  and  bi  is  the  ith  element  of  sequence  b ∈ 
→−
B ),  is  formed  from  the 

product of each of the musical element groups playing complexities: 

 
IC(bi, bi+1) = bi,in × bi,ioi × bi,fpi × bi,sd × bi,di × bi,ks × bi,ei. 

The total playing complexity for the relationships between a pairs of notes, TIC is 

formed by taking sum of complexity of the relationships between each pair or  notes, 

IC(bi, bi+1): 
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TIC(b) = 

∀bi∈b,i<length(b) 

 
bi 

 
IC(bi, bi+1) 

where length(y) is a function that calculated the length of sequence y and bi is the ith 

element of sequence b ∈ 
→−
B . 

→− 
The playing complexity of a part of,7 or piece of music, played on a bass guitar, b ∈ B , 

is found by adding together the results of TNPC(b) and TIC(b), forming the Bass Guitar 

Musiplectic Equation (BGM): 

 
BGM (b) = TNPC(b) + TIC(b) (6.6) 

 
6.2.4 Using the BGM to calculate playing complexity 

Figure 6.2, outlines one8 of the simplest pieces of bass guitar music: plucking the open E 

string  on  the  instrument.   The  complexity  for  Fig. 6.2  ∈ 
→−
B ,  can  be  calculated  using  the 

BGM as follows: 
 

 

Figure 6.2: An example of plucking the open E string on bass guitar. 
 
 

7By dividing the piece into different sections and applying the BGM equation to each section, the 
complexity of multiple parts, e.g. each bar of a piece can be calculated. 

8Any single note played either as an open string, or between the first and fourth frets, will have the 
same performance complexity. Thus for a standard 4 string bass there are 20 simple performances. 
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• First by finding the product of the playing techniques applied, of which there is one 

technique finger plucking, which within this example assume is the default technique, 

thus making Fig. 6.21,pt = 1. 

• As no articulations or expressive techniques are applied, these techniques are there- 

fore the ‘default’ value of None, thus, Fig. 6.21,et = 1 and Fig. 6.21,at = 1. 

• The dynamic applied is ‘mf’ which is also the ‘default’, thus Fig. 6.21,dy = 1. 

• The tempo of the piece is 85bpm, the ‘default’ tempo, thus Fig. 6.21,bmp = 1. 

• The real time duration of the note is 705ms ((60×1000)/85) which is also the ‘default’, 

thus Fig. 6.21,du = 1. 

• The time signature is 4/4, thus Fig. 6.21,ts = 1, 

• and the note is performed between the open string and the first four frets,  thus     

Fig. 6.21,fp = 1. 

 
Following this, NPC(Fig.6.21 can be calculated by taking the product of each of musical 

groups playing complexities, which is: 

 
NPC(Fig.6.2) = 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 = 1. 

As there is only one note within Fig.6.2, this makes the TNPC(Fig.6.2 = 1. There are 

also no intervals within Fig.6.2, thus TIC(Fig.6.2) = 0. The BGM (Fig.6.2) is therefore: 

 

where Fig.6.2 ∈ 
→−
B . 

BGM (Fig.6.2) = 1 + 0 = 1. 

From here there are two basic ways the complexity of Fig. 6.2 can be increased. The 

first is by changing the playing technique used, for example slapping the open E string 

instead of plucking it, as shown in Figure 6.3. The second is by increasing the number of 

plucked notes, as shown in Figure 6.3. Thus the complexity of a performance increases 

with the number of notes, and the performance techniques used to play those notes. 
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Figure 6.3: An example of slapping the open E string on bass guitar. 
 
 
 
 
 

 

Figure 6.4: An example of plucking the open E string on bass guitar multiple times. 
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As demonstration of increasing the complexity through changing playing techniques, 

the complexity of Figure 6.3 is calculated as follows. First, the new playing technique  

is accounted for with Fig. 6.31,pt = ptslap, where ptslap is the complexity weight value for 

the ‘slap’ playing technique. As no other technques are applied no other value adjust- 

ments to the product of each of musical groups playing complexities is required. Therefore 

NPC(Fig.6.3) is: 

 
NPC(Fig.6.31) = ptslap × 1 × 1 × 1 × 1 × 1 × 1 × 1 = ptslap, 

where Fig.6.31 ∈ Fig.6.3, and Fig.6.3 ∈ 
→−
B .  Thus, 

BGM (Fig.6.3) = ptslap + 0 = ptslap, 

where  where  Fig.6.3  ∈  
→−
B .    This  means  that  the  playing  complexity  of  Fig.6.3,  is  the 

complexity weight value of the slap playing technique, ptslap. 

The complexity of Figure 6.4 is calculated slightly differently. Both notes Fig. 6.41 ∈ B 

and Fig. 6.42 ∈ B are the same, thus, 

NPC(Figure 6.41) = NPC(Figure 6.42) = NPC(Fig.6.21) = 1. 
 

Therefore, 

 

where Fig. 6.4 ∈ 
→−
B . 

 
TNPC(Fig. 6.4) = 1 + 1 = 2, 

The addition of a second note, now means that there is a musical interval (a unison) 

and relationship between the two notes that contribute to the interval complexity, IC and 

total interval complexity TIC equations. The complexity of the relationship (interval) 

between the two notes in Figure 6.4 is calculated as follows: 

• The complexity of the interval between Fig. 6.41 and Fig. 6.42 is: 

Fig. 6.41,in = pitch(Fig. 6.42) − pitch(Fig. 6.41) = 1 

as the pitches of both notes are the same, the interval is thus zero which has a 

complexity weight value of one. 

• The complexity of the duration of the musical interval is: 
 

Fig. 6.41,ioi = onset(Fig. 6.42) − onset(Fig. 6.41) = 1 
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as the inter-onset-interval between notes Fig. 6.41 and Fig. 6.42 is 705ms, which has  

a complexity weight of one. 

• No shifting between the notes is required thus Fig. 6.41,sd = 1 

• Both notes are played within the same area of the fretboard, thus Fig. 6.41,fpi = 1 

• The same dynamic is applied to both notes, thus Fig. 6.41,di = 1 

• The key signature of the piece is C major, thus Fig. 6.41,ks = 1 

• note expression is applied to the musical interval, thus Fig. 6.41,et = 1 

IC(Fig. 6.41, Fig. 6.42) can be calculated as follows: 

 
IC(Fig. 6.41, Fig. 6.42) = 1 × 1 × 1 × 1 × 1 × 1 × 1 = 1. 

As there is only one interval, TIC(Fig. 6.4) = 1, therefore BGM (Fig. 6.4) is: 

 

where Fig. 6.4 ∈ 
→−
B . 

BGM (Fig. 6.4) = 2 + 1 = 3, 

 

 
 

 
Figure 6.5: An example of slapping, then plucking the open E string on bass guitar. 
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When both methods of increasing playing complexity is applied, e.g. as demonstrated 

in  Figure  6.5,  both  the  TNPC  value  and  the  TIC  values  change.   Within  Fig. 6.5  ∈ 
→−
B 

the  playing  complexity  of  the  first  note,  is  the  same  as  performance  Fig. 6.3 ∈ 
→−
B  and  the 

second is the same as performance Fig.  ?? ∈ 
→−
B .  Thus, 

TNPC(Fig. 6.5) = NPC(Fig. 6.31) + NPC(Fig. ??1) = ptslap + 1, 

where Fig. 6.5 ∈ 
→−
B , Fig. 6.31 ∈ B, Fig. ??1 ∈ B. 

The intervals within Fig. 6.5 are the same intervals within Fig. 6.4. Thus, 

 
TIC(Fig. 6.5) = TIC(Fig. 6.4) = 1. 

where Fig. 6.5 ∈ 
→−
B  and Fig. 6.4

→−
B .  Thus, 

BGM (Fig. 6.5) = ptslap + 1 + 1 = ptslap + 2. 

These simple examples have been presented to demonstrate how the BGM calculation 

is used to calculate the playing complexity of a piece of music played on a bass guitar. From 

the examples it is hopefully clear to the reader how how playing complexity is calculated 

using the BGM calculation and how the complexity of different musical elements contribute 

to the playing complexity of a piece of music. The changes to both the number of notes 

(and not demonstrated: timings, durations etc.) and musical playing elements result in 

changes to the playing complexity. 

 
6.3 Determining Weights from Playing competences 

Bass players’ self-reported playing competences were collected in Section 4.3.4. This com- 

petence information has been used to determine the value for the complexity weights for 

all musical elements, in each of the important musical element groups. A measure of the 

relative complexity between two elements, (a) and (b), has been created, based on the 

probability of the element (a) being performed to different competence level than element 

(b). When comparing two elements, the element that is more complex is the element that  

is more likely to be performed with a lower competence level. The probability that an ele- 

ment will be performed with a lower level of competence forms the basis of the complexity 

weight values. When calculating these probabilities the difference in competence levels is 

not being compared, neither is the absolute competence level that a participant reported. 
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Within Chapter 4, competencies were tested to ensure that as playing experience in- 

creases, so does technical competence of a player. In addition to this it is being assumed 

that a player’s competence in playing (level) of simpler techniques should increase faster 

than more complex techniques.   It has also been assumed that,  at least initially,  play-     

ers may prefer to focus on the simpler techniques first, not being able to, or wanting to 

commit to learning more complex techniques. Players then build higher levels of compe- 

tence in simpler techniques first, compared to more complex techniques. Following these 

assumptions: 

• It should take more experience to obtain the same competence level in a more complex 
technique as one has in a simpler technique. 

• The more players that have not been able to obtain the same level of competence in 

certain techniques compared to other techniques is being taken as an indication of 

the technique being more complex than the other ones it has been compared to. 

Two methods have been used to calculate the probability that the level of competence 

that a technique will be performed with, will be of a lower level, when compared to the 

competence level of another technique. The first method is the probability of a participant 

reporting that they have less competence in one technique compared to another, regardless 

of playing experience. The second method also accounts for playing experience, measured 

by total playing time (see equation 4.1 in Chapter 4). This was to account for the fact that 

competence in certain techniques is obtained at different rates. If an element is reported to 

have a lower competence level than other techniques by a participant with a high level of 

experience, then it is more likely that element is more complex to play, and the probability 

that it is more likely to be performed with a lower competence level should then reflect 

this. 

The following constraints and rules have been placed upon the values of complexity 

weights, and for how some musical elements are classified within their group: 

1. The more complex a musical element is, the higher the value of its complexity weight. 

2. For a group of musical elements there is an element,  considered as the most basic,  

or is an accepted element that will usually be learnt first, due to its relatively low 

complexity. These elements will be referred to as the ‘default’ element of the musical 

element group they are in. 

3. Each complexity weight has a single value or can be reduced to a single value that  

can be used within the TPC equation. 
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4. A value of zero should only be assigned if a musical element has absolutely no playing 

complexity associated with it.9 

5. Negative complexity weights should only be assigned if the element acts to simplify 

the performance for the player. 

For point two, two examples of this are ‘C major’ in the key signature musical element 

group and ‘4/4’ in the time signature musical element group. The ‘default’ element of each 

musical element group has been selected to reflect (where possible) the technique/elements 

that form the ‘default’ performance outlined in Section 3.4.8. The ‘default’ element is 

specified for each group in Table 6.1. The ‘default’ element is also a special case, in that it 

(ideally) has a complexity value equal to one. Setting the ‘default’ element’s complexity to  

a value of one was a convention used by Holder et al. (2015), to account for the fact that,  

for all musical elements, including the ‘default’, an exact measure of the complexity for is 

not known.  Quantifying each elements’ complexity in precise terms is beyond the scope   

of this work. Thus this convention acts as a compromise, by acting as a grounding point 

that enables the relative difference in complexities of musical elements to be a quantifiable 

way of specifying their complexity. Also, neither of these scenarios outlined in points four 

and five present themselves for the musical elements being considered within this work, 

meaning all complexity weights have positive, non-zero values. 

 
6.3.1 Calculating Competence Probabilities 

Musical elements were categorised forming the musical element groups, shown in Table 6.1. 

Within each group, each element’s competence level was compared to each of the other 

element’s competence levels. To compare competence levels, each level was assigned a 

numerical value from one to  five,  with:  None  = 1,  Low  = 2,  Moderate  = 3,  High  = 4  

and Complete = 5. It was decided that a basic comparison function would be used that 

returned a one if the reported competence level of a technique was lower than the technique 

it was being compared to, and zero if not.10 This equation is outlined as follows: 

f (a , b ) = 
1 if ar  < br  

(6.7) 
r r 

0 if ar > br 
 

9This means the elements effectively requires no action on behalf of the player,  and as will be shown         
no such elements have been determined. 

10This approach, at first seems counter intuitive, however, it allows for the probability that an ele- 

ment will be performed with a lower competence level to be competed directly, preventing the need for a 
conversion from the probability that an element will be performed with a higher competence level later on. 
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R   

 

where ar and br are the reported numerical competence of musical element a and b by 

participant r. 

An additional extension to this function was also designed to account for playing expe- 

rience. The total time a person had spent practicing on their instrument was selected as 

the measure for playing experience. This was approximated using the following equation: 

 
tptr = 

yr
∗t∗

r prr 

60 

 
(6.8) 

where tptr is the total playing time for participant r (in hours), yr is the number years 

participant r has played bass for, tr is the number of minutes participant r typically spends 

practicing in each practice session and prr is how many times participant r would practice 

in a year. 

Multiplying the result of Equation 6.7 by the participant’s total playing time tpt allows 

for playing experience to be accounted within the calculation and is computed as follows: 

ft(ar, br) = f (ar, br)∗tptr (6.9) 

where f is the function defined in Equation 6.7, ar and br are the reported numerical 

competence of musical element a and b by participant r. 

The probability, P (a|b), that element a will be performed with a lower competence 

level than element b, is determined as follows: 
 

R 

f (ar, br) 

P (a|b) = r=1 

 
where a ∈ G, b ∈ G, (6.10) 

 

and the probability, Pt(a|b), that, when playing experience is also accounted for, ele- 

ment a will be performed with a lower competence level than element b, is determined as 

follows: 
 

R 

ft(ar, br) 

Pt(a|b) = r=1 

tptr 

r=1 

 
where a ∈ G, b ∈ G, (6.11) 

where ar and br are the playing competence levels reported by participant r for element a 

and element b, G is the musical element group, R is the total number of participants with 

reported playing competence levels for both elements a and b and tptr is the total playing 

R 
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time for participant r. 

For each musical element j in group G two sets of probabilities can be computed. The 

first one uses Equations 6.10, which produces a set of probabilities, Pj,G, indicating the 

probability that element j in group G will be performed with a lower competence level in 

relation to each other element in group G. This is defined as follows: 

 
Pj,G = {P (ej |ek)|∀k ∈ G, j ∈ G, j /= k}. (6.12) 

The second set is computed by using Equation 6.11, which produces a set of probabil- 

ities, Ptj,G, that, accounting for playing experience, indicate the probability that element      

j in group G will be performed with a lower competence level in relation to each other 

element in group G. Both Pj,G and Ptj,G are defined as follows: 

 
P tj,G = {Pt(ej |ek)|∀k ∈ G, j ∈ G, j /= k}. (6.13) 

where in both Pj,G and Ptj,G, P (ej|ek) is the probability that element  ej,  is  per- 

formed at a lower competence level than element ek, as calculated using Equation 6.10, 

and Pt(ej|ek) is the probability that element ej, is performed at a lower competence level 

than element ek accounting for playing experience, as calculated using Equation 6.11, G is 

the musical element group. 

The set of probabilities for each musical element, cannot be used within the BGM cal- 

culation due to there being multiple values that relate to the musical element’s complexity. 

Two approaches were used to convert each musical elements set of probabilities to a single 

value that could be used within the BGM calculation.The first approach elects to use the 

probability that the element will be performed with a lower competence level, than the 

‘default’ element of the element’s musical element group as the singular complexity weight 

value and is described in Section 6.3.2. The second approach uses the geometric mean of 

the element’s set of probabilities as the complexity weight for the element and is described 

in Section 6.3.3. 

 
6.3.2 The first complexity weight consolidation approach 

A singular probability was selected from each elements’ set of probabilities, and then uses 

that element’s complexity weight. For consistency it was decided that all elements within 

the same group would have probabilities selected that were related to the same musical 

element. The selection of this element is then open to preference. However, given the 

second constraint imposed upon the complexity weights, that each musical element group 
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has a ‘default’ element, edefault, it was decided that the selected probability for each element 

ej in the musical element group G would be the probability that the element would be 

performed with a lower competence level than the ‘default’ element, edefault, of the group. 

Within each musical element group, each elements complexity was set to this probability 

value. This formed the set of complexity values for the musical set. These complexity values 

are the ones that the musiplectic complexity weight mapping function, O, maps to. 

Using this approach, two different complexity weight sets were formed for each musical 

element group. One complexity weight set that doesn’t account for playing experience, 

PdefaultG: 

 

PdefaultG = {P (ej |edef ault)|∀j ∈ G, edef ault ∈ G}, (6.14) 

and one set that does, PTdefaultG: 

PT defaultG = {Pt(ej |edef ault)|∀j ∈ G, edef ault ∈ G}. (6.15) 

This approach however has the additional consequence of setting the probability of the 

‘default’ element to 0, which would mean that, if this set of probabilities were used directly 

as a value of complexity, the ‘default’ element of each group would be considered to have 

no performing complexity.   Which is not the case as even if the ‘default’ element might     

be the simplest element in the group, it still imposed some demands on the player, thus 

meaning it has some level of complexity. 

As noted earlier, the ‘default’ element of a group is given the value of one.  However,  

the complexity weight of the ‘default’ element cannot just directly be set to be as this 

would invalidate the magnitude relationships between it and the musical element groups 

other elements’ probability values. Therefore, all probability values require re-scaling by 

the same amount, and in such a way that the ‘default’ element is re-scaled to have a value  

of one. The following method of rescaling was chosen: 
 

1 
sdefault(p) = 

1 − p 

where sdefault is the scaling function and p is the probability value that is to be scaled. 

This scaling function sdefault effectively then acts as a converter between an elements 

probability and the complexity weight value. Applying it to the probability of each element 

in PdefaultG and PTdefaultG, converts these probability sets into sets of complexity 

weights, DG and DTG, for each musical element group G: 
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DG = 

 

sdefault

(
P (ej |edefault)

)

 ∀j ∈ G, edefault ∈ G

 

, 

DTG = 

 

sdefault

(
P t(ej |edefault)

) 
∀j ∈ G, edefault ∈ G

 

. 

These sets conform to the complexity weight constraints outlined earlier, as well as 

maintaining the probability magnitude relationships between elements in each group. This 

approach also produces weights that are in a similar value range to the weights presented by 

Holder et al. (2015). There is also the additional benefit that all elements within a musical 

element group have  a complexity weight  that is greater than or equal to the weight of    

the ‘default’ element of that group, with makes the lowest complexity value possible for a 

musical piece analysed equal to one. 

 
6.3.3 The second complexity weight consolidation approach 

The second approach consolidating all the probabilities for each element into a singular 

value by taking the average value of all of the element’s probabilities. This consolidation 

was performed by taking the geometric mean of each musical element’s set of probabilities, 

Pj,G and Ptj,G, which related to how likely the element is to be played with a lower 

competence level than each other element in its musical element group. The geometric 

mean, not accounting for playing experience,  x̄, is as follows: 

x̄j = 

 

ej |ej ∈G,ek∈G,j 

 
      1  
|G\ej | 

P (ej|ek) 

k 

 

, (6.16) 

where  x̄j  is  the  geometric  mean  of  the  probabilities  that  element  j  is  performed  with  a 

lower competence level than each other element k in its musical element group G, not 

accounting for playing experience.  This produces sets of mean probabilities P̄G  for musical 

element group G: 

 

P̄G = {x̄j |∀j ∈ G}. 

And, for when playing experience was accounted, x¯t, is as follows: 
 

x̄ tj = 

 

ej |ej ∈G,ek∈G,j/=k 

 
      1  
|G\ej | 

P t(ej |ek)  , 
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where x̄ tj is the geometric mean of the probabilities that element j is performed with a lower 

competence level than each other element k in its musical element group G, accounting for 

playing experience. Which produces the set of mean probabilities, accounting for playing 

experience, P̄ tG for musical element group G as follows: 

 
P̄ tG = {x̄tj |∀j ∈ G} 

Both P̄G  and P̄ tG have a single positive, non-zero, complexity weight for each musical 

element within each musical element group.  It could also be argued that by  accounting  

for all relationships between elements, these probability sets become more generalised. 

Both  P̄G  and  P̄ tG also  conform  to  all  but  one  of  the  constraints  that  have  been  imposed 

upon the complexity weights, albeit with each value being extremely small, compared with 

the complexity weight values presented by Holder et al. (2015). These extremely small 

complexity weights are due to the values being computed based on probabilities, (which 

have values between zero and one).  The one constraint that is not,  or at least very likely  

to have been met with this approach, is the ‘default’ element within each musical element 

group having a complexity weight of one. Therefore, to guarantee the ‘default’ element’s 

complexity weight within each musical elements group has a value of one, and to have the 

complexity weights in general be of a more similar magnitude to Holder et al. (2015), the 

following additional scaling was applied. 

To set the complexity value of the ‘default’ element to one, the mean probabilities sets  

P̄G  and  P̄ tG,  for  each  musical  element  group  G,  where  rescaled.   This  rescaled  was 

achieved by dividing every element in each set by the ‘default’ element’s raw geometric 

mean complexity weight value. Dividing the ‘default’ element’s raw geometric mean com- 

plexity weight value by itself, guarantees it to have the value of one. This scaling approach 

forms the following complexity weight sets for musical element group G: 
 

M = 
    x̄j   

j G, default G   , (6.17) 
x̄def ault 

 

MTG 

 
x¯tj 

= 
x̄tdef ault 

 j ∈ G, default ∈ G

 

(6.18) 

Both MG and MTG conform to all the complexity weight constraints, however, once 

computed for all musical element groups it was found that range of complexity weight 

values produced were much greater than the complexity weight values within the D and 

DT complexity weight sets derived in Section 6.3.2, as well as those by Holder et al. 
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(2015). There were also large discrepancies in the complexity weight value ranges between 

different musical element groups. Some groups had maximum complexity weights that 

were 150 times greater than the complexity weight value of ‘default’ element, while in 

other groups the maximum was only 10 times greater. 

Due to this variance in complexity weight values between each of the musical element 

groups, additional scaling was chosen to be applied across all the groups so that the absolute 

variance (whilst maintaining the magnitude relationships) was reduced and the complexity 

weight value ranges more closely matched those by Holder et al. (2015). A log scaling 

method was selected as the magnitude relationships between elements would be retained. 

Using log2 rescaled the values to be similar to the complexity weights outlined by Holder  

et al. (2015). However, directly applying log2 as a scaling factor could result in some 

complexity weights for elements being re-scaled into negative values, when the elements 

themselves do not conform to the criteria that would allow for their complexity weights to 

be negative. To keep all complexity weights positive, the following scaling equation was 

used: 

 
sgm(x) = log2(x + 1) (6.19) 

Applying the scaling function sgm to the complexity weight values of the MG complexity 

weight set results in complexity weight set MSG: 

 
MSG = {sgm 

    x̄e  
( )  e G, default G . (6.20) 

default 

Applying the scaling function sgm to the complexity weight values of the MTG com- 

plexity weight set results in complexity weight set MTSG: 

 
MTSG = {sgm 

    x̄e  
( )  e G, default G . (6.21) 

default 

 

6.3.4 Information Encoded in each Complexity Weight Set 

Four different complexity weight sets have been determined, and two of these have addi- 

tionally been re-scaled to make a total of six different complexity weight sets. These are: 

D, DT , M , MT , MS and MST . Each of these complexity weight sets encode different 

information metrics that related to playing complexity. 

The M complexity weight set is the most generalised complexity weight set. The 

complexity weights are aggregated values based on the geometric mean of each probability 

that an element would be played at a lower competence level. Playing experience is also 
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not accounted for within the set as playing competence probabilities were based only on the 

number of bass players. Therefore each individual complexity weight could be considered 

as a generalised complexity value for each musical element. The MS is the same, however 

all musical elements are scaled. The MT weight set is similar to the M weight set, however 

player experience is accounted for in the probability calculation. The MTS complexity 

weight set is the scaled version of the MT complexity weight set. 

The D and DT weight sets differ as these are the complexities relative to a pre- 

determined or ‘default’ musical element.   These sets could then be seen as accounting     

for the additional complexity beyond what would be required by playing a piece using the 

‘default’ musical elements. Similarly to MS and MTS complexity weight sets, the DT set 

accounts for playing experience within the complexity values and whereas the D set does 

not. 

 
6.3.5 Duration Weights 

The duration musical element group differs from the others as its elements are continuous 

variables, whereas other groups of elements are categorical11. The competence level in- 

formation used to produce the complexity weights for the duration musical element group 

were however not collected directly from duration competence levels. Instead, the compe- 

tence levels were based on the competence of playing along to different click tracks (see 

Section 4.2.1). The durations between click values were selected by taking the duration 

(ms) at 10% incremental values in the range between 200ms and 1666.66ms. This selection 

of duration times was selected because humans only perceive a difference in tempo when 

there is at least a 10% difference (Momeni, 2012; London, 2004) in tempos, thus allowing 

non-sampled bpm values to be rounded to the closest value and still providing a valid 

complexity weight. 

The durations between click values can be converted into a measure of tempo, for 

example, converting a duration value, expressed in milliseconds (ms), to beats per minute 

(BPM): 

BPM = 
durations between clicks 

(6.22) 

This allows for the creation of the tempo musical element group. The complexity 

weights do not need to be changed in this conversion, as the actions they represent the 

complexity for have not changed, only the label given to it. BPM values that do not have 

a matching value within the tempo musical element group can be rounded to the closest 

11There are some groups that contain elements that are integer values, however these are always con- 
strained to a set range, and therefore can be treated as categorical. 



166 
 

 

matching element, and its complexity used, as and change of less than 10% to the tempo   

is imperceivable to the player (Momeni, 2012; London, 2004). 

Exact note durations can be accounted for by converting their duration (ms) into a 

tempo (bpm) value, and then mapping this onto the complexity weights. However,  as this 

is no longer dealing with tempo,  and instead actual durations,  these cannot be rounded  

to the closest tempo value. There is also an issue with the range of the sampled durations 

between clicks being too limited, as the minimum duration a complexity weight could be 

assigned to is a duration of 200ms. This is the duration of quarter notes played at 300bpm, 

eighth notes played at a tempo of 150bpm or 16th notes played at a tempo of 75bpm. This 

means that if these notes are played at faster tempos e.g. 16th notes at 100bpm, as is 

common in basslines within the genre of funk, or 8th notes played at 200bpm, as is common 

to the genre of bebop, they will not have a duration complexity weight that reflects the 

relative complexity of playing notes with such short durations. 

To overcome this limitation and to predict complexity weights for duration that fall 

outside the sampled range, second order polynomial functions were fitted to each of the 

tempo (bpm) musical element group complexity weight sets: Mbpm and MTbpm, Dbpm and 

DTbpm. The MSbpm and MTSbpm are formed by scaling the values in the Mbpm and MTbpm 

complexity weight sets respectively, thus could be calculated from polynomials fitted to 

the Mbpm and MTbpm sets. These polynomials, are presented in Appendix Figures E.1 to 

E.5, with the equations of the fitted polynomials are outlined in Table  6.2 along with the  

R2 values. 

The results of applying these equations form the complexity weights for the Mdu and 

MTdu, Ddu and DTdu musical element groups. The results from the Mdu and MTdu 

equations can then be scaled to form the complexity weights of the MSdu and MTSdu 

musical element groups respectively. Second order polynomials were chosen, as higher 

order polynomials either had too steep a curve or resulted in negative complexity weights 

for duration values that were shorter than 120ms. 

Also note that the musical element groups for inter-onset-interval are also measured in 

milliseconds (ms) meaning that Mdu = Mioi, MSdu = MSioi, MTdu = MTioi, MTSdu = 

MTSioi, Ddu = Dioi and DTdu = DTioi. 

 
6.3.6 Accounting for missing shift positions 

When producing the weights for the shifting distance, there were no competences reported 

for not shifting, or a shifting distance of zero. No shift, or a shift distance of zero frets 

should have been the ‘default’ element for this group. To include it in the musical element 
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group, its complexity weight was predicted as follows. 

Shift distances are integer values, with linear relationships. Thus, fitting a trend line to 

the data and taking the value where x = 0 provided a usable prediction of the complexity 

weight for a shift distance of zero. Once this value was found it, and the other shift distance 

complexity weights, needed to be rescaled so that a shift distance of zero would have a 

weight of one. As with duration complexity weight sets, polynomial equations were fitted 

to shifting distance complexity weight sets: Msd and MTsd, Dsd and DTsd. 

Polynomial equations could be easily fitted to the Msd and MTsd complexity weight 

sets. However fitting a polynomial to the Dsd and DTsd sets was more complicated due 

to the fact that the weight for shifting a distance of 12 frets was dramatically lower than 

shifting by 11 frets or shifting by a distance greater than 13 frets.12 As such the weights 

for shifting 12 frets, or 13+ frets are not included in the polynomial fitting for the Dsd 

and DTsd sets. The plots of the polynomial equations for each set of complexity weights 

are shown in Appendix Figures E.6, E.7, E.8 and E.9. Table 6.3 outlines each equation, 

the x = 0 value and the R2 information for each shifting distance complexity weight set. 

After predicting the value for shifting by zero frets, all sets of complexity weights were 

then rescaled so that a shift distance of zero frets had a complexity weight of one. 

 
6.3.7 Accounting for missing dynamics 

The competences for ‘fff’ and ‘ppp’ dynamics were also not asked for in the survey con- 

ducted in Section 4.2.1. The complexity weights for both these dynamics were predicted 

12This is not an unexpected phenomenon, as on a bass the  neck  has  fret  markers  (that  are  usually  a 
single dot), that are normally positioned on the 3rd, 5th, 7th,  9th,  15th,  17th,  19th,  21st frets.  Additionally 
as the the 12th and 24th frets indicate an increase in pitch by  a whole octave along the string, these frets      
will be marked with two dots, making it even easier to quickly identify their location on the neck, and thus 
making it easier to accurately shift/play notes on the 12th fret than other frets. 

 
Table 6.2: Polynomial Equations and their R2 values and the duration complexity weights 
they were fitted to. 

Complexity  Weight  Set Polynomial  Equation  R2 

Mdu y = 9.51 0.141x + 6.99 10−4x2 0.965 

MTdu y = 14.8 0.224x + 1.06 10−3x2 0.963 

Ddu y = 1.6 0.011x + 6.18 10−5x2 0.984 

DTdu y = 1.43 7.38 10−3x + 3.99 10−5x2 0.978 
  60000  

note’s  duration (ms) x = 
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Table 6.3: Polynomial Equations to calculate the complexity weight for Shift distance of 0 
frets. 

 

Complexity  Weight  Set    x = 0 Polynomial Fit R2 

 

Msd 0.997 y = 0.997 − 0.52x + 1.31x2 − 1.16x3 + 0.48x4 − 0.0979x5 + 0.0108x6 − 6.12 × 104x7 + 1.41 × 105x8 0.998 

MTsd 0.916   y = 0.916 + 0.43x − 0.364x2 + 0.093x3 0.997 
Dsd 0.942   y = 0.942 + 0.934x + 5.56 × 10−3x2 0.987 

DTsd 0.961   y = 0.961 + 0.0115x + 6.25 × 10−3x2 0.995 
 

 

following a similar approach to how the complexity weight for a shift distance of zero frets 

was predicted. To predict the complexity weight for ‘fff’, polynomial functions were fitted 

to the complexity weights for ‘mf’, ‘f’ and ‘ff’ for each of the dynamic complexity weight 

sets: Mdy, MTdy, Ddy and DTdy. Similarly, to predict the complexity weight for ‘ppp’, 

polynomial functions were fitted to the complexity weights for ‘mp’, ‘p’ and ‘pp’ from the 

same complexity weights sets. Figures E.10, E.11, E.12 and E.13 show the polynomial 

functions fitted to predict the complexity weights for ‘fff’ and ‘ppp’ for each of the four dy- 

namic complexity weight sets:  Mdy, MTdy, Ddy and DTdy.  Table  6.4 provides a summary 

of each polynomial equation and the complexity weights for the dynamic elements ‘fff’ and 

‘ppp’, determined by setting x = 0, within the polynomial as well as the corresponding R2 

for each complexity weight  set.  As ‘fff’ and ‘ppp’ are not ‘default’ elements, no rescaling   

of complexity weights were required and these elements and their complexity values could 

be directly added to the dynamic complexity weight sets. 

Table 6.4: Polynomial equations and predicted complexity weights for the dynamic ele- 
ments ‘fff’ and ‘ppp’ 

 
 

y = 2.85 − 0.278x + 0.72x2 

Dynamic Element Complexity Weight Set x = 0 Polynomial Fit R2 

Mdy 1.33 
2.85 

y = 1.33 − 0.245x + 0.0456x2 1 
1 

‘fff’ 
MTdy 

Ddy 

DTdy 

1.1 

3.19 

y = 1.11 + 0.0894x + 0.0173x2 

y = 3.19 − 3.04x + 0.768x2 

1 

1 

Mdy 

‘ppp’ 
MTdy 

1.55 

4.42 

y = 1.55 − 0.479x + 0.119x2 

y = 4.42 − 3.05x + 0.655x2 

1 

1 
Ddy 

DTdy 

1.2 
3.91 

y = 1.2 − 0.0943x + 0.013x2 

y = 3.91 − 3.36x + 0.813x2 

1 
1 
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6.3.8 Complexity Weights 

The final sets of complexity weights for each group of musical elements are shown in 

Appendix Tables E.2 to E.11.13 

 
6.4 Complexity Feature Space Approach for Investigating and 

Calculating Playing Complexity 

A disadvantage of the musiplectic calculation is that it only provides a singular measure of 

playing complexity for the part or piece of music it is calculating the complexity for. Pieces 

of music can be complex because of different reasons. The musiplectic calculation does not 

provide such granular accounts of complexity. To further aid investigations into playing 

complexity, and by extension virtuosity, as well as to enable possible sub-classifications of 

pieces based on specific complexity traits,14 a more detailed analysis method is desirable. 

Even more so if such an analysis method could also provide a measure of the overall 

complexity along with this detailed information. 

 
6.4.1 Constructing the Feature Space 

A complexity feature space is proposed that is constructed from an n-dimensional Euclidean 

space, where each dimension is formed from the total sum of the complexity weights from 

each musical element group that are applied to each note and interval of a part of, or whole 

musical piece. As there are 15 different musical element groups, the Euclidean complexity 

feature space has 15 dimensions. Within this space each piece’s complexity is represented 

by the following complexity vector: 

 

cb = 
(

ptb, dub, bpmb, ksb, tsb, etb, atb, dyb, fpb, inb, ioib, sdb, dib, fpib, eib

) 
(6.23) 

where: 

• cb is the complexity vector for bassline b, 

• ptb is the musical element group vector for the playing techniques musical element 

group, 

13It can be seen that some complexity weight values are much higher than others. This is because the 
complexity of those techniques relative to the others within their group is much higher. 

14Such sub-classifications, or other musicological investigations are left open for other to follow. 
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• dub is the musical element group vector for the note durations musical element group, 

• bpmb is the musical element group vector for the beats per minute musical element 

group, 

• ksb is the musical element group vector for the key signatures musical element group, 

• tsb is the musical element group vector for the time signatures musical element group, 

• etb is the musical element group vector for the expressive techniques applies to notes 

musical element group, 

• atb is the musical element group vector for the of articulation techniques musical 

element group, 

• dyb is the musical element group vector for the note dynamics musical element group, 

• fpb is the musical element group vector for the note fret positions musical element 

group, 

• inb is the musical element group vector for the musical intervals musical element 

group, 

• ioib is the musical element group vector for the each inter-onset-interval between 

intervals musical element group, 

• sdb is the musical element group vector for the shifting distances musical element 

group, 

• dib is the musical element group vector for the interval dynamics musical element 

group, 

• fpib is the musical element group vector for the fret positions of the intervals musical 

element group and 

• eib is the musical element group vector for the expressive techniques applied to the 

intervals musical element group, in bassline b. 

To calculate the value of these dimensions first a function fe,G is required: 

 
 

fG,e (note) = 
WG,e if element e|e ∈ G is applied to a note 

1 otherwise 
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that is applied to a notated musical note, note, to check if the element e from music 

element group G is applied to note n. The complexity weight, WG,e, of element e, in 

musical element group G, from complexity weight set W is returned if the element is 

applied to note n. Where W ∈∈ {D, DT, M, MT, MS, MTS} is a placeholder for one of 

the six defined complexity weight sets: D, DT , M , MT , MS or MTS.  If the element is 

not applied to a note, the value of 1 is returned by the function. This is because, multiple 

elements from the pt, et and at musical element groups may be applied to a single note. 

To be able to check for multiple elements from the same group, function fG,e will need 

to be applied to note n for all elements in musical element group G. Then the results 

from each call of fG,e for the musical element group G are then required to be multiplied 

together. Multiplying these values together, follows the same reasoning as musiplectics, in 

that because multiple techniques are being enacted on the note, the complexity of those 

techniques is compounded by the complexity of the other techniques also being applied 

to the note. Having fG,e return a value of 1, allows for the following operation to be 

performed to check for the application of all elements from all musical element groups. As 

for the groups where only one element of the group can be applied to a note, the returned 

complexity weight for that element would be multiplied by 1(|G|−1), where |G| is the total 

number of elements (cardinality) in musical element group G, and where multiple elements 

from a musical element group are applied to a note, each of those elements’ complexity 

weights are multiplied together correctly. This then can be summarised by the following 

operation: 
 

∀e∈G 

 
e∈G 

 
fG,e(n) (6.24) 

The musical element group vectors required by the complexity  vector  cb in  Equa- 

tion 6.23 can then be computed as follows: 

 

 
 

Gb = 
  ∀e∈G  

fG,e(noten)|n ∈ b, G ∈ musical element groups (6.25) 

n=1 e∈G 

musical element groups = {pt, du, bpm, ks, ts, et, at, dy, fp, in, ioi, ds, di, fpi, ei} (6.26) 

where G is the musical element group vector for the notes in bassline b, for the musical 

element group G, n is the note number, N is the total number of notes in bassline b, e is 

the element from musical element group G and fG,e is the function that checks if element  

e, from musical element group G has been applied to noten. 

N 
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6.4.2 Calculating Complexity from a Feature Space Complexity Vector 

By using a euclidean feature space, the magnitude of the complexity vector for each piece 

of music, \ cb \, could then be used as a measure for the overall complexity. Comparisons 

between different pieces’ complexities can also be done through comparing each piece’s 

complexity vector.  Calculating the playing complexity of a part of, or piece of music will  

be referred to as the Euclidean Vector Complexity (EVC) calculation. 

 
6.5 Complexity Calculation Model Implementation 

The Bass Guitar Musiplectic (BGM) and Euclidean Vector Complexity (EVC) calcula- 

tions have been implemented as part of Adorn-o, using the python programming lan- 

guage. The both calculate_playing_complexity(), found here: https://github.com/ 

callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/calculate_functions.py,                  is 

a combined implementation of both calculations. The calculate_playing_complexity() 

function calculates the complexity of a bass guitar performance that has been specified 

using the Bass Guitar Performance Ontology data structures (see Section 3.4.9). The type 

of complexity calculations to use and complexity weight set are specified as a function 

parameters. 

The musicplectic complexity weight mapping functions are also implemented as part 

of the Adorn-o, and found here: https://github.com/callumgoddard/Adorn-o/blob/ 

main/Adorn_o/evaluation/musiplectics.py. These functions operate as look up tables 

(implemented using python dictionary data structures). 

 
6.6 Evaluating the Models of Playing Complexity 

The Bass Guitar Musiplectic (BGM) and Euclidean Vector Complexity (EVC) calculations  

are two proposed methods to calculate the complexity of performing a piece of music on 

the bass guitar. Each method  uses a set of musical  element complexity weights  within  

the calculation, of which six different sets (M, MS, MT, MTS, D and DT) have also been 

proposed. This produces 12 different models for calculating the playing complexity of a 

piece of music on the bass guitar. 

Each of the proposed models have been used to calculate the complexities of an existing 

educational syllabus of bass guitar music. The results of these calculations have then been 

tested against the following hypotheses: 

H1: Within the grade syllabus there is a significant positive linear correlation between the 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/calculate_functions.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/calculate_functions.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/evaluation/musiplectics.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/evaluation/musiplectics.py
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calculated complexity of a piece and its grade level. The null hypothesis H0 is that 

there is not a significant positive linear correlation between the calculated complexity 

of a piece and its grade level. The was tested with Pearson’s r and summarised as: 

 
H11 : r > .00, p <= .05 (6.27) 

 
H0 : r <= .00,  p > .05 (6.28) 

 
H2: There are no large discrepancies in the monotonic relationship between the calculated 

complexity of a piece and its grade level. The null hypothesis H0 is that there are 

large discrepancies in the monotonic relationship between the calculated complexity 

of a piece of a piece and its grade level. This was tested with Spearman’s ρ and 

summarised as: 

H2 : ρ > .00, p <= .05 (6.29) 

H0 : ρ <= .00, p > .05 (6.30) 

 
H3: There is a high proportion of complexity values that follow a strong positive monotonic 

relationship between the calculated complexity of a piece and its grade level. The 

null hypothesis H0 is that there are a high proportion of complexity values that do 

not have a strong positive monotonic relationship between the calculated complexity 

of a piece and its grade level. This was test with Kendall’s τ and summarised as: 

 
H3 : τ > .00,  p <= .05 (6.31) 

 
H0 : τ <= .00,  p > .05 (6.32) 

 
As it is unknown what criteria was used in producing the grade pieces within the 

syllabus, three different measures for the calculated complexity of each grade were tested 

against each of the hypotheses. These measures were: 

• The highest (maximum) complexity calculated within each grade 

• The mean of the calculated complexities for each grade 

• The calculated complexities for each piece in each grade 

For a calculation to be be considered as an appropriate model for the playing complexity 

of the grade syllabus the following is required: 

1. To be able to reject the null hypotheses for all three hypotheses. 
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2. Have a high high (.70 to .90) to very high (.90 to 1.) (Hinkel et al., 2003) correlation 

between the calculated complexity of the pieces, and their grade levels. 

Following these two conditions, only calculations where there was a significant, p <= .05, 

correlation value of r >= .70, ρ >= .70, and τ >= .70 would be considered as appropriate 

models for bass playing complexity, as described by the grade syllabus. 

 
6.6.1 Method 

The Trinity College London’s Rock and Pop 2015-2017 Bass Guitar Exam Syllabus (Trin-  

ity Rock and Pop Exams, 2012a,b,c,d,e,f,g,h,i) was selected as the comparison syllabus. 

Complexities were calculated for two randomly selected15 monophonic pieces from each 

Grade Level, and both the complexity value of the full piece, and the complexity of the  

value of the bar with the highest complexity value (peak bar complexity) were calculated. 

This resulted in 24 separate complexities being calculated for each piece, summarised in 

Table 6.5. 

Some Grade Levels did not have at least two monophonic pieces to select from. In such 

cases suitable polyphonic pieces that could be converted to monophonic without a loss of 

melodic information were instead added to the random selection. It was determined that 

melodic information would not be reduced if: 

• The root, or bass note of a chord was removed16 from a two-note chord voicing, i.e. 

double stops, or in 3- or 4-note chord voicing where the octave of the root is also 

played. An example is shown in Figure 6.6. 

• That any droning notes, would be cut to not overlap with any melodic notes thus 

producing a monophonic sequence of notes. An example is shown in Figure 6.7. 

 
The final selection of suitable pieces determined for each grade, along with the location 

of any polyphonic to monophonic conversions is provided in Table 6.6. Each of these pieces 

were transcribed into Guitar Pro 6, and exported into the Guitar Pro 5 file format. The 

Guitar Pro 5 files were then analysed using a python guitar pro file parsing library17, 

15Two pieces were selected using the python random.sample() function, as the transcription overhead 
for all monophonic pieces was too great to use the full grade syllabus exhaustively. 

16Whilst traditionally the bass plays the root notes of the chords, to reinforce, or define the harmony 
within a song, this is just that, harmonic content. The melodic information is  more  commonly  contained 
within the upper voicing of a chord, thus the decision was made to remove  the root note of a chord.  For  
chords of 3 or more notes, these were manually inspected to determine the melodic movement within their 
context, which was then retained. Any pieces where  there  was  ambiguous  melodic  notes  within  chords 
were deemed inappropriate for conversion and where not considered for selection. 

17pyguitarpro 
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Table 6.5: Complexity Calculations 
 

Performed on Calculation Complexity Weight Set 
 

M 

MS 

 
 
 

Full Piece Complexity 

 
 
 
 
 
 
 
 
 
 

Peak Bar Complexity 

BGM 

 
 
 

 
EVC 

 
 
 
 

BGM 

 
 
 

 
EVC 

MT 

MTS 

D 

DT 

M 

MS 

MT 

MTS 

D 

DT 

M 

MS 

MT 

MTS 

D 

DT 

M 

MS 

MT 

MTS 

D 

DT 
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(a) Two Note Chord Voicing 

(b) Monophonic conversion of a Two 
Note chord Voicing 

Figure 6.6: Two note chord voice converted to monophonic melody. 
 
 
 
 
 
 
 
 
 

 

 

 
(a) Drone note 

(b) Monophonic conversion of a drone 
note 

Figure 6.7: Drone note converted to monophonic melody. 
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Table 6.6: Grade Pieces Selected 
 

Grade Name Polyphonic to Monophonic edits Source 

0 
Blitzkreig Bop - Ramones 

Folsom Prison Blues - Johnny Cash 

 (Trinity Rock and Pop Exams, 2012i, p.6) 

(Trinity Rock and Pop Exams, 2012i, p.6) 

1 
I Believe I’ll Dust My Broom 

Shakin’ All Over - Johnny Kidd And The Pirates 

 (Trinity Rock and Pop Exams, 2012a, p.14-15) 

(Trinity Rock and Pop Exams, 2012a, p.5) 

2 
Comfortably Numb - Pink Floyd 

Need You Tonight - INXS 

 (Trinity Rock and Pop Exams, 2012b, p.10-11) 

(Trinity Rock and Pop Exams, 2012b, p.6-8) 

3 
All Day and All of the Night - The Kinks 

Addicted To Love - Robert Palmer 

 (Trinity Rock and Pop Exams, 2012c, p.10-11) 

(Trinity Rock and Pop Exams, 2012c, p.18-19) 

4 
Everyday Is Like Sunday - Morrissey 

Would? - Alice in Chains 

 (Trinity Rock and Pop Exams, 2012d, p.6-8) 

(Trinity Rock and Pop Exams, 2012d, p.4-5) 

5 
I Get High On You - Sly Stone 

My Generation - The Who 

Bar - 14 (Trinity Rock and Pop Exams, 2012e, p.23-25) 

(Trinity Rock and Pop Exams, 2012e, p.4-6) 

6 
Scratch Your Name -  Noisettes 

Won’t Get Fooled Again - The Who 

Bars: 77 - 79, 81-83, 85- 87, 89-93 

Bar 20 

(Trinity Rock and Pop Exams, 2012f, p.15-19) 

(Trinity Rock and Pop Exams, 2012f, p.4-11) 

7 
Hysteria - Muse 

The Sun Goes Down (Living it Up) - Level 42 
 

Bars: 64 - 80 

(Trinity Rock and Pop Exams, 2012g, p.13-16) 

(Trinity Rock and Pop Exams, 2012g, p.8-12) 

8 
Love Games - Level 42 

6:00 - Dream Theatre 

Bar: 82 - 83 (Trinity Rock and Pop Exams, 2012h, p.15-19) 

(Trinity Rock and Pop Exams, 2012h, p.8-13) 

 

 
before the complexity calculations were computed using a python implementation of each 

calculation. 

 
6.6.2 Results 

The complexities calculated for each full grade piece by  the BGM, and EVC  calculations  

are shown in Table 6.8 and Table  6.10, and for peak bar calculations in Table  6.9 and 

6.11 respectively. The complexity results for each calculation and complexity weight set 

were then tested using the Shapiro-Wilk test to determine if the complexities followed a 

normal distribution. The results are shown in Table 6.7 where the the significance value 

was p <= .005 for all calculations and complexity weight sets. A significant difference 

between each set of grade piece complexity and the expected normal distribution indicates 

that the results are not normally distributed. The complexities were visually inspected 

using scatterplots, shown in Figures 6.8 to 6.11, where it can be seen that each follows a 

positive linear relationship with the grade levels. 

Pearson’s r is a measure of the linear relationship between two variables that are both 

measured at an interval or ratio level, have a finite variances and finite covariance, it is  

also sensitive to outliers.   Whilst a normal distribution is not required for Pearson’s r,     

its statistical significance test can be compromised for data with non-normal distributions. 

Spearman’s ρ is a measure of the monotonic relationship between two variables measured at 

an ordinal, interval or ratio level, where the two variables also represent paired observations. 

Spearman’s ρ is sensitive to discrepancies in the ordering between the paired observations. 
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Kendall’s τ is another measure of the monotonic relationship between two variables that 

are measured at an ordinal or continuous level, it is more robust to small discrepancies, 

but more sensitive to larger order discrepancies. Each of the grade pieces’ grade level and 

calculated complexities form a paired observation, where each variable is measured at, at 

least an interval level and, from visual inspection have a linear and monotonic relationship. 

This allows for the correlation between the grade level and calculated complexity to be 

tested using each of the correlation coefficients. However, due to the variables not being 

normally distributed, the statistical significance from Pearson’s r maybe compromised, 

although significance is reported here, this potential compromise is accounted for within 

the discussion. 

The correlation coefficients between the each measure of the grade level’s complex-  

ity and the calculated complexity by each of the 24 complexity calculations is shown in 

Table 6.12. All correlations were computed using the cor.test()18 in R19 using the ap- 

propriate argument for Pearson’s r, Spearman’s ρ and Kendall’s τ correlation coefficients. 

To account for ties when computing the correlation between the calculated complexity of 

all grade pieces and the grade levels the exact argument was set to FALSE. 

When testing H1 : r > .00, p <= .05, for the null hypothesis to be rejected, the 

Pearson’s r between the measure of grade level and the calculated complexity needed to 

be r > .00. When this is the case it indicates that the calculated complexity has linear 

correlation with the measure of grade level complexity. 

When testing H2 : ρ >= .00, p <= .05, for the null hypothesis to be rejected, the 

Spearman’s ρ between the measure of grade level and the calculated complexity needs to 

be ρ >= .00.  When this is the case it indicates that there are no significant discrepancies  

in monotonic relationship between the calculated complexity and the measure of grade 

level complexity. 

When testing H3 : τ >= .00, p <= .05, for the null hypothesis to be rejected, the 

Kendall’s τ between the measure of grade level and the calculated complexity needs to be 

τ >= .00. When this is the case it indicates that there is a low proportion of complexity 

values that do not follow a strong positive monotonic relationship between the calculated 

complexity and the measure of grade level complexity. 

The null hypothesis could not be rejected for hypothesis H1 for the Grade Level’s 

Maximum Piece’s Complexity using the BGM complexity model and the MT complexity 

weight set. This indicates that this measure of complexity of a piece does not have a linear 

relationship with its grade level. The null hypothesis could be rejected, for every other 

18https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor.test 
19https://en.wikipedia.org/wiki/R_(programming_language) 

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/cor.test
https://en.wikipedia.org/wiki/R_(programming_language)
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combination of measures of grade complexity (maximum, mean and all piece complexities 

vs grade level), complexity calculations and complexity weight set. This indicates that  

there is linear, monotonic relationship between these measures of complexity for a piece 

and its grade level. 

An additional step was then to filter the complexity calculations to select only those 

with the correlation coefficients of r >= .70,  ρ >= .70,  and τ >= .70 and both ρ and     

τ having a statistical significance of p < .05. Pearson’s r statistical significance was not 

considered due to it potentially being compromised due to the non-normal distribution 

of variables. The measures of complexity: Grade Level’s Mean Complexity, Grade Level’s 

Maximum Complexity, All Grade Piece Complexities, where both the null hypothesis could 

be rejected for all three hypothesis, and r >= .70, ρ >= .70, p < .05 , and τ >= .70, p < 

.05 are shown in Table 6.13. Complexity calculations where all three measures fulfilled this 

requirement are considered appropriate models for the measure of the Grade Syllabus’s 

complexity. 
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Table 6.7: Shapiro-Wilk test results for each set of grade piece complexities calculated by 
each complexity calculation and complexity weight set. 

 

Performed on Calculation 
Complexity 

W p value 
 Weight Set  

 BGM M 0.510 <.001 
 BGM MS 0.809 .002 
 BGM MT 0.401 <.001 
 BGM MTS 0.767 <.001 
 BGM D 0.804 .002 

Full Piece BGM DT 0.804 .002 

Complexity EVC M 0.801 .002 
 EVC MS 0.800 .002 
 EVC MT 0.833 .005 
 EVC MTS 0.836 .005 
 EVC D 0.820 .003 
 EVC DT 0.827 .004 

 BGM M 0.712 <.001 

 BGM MS 0.801 .002 
 BGM MT 0.660 <.001 
 BGM MTS 0.803 .002 
 BGM D 0.804 .002 

Peak Bar BGM DT 0.814 .002 

Complexity EVC M 0.861 .001 

 EVC MS 0.841 .006 
 EVC MT 0.845 .007 
 EVC MTS 0.826 .004 
 EVC D 0.841 .006 
 EVC DT 0.845 .007 

 



Figure 6.8: Plot of the full piece complexities for each grade piece calculated using the BGM complexity calculation.  
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Figure 6.9: Plot of the peak bar complexities for each grade piece calculated using the BGM complexity calculation  
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Figure 6.10: Plot of the full piece complexities for each grade piece calculated using the EVC complexity calculation  
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Figure 6.11: Plot of the peak bar complexities for each grade piece calculated using the EVC complexity calculation  
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Table 6.8: Complexity Calculation Results from Analysis of Full Grade Pieces Using The 
Bass Guitar Musiplectic Calculation. 

 

Grade Piece 
Complexity Weight Set Used 

 M MS MT MTS D DT 

Blitzkreig Bop 604 233 926 265 308 245 

0 Folsom Prison Blues 9, 336 1, 386 13, 312 1, 723 339 286 

Grade 0 Mean 4, 970 809 7, 119 994 323 266 

I Believe I’ll Dust My Broom 1, 487 768 2, 295 981 420 375 

1 Shakin’ All Over 3, 059 674 4, 804 794 546 407 

Grade 1 Mean 2, 273 721 3, 549 887 483 391 

Comfortably Numb 3, 206 832 5, 651 1, 051 357 293 

2 Need You Tonight 6, 969 1, 716 14, 246 2, 397 780 600 

Grade 2 Mean 5, 087 1, 274 9, 949 1, 724 568 446 

All Day and All of the Night 8, 804 1, 404 19, 667 2, 073 1, 309 899 

3 Addicted To Love 6, 901 1, 803 10, 972 2, 114 1, 293 935 

Grade 3 Mean 7, 853 1, 604 15, 319 2, 094 1, 301 917 

Everyday Is Like Sunday 25, 695 4, 383 60, 296 6, 160 2, 959 2, 084 

4 Would 71, 129 5, 183 205, 108 7, 723 11, 576 7, 348 

Grade 4 Mean 48, 412 4, 783 132, 702 6, 941 7, 268 4, 716 

I Get High On You 37, 740 2, 710 58, 952 2, 928 10, 141 6, 318 

5 My Generation 125, 170 4, 514 353, 131 6, 670 5, 855 3, 489 

Grade 5 Mean 81, 455 3, 612 206, 042 4, 799 7, 998 4, 904 

Won’t Get Fooled Again 227, 974 9, 674 620, 189 14, 281 5, 385 2, 939 

6 Scratch Your Name 731, 741 24, 116 3, 016, 019 40, 682 12, 869 7, 012 

Grade 6 Mean 479, 858 16, 895 1, 818, 104 27, 481 9, 127 4, 975 

Hysteria 167, 059 12, 155 397, 271 16, 488 23, 314 13, 537 

7 The Sun Goes Down 

(Living it Up) 

289, 347 10, 147 827, 963 14, 110 11, 997 6, 559 

Grade 7 Mean 228, 203 11, 151 612, 617 15, 299 17, 656 10, 048 

Love Games 182, 983 7, 972 513, 920 11, 679 37, 235 19, 582 

8 6:00 1, 871, 116 16, 740 11, 465, 605 23, 088 19, 287 10, 943 

Grade 8 Mean 1, 027, 049 12, 356 5, 989, 763 17, 383 28, 261 15, 263 
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Table 6.9: Peak Bar Complexity Calculation Results from Analysis of Grade Pieces Using 
The Bass Guitar Musiplectic Calculation. 

 

Grade Piece 
Complexity Weight Set Used 

 M MS MT MTS D DT 

Blitzkreig Bop 34 10 65 12 13 11 

0 Folsom Prison Blues 258 38 365 48 8 7 

Grade 0 Mean 146 24 215 30 11 9 

I Believe I’ll Dust My Broom 97 34 158 44 15 12 

1 Shakin’ All Over 381 76 617 92 47 34 

Grade 1 Mean 239 55 388 68 31 23 

Comfortably Numb 356 72 601 89 30 23 

2 Need You Tonight 187 53 369 69 22 17 

Grade 2 Mean 272 62 485 79 26 20 

All Day and All of the Night 507 78 1, 411 126 41 27 

3 Addicted To Love 266 65 463 78 37 26 

Grade 3 Mean 387 72 937 102 39 27 

Everyday Is Like Sunday 985 145 2, 937 241 70 46 

4 Would 3, 168 204 8, 859 303 292 180 

Grade 4 Mean 2, 076 174 5, 898 272 181 113 

I Get High On You 4, 365 215 7, 107 238 322 201 

5 My Generation 17, 376 318 56, 268 516 500 271 

Grade 5 Mean 10, 870 267 31, 687 377 411 236 

Won’t Get Fooled Again 41, 380 752 113, 588 1, 066 621 273 

6 Scratch Your Name 39, 013 881 166, 937 1, 325 392 200 

Grade 6 Mean 40, 196 816 140, 263 1, 195 506 237 

Hysteria 7, 093 340 21, 933 489 479 215 

7 The Sun Goes Down 

(Living it Up) 

57, 747 639 180, 831 951 1, 208 575 

Grade 7 Mean 32, 420 490 101, 382 720 844 395 

Love Games 16, 201 130 38, 381 190 554 292 

8 6:00 18, 063 373 31, 648 566 362 206 

Grade 8 Mean 17, 132 251 35, 015 378 458 249 
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Table 6.10: Complexity Calculation Results from Analysis of Full Grade Pieces Using The 
Euclidean Vector Complexity Calculation. 

 

Grade Piece 
Complexity Weight Set Used 

 M MS MT MTS D DT 

Blitzkreig Bop 669 409 816 435 322 311 

0 Folsom Prison Blues 2, 772 704 2, 843 745 414 402 

Grade 0 Mean 1, 720 556 1, 829 590 368 356 

I Believe I’ll Dust My Broom 827 648 953 683 538 530 

1 Shakin’ All Over 2, 295 627 3, 193 679 481 424 

Grade 1 Mean 1, 561 637 2, 073 681 510 477 

Comfortably Numb 952 441 1, 317 477 335 321 

2 Need You Tonight 2, 756 1, 044 3, 785 1, 145 766 709 

Grade 2 Mean 1, 854 743 2, 551 811 551 515 

All Day and All of the Night 5, 013 1, 216 7, 080 1, 374 960 829 

3 Addicted To Love 4, 164 1, 557 5, 608 1, 689 1, 132 1, 032 

Grade 3 Mean 4, 589 1, 387 6, 344 1, 531 1, 046 930 

Everyday Is Like Sunday 7, 381 2, 512 10, 186 2, 804 1, 895 1, 714 

4 Would 66, 091 5, 544 96, 955 6, 112 7, 378 5, 233 

Grade 4 Mean 36, 736 4, 028 53, 570 4, 458 4, 637 3, 474 

I Get High On You 56, 503 4, 310 83, 028 4, 650 6, 143 4, 293 

5 My Generation 22, 508 2, 409 32, 876 2, 624 2, 862 2, 186 

Grade 5 Mean 39, 506 3, 359 57, 952 3, 637 4, 503 3, 239 

Won’t Get Fooled Again 15, 365 2, 898 22, 025 3, 206 2, 485 2, 031 

6 Scratch Your Name 28, 118 4, 721 40, 685 5, 292 4, 076 3, 260 

Grade 6 Mean 21, 742 3, 809 31, 355 4, 249 3, 281 2, 645 

Hysteria 97, 010 11, 333 140, 938 12, 387 11, 927 8, 809 

7 The Sun Goes Down 

(Living it Up) 

42, 967 4, 783 62, 648 5, 148 5, 325 3, 978 

Grade 7 Mean 69, 989 8, 058 101, 793 8, 768 8, 626 6, 394 

Love Games 114, 629 10, 458 167, 805 11, 386 13, 220 9, 458 

8 6:00 82, 395 8, 490 120, 225 9, 196 9, 742 7, 095 

Grade 8 Mean 98, 512 9, 474 144, 015 10, 291 11, 481 8, 277 

 



188  

 
 
 
 

Table 6.11: Peak Bar Complexity Calculation Results from Analysis of Grade Pieces Using 
The Euclidean Vector Complexity Calculation. 

 

Grade Piece 
Complexity Weight Set Used 

 M MS MT MTS D DT 

Blitzkreig Bop 93 86 100 86 105 105 

0 Folsom Prison Blues 99 95 99 95 95 95 

Grade 0 Mean 96 91 99 91 100 100 

I Believe I’ll Dust My Broom 187 184 190 185 186 186 

1 Shakin’ All Over 207 127 289 127 137 137 

Grade 1 Mean 197 156 239 156 162 162 

Comfortably Numb 102 100 139 101 103 103 

2 Need You Tonight 250 231 289 237 230 229 

Grade 2 Mean 176 166 214 169 167 166 

All Day and All of the Night 255 226 304 239 252 249 

3 Addicted To Love 377 355 430 374 378 373 

Grade 3 Mean 316 290 367 306 315 311 

Everyday Is Like Sunday 582 565 693 615 595 583 

4 Would 1, 727 895 2, 610 925 1, 009 1, 001 

Grade 4 Mean 1, 155 730 1, 652 770 802 792 

I Get High On You 1, 853 656 2, 727 695 758 749 

5 My Generation 2, 124 467 3, 157 515 510 498 

Grade 5 Mean 1, 989 561 2, 942 605 634 624 

Won’t Get Fooled Again 2, 607 712 8, 394 842 653 604 

6 Scratch Your Name 1, 231 905 4, 051 1, 033 911 870 

Grade 6 Mean 1, 919 809 6, 223 937 782 737 

Hysteria 3, 414 2, 387 5, 233 2, 832 2, 402 2, 246 

7 The Sun Goes Down 

(Living it Up) 

3, 904 981 5, 849 1, 085 992 951 

Grade 7 Mean 3, 659 1, 684 5, 541 1, 959 1, 697 1, 598 

Love Games 2, 009 1, 725 3, 546 1, 985 1, 965 1, 904 

8 6:00 1, 940 1, 615 6, 496 1, 894 1, 664 1, 592 

Grade 8 Mean 1, 974 1, 670 5, 021 1, 940 1, 815 1, 748 

 



 

 
 
 
 
 
 
 
 
 

Table 6.12: Correlations Coefficients Between Measures of Grade Level Complexity and Complexity Calculation Results with 
Significance Levels. 

 
 

 
Performed on Calculation Complexity Weight Set 

Grade Levels’ Pieces Grade Levels’ Pieces  All Grade Levels 

Maximum Complexity  Mean Complexity Pieces Complexities 
 r df(7) ρ df(7) τ df(7) r df(7) ρ df(7) τ df(7) r df(16) ρ df(16) τ df(16) 

 BGM M .73∗ .88∗∗ .78∗∗ .77∗ .97∗∗∗ .89∗∗∗ .57.∗ .90∗∗∗ .78∗∗∗ 

  MS .79∗ .92∗∗ .78∗∗ .84∗∗ .92∗∗∗ .78∗∗ .75∗∗∗ .92∗∗∗ .78∗∗∗ 

  MT .66 .97∗∗∗ .89∗∗∗ .69∗ .97∗∗∗ .89∗∗∗ .48∗ .92∗∗∗ .79∗∗∗ 

  MT S .73∗ .90∗∗ .72∗∗ .79∗ .92∗∗∗ .78∗∗ .70∗∗ .91∗∗∗ .75∗∗∗ 

  D .90∗∗∗ .98∗∗∗ .94∗∗∗ .90∗∗∗ 1.∗∗∗ 1.∗∗∗ .82∗∗∗ .95∗∗∗ .85∗∗∗ 

Full Piece  DT .91∗∗∗ .95∗∗∗ .89∗∗∗ .91∗∗∗ 1.∗∗∗ 1.∗∗∗ .82∗∗∗ .93∗∗∗ .82∗∗∗ 

Complexity EVC M .87∗∗ .88∗∗ .72∗∗ .88∗∗ .93∗∗∗ .83∗∗ .80∗∗∗ .90∗∗∗ .77∗∗∗ 

  MS .91∗∗∗ .92∗∗ .78∗∗ .92∗∗∗ .95∗∗∗ .89∗∗∗ .85∗∗∗ .92∗∗∗ .78∗∗∗ 

  MT .87∗∗ .93∗∗∗ .83∗∗∗ .88∗∗ .95∗∗∗ .89∗∗∗ .80∗∗∗ .92∗∗∗ .79∗∗∗ 

  MT S .91∗∗∗ .92∗∗ .78∗∗ .92∗∗∗ .95∗∗∗ .89∗∗∗ .85∗∗∗ .91∗∗∗ .77∗∗∗ 

  D .89∗∗ .93∗∗∗ .83∗∗∗ .90∗∗∗ .93∗∗∗ .83∗∗ .82∗∗∗ .92∗∗∗ .79∗∗∗ 

  DT .90∗∗∗ .93∗∗∗ .83∗∗∗ .91∗∗∗ .93∗∗∗ .83∗∗ .83∗∗∗ .92∗∗∗ .79∗∗∗ 

 BGM M .74∗ .93∗∗∗ .83∗∗∗ .76∗ .93∗∗∗ .83∗∗ .65∗∗ .89∗∗∗ .75∗∗∗ 

  MS .76∗ .92∗∗ .78∗∗ .69∗ .88∗∗ .78∗∗ .66∗∗ .85∗∗∗ .70∗∗∗ 

  MT .68∗ .88∗∗ .78∗∗ .67∗ .93∗∗∗ .83∗∗ .57.∗ .88∗∗∗ .74∗∗∗ 

  MT S .77∗ .92∗∗ .78∗∗ .70∗ .93∗∗∗ .83∗∗ .66∗∗ .83∗∗∗ .66∗∗∗ 

  D .83∗∗ .90∗∗ .78∗∗ .87∗∗ .93∗∗∗ .83∗∗ .77∗∗∗ .90∗∗∗ .78∗∗∗ 

Peak Bar  DT .85∗∗ .93∗∗∗ .83∗∗∗ .89∗∗ .97∗∗∗ .89∗∗∗ .79∗∗∗ .92∗∗∗ .79∗∗∗ 

Complexity EVC M .86∗∗ .90∗∗ .83∗∗∗ .87∗∗ .90∗∗∗ .78∗∗ .84∗∗∗ .91∗∗∗ .79∗∗∗ 

  MS .87∗∗ .97∗∗∗ .89∗∗∗ .92∗∗∗ .97∗∗∗ .89∗∗∗ .85∗∗∗ .95∗∗∗ .85∗∗∗ 

  MT .89∗∗ .93∗∗∗ .83∗∗∗ .91∗∗∗ .92∗∗∗ .78∗∗ .84∗∗∗ .94∗∗∗ .84∗∗∗ 

  MT S .86∗∗ .97∗∗∗ .89∗∗∗ .92∗∗∗ .97∗∗∗ .89∗∗∗ .84∗∗∗ .96∗∗∗ .86∗∗∗ 

  D .89∗∗ .93∗∗∗ .83∗∗∗ .92∗∗∗ .95∗∗∗ .89∗∗∗ .85∗∗∗ .92∗∗∗ .81∗∗∗ 

  DT .90∗∗ .93∗∗∗ .83∗∗∗ .92∗∗∗ .95∗∗∗ .89∗∗∗ .85∗∗∗ .92∗∗∗ .81∗∗∗ 

p < .05, p < .01, p < .001 

Low = correlation coefficient between .30 and .50 

Moderate = correlation coefficient between .50 and .70 

High = correlation coefficient between .70 and .90 

Very High = correlation coefficient between .90 an 1. 
Perfect = correlation coefficient of  1. 

1
8

9 
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Table 6.13 
 

Appropriate Model for the Complexity for: 

Performed on Calculation Complexity Weight Set Grade Level’s Maximum 
Piece’s Complexity 

Grade Level’s 
Mean Complexity 

All Grade 
Pieces Complexity 

 BGM M Yes Yes  

  MS Yes Yes Yes 
  MT    

  MTS Yes Yes  

  D Yes Yes Yes 

Full Piece  DT Yes Yes Yes 

Complexity EVC M Yes Yes Yes 
  MS Yes Yes Yes 
  MT Yes Yes Yes 
  MTS Yes Yes Yes 
  D Yes Yes Yes 

  DT Yes Yes Yes 

 BGM M Yes Yes  

  MS Yes   

  MT    

  MTS Yes   

  D Yes Yes Yes 

Peak Bar  DT Yes Yes Yes 

Complexity EVC M Yes Yes Yes 
  MS Yes Yes Yes 
  MT Yes Yes Yes 
  MTS Yes Yes Yes 
  D Yes Yes Yes 

  DT Yes Yes Yes 
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6.6.3 Discussion 

Only the full piece mean complexities calculated using the Bass Guitar Musiplectic (BGM) 

calculation with the MT complexity weight set, did not reject the null hypothesis for H1 

due to the statistic significance level being p > .05. A visual inspection of the complexities 

indicate that this may be due to the sensitivities that Pearson’s r has to outliers, as the 

complexities for the Grade 0 piece ‘Folsom Prison Blues’ and the Grade 0 Mean, are both 

higher than the complexities of Grades 1, 2 and 3. The null hypotheses were all able to be 

rejected for every other complexity calculation and for each measure of the Trinity Rock and 

Pop Exams (2012i,a,b,c,d,e,f,g,h) Bass Guitar Grade Syllabus’ complexity. This indicates, 

with the exception of mean grade complexities calculated by the BGM calculation using the 

MT complexity weight set, there is a positive linear, monotonic relationship between the 

complexity calculations and the playing complexities implicitly defined by grade syllabus. 

Suitable models for the grade syllabus were selected from complexity calculations which,   

for all three measures of the grade syllabus’ complexity, had all three correlation coefficient 

values greater than .70. Using the Euclidean  Vector  Complexity  (EVC) Calculation with 

any complexity weight set fulfilled this criteria, along with the BGM calculation using the 

D and DT complexity weight sets. All suitable models were also valid when measure the 

complexity of the full piece, or based on the complexity of the peak bar, which suggests 

that each of these calculations are adequate for measuring the complexity of smaller parts 

of a piece, along side its full complexity. 

When comparing these results to that of Holder et al. (2015), whilst less pieces have 

been compared, there does appear to be similarities between their results and the BGM 

calculation results. Notably this is in the variation seen in complexities found between 

pieces of higher grades, where some pieces in a lower grade were measured as having a 

higher complexity than pieces within higher grades. This phenomenon is also present for 

the BGM calculation when using the M , MS, MT and MTS complexity results. This is 

also, however, the likeliest reason for these complexity weight sets not matching the criteria 

required to be a considered as an appropriate model of the grade syllabus’ complexity. 

Each complexity calculate also appears to have different sensitivities to the complexity 

weight  sets being used.  It would appear that the BGM calculation is more sensitive to   

how  the musical elements relationships are defined within the complexity weights.  This  

is inferred from the fact that when using the equation it did not produce adequate re-   

sults when using the M , MS, MT and MTS complexity weight sets, where as the EVC 

calculation did.  This property of the BGM calculation does make sense given the nature    

of the calculation, where complexity weights are multiplied together amplifying smaller 
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inaccuracies in the complexity sets relationships. The EVC calculation by  contrast does  

not appear to be as sensitive, likely due to the fact complexity weights are not multiplied 

together across musical element groups. 

There are also some differences between the calculations when the overall complexity 

of a piece, or if the complexity of the peak bar is correlated with the measures of the grade 

syllabus’ complexity. For complexities calculated over the full piece, using either the D or 

DT : 

• The BGM calculation had: 

– a better overall correlation with the different measures of complexity, 

– consistently higher correlation coefficients calculated for the grade level’s mean 

complexities, maximum complexities and for all grade piece’s complexities com- 

pared to the EVC calculation using the same complexity weight sets. 

• The EVC calculation had: 

– a consistently higher correlation coefficients for the peak bar complexities. 

 
This could be indicative of the EVC calculation being more independent from a pieces 

overall length, or being better at calculating the most complex aspects within a piece. 

Either way, it suggests that playing complexity  information  encoded  within  the D and 

DT complexity weights more closely aligns to that of the Trinity Rock and Pop Exams 

(2012i,a,b,c,d,e,f,g,h) Bass Guitar Grade Syllabus, that the other complexity weight sets. 

To narrow down the complexity calculations further both the BGM calculation using  

the D complexity weight set, or the EVC calculation using the DT complexity weight set 

have the best overall concordances with the different ways complexity was measured. The 

BGM calculation using the D complexity weight set appears more suitable for calculating 

the complexity of full pieces, as indicated by the perfect correlations for the grade’s mean 

complexity for full pieces. While the EVC calculation using the DT complexity weight set 

appears more suitable when measuring the complexity based on the most complex parts 

of a piece is a more appropriate measure of playing complexity. 
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6.7 Modelling Perceived Difficulty with Complexity 

Equations 

The perceptual difficulty study conducted in Chapter 5 produced a perceptual difficulty 

ordering for a set of audio excerpts. To investigate if the complexity calculations could also 

be used to rank pieces of music performed on a bass guitar by perceived difficulty, the 24 

sets of complexity calculations, as indicated in Table 6.5, have been used to calculate the 

complexity of each audio excerpt used within the study. The ordering produced by each 

calculation were correlated with the partial orders (formed from the votes where significance 

was found) and the full orders (based on the raw votes) presented in Table 5.7. 

The following hypotheses were tested for each of the 24 calculated complexities: 

H1: The percentage of concordant pairs between the audio excerpt complexity rank and 

the partial order ranking is 100%. Which is summarised as: 

 
H1 : percentage match = 100% (6.33) 

 
H0 : percentage match < 100% (6.34) 

 
H2: There is a very high correlation (value between .90 and 1. Hinkel et al. (2003)), 

between the calculated complexity rank and the non-significant perceived difficulty 

rank. Which is summarised as: 

 
H2 : .90 <= ρ <= 1. and .90 <= τ <= 1. (6.35) 

 
H0 : ρ < .90 or τ < .90 (6.36) 

 
A calculation will be considered to model perceived difficulty where, for each hypothesis, 

the null hypothesis can be rejected. 
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6.7.1 Method 

First the complexity of the excerpts was calculated. For  this,  monophonic transcriptions  

of the excerpts in guitar pro file format (GP5) were produced. Each audio excerpt was 

transcribed into Guitar Pro 6 where they were then be exported as GP5 files for analysis. 

The transcriptions of each of the excerpts are shown in Figures E.14 to E.21. 

Of these excerpts two contained polyphony, those being Aww (Figure E.15), Ahe (Fig- 

ure E.20) and one, Amm (Figure E.19) was  performed with a triplet feel.  It was  possible   

to convert Aww and Ahe to monophonic pieces using the approach outlined in Section 6.6. 

The monophonic versions of these can be seen in Figure E.22 and E.23 respectively. 

The Amm excerpt is the only excerpt with a triplet feel. The playing complexity cannot 

be calculated for it using any  of the complexity equations to the cognitive loading effect    

of ‘feeling’ a swing feel, not being accounted for within any of the models. As such any 

complexities calculated would be inaccurate, and comparisons made would be unfair. Thus, 

Amm was excluded from the analysis. 

Both the partial orders and non-significant full orders were readjusted to account for the 

exclusion of the Amm excerpt. Participant groups where both a partial or non-significant 

full order could not be formed were also removed from the analysis. Participant groups 

with identical partial orders were then consolidated to form monophonic significant rela- 

tionships. The order of excerpts, the number assigned to the consolidated monophonic 

significant relationships and the participant groups that were consolidated are shown in 

Table 6.14. 

The same was done for the non-significant full orders, forming unique rankings of the 

monophonic excerpts (unique monophonic ranking). The unique monophonic ranking, the 

participant groups rankings that were consolidated into the monophonic ranking, and the 

ranking order for the unique monophonic ranking are shown in Table 6.15. 
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Table 6.14: Monophonic Significant Relationships, The Participant Groups with the Sig- 
nificant Relationship and the Partial Orders for each relationship. 

 
 
 
 
 

Non-Expert Bass Players 

 
 

 
2 Other  Instrument Players 

 
 
 
 
 
 
 

7 Non-Teaching  Other Instrument Players 
Atl Asy Aww Acs 

Asz  Ahe 

 
 

 

Table 6.15: Unique Monophonic Ranking Group and the  Participant  Groups  that  have 
that mono ranking. 

 

Unique Mono Ranking Participant groups Rank 

 
 
 
 
 
 
 
 
 

Non-Expert Bass Players 

Significant Participant Groups    Order  

Relationship with the Significant Partial Orders 5 4 3 2 1 

Full 
Ordinary Listeners 

Non-Expert Musicians 
Bass Players 

1 

  
 

 
Atl 

 
 
 

Asy 

 
 
 

Aww Asz 

 
 

 
Acs Ary Ahe 

Teachers   
Bass Teachers 

Non-teaching Bass Players 

     

  Atl Asy Aww Asz Ary Ahe 

   Aww Acs 

3 Non-expert Bass Teachers Atl Asy Aww Asz Ary Acs Ahe 

4 Other Instrument Teachers  Atl Asy Aww Asz Ahe Ary Acs 

5 
Non-teachers      

Non-Teachers who play an Instrument 
Atl Asy Aww Asz Acs Ary Ahe 

6 
Non-teaching Non-expert Bass Players Atl Asy Aww Asz Acs Ary Ahe 

   Ary Ahe 

 

Group Name with the ranking 7 6 5 4 3 2 1 

Full 

Ordinary Listeners 

Only Musicians 

1, 2, 4  Non-Expert Musicians 

Other Instrument Players 

Non-teachers 

Non-teachers who play an instrument 

 
 
 
Atl 

 
 

 
Asy 

 
 

 
Aww 

 
 

 
Asz 

 
 

 
Acs 

 
 

 
Ary 

 
 
 

Ahe 

3 
Bass Players 

Non-teaching Bass Players 

Atl Asy Aww Asz Ary Acs Ahe 

5 Expert Listener Teachers Asy Atl Aww Ahe Asz Acs Ary 

6 Bass Teachers Atl Asy Aww Asz Ahe Ary Acs 

7 Non-teaching Non-expert Bass Players Atl Asy Aww Asz (Acs Ary)  Ahe 

8 Non-Teaching Other Instrument Players Atl Asy Aww Acs Asz Ary Ahe 
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6.7.2 Results 

For each audio excerpt, the complexities were calculated using the 24 complexity calculation 

methods from Table 6.5. The calculated complexities are shown in Table 6.16. Scatterplots, 

grouped by playing calculation, and if the complexity was based on the whole audio excerpt, 

or the peak bar are shown in Figures 6.12 to 6.14, respectively. 

The percentage of concordant pairs between the audio excerpt complexity rank and 

the partial order rankings are shown in Table 6.17. The percentage of concordant pairs  

was used to to test hypothesis H1 : percentage match = 100%. A summary of cases where 

the null hypothesis, H0 : percentage match < 100%, could be rejected for H1 is shown in 

Table 6.18. 

The Unique Ranking Orders formed from participant’s responses, each checked to make 

sure that the assumptions for calculating the Spearman’s ρ and Kendall’s τ were upheld.  

As both sets of orders are formed from paired observations, measured on a ordinal (for 

participants responses), interval scale (for complexity values), and as seen in the scatter- 

plots, have a monotonic relationship, the assumptions were upheld. This therefore allowed 

for Spearman’s ρ and Kendall’s τ to be used to calculated the correlation coefficients. 

The Spearman’s ρ and Kendall’s τ correlation coefficients where calculated using the 

cor.test() R function in the same manner explained in Section 6.6.2, and are shown in 

Table 6.19. These correlation coefficients where then used to test hypothesis H2 : .90 <= 

ρ <= 1. and .90 <= τ <= 1.. The instances where the null hypothesis, H0 : ρ < .90 or τ < 

.90, could be rejected for H2 are summarised in Table 6.20. 

Table 6.21 and 6.22 show the complexity calculations and complexity weight sets that 

best match the audio excerpt difficulty rankings for each participant group. The complexity 

calculations and complexity weight sets from the consolidated partial and full orders where 

the null hypotheses for both H1 and H2 could be rejected, were mapped back to each 

individual participant group. Cases where it was not possible to reject the null hypothesis 

for either H1 or H2 are noted within the table. 
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Figure 6.12: Plot of the full piece excerpt complexities calculated using the BGM com- 
plexity calculation 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

Figure 6.13: Plot of the peak bar excerpt complexities calculated using the BGM complex- 
ity calculation 
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Figure 6.14: Plot of the full piece excerpt complexities calculated using the EVC complexity 
calculation 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

 
 

             

 

 

Figure 6.15: Plot of the peak bar excerpt complexities calculated using the EVC complexity 
calculation 
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Table 6.16: Complexity Calculation Results for Audio Excerpts 
 

Performed  on    Calculation    
Complexity Audio Excerpt 

 Weight Atl Asy Aww Asz Acs Ary Ahe 

 BGM M 517 255, 015 45, 047 971, 398 23, 920 471, 053 263, 606 
  MS 171 1, 763 884 3, 465 1, 007 3, 983 1, 110 
  MT 889 488, 264 217, 882 3, 442, 405 109, 450 1, 214, 108 952, 919 
  MT S 229 2, 227 1, 281 6, 104 1, 960 5, 215 1, 682 
  D 889 488, 264 217, 882 3, 442, 405 109, 450 1, 214, 108 952, 919 

Full Piece  DT 57 181 351 833 815 3, 517 2, 748 

Complexity EVC M 84 480 620 1, 903 1, 593 7, 996 6, 016 
  MS 76 108 315 408 545 969 1, 807 
  MT 159 1, 221 3, 446 5, 997 7, 592 13, 113 29, 210 
  MT S 98 156 351 353 391 576 347 
  D 76 108 315 408 545 969 1, 807 

  DT 69 86 241 288 379 669 1, 175 

 BGM M 163 97, 989 28, 422 319, 810 10, 603 128, 005 128, 945 

  MS 51 617 350 1, 067 308 1, 047 498 
  MT 294 182, 861 169, 712 1, 186, 518 76, 387 358, 716 470, 135 
  MT S 70 637 546 1, 903 959 1, 383 758 
  D 24 153 276 544 962 2, 139 2, 857 

Peak Bar  DT 16 55 131 235 471 943 1, 285 

Complexity EVC M 45 332 742 1, 260 2, 887 2, 950 8, 921 

  MS 35 44 109 116 146 151 130 
  MT 55 429 1, 100 1, 817 4, 302 4, 384 13, 395 
  MT S 39 46 121 132 159 169 139 
  D 32 32 100 120 292 303 823 

  DT 30 29 84 91 195 205 534 
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Table 6.17: The percentage of concordant pairs between the audio excerpt complexity rank 
and significant partial order rankings. 

 

Performed on Calculation 
Complexity Significant Partial Order Rankings 

 Weight 1 2 3 4 5 6 7 

 BGM M 65% 69% 67% 82% 63% 61% 40% 

  MS 71% 75% 67% 73% 68% 67% 40% 

  MT 65% 69% 67% 82% 63% 61% 40% 

  MTS 65% 69% 67% 73% 58% 61% 40% 
  D 94% 100% 93% 100% 89% 89% 100% 

Full Piece  DT 94% 100% 93% 100% 89% 89% 100% 

Complexity EVC M 100% 100% 100% 100% 100% 100% 100% 

  MS 94% 94% 93% 100% 84% 89% 80% 

  MT 100% 100% 100% 100% 100% 100% 100% 

  MTS 88% 88% 87% 100% 79% 83% 80% 

  D 100% 100% 100% 100% 100% 100% 100% 

  DT 100% 100% 100% 100% 100% 100% 100% 

 BGM M 65% 69% 67% 82% 68% 67% 40% 

  MS 59% 63% 60% 73% 58% 56% 40% 

  MT 65% 69% 67% 82% 68% 67% 40% 

  MTS 76% 81% 80% 91% 68% 72% 60% 
  D 100% 100% 100% 100% 100% 100% 100% 

Peak Bar  DT 100% 100% 100% 100% 100% 100% 100% 

Complexity EVC M 100% 100% 100% 100% 100% 100% 100% 
  MS 100% 100% 100% 100% 89% 94% 100% 

  MT 100% 100% 100% 100% 100% 100% 100% 

  MTS 100% 100% 100% 100% 89% 94% 100% 

  D 100% 100% 100% 100% 100% 100% 100% 

  DT 94% 94% 93% 91% 95% 94% 100% 
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Table 6.18: Complexity Calculations and the Significant Relationship where the null hy- 
pothesis for H1 can be rejected. 

 

Performed on Calculation 
Complexity Significant Relationship 

 Weight Set 1 2 3 4 5 6 7 

 BGM M        

  MS        

  MT        

  MTS        

  D  Yes  Yes   Yes 

Full Piece  DT  Yes  Yes   Yes 

Complexity EVC M Yes Yes Yes Yes Yes Yes Yes 
  MS    Yes    

  MT Yes Yes Yes Yes Yes Yes Yes 
  MTS    Yes    

  D Yes Yes Yes Yes Yes Yes Yes 
  DT Yes Yes Yes Yes Yes Yes Yes 

 BGM M        

  MS        

  MT        

  MTS        

  D Yes Yes Yes Yes Yes Yes Yes 

Peak Bar  DT Yes Yes Yes Yes Yes Yes Yes 

Complexity EVC M Yes Yes Yes Yes Yes Yes Yes 
  MS Yes Yes Yes Yes   Yes 
  MT Yes Yes Yes Yes Yes Yes Yes 
  MTS Yes Yes Yes Yes   Yes 
  D Yes Yes Yes Yes Yes Yes Yes 
  DT       Yes 

 



 

 
 
 

 

Table 6.19: Correlation Coefficients between the Calculated Audio Excerpt Complexities and the Unique Ranking Group 
Orders 

 

Complexity Unique Ranking Group 
Performed on Calculation 

Weight 1,2,4 1,2,4 3 3 5 5 6 6 7 7 8 8 

  
Set ρ df(6) τ df(6) ρ df(6) τ df(6) ρ df(6) τ df(6) ρ df(6) τ df(6) ρ df(6) τ df(6) ρ df(6) τ df(6) 

 BGM M .54 .33 .39 .24 .43 .33 .32 .24 .47 .29 .71 .43 
  MS .50 .43 .36 .33 .50 .43 .43 .33 .43 .39 .61 .52 
  MT .54 .33 .39 .24 .43 .33 .32 .24 .47 .29 .71 .43 
  MTS .36 .24 .29 .14 .50 .43 .43 .33 .32 .20 .46 .33 
  D .93 .81 .82 .71 .82 .62 .79 .71 .88 .78 .96 .90

Full Piece  DT .93 .81 .82 .71 .82 .62 .79 .71 .88 .78 .96 .90

Complexity EVC M 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90
  MS .79 .71 .75 .62 .96 .90 .93 .81 .77 .68 .75 .62 
  MT 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90
  MTS .64 .62 .61 .52 .93 .81 .86 .71 .63 .59 .61 .52 
  D 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90

  DT 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90

 BGM M .57 .43 .46 .33 .32 .24 .29 .14 .52 .39 .75 .52 
  MS .36 .24 .21 .14 .32 .24 .21 .14 .29 .20 .54 .33 
  MT .57 .43 .46 .33 .32 .24 .29 .14 .52 .39 .75 .52 
  MTS .64 .43 .61 .33 .79 .62 .71 .52 .63 .39 .71 .52 
  D 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90

Peak Bar  DT 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90

Complexity EVC M 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90
  MS .89 .81 .86 .71 .93 .81 .96 .90 .88 .78 .82 .71
  MT 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90
  MTS .89 .81 .86 .71 .93 .81 .96 .90 .88 .78 .82 .71
  D 1. 1. .96 .90 .75 .62 .86 .71 .99 .98 .96 .90

  DT .96 .90 .93 .81 .79 .71 .82 .62 .95 .88 .93 .81

p < .05, p < .01, p < .001 

2
0

2 
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Table 6.20: Complexity Calculations and the Unique Rank Group where the null hypothesis 
for H2 can be rejected. 

 

Performed on Calculation 
Complexity Unique Rank Group 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

∗  =  perfect correlation 

 Weight Set 1, 2, 4 3 5 6 7 8 

 BGM M       

  MS       

  MT       

  MTS       

  D      Yes 
Full Piece  DT      Yes 

Complexity EVC M 

MS 

MT 

Yes∗ 

Yes∗ 

Yes 

 
Yes 

 
Yes 

 Yes 

 
Yes 

Yes 

 
Yes 

  MTS       

  D Yes∗ Yes   Yes Yes 
  DT Yes∗ Yes   Yes Yes 

 BGM M       

  MS       

  MT       

  MTS       

  D Yes∗ Yes   Yes Yes 
Peak Bar  DT Yes∗ Yes   Yes Yes 

Complexity EVC M 

MS 

MT 

MTS 

D 

Yes∗ 

Yes∗ 

Yes∗ 

Yes 

Yes 

Yes 

 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 
  DT Yes      
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Table 6.21: The complexity calculations that best match the ordering of audio excerpts by 
perceived difficulty for first set of participant groups. 

 

Participant Group Calculation On Weight set 
Full BGM Full Piece  

  Peak Bar   D DT 
 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Expert Listeners       

Ordinary Listeners BGM Full Piece 

Peak Bar 

   
D 

 
DT 

 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Only Musicians BGM Full Piece 

Peak Bar 

   
D 

 
DT 

 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Non-expert Musicians BGM Full Piece 

Peak Bar 

   
D 

 
DT 

 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Bass Players BGM Full Piece 

Peak Bar 

   
D 

 
DT 

 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Non Expert Bass Players BGM Full Piece 

Peak Bar 

   
D 

 
DT 

 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Other Instrument Players BGM Full Piece 

Peak Bar 

   
D 

 
DT 

 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Do not Play an Instrument       

a Only significant relationships considered 
b Only unique monophonic rankings considered 
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Table 6.22: The complexity calculations that best match the ordering of audio excerpts by 
perceived difficulty for second set of participant groups. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

EVC Full Piece Ma MSa 

Peak Bar Ma MSa 

MT a 

MT a 

MTSa Da DTa 

MTSa Da 

Non-teachers BGM Full Piece     

  Peak Bar   D DT 
 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Non-teachers who play an instrument BGM Full Piece     

  Peak Bar   D DT 
 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Non-teaching Bass Players BGM Full Piece     

  Peak Bar   D DT 
 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Non-teaching Non-expert Bass Players BGM Full Piece     

  Peak Bar   D DT 
 EVC Full Piece M MT D DT 

  Peak Bar M MT D  

Non-teaching Other Instrument Players BGM Full Piece   D DT 
  Peak Bar   D DT 
 EVC Full Piece M MT D DT 

  Peak Bar M MT D  
a Only significant relationships considered 

b Only unique monophonic rankings considered 

Participant Group Calculation On Weight set 
Teachers BGM Full Piece  

  Peak Bar Da DTa 

 EVC Full  Piece   M 

Peak Bar M 

a MT a Da DTa 

a MSa MT a MT Sa Da 

Expert Listener Teachers BGM Full Piece  

  Peak Bar  

 EVC Full Piece MSb 

  Peak Bar  

Non Expert Bass Teachers BGM Full Piece  

  Peak Bar Da DTa 

EVC Full Piece Ma MT a Da DTa 

Peak Bar Ma MSa MT a MTSa Da 

Bass Teachers BGM Full Piece 
  Peak Bar 
 EVC Full Piece 

  Peak Bar MS MT S 

Other Instrument Teachers BGM Full Piece Da DTa 

  Peak Bar Da DTa 
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6.7.3 Discussion 

The Complexity calculations outlined in Table 6.5 were used to order the audio excerpts 

(least to most complex). These orders were compared to the orders of excerpts (judged as 

being least to most difficult to play on bass guitar) obtained from the votes of participants 

of the listening test outline in Chapter 5. Two hypotheses were tested, one for each of 

the two sets of orders. H1 : percentage match = 100% was used to test the significant 

partial orders, and H2 : ρ = 1. and τ = 1. was used to test the non-significant full orders 

of excerpts. Complexity calculation methods where the null hypothesis could be rejected 

for both H1 and H2, were then considered to model the perception of playing difficulty 

as judged by the study’s participants. In follow this approach at least one complexity 

calculation and complexity weight set was found to adequately match the ordering of the 

audio excerpts for each participant group, where orderings could be formed. 

Overall the EVC complexity calculation using the M , MT and D complexity weights 

can be considered the most appropriate models of the perceived difficulty of bass playing for 

the ‘Full’ set of participants as well as all sub groups of participants except the ‘Other In- 

strument Teachers’, ‘Expert Listeners Teachers’, ‘Bass Teachers’ and ‘Non-teaching Other 

Instrument Players’. These calculations were the only ones that fulfilled the calculation 

selection criteria for measuring the complexity based on both the full audio excerpt and 

the complexity of the peak bar. As such, these are therefore being considered the most 

appropriate general models, out of those tested, for measuring the perceived difficulty of 

bass playing of a piece of notated music. 

The ‘Other Instrument Teachers’ and ‘Non-teaching Other Instrument Players’ differ 

in that, for these groups, there are additional calculations and complexity weights beyond 

the EVC complexity calculation, using the M , MT and D complexity weights, that can 

be considered as appropriate models of their perceived difficulty of bass playing. These 

additional models are: the EVC calculation using the MS and MTS complexity weight 

sets and the BGM calculation using the D and DT complexity weight sets. What is 

interesting is that, with the exception of the EVC calculation using the DT complexity 

weight, which is not consider an appropriate model of these groups’ perceived difficulties, 

all other calculations are those that were found to be appropriate models for calculating 

the bass playing complexity for pieces in Section 6.6.2. This is particularly interesting, 

given these participants indicated that they did not play the bass guitar, and therefore it 

would appear that instead of relying on first hand experience to formulate their judgement, 

are instead using notions of playing complexity as it relates to the bass guitar to inform 

their judgements. However, whether this is exactly the case requires further investigation 
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and asking participants to indicate what information was used to inform their judgement, 

which was not conducted as part of this study. 

The calculations that were selected to appropriate model the ‘Expert Listeners Teach- 

ers’ and ‘Bass Teachers’ groups responses differ from those that were selected for the other 

groups. For the ‘Bass Teachers’ the EVC calculation using the MS and MTS complexity 

weight sets, measuring the complexity only based on the peak bar of pieces were determine 

as the being the most appropriate models. For the ‘Expert Listeners Teachers’ only  the  

EVC calculation using the MS complexity weight set measuring the complexity over the  

full piece only was determined as appropriate. Whilst, for both these groups the signifi- 

cant relationships between audio excepts conformed with the other groups, the full orders 

produced for each group, refined the selection down to these more specific calculations. 

These two participant groups are also considered as the most informed and knowledgable 

groups when it comes to playing the bass guitar. Therefore it is possible, and more likely, 

that their judgements are informed by more specific criteria than the other participants,  

as indicated by the very specific calculations being determined as appropriate. However, 

due to this refined selection being based upon non-statistically significant results further 

investigation is needed, with a greater number of experienced bass teachers, to confirm 

this speculation, and potentially identify what criteria informs their judgements of playing 

difficulty. 

 
6.8 Summary 

Two methods for calculating the complexity of playing a piece, or part of a piece of music on 

a bass guitar were proposed. The first was the Bass Guitar Musicplectic (BGM) calculation 

which was developed by refining and adjusting the musiplectics approach by Holder et al. 

(2015) to be more suitable for analysis of bass guitar playing. The second, the Euclidean 

Vector Complexity (EVC) calculation is a novel approach proposed to allow for both the 

calculation of playing complexity (computed by  the magnitude of the EVC’s vector) or for  

a complexity space to be formed to allow for the exploration of,  and investigation into,   

the complexity characteristics of pieces as they relate to being played on the bass guitar. 

Each calculation requires a complexity weight set that defines the playing complexity of 

every possible musical element that must be accounted for to play the piece correctly. Six 

different sets of complexity weights were defined. 
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Both calculations, using each of the six complexity weight sets were tested against a 

Grade Syllabus, to determine the most appropriate calculation for determining the bass 

playing complexity of a piece, or part of a piece of music. As well as being tested against 

the results of a listening test where participants who were presented with pairs of short 

audio extracts of bass guitar playing, voted which one they judged to be more difficult to 

play. The BGM calculation using the D complexity weight set and the EVC calculation 

using the DT complexity weight set were found to be the most appropriate models for 

playing complexity and the EVC calculation using the M , MT and D complexity weights 

were found to be the most appropriate general models of perceived playing difficulty. 
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Chapter 7 

 

Assessing Musical Similarity for 

Computational Music Creativity 

 
7.1 Study Design 

Musical similarity is an important comparison notion for musicians. Being able to identify 

the similarity between pieces of music is a skill that is encouraged within the learning 

process of an instrument. It is accepted that when a learner is presented with a new piece, 

there are similarities to previously learnt pieces such that the previously developed musical 

skills can be applied to this new piece, forming a continuity to their learning. It is through 

applying techniques and musical skills learnt in previous similar pieces that musicians are 

able to play new pieces, and through identifying and then rejecting these approaches that 

innovations may be developed. 

Musical similarity is however a subjective judgement, as well as being contextual. Com- 

putationally musical similarity can be calculated based upon musical features, in this work 

from the FANTASTIC and SynPy analysis toolkits outlined in Section 2.7. However, it is 

unknown if these calculated similarities align with the judgments of musical similarity by 

musicians and bass guitar players. 

A study was conducted to compare the values of musical similarity computed using 

FANTASTIC and SynPy features, with judgments of musical similarity by musicians and 

bass guitar players. The aim of this study was to determine how closely the musical 

similarity computed using FANTASTIC and SynPy features  matches  that  of  musicians  

and bass guitar players and in doing so assess the suitability of using FANTASTIC and 

SynPy features as a means of calculating musical similarity within computational music 

creative contexts, such as those outlined in Chapter 8. 
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The study design is based on the method outlined by Allan et al. (2007) where partic- 

ipants are presented with a triadic comparison of audio tracks and asked to specify which 

two audio tracks are the most musically similar. Allan et al. (2007) advocate presenting  

full permutations for every triadic comparison to account for presentation order bias and 

propose using a Balanced Complete Block Partitioning (BCBP) setup to allow for full per- 

mutations to be presented, whilst controlling the combinatorial explosion issues that occur 

when testing more than a couple of audio tracks. This approach involves partitioning every 

possible permutation of stimuli into smaller groups, and presenting each of these groups 

to a different subject. 

The Balanced Complete Block Partitioning (BCBP) setup was followed for five tracks 

partitioned between six participants (Allan et al., 2007). This setup splits every permuta- 

tion combination into six groups (blocks) of 10. Whilst no permutation is repeated over all 

these permutation blocks there is repetition of triads both between and within participants. 

This allows for within subject and between subject response consistency to be assessed. 

Five bars of monophonic music were randomly selected from an initial bass guitar 

transcription dataset containing 30 unique bars of notated music within which span pop, 

rock, funk and jazz genres. The python sample function from the random library1 was 

then used to select the five bars from the dataset. These were then labeled ‘A’, ‘B’, ‘C’, 

‘D’, ‘E’ and separate files made for each bar’s notated transcription. The tempo of the 

selected bars were: 125, 104, 92, 121 and 95 beats per minute for tracks ‘A’, ‘B’, ‘C’, ‘D’ 

and ‘E’ respectively. To allow a fair comparison between the computed values of similarity 

which only account for musical content, all playing techniques, dynamics, and expressive 

notations were removed from the notated transcriptions files. The notated transcriptions 

are shown in Figures 7.2 to 7.5. The audio for each of the separate bars was then rendered 

from their notated transcriptions files using Guitar Pro 6. This resulted in five separate 

audio files with durations varying between two and three seconds, with a mean of 2.2 

seconds and variance of 0.2 seconds. No other segmentation or processing preceded the 

final formulation of the audio content. The full python code used to select the bars of 

music and to setup the BCBP for each participant is provided in Appendix D. 

 
 
 
 
 
 
 

 
1https://docs.python.org/2/library/random.html 

https://docs.python.org/2/library/random.html
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Figure 7.1: Excerpt: ‘A’ 
 
 

 

Figure 7.2:  Excerpt: ‘B’ 
 
 

 

Figure 7.3: Excerpt: ‘C’ 
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Figure 7.4:  Excerpt: ‘D’ 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.5:  Excerpt: ‘E’ 
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7.2 Demographics 

There were N(12) participants (n(11) males, n(1) female), n(11) identified as being mu- 

sicians;  n(5) played  bass guitar and n(3) were music teachers.  Ages ranged from 22 to   

54 years of age, with an average age of 34 years. Musical instrument playing experience, 

with the exception of the non-musician ranged from 10 to 50 years with an average playing 

experience being 24 years. 

Of note is the clear discrepancy between male and female participants. This study was 

advertised broadly through public channels, with no bias given towards inviting partici- 

pants of each gender. Whilst more female participants would have been welcome, recruit- 

ment of the 12 participants proved to be a larger struggle, and therefore was prioritised 

over achieving a gender balance for this study. This decision was made because there is no 

scientific basis for a discrepancy between male and female judgements of musical similar- 

ity. For example within the work of Mcadams et al. (2004) where both gender and musical 

expertise revealed no significant effects on judgement of musical similarity. This notion 

would appear to be supported within peer reviewed scientific communities investigating 

music perception and cognition: Eerola et al. (2006); Velankar et al. (2015); Novello et al. 

(2006); Pearce and Müllensiefen (2017), where gender comparisons were not made due to 

this basis. 

 
7.3 Results 

To  allow for 12 participants,  each of the six permutation blocks were presented twice      

to different participants. An analysis of the complete set of participants’ responses was 

conducted followed by a partitioned analysis where participants were clustered based upon 

the similarity of their responses. 

 
7.3.1 Complete set of participants analysis 

The complete set of all participants’ responses were matched to three computed measures 

of similarity using FANTASTIC’s similarity function. The first measure used an aggre- 

gated similarity measure that utilised all the FANTASTIC and SynPy features outlined in 

Section 2.7 (totalling 33 features); the second measure used only the FANTASTIC features 

(totalling 26 features); and the third used only the SynPy features (totalling 7 features) 

to compute similarity. Table 7.2 shows the voted similarity of tracks, for each combina- 

tion along with the computed measures of similarity using features from FANTASTIC + 
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SynPy, FANTASTIC only and SynPy only. The number  of  matches  between  the  com-  

puted similarity and reported similarity by participants is shown in Table 7.1 as well as  

the rank matches and rank match rate. The highest ranking match was 63%, achieved 

when only using FANTASTIC features; the lowest was 46% when using SynPy features; 

both combined yielded a match of 60%. 

A Kruskal-Wallis rank sum test was performed between all participants’ answers for 

every presented permutation, and each of the three computed similarity values. This was 

to see if the responses from the participants and the computer similarity values  could  

have been derived from the same populations (null hypothesis). A p-value greater than 

0.05 would indicate both sets come from the same population (null hypothesis can’t be 

rejected), whereas a p-value smaller than 0.05 would indicate the similarity judgments 

come from significantly different populations. The results are shown in Table 7.3, where  

all p-values are smaller than 0.05 indicating a significant difference in similarity rating 

between participants and all computer similarity values. 

The consistency of each participant’s individual rating and the consistency between 

each pair of participants were calculated using Fleiss’ κ (Kappa). Individual consistency 

was calculated by treating each rating instance from a participant as a separate rater for 

each repeated combination of tracks. The κ values are shown in Table 7.4. The κ values 

calculated between pairs of participants presented with the same block partition are shown 

in Table 7.5. Fleiss’ κ (Kappa) was calculated for all responses to each of the 10 possible 

combinations of tracks. The results are shown in Table 7.6. κ values less than 0 indicate 

poor agreement, values between 0.21 to 0.40 indicate fair agreement, values between 0.61 

to 0.80 indicate strong agreement, p values less than 0.05 indicate that the agreement 

between participants’ responses are not due to random chance. 

Table 7.1: Percentage match between computed musical similarity and participants’ re- 
sponses 

 
 
 
 

Rank match comparisons counts the number of times the relationships between the most 
(first) similarly voted pair of tracks with the second, the second with the third and first 
with the third match the relationships of the computed values of similarity. 

Feature Set Matches Match Rate (%) Rank Match Rank Match Rate (%) 

FANTASTIC + SynPy 57 / 120 47.500 % 18 / 30 60.000 % 
FANTASTIC 65 / 120 54.167 % 19 / 30 63.333 % 
SynPy 35 / 120 29.167 % 14 / 30 46.000 % 
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Table  7.2:  Full Results 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Computed similarity values were calculated using Euclidean distance between all features 
present in each similarity measure. Values range between 0-1. Times voted most similar 
contains the votes for most similar pairs per combination. Total votes for each of the 
combination is 12. 

 

 
Table 7.3: Kruskal-Wallis rank sum test between computed similarity values and human 
responses 

 

Feature Set   Kruskal-Wallis  
χ2 p 

 

FANTASTIC  + SynPy 29.012 2.307e-05 
FANTASTIC 23.993 0.0002178 
SynPy 37.869 3.013e-08 

Track Track Pairs Times Voted   Computed Similarity  

Combination  Most Similar FANTASTIC + SynPy FANTASTIC SynPy 

ABC AB 0 0.7632 0.7095 0.3985 
AC 10 0.7879 0.8440 0.3944 
BC 2 0.8346 0.7997 0.8249 

ABD AB 3 0.7632 0.7888 0.3985 
AD 4 0.7761 0.7417 0.6416 
BD 5 0.7366 0.7095 0.5106 

ABE AB 2 0.7632 0.7888 0.3985 
AE 4 0.7812 0.8058 0.4300 
BE 6 0.8102 0.7706 0.8048 

ACD AC 10 0.7879 0.8440 0.3944 
AD 0 0.7761 0.7417 0.6416 
CD 2 0.7731 0.7647 0.5004 

ACE AC 5 0.7879 0.8440 0.3944 
AE 6 0.7812 0.8058 0.4300 
CE 1 0.8337 0.7967 0.8613 

ADE AD 1 0.7761 0.7417 0.6416 
AE 10 0.7812 0.8058 0.4300 
DE 1 0.7212 0.6876 0.5154 

BCD BC 3 0.8346 0.7997 0.8249 
BD 6 0.7366 0.7095 0.5106 
CD 3 0.7731 0.7647 0.5004 

BCE BC 3 0.8346 0.7997 0.8249 
BE 9 0.8102 0.7706 0.8048 
CE 0 0.8337 0.7967 0.8613 

BDE BD 4 0.7366 0.7095 0.5106 
BE 8 0.8102 0.7706 0.8048 
DE 0 0.7212 0.6876 0.5154 

CDE CD 2 0.7731 0.7647 0.5004 
CE 9 0.8337 0.7967 0.8613 
DE 1 0.7212 0.6876 0.5154 
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Table 7.4: Fleiss’ κ for each participant’s responses. 
 

 Participant  Repeated  Permutation (κ)  
  Pair id  1  2  3  

1 
1a -8.33e-17 -8.33e-17 NaN 

2 
2a 

3 
3a 

4 
4a 

5 
5a 

6 
6a 

A NaN value  indicates complete consistency in an individual’s response.    
A value of -8.33e-17 indicates that one response differed from the other two. 

A value of 0 indicates all responses differ. 

 
Table 7.5: Fleiss’s κ rating for pairs of participants presented with the same block partition. 

 

  Pair κ Z p  

1 0.219 1.1 0.271 
2 0.375 2.2 0.0278 
3 0.286 1.53 0.126 
4 0.615 3.12 0.00168 
5 0.318 1.62 0.105 
6 0.241 1.33 0.184 

 

Table 7.6: Fleiss’ κ rating for combined participant responses for each possible track com- 
bination. 

 

  Combination κ Z p  
 

ABD -0.0909 -1.03 0.302 
ACD -0.0909 -0.739 0.46 
ADE -0.0909 -0.96 0.337 
BCD -0.0909 -1.02 0.306 
CDE -0.0909 -0.942 0.346 
ABC -0.0909 -0.739 0.46 
ACE -0.0909 -0.896 0.37 
ABE -0.0909 -0.903 0.366 
BCE -0.0909 -0.739 0.439 
BDE -0.0909 -0.739 0.46 

1b NaN -8.33e-17 0 
 NaN -8.33e-17 NaN 

2b 0 -8.33e-17 NaN 
 -8.33e-17 NaN NaN 

3b -8.33e-17 -8.33e-17 NaN 
 -8.33e-17 NaN NaN 

4b -8.33e-17 NaN NaN 
 -8.33e-17 -8.33e-17 NaN 

5b NaN NaN NaN 
 0 NaN NaN 

6b -8.33e-17 NaN NaN 
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7.3.2 Partitioned sets of participant analysis 

Participants were clustered based upon a dissimilarity matrix formed from the Fleiss’ κ 

between each pair of participants’ responses, not just pairs which were presented with the 

same block. It should be noted the p-value for every κ between participant pairs, with the 

exception of when there was only one response that could be compared, was less than 0.05. 

This indicated that the agreement in responses between each pair of participants where 

two or more responses could be compared is unlikely to be due to chance. However, as 

some pairs of participants could only be compared based upon one response, clustering 

was chosen to be based upon k-medoids, due to the method being more robust to outliers. 

The R function pamk, Partitioning Around Medoids (PAM) Reynolds et al. (2006) with 

estimation of number of clusters, was used to partition participants. The optimal number 

of clusters was identified by the function to be four. 

There were participants who identified as bass players in clusters two (2), three (2) 

and four (1). The one participant who identified as a non-musician was placed in cluster 

one. One participant in each of clusters one, two and three identified as a music teacher. 

The mean musical experience of participants in each cluster was: 26.67, 21.5, 21.33 and 15 

years for clusters one, two, three and four respectively. The number of matches and rank 

match rates between the three computed measures of similarity were calculated for each 

cluster. The results are shown in Table 7.7. 

Table 7.7: Percentage match rates between computed musical similarity and clustered 
participant responses 

 

Cluster Participant FANTASTIC + SynPy FANTASTIC SynPy 

 id Match (%) Rank Match (%) Match (%) Rank Match (%) Match (%) Rank Match (%) 

1 1a, 1b, 2a 50.000 % 42.857 % 53.333 % 66.667 % 50.000 % 23.810 % 
2 2b, 4a 60.000 % 70.833 % 65.000 % 70.833 % 60.000 % 37.500 % 
3 3a, 3b, 4b 63.333 % 80.952 % 56.667 % 47.619 % 40.000 % 52.381 % 
4 5a,5b,6a,6b 20.000 % 38.095 % 47.500 % 47.619 % 20.000 % 33.333 % 

 

 
7.4 Discussion 

The significant difference in the Kruskal-Wallis rank sum test results indicate that the 

computed values of similarity come from a different population to that of the participants’ 

responses. Variations can be seen between participants’ responses within each combination 

of tracks, whereas the computed values of similarity do not have any variation. This may 

explain why there were not high match rates between any of the computed measures of 

similarity and the full set of participant responses. 
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The greatest challenge in finding a general measure of musical similarity is due to the 

subjective nature of musical similarity. The overall results, whilst not directly comparable 

to the Music Information Retrieval Evaluation Exchange (MIREX) symbolic musical sim- 

ilarity challenge scores, which are primarily assessed through the F1-score (Velardo et al., 

2016), do however compare favourably. The majority of approaches within the MIREX 

symbolic musical similarity challenge only achieved a F1-score in the range of 0.20-0.30 

(Velardo et al., 2016) with the exception of two systems achieving F1 = 0.64 (Wolkowicz 

and Keselj, 2011; Urbano et al., 2011), one achieving a F1 = 0.77 (Urbano, 2013) and 

the best known measure achieving F1 = 0.99 (Vempala and Russo, 2015). The general 

performance of only using FANTASTIC features for musical similarity would, whilst not 

being state of the art, appear to be inline with the better performing model’s of symbolic 

musical similarity that have participated within the MIREX challenge. 

When comparing the results of the four clusters formed from the partitioning process, 

the overall match between all computational methods and cluster four worsened, whilst the 

results for the remaining three clusters improved. Cluster four contained the least musically 

experienced participants. This would appear to indicate that the computed measures of 

similarity are a better match to more experience musicians. Cluster three appears to use 

both rhythmic and melodic features as a means of determining similarity, cluster two uses 

more melodic features and cluster one appears also use both sets of features, but the low 

match compared with the musical experience of this cluster would indicate that there is 

something happening that is unaccounted for within the measure of musical similarity. This 

could be an indication that participants were unable to determine a discernible difference 

between the stimuli, a notion supported with the computed similarity measures, which  

are also reasonably close in value. It could also be that the participants were relying on 

features not computed by the different similarity measures. The best match was with 

cluster three, which contained the most general musically experienced listeners, this is to 

say, that neither bass players of the most musically experienced participants were part of 

this cluster. This would suggest that using FANTASTIC + SynPy captures more general 

notions of musical similarity, which is what the toolkits where developed to do. 

These results do however suggest that there is unaccounted for perceptual information 

which both bass players and more experienced listeners may use to determine musical 

similarity. However, it should be noted that the cluster sizes are small, and some κ measures 

between participants could only be calculated based upon one response from each; thus, 

there is still a possibility of random chance affecting this partitioning. A comparison of 

these results to a larger study would be interesting and could help confirm what is being 

indicated here. Further work is therefore required to both identify the symbolic musical 
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features not accounted for within FANTASTIC  and SynPy which are used by  musicians  

and bass players, as well as to address the concerns raised due to the small number of 

participants. 

Meanwhile it is not believed that these results prevent using both FANTASTIC and 

SynPy features as a measure of similarity within a creative system. There may be an effect 

on how the output from a creative system is valued due to the disparity between observers 

and the system’s “understanding" of measures of musical similarity. However, given the 

subjective nature of musical similarity, this disparity could be viewed as the creative sys- 

tem’s own subjective notions of musical similarity. Also that this notion of similarity does 

tend to follow in the more general notions of human views of musical similarity much more 

often than not. Using FANTASTIC + SynPy features as a measure of similarity within a 

creative system could therefore be seen as treating the creative system as having subjective 

views matching cluster three, implying a non-expert listening and non-bass guitar specific 

notions of musical similarity. In providing a creative system with its own “subjective”, yet 

valid and traceable interpretations, allows for a level of unexpectancy in the performances 

that may be produced, a notion in line with the suggestions of Colton et al. (2014), as 

means of introducing randomness without using random number generators. This unex- 

pectancy allows for the potential for the production of novel performances that may alter 

people’s expectations of how the music can be performed, in addition to more conventional 

performances. 

Outside of the context of creative systems,  it is unclear how suitable these measures   

of musical similarity are without further study. For example these would appear to be a 

poor choice for use in music recommendation systems without either some level of tuning 

to account for an individual’s subjective tastes, possibly leading to adjusting the contri- 

butions of certain features within the similarity measure. This follows Allan et al. (2007), 

who state that when using aggregated measures of similarity, the contributing features re- 

quire weighting adjustments made to better match people’s own understanding of musical 

similarity. Or, through the addition of extra features which account for the subjective 

information that individual uses when determining musical similarity. Investigations into 

these areas is however beyond the scope of this work and best done with results from a 

larger study. 
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7.5 Summary 

A study, in the form of a listening test, was conducted to compare the values of musical 

similarity computed using FANTASTIC and SynPy features, with judgments of musical 

similarity by musicians and bass guitar players. The tested measure of musical similarity 

performed on par with the better measures of symbolic music similarity from the MIREX 

symbolic musical similarity challenge. Due to the challenges inherent in finding a general 

measure of a subjective phenomenon, the overall measure is not an exact match to every 

participants’ judgement of musical similarity. However, there are trends which suggest  

that the measure of similarity does not disagree with participants’ judgements. Following 

this it is believed that these results do not prevent the measure of musical similarity using 

FANTASTIC and SynPy features from being used within a creative system,  such as Adorn- 

o, where, due to the creative system’s agency, the discrepancies within the measure of 

similarity can be attributed to being the creative system’s own subjective views of musical 

similarity. 
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Chapter 8 

 

Adorn-o: A Computationally 

Creative Musical Performance 

System for Virtuosic Bass Guitar 

Performance 

 
8.1 Using the Engagement-Reflection Creative Systems 

Framework (ER-CSF) model as a design tool 

Within Computational Creativity (CC) systems deemed to display creative behaviour are 

capable of reflection.1 Without this element of reflection, a point raised by Bundy (1994); 

Agres et al. (2016) and others, systems are only generative. As, in general, CSEMPs do 

not employ a full reflection loop or self-reasoning of their output, they are not considered 

to be creative systems from a CC standpoint.2 Developing a creative CSEMP, that has 

the capabilities of reflection, allows for research directly into the creative processes within 

musical performance, and within this work, allow for investigations into virtuosity in bass 

guitar performances. How though, does one go about developing a creative CSEMP? 

The Creative Systems Framework (CSF) by Wiggins (2006a,b), and more specifically 

the Engagement-Reflection Creative Systems Framework (ER-CSF) Model (Alvarado and 

1Reflection is the ability for an agent (or in the context of this paper, computational system) to evaluate 
or reason about its creative output, and in light of this evaluation adapt or alter its behaviour. 

2This is not intended as a criticism of, or to diminish, the value of the previous work into expressive 
musical performance, only as to draw a distinction between general approaches to CSEMPs and that  of 
creative systems. 
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Wiggins, 2018) is proposed as a design tool to frame and describe both new or even existing 

CSEMPs (if their authors wished to turn them into creative systems). At a basic level the 

CSF can act as a checklist of requirements for a creative system. However, it also allows for 

direct comparison between different creative systems which can aid in evaluating both the 

systems creative behaviour and its output Wiggins (2006a,b); Agres et al. (2016); Wiggins 

and Forth (2018). 

The CSF has been used to describe a live coding scenario, and through doing so high- 

lights how, and where, the computer can be given more creative control/responsibility over 

the produced performance (Wiggins and Forth, 2018). By using this framework to design  

a creative musical performance system, the design capability of the CSF is demonstrated, 

in addition to its descriptive and analytical usefulness. 

Introduced within this chapter is, Adorn-o, an exploratory creative system for the 

computational creation of virtuosic bass guitar performances that has been designed using 

the ER-CSF. More specifically, Adorno-o computationally creates a virtuosic interpretation 

of a musical piece that will then be used to produce a subsequent performance using an 

updated (to allow simulation of advanced bass guitar playing techniques) and sonically 

tuned version of Kramer et al. (2012)’s digital waveguide model of an electric bass. By 

using the ER-CSF to design, and thus describe Adorn-o’s operations, a formalised theory 

for the production of virtuosic bass guitar performances has been developed. Thereby 

making Adorn-o an implementation of this theory. 

 
8.2 Designing Adorn-o through Defining the Components of 

the ER-CSF 

The full operation of Adorn-o has been designed, and thus defined, using the Engagement- 

Reflection Creative Systems Framework (ER-CSF) Model (Alvarado and Wiggins, 2018). 

As outlined in Section 2.3.4, the ER-CSF model extends the CSF septuple, introducing 

separate rule sets R, T and E for engagement: RE , TE and E E and reflection: RR, TR 

and E R. As will be shown, through the formulation of these rule sets for Adorn-o, separate 

conceptual spaces for engagement, CE , and reflection, CR, that each require their own 

traversal interpreters (((., ., .))) are formed. 

The ER-CSF has been used in the design of Adorn-o, as for it to be considered a creative 

system, it must be capable of reflection. Reflection is achieved within Adorn-o, through 

using an Engagement-Reflection (ER) cycle (see Section 2.3.4) to produce its virtuosic 

interpretation of a musical pieces Section 2.3.4. 



223  

 

Engagement within Adorn-o is the creation of musical performances through the re- 

trieval, reuse and revise steps of the case-based reasoning (CBR) process that has been 

selected as the means of applying adornments to musical notes (see Section 3.2). One di- 

vergence from Sharples (1970)’s ER cycle, is that the chain of ideas (in Adorn-o, this is the 

application of musical techniques to notes) is not done in a freely associative way. Instead 

it is directed largely by a function of musical similarity, M, and a function that measures 

technical proficiency, HC,D (both of which are defined lates in Section 8.2.6). There is also  

a goal prescribed to engagement, which is to produce a performable musical performance, 

as specified by the Bass Guitar Performance Ontology (Section 3.4). The quality of the 

performance is however not specified in the engagement phase. 

Reflection is the process of evaluating the performance produced through engagement, 

and then determining if, and how a new performance for the sequence of notes, n should 

be produced by engagement. This is realised in Adorn-o by evaluating the produced 

performances using a novel model of virtuosity, proposed as part of the ruleset E E , in 

Section 8.2.6.3. Then determining new parameters to guide the engagement in producing  

a new and (ideally) different performance. 

This cycle between engagement and reflection can continue until the performance pro- 

duced via engagement is considered to display virtuosity, as defined by the model of virtu- 

osity, or all performance options are exhausted. A diagram of this engagement-reflection 

case-based reasoning (ER-CBR) model is shown in Figure 8.1. 

Each operation of Adorn-o has been designed and formulated in terms of the compo- 

nents of the ER-CSF. The design and thus the formalised theory for the production of 

virtuosic bass guitar performance is described within the following sections. 



224  

 
 
 
 
 
 

 

Figure 8.1: An Engagement-Reflection Case-based Reasoning (ER-CBR) Model. 
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8.2.1 Defining the Language, L 

L is the language that is used to describe, not just the musical performance process, but also 

each other component within the ER-CSF. L would ideally be expressive enough to allow 

for meta-level operations over the rule sets R, T and E, which allows for transformational 

creativity, however we have restricted our system to only that of exploratory creativity, 

which allows stricter formulations of these rule sets and of L. 

8.2.2 Defining a concept, c 

A concept, c, within Adorn-o are the results of the adornment function A thus: 

c = A(n, K, t), 

where K ⊆ 
→−
N , n ∈ 

→−
N  and t ⊆ T . 

A concept, c, is therefore a sequence of adorned notes. Thus, A ∈ L, 

T ∈ L.3 

8.2.3 Defining the Universe (U ) 

→−
N  ∈ L and 

U, is a universe of concepts defined by  c.  Thus U can be considered to be a universe of    

all possible adornment interpretations (including humanly possible and impossible) of all 

possible musical note sequences, including sequences which do not contain any notes. 

 
8.2.4 Defining the Engagement Ruleset, RE ∈ L 

The RE determines what c Adorn-o produces. Here performances produced by Adorn-o  

are limited to those that are performable on a bass guitar, that are monophonic and are 

within a specific set of timesignatures. RE is thus formed by the following. 

The  Bass  Guitar  Performance  Ontology,   OB,  outlined  within  Section  3.4,  is formed 

from a taxonomy of bass guitar techniques, B ∈ T , a vocabulary to describe how these 

techniques adorn musical notes (forming adornments), and a set of axioms which must  be 

followed to ensure that the adornments applied to the notes are performable on a bass 

guitar. Thus, OB ∈ RE . 

As the axioms that determine what constitutes a performable bass guitar performance 

are defined within language of OB no further explicit rules relating to bass guitar perfor- 

3See  Section  3.2  where  
−→
N  is  defined  as  a  set  of  sequences  of  musical  notes,  

−→ 
is  defined  as  a  set  of 

adorned  note  sequences,  
−→
N  and  T  is  defined  as  a  set  of  performance  techniques. 
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monophonic(n) = 
 1 (onset-timeni + 

 

O 
O 

 

mance are required to be added to RE .4 In having OB ∈ RE , bass guitar performances, 

as defined within Section 3.3 as part of the set 
−
N
→
B , are also part of RE .  Thus, 

−
N
→
B  ∈ RE . 

Performances are limited to only monophonic pieces of music due to the FANTASTIC 

(Müllensiefen, 2009) toolkit, as well as the Bass Guitar Musicplectic (BGM) and Euclidian 

Vector Complexity (EVC) calculations all only being capable of analysing monophonic 

musical note sequences. The SynPy (Song et al., 2015) toolkit and the BGM and EVC 

calculations are also only capable of analysis music within a specific set of time signatures. 

Due to these limitations the following functions are also required to be part of RE . 

A function, monophonic(), that tests if a sequence of notes is monophonic, is defined 

as: 

 
if ∀ni ∈ n, 

 

durationni 
) ≤ onset-timeni+1 

, 

0 otherwise. 
 

where xi is the i th member of sequence x, xi+1 member of the sequence directly follow- 

ing xi, onset-timexi 
is the onset-time for note xi, durationxi 

is the onset-time for note 

xi. Adorn-o can only produce performance for monophonic sequences of notes, where 

monophonic(n)=1. Thus, monophonic ∈ RE . 

A set of valid time signatures, (time_signature), is defined as: 

(time_signature) = {2/2, 3/2, 4/2, 2/4, 3/4, 4/4, 5/4, 6/4, 7/4, 

3/8, 4/8, 5/8, 6/8, 7/8, 9/8, 12/8.12/16}. (8.1) 

This limitation is formulated within the language and a restriction has been placed on 

what time signatures are valid within Ob, (as outlined in Section 3.4.7), and therefore does 

not require an explicit rule to test. 
 
 
 
 
 
 
 
 

 
4In specifying a different musical instrument performance ontology, X , Adorn-o would then produce 

performances for instrument X, provided X has well-formed complete taxonomy, vocabulary and axioms 
which specify the appropriate performance rules for instrument X. 
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Finally, ignoring John Cage’s 4’33”, a performance of a musical piece also requires at 

least one note in its sequence. This is tested by the function: 

 
nonempty(n) = 

1 if |n| > 0 

0 else 
 

where |x| is the cardinality of x. Therefore, nonempty ∈ RE . 

8.2.5 Defining the Engagement Conceptual Space (CE) 

The engagement conceptual space, CE , is a space of wellformed monophonic bass guitar 

performances, in time signatures: (time_signature), where at least one note is performed. 

Each such performance is a concept c ∈ CE . CE is formed thus: 

{c | c ∈ U ∧ OB ∧ monophonic(c) = 1 ∧ nonempty(c) = 1} 

where c from the U of all possible adornment combinations of all possible musical note 

sequences is part of the conceptual space of bass guitar performances, CE , if the results of 

applying monophonic() to c and length() to c are both equal to 1 and where the performance 

can be described by the Bass Guitar Performance Ontology OB. 
Furthermore, there will be subsets of performances for each unique sequence of notes 

∈ CE ,  where  Cn  ⊂ CE  is  the  subset  of  performances  for  the  sequence  of  notes  n  ∈ 
→−
N . 

As only adorned sequences of notes can be part of CE , and thus c ∈ Cn cannot be a 

sequence of notes. Each of these subsets will contain special case of the default performance 

for n: cn,default. The default performance is specified within OB, previously outlined in 

Section 3.4.8, as a sequences of adorned notes  which have been adorned with the minimum 

number of adornments that allow for the note sequence to be performed on a bass guitar. 

The minimum required techniques for a single note to be performable according to OB are 

an excitation technique and modification playing technique. 

 

8.2.6 Defining the Engagement Evaluation Ruleset EE ∈ L 

The evaluation ruleset EE ∈ L determines how concept c ∈ CE are evaluated. Within 

Adorn-o, performances judged as displaying virtuosity are valued. Howard (1997, 2008) 

argues that judgements of virtuosity are formulated through navigation of the terrain of 

virtuosity. Here, a model of musical virtuosity is proposed and formulated as a process  

that allows a computer to navigate the terrain of virtuosity and thus, judge whether a 



228  

 

concept, c ∈ CE would produce a performance that would be judged as virtuosic or not. 

This process is defined as follows. 

As outlined in Section 2.1.2, the terrain of virtuosity is formed from the the domain, 

the audience and the performer and performance. Within Adorn-o as judgement is being 

made on a performance by EE , this then, is the audience of the performance, and the 

judgement being made is formulated upon the understanding of the domain and performer 

of the performance. 

A corpus based method is used to determine the domain of a musical performance, 

through contextualising it against performances of musically similar pieces of music. A 

heuristic, HC,D, has been developed to determine the technical proficiency of a perfor- 

mance, which is based upon both the playing complexity and perceived difficulty of the 

performance. These two components are used to formulate a model of virtuosity that de- 

termines whether a performance is judged as virtuosic or not. The heuristic, HC,D is first 

defined, the corpus based method used to define the domain is then described.  Finally 

the model of virtuosity is formalised and described. These three parts, and constituent 

functions and operations form EE . 

8.2.6.1 Developing a Heuristic, HC,D, to determine the Technical Proficiency 

of a Performance 

The models of playing complexity (BGM) and perceived difficulty (EVC), which were 

empirically determined in Chapter 6 provide an understanding of the performer, from the 

perspective of both the playing demands made by the performer and the audience’s percep- 

tion of said playing demands. The BGM calculation allows for an understanding of playing 

complexity to be considered, this is representative of a musician’s technical capabilities and 

relates to the biomechanical demands of the performance (Heijink and Meulenbroek, 2003; 

Holder et al., 2015).   The EVC calculation accounts for perceived difficulty,  this is from   

the observer’s (audience’s perspective) of the performance, and relates to how hard the de- 

mands are considered to be (Tandon and Tandon, 2015; Véronique Sébastien, 2012; Chiu 

and Chen, 2012; Barthet et al., 2011). 

A playing complexity calculation model, Cm, is defined as a function that maps a bass 

guitar  performance,  
−
N
→
B ,  to  an  ordinal  valued  positive  real  number,  R>0,  using  the  Bass 

Guitar Musiplectic (BGM) calculation (see Equation 6.6): 

Cm : 
−
N
→
B  −

B
−
G
−
M
→ R>0. 
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The ordinal valued positive real number produced by Cm is used as a measure of a bass 

guitar performance’s playing complexity. 

A playing complexity heuristic weighting, Cw, where Cw ∈ {w| − 1 ≤ w ≥ 1}, is defined 

as a value used to control the influence of the playing complexity calculation model, Cm, 

within the heuristic HC,D, defined later. 

A complexity model weight pair, C is defined as a pairing of Cm and Cw: 

 
C = (Cm, Cw). 

Thus, C ∈ EE . 

A perceived difficulty calculation model, D, is defined as a function that maps a bass gui- 

tar performance, 
−
N
→
B , to an ordinal valued positive real number, R>0, using the Euclidean 

Vector Complexity (EVC) calculation (see Section 6.4.2): 
 

D : 
−
N
→
B  −

E
−

V
−→

C 
R>0. 

The ordinal valued positive real number produced by Dm is used as a measure of a bass 

guitar performance’s perceived playing difficulty. 

A perceived difficulty heuristic weighting, Dw, is defined as a value where Dw ∈ {w|−1 ≤ 

w ≥ 1}, that is used to control the influence of perceived difficulty calculation model, D, 

within the heuristic HC,D. 

A difficulty model weight pair, D is defined as a pairing of Dm and Dw: 

 
D = (Dm, Dw). 

Thus, D ∈ EE . 

A heuristic function, HC,D, is defined as a function that compares two bass guitar 

performances based on their playing complexity and perceived difficulty, producing a real 

valued number: 
 

HC,D : 
−
N
→
B × 

−
N
→
B  1→ R. 

where C is a complexity model weight pair and D is a difficulty model weight pair. Thus, 

HC,D ∈ EE . 

HC,D is used to compare two bass guitar performances, to determine which one required 

the greater technical proficiency, based upon the playing complexity and the perceived 

playing difficulty of the performance. The relationship between playing complexity and  

the perceived playing difficulty within HC,D can be adjusted by the heuristic weightings, 
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Cw and Dw, within the model weight pairs C and D. This is because views on what is a 

demonstration of technical proficiency differ. There are some people who considering both 

playing something that is complex, and that is perceived as difficult to play as being an 

indication of the technical proficiency of a player. Others may consider something that is 

complex, but made to look (perceived as) easy to play as demonstration of greater technical 

proficiency. Or vice versa, where something simple is made to be perceived as harder to 

play. Or only one aspect, complexity or difficulty is valued. The heuristic weightings, Cw 

and Dw within the model weight pairs C and D, allow the relationship between playing 

complexity and perceived difficulty to be adjusted (and parameterised), to account for each 

of these different views. The values of Cw and Dw and the views of technical proficiency 

they encode are summarised in Table 8.1. 

Table 8.1: Parameterising views of technical proficiency. 
 

Cw Dw Encoded view of technical proficeincy 
 

1 1 playing something that is complex, and that is perceived as difficult 
-1 1 playing something that is easy, yet is perceived as difficult 
1 -1 playing something that is complex, yet that is perceived as being easy 
1 0 only the complexity is important 
0 1 only the perceived difficulty is important 

Two bass guitar performance’s technical proficiency can be compared using HC,D as 

follows: 

HC,D(a, b) = 
(

Cm(a) − Cm(b)
) 

∗ Cw + 
(
Dm(a) − Dm(b)

) 
∗ Dw, 

where a ∈ 
−
N
→
B , b ∈ 

−
N
→
B , Cm ∈ C, Cw ∈ C, Dm ∈ D and Dw ∈ D. 

Performances may be ordered by technical proficiency, using the result of HCD(a, b), 

as follows: 

• When HC,D(a, b) > 0, a is considered as requiring more technical proficiency to 

perform on bass guitar than b. 

• When HC,D(a, b) < 0, b is considered as requiring more technical proficiency to 

perform on bass guitar than a. 

• When HC,D(a, b) = 0, a and b are considered as requiring the same technical profi- 

ciency to perform on bass guitar. 

where a ∈ 
−
N
→
B , b ∈ 

−
N
→
B . 
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As  a  demonstration,  consider  the  following  bass  guitar  performances  o  ∈  
−
N
→
B   and 

p ∈ 
−
N
→
B  where: 

 
Cm(o) = 3 Cm(p) = 2 

Dm(o) = 1 Dm(p) = 2. 

 
When Cw = 1 and Dw = 1: 

HC,D(o, p) = 
(

Cm(o) − Cm(p)
) 

∗ Cw + 
(
Dm(o) − Dm(p)

) 
∗ Dw 

= (3 − 2) ∗ 1 + (1 − 2) ∗ 1 

= 1 − 1 

= 0, 

 
thus indicating that, when playing something that is complex, and that is perceived as 

difficult is viewed as a demonstration of technical proficiency o and p are considered of 

similar technical proficiency. When Cw = −1 and Dw = 1: 

 
HC,D(o, p) = (3 − 1) ∗ −1 + (1 − 2) ∗ 1 

= −1 − 1 

= −2, 

which indicates that when playing something that is easy, yet is perceived as difficult is 

valued, p are considered to require more technical proficiency that o. When Cw = 1 and 

Dw = −1,  where playing something that is complex,  yet  that is perceived as being easy    

is valued, HC,D(o, p) = 2 indicating o is considered to require more technical proficiency 

that p. 

 
8.2.6.2 Determining the Domain of a Performance 

 
The domain, D, of a performance c ∈ CE is defined as a set whose members are bass guitar  

performances  of  sequences  of  notes,  m ∈ c,  m ∈ 
→−
N ,  that  are  musically  similar  to  a 

sequence of notes, n ∈ 
→−
N .  Percentiles were selected as the method for specifying the level 

of musical similarity to n, which is specified by a musical similarity percentile, si.  The 

musical similarity percentile specifies the ith percentile of musically similar sequences of 
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notes to n to include in D. Thus, 

si = i|0 ≥ i ≤ 100, 

and si ∈ RE . 

A musical similarity function, M, is defined that maps a sequence of notes, a musical 

similarity percentile, si, and a set of sequences of notes to a set of sequences of notes: 

M : 
→−
N × 

→−
N ∗ × si 1→ 

→−
N ∗ 

Musical similarity is measured by M using the measure of musical similarity evaluated 

in Chapter 7, which is determined as follows. 

There is a function F that defines a set of musical feature vectors, F , whose members 

are vectors fn that contain the musical features from the FANTASTIC (Müllensiefen, 2009) 

and  the  SynPy  (Song  et  al.,  2015)  tool  kits,  for  sequences  of  (musical)  notes n ∈ 
→−
N ,5  and 

where F has been implemented using FANTASTIC and SynPy.6 Thus, 

F = 
{

fn|fn = F(n), n ∈ 
→−
N 

}
. 

A z-standardisation function, Z, implemented within FANTASTIC, maps a set of mu- 

sical feature vectors to a set of z-valued7 musical feature vectors, z. A set of z-valued 

musical feature vectors is defined as Z. Thus, 
 

x−µ 

Z : F ∗ −−σ−→ Z∗ 

where Z is a set whose members are z-valued musical feature vectors, z, where zn contains 

the z-values for each feature value ∈ fn. Thus, 

Z = Z
(  

fn|fn = F(n), ∀n ∈ 
→−
N  

)
. 

The musical similarity between two sequences of musical notes is measured by the 

euclidean distance between the z-valued musical feature vectors of each sequences of notes: 

 

 
 

5−→
N  is  defined  in  Section  3.2. 

dzx,zy = 

i=1 

(zx,i − zy,i)
2. 

6The exact features contained within f are provided in Appendix ??. 
7https://en.wikipedia.org/wiki/Standard_score#Calculation 

   

  

https://en.wikipedia.org/wiki/Standard_score#Calculation
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where zx,i is the ith z-valued musical feature within z-valued musical feature vectors zx,   

zx ∈ Z, zy ∈ Z. 

The function M is used to form a subset from a set of sequences of notes, k, in which 

the members of the subset are the sequences of notes from within k that are within the ith 

percentile of musically similarity, as specified by si, to the sequences of notes, n. Thus, 

 

M(n, k, si) = 
{

x ∈ 
→−
N |x ∈ k, 

 

dzn,zx ≥ maxd − 
(100 − si) ∗ (maxd − mind) 

, 

∀x ∈ k, zn ∈ Z
(
k ∪ {n}

)
, zx ∈ Z

(
k ∪ {n}

)}
, 

 

where  a ∪ {b} is  the  union  of  set  a with  a  set  containing  only  b,  k  ⊆ 
→−
N ,  n ∈ 

→−
N ,  si  is 

inverted to allow it to be specified within percentile terms, maxd is the maximum distance 

calculated between n and each sequence ∈ k, mind is the maximum distance calculated 

between n and each sequence ∈ k. The values of maxd and mind are calculated as follows: 

maxd = dzn,zx |dzn,zx ≥ dzn,zy , ∀zy ∈ Z k ∪ {n} , 

zn ∈ Z k ∪ {n} , zx ∈ Z k ∪ {n} , x /= y, 

mind = dzn,zx |dzn,zx ≤ dzn,zy , ∀zy ∈ Z
(
k ∪ {n}

)
, 

zn ∈ Z
(
k ∪ {n}

)
, zx ∈ Z

(
k ∪ {n}

)
, x y, 

where n ∈ 
→−
N , x ∈ k, y ∈ k, k ⊆ 

→−
N .  Thus, M ∈ RE . 

M, as defined here, is a modification to the compute.similarity within FANTASTIC 

(Müllensiefen, 2009).  It has been modified to only compute the measure of similarity 
between n and each member of a k, and instead of returning a distance matrix, a set 

containing  the  members  of  k ⊆ 
→−
N ,  that  are  within  the  musical  similarity  percentile,  si, 

to  n  ∈  
→−
N  is  instead  returned.    Setting  si  =  100  forms  a  set  of  only  the  most  similar 

sequence(s)  of  notes  within  k ⊆ 
→−
N  to  n ∈ 

→−
N ,  where  as  setting  si = 99 would  return  a  set 

that contains sequences of notes that are within the 99th percentile of musical similarity to 
n. Setting si = 98, would return a set of sequences of notes that are within 98th percentile 

of similarity, si = 97 the 97th etc.  Setting si = 0 would return the entirety of the set 

k ⊆ 
→−
N . 

A domain for a sequence of notes, n, can be formed using M as follows: 

Dn,K,si  = 
{

c ∈ CE |∀c ∈ K, m ∈ c, m ∈ M 
(

n, {j ∈ 
→−
N |j ∈ c, ∀c ∈ K} ∪ {n}, si

) }
, 
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where  n  ∈  
→−
N ,  m  ∈  

→−
N ,  K  is  a  knowledge  base,  originally  defined  in  Section  3.2,  but 

now within the context of Adorn-o, K ⊆ CE , si is the musical similarity percentile that 

specifies the level of musical similarity to n of performances considered within Dn,K,si 
. 

Thus, Dn,K,si 
∈ RE . 

8.2.6.3 Defining a model of musical virtuosity 

Once the domain of a sequence of notes, Dn,K,si 
, has been established, performances within 

the domain are judged to determine which ones are considered to demonstrate virtuosity. 

This judgement is made following Howard (1997), where a performance is judged to be 

virtuosic based on a “...combination of exceptional musicianship and technical proficiency” 

(Howard, 1997, p.47). The function HC,D is used to determine which bass guitar perfor- 

mances ∈ Dn,K,si 
display exceptional levels of technical proficiency, and thus are considered 

to be the virtuosic performances within ∈ Dn,K,si 
.8 The virtuosic performances ∈ Dn,K,si 

as determined by HC,D, are identified through the following process. 

First performances within Dn,K,si 
are compared and ranked according to their technical 

proficiency using HC,D. The level of technical proficiency required for a performance to be 

judged as displaying virtuosity is specified by  a percentile.  This virtuosity percentile,  vi,     

is defined, as a set containing the ith percentile of performances ∈ Dn,K,si 
, as ranked by 

HC,D, that are judged to display virtuosity. Where v100 would indicate only the highest 

ranked performances within Dn,K,si 
as displaying virtuosity, v95 would indicate the top 5% 

(95th percentile) of ranked performances within Dn,K,si 
as displaying virtuosity, etc. 

Performances that have already been produced for n, will always be within the domain, 

Dn,K,si 
. Thus can be checked to see if they rank within the virtuosity percentile of per- 

formances. The ones that do, are judged as performances of n which display virtuosity. 

However, this does not help in guiding the production of new performances of n which 

would also display virtuosity (such as what Adorn-o seeks to do). A threshold of virtuos-  

ity, V is therefore defined as a means of determining the minimum technical proficiency 

required for a performance to be judged as displaying virtuosity within a given domain. 

Within the current formulation and definition of virtuosity, this threshold is the playing 

complexity and perceived difficulty of the lowest ranked performance, ranked by HC,D, 

that is within the virtuosity percentile of performances within Dn,K,si 
. This is found as 

follows: 
8Musicianship is not being ignored, here it is accounted for through the formation of the domain, 

Dn,K,si ,  and  later  in  the  reuse  step  of  the  CBR  process. 
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VDn,K,si
,HC,D ,vi  

= c ∈ CE |HC,D(c, b) ≤ 0, ∀b ∈ vi, c =/ b, c ∈ vi, b ∈ vi, vi ⊂ Dn,K,si , 

where VDn,K,si
,HC,D,vi 

∈ Dn,K,si 
. Thus, VDn,K,si

,HC,D,vi 
∈ RE 

A new performance of n, such as one produced by Adorn-o, cout, is determined to be 

virtuosic within Dn,K,si 
if: 

 

HC,D(cout, VDn,K,si 
,HC,D,vi ) ≥ 0, 

where cout ∈ CE , n ∈ cout, n ∈ 
→−
N .  When a new performance, cout is produced by Adorn-o, 

HC,D(cout, VDn,K,si
,HC,D,vi 

) is used to evaluate it and determine if it displays virtuosity or 

not. This function forms the main means of evaluation within ER, and forms the model of 

virtuosity, summarised as follows. 

Performances demonstrating virtuosity from within a domain, Dn,K,si 
), are those that 

display exceptional technical proficiency, as determined by HC,D, with the interpretation  

of technical proficiency specified by Cw ∈ C and Dw ∈ D. The level of technical proficiency 

that is considered exceptional is determined by the value of a virtuosity percentile,  and  

the performances that are ranked within this percentile form a set of virtuosity percentile 

performances, vi. Any performance (new or existing) of a sequence of notes which, as 

determined by M, is within the musical percentile of similarity of the sequence  of notes,  

n,  that the domain,  Dn,K,si 
),  was  formed around,  will be considered to display virtuosity 

if a value greater or equal to 0 is achieved when the performance is compared to VDn,K,si 
∈ 

Dn,K,si 
), using the heuristic function, HC,D. 

This model of virtuosity, therefore has four main parameters. These are: the musical 

similarity percentile, si, the value of virtuosity percentile that is used to form the set vi, 

and the playing complexity, Cw, and perceived difficulty, Dw, heuristic weightings. The 

musical similarity percentile, si is a way of adjusting the scope of musical similarity in 

which comparisons of musical performances are made. This is to account for different 

musical styles, genres, etc., having different complexities and difficulties meaning what 

might be considered a virtuosic reggae performance, may not be considered a virtuosic 

jazz performance. This part of the model is a means of accounting for the musicianship 

required for virtuosity. The technical proficiency has a greater focus though within the 

model. The interpretation of technical proficiency, can be configured using Cw and Dw,  

and then determined using HC,D, with the definition of what exceptional is being set by   

the value of virtuosity percentile used to form vi. Thus, si, vi, Cw and Dw form the four 

parameters of the model of virtuosity, their values are shown in Table 8.2. 
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By manipulation of these four parameters within this model of virtuosity, the lens 

through which the terrain of virtuosity is viewed is adjusted. It is anticipated that H will 

need to be expanded in further work to account for aesthetics, conveyance of expression, 

audience’s understanding levels, etc., in future; however, the current reduced set of criteria 

and this model is proposed as the initial steps towards computational navigation of the 

terrain of virtuosity. 
 

Parameter 
Value 

 
 
 

Table 8.2: Virtuosity Model Parameters. 

 
 

8.2.6.4 Summary of Ruleset EE L 

Ruleset EE is the formed for the following: 

• Musical Similarity Percentile: si 

• Virtuosity Percentile: vi 

• Playing complexity model weight  pair:  C 

• Perceived difficulty model weight  pair: D 

• Musical Similarity Function: M 

• Heuristic: HC,D 

• The Domain: Dn,K,si 

• Virtuosity Threshold: VDn,K,si
,HC,D,vi 

 Minimum Maximum 

Musical Similarity Percentile (si) 0 100 
Virtuosity Percentile value that forms (vi) 0 100 
Playing Complexity Weight (Cw) -1 1 
Perceived Difficulty Weight (Dw) -1 1 
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8.2.7 Defining the Engagement Traversal Strategy TE ∈ L 

Traversal of CE is achieved by Adorn-o using case-based reasoning (CBR). The primary 

component of the CBR used is A, originally defined in Section 3.2, and repeated here for 

convenience: 

 

A(n, K, t) = α n, σ(n, K), t . 

where K ⊆ CE , n ∈ 
→−
N  and t ⊆ T , T ∈ OB . 

Therefore A ∈ TE and by extension the select function, σ ∈ TE . The adornment 

application function, α ∈ TE , which is outlined later, is guided by the heuristic HCD ∈ EE . 

The musical similarity function M ∈ EE is used within the retrieval stage of the CBR and 

performances produced by A are checked to ensure they are members of CE . This means 

that in addition to the engagement traversal strategy TE , both RE and EE are required     

for the traversal of CE . Traversal of CE is achieved using ((., ., .)) as follows: 

cout = ((TE, RE, EE ))(cin) 

where ((., ., .)) is a function generator that maps RE L, TE L and EE ∈ L to a function 

(A) that generates a new bass guitar performance cout from cin, cout ∈ Cn, cin ∈ Cn. The 

mapping performed by ((., ., .)) and the function’s operations are defined using CBR in the 

following sections. 

As ruleset RE ∈ L prevents unadorned notes from being part of CE , the conceptual 

space being traversed according to TE L, unperformed (unadorned) sequences of notes 

cannot be used as input to Adorn-o. Thus n /= c, n ∈ N , c ∈ CE . In such an instance 

the default performance,9 cn,default of the note sequence n must used as input to Adorn-o. 

Therefore, 

cin = cn,default 

 
where cx,default denotes the concept ∈ CE for the default performance for the sequence of 

notes x ∈ 
→−
N . 

8.2.7.1 Cases and the Case-database 

A case within Adorn-o is defined as a concept c ∈ CE . A case-database, π is defined as a 

set whose members are cases, thus π ⊆ CE . 

9See Section 3.4.8. 
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8.2.7.2 Retrieval 

The select function, σ,10 is used to perform the retrieval operation. σ selects the best 

performance, according to HC,D, from a domain, of the sequence of notes, n ∈ cin. A 

domain of n ∈ cin, is formed from the case-database, π, and a musical similarity percentile 

using Dn,π,si 
∈ RE . σ then uses HC,D, to determine the best performance as follows: 

 
σ(n, Dn,π\σ

prev,si 
) = x|x ∈ Dn,π\σ

prev,si 
, HC,D(x, y) ≥ 0, ∀y ∈ Dn,π,si

, x /= y, 

where  g \ h is  set  g with  the  members  of  set  h removed,  n ∈ 
→−
N ,  π ⊆ CE  and  si  is  the 

musical similarity percentile that defines the musical scope of Dn,π,si 
. To allow for different 

performances to be selected during the reflection process, a set of previously selected per- 

formances is defined as σprev, whose members are those that have been previously selected 

by σ. 

 
8.2.7.3 Reuse 

The reuse operation is where a new performance is produced, using the case retrieved by 

σ. The adornment application function, α,11 performs the reuse operation by applying the 

adornments from the performance selected by σ, to the sequence of notes n ∈ cin. 

Performance techniques are (normally) applied to a sequence of notes in systematic and 

purposeful ways that are informed by implicit knowledge, performance conventions and the 

intentions and experience of the performer. Regardless what exactly informed the choice 

of performance technique, the choices are usually made in relation to the sequence(s) of 

notes that form the piece of music. Here it is supposed that performance techniques that 

have been applied to one sequence of notes, can be applied to a different musically similar 

sequences of notes. It is presumed that the performance decisions applied to one sequence 

of notes, can also be applied to a musically similar one. This is because is the implicit 

knowledge, performance conventions and intentions are encoded within the application of 

techniques to the first sequence of notes. In applying the techniques to a musically similar 

sequence, these encoded intentions, performance conventions and implicit knowledge are 

also transferred. This approach to applying performance techniques to a sequence of notes 

forgoes the need for explicit performance rules to be specified, thus also allowing for this 

to generalise to different musical styles, cultures and genres. 

10Defined in Section 3.2 
11Defined within Section 3.2. 
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Simply applying the techniques in sequential ordering from one sequence of notes to 

another, however is not an appropriate means of transferring the performance techniques. 

This is because, as outlined within the Bass Guitar Performance Ontology OB, some 

techniques can only be applied to specific notes and/or sequences.  It is also likely that   

the musical context for which a performance technique is applied was informed by where 

within the sequence the note is, where the note is played on the instrument, and what notes 

precede and/or proceed it. These properties will be referred to as the musical context of a 

note. The process that determines what musical techniques can be applied to a note is as 

follows: 

1. For each note in n ∈ cin the musical context is required to be established. 

2. Musical contexts for the notes within the performance retrieved from the case- 

database by σ: σ(n, Dn,π\σ
prev,si 

) are also established. 

3. Each musical context within n ∈ cin is then matched to the most similar musical 

context from σ(n, Dn,π\σ
prev,si 

). 

4. The notes within each matched musical context are aligned. 

5. The performance techniques that are applied to the note from σ(n, Dn,π\σ
prev,si 

) can 

be applied to the note it has been aligned to in n ∈ cin. 

6. The adornment application function α determines and then adorns each note n ∈  

cin with a combination of performance techniques, selected (to try) to produce a 

performance that displays virtuosity (as evaluated by RE ). 

This process is now formalised throughout the rest of this section. 

A musical context is defined as a subsequence of consecutive notes found within n ∈ 
→−
N . 

These subsequences are defined as chunks, where: 

 
chi = (ni, . . . , ni+w−1), 

where w is the length of the chunk, chi is a subsequence of n, starting on note ni and 

containing the following  w − 1 notes ∈ n, n ∈ 
→−
N . 

A chunking function, W, maps a sequence of notes to a set of all possible chunks that 

can be formed from that sequence: 
 

W : 
→−
N 1→ 

→−
N ∗. (8.2) 
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W forms a set of chunks for a sequence of notes, n, as follows: 

 
W(n, w) = {chi|chi = (ni, . . . , ni+w−1), 

∀ni ∈ n, 1 ≥ w ≤ length(n), 1 ≥ i ≤ i + w − 1}, 

where  n ∈ 
→−
N ,  w is  the  length  of  the  subsequences,  chi is  a  subsequence  of  n,  starting  on 

note ni and containing the following w − 1 notes ∈ n and the function length determines 

the number of notes within n. This chunking function, W, is used to establish the musical 

contexts within n ∈ cin and m ∈ σ(n, Dn,π\σ
prev,si 

) (steps one and two). 

A set of (musically) matched pairs of sequences, M , is defined, whose members are 

pairs (n, m) where n ∈ 
→−
N , m ∈ 

→−
N : 

 

M = 
→−
N × 

→−
N . (8.3) 

Each chunk in W(n, w) can be matched to the most musical similar chunks in W(m, w), 

using M forming a set of (musically) matched pairs of sequences (step three) as follows: 

 

Mn,m,w = 
{

ch ∈ M |ch = (chi, M
(
chi, W(m, w), si

)
), ∀chi ∈ W(n, w)

}
, 

where n ∈ 
→−
N , m ∈ 

→−
N , and within the current formulation of Adorn-o the length of chunks 

is set to three, w = 3, and percentile of musical similarity is set to 100, si = 100 so that 

only the most musically similar chunk are matched between n and m. Also note within this 

formulation, that chunks overlap, that is the first chunk would contain notes: (n1, n2, n3), 

the second would contain notes: (n2, n3, n4) etc. 

A set of pairs of musical notes, P is defined whose members are pairs of notes from 

longer sequences of notes, (ni, mj), where ni ∈ N and mj ∈ N : 

P = N × N . 

An alignment function, ρ, is defined that maps two sequences of notes to a sequence of 

pairs of musical notes: 

ρ : 
→−
N × 

→−
N 1→ 

→−
P . 

A sequences of pairs of musical notes is formed from two sequences of notes by ρ as 

follows: 
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ρ(k, l) = p ∈ 
→−
P |pi = (ki, li), 

where xi is the ith element of sequence x, k ∈ 
→−
N , l

→−
N . 

The notes within each pair of musically matched chunks can be aligned with ρ (the  

first part of step four) forming a set of pairs of musical notes of as follows: 

PMn,m,w  = {p ∈ 
→−
P |p = ρ(o, q), ch = (o, q), ∀ch ∈ Mn,m,w, 

where  o and  q are  the  chunks  from  n and  m that  have  been  musically  matched,  o ∈ 
→−
N , 

q ∈ 
→−
N . 

PMn,m,w is a set of pairs of notes, where each pair contains one note from n and one note 

from m. These paired notes have been identified to occur within similar musical contexts. 

This means that the techniques from one note within the pair can be applied to the note it 

has been paired with, and vice versa. Although within Adorn-o, the techniques that were 

applied to the note m ∈ σ(n, Dn,π\σ
prev,si 

) will be applied to the note from n ∈ cin. 

However, as the notes within each chunk are not mutually exclusive to a chunk, each 

note from n ∈ cin may have multiple pairs formed within PMn,m,w . A grouping, G, is 

defined as a set whose members are pairs of a single note, and a group of notes: (ni, g), 

where ni ∈ N and g ⊂ N : 

 

G = N × N ∗ 

A grouping for a note ni ∈ n can be formed from by finding all pairs that contain ni 

within PMn,m,w . Then a set of all the notes from m ∈ σ(n, Dn,π\σ
prev,si 

) that were paired  

with ni can be formed. This process is as follows: 

 
Gni 

= {mj ∈ N |mj = y, x = ni, p = (x, y), ∀p ∈ PMn,m,w } 

where ni ∈ N . 

A function, G, maps a set sequences of notes and a set of sequences of pairs of musical 

notes to a sequence of groupings (the second part of step 4): 

G : 
→−
N × 

→−
P  1→ 

→−
G 

Thus, for n ∈ cin, a sequence of groupings is formed for each note ni ∈ n using G as 

follows (completing step four): 
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G(n, PMn,m,w ) = g ∈ 
→−
G |gi = (ni, Gni ), 

where n ∈ cin and m ∈ σ(n, Dn,π\σ
prev,si 

). 

The notes within Gni 
, are the notes from m ∈ σ(n, Dn,π\σ

prev,si 
) that have been iden- 

tified to have been found within the most similar musical context to note ni from n ∈ cin. 

Therefore the techniques that adorn the notes ∈ Gni 
can also be applied to ni. 

A set of the techniques that adorn the notes ∈ Gni 
that could be applied to ni is  

formed using a performance technique transfer function. The performance technique trans- 

fer function, τ , is defined as a function that maps a sequence of groupings and a sequence 

of adorned notes to a sequence of sets of possible adornments: 

τ : 
→−
G × 

→−
N 1→ 

−
(T
−→∗). 

A sequence of sets of possible adornments (whose members are adornments from 

adorned notes within σ(n, Dn,π\σ
prev,si 

)) that can be applied to the notes within n ∈ cin,      

is formed using τ (step five) as follows: 

 

τ (g, σ(n, Dn,π\σ
prev,si 

) = t ∈ 
→−
T |ti = 

  {
u ⊂ T |u = Aj , aj = (mj , Aj), ∀mj ∈ Gni , 

gi = (ni, Gni 
), aj ∈ σ(n, Dn,π\σ

prev,si 
)
} 

where g = G(n, PMn,m,w ) and {z|z ∈ Z} is the union of all elements in a set. 

There has also been a contextual comparison encoded within τ for modulation tech- 

niques and accents. These take the form, and have been implemented as a set of rules. 

These rules were added as in testing the implementation of Adorn-o, these were the only 

implicit performance practices not observed to be adequately transferred through the ap- 

proach that has been outlined. These rules are as follows. 

Modulations techniques will only be included within the set of possible techniques,      

u ⊂ T , if the proportional duration of mj ∈ Gi within its sequence of notes m, is equal to 

the proportional duration of note ni ∈ n. Summarised as: 

proportional duration(ni, n) == proportional duration(mi, m) 

 
where proportional duration(ni, n) is a function that determines the proportional duration 

of note ni ∈ n: 



243  

i=1 i 

( ) 

 

 

proportional duration(n , n) =
  duration(ni)  

i �length(n) 
duration(n ) 

and duration(x) is a function that gets the duration value of note x ∈ N . 

Accents will only be added if ni and mj fall on the same beat subdivision, relative to the 

downbeat, within each of their respective sequences of notes. The process for determining 

this is as follows: 

 
(
onset(ni) − onset(n1)

)
%downbeat(n) == 

(
onset(mi) − onset(m1)

)
%downbeat(m) 

where % is the modulo operator, onset(x) is a function that gets the onset value for note 

x ∈ N and downbeat(y) is 1/time signature denominator for y ∈ 
→−
N . 

The operations for steps one to five allow for Adorn-o to perform a comparative analysis 

between an example performance and an unadorned sequence of notes. These process 

allow Adorn-o to identify similar musical contexts between the performance and unadorned 

note sequence and preparing a set of possible adornments that can be used to adorn the 

unadorned sequence of notes. These operations have been designed to provide Adorn-o 

with the mechanisms to allow for musicianship. This aspect was missing from the model  

of virtuosity, however this is now accounted for through the creation of performances. The 

operations of the adornment transfer function τ provide Adorn-o with both the mechanisms 

for musicianship and in combination with CBR, a knowledge base of experience, which are 

utilised to produce new performances. 

The last stage, stage six, uses the adornment application function α,  to adorn each note 

n ∈ cin.  As Adorn-o seeks to produce bass guitar performances that display virtuosity,  

the most technically proficient combination of performance techniques, as determined by 

HC,D, are selected and then adorned by α to each note within n ∈ cin as follows: 

 

α  n, σ(n, Dn,π\σ
prev,si ), B   = b ∈ 

−
N
→
B | bi = (ni, Bi), Bi ⊂ (ti ∩ B), 

HC,D(bi, ai) ≥ 0, 

ai = (ni, Ai), ∀Ai ∈ (ti ∩ B)∗, Bi /= Ai, 

t = τ (g, σ(n, Dn,π\σ
prev,si 

), 

where n ∈ cin, B ⊂ T , g = G(n, PMn,m,w ) and x ∩ y is the intersection of sets x and y. 
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Within α the set of bass guitar techniques that can be applied to each note, is de- 

termined by the intersection of the full set of bass guitar techniques B ∈ OB, and the 

adornments identified by the adornment transfer function τ . The most technically profi- 

cient set of techniques is selected from the power set of the intersection of the full set of 

bass guitar techniques B ∈ OB, and the adornments identified by the adornment transfer 

function τ :(ti ∩ B)∗ using HC,D. 

 
8.2.7.4 Revision 

A revise function, δ, maps a bass guitar performance and the rule set RE to a well-formed 

bass guitar performance: 
 

δ : 
−
N
→
B × RE 1→ 

−
N
→
B . 

A performance produced by α is checked by δ producing cout as follows: 

cout = δ
(

α
(
n, σ(n, Dn,π\σ

prev,si ), B
)
, RE 

)
, 

where cout ∈ CE . 

The rules for a well-formed bass guitar performance are provided within the Bass Guitar 

Performance Ontology, OB ∈ L. As these rules are encoded within the language and are 

followed when adornments are applied to notes by α. However, some specific techniques, 

notably hammer-on, pull-offs and slides can only be applied to certain sequences of notes. 

As the implementation of α only focuses on adorning individual notes, δ is required to 

correct instances where these techniques may have been applied inappropriately. δ corrects 

these techniques, either by changing them (e.g. swapping hammer-on’s with pull-offs), 

adjusting the parameterisation of the technique (e.g. changing slide parameters so the 

correct sliding action can be completed) or removing them if they cannot be corrected or 

adjusted. 

‘Hammer-on’ and ‘Pull-off’ techniques are checked and corrected by the function 

adjust_hammer_on_and_pull_offs_within_a_measure() ∈ δ. This function is used to 

determine if a Hammer-on or Pull-off has been appropriately applied, if a ‘Hammer-on’ 

should be swapped to a ‘Pull-off’ or vice versa (see Section 3.4.4.3), if ‘Hammer-on’/‘Pull- 

off’ should be moved to a different note within the sequence or if the techniques cannot be 

applied to the sequence of notes following OB ∈ L. 

‘Hammer-on’ and ‘Pull-off’ techniques are usually applied for the same performance 

reason:  to have a smoother transition between notes.  A ‘Hammer-on’ is a ‘Pull-off’ ap- 
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plied to a pair of notes with ascending pitches, and a ‘Pull-off’ is like a ‘Hammer-on’ applied 

to a pair of notes with descending pitches. Second, this function corrects a scenario where 

sequences of ‘Hammer-on’/‘Pull-off’s were played over ascending/descending strings, such 

as the shown in Figure 8.2. Sometimes the Hammer-on/Pull-offs can be applied to the 

wrong note in the sequence, (and also the not be the appropriate Hammer-on/Pull-off for 

the note sequence, as shown in Figure 8.3. 

The   adjust_hammer_on_and_pull_offs_within_a_measure()  ∈  δ  rectifies   the   issues and 

has the correct Hammer-on/Pull-offs applied to the correct notes in such scenarios. The 

adjust_hammer_on_and_pull_offs_within_a_measure() ∈ δ function has been imple- 

mented within Adorn-o.  The code for which can be found here:  https://github.com/ 

callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py. 
 

 
Figure 8.2: Correctly applied ‘Hammer-on’/‘Pull-off’ Adornments. 

 

 

 

Figure 8.3: Incorrectly applied ‘Hammer-on’/‘Pull-off’ Adornments. 

 
Two additional functions have also been implemented within δ to correct erratic ‘Pick’ 

and ‘Double Thumb‘ up/down stroke patterns, revise_stroke_directions() ∈ δ, and irreg- 

ular ‘Slap’/‘Pop’  patterns,  revise_slap_pop_pattern()  ∈  δ.  Traditionally  down  strokes  

are played on strong (down beats) and up strokes are played on weaker (up beats), 

 
 

 
 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
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as shown in Figure 8.4. However, sometimes α can produce  erratic  picking  patterns 

which do not follow the rhythmic structure of the music, as shown in Figure 8.5. The 

revise_stroke_directions() ∈ δ adjusts the stroke pattern so that it does follow the un- 

derlying rhythmic structure of  n  ∈  cin.  The  revise_stroke_directions()  ∈  δ  function  

has been implemented within Adorn-o. The code for which can be found here: https: 

//github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py. 
 

 
Figure 8.4: Traditional Application of Downward and Upward Picking Strokes. 

 

 

 

Figure 8.5: Non-Traditional Application of Downward and Upward Picking Strokes, where 
upstrokes are applied to strong rhythmic beats within the measure. 

 

Like the application of picking strokes, ‘Slap’ and ‘Pop’ techniques also have traditional 

patterns in which they are applied. The most simplest of these is that the ‘Slap’ technique is 

applied to lower pitched strings, and the ‘Pop’ technique is applied to higher pitched strings, 

as shown in Figure 8.6. This usually only applies when a string crossing (sequential notes 

are played on different strings). In testing, no further rules relating to ‘Slap’/‘Pop’ patterns 

were required. The revise_slap_pop_pattern() ∈ δ adjusts any ‘Slap’/‘Pop’ patterns, e.g. 

those shown in Figure 8.7, so that the ‘Slap’ technique is applied to the lower pitched 

strings, compared to the ‘Pop’ Techniques. The revise_slap_pop_pattern() ∈ δ function 

 
 

 
 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
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has been implemented within Adorn-o. The code for which can be found here: 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py. 
 

 
Figure 8.6: Traditional Application of Slap and Pop Techniques. 

 

 

 

Figure 8.7: Non-Traditional Application of ‘Slap’ and ‘Pop’ Techniques, where the ‘Pop’ 
techniques are applied to lower pitch strings than the ‘Slap; techniques. 

 
 

8.2.7.5 Retain 

The final step of CBR is retaining the cout within the case-database. This step does not 

directly contribute to the traversal of CE that produced cout,  however,  by  retaining cout,    

it may be selected when producing new concepts, cout−new. 

The retain function Ω updates a case-database with a new case. It is defined as a 

function that maps a concept from CE and a set of concepts to a new set of concepts: 

Ω : CE × C∗
E  1→ C∗

E , 

 
 

 
 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/cbr/revision.py
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Thus, cout can be added to the case-database, π using Ω as follows: 

 
Ω(cout, π) = π ∪ {cout}, 

 

where cout ∈ CE and π ⊆ CE 

8.2.7.6 Summary of TE ∈ L 

The ruleset TE is formed of the CBR functions: 

• a selection function σ ∈ TE , 

• an adornment transfer function τ ∈ TE , and its sub-operations: G, ρ, W, 

• the Adornment function α ∈ TE , 

• the revise function δ ∈ TE , 

• the retain function Ω ∈ TE . 

Thus, cout, can be produced from cin, using ((., ., .)) as follows: 

cout = ((TE , RE , EE ))(cin) = δ
(

α
(
n ∈ cin, σ(n ∈ cin, Dn∈c

in,π\σprev,si ), B
)
, RE 

) 

where  n ∈ 
→−
N  is  the  sequence  of  notes  that  cin ∈ CE  is  formed  for,  cout ∈ CE  is  the  new 

performance produced by Adorn-o and B ∈ OB is a set of bass guitar techniques that can 

be used within the new performance. 

 
8.2.8 Defining the Reflection Ruleset RR ∈ L and Reflection Conceptual 

Space CR 

Reflection with Adorn-o, is the process of checking the performance produced by engage- 

ment, cout, to see  if  it  displays  virtuosity.  And,  if  not,  to  re-parameterise,  and  re-run 

the engagement process to produce a new cout that does display virtuosity. Therefore the 

aim of reflection within Adorn-o is to create a virtuosic bass guitar performance for the 

sequence of notes n ∈ cin. 

As such, CR is a space of concepts that display virtuosity. That is to say CR is formed 

from concepts in CE which surpass the threshold of virtuosity: VDn,K,si
,HC,D,vi 

. This is 

expressed using the ER-CSF as follows: 

 
CR = {cr|cr ∈ CE ∧ [[EE ]](cr) ≥ 0} 
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n ∈ cin, σ(n ∈ cin, Dn∈c
in,π\σprev,si 

), B 

 

where [[EE ]] = HCw,Dw (cr, VDn,K,si
,HC,D,vi 

). 

RR is then defined thus: 

RR = RE ∧ EE 

8.2.9 Defining the Reflection Traversal Strategy, TR ∈ L 

The means of traversing CR is through the creation of virtuosic performances, which are 

achieved by guiding the engagement process. The process which guides the engagement is 

outlined by Algorithm 1: 

 
while [[EE ]](cbest) < 0 ∧ σprev /= π do 

while si ≥ 0 do 

while σprev(/=(
Dn,π,si   do 

) ) 
 

if cbest = ∅ then 
cbest = cout; 

else 

if HC,D(cout, cbest) ≥ 0 then 
cbest = cout 

end 

end 

σprev = σprev ∪ σ(n, Dn,π,si ); 

end 

si = si − dilation factor; 
end 

end 

Algorithm  1: TR ∈ L 

where n ∈ cin, cin ∈ CE , cbest ∈ CE , π ⊂ CE is the case-database, σprev ⊂ π are the 

previously selected cases from the case-database and the dilation factor is how much the 

similarity percentile, si, should be changed by when forming the domain, Dn,\σ
prev,si 

. When 

this process stops, cout is then retained in the case-database using Ω. 

The traversal strategy, TR, can be seen as a simple search for a case from within the 

case-database, whose adornments, when applied to n ∈ cin using α, produces a performance 

that displays virtuosity, as evaluated by [[EE ]]. Or failing that, the case that will produce 

the highest valued performance, cbest ∈ CE , as evaluated by HC,D. This search first starts 

by selecting musically similar performances from the case-database, before selecting less 

similar performances, until every performance in the case database has been tried. 

The tracking cbest has been included within this formulation of TR, to address the 

cout = δ α , RE ; 

; 
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issue of no cout being produced that demonstrated virtuosity. In such an example, no 

performance  should  be  returned,  as  part  of  the  reflection  process,  as  cout ∈/ CR.  However, 

cout ∈ CE , and is therefore is a valid performance. Also there is no guarantee a perfor- 

mance, even those intended to display virtuosity, performed by an agreed upon virtuoso, 

will display virtuosity. Thus, to ensure a performance is produced by Adorn-o, the best 

performance that has been able to be produced is kept. This is so that in the event a per- 

formance that displays virtuosity cannot be produced, the best performance can instead  

be returned. 

Within reflection cout is therefore produced by ((., ., .)) as follows: 

cout = ((TR, RR, EE ))(cin), 

where this process supersedes that of ((TE, RE, EE )) as, as shown in Algorithm 1, TE ∈ TR. 

8.2.10 Defining the Reflection Evaluation  Ruleset  ER ∈ L 

ER simply only values c ∈ CR. 

8.2.11 The Benefits of using the ER-CSF as a Design Tool 

The design of Adorn-o,  and subsequent formalising,  demonstrates how the ER-CSF can   

be used to guide the design and development of creative systems. Specifically by having 

formalised and contextualised the key components of the ER-CSF, a theory of virtuosic mu- 

sical performance is outlined. Adorn-o can be adapted to produce performances for other 

instruments purely through changing the ontology, the models of playing complexity and 

perceived difficulty, (and possible the operations of τ ), without needing to reformulate/re- 

design its core functionality and processes. 

Describing a creative system with either the CSF or ER-CSF, also allows for unex- 

pected, or behaviours that deviant from the intended behaviours of the system to be 

identified, described and if beneficial, accounted for by the system itself. Within the op- 

eration  of  Adorn-o  it  is  possible  to  observe  a  cout ∈/ CR,  as  outlined  in  Section  8.2.9.  The 

traversal ruleset TR is designed to mitigate this, and failing that accepting that for a given 

cin it is not possible to produce a cout ∈ CR.  That is to say  it is not possible to produce        

a virtuosic performance, cout, for cin, for a given domain and virtuosity threshold. When 

such an instance occurs, this is seen as an example of pointless aberration, which Wiggins 

(2006a) suggests, can be corrected by adjusting T , so that a cout ∈ CR can be produced. 

Future versions of Adorn-o could adjust the pitch, duration and or onset values of notes 
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as part of T which would work to resolve this pointless aberration. A reformulation, or re-

parameterisation of the virtuosity threshold would also work to resolve the issue. How- 

ever,  in doing so the performance creation problem that Adorn-o is solving is changed,  

not Adorn-o’s creative behaviour or operation. For that given cin, domain and formula- 

tion/parameterisation of the virtuosity threshold, Adorn-o would still continue to display 

pointless aberration, without any changes to TR. 

The ER-CSF however, is not a one size fits all design tool for the production of “cookie 

cutter” creative systems. Its use requires that a system designer has both an understanding 

of creative systems theory and an understanding of what the creative system will produce 

are doing. The ER-CSF can however help guide a designer in identifying, formulating and 

even understanding key aspects that relate what artefacts the creative system is intended 

to produce, and how it will produce them. It also allows for direct comparison between 

other creative systems described using the ER-CSF. Although at present Adorn-o is the 

only known creative musical performance system which has been describe this way. 

 
8.3 Implementing Adorn-o: a Creative Musical Performance 

System for Virtuosic Bass Guitar Performance 

The Adorn-o is a Python implementation of this theory for virtuosic musical performances 

outlined in the previous section. The PyGuitarPro12 Python module has been used to allow 

for Guitar Pro13 files in the gp3, gp4 or gp5 formats to be used as cases, and input to Adorn- 

o. The rpy214 Python module has been used to allow for FANTASTIC (Müllensiefen, 2009) 

to be called from within Python, and the matlab module has been used to allow the Matlab 

implementation of the digital waveguide by Kramer et al. (2012) to render the output of 

the system. 

The implementation decision was made to have the adornment function A apply to each 

bar within a guitar pro input file, and not be applied over  the whole file.  This resulted in   

a system which produced performances for each bar, before re-combining them to produce 

a performance of the whole song. This implementation decision does mean that Adorn-o 

does not address any aspects relating to longer term performance structure. Bar transitions 

also require revision when re-combined, this revision is conduced by applying the revision 

step of the CBR process to the adorned note at the end of a bar, and the then the note at  

the start of the following. 

12https://pyguitarpro.readthedocs.io/ 
13https://www.guitar-pro.com/ 
14https://rpy2.github.io/ 

https://pyguitarpro.readthedocs.io/
https://www.guitar-pro.com/
https://rpy2.github.io/
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This choice was made in part because the measure of musical similarity was assessed 

only on bars (Goddard et al., 2018). The implemented theory of musical performance 

leverages the implicit adornment application conventions that lay within where the musical 

adornments are applied in the music. The assumptions made in regard to this theory of 

musical performance, were made with respect to shorter sequences of (between one to 

three) notes. As the limits of this assumption have not been tested, and such testing is 

currently beyond the scope of this work, the choice was made to limit Adorn-o’s operation 

to bars of music. This is because bars form the smallest natural deliminator within an 

extended musical piece. 

The use of FANTASTIC (Müllensiefen, 2009), which in its current implementation, also 

imposes an additional limitation on the system because it can only compute features for 

monophonic music. As such the current presented implementation of Adorn-o is only able 

to produce performances for monophonic melodies. However, as Basslines are traditionally 

monophonic this is not seen as a hindrance to the production of virtuosic performances.   

It is however expected that polyphonic music would offer more opportunities to display 

virtuosity. 

Figure 8.8 outlines the implemented architecture of Adorn-o. Figure 8.9 provides a 

detailed operational diagram of Adorn-o. 

 
8.3.1 Adapting FANTASTIC and SynPy for use by Adorn-o 

To be able to use FANTASTIC and SynPy together required some adjustments to FAN- 

TASTIC’s function definitions, along with implementing a rhythm (.rhy) file parser  to  

allow for more precise input to SynPy. 

 
8.3.1.1 FANTASTIC Function Definition Adjustments 

Due to the potential size of the case database,  FANTASTIC  feature calculations needed      

to be computed separately from the similarity. The feature.similarity function within 

FANTASTIC was modified to accept data.frame input. The code adaption is shown in 

Appendix F.1. No other changes were made to FANTASTIC, with each function called 

directly using the rpy2 python module. 

 
8.3.1.2 Rhythm (.rhy) file parser implementation 

SynPy computes features from either a MIDI file, or a rhythm (.rhy) file. A rhythm file is 

SynPy’s own format for describing musical rhythms. It is a text file in the format specified 

in Appendix F.2. Each section of information is contained between curly brackets: ‘{’, 
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Figure 8.8: Diagram of the implementation of Adorn-o, a computationally creative system 
for the production of virtuosic musical bass performances. Rectangles are process, trapez- 
iums are data structures and circles are parameters. Where the ‘Unadorned Measure N’ 
is n, ‘Newly Adorned Measure’ is the result of α, ‘Revised Newly Adorned Measure’ is 

cout ∈ CE and ‘Suitable Newly Adorned Measure’ is cout ∈ CR . 
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Figure 8.9: Operational diagram of Adorn-o. 
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‘}’ and identified by  the letter proceeding the first bracket.  T indicates the information      

is the time signature, TPQ indicates this is the ticks per quaternote, V indicates that the 

information is the velocity vector for the measure. The velocity vector specifies where,  

and at what velocity the onsets occur within the measure. These are specified in tantums, 

which is the smallest value possible of which integer multiples can specify the start times 

of each event (onset) within the measure. The ticks per quarter-note is the number of 

tantums per quarter-note.  A velocity vector is a vector where every tantum within the   

bar is set to zero when no onset occurs, or to the normalised velocity value when an onset 

occurs. Velocities are specified using MIDI velocities are are normalised to the maximum 

value. 

A converter was implemented which would output .rhy files for measures of music. 

This format was required because SynPy would not accept MIDI files where notes were 

held over multiple measures. This converter is implemented within the parser module 

within Adorn-o, that handles input and output file conversions for the various different file 

formats utilised within the implementation. 

 
8.3.2 Implementing the Bass Guitar Performance Ontology within 

Adorn-o 

The Bass Guitar Performance Ontology was implemented using the namedtuple object 

from the collections Python module. This allowed for a straightforward one-to-one 

mapping from the specification to a code implementation. This is because a namedtuple 

specified the name of the tuple, and the names of the values contained within it. The 

names of each namedtuple were set to the classes within the Bass Guitar Performance 

Ontology and the value names to the names of the properties, contained within each class. 

Additionally, the namedtuple implementation of the Bass Guitar Performance Ontology 

also allows for close to direct translation into the JSON file format, by first converting 

each namedtuple into a Python dictionary, then using the json python module to write 

the dictionary contents into a JSON file. These JSON files where used for intermediary 

data retention within Adorn-o as well as being the primary datafile format which cases 

were saved as, as there were substantial performance gains in reading JSON files instead 

of continually parsing guitar pro files within Adorn-o. 
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8.3.3 Parameterising a Digital Waveguide Model of a Bass Guitar to 

Render the output from Adon-o as Audio 

Any audio renderings of the output produced by the Adorn-o must be able to reproduce 

and render audio for all possible playing technique combinations that can be applied to     

a note. As the performances produced by  Adorn-o are represented within the Bass Gui-  

tar Performance Ontology, this required a suitable audio rendering system, along with a 

mapping from the Bass Performance Ontology to the rendering system’s parameters. A 

synthesis method was selected to be most appropriate, due to the combinatorial complex- 

ity faced by a sample based audio rendering approach. The digital waveguide model by 

Kramer et al. (2012) was selected for the basis of the audio synthesis as it produced suitably 

high fidelity renderings of bass playing, could synthesize a range of playing techniques, and 

allowed for additional parameterisations that in theory, mean it is possible to synthesis the 

audio for all possible combination of playing techniques that may be described within the 

Bass Guitar Performance Ontology with this model. 

The initial set of techniques that can be simulated by Kramer et al. (2012)’s model are 

outlined in a Bass Playing Taxonomy by Abeßer (2014), and presented in Table 2.3. 

A comparison between the Plucking Styles in the Bass Playing Taxonomy and equiv- 

alent parts of the the Bass Guitar Performance Ontology (Section 3.4) and between the 

Expression Styles in the Bass Playing Taxonomy and equivalent parts of the the  Bass 

Guitar Performance Ontology are shown in Table 8.4. 

Table 8.3: Comparison of the Plucking Style Techniques from the Taxonomy  of  Bass 
Playing Techniques by Abeßer (2014) with Bass Guitar Performance Ontology developed 
in Section 3.4. 

Abeßer (2014) Bass Playing Taxonomy Bass Playing Ontology 

Pluck Style Plucking 
Classes Technique Modification 

Finger Style (FS) finger-pluck 
Picked (PK) pick 
Muted (MU) finger-pluck palm muting 
Slapped-Thumb (ST) slap 
Slapped-Plucked (SP) pop 

 

This waveguide model originally proposed by Kramer et al. (2012) was further tuned 

and parameterised in the work by Abeßer et al. (2013), where the digital waveguide syn- 

thesised the audio for basslines that were specified is a low bitrate encoding scheme. This 
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Table 8.4: Comparison of the Expression Style Techniques from the Taxonomy of Bass 
Playing Techniques by Abeßer (2014) with Bass Guitar Performance Ontology developed 
in Section 3.4. 

Abeßer (2014) Bass Playing Taxonomy Bass Playing Ontology 

Expression Style Fretting 
Classes Sub-classes Modification 

Normal (NO) fretting 
Harmonics (HA) natural-harmonic 
Dead-note (DN) dead-note 
Vibrato (VI) Slow Vibrato (VIS) vibrato 

Fast Vibrato (VIF) 
Bending (BE) Quarter-tone Bending (BEQ) bend 

Half-tone Bending (BEH) 
Slide (SL) Slide-up  (SLU) slide out above 

Slide-down (SLD) slide out below 

 

allowed for higher quality audio output from a low bitrate transmission. It should be  

noted that in both Kramer et al. (2012)’s and Abeßer et al. (2013)’s work, specific pa- 

rameterisations and mappings were not provided. Additionally the information and model 

configurations for specific playing techniques outlined are not sufficient to fully rendering 

performances described using the Bass Guitar Performance Ontology, as can be seen in the 

comparison Tables 8.3 and 8.4, where double thumb, hammer-on, pull-off, tapping and left 

handed slap plucking styles are missing along with trill and artificial harmonic expression 

styles. However, due to its modular design, the digital waveguide model by Kramer et al. 

(2012) can be extended so that it is capable of synthesizing each of the missing playing 

techniques. 

The following work details the new techniques, extensions and detailed parameter map- 

pings required for the digital waveguide model of an electric bass by Kramer et al. (2012) 

to be able to fully synthesise performances produced by Adorn-o that are described by the 

Bass Guitar Performance Ontology. A Matlab implementation of (Kramer et al., 2012)’s 

digital waveguide model was obtained for use under the Fraunhofer IDMT Software Evalu- 

ation Agreement, a copy of which can be found in Appendix H.1. All of the following model 

extensions were implemented as additions to this provided model, to ensure compatibility, 

as well as to test their viability and parameterisations. Audio output from Adorn-o has 

been rendered utilising this extended Matlab implementation of the Kramer et al. (2012) 

model. The updated implementation is provided as a fork of the Fraunhofer IDMT code and 
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is available here: https://github.com/callumgoddard/bass_guitar_waveguide_model. 

 
8.3.3.1 Simulating Additional Plucking Styles/Excitation Techniques 

Simulating the Double Thumb (DT) Technique 

As explained in Section 2.8.2.7, the double-thumb technique is a variation of slap style 

playing. Instead of the side of the thumb knuckle striking the string against the fretboard, 

the tip of the thumb is used in a picking motion, just below the fretboard of the instrument. 

Like the slap technique, the thumb is kept rigid and the motions are controlled by the wrist, 

elbow and shoulder of the plucking arm, which allows for significantly more power to be 

applied to the string than a regular thumb pluck, resulting in the string being displaced 

enough to also make contact with the frets of the instrument. Photos of the posture of the 

thumb before and during the double thumb downstroke are presented in Figure 8.10 and 

before and during the double thumb upstroke in Figure 8.11 

The double-thumb technique can be simulated using an appropriate displacement func- 

tion and fret collision model such as the one outlined by (Rank and Kubin, 1997) and used 

by (Kramer et al., 2012) along with setting the peak of the initial displacement to an 

appropriate point in the delay-line. Figure 8.12 shows the displacement function used to 

synthesise the double thumb technique. This displacement function is similar to one used 

to simulate plucking using a plectrum, however the width and shape of the displacement 

functions peak has been widened, rounded and shaped in such a way as to resemble the 

width, and shape of the  part  of  the  thumb  that  is  striking  the  string.  To  account  for 

the motion of the strike following that of a plectrum pluck, the rest of the displacement 

function follows the same sharper displacement that would be used for for a pick/plectrum 

pluck. For complete accuracy the peak of the displacement should be placed at the point in 

the delay-line just before, or at the position where the fretboard would end. On a regular 

scaled bass guitar with a scale (string) length of 34 inches (86.36cm) this would place the 

peak somewhere in the range between 6.44 inches (16cm) and 10.77 inches (27cm) away 

from the bridge of the instrument or between 23.23 inches (59cm) and 27.56 inches (70cm) 

away from the string nut of the instrument, depending on the number of frets the instru- 

ment has, and if the technique was being performed at the end of the fretboard, or just 

before the end of it. 

 
Simulating Hammer-On (HO) and Pull-Off (PO) Techniques 

Full details of hammer-ons and pull-offs are provided in Section 2.8.2.11 and 2.8.2.20. 

Briefly, hammer-ons are when a note is played by pressing firmly down on string with a 

https://github.com/callumgoddard/bass_guitar_waveguide_model


Figure 8.10: Double Thumb Downstroke  

 
 

 

(a) The thumb just before striking the string to perform a double thumb downstroke. 

(b) The thumb striking the string to perform a double thumb downstroke. 
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Figure 8.11: Double Thumb Upstroke  

 
 

 

(a) The thumb just before striking the string to perform a double thumb upstroke. 

(b) The thumb striking the string to perform a double thumb upstroke. 
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Figure 8.12: Double Thumb Displacement 

 
finger so that it makes contact with the fret with enough force to excite the string into 

making an audible sound. A pull-off is the opposite, lifting up ones finger from a fret in 

such a way that the string is excited to make an audible sound. A bass player will hammer- 

on the note being played from a previous note and pull-off from a previous note to the note 

being played. Therefore accurate simulation of a hammer-on or pull-off requires that the 

appropriate string and fretboard interactions take into account the fret of the note that 

each technique is being performed from. 

Out of the two  techniques,  a pull-off is simpler to simulate.   Two  positions need to     

be known for the pull-off technique. These are the fret from which the pull-off will be 

performed from, and the fret of the note that is being pulled-off to. This can be consolidated 

into one parameter by specifying the fret that is being pulled-off from in relation to the fret 

that is being pulled-off to. For example, specifying a fret value of two would indicate that 

the note being pulled-off from is two frets above the note being pulled-off to.  A pull-off  

can only be performed from a fret that is above the note being played, so this parameter 

will always be positive. The pull-off technique can then be simulated by having the Finger 

Style (FS) displacement function be set to effectively pluck the string at the position of the 

fret that is being pulled-off from,  for the note that has had the pull-off technique applied  

to it. 

A hammer-on is slightly more complex as it is not a simple plucking interaction with 

the string. Instead, the playing motion is similar to that of the slap technique, where the 
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string is struck in such a way that it connects with the frets of the instrument. However, 

unlike the slap technique which lets the thumb rebound upwards after the striking the 

string to prevent it dampening the string, the finger performing the hammer-on continues 

to fret the note after the initial strike. The excitation for this technique comes  directly 

from the finger pressing down of the string. Therefore a hammer-on can be viewed as 

simultaneously shortening the string to a specific length, and exciting it precisely at the 

point it is being shortened to using the Slap-Thumb (ST) displacement function. 

This has been simulated on the digital waveguide by setting the delay-lines to the pre- 

hammer-on string length and frequency, the slap displacement function is then applied to 

the string simultaneously with an appropriate step function that immediately shortens the 

delay-line using the frequency modulation module to have the pitch of the note that is 

being hammered-on is produced correctly. 

 
Using Hammer-ons to Simulate the Tapping (TA) Technique 

Tapping (see Section 2.8.2.24) can be viewed as being operationally similar to a hammer- 

on. Both actions involve pressing down on the string at a fret in a way that produced an 

audible sound. The distinction between a tap and a hammer-on is subtle, in that a Tap 

doesn’t have a trajectory like a hammer-on. In that there is no previous fret that is being 

tapped-from, it is its own  note.  This means that a tap can be simulated in the same way   

as a hammer-on, but instead of needing the string shortening action, the Slap-Thumb (ST) 

displacement function can be set directly to occur at the very end of the string, effectively 

simulating the string being struck directly where it is being fretted. 

Additionally, unlike a hammer-on both harmonic (HA) expression styles can be per- 

formed by tapping.15 For complete accuracy there is likely to be differences in the initial 

velocity too depending on whether the plucking hand, or the fretting hand is performing 

the Tap  (TA).  With the initial velocity likely being great in the former case, and slightly  

less in the later, although this discrepancy at higher levels of playing would be minimal 

and balanced by experienced players. Therefore it was decided that the initial velocity 

parameterisation would not be adjusted to compensate for these scenarios within the im- 

plementation of the Taping (TA) plucking style. 

There is one inaccuracy with this approach however, and that is due to the delay-line’s 

length being changed to match the pitch of the note. This in-effect means that instead of 

fretting a note by dividing up a string into two sections, the part of the string between 

15While it is technically possible to perform tapped harmonics with a hammer-on, it  is  an  extremely  
precise and physically demanding feat and is largely redundant due to the same action being able to be 
performed faster and more easily with a tap. 
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the fret and the bridge, and the part of the string between the fret and the nut, the string 

only consists of the fret-bridge section. For every other plucking style this does not cause 

any  issued,  however  for tapping, because there is no other fretted anchor point to act as  

a dampner, the displacement caused by the tap actually causes a travelling wave to move 

outwards from the fret into each of the two string sections. This means that when a note is 

tapped, two different pitched notes are played, one being the intended note, that is heard 

between the fret and the bridge and a second, unwanted one, between the fret and the nut. 

As there is no pickup between the fret and nut, this second note is not directly heard but 

some residual vibrations can be transmitted through the fretting finger and influence the 

tapped note’s timbre and pitch. This effect is entirely prevented by dampening the string 

behind where a note is tapped, and all proficient players who use tapping will be able to  

do this through their playing technique, or use a muting device e.g. a fretwrap16. 

This inaccuracy does not detract from the implementation for synthesizing tapping 

techniques as Kramer et al. (2012)’s use of delay-line interpolation to adjust the length of 

the whole delay-line to match the note’s pitch results in the removal of the section of string 

behind the fretting position from being present within the waveguide model. This means 

that a dampening technique is effectively always being utilised when a note is tapped. For 

high level performance, such as that which is intended to be produced by Adorn-o, this is 

therefore not an issue. However, if accurate rendering of the tapping technique is desired, 

an approach that injects some low amplitude additional frequency content into the tapped 

note, equivalent what would be produced by the second part of the string between the fret 

and nut would be required. 

 
Simulating Fretting(Left)-handed-Slap (SF) 

A fretting, or left-handed slap can be simply treated as a special instance where the Tapping 

(TA) plucking style and dead-note (DN) expression style are performed on the same note. 

However, more specifically a left-handed slap (See Section 2.8.2.13) has several fingers of 

the left hand strike one or more open strings without rebounding. This technique has been 

simulated by  applying a Slap-Thumb displacement to an open string,  set at the position   

of where the fretting-handed-slap is being performed. Damping points, as used by the 

dead-note (DN) technique, were set to be either side of the fretting-handed-slap position 

to prevent the note ringing out, producing percussive timbre of the technique. 

16https://gruvgear.com/products/fretwraps, last accessed 14/09/2020 

https://gruvgear.com/products/fretwraps
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Model Configurations for additional Plucking Styles/Excitation Techniques 

Table 8.5 identifies, in a similar style to that used by Kramer et  al.  (2012),  the  new  

digital waveguide model configurations required to play both established techniques, and 

the newly proposed ones that have been outlined here. 

One oddity Kramer et al. (2012) had in their model configuration was in only enabling 

the fret collisions for slap-thumb (ST) and slap-pluck (SP) plucking styles. Whilst both of 

these techniques are characterised by their interactions with the frets of the instrument, 

frets do not disappear when performing other playing techniques. The degree to which 

frets interact with the string on a real bass guitar is determined by the strength of the 

excitation from the player combined with how the bass is setup (how high or low the action 

is see Section ??). Kramer et al. (2012) specify a fret distance yfret for each fret17 (the 

instruments action), and a collision detection function which checks if the value (amplitude) 

of the sum of both delay-lines at each fret is greater than its fret distance. When the 

amplitude is greater the fret collision interactions are added to the delay-line for that fret. 

As the check is made between the sum of the delay-lines and the fret distance at each fret, 

fret collisions can be enabled for every plucking technique. 

In enabling the fret collision model for every technique, Adorn-o’s output is being 

rendered on a fretted bass guitar, as opposed to a fretless one, and not the hybrid bass 

original represented in Kramer et al. (2012)’s model.  This follows the findings in Sec-   

tion 4.2.2, where fretted instruments were found to be the most commonly played type of 

bass guitar. Thus, all plucking styles have  had fret collision enabled, however  the degree  

of collision was adjusted to be lower for plucking styles that had the fret collision disabled 

by Kramer et al. (2012), and higher on techniques where fret collision was enabled. 

 
8.3.3.2 Simulating Additional Expression Styles/Modification and Modula- 

tion Techniques 

Simulating a Trill (TR) 

A trill performed by quickly alternating between two different notes. This is the first 

additional technique that was not explicitly stated as being simulated by Kramer et al. 

(2012) digitalwave guide model, however it is a technique that technically possible to 

perform using meta control directions. Here meta control directions will refer to the control 

17As an additional parameter, fret distance could be finely adjusted to match real world setups of 
instruments.  Such fine detailed adjustments and parameterisation is not a yet a requirement for synthesiz-  
ing performances described using the Bass Guitar Performance Ontology so have not been changed from 
Kramer et al. (2012)’s settings. 
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Table 8.5 
 

Plucking Style Code (PS) 

 FS PKD PKU MU ST SP DTD DTU HO PO TA SF 

Initial FS x   x      x   

Displacement PK  x x          

Function ST     x    x  x x 

Generator SP      x       

Type DT       x x     

Displacement Inversion    x     x     

Level of Reflection 

for Fret Collision 

High 

Low 
 
x 

 
x 

  
x 

x x x x  
x 

 
x 

x x 

Frequency Step function x 

Damping Points x 

 

over the parameters being passed to the physical model. A very basic instance of meta 

control directions would be in defining a series of notes to be synthesised with the physical 

model - such that would form a baseline. 

On a bass guitar trills are more commonly played as a series of hammer-on and pull-offs, 

but can alternatively be performed by rapidly sliding between the notes of the trill. There 

are however musical notations limitations, that mean, at least in conventional notational 

approached, including guitar pro, the type of trill is left as ambiguous and for the player    

to interpret.  Within the Bass Guitar Performance Ontology this ambiguity was  removed  

as part of its design, thus, when a trill has been indicated, without additional directions     

to indicate what type of trill is being performed, it is interpreted and played as a series of 

hammer-on and pull-offs. Both methods of performing a trill can be parameterised using 

meta directions, making it the most flexible approach for simulating trills, however there 

may be instances where it is desirable to have a trill simulated within the digital waveguide 

itself. 

For this, an additional expression style is proposed: Trill (TR). Drawing inspiration  

from approaches to simulating the Hammer-On (HO) plucking technique, and the Vibrato 

(VI) expression style outline by Kramer et al. (2012), the simulation of a Trill has been 

achieved through modulation of the delay-line with a series of step functions which first 

modulates the pitch to that of the note being trilled to, then modulate it back  to the 

original note’s pitch, and this can continue at a desired rate, or for a desired number of 

cycles etc. This repeated series of alternating step functions forms a square wave. Therefore 

to simulate the trill (TR) expression technique a square wave that is appropriately offset 

and scaled, is used to modulate the delay line between the two notes that form the trill. 

The additional benefit is being able to specify the trill in terms of the rate of notes or the 

number of notes to be performed within a set period without the need to provide each of 

Additions 
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the trill’s individual note’s parameters as meta control directions. 

In testing, the sharp changes in pitch that were produced by a true square wave intro- 

duced unpleasant clipping and aliasing artefacts. These were reduced by smoothing the 

waveform. From informal testing a differentiable approximation of a square wave produced 

the most preferable output. The equation selected for the square wave function, before 

scaling the value is shown in Equation 8.4,18 where ∆ = 0.1, t is the time period, in samples 

per second, r is rate, in hertz (Hz) of the trill, and fd = f 1 − f 0, which is the difference 

between the pitch of the first note (f 0) and the pitch of the second note (f 1) in the trill, 

specified in Hz.  A plot of the resultant waveform  for a trill performed at a rate of two  Hz  

is shown in Figure 8.13. 

 

y(t) =
  1 

∗ atan( 
sin ∗ 2 ∗ pi ∗ t ∗ r 

) + 1

 

(8.4) 
 

2atan( 1 ) ∆ 
 

 

Figure 8.13: Plot of the differentiable square wave defined in Equation 8.4 over a two 
second time period at at a trill rate of two Hz 

A additional benefit of using this differentiable square wave approximation is that it 

has a parametrisable smoothing factor ∆. When the delta is decreased the square wave 

becomes sharper, when increased the square wave becomes smoother. This allows for 

appropriate values of ∆ to be set to simulate a range of different trills, from trills with 

distinct pitch separations to ones with more continuous transitions, such as when a trill is 

played with a slide. 

 
Simulating Artificial Harmonics (AHA) 

The second technique that is not explicitly outlined, but that can be simulated on Kramer 

et al. (2012)’s digitalwave guide mode through meta control directions, is an artificial 

harmonic. This is because harmonics can be simulated within the model and an artificial 

18Developed based on information from https://dsp.stackexchange.com/questions/35211/ 

generating-smoothed-versions-of-square-wave-triangular-etc, last accessed 12/09/2020 

∆ 

 
 

https://dsp.stackexchange.com/questions/35211/generating-smoothed-versions-of-square-wave-triangular-etc
https://dsp.stackexchange.com/questions/35211/generating-smoothed-versions-of-square-wave-triangular-etc
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harmonic is just the harmonic of a fretted note (See Sections 2.8.2.2 and 2.8.2.12).  Given   

a harmonic (aka a natural harmonic) conventionally refers to the harmonics of an open 

string, it is possible to simulate artificial harmonics within the waveguide, by setting the 

delay-line length to the appropriate pitch of a fretted note, on the appropriate string, and 

then simulating the harmonic using the HA method at the artificial harmonic’s position 

(relative to the fretted note). It is entirely possible that artificial harmonics were not 

included in the Bass Playing Taxonomy, or made explicit by (Kramer et al., 2012) due to 

this work around. 

The relationship between harmonics and artificial harmonics could be compared to 

that of the relationship between squares and rectangles, where a square is a very specific 

instance of a rectangle, and an Natural Harmonic (HA) is a very specific instance of an 

artificial harmonic, being performed on a open string, as opposed to the artificial harmonic 

which is the more general application of the foundational principle that produces harmon- 

ics. However, to maintain familiarly and continuity with conventional bass guitar playing 

nomenclature, Harmonics (HA) has been extended to have be comprised of two subclasses: 

Natural Harmonics (NHA) and Artificial Harmonics (AHA). 

Exactly how each is to be parameterised can be considered an implementation choice. 

However the following parameterisation scheme is proposed, that accounts for both the 

position each harmonic is played relative to the instruments frets, the number of octaves 

above the pitch of the original note the harmonic is, interval of the harmonic (in semitones) 

from the pitch of the original note, the harmonic ratio, and finally the proportional position 

within the delay line, this full mapping is outlined in Table 8.6. This is also the approach 

used to simulate harmonics in performances produced by Adorn-o. 

The MIDI pitch of the harmonic fh is can be computed relative to the delay-lines pitch 

midi pitch, fmidi using Equation 8.5. Where octavefret and intervalfret are the octave and 

interval values for the equivalent fret position specified in Table 8.6. 

 
fh = fmidi + octavefret ∗ 12 + intervalfret (8.5) 

Parameterising Bends and Slides 

Both Bending (BE) a note (Section 2.8.2.3) and Sliding (SL) are forms of continuous pitch 

variation that are simulated by varying the length of the delay-line (Kramer et al., 2012). 

As noted by Kramer et al. (2012): “the varying length can be given by any type of function". 

Here the functions being used to specify the frequency variations for both bends are slides 

are outlined. 
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To allow for any  form of bend to be simulated, a function was designed that converts  

a series of bend points, specified as pairs of: a cent difference and relative time occurrence 

instance, into a smooth frequency difference vector specifying delay line length should be 

changed. Following this implementation approach, the bend sub-classes can be removed 

from the Extended Bass Playing Taxonomy, as any bend trajectory, to any pitch can be 

specified. A mapping from these trajectories and pitches (as specified within the Bass 

Guitar Performance Ontology) replaces the bend sub-classes. 

To allow for sliding into a note, and sliding out from a note to be parameterised, Slide- 

In (SLI) and Slide-Out (SLO) subclasses replace the slide-up and slide-down subclasses     

in the Extended Bass Playing Taxonomy, which in effect where specific directions of the 

newly proposed Slide-Out (SLO) class. These new classes instead relate to where the slide 

is performed in relation to the note being played, either before, a the the start of the note, 

for SLI or after, at the end of the note, for SLO. These are specified in terms of fret distance 

from the note being played. This formulation allows for more flexible application of slides 

to notes. 

An additional adjustment was required to be made to the slide vector generator func- 

tion, as in on a fretted instrument, the frequency change is not continuous and occurs in 

steps, due to the frets effectively quantising the instrument’s pitch to set intervals. On a 

standard equal tempered bass guitar, each fret is a semitone interval which is equivalent to 

100 cents. Thus the frequency difference vector for a slide, for a fretted instrument, can be 

modelled by a series of accumulative step functions. An example slide vector for a slide up 

of a distance of three frets is shown in Figure 8.14. Applying appropriate transformations 

to this initial vector, such as inverting it to slide down in pitch, reflecting/reversing the 

vector to slide in the opposition direction, as well as time scaling allows for a variety of 

slides to be parameterised.  For  each note,  if the Slide (SL) expression style is specified,     

a separate slide vector is created for the Slide-In (SLI) and Slide-Out (SLO), these vec-    

tors and combined and the converted into a single vector that specifies the appropriate 

delay-line length changes for the note, similar to each other expression style. 

 
Combining Multiple Frequency Difference Vectors to allow for Simultaneous 

Expression Styles/Modulation Techniques 

Vibrato, Bends, Slides and even Trills  can all technically be performed simultaneously on  

a bass guitar. Whether it is musically appropriate or not is another question. However, as 

all four of these techniques rely on the same approach to modulating the digital delay-line 

to introduce the desired frequency variations, multiple frequency vectors can be summed 
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Figure 8.14: An example of a slide vector to to Slide-Out three frets, in a given time period 
T. Fret distances have been converted into cents, where one fret is the equivalent of 100 
cents of frequency change. 

 
together into a single frequency vector. This single vector can then be used to the apply the 

combined modulation to the delay line. This operation is demonstrated in Equation 8.6, 

where E� is the expression modulation vector formed from the sum of the vibrato, vi, bend, 

be, slide, sl, and trill, tr frequency difference for each time sample from 1 to n. 

 

E� = (vi1 + be1 + sl1 + tr1,  . . .  , vin + ben + sln + trn) (8.6) 

 
8.3.3.3 Simulating Plucking Positions 

Measured positions for the displacement peak for plucking styles are provided in Figure 8.7 

along with a measured random variance and conversion to proportional position from the 

delay-line bridge. Plucking positions were measured based on personal playing posture 

and preferred plucking positions. As an additional point, again, due to the interpolation 

approach to tuning the frequencies within the waveguide, strings effectively changed length, 

meaning that the plucking position is in effect changing depending on the length of the 

string (and by extension the pitch of the note) a point also noted by (Kramer et al., 2012). A 

similar real-world example of this occurs on instruments with multiple scale lengths, where 

certain strings are longer or shorter than others. In recording contexts having consistent 

timbre and evenness of notes is also desirable, and thus experienced recording bass players 

will be able to adjust their plucking position to ensure this happens on a note by note 

basis. Which is to say, that unless an absolute plucking position is desired for a one-to-one 

simulation of a person’s plucking position, the compromises that are made to the plucking 

position when using interpolated delay-lines are more than acceptable, given the benefits 
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of frequency modulation and tuning accuracy, a point also supported by Kramer et al. 

(2012). 

 
8.3.3.4 Simulating Palm-muting 

Kramer et al. (2012) and Abeßer et al. (2013); Abeßer (2014) both treated Palm-muting  

as a separate category of plucking style, however as outlined in Section 2.8.2.16,  and in  

the Ontology of Bass Guitar Playing Techniques (Section 3.4), in real-world playing the 

palm-muting technique is a modification applied to the plucking style. As such it is now 

being simulated through a separate parameterisation, such as how plucking position or 

note pitch are treated. When a note is palm-muted, the plucking hand moves closer to the 

bridge so that the palm can gently rest against the end of the string. The main purpose of 

this is to reduce the note’s sustain by increasing the note’s decay rate. When performed 

correctly there is minimal frequency loss to the attack of the note, and instead a  very  

rapid decay occurs directly after the note’s attack peaks. As such, palm-muting has been 

parameterised by shifting all plucking positions to be closer to the bridge (specifically to 

the MU plucking position) and to increase the decay factor g (see Kramer et al. (2012)) 

within the digital waveguide to an equivalent rate of -25dB/s, with no additional frequency 

loss added beyond that already inherent within the waveguide model. 

 
8.3.3.5 Simulating Picking Direction 

For picking directions, although upstrokes follow the same direction as a FS plucked note 

(plucked towards the player) in testing the unaltered displacement function for PK and DT 

sounded more appropriate for the downstrokes and thus was assigned to PKD and DTD 

techniques. An upstroke is performed in the opposite direction to a downstroke, thus the 

displacement signal for PK and DT was  inverted for PKU and DTU plucking styles.  The   

PK displacement functions are shown in Figure 8.15 and the DT displacement functions 

are shown in Figure 8.16. 

 
8.3.3.6 Tuning the model and Simulating Dynamics and Accents 

Dynamics, Plucking Strength and Accented Notes 

Plucking strength is simulated through a multiplication factor applied to the output of the 

initial displacement function for each plucking style. The plucking strength of each note 

was chosen to be a set value for each plucking technique, with additional random variations 
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(a) PKU Displacement Function 

(b) PKD Displacement Function 

Figure 8.15: PKU and PKD Displacement Functions to account for pick direction 
 

 

(a) DTU Displacement Function 

 

(b) DTD Displacement Function 

Figure 8.16: DTU and DTD Displacement Functions to account for pick direction 
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applied. These values are provided in Table 8.8 and were selected based on preference of 

the output produced. 

Accented notes, at least those where there is a plucking accent, are traditionally played 

on a real bass by plucking the note with more strength. Thus, when a note is accented the 

strength factor is increased, this was set to a flat increase by a factor (af ) of 1.5 for each 

plucking style, when the note is not accented, af = 1.. The formula for the displacement 

function is shown in Equation 8.7, where d is the displacement for plucking style PS, sfPS 

is the strength factor for plucking style PS, and rvPS is the random variance adjustment   

for plucking style PS. 

 

dPS = sfPS ∗ af + rvPS (8.7) 

Each notated dynamic symbol also required conversion into a measure of sound volume, 

here music production conventions for mapping dynamics to dB were applied, before the 

values were then converted to a suitable value to be passed to the physical model. These 

values are provided in Table 8.9. 

 
Staccato 

Notes played with the staccato technique have their duration shortened, usually by a factor 

of two, so that a note played staccato has half the duration of the same note that is not 

played staccato. Each note’s duration has a staccato factor applied to it, as outlined in 

Equation 8.8, the value of the staccato factor is outline by Equation 8.9 

 
note_durationstacatto = note_duration ∗ stacatto_factor (8.8) 

 

stacatto_factor = 
1 if fretting accent is false 

0.5 if fretting accent is true 

 

(8.9) 

 

8.3.3.7 Musical Elements and techniques only assignable through Meta Con- 

trol Directions 

There are some musical elements that are perfectly possible to parameterise and simulate 

within the physical model, however the parameter values only have meaning in a musi- 

cal/melodic/sequence context. Three such elements and techniques are: letting a note 

ring, crescendos and diminuendos. Meta control directions are used to simulate each of 

these. 
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Crescendos and Diminuendos 

Crescendos and Diminuendos are musical directions applied over sequences of notes and 

specify that each successive note in the sequence should be played with an increased (for  

a crescendo) or decreased (for a diminuendo) volume level relative to the previous note. 

How exactly this is parameterised is open to interpretation, it could be based on observed 

data, or as is the case here, based on a design preference. 

Both crescendos and diminuendos have a specified number of notes within them. Ide- 

ally, the the last note either has a louder (for crescendos) or quieter (for diminuendos) 

notated dynamic than the first note in the crescendo/diminuendo sequence. Assuming  

this is the case, it was decided that the difference in Music Production dB between the 

starting note and end note, would be used to determine the volume increase/decrease over 

the duration of the crescendo/diminuendo. The overall volume increase/decrease would 

then be divided by the number of notes in the crescendo/diminuendo, and each  note in 

the crescendo/diminuendo would increase/decrease on the previous notes volume by this 

value. This is summarised in Equation 8.10 and 8.11, where n is the note’s index in the 

crescendo/diminuendo sequence and MdBn is the music production dB for the note with 

index n. 
 

 

MdB 

 

increment = 
MdB1 − MdBn 

n 
(8.10) 

MdBn = MdBn + MdBincrement ∗ n (8.11) 

In the scenario where the end note did not have a different dynamic to the first note, the 

crescendo or diminuendo would be calculated to the next appropriate dynamic level. E.g.  

if the first note’s dynamic was ‘f’ and a crescendo was specified the it would be calculated 

between the Music Production dB’s for ‘f’ and ‘ff’ dynamics. If a diminuendo was specified 

then the calculation would be performed between ‘f’ and ‘mf’ dynamic Music Production 

dB’s values. 

 
Letting a note ring out 

Letting a note ring out is simple to perform on a real bass, once a note is plucked it is left  

to ring out until the natural decay of the instrument has fully dampened the string. In a 

musical performance context however there are usually additional factors that will influence 

how  long a note will be left to ring out before it is dampened through a deliberate action  

of the player. One case is when another note is to be played on the same string as the note 

that has been left to ring, as only one note can be played on each string of the bass at 
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one time, the note that was left to ring will be stopped once the second note is played. A 

second case is when a fretted note is left to ring, but a subsequent note requires a shift in 

the playing position. In this scenario the player will be required to lift their finger up from 

the fret of the note being left to ring, which completely dampens the note, in the process   

of shifting to the new playing position. 

As there is dampening parameterised within the digital waveguide, to let a note ring 

out only requires specifying the time period that the note is being left to ring for.   In            

a non-musical performance context this can be specified as the time required to let the 

note volume decay to an appropriately low level based up the digital waveguide’s decay 

and dampening factors.  For  example if a note decays at a rate of 1dB/s and a volume   

level of -60dB was  determined an appropriately low level, then letting a note ring out is  

as simple as setting its duration to be 60 seconds. However when a musical performance 

consisting of multiple notes is simulated, one or both of the two note dampening scenarios 

maybe encountered. Therefore, when a sequence of notes is to be simulated and a note is 

designated as to be let to ring, subsequent notes in the sequence are scanned and tested 

for each scenario. Then the duration of the note to be let to ring is set to the difference 

between it’s start time and the start time of first instance of a note that full-fills either one 

dampening scenarios. If no scenario is found, then the note’s duration is set to the soonest 

time out of either the note decaying to an appropriately low volume level, or the end of  

the musical performance. 

 
8.3.3.8 Interfacing with the Physical Model from Python 

The digital waveguide’s Matlab implementation is called from python using the mat- 

lab python module that is included within installations of Matlab. Parameter map- 

pings from the Bass Guitar Performance Ontology to physical model parameters are com- 

pleted in python before being passed to Matlab using the appropriate data conversion 

and passing functions within the matlab module. The physical model then synthesizes 

the full performance before the array of audio samples is returned to python, where the 

scipy.io.wavfile.write19 function was used to save the audio. A block diagram of this 

pipeline is shown in Figure 8.17. 

 
 
 
 
 
 
 

19https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html 

https://docs.scipy.org/doc/scipy/reference/generated/scipy.io.wavfile.write.html
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Figure 8.17: Pipeline to allow for digital waveguide rendering of Adorn-o’s performances. 

 
8.3.4 Code Repositories 

• The most current version of Adorn-o can be found at: 

https://github.com/callumgoddard/Adorn-o. 

• The archival implementation of the version of Adorn-o presented within this thesis 

can be found at: 

https://github.com/callumgoddard/Adorn-o/releases/tag/v1.0.0. 

• The updated digital waveguide by Kramer et al. (2012) is available at: 

https://github.com/callumgoddard/bass_guitar_waveguide_model. 
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Table 8.6: Digital Waveguide Mapping Scheme for Harmonics Relative to the Fundamental 
Frequency of the Delay-lines. 

 

Equivalent 
Fret Position 

Octave Interval Harmonic Ratio Proportional 
Delay-Line 
Position 

1   0 0.00 

2 3 0 1/8 0.13 

2.7 2 10 1/7 0.14 

3 2 8 1/6 0.17 

4   1/5 0.20 

5 2 0 1/4 0.25 

6   2/7 0.29 

7 1 8 1/3 0.33 

8   3/8 0.38 

9 2 4 2/5 0.40 

10   3/7 0.43 

11   0 0.00 

12 1 0 1/2 0.50 

13   0 0.00 

14   0 0.00 

15   4/7 0.57 

16   3/5 0.60 

17   5/8 0.63 

18   0 0.00 

19   2/3 0.67 

20   0 0.00 

21   0 0.00 

22   5/7 0.71 

23   0 0.00 

24   3/4 0.75 
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Table  8.7:  Measured Plucking for Positions Plucking Styles that are not determined by  
fret position. 

 
 

Plucking Style Measured 
Distance from 
Bridge (cm) 

Variance 
Range (cm) 

Proportional 
Delay-line 
Position 
Relative to 
the Bridge 

Random 
Variance 
Range 

 
 

FS 13.36 ±3 0.15 ±0.03 

PK 12.36 ±1 0.14 ±0.01 

MU 8.36 −3 0.10 −0.03 

ST 28.36 ±1 0.33 ±0.01 

SP 22.36 −3 0.26 −0.03 

DT 21.36 ±1 0.25 ±0.01 
 

 

Table 8.8: Plucking Strength Parameter Values. 
 

Plucking Style (PS) Strength Factor (sf ) Random Variance (rv) 

FS 1.16 +0.15 to +1.15 
PK 1.7 +0.15 to +1.15 
ST 4 -2 to +2 
SP 6 -1 to +1 
DT 4 -2 to +2 
HO 2 -0.5 to +0.5 
PO 1 +0.15 to +1.15 
TA 2 -0.5 to +0.5 

 
Table 8.9:  Notated Dynamic to dB mapping used 

 

Music Physical Model dB 
uction dB  −log10(abs(dB)) 

 

fff 0.00 0.00 
ff -2.20 -0.34 
f -4.90 -0.69 

mf -8.00 -0.90 
mp -11.90 -1.08 
p -16.90 -1.23 

pp -23.90 -1.38 
ppp -36.90 -1.57 

D
 

ynamic 
Prod 
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Chapter 9 

 

Investigating a Theory of Musical 

Virtuosity Using Adorn-o 

 
9.1 Aims 

The aim is to verify the proposed model of virtuosity, as implemented within 

Adorn-o, through measuring the human response to the output of the system with different 

parameterisations of the model of virtuosity. The system output will also be compared with 

original bass guitar performances, along with analysis of the differences that adjusting the 

playing complexity (Cw) and perceived difficulty (Dw) weights may have on virtuosity. 

A similar design approach to Rutherford and Wiggins (2002) has been followed, who 

conducted a listening test to validate the output of HERMAN, a real-time computer based 

music generator, that produces music according to different levels of scariness. However 

here different levels of virtuosity are being tested. 

 
9.1.1 Verifying a model of Virtuosity 

To verify the model of virtuosity, a curated case-database of 303 guitar pro file transcrip- 

tions of virtuoso bass players was created. There were a total of 12844 suitable measures 

of monophonic bass guitar performances within the files, which resulted in a case database 

of 12844 cases. 

The model of virtuosity was parameterised to three predicted levels of virtuosity for an 

input melody: Low (L), Medium (M) and High (H), by adjusting the musical similarity 

percentile si and the percentile of performances that would be considered virtuosic, vi, 

ccording to Table 9.1. The virtuosity level formed the independent variable being tested. 



279  

 

The following has been assumed when setting the parameters: increasing vi raises the 

virtuosity threshold as the barrier for virtuosity is raised, reducing si raises the threshold 

of virtuosity, as more pieces are considered eventually including all music ever written (or 

everything in our database) meaning that the virtuosity threshold only contains the very 

best pieces.  V=H was  chosen to be set to si = 0,  vi = 99,  V=L was chosen to be set to      

si = 99, vi = 0. For V=M, the values of 73 was chosen for si and vi instead of 50. Using 

Figure 9.1, to visually inspect the case database, this the 73rd percentile was approximated 

as the better middle value between vi = 99 and vi = 0. The musical similarity, si, was 

matched following Figure 9.2. 
 

Virtuosity 
Level (V=) 

Musical Similarity 
Percentile si 

Performance Percentile 
Percentile vi 

Low (L) 99 0 
Medium (M) 73 73 

High (H) 0 99 

Table 9.1: Virtuosity levels and the parameterisations used for stimuli creation. 

 
It was decided that virtuosity levels would be tested across fixed playing complexity 

(Cw) and perceived difficulty (Dw) weights, as the effect the relationships between playing 

complexity and perceived difficulty might have on virtuosity is not known. The selected 

weights are shown in Table 9.2. Combinations of where C and D are only negative weight- 

ings have not been included, as virtuosity is the display of exceptional musicianship, the 

reduction of these is therefore the antithesis of virtuosity. Negative weights are also most 

optimally met with the unadorned (U)1 performance (input) and would not require the 

Adorn-o system to produce a performance for them. Setting Cw = 0 Dw = 0 would result 

in uncontrolled and pseudo random output, so has not be used. 

 
9.1.2 Hypotheses 

The comparative levels of parameterised virtuosity, for a fixed C and D may be tested via 

the following hypotheses. 

H1 For a given input, with fixed playing complexity (Cw) and perceived difficulty (Dw) 

weights, the performance produced with the high virtuosity (V=H) setting parame- 

ters is rated as being more virtuosic than the performance produced with the medium 

(V=M) setting parameters, when compared on the Mediocre.Virtuosic continuum. 

1Technically this is the ‘Default’ performance of each Bassline, however unadorned  is  used  here  for  
clarity. 
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Playing Complexity and Percieved Difficulty 

for all entries in the Case−Database 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 2 3 4 

 

Log10(Percieved Difficulty) 
 

Figure 9.1: The 73rd percentile range for the Playing Complexity and Perceived Difficulty 
within the database. 
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Virtuosity amount to musical similarity threshold and virtuosity 

percentile mappings. 
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Figure 9.2: Virtuosity percentile to musical similarity threshold mapping. The values of 
virtuosity levels: L, M and H are labelled on the graph. 

 
 
 
 
 
 

Weight 
Playing 

Complexity (Cw) 
Perceived 

Difficulty (Dw) 

1 1 

-1 1 
1 -1 
1 0 
0 1 

Table 9.2: Playing complexity and perceived difficulty weight combinations that the vir- 
tuosity levels will be tested over. 
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H2 For a given input, with fixed playing complexity (Cw) and perceived difficulty (Dw) 

weights, the performance produced with the high virtuosity (V=H) setting parame- 

ters is rated as being more virtuosic than performance produced with the low (V=L) 

setting parameters, when compared on the Mediocre.Virtuosic continuum. 

H3 For a given input, with fixed playing complexity (Cw) and perceived difficulty (Dw) 

weights, the performance produced for the medium virtuosity (V=M) setting pa- 

rameters is rated as being more virtuosic than performance produced with the low 

(V=L) setting parameters, when compared on the Mediocre.Virtuosic continuum. 

Where Mediocre.Virtuosic continuum is the rating scale participants used to rate 

performances within the study. 

 
9.2 Methodology 

9.2.1 Approach and Justification 

A perceptual study was conducted to collect judgments from listeners on performances 

generated with Adorn-o. Participants were asked to rate their views on different bass 

guitar performance, on a set of continuous bipolar scales. The ends of each bipolar scale 

were set to adjectives pairs relating to musical performances. The main scale of interest 

was the Mediocre.Virtuosic continuum. Like Rutherford and Wiggins (2002), distractor 

scales were used in addition to the main scale to obscure which one was most significant 

to the experimental design.  This was  done so subjects could not adjust their answers to  

be what they thought would be agreeable to the researchers. Three distractor scales were 

selected, the ratings for these scales would not be analysed. An audio distractor, ambient 

audio word association question was also introduced between each performance, to provide 

an aural and mental “palate cleanse” between performances, to reduce comparisons being 

made across different bass guitar performances. 

 
9.2.2 Participants 

N (60) participants, n(34) male, n(25) female and n(1) other, were recruited through the 

Prolific web platform between 20/1/2021 and 15/2/2021 and fully completed the study.2 

The average age of participants was 27.1 years (s.d. = 9.72). Of the participants, n(13) 

2The bass playing communities surveyed in Chapter 4 were originally invited to participate, as were the 
expert bass players, however after running recruitment for three weeks prior to recruiting through prolific no-
one wished to participate. 
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indicated they played the bass guitar, n(46) did not play the bass guitar but played other 

instruments, n(1) indicated they did not play any musical instruments. The mean number 

of years participants had played their instrument for was 10.6 (s.d. = 8.15).  There was  

n(1) participant who indicated they taught bass guitar, n(15) who taught other musical 

instruments and n(44) who did not teach any musical instrument. Both age and musical 

experience bands are reasonably large, providing a diverse set of responses. Results were 

collected individually and anonymously. Participants were compensated between £8.22 

and £11.50 for the successful completion of the study through the Prolific platform,  and  

in accordance with their policies. 

 
9.2.2.1 Ethics and Consent 

Ethics approval was obtained through the Queen Mary University of London’s Research 

Ethics Committee with Approval code: QMERC2507. The approval letter is provided in 

Appendix I.4. Consent for participants was asked,  with each participant confirming by 

way of starting the study that they were over 16 years of age and agreed to participate 

within the study. They were made aware that they could withdraw from the study at any 

time without facing a penalty. 

 
9.2.3 Materials 

The listening test was  executed  using  the  Web Audio  Evaluation  Tool  (WAET)  Jillings 

et al. (2015) hosted on Queen Mary University of London’s Linux Apache MySQL PHP 

(LAMP) container service. Participants were required to perform two distinct tasks: a 

musical performance rating task and an ambient audio word association task. Both used 

the APX WAET interface, adjusted as appropriate, to each task. 

 
9.2.4 Musical Performance Rating Task 

For this task, Participants were presented with four horizontal sliders, (see Figure 9.3) and 

asked to listen to, then rate the audio of a synthesised bass guitar performance. 

 
9.2.4.1 Musical Stimuli 

Eight different excerpts, all eight bars in length, were selected to be used as input to the 

Adorn-o system. The source and BPM of the excerpts are shown in Table 9.3. Excerpts  

were chosen to contain a range of different styles of bass playing in their original (O) 
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performances, and were based on sequences of notes, that informal testing of the Adorn-o 

system indicated, would also produce suitable output3 from the Adorno-o system. 

Tempo is a known contributing factor to the judgements of virtuosity (see Table 4.4). 

Within Adorn-o tempo can also effect the transfer of adornments. As such, it was un- 

known what effect tempo may have on participant’s judgements of virtuosity, or if these 

judgements were being unduly influenced by the transfer of adornments for certain playing 

tempos. As a precaution the tempos of each excerpt were set to fixed values, which in  

some cases were different from their original tempos. Having repeated tempos presented 

within the study, for different sequences of notes would allow for further investigation, if  

it became apparent within the results that tempo was influencing participants’ ratings. 

These concerns however proved to be premature, and no systematic patterns relating to 

tempo were observed within participant’s ratings, thus no investigations relating to tempo 

were required. 

Performances were produced using unadorned (U) versions of each Bassline, as input 

for Adorn-o for each virtuosity level outline in Table 9.1, for each of the following com- 

plexity and difficulty weights: Cw=1  Dw=1,  Cw=-1  Dw=1,  Cw=1  Dw=-1,  Cw=1  Dw=0 

and Cw=0 Dw=1. There were 120 stimuli produced by Adorno-o,  15 for each Bassline,  

that consisting of five stimuli for each virtuosity level. Additionally the unadorned (U) 

versions of each excerpt Bassline, and the original (O) performances from the excerpts, 

were synthesized using the same physical model (outlined in Section 8.3.3) Adorn-o uses 

to render performances. This was to allow for comparisons to be made between human 

and computer performances when analysing the ratings of the stimuli.4 This raised the 

total stimuli of the test to 136, with 17 stimuli relating to each Bassline. The stimuli are 

provided within Appendix G.1. 

 
9.2.4.2 Adjective Pairs 

The adjective pairs selected for presentation to participants are shown in Table 9.4. The 

Mediocre.Virtuosic5 scale was used to test the hypotheses H1 to  H3.  The  other  ad-  

jective pairs formed distractor rating scales and were selected as adjectives which are not 

traditionally associated with virtuosity, but are related to and can describe musical per- 

formance. 

3Here suitable output from Adorn-o was largely performances that did not result in only slapped dead- 
notes being played. 

4Due potential biases against/towards computer produced performances, outlined in Section 2.3.6, 
participants were never asked to make this comparison, or any comparisons between the stimuli. 

5Mediocre was selected, as it has opposite connotations to virtuosity. 
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Bassline Artist Title Set BPM Reference 

B1 Frank Sinatra Fly Me to the Moon 100 (Navarro, 2020a) 

B2 Jeff Berlin Bach - Prelude No 2 Bwv 847 100 (chanezb, 2007) 

B3 CHVRCHES Get Out 172 Own Transcription 

B4 Sublime Santeria 88 Own Transcription 

B5 Thundercat Dragonball Durag 163 (monumentalthall, 2020) 

B6 Iron Maiden The Trooper 163 Own Transcription 

B7 Vulfpeck L.A.X 126 (Navarro, 2020a) 

B8 Wojek Pilichowski Incredible Bass Solo 126 (Navarro, 2020b) 
 

Table  9.3:  Bassline selection. 
 

Adjective 1 Adjective 2 Continuum 

Mediocre Virtuosic Mediocre.Virtuosic 

Unsuitable Appropriate Unsuitable.Appropriate 

Melancholic Joyful Melancholic.Joyful 

Naive Sophisticated Naive.Sophisticated 

Table  9.4:  Adjective Pairs. 

 
9.2.4.3 Interface 

The interface for the musical performance rating task that was  presented to participants  

is shown in Figure 9.3. The order of, and polarity of the adjectives, of the scales were 

randomized so that each participant was presented with a different permutation of adjective 

pair, and polarity ordering. The scales remained the same and were not changed during 

the listening test for each participant. A comment box was provided below the scales  

where could participants optionally enter additional adjectives they would use to describe 

the performance. As this was rarely used the comments have not been included as part of 

the analysis. 
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Figure 9.3: WAET interface presented to participants for the musical performance rating 
task. 
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9.2.5 Distractor Task: Ambient Recording Word Association 

After each musical performance rating task, participants were presented with an ambient 

word association task. This task was included to act as a aural ‘palate cleanser’ of sorts. 

This was to have a firm distinction between the audio stimuli of interest and reduce com- 

parison being made between them. Within the distractor task participants were presented 

with a randomly selected 2.5 second excerpt from ambient recordings from Freesound6. 

Each excerpt was volume normalised to -14 LUFS using audacity, and balanced in volume 

with the WAET gain settings to match the bass guitar performance audio. Participants  

were required to listen to the ambient recording, by clicking on a randomly positioned play 

slider, then enter what word the audio suggested to them within a popup window. The 

audio interface, and popup are shown in Figure 9.4 and 9.5 respectively. 
 

Figure 9.4:  WAET  interface presented to participants to listen to the ambient recording,  
as part of the ambient recording word association task. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6https://freesound.org/ 

 
 

https://freesound.org/
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Figure 9.5: WAET interface presented to participants to input their associated word, as 
part of the ambient recording word association task. 
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9.2.6 Procedure and presentation of Materials 

Participants were recruited through the Prolific web platform7 and were pre-filtered to 

those that had five years or greater musical instrument experience, and who did not have 

any hearing and/or visual impairments (such as hearing loss or colour blindness). After 

participants signed up for the study they were directed from Prolific.co to the online lis- 

tening test where they were required to provide their Prolific ID for identification and 

compensation through the platform. Instructions explaining each task, and how to use the 

interface were presented to participants. Participants were advised to use headphones or 

speakers that could reproduce bass frequencies. Following the instructions were two prac- 

tice questions, one for each task, to allow participants to familiarise themselves with the 

interface. Participants then completed 136 pairs of listening tasks. The order of the audio 

for both tasks was randomized to reduce priming and presentation order bias. Each partic- 

ipant was presented with a different ordering of bass guitar performances, and the WAET 

randomisation setting was used to present different ambient audio for each distractor task. 

Issues relating to biases against computer produced musical performances, outlined in Sec- 

tion 2.3.6, were accounted for primarily by having all performances (those produced by 

Adorn-o, the unadorned performances and original versions presented to participants as 

computer synthesised versions. Participants were not asked to compare different stimuli, 

only to rate each individually. Within the instructions and literature presented to partici- 

pants no references were made to the term: virtuosity outside of the rating scale, and there 

was no reference made to computer guided, directed or composed performance. However, 

participants were informed that this research was to help in the development and un- 

derstanding of computational performance systems. Throughout the study an additional 

eight (four for each task) attention questions were added randomly throughout the listen- 

ing tasks,  these were similar to each task but contained clear directions for participants  

to follow, and were used to check that participants were paying full attention during the 

study, all participants passed these checks. 

After completing the listening tasks participants were asked the following information: 

which listening device was used for the study; if any of the songs used were familiar; gender; 

age; if they played bass guitar; or if not if they played any other musical instrument; how 

many years they had been playing for and if they taught their instrument. 

7https://www.prolific.co/ 

https://www.prolific.co/
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9.2.7 Data Analysis 

All data analysis was completed using R. The values of the Mediocre.Virtuosic ratings, 

measured directly within the WAET ranged from 0 (Mediocre) to 1 (Virtuosic), these 

directly measured values were used within the analysis. A one way analysis of variance 

(ANOVA) was used to test for significant differences between the Mediocre.Virtuosic  

ratings for each of the three virtuosity levels for each input Bassline, for each fixed playing 

complexity (Cw) and perceived difficulty (Dw). Where there was a significant difference 

found appropriate post hoc tests were conducted. The median rating was used to test the 

Hypotheses H1, H2 and H3. All N(60) participant’s ratings have been included, no outlier 

exclusion or rating normalisation was performed as, all subjective ratings of virtuosity are 

valid within the proposed model, and do not require a consensus. 

Additional exploratory analysis was also conducted using one way analysis of variance 

(ANOVA). First testing differences between pairs of Cw and Dw within each virtuosity level 

for each Bassline to investigate what effect these may have on the Mediocre.Virtuosic 

ratings. Secondly, testing each set of virtuosity levels, for each input Bassline and for each 

fixed playing complexity (Cw) and perceived difficulty (Dw) against the unadorned (U), 

and original (O) performances of each Bassline. The difference between the unadorned (U) 

and original (O) performances of each Bassline were also tested and ratings between Bass 

and Musicians participant groups for U and B compared. 

 
9.3 Results 

Participants were separated into three groups, the first containing all participants (All), the 

second containing those that indicated they played bass guitar (Bass), and the third con- 

taining those indicating that they played a non-bass guitar musical instrument (Musicians). 

The intra-class correlation coefficient was computed for Mediocre.Virtuosic ratings to as- 

sess the agreement between participants within each of the three groups. There were poor 

absolute agreements between participants in all groups, using the two-way random effect 

models and “single rater” unit, where for All participants kappa = 0.241 (p = <0.001), for 

Bass participants kappa = 0.118 (p = <0.001) and Musicians kappa = 0.284 (p = <0.001). 

 
9.3.1 Testing Normality 

Shapiro-Wilk test for normality was conducted for each set of Mediocre.Virtuosic rat- 

ings for each stimuli, for each participant group. The results are provided in Appendix 

Tables G.1 to G.8, where a p < 0.05 is indicative of the distribution of ratings not be- 
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Bassline    C    D 
All Bass Musicians 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 9.5: Median Mediocre.Virtuosic rating for each virtuosity level V, including the 
unadorned (U) and original (O) performance, for each combination of playing complexity 
(Cw) and perceived difficulty (Dw) weight, by each participant group for each Bassline. 

 V=L V=M V=H U B V=L V=M V=H U B V=L V=M V=H U B 

 1 1 0.38 0.36 0.33   0.54 0.63 0.42   0.37 0.21 0.29   

 -1 1 0.32 0.31 0.37   0.63 0.46 0.48   0.29 0.27 0.35   

B1 1 -1 0.30 0.33 0.36 0.40 0.31 0.47 0.46 0.47 0.48 0.47 0.29 0.26 0.33 0.34 0.31 
 1 0 0.33 0.24 0.46   0.52 0.25 0.61   0.31 0.23 0.43   

 0 1 0.38 0.34 0.34   0.40 0.48 0.52   0.37 0.31 0.29   

 1 1 0.80 0.79 0.83   0.84 0.84 0.77   0.80 0.78 0.85   

 -1 1 0.78 0.80 0.81   0.87 0.90 0.93   0.74 0.77 0.80   

B2 1 -1 0.71 0.91 0.72 0.80 0.79 0.88 0.91 0.83 0.92 0.85 0.7 0.91 0.71 0.77 0.74 
 1 0 0.84 0.79 0.80   0.86 0.76 0.81   0.83 0.79 0.80   

 0 1 0.78 0.86 0.84   0.90 0.87 0.81   0.76 0.86 0.85   

 1 1 0.57 0.45 0.56   0.67 0.50 0.55   0.54 0.45 0.60   

 -1 1 0.59 0.52 0.55   0.72 0.53 0.62   0.57 0.51 0.45   

B3 1 -1 0.58 0.49 0.56 0.49 0.56 0.56 0.60 0.64 0.48 0.56 0.59 0.47 0.49 0.50 0.59 
 1 0 0.58 0.58 0.54   0.64 0.53 0.63   0.55 0.6 0.52   

 0 1 0.63 0.55 0.51   0.54 0.62 0.59   0.64 0.52 0.48   

 1 1 0.60 0.58 0.59   0.55 0.58 0.63   0.63 0.49 0.58   

 -1 1 0.52 0.49 0.52   0.48 0.47 0.52   0.52 M 0.52   

B4 1 -1 0.45 0.62 0.51 0.48 0.53 0.48 0.74 0.61 0.54 0.55 0.43 0.51 0.51 0.48 0.48 
 1 0 0.44 0.54 0.51   0.62 0.59 0.55   0.41 0.51 M   

 0 1 0.54 0.68 0.58   0.56 0.68 0.62   0.54 0.68 0.57   

 1 1 0.40 0.37 0.44   0.41 0.55 0.46   0.39 0.29 0.44   

 -1 1 0.44 0.49 0.49   0.48 0.39 0.49   0.41 0.49 0.49   

B5 1 -1 0.41 0.27 0.37 0.51 0.41 0.38 0.29 0.32 0.59 0.54 0.41 0.27 0.37 0.48 0.38 
 1 0 0.46 0.35 0.41   0.48 0.41 0.52   0.45 0.35 0.39   

 0 1 0.46 0.43 0.43   0.44 0.46 0.41   0.48 0.43 0.43   

 1 1 0.63 0.61 0.63   0.63 0.56 0.56   0.62 0.62 0.63   

 -1 1 0.7 0.67 0.64   0.72 0.67 0.6   0.69 0.67 0.67   

B6 1 -1 0.69 0.61 0.67 0.71 0.70 0.71 0.58 0.69 0.70 0.66 0.68 0.61 0.67 0.71 0.70 
 1 0 0.70 0.52 0.74   0.72 0.50 0.58   0.7 0.57 0.75   

 0 1 0.71 0.64 0.63   0.71 0.64 0.72   0.71 0.65 0.63   

 1 1 0.39 0.49 0.48   0.39 0.61 0.49   0.39 0.49 0.46   

 -1 1 0.47 0.38 0.43   0.47 0.46 0.48   0.47 0.34 0.41   

B7 1 -1 0.38 0.42 0.41 0.40 0.56 0.37 0.48 0.54 0.39 0.54 0.4 0.37 0.36 0.40 0.57 
 1 0 0.38 0.43 0.38   0.47 0.48 0.43   0.38 0.38 0.37   

 0 1 0.41 0.40 0.47   0.42 0.50 0.49   0.40 0.40 0.46   

 1 1 0.83 0.73 0.66   0.88 0.75 0.8   0.81 0.73 0.66   

 -1 1 0.78 0.75 0.82   0.76 0.79 0.92   0.79 0.71 0.82   

B8 1 -1 0.80 0.75 0.72 0.76 0.87 0.90 0.60 0.87 0.68 0.88 0.80 0.75 0.72 0.77 0.88 
 1 0 0.84 0.75 0.77   0.92 0.78 0.69   0.83 0.73 0.78   

 0 1 0.86 0.74 0.81   0.93 0.80 0.64   0.86 0.74 0.81   
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ing normally distributed. The distributions for the Mediocre.Virtuosic ratings were of 

mixed distribution types, meaning non-parametric analysis methods were required to test 

the data. 

 
9.3.2 Testing the Virtuosity Level Parameterisation 

A Friedman test was carried out to compare Mediocre.Virtuosic ratings between the 

virtuosity levels V=L, V=M and V=H. This was done for each Bassline, complexity 

weight (Cw) and perceived difficulty weight (Dw) combination. Results are shown in Ta- 

ble 9.6. Where significant differences in the Mediocre.Virtuosic ratings were found, 

Nemenyi post hoc tests were carried out to determine where the significant differences 

were. When a significant difference was found between virtuosity levels, the median of the 

Mediocre.Virtuosic ratings, shown in Table 9.5, were used to test the relevant hypothe- 

sis: H1, H2 or H3. Where a significant difference was found and the median for V=H was 

greater than V=M, H1 would be supported. Where a significant difference was found and 

the median for V=H was greater than V=L, H2 would be supported. Where a significant 

difference was found and the median for V=M was greater than V=L, H3 would be sup- 

ported. The Nemenyi post hoc test results are shown for Basslines B1 to B8 in Appendix 

Tables G.9 to G.16. Summary box plots indicating the significant differences between each 

virtuostity level, separated by participant group and C and D pair for Basslines B1 to B8 

are showing in Appendix Figures G.1 to G.8. 

In total each hypothesis was tested for each of the five combinations of Cw Dw, for each 

of the eight Basslines, for each of the three participant groups. This totalled 120 instances 

where each hypothesis was tested. 

Hypothesis H1: could be supported for: 

• Cw=1 Dw=1 for B4 for All and Musicians 

• Cw=-1 Dw=1 for B2 for All 

• Cw=1 Dw=-1 for B3 for All and Musicians and B5 for All 

• Cw=1 Dw=0 for B1 for All, Bass and Musicians, B5 for All and B6 for All and 
Musicians 

Hypothesis H2: could not be supported for any Bassline, C and D combination. 

Hypothesis H3: could be supported for 

• Cw=1 Dw=1 for B2 for All and Musicians 
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• Cw=0 Dw=1 for B4 for All and Musicians 

 

9.3.3 Exploratory Analysis 

Additional Exploratory analysis into C and D, comparison between U and O, and between 

the ratings from Bass and Musicians participant groups for U and O were also conducted. 

 
9.3.3.1 Investigating playing complexity (Cw) and perceived difficulty (Dw) 

weights effect on Ratings 

Playing complexity (Cw) and perceived difficulty (Dw) weight pairs were treated as single 

factors and a Friedman test was carried out to compare the Mediocre.Virtuosic ratings 

between each weight pair: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, Cw=1 Dw=0 and 

Cw=0 Dw=1, for each virtuosity level and for each Bassline by participant group. The 

results are shown in Table 9.7. Where there were significant differences found between the 

ratings for each C and D pair within the same virtuosity level, Nemenyi post hoc tests 

were carried out. The results for each Bassline, B1 to B8, are summarised in Appendix 

Figures G.9 to G.16, where the significance between the Mediocre.Virtuosic ratings for 

each C D pair, determined by the Nemenyi post hoc tests are indicated. 

 
9.3.3.2 Comparing Virtuosity Levels (V) to the unadorned (U) and original 

(O) performance 

Two separate Friedman test were carried out to compare the Mediocre.Virtuosic ratings  

the between virtuosity levels (V) and Unadorned (U) performance and then between the 

virtuosity levels (V) and original (O) performance. No hypotheses were being tested, only 

comparisons were being made. The results comparing V including U are shown in Table 9.8 

and V including B in Table 9.9. Nemenyi post hoc tests were carried out where there were 

significant differences found, and the results, presented in comparative box plots, with 

significance indicated are shown in Appendix Figures G.9 to G.16 for Bassline B1 to B8 

respectively. 

 
9.3.3.3 Comparing the unadorned (U) and original (O) performance ratings 

A pairwise Wilcoxon test was conducted  between  the  Mediocre.Virtuosic  ratings  for  

each Bassline’s unadorned (U) and the original (O) performance, shown in Table 9.10 and 

summarised in Appendix Figure G.25. There were significance differences found between 



294  

 
 

 

p-value 
 

Bassline C D df All Bass Musician 

1 1 2 0.011 0.232 0.023 
-1 1 2 0.802 0.584 0.627 

B1 1 -1 2 0.528 0.735 0.441 
1 0 2 0.000 0.003 0.026 

0 1 2 0.799 0.794 0.649 

1 1 2 0.613 0.368 0.243 
-1 1 2 0.021 0.205 0.089 

B2 1 -1 2 0.001 0.920 0.000 
1 0 2 0.655 0.291 0.962 

0 1 2 0.725 0.735 0.574 

1 1 2 0.060 0.161 0.132 
-1 1 2 0.148 0.397 0.061 

B3 1 -1 2 0.003 0.584 0.004 
1 0 2 0.255 0.926 0.243 

0 1 2 0.013 0.545 0.010 

1 1 2 0.012 0.500 0.003 
-1 1 2 0.247 0.545 0.268 

B4 1 -1 2 0.212 0.368 0.254 
1 0 2 0.144 0.368 0.356 

0 1 2 0.004 0.199 0.015 

1 1 2 0.319 0.199 0.049 
-1 1 2 0.403 0.500 0.356 

B5 1 -1 2 0.031 0.368 0.114 
1 0 2 0.047 0.232 0.091 

0 1 2 0.962 0.735 0.962 

1 1 2 0.996 0.735 0.863 
-1 1 2 0.101 0.926 0.077 

B6 1 -1 2 0.628 0.794 0.791 
1 0 2 0.023 0.794 0.031 

0 1 2 0.591 0.926 0.502 

1 1 2 0.403 0.368 0.333 
-1 1 2 0.066 0.368 0.186 

B7 1 -1 2 0.835 0.037 0.099 
1 0 2 0.727 0.368 0.857 
0 1 2 0.435 0.926 0.337 

1 1 2 0.003 0.097 0.031 

B8 
-1 1 2 0.069 0.735 0.113 
1 -1 2 0.074 0.046 0.298 
1 0 2 0.271 0.472 0.356 

0 1 2 0.000 0.076 0.002 

Table 9.6: Friedman Test p-values between the Mediocre.Virtuosic ratings for virtuosity 
levels: L, M and H, for each combination of playing complexity weight (Cw) and perceived 
difficulty weight (Dw), for the All, Bass, and Musicians participant groups. 
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p-value 
 

Bassline V df All Bass Musicians 

 L 4 0.157 0.753 0.173 
B1 M 4 0.337 0.054 0.518 

 H 4 0.121 0.449 0.156 

 L 4 0.036 0.307 0.023 
B2 M 4 0.077 0.503 0.034 

 H 4 0.354 0.150 0.086 

 L 4 0.425 0.641 0.238 
B3 M 4 0.004 0.449 0.012 

 H 4 0.268 0.329 0.027 

 L 4 0.002 0.730 0.001 
B4 M 4 0.011 0.152 0.021 

 H 4 0.003 0.820 0.001 

 L 4 0.518 0.486 0.643 
B5 M 4 0.001 0.242 0.002 

 H 4 0.296 0.081 0.481 

 L 4 0.008 0.619 0.012 
B6 M 4 0.094 0.440 0.243 

 H 4 0.064 0.730 0.045 

 L 4 0.348 0.515 0.562 
B7 M 4 0.006 0.289 0.022 

 H 4 0.287 0.194 0.111 

 L 4 0.000 0.301 0.001 
B8 M 4 0.655 0.746 0.582 

 H 4 0.105 0.465 0.136 

Table 9.7: Friedman Test p-values between the Mediocre.Virtuosic ratings for each com- 
bination of playing complexity weight C and perceived difficulty weight D for V=L, V=M, 
and V=H, for the All, Bass, and Musicians participant groups. 



Table 9.8: Friedman Test p-values between the Mediocre.Virtuosic ratings for V=L, 
V=M, V=H, and the unadorned (U) Bassline for each combination of playing complexity 
weight C and perceived difficulty weight D, for the All, Bass, and Musicians participant 
groups. 296 

 

 
 

 

p-value 
 

Bassline C D df All Bass Musician 

 1 1 3 0.017 0.314 0.045 
 -1 1 3 0.824 0.595 0.668 

B1 1 -1 3 0.374 0.809 0.404 
 1 0 3 0.001 0.003 0.040 

 0 1 3 0.958 0.809 0.799 

 1 1 3 0.718 0.241 0.264 
 -1 1 3 0.173 0.284 0.468 

B2 1 -1 3 0.002 0.971 0.000 
 1 0 3 0.617 0.316 0.908 
 0 1 3 0.995 0.712 0.833 

 1 1 3 0.004 0.110 0.042 
 -1 1 3 0.011 0.114 0.023 

B3 1 -1 3 0.002 0.485 0.006 
 1 0 3 0.022 0.214 0.122 
 0 1 3 0.000 0.259 0.002 

 1 1 3 0.002 0.764 0.000 
 -1 1 3 0.153 0.835 0.130 

B4 1 -1 3 0.167 0.452 0.251 
 1 0 3 0.267 0.595 0.563 

 0 1 3 0.001 0.206 0.004 

 1 1 3 0.010 0.145 0.018 
 -1 1 3 0.206 0.250 0.404 

B5 1 -1 3 0.000 0.055 0.006 
 1 0 3 0.037 0.452 0.021 
 0 1 3 0.147 0.326 0.348 

 1 1 3 0.766 0.809 0.833 
 -1 1 3 0.210 0.656 0.321 

B6 1 -1 3 0.845 0.809 0.968 
 1 0 3 0.061 0.917 0.061 
 0 1 3 0.589 0.677 0.650 

 1 1 3 0.101 0.176 0.228 
 -1 1 3 0.028 0.557 0.087 

B7 1 -1 3 0.860 0.048 0.130 
 1 0 3 0.695 0.338 0.884 

 0 1 3 0.780 0.809 0.641 

 1 1 3 0.009 0.194 0.071 
 -1 1 3 0.048 0.232 0.172 

B8 1 -1 3 0.161 0.069 0.587 
 1 0 3 0.222 0.666 0.317 
 0 1 3 0.000 0.085 0.001 
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p-value 
 

Bassline C D df All Bass Musician 

 1 1 3 0.046 0.270 0.086 
 -1 1 3 0.873 0.392 0.846 

B1 1 -1 3 0.675 0.853 0.824 
 1 0 3 0.003 0.022 0.069 

 0 1 3 0.686 0.917 0.629 

 1 1 3 0.675 0.198 0.606 
 -1 1 3 0.141 0.334 0.380 

B2 1 -1 3 0.003 0.957 0.000 
 1 0 3 0.502 0.313 0.888 
 0 1 3 0.841 0.597 0.567 

 1 1 3 0.064 0.357 0.096 
 -1 1 3 0.140 0.250 0.013 

B3 1 -1 3 0.025 0.764 0.021 
 1 0 3 0.285 0.831 0.344 
 0 1 3 0.061 0.661 0.055 

 1 1 3 0.007 0.557 0.003 
 -1 1 3 0.365 0.461 0.289 

B4 1 -1 3 0.079 0.250 0.166 
 1 0 3 0.368 0.364 0.447 

 0 1 3 0.001 0.123 0.008 

 1 1 3 0.174 0.198 0.071 
 -1 1 3 0.527 0.175 0.573 

B5 1 -1 3 0.004 0.055 0.066 
 1 0 3 0.076 0.520 0.138 
 0 1 3 0.835 0.485 0.996 

 1 1 3 0.252 0.595 0.438 
 -1 1 3 0.006 0.742 0.008 

B6 1 -1 3 0.552 0.937 0.691 
 1 0 3 0.039 0.831 0.049 
 0 1 3 0.665 0.809 0.564 

 1 1 3 0.081 0.502 0.080 
 -1 1 3 0.000 0.076 0.000 

B7 1 -1 3 0.000 0.022 0.000 
 1 0 3 0.000 0.145 0.000 

 0 1 3 0.003 0.937 0.003 

 1 1 3 0.000 0.158 0.002 
 -1 1 3 0.000 0.595 0.000 

B8 1 -1 3 0.000 0.256 0.000 
 1 0 3 0.004 0.134 0.049 
 0 1 3 0.000 0.082 0.001 

Table 9.9: Friedman Test p-values between the Mediocre.Virtuosic ratings for V=L, 
V=M, V=H, and the original (O) Bassline for each combination of playing complexity 
weight C and perceived difficulty weight D, for the All, Bass, and Musicians participant 
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U and B for Bassline B8 and B7 when rated by All and Musicians. No other significant 

differences were found between U and B for any other Bassline. 
 

Bassline df 
p-value 

All Bass Musicians 
 

B1 1 0.294 0.614 0.403 
B2 1 0.731 0.778 0.830 
B3 1 0.071 0.545 0.107 
B4 1 0.815 1.000 0.873 
B5 1 0.103 0.920 0.060 
B6 1 0.578 0.920 0.060 
B7 1 0.000 0.064 0.000 
B8 1 0.001 0.072 0.011 

Table 9.10: Wilcoxon Test p-values between the Mediocre.Virtuosic ratings for the orig-  
inal performance and the unadorned version by each participant group for each Bassline. 

 
 

9.3.3.4 Comparing Bass and Musician participant group’s ratings for the un- 

adorned (U) and original (O) performance ratings. 

Finally a pairwise Wilcoxon test was  conducted  between  the  Mediocre.Virtuosic  rat-  

ings from Bass and Musician participant groups for the unadorned (U) and original (O) 

performances. There were no significant differences found. 
 

Bassline df U O 
 

B1 0 0.165 0.351 
B2 0 0.319 0.091 
B3 0 0.821 0.964 
B4 0 0.297 0.389 
B5 0 0.106 0.645 
B6 0 0.497 0.993 
B7 0 0.907 0.956 
B8 0 0.395 0.891 

Table 9.11: Wilcoxon  Test  p-values  between  the  Mediocre.Virtuosic  ratings  for  Bass  
and Musician participant groups for the unadorned (U) and original (O) version of each 
Bassline. 
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9.4 Discussion 

There are conditions in which hypothesis H1 and H3 are supported, however, there are 

also contradictory results, as well as the majority of comparisons having non-significant 

differences. However there is evidence in support of the proposed model of virtuosity, but 

not necessarily to support the assumptions that have been made about it. 

The most common aspect of the results, in all comparisons that have  been made,  is  

the amount of non-significant differences found. It is suspected that the low level of voter 

agreement throughout the pool of participants is one cause of this, as evidenced by the ICC 

ratings. A second is that the size of the effect that applying bass guitar techniques has on 

judgements of virtuosity is different to what was originally anticipated. When inspecting 

the differences in ratings between the unadorned (U) and original (O) performances, there 

were only significant differences between the ratings for Bassline B7 and B8 by All and 

Musicians. These Basslines are notable in that they are the only Basslines whose original 

(O) performances demonstrate different ‘slap’ and ‘pop’ bass techniques. These classes of 

techniques are timbrally distinct from other excitation techniques due to their percussive 

nature, as well as being traditionally associated with displays of virtuosity of bass guitar. 

This suggests that different playing techniques may have different effect sizes for rating 

virtuosity. There are however significant differences in the ratings between the melodies 

when ratings of the unadorned (U) performances were compared.   This appears to be     

an indication that effect size of the the melodic content within the performance is much 

greater than the playing techniques, and may therefore also be the main determining factor 

participants used when rating virtuosity. 

It can be seen that the instances where the application of playing techniques were no- 

ticed by participants there was a higher rating of virtuosity, this is evident in the median 

ratings for B8 and B7 being higher for the original (O) performance, than the unadorned 

(U) performance. When comparing the output of the Adorn-o with the unadorned (U) per- 

formances, where significant differences were found, the median ratings for the unadorned 

(U) performances were also lower, providing further evidence of this effect. It can also be 

seen that there is largely non-significant differences between the output of Adorn-o and the 

original (O) performances. Where there are differences, participants rated the original per- 

formance as more virtuosic than that by Adorn-o. At best the non-significance could be an 

indication that in certain musical contexts Adorn-o’s application of techniques follows the 

implicit conventions of these techniques. However, this may instead be a result of the small 

effect size of certain techniques. There is evidence, e.g. for Bassline B4 when Cw=1 Dw=1, 

where median ratings for the output of Adorn-o were higher than the original performance, 
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see Figure G.20, which would indicate support of the idea that certain techniques have a 

smaller effect size. It is therefore believed that the proposed theory of musical performance 

(Section 3.2) implemented within Adorn-o is valid. The instances where participants rated 

the original (O) performances as being more virtuosic than Adorn-o’s are seen as indications 

of room for further improvements to the system’s operation. Likely requiring extending 

the heuristic, as has been anticipated (Section ??), to consider aesthetic factors, and to 

include expressive timing and expressive dynamic adornments. 

When attention is turned towards the proposed model of virtuosity and hypotheses, 

there is evidence to support Hypothesis H1 and H3. Where H1 is that virtuosity level H > 

M, and H3 is virtuosity level M > L. Hypothesis H2, virtuosity level H > L, was not sup- 

ported as, when there were significant differences found between the ratings for virtuosity 

level H and L, the median values for L were greater than H. However, more generally the 

median ratings of virtuosity level H approximanted L with only small differences. This is 

an interesting result because the virtuosity levels, H and L are oppositely parameterised. 

That is virtuosity level H is set to pi=99 and si=0, whilst virtuosity level L is set to pi=0   

and si=99. The similarities in the ratings for each of these virtuosity levels, would suggest 

that the assumptions over the effect of these parameters within the model of virtuosity are 

incorrect. Instead, it appears that using the most complex and difficult pieces as reference 

for a performance is important to virtuosity, as is utilising musically/stylistically/contextu- 

ally appropriate playing techniques. This is seen as evidence to support the formulation of 

the model of virtuosity, as well as identifying a relationship between the individual effects 

of the musical similarity threshold and the virtuosity percentile and judgements of virtu- 

osity. As each of these have a similar contribution to judgements of virtuosity explaining 

why H2 is not supported. 

The influence that combining these parameters has on judgements of virtuosity was not 

able to be established. Although, from the results, it would appear that adjusting both pi 

and si has a bigger influence on whether a performance is judged virtuosic or not, than 

adjusting each in isolation. This is evident by the differences observed between the median 

ratings where significant differences were found between M and H, L. Unfortunately no 

predictions of how  virtuosity level M will be rated in comparison to virtuosity levels H  

and L can be made,  as, for the parameterisation of virtuosity level M, pi=73 and si=73,    

not a singular relationship between it and virtuosity levels H and L were found. Different 

parameterisations of C and D, and different participant groups were observed effecting  

the relationship, but a singular cause could not be determined, suggesting the influence of 

external factors that have not been parameterised. 

When investigating the relationships between C and D there were significant differences 
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within each level of V between C and D pairs, these occurred between opposite pairs e.g. 

Cw=1 Dw=-1 and Cw=-1 Dw=1, or Cw=-1 Dw=1 and Cw=0, etc.  There  is  also  evidence 

that changes in the perceived difficulty (Dw) are more apparent,  and this may  have  had    

a greater influence on how participants rated stimuli as when D = 1 C = 0, M was rated 

greater than H and L for Bassline B4, but M rated less than H and L for B8 for the same C 

and D weights. For weights Cw=1 Dw=1, Cw=1 Dw=-1 for Basslines B3 and B5 and Cw=1 

Dw=0, for B6, M was rated lower than H and L. This may suggest that the way Adorn-o 

increased playing complexity, when pi=73 and si=73 is not considered virtuosic. However, 

why or what maybe the cause of this is not clear and requires further investigation. 

The result of this study therefore suggest that the relationship between the parameters 

(the domain) of our model of virtuosity is considerable more complex, and influenced by 

both the operations of Adorn-o (the performer) and external factors e.g. participants 

background (audience). This however does follow (Howard, 1997, 2008)’s formulation of 

the terrain of virtuosity, which does offer a level of validation to the formulation of the 

model of virtuosity outlined in Section 8.2.6.3. There is however more work needed to 

investigate and understand the relationships of the parameters within it, before it could  

be used for further scientific or computational analysis of music. 
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Chapter 10 

 

Conclusions and Future Work 

 
10.1 Conclusions 

How can a computer, as judged by a human audience, demonstrate virtuosity  

in computational performances with a synthesized bass guitar? 

A computer can demonstrate virtuosity in computational performances with a synthe- 

sized bass guitar, if the computer has been provided with the capabilities of musicianship, 

technical proficiency and self-reflection. This has been demonstrated in Adorn-o, where 

the combination of a measure of musical similarity, a means of assessing the technical pro- 

ficiency of a performance, a method of self-reflection using a model of virtuosity provided 

these capabilities. These components have been developed described and formalised using 

the Engagement-Reflection Creative Systems Framework, thus a formalised theory for the 

production of virtuosic bass guitar performances has been developed. 

The majority of work within this thesis related to the construction and evaluation of 

each of these components.  This began with the formalisation of the process of producing  

a musical performance, and the proposal of the Bass Guitar Performance Ontology to pro- 

vide machine understandable representation of bass guitar performances. A survey of 498 

bass players was conducted, which provided insight into bass players’ views on virtuosity, 

virtuosos and hard bass guitar compositions. It also collected a set of competences relat- 

ing to both bass guitar specific playing techniques and more general musical performance 

elements (from the perspective of the bass guitar). 

From these competences, relational probabilities were formed that allowed for relative 

complexities between these different techniques and musical elements to be inferred. These 

probabilities were used to produce weightings that could be used within the ‘musiplectic’ 

approach to calculated playing complexity (Holder et al., 2015). A formalisation to the 
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‘musiplectic’ approach was provided, and the approach extended to include durational com- 

plexities. The Bass Guitar Musicplectic (BGM) calculation was outlined which adapted 

Holder et al. (2015)’s approach to be more suitable for the bass. A second calculation 

method, the Euclidean Vector Complexity was also proposed that, instead of calculating 

complexities on a note-by-note basis, used a vector of complexities that were summed over 

the entire piece. Euclidean distance from the origin of the vector space was then used as 

the measure of complexity. Both calculations, including six different complexity weight 

sets, were evaluated against the Trinity College Pop and Rock Bass Guitar Grade Syl- 

labus (Trinity Rock and Pop Exams, 2012i,a,b,c,d,e,f,g,h), which followed Holder et al. 

(2015)’s method of evaluation. Both calculations, albeit with different weight sets were 

found to be appropriate models for playing complexity, as defined within the Bass Guitar 

Grade Syllabus. Both calculations where also evaluated against the results of a listen- 

ing test, in which participants were asked to indicate, between pairs of short bass guitar 

performance excerpts, which they perceived to be more difficult to play. Only the EVC 

calculation was found to match participant’s ratings of perceived difficulty. Based on these 

results the BGM calculation was denoted as the means of calculating playing complexity 

and the EVC calculation, the means of calculating perceived playing difficulty, both ap- 

proaches used the same complexity weight set that was developed from the competence 

probabilities, scaled to the simplest technique/musical element for each competence type. 

The measure of musical similarity selected was the Euclidean distance between the z- 

valued musical features of two different melodies. The musical features were selected from 

the FANTASTIC (Müllensiefen, 2009) and SynPy (Song et al., 2015) toolkits. The measure 

was assessed by a listening test where participants were asked to indicate which two, out 

of three different audio renderings of melodic excerpts were the most musical similar. The 

measure of similarity was not an exact match to participant’s ratings, however this was to 

be expected due to the subjective nature of judgements of musical similarity. The measure 

of musical similarity did perform on par with the better measures of symbolic musical 

similarity from the MIREX symbolic musical similarity challenge. The measure of musical 

similarity did not disagree with participants, and thus it is believed that these results 

do not prevent the measure of musical similarity using FANTASTIC and SynPy features 

from being used within a creative system. This is because of the creative system’s agency 

allows for the discrepancies within the measure of similarity can be attributed to being the 

creative system’s own subjective views of musical similarity. 

The development of Adorn-o, an exploratory creative system for the computational cre- 

ation of virtuosic bass guitar performances has demonstrated the Engagement-Reflection 

Creative Systems Framework (ER-CSF) model (Alvarado and Wiggins, 2018) capabilities 



304  

 

as a design tool. Through using the ER-CS to design, and thus describe Adorn-o’s oper- 

ations, a formalised theory for the production of virtuosic bass guitar performances has 

been developed. 

Within this formalised theory a model of virtuosity was  formulated  as  a means of 

both guiding the production of, and evaluating bass guitar performances. The model of 

virtuosity was formulated as a means of computational navigation of Howard (1997, 2008)’s 

notion of the terrain of virtuosity. Within this model the domain of the performance being 

judged is formed of musically similar performances. The performances within the domain 

are then ranked according to a heuristic based on technical proficiency. This accounted for 

both the performer (through the measure of playing complexity) and the audience (through 

the measure of playing difficulty). The top percentile of performances rated this way would 

be considered within the model to be virtuosic. If the performance being judged also fell 

within the top percentile of performance, it too is considered by the model to be virtuosic. 

The musical similarity, required technical proficiency and top percentile of performances 

considered as being virtuosic are all parameters within the model. A study was conducted, 

in which Adorn-o was used to generate performances which would be considered virtuosic 

by three different parameterisations of this model. These were predicted to produce per- 

formances which would be judged (relatively) as being of a low, medium and high level 

of virtuosity. The results of the study demonstrated that the selected parameterisations 

of the model, did not match the predicted virtuosity levels. However relationships be- 

tween the musical similarity and the top percentile of performances were uncovered, in 

which maximising each individually appeared to have the same effect on judgements of 

virtuosity. The study also suggested that additional unaccounted for factors were effecting 

judgements of virtuosity. These results indicated that the formulation of the model was 

valid, but that the version of the model tested was not sufficient to account for complex 

interactions of parameters, that contribute to judgements of virtuosity. 
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10.2 Contributions to Knowledge 

The main contributions of this thesis are: 

• A computational model of virtuosity following Howard (1997, 2008)’s formulation of 
the terrain of virtuosity. 

• A theory for the creation of virtuosic bass guitar performances, based on case-based 

reasoning (CBR) and formalised using the Engagement-Reflection Creative Systems 

Framework (ER-CSF) Model (Alvarado and Wiggins, 2018). 

• A demonstration of how the Engagement-Reflection Creative Systems Framework 

(ER-CSF) Model (Alvarado and Wiggins, 2018) can be used as a tool to aid in 

designing computationally-creative musical performance systems. 

• A formalisation and expansion of the ‘musiplectics’ approach by (Holder et al., 2015) 

where the values of the complexity weights have been empirically determined based 

upon musicians’ self-reported playing competency on the instrument. 

• A perceptually-validated computational method for assessing musical playing com- 

plexity and perceived difficulty of bass guitar performances. 

• An assessment of a measure of musical similarity, that uses both FANTASTIC (Mül- 

lensiefen, 2009) and SynPy Song et al. (2015) musical features, for use within creative 

systems. 

• Advances in bass guitar digital waveguide synthesis methods. 
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10.3 Future Work 

In the first instance, further investigations into the model of virtuosity are required. The 

studies conducted within this work were the first steps in developing a computational model 

of virtuosity. Further investigation into how each of the parameters effect judgements of 

virtuosity is required. Extensions to the model are possible by increasing the heuristic used 

to determine the top percentiles of virtuosic pieces to account for aesthetic and subjective 

features. 

The additions to Kramer et al. (2012)’s digital waveguide model, whilst musically 

informed, and implemented based on personal playing experience, have not been evaluated. 

Perceptual comparisons between human performers and the methods of synthesis would 

allow for both refinement and validation of the approaches used to simulate the advanced 

playing techniques. Further work into expressive parameterisations, particularly in relation 

to slide and bend pitch trajectories are required if more “humanised” performances are 

desired. 

Humans could also be asked to reproduce the performances made by Adorn-o. This 

could server two purposes. The first is to provide a secondary evaluation of Adorn-o’s 

output, this time when all human performers. The results could then be compared to the 

study conducted within Chapter 9, for further investigation into perceptions of computer 

produced/composed performances. The second is to provide a dataset that can be used in 

the development of more “humanised” performance parameters. 

The version of Adorn-o presented within this work has had both designed and techni- 

cal restrictions placed upon it. Future work can look to lift these restrictions to allow for 

e.g. polyphonic performances to be produced and capabilities for transformational creativ- 

ity. The example performances were also limited to what could be represented within the 

Guitar Pro file format, future work could look towards extending the adornment parame- 

ters within the Bass Guitar Performance Ontology and implementing a more user friendly 

approach to defining, and then saving bass guitar performance within the ontology’s the 

JSON file format. The case-database could also be updated to include more detailed tran- 

scriptions of performances, that include adornments that allow for elements such as rubato, 

dynamics and pitch trajectories to be encoded within the performance. The inclusion of 

such adornments is not prohibited within the Bass Guitar Performance Ontology, how-  

ever these will require specification and updates to Adorn-o to processes these correctly if 

added. There are also opportunities to explore the effect the different case-databases have 

on the performances Adorn-o produces. This could also include investigations into per- 

former modelling/style investigations and using restricted case-databases for musicological 
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investigations. 

Outside of the context of creative systems,  it is unclear how suitable these measures   

of musical similarity are without further study.   This could be either in following Allan      

et al. (2007), where by adjustments are made to the feature weightings used within the 

measurements of similarity. Or, through the addition of extra features which account for 

the subjective information that individual uses when determining musical similarity. 

This work has also not addressed the possibilities presented by building communities 

of Adorn-o agents. Two Adorn-o systems could be used to model the teacher-student 

relationship, where one Adorn-o system (the Teacher Adorn-o) produces performances 

that form the case-database of another (the student Adorn-o). Multiple Adorn-o’s (with 

different case-databases) could also contribute to a communal pool of performances, in 

which virtuosity is considered both by individual Adorn-o’s, and within the Adorn-o agent 

community, opening up avenues of investigating the interactions of virtuosity within multi- 

agent contexts. 

The models of playing complexity and perceived difficulty could be extended to account 

for polyphonic/harmonic complexity. Further investigations, using the approach to model 

the playing complexity of other instruments is also required to test Holder et al. (2015)’s 

assertions that the approach can be treated as a generalised method of calculating musical 

playing complexity. The models of playing complexity and perceived difficulty could be 

integrated into bass guitar educational technologies. Providing a means for players to 

compare musical pieces based on playing complexity, would no doubt present a valuable 

learning resource for bass players. 

Finally there are investigations required into the views of female bass players, the 

number of female bass players within the general population, and reasons for the clear bias 

of male representation within the contexts of bass playing considered within this thesis. 

This is a clear issue of social importance, and thus, if any part of this work is to be 

extended, the author encourages this aspect to be considered first. 
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Appendix A 

 

Bass Guitar Playing Ontology and 

Formal Definitions 

 
A.1 Classes 

A.1.1 Hand 
 

Label: hand 
 

Subclasses: digit 

Properties: hand type 
 

 

A.1.2 Digit 
 

Label: digit 
 

Subclasses: finger, thumb, pick 

Parent  Class: hand 

Inherited Proper- 

ties: 

hand type 

 

A.1.3 Finger 
 

Label: finger 
 

Parent Class: digit 

Inherited Proper- 

ties: 

hand type 
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A.1.4 Thumb 
 

Label: thumb 
 

Parent Class: digit 

Inherited Proper- 

ties: 

hand type 

 

A.1.5 Pick 
 

Label: pick 
 

Parent Class: digit 

 
A.1.6 Song 

 

Label: song 
 

Properties: measures, artist, title, bpm, key, number of 

measures 

 
A.1.7 Measure 

 

Label: measure 
 

Properties: start time, notes, measure number, key sig- 

nature, time signature, tempo, triplet feel, 

monophonic, only tied notes, only rests 
 

Inherited Proper- 

ties: 

title 

 

A.1.8 Rest 
 

Label: rest 
 

Properties: note number, start time, duration, notated 

duration 

 

A.1.9 AdornedNote 
 

Label: adorned note 
 

Subclasses: note, adornment 
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A.1.10 Note 
 

Label: note 
 

Parent  Class: adornment 

Properties: note number, pitch, fret number, string num- 

ber, string tuning, start time, duration, no- 

tated duration, dynamic 
 

Inherited Proper- 

ties: 

what it inherits from parent 

 

A.1.11 Adornment 
 

Label: adornment 
 

Subclasses: plucking   adornment, fretting adornment, 

grace note 

Properties ghost note 

 
A.1.12 GraceNote 

 

Label: grace note 
 

Parent  Class: adornment 

Properties: fret, duration, dynamic, dead note, on beat, 

transition 

 
A.1.13 PluckingAdornment 

 

Label: plucking adornment 
 

Subclass: plucking modification 

Parent  Class: adornment 
 

Properties: plucking technique, accent 

 
A.1.14 PluckingModification 

 

Label: plucking modification 
 

Parent  Class: plucking adornment 

Properties: artificial harmonic, palm mute 
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A.1.15 FrettingAdornment 
 

Label: fretting adornment 
 

Subclasses: fretting modification, modulation 

Parent  Class: adornment 
 

Properties: fretting technique, accent 

 

A.1.16 FrettingModification 
 

Label: fretting modification 
 

Parent  Class: fretting adornment 

Properties: modification type, let ring 
 

 

A.1.17 Modulation 
 

Label: modulation 
 

Subclasses: trill, bend, slide 

Parent  Class: fretting adornment 
 

Properties: vibrato 

 
A.1.18 Trill 

 

Label: trill 
 

Parent  Class: modulation 

Properties: fret, notated duration 

 
A.1.19 Bend 

 

Label: bend 
 

Subclasses: bend point 

Parent  Class: modulation 
 

Properties: bend type, bend points 

 
A.1.20 Bend Point 

 

Label: bend point 
 

Parent  Class: bend 

Properties: bend position, bend value, vibrato 
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A.1.21 Slide 
 

Label: slide 
 

Parent  Class: modulation 

Properties: slide into, slide outto 

 
A.2 Example Data Structures 

Two example representations of Figure A.1 are presented, first a representation using the 

implemented python data structures found here: https://github.com/callumgoddard/ 

Adorn-o/blob/main/Adorn_o/parser/API/datatypes.py, the second is JSON file repre- 

sentation formed using the api_to_json() function found here: https://github.com/ 

callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/write_functions.py 

 

 

 
Figure A.1: An example musical performance, playing the same pitched note on each string 
of a bass guitar, using only the default adornments. 

 
 

A.2.1 Python Representation 

 
Song ( 

meta_data=SongMetaData ( 

a r t i s t="" , t i t l e="" , bpm=85 , key="CMajor" , number_of_measures=1 

) , 

measures =[ 

Measure ( 

meta_data=MeasureMetaData ( t 

i t l e="" , 

number=1                    , key_ s 

ignature="CMajor" , 

 
 

https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/datatypes.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/datatypes.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/write_functions.py
https://github.com/callumgoddard/Adorn-o/blob/main/Adorn_o/parser/API/write_functions.py
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time_ s ignature=" 4/4 " , 

tempo=85 , 

t r i p l e t _ f e e l=None , 

monophonic=True , only_ 

tied_ notes=None , o n l y 

_ re s ts=None , 

) , 

start_ time=Fracti  o n ( 0 , 1 ) , 

n o te s =[ 

AdornedNote ( 

note=Note ( 

note_number=1 , 

p i tc h =33 , 

fret_number =5 , 

string_number =4 , 

s tri n g _ tu n i n g ={1: 43 , 2 : 38 , 3 : 33 , 4 :  28 } , 

start_ time=Fracti  o n ( 0 , 1 ) , 

d u rati o n=Fracti o n ( 1 , 2 ) , 

notated_ duration=Notated Duration ( 

value=Fracti  o n ( 1 ,  2 ) , 

i   s   Do   tte  d=False   , 

i s Double Dotted=False , 

t u p l e t=Tuplet ( number_of_notes=1 , equal_to =1) , 

) , 

dynamic=Dynamic ( value="mf" , cres_dim=None ) , 

) , 

adornment=Adornment                      ( 

p l u ck i n g=PluckingAdornment ( 

te ch n i q u e=" f i n g e r " , 

m o d i f i c a t i o n=Pl u c k i n g M o d i f i c a t i o n ( 

palm_mute=False , a r t i f i c i a l _ h a r m o n i c=None 

) , 

acce nt=False , 

) , 

f r e t t i n g=Fretting Adornment ( 

te ch n i q u e=" f r e t t i n g " , 

m o d i f i c a t i o n=Fr e tti n g M o d i f i c a t i o n ( 

type=None , l e t_ r i n g=Fal s e 

) , 

acce nt=False , 

modulation=Modulation ( 

bend=None , v i b r a to=False , t r i l l =None , s l i d e=None 

) , 

) , 

grace_note=None , 

ghost_note=False , 

) , 

) , 

AdornedNote ( 

note=Note ( 

note_number=2 , 
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p i tc h =33 , 

fret_number =0 , 

string_number =3 , 

s tri n g _ tu n i n g ={1: 43 , 2 : 38 , 3 : 33 , 4 :  28 } , 

start_ time=Fracti  o n ( 1 , 2 ) , 

d u rati o n=Fracti o n ( 1 , 2 ) , 

notated_ duration=Notated Duration ( 

value=Fracti  o n ( 1 ,  2 ) , 

i   s   Do   tte  d=False   , 

i s Double Dotted=False , 

t u p l e t=Tuplet ( number_of_notes=1 , equal_to =1) , 

) , 

dynamic=Dynamic ( value="mf" , cres_dim=None ) , 

) , 

adornment=Adornment                      ( 

p l u ck i n g=PluckingAdornment ( 

te ch n i q u e=" f i n g e r " , 

m o d i f i c a t i o n=Pl u c k i n g M o d i f i c a t i o n ( 

palm_mute=False , a r t i f i c i a l _ h a r m o n i c=None 

) , 

acce nt=False , 

) , 

f r e t t i n g=Fretting Adornment ( 

te ch n i q u e=None , 

m o d i f i c a t i o n=Fr e tti n g M o d i f i c a t i o n ( 

type=None , l e t_ r i n g=Fal s e 

) , 

acce nt=False , 

modulation=Modulation ( 

bend=None , v i b r a to=False , t r i l l =None , s l i d e=None 

) , 

) , 

grace_note=None , 

ghost_note=False , 

) , 

) , 

] , 

) 

] , 

) 

 

A.2.2 JSON representation 
 

{ 

" song " : { 

" meta_data" :    { 

" a r t i s t " : "" , 

" t i t l e " : "" , 

"bpm" : 85 , 
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" key" : "CMajor" , " 

number_of_measures" :    1 

} , 

" measures " : [ 

{ 

" meta_data" :    { 

" t i t l e " : "" , 

"number" :  1 , 

" ke y_ s ignatur e " :    "CMajor" , 

" t i m e_ s i g na tur e " :    " 4/4 " , 

"tempo" : 85 , 

" t r i p l e t _ f e e l " : null  , 

" monophonic" : true , 

" only_ t i e d_ note s " :    n u l l  , 

" o n ly_ r e s t s " :    n u l l 

} , 

" s ta r t_ t i m e " :    { 

" numerator " : 0 , 

" denominator " : 1 

} , 

" notes " : [ 

{ 

" adorned_note " :    { 

" note " : { 

"note_number" :    1 , 

" p i tc h " : 33 , 

" fret_number " :    5 , 

" string_number " :    4 , 

" s t r i n g_ tu n i n g " :    { 

"1 " : 43 , 

"2 " : 38 , 

"3 " : 33 , 

"4 " : 28 

} , 

" s ta r t_ t i m e " :    { 

" numerator " : 0 , 

" denominator " : 1 

} , 

" dura tion " : { 

" numerator " : 1 , 

" denominator " : 2 

} , 

" n otate d_ d ur ati on " :    { 

" value " : { 
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" numerator " : 1 , 

" denominator " : 2 

} , 

" i s Dotted  " : f a l s e , 

" i s Double Dotted " : f a l s e , 

" tu p l e t " : { 

" number_of_notes" :    1 , 

" equal_to " :    1 

} 

} , 

" dynamic" : { 

" value " : "mf" , " 

cres_dim " :    n u l l 

} 

} , 

" adornment" : { 

" plucking " : { 

" technique  " : " f i n g e r " , 

" m o d i f i c a t i o n " : { 

"palm_mute" :    f a l s e  , 

" a r t i f i c i a l _ h a r m o n i c " : { 

" octave " : null  , 

" p i tc h " : n u l l 

} 

} , 

" accent " : f a l s e 

} , 

" f r e t t i n g " : { 

" technique  " : " f r e t t i n g " , 

" m o d i f i c a t i o n " : { 

" type " : null  , 

" l e t_ r i n g " : f a l s e 

} , 

" accent " : f a l s e , 

" modulation " : { 

" bend" : { 

" type " : null  , 

" value " : null  , 

" p o i n ts " : [ ] 

} , 

" v i b r a to " : f a l s e , 

" t r i l l " : { 

" f r e t " : null  , 

" n otate d_ d ur ati on " :    n u l l 
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} , 

" s l i d e " : { 

" i n to " : null  , 

" outto " : n u l l 

} 

} 

} , 

" grace_note " :    { 

" f r e t " : null  , 

" duration " : null , 

" dynamic" : null , " 

dead_note " :    n u l l  , 

" on_beat" :    n u l l  , 

" t r a n s i t i o n " :  n u l l 

} , 

" ghost_note " :    f a l s e 

} 

} 

} , 

{ 

" adorned_note " :    { 

" note " : { 

"note_number" :    2 , 

" p i tc h " : 33 , 

" fret_number " :    0 , 

" string_number " :    3 , 

" s t r i n g_ tu n i n g " :    { 

"1 " : 43 , 

"2 " : 38 , 

"3 " : 33 , 

"4 " : 28 

} , 

" s ta r t_ t i m e " :    { 

" numerator " : 1 , 

" denominator " : 2 

} , 

" dura tion " : { 

" numerator " : 1 , 

" denominator " : 2 

} , 

" n otate d_ d ur ati on " :    { 

" value " : { 

" numerator " : 1 , 

" denominator " : 2 
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} , 

" i s Dotted  " : f a l s e , 

" i s Double Dotted " : f a l s e , 

" tu p l e t " : { 

" number_of_notes" :    1 , 

" equal_to " :    1 

} 

} , 

" dynamic" : { 

" value " : "mf" , " 

cres_dim " :    n u l l 

} 

} , 

" adornment" : { 

" plucking " : { 

" technique  " : " f i n g e r " , 

" m o d i f i c a t i o n " : { 

"palm_mute" :    f a l s e  , 

" a r t i f i c i a l _ h a r m o n i c " : { 

" octave " : null  , 

" p i tc h " : n u l l 

} 

} , 

" accent " : f a l s e 

} , 

" f r e t t i n g " : { 

" technique " : null  , 

" m o d i f i c a t i o n " : { 

" type " : null  , 

" l e t_ r i n g " : f a l s e 

} , 

" accent " : f a l s e , 

" modulation " : { 

" bend" : { 

" type " : null  , 

" value " : null  , 

" p o i n ts " : [ ] 

} , 

" v i b r a to " : f a l s e , 

" t r i l l " : { 

" f r e t " : null  , 

" n otate d_ d ur ati on " :    n u l l 

} , 

" s l i d e " : { 
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" i n to " : null  , 

" outto " : n u l l 

} 

} 

} , 

" grace_note " :    { 

" f r e t " : null  , 

" duration " : null , 

" dynamic" : null , " 

dead_note " :    n u l l  , 

" on_beat" :    n u l l  , 

" t r a n s i t i o n " :  n u l l 

} , 

" ghost_note " :    f a l s e 

} 

} 

} 

] 

} 

] 

} 

} 

 
 

A.3 Properties 

A.3.1 HandType 
 

Label: hand type 
 

Range: ‘plucking’ | ‘fretting’ 

Domain: Hand 

 
A.3.2 Measures 

 

Label: measures 
 

Range: {measure} 

Domain: Song 
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A.3.3 Notes 
 

Label: notes 
 

Range: {adorned note | rest} 

Domain: Measure 

 
A.3.4 GhostNote 

 

Label: ghost note 
 

Range: boolean 

Domain: Adornment 

 
A.3.5 FrettingTechnique 

 

Label: fretting technique 
 

Range: (fretting-technique) 
 

Domain: FrettingAdornment 

 
A.3.6 PluckingTechnique 

 

Label: plucking technique 
 

Range: (plucking-technique) 
 

Domain: PluckingAdornment 

 
A.3.7 Duration 

 

Label: duration 
 

Range: (duration) 
 

Domain: Measure 

 
A.3.8 StartTime 

 

Label: start time 
 

Range: (start_time) 
 

Domain: Song 
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A.3.9 NotatedDuration 
 

Label: notated duration 
 

Range: (notated_duration) 

A.3.10 MeasureNumber 
 

Label: measure number 
 

Range: (measure_number ) 
 

Domain: Song 

 
A.3.11 NoteNumber 

 

Label: note number 
 

Range: (note_number ) 
 

Domain: Measure 

 
A.3.12 FretNumber 

 

Label: fret 
 

Range: (fret_number ) 
 

Domain: AdornedNote 

 
A.3.13 Dynamic 

 

Label: dynamic 
 

Range: (dynamic) 
 

Domain: AdornedNote 

 
A.3.14 DeadNote 

 

Label: grace note dead note 
 

Range: boolean 

Domain: GraceNote 
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A.3.15 OnBeat 
 

Label: grace note on beat 
 

Range: boolean 

Domain: GraceNote 

 
A.3.16 Transition 

 

Label: grace note transition 
 

Range: (grace_note_transition) 
 

Domain: GraceNote 

 
A.3.17 Pitch 

 

Label: pitch 
 

Range: (pitch) 
 

Domain: AdornedNote 

 
A.3.18 StringNumber 

 

Label: string number 
 

Range: (string_number ) 
 

Domain: AdornedNote 

 
A.3.19 StringTuning 

 

Label: string tuning 
 

Range: (string_tuning ) 
 

Domain: Note 

 
A.3.20 PalmMute 

 

Label: palm mute 
 

Range: (palm_mute) 
 

Domain: PluckingModification 



323  

 

A.3.21 ArtificialHarmonic 
 

Label: artificial harmonic 
 

Range: (artificial_harmonic) 
 

Domain: PluckingModification 

 
A.3.22 ModificationType 

 

Label: modification type 
 

Range: (modification_type) 
 

Domain: FrettingModification 

 
A.3.23 LetRing 

 

Label: let ring 
 

Range: (let_ring) 
 

Domain: FrettingModification 

 
A.3.24 Accent 

 

Label: accent 
 

Range: boolean 

 

A.3.25 Vibrato 
 

Label: vibrato 
 

Range: boolean 

 

A.3.26 BendPoints 
 

Label: bend points 
 

Range: [{bend point}] 

Domain: Bend 

 
A.3.27 BendPosition 

 

Label: bend position 
 

Range: (bend_point_position) 
 

Domain: BendPoint 
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A.3.28 BendValue 
 

Label: bend value 
 

Range: (bend_value) 
 

Domain: BendPoint 

 
A.3.29 SlideInto 

 

Label: slide into 
 

Range: (slide_in) 
 

Domain: Slide 

 
A.3.30 SlideOutto 

 

Label: slide outto 
 

Range: (slide_out ) 
 

Domain: Slide 

 
A.4 Extended Backus-Naur Form definitions for the Adorn- 

ment Vocabulary, V 

A.4.1 Extended Backus-Naur Form the complete (adornment ) specifica- 

tions as part of the vocabulary of The Bass Guitar Performance 

Ontology ∈ L 

(adorned_note) ::= ( (note) (adornments)) ; 

(adornments) ::= ( ‘adornment’ 

(plucking-adornment ) 

(fretting-adornment ) 

(ghost-note) 

(grace-note) ) ; 

(note) ::= ( (pitch) (start_time) (duration) { (note-property) } ) ; 

(note-property) ::= (note_number ) | (fret_number ) | (string_number ) | (string_tuning ) 

| (key_signature) (time_signature) | (tempo) | (measure_number ) | (song_title) 

; 

(adornment-group-parameters) ::= ( (adornment-group-id ) {(parameter )} ) ; 
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adornment-group-id 

( ) 

is-adorned-with 

has-a 

note adornment 

has-a 

has-a 

has-a 

 

 

(adornment ) ::= ( (adornment ) {(adornment )} ) 

| ( (adornment-group-id ) { (parameter ) | (adornment ) } ) ; 

(adornment-group) ::= ( (adornment-group-id ) { (parameter ) } ) ; 

(parameter ) ::= ( (parameter-name) ( {(parameter-value) | (parameter )} ) ); 

(parameter-name) ::= string ; 

(parameter-value) ::=  integer | float | string | boolean | none ; 

is-in-adornment-group 

(is-in-adornment-group) ::=  (adornment ) ,   − − − − − − −→ , (adornment-group-id ) ; 

is-executed-according-to 

(is-executed-according-to) ::= (adornment ) , − − − − − − − → , (adornment-group-id ) 

 

 

(adornment ) 
is-in-adornment-group 

− − − − − − −→ ( ) 
is-executed-according-to 

(adornment ) − − − − − − − → (parameter ) 

 

Figure A.2: Extended  Backus-Naur Form  definition  of adornment class:  adornment  and 
its relationships described using a semantic triples. 

 
(note) ::= ( (pitch) (onset-time) (duration) ) ; 

(is-adorned-with) ::= (note) , − − − − −→ , (adornment ) ; 

(has-a) ::= (note) , − −→ , (pitch) | (onset-time) | (duration) ; 

(adorned_note) ::= ( (note) (adornment ) ) ; 

 
is-adorned-with 

( ) − − − − −→ ( ) 

(note) − −→ (pitch) 

(note) − −→ (start-time) 

(note) − −→ (duration) 

Figure A.3: Extended Backus-Naur Form definition of musical note class: (note) and its 
relationship to the (adornment ) class, described using a semantic triples. 

; 
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( ) ( ) ( ) ( ) ( ) 

is-to-be-as-loud-as 

articulated-as 

is-modulated-by 

is-made-audible-by 

adornment 

adornment 

adornment 

adornment 

adornment 

is-to-be-as-loud-as 

articulated-as 

is-modulated-by 

note excitation 

 
 
 
 
 
 

 
is-defined-as-a-subclass-of ::=     excitation |    modification |    modulation |    accent | 

is-defined-as-a-subclass-of 

(dynamic) ,   − − − − − − − −→ (adornment ) ; 

is-modified-to 

(is-modified-to) ::= (excitation) , − − − − →, (modification) ; 

(is-to-be-as-loud-as) ::= (excitation) , − − − − − −→, (dynamic) ; 

(articulated-as) ::= (excitation) , − − − − →, (accent ) ; 

(is-modulated-by) ::= (pitch) , − − − − −→, (modulation) ; 

(is-made-audible-by) ::= (note) , − − − − − −→, (excitation) ; 

 

 

(excitation) 

(modification) 

(modulation) 

(accent ) 

(dynamic) 

is-defined-as-a-subclass-of 

− − − − − − − −→ ( ) 
is-defined-as-a-subclass-of 

− − − − − − − −→ ( ) 
is-defined-as-a-subclass-of 

− − − − − − − −→ ( ) 
is-defined-as-a-subclass-of 

− − − − − − − −→ ( ) 
is-defined-as-a-subclass-of 

− − − − − − − −→ ( ) 
is-modified-to 

(excitation) − − − − → (modification) 

(excitation) − − − − − −→ (dynamic) (A.1) 

(excitation) − − − − → (accent ) 

(pitch) − − − − −→ (modulation) 
is-made-audible-by 

( ) − − − − − −→ ( ) 

 

Figure A.4: Extended Backus-Naur Form definition for the adornment subclass relation- 
ships described using a semantic triples. 
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is-excecuted-using 

is-attached-to 

is-excecuted-using 

is-part-of-a 

has-meta-data 

has-meta-data 

measure song 

 
 
 

(is-excecuted-using ) ::=  (adornment ) , −
i

−
s-

−
a

−
tt

−
ac

−
h

−
ed

−
-t

−
o

−→ , (execution-method ) ; 

(is-attached-to) ::= (execution-method ) , − − − − → , (extremity) ; 

 
(adornment ) −− − − − −→ (execution-method ) 

(execution-method ) − − − − → (extremity) 

Figure  A.5: Extended Backus-Naur Form definition for the (execution-method ) and 

(extremity) class relationships, described using a semantic triples. 

 
(song ) ::= ( (song_meta_data) , [ { (measure) } ] ) ; 

(song_meta_data) ::= ( (artist ), (title), (bpm), (key_signature), (number_of_measures) 

 

(measure) ::= ( (measure_meta_data) (start_time) [ { (adorned_note) } ] ) ; 

(measure_meta_data) ::= ( (song_title) (measures_number ) (key_signature) 
(time_signature) (tempo) (triplet_feel ) ) ; 

has-meta-data 

(has-meta-data) ::= (song ) | (measure) 
(measure_meta_data) ; 

− − − − → , (song_meta_data) | 

 

(is-part-of-a) ::=  (measure) −− − −→ , (song ) ; 

is-in 

(is-in) ::= (note) −→ , (measure) ; 

 
(song ) − − − − → (song_meta_data) 

(measure) − − − − → (measure_meta_data) 
is-part-of-a 

( ) −− − −→ ( ) 
is-in 

(note) −→ (measure)  

(A.2) 

 

Figure A.6: Extended Backus-Naur Form definitions for the song and measure classes 
within The Bass Performance Ontology 

) ; 
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(adornment-group-id ) ::= [‘fretting’ | ‘plucking’ , ‘_’ ] , ‘adornment’ 

| ‘fretting’ | ‘plucking’ , ‘_’ , ‘technique’ | ‘accent’ 

| ‘fretting’ , ‘_’ , ‘modification’ , [‘_’ , ‘palm_mute’ | ‘artificial_harmonic’ ] 

| ‘plucking’ , ‘_’ , ‘modification’ , [‘_’ , ‘let_ring’ | ‘type’] 

| ‘modulation’ , [‘_’ , ‘vibrato’ | ‘bend’ | ‘trill’ | ‘slide’] 

| ‘ghost_note’ | ‘grace_note’ | ‘dynamic’; 

(plucking-adornment ) ::= ( ‘plucking’ 

(plucking-technique) 

(plucking-modification) 

(accent ) ) ; 

(plucking-technique) ::= ( ‘plucking_technique’ 

(plucking-technique) ) ; 

(fretting-adornment ) ::= ( ‘fretting’ 

(fretting-technique) 

(fretting-modification) 

(accent ) 

(modulation) ) ; 

(fretting-technique) ::= ( ‘fretting_technique’ 

(fretting_technique) ) ; 

(fretting-modification) ::= ( ‘fretting_modification’ 

(fretting-modification-let-ring ) 

(fretting-modification-type) ) ; 

(fretting-modification-let-ring) ::= ( ‘fretting_modification_let_ring’ boolean) ; 

(fretting-modification-type) ::= ( ‘fretting_modification_type’ 

(modification_type) ) ; 

(fretting-accent ) ::= ( ‘fretting_accent’ boolean) ; 

(plucking-technique) ::=    ( ‘plucking_technique’ 

(plucking_technique)  ) ; 

(plucking-modification) ::= ( ‘plucking_modification’ 

(plucking-modification-palm-mute) 

(plucking-modification-artificial-harmonic) ) ; 

(plucking-modification-palm-mute) ::= ( ‘plucking_modification_palm_mute’ boolean) ; 

(plucking-modification-artificial-harmonic) ::= ( ‘plucking_modification_artificial_harmonic’ 

(artificial_harmonic) ) ; 

(plucking-accent ) ::= ( ‘plucking_accent’ boolean) ; 
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(modulation) ::= ( ‘modulation’ 

(modulation-slide) 

(modulation-trill ) 

(modulation-bend ) 

(modulation-vibrato) ) ; 

(modulation-slide) ::= ( ‘modulation_slide’ 

(slide) ) ; 

(modulation-trill ) ::= ( ‘modulation_trill’ 

(trill ) ) ; 

(modulation-bend ) ::= ( ‘modulation_bend’ 

(bend ) ) ; 

(modulation-vibrato) ::= ( ‘modulation_vibrato’ 

(vibrato) ) ; 

(ghost-note) ::= ( ‘ghost_note’ boolean) ; 

(grace-note) ::= ( ‘grace_note’ 

(fret_number ) (duration) (dynamic) 

(grace_note_dead_note) 

(grace_note_on_beat) 

(grace_note_transition) ) 

| ( ‘grace_note’ 

‘None’ ) ; default = ( ‘grace_note’ 

‘None’ ) 

(dynamic) ::= ( (dynamic_value) (cres_dim) ) ; 

(dynamic_value) ::= ‘fff’ | ‘ff’ | ‘f’ | ‘mf’ | ‘mp’ | ‘p’ | ‘pp’ | ‘ppp’ ; default = ‘mf’ 

(cres_dim) ::= None | ‘cresc’ | ‘dim’ ; default = None 

A.4.2 Extended Backus-Naur Form the complete (parameter ) specifica- 

tions as part of the vocabulary of The Bass Guitar Performance 

Ontology ∈ L 

(beat) ::= 
 

integer 
integer 

(note_number ) ::= integer ; default = 1 

(pitch) ::= (midı_number ) ; default = 43 

(start_time) ::=   (beat) ; default = 0 

(duration) ::=  (beat) ; default = 0 

(fret_number ) ::= float ; default = 0 

; 
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(string_number ) ::= 1 | 2 | 3 | 4 | 5 | 6 ; default = 1 

(midi_number ) ::= { n : n ∈ integer ∀ 0 ≤ n <128 } ; 

(interval ) ::= (midi_number ) ; default = 0 

(number_of_strings) ::= 1 | 2 | 3 | 4 | 5 | 6 ; default = 4 

(string_tuning ) ::= {1 * (number_of_strings) ( (string_number ): (pitch) )} 

; default = {1: 43, 2: 38, 3: 33, 4: 28} 

(notated_duration) ::= ( (beat) (isDotted ) (isDoubleDotted ) (tuplet ) ) ; default = 1 

(isDotted ) ::= boolean ; default = false 

(isDoubleDotted ) ::= boolean ; default = false 

(plucking_technique) ::= ‘finger’ | ‘tied’ | ‘pick’ | ‘pick_up’ | ‘pick_down’ | ‘slap’ | ‘pop’ 

| ‘tap’ | ‘double_thumb’ | ‘double_thumb_upstroke’ 

| ‘double_thumb_downstroke’ | ‘double_stop’ 

| ‘3_note_chord’ | ‘4_note_chord’ ; default = ‘finger’ 

(palm_mute) ::= boolean ; default = false 

(artificial_harmonic) ::= ( (octave_offest) , (pitch) ) | None ; default = None 

(octave_offest) ::= 0 | 1 | 2 | 3 | 4 ; default = 0 

(fretting_technique) ::= None | ‘hammer-on’ | ‘pull-off’ | ‘left-hand-slap’ ; default = None 

(modification_type) ::= None | ‘fretting’ | ‘harmonic’ | ‘dead_note’ ; default = None 

(accent ) ::= boolean ; default = false 

(vibrato) ::= boolean ; default = false 

(bend ) ::= ( (bend_type) (bend_value) (bend_points) ) ; 

(bend_type) ::= ‘bend’ | ‘bend_release’ | ‘pre_bend’ | ‘pre_bend_bend’ 

| ‘pre_bend_release’ ; default = ‘bend’ 

(bend_points) ::= ‘[’ 1*(bend_point ) ‘]’ ; 

(bend_point ) ::= ( (bend_point_position) (bend_point_value) (vibrato) ) ; 

(bend_point_position) ::= { n : n ∈ float ∀ 0.0 ≤ n <12.0} ; default = 0.0 

(bend_value) ::= float ; default = 0.0 

(trill ) ::= ( (trill_fret) (trill_duration) ) ; 

(trill_fret) ::= (fret_number ) ; 

(trill_duration) ::= ( (trill_note_value) (isDotted ) (isDoubleDotted ) (tuplet ) ) ; 

(trill_note_value) ::= { n : n ∈ integer ∀ n >(duration) ∧ n % 4 = 0 } ; 
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(tuplet ) ::= ; 

(denominator ) 

 

(slide) ::= ( (slide_in) (slide_out) ) ; 

(slide_in) ::= slide_shift_to | slide_from_above | slide_from_below 

| None ; default = None 

(slide_out) ::= slide_shift_to | slide_out_above | slide_out_below 

| None; default = None 

(grace_note_dead_note) ::= boolean ; default = false 

(grace_note_on_beat) ::= boolean ; default = false 

(grace_note_transition) ::= None | ‘slide’ | ‘bend’ | ‘hammer’ ; default = None 

(tuplet_enters) 
(tuplet_times) 

(tuplet_enters) ::=  integer ; default = 1 

(tuplet_times) ::=  integer ; default = 1 

(measure_number ) ::= integer 

(key_signature) ::= ‘FMajorFlat’ | ‘CMajorFlat’ | ‘GMajorFlat’ | ‘DMajorFlat’ 

| ‘AMajorFlat’ | ‘EMajorFlat’ | ‘BMajorFlat’ | ‘FMajor’ | ‘CMajor’ 

| ‘GMajor’ | ‘DMajor’ | ‘AMajor’ | ‘EMajor’ | ‘BMajor’ | ‘FMajorSharp’ 

| ‘CMajorSharp’ | ‘GMajorSharp’ | ‘DMinorFlat’ | ‘AMinorFlat’ 

| ‘EMinorFlat’ | ‘BMinorFlat’ | ‘FMinor’ | ‘CMinor’ | ‘GMinor’ 

| ‘DMinor’ | ‘AMinor’ | ‘EMinor’ | ‘BMinor’ | ‘FMinorSharp’ 

| ‘CMinorSharp’ | ‘GMinorSharp’ | ‘DMinorSharp’ | ‘AMinorSharp’ 

| ‘EMinorSharp’ ; default = ‘CMajor’ 
 

(time_signature) ::=
 (numerator ) 

; 

(numerator ) ::= integer ; 

(denominator ) ::= integer ; 

(tempo) ::= integer ; default = 120 

(triplet_feel ) ::= None | ‘16th’ | ‘8th’ | ‘dotted_8th’ | ‘dotted_16th’ ; default = None 

(artist ) ::=  string ; 

(title) ::=   string ; 

(bpm) ::= (tempo) ; 

(number_of_measures) ::= integer ; 
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Appendix B 

 

Surveying Bass Player’s Playing 

Competences and Views on 

Virtuosity Results 

 
B.1 Highest Qualifications 
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Table B.1: Highest Music Qualification Held by each Respondent, ordered by the Regu- 
lated Qualifications Framework (RQF) and Framework for Higher Education Qualification 
(FHEQ). 

 

Highest Qualification Code Number of Participants Total Playing Time 

none 318 95,103 
music_grade_2 5 65,696 
music_grade_3 4 317,533 
bass_grade_1 5 117,000 
bass_grade_2 2 109,494 
bass_grade_3 2 43,798 

school 8 322,399 
high_school 3 13,139 

elective_leaving_cert 1 16,685 
music_grade_4 1 87,595 
music_grade_5 15 93,852 

gcse_music 2 147,817 
music_grade_6 1 350,381 
other_grade_7 2 105,236 
music_grade_7 2 53,378 
other_grade_8 3 24,332 
music_grade_8 7 218,988 
bass_grade_6 3 197,089 
bass_grade_7 3 262,786 
bass_grade_8 5 109,494 

a_level 13 125,136 
college 4 394,178 

partial_degree 1 17,519 
music_school 3 160,591 

university_lessons 4 33,866 
performance_diploma 17 525,571 

bachelor_degree 40 160,956 
conservatory 1 1,927,094 

teaching_diploma 11 87,595 
master_degree 11 919,750 

phd 1 985,446 
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B.2 Genres 

 
Table B.2:  Most Played Genre, and the number of respondents that play it. 

 

Genre Count 

1 All 12 

2 Rock 319 

3 Pop 85 

4 Alternative 36 

5 Electronic 6 

6 Folk 25 

7 Jazz 154 

8 Post.rock 3 

9 Math.rock 2 

10 Motown 10 

11 Funk 114 

12 Soul 42 

13 Country 33 

14 Contemporary 10 

15 Christian 7 

16 Metal 86 

17 Prog.rock 1 

18 Blues 72 

19 Indie 22 

20 Function 1 

21 Disco 6 

22 Singer.Songwriter 2 

23 Improvised 2 

24 Americana 4 

25 Dub 1 

26 Reggae 12 

27 Solo 5 

28 Fusion 17 

29 RnB 25 

30 Ambient 3 

31 World 3 
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32 Acoustic 1 

33 West.African 1 

34 Prog 20 

35 Instrumental 1 

36 Hip.Hop 14 

37 Grunge 6 

38 Punk 40 

39 Top.40 7 

40 Latin 5 

41 Classic.Rock 18 

42 Original 3 

43 Musicals 5 

44 Classical 8 

45 Oriental 1 

46 Gospel 10 

47 Ska 9 

48 Psychedelic 5 

49 X60s 1 

50 Worship 9 

51 Acid.Jazz 1 

52 Theatre 7 

53 Dance 2 

54 Covers 5 

55 Afrobeat 1 

56 Easy.Listening 1 

57 Orchestral 1 

58 Not.Reggae 1 

59 Big.Band 1 

60 Atonal 1 

61 Experimental 3 

62 Rockabilly 2 

63 Hardcore 5 

64 Progressive.Metal 7 

65 Calypso 1 

66 Swing 1 

67 Choral 1 
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 68 Band.Arrangements 1 

69 Grunge.Rock 1 

70 Klezmer 1 

71 Mellow 1 

72 Soundtrack 2 

73 Slap 1 

74 Jamming 1 

75 Religious 1 

76 Rap 1 

77 New.Wave 1 

78 Musical.Theatre 2 

79 Primus 1 

80 Progressive 3 

81 Praise.and.Worship 1 

82 Electronica 1 

83 Tech.Death 1 

84 EDM 1 

85 Celtic 1 

86 Doom.Metal 1 

87 Indie.Rock 1 

88 African 1 

89 Industrial 1 

90 Praise 1 

91 Bluegrass 1 

B.3 Virtuosos 

   

 

 
Table B.3: Table showing the suggested virtuosos and the number of times they were 
suggested. 

 

Bass Player 
Voters 

 Total Male Female Undisclosed 

Victor Wooten 168 162 3 5 

Jaco Pastorius 137 129 7 3 

Les Claypool 35 34  1 

Marcus Miller 33 32  1 
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Table B.3: Table showing the suggested virtuosos and the number of times they were 
suggested. 

 

Bass Player 
Voters 

 Total Male Female Undisclosed 

Geddy Lee 28 25 1 1 

Stanley Clarke 27 25 1 2 

James Jamerson 26 25 1 1 

Michael Manring 26 25   

Billy Sheehan 24 22 2 1 

John Myung 23 22   

Flea 18 18  1 

Jeff Berlin 13 13   

John Entwistle 13 12   

Pino Palladino 13 12  1 

Anthony Jackson 12 12  1 

Hadrien Feraud 12 12   

John Patitucci 12 12   

Mark King 10 10   

Steve Lawson 10 10   

Charles Mingus 9 8   

Cliff Burton 8 6 2 1 

John Paul Jones 8 7 1  

Larry Graham 8 7 1  

Chris Squire 7 5 2  

Edgar Meyer 7 7   

Alex Webster 6 6   

Christian McBride 6 6   

Dominic Forest-Lapointe 6 6   

Janek Gwizdala 6 6   

Ron Carter 6 6   

Stu Hamm 6 6   

Michael League 5 5   

Paul Chambers 5 5   

Paul McCartney 5 4 1  

Ray Brown 5 5   

Richard Bona 5 5   

Steve Bailey 5 5   

Steve Harris 5 4 1  

Thundercat 5 5   
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Table B.3: Table showing the suggested virtuosos and the number of times they were 
suggested. 

 

Bass Player 
Voters 

 Total Male Female Undisclosed 

Alain Caron 4 4   

Esperanza Spalding 4 4   

Joe Dart 4 4   

Lee Sklar 4 4   

Steve DiGiorgio 4 4   

Tal Wilkenfeld 4 4   

Tony Levin 4 4   

Bernard Edwards 3 3   

Bobby Vega 3 3   

Carol Kaye 3 3   

Chris Wolstenholme 3 3   

Dan Briggs 3 3   

Donald "Duck" Dunn 3 3   

Evan Brewer 3 3   

Laurence Cottle 3 2 1  

Prince 3 3   

Scott Devine 3 3   

Tim Commerford 3 2 1  

Tom Jenkinson 3 3   

Abraham Laboriel 2 2   

Adam Ben Ezra 2 2   

Avishai Cohen 2 2   

Bob Babbit 2 2   

Charlie Haden 2 2   

Doug Wimbish 2 2   

Frederico Malaman 2 2   

Gary Willis 2 2   

Henrik Linder 2 2   

John Deacon 2 2   

Jonas Hellborg 2 2   

Justin Chancellor 2 2   

Matt Garrison 2 2   

Meshell Ndegeocello 2 2   

Michael Anthony 2 2   

Michael Pipoquinha 2 2   
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Table B.3: Table showing the suggested virtuosos and the number of times they were 
suggested. 

 

Bass Player 
Voters 

 Total Male Female Undisclosed 

MonoNeon 2 2   

Norman Watt-Roy 2 2   

Oteil Burbridge 2 2   

Robert Trujillo 2 2   

Rocco Prestia 2 2   

Scott LaFaro 2 2   

Adam Neely 1 1   

Adam Vass 1 1   

Andrew Gouche 1 1   

Anthony Wellington 1 1   

Aram Bedrosian 1 1   

Brendan Brown 1 1   

Brian Bromberg 1 1   

Brian Ritchie 1 1   

Bryan Bella 1 1   

Carles Benavent 1 1   

Carlitos Del Puerto 1 1   

ChaotH 1 1   

Chuck Rainey 1 1   

Cody Wright 1 1   

Colin Greenwood 1 1   

Dan Stevens 1 1   

Dane Alderson 1 1   

Dave Blood 1 1   

Dave Larue 1 1   

Davie504 1 1   

Devin Townsend 1 1   

Dirk Lance 1 1   

Doug John 1 1   

Dug Pinnick 1 1   

Ebhard Weber 1  1  

Erlend Caspersen 1 1   

Fredrico Malaman 1  1  

Garry Lee Weinrib 1 1   

George Porter Jr. 1 1   
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Table B.3: Table showing the suggested virtuosos and the number of times they were 
suggested. 

 

Bass Player 
Voters 

 Total Male Female Undisclosed 

Guy Pratt 1 1   

Jack Bruce 1 1   

Jeroen Paul Thesseling 1 1   

Joe Hubbard 1 1   

Joe Osborne 1 1   

John Patituci 1 1   

Jon Stockman 1 1   

Joseph McCreary Jr. 1 1   

Juan Alderete 1 1   

Justine Chancellor 1 1   

Lars K Norberg 1 1   

Laurie Dalziel 1 1   

Louis Johnson 1 1   

Mark Michelle 1 1   

Martin Mendez 1 1   

Mick Karn 1 1   

Mike Gordon 1 1   

Mike Kerr 1 1   

Mohini Dey 1 1   

Nathan East 1 1   

Nick Beggs 1 1   

Niels Henning Orsted Pedersen 1 1   

Norman Watt Roy 1 1   

Panagiotis Andreou 1 1   

Percy Jones 1 1   

Quentin Berry 1 1   

Renaud Garcis-Fons 1 1   

Richard Ravenhill 1 1   

Robert Bubby Lewis 1 1   

Robin Zielhorst 1 1   

Rodger Glover 1 1   

Ryan Martinie 1 1   

Sabal Lecco 1 1   

Scott Hubbell 1 1   

Scott Plummer 1 1   
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Table B.3: Table showing the suggested virtuosos and the number of times they were 
suggested. 

 

Bass Player 
Voters 

 
 
 
 
 
 
 
 
 
 

B.4 Hardest Basslines 

 
Table B.4: Table showing the suggested most difficult/complex basslines and the number 
of times it was suggested. 

 

Bassline 
Voters 

 Total Male Female Undisclosed 

Sean Malone 1 1   

Seth Govan 1 1   

Steve Swallow 1 1   

Stuart Zender 1 1   

Tay Brown 1 1   

Tommy Cogbill 1 1   

Tony Gret 1 1   

Trevor Dunn 1 1   

Troy Sanders 1 1   

Victor Bailey 1 1   

Willie Dixon 1 1   

Willie Weeks 1 1   

Wojtek Pilochowski 1 1   

Zander Zon 1 1   

Total Voters 369 350 14 5 

 

 Total Male Female 

YYZ - Rush 24 21 3 

Donna Lee - Jaco Pastorius 21 19 2 

Portrait of Tracy - Jaco Pastorius 12 11 1 

Tommy The Cat - Primus 12 11 1 

Teen Town - Weather Report 10 10  

Hit Me With Your Rhythm Stick - The Blockheads 8 8  

Havona - Weather Report 7 7  

Chromatic Fantasy - Jaco Pastorius 6 5 1 

Hysteria - Muse 6 4 2 

What is Hip? - Tower of Power 5 5  
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Table B.4: Table showing the suggested most difficult/complex basslines and the number 
of times it was suggested. 

 

Bassline 
Voters 

 Total Male Female 

Amazing Grace - Victor Wooten 4 4  

Flight of the Bumblebee 4 4  

Dance of Eternity - Dream Theater 3 3  

Giant Steps - John Coltrane 3 2 1 

Jerry was a Racecar Driver - Primus 3 3  

2112 - Rush 2 2  

Actualise - Evan Brewer 2 2  

Anesthesia (Pulling Teeth) - Metallica 2 2  

Boogie on Reggae Woman - Stevie Wonder 2 2  

Classical Thump - Victor Wooten 2 2  

Darling Dear - Jackson 5 2 2  

Detroit - Marcus Miller 2 2  

La Villa Strangiato - Rush 2 2  

Lessons in Love - Level 42 2 2  

Master Blaster - Stevie Wonder 2 2  

Maxwell Murder - Rancid 2 1 1 

My Name is Mud - Primus 2 2  

Nobody Wierd Like Me - RHCP 2 1 1 

Panic Attack - Dream Theater 2 2  

Schism - Tool 2 2  

Show of Hands - Victor Wooten 2 2  

Sinister Minister - Bela Fleck and the Flecktones 2 2  

Sir Duke - Stevie Wonder 2 1 1 

The Chicken - Jaco Pastorius 2 2  

The Enormous Room - Micheal Manring 2 2  

What’s Going On? - Marvin Gaye 2 2  

7 Nation Army - White Stripes 1 1  

Addicted To That Rush - Mr. Big 1 1  

Aeroplane - RHCP 1 1  

Amnesia - Blotted Science 1 1  

Ants of the Sky - Between the Buried and Me 1 1  

Areoplane - RHCP 1 1  

Armando’s Rumba - Chick Corea 1 1  

Around the World - RHCP 1 1  

Autumn Leaves 1 1  
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Table B.4: Table showing the suggested most difficult/complex basslines and the number 
of times it was suggested. 

 

Bassline 
Voters 

 Total Male Female 

Babylon Sistes - Steely Dan 1  1 

Big Bottom - Soundgarden 1 1  

Birdland - Weather Report 1 1  

Birdwatcher - Vulfpeck 1 1  

Black Dog - Led Zeppelin 1 1  

Born of Osiris - Machine 1 1  

By The Way - RHCP 1 1  

Cello suite No. 1 in G Major - Jonas Reingold 1 1  

Cherokee - Jaco Pastorius 1 1  

Close to The Edge - Yes 1  1 

Confessions - Slipknot 1 1  

Continuum - Jaco Pastorius 1 1  

Contraband - Evan Brewer 1 1  

Contusion - Stevie Wonder 1 1  

Countdown - Jogn Coltrane 1 1  

Crisis - Jaco Pastorius 1 1  

Cute - Count Basie 1 1  

Cygnus X-1 Book 1 - Rush 1 1  

Dazed and Confused - Led Zeppelin 1  1 

Diamonds on The Soles of Her Shoes - Paul Simons 1 1  

Digital Man - Rush 1 1  

Disseminated Intravascular Coagulation - Viraemia 1 1  

Dixie - Jeff Berlin 1 1  

Donna Lee - Charlie Parker 1 1  

Dreaming from the Waist 1 1  

Erotomania - Dream Theater 1 1  

Frantic Disembowelment - Cannibal Corpse 1 1  

Free Falling - Tom Petty 1 1  

Furtive Jack - The Aristocrats 1 1  

Gates of Delirium - Yes 1 1  

Get ’em out by Friday - Genisis 1 1  

Give it Back - Lagwagon 1 1  

Hammer Smashed Face - Cannibal Corpse 1 1  

Happy - Mudvayne 1 1  

High Ground - RHCP 1 1  
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Table B.4: Table showing the suggested most difficult/complex basslines and the number 
of times it was suggested. 

 

Bassline 
Voters 

 Total Male Female 

Hips - Bireli Lagrene 1 1  

Holy Wars - The Punishment Due 1 1  

Hotel California - The Eagles 1 1  

I was made to love her - Stevie Wonder 1 1  

I’ll Be There - Marcus Miller 1 1  

Insect - Spiral Architect 1 1  

Is it Love - Thundercat 1 1  

Jambi - Tool 1 1  

Joe Frazier - Jeff Berlin 1 1  

Just Another Story - Jamiroquai 1 1  

Lee Van Cleef - Primus 1 1  

Living In The Past - Jethro Tull 1 1  

Meet Me In St Louis - Right This Way You Maverick Renegade 1 1  

Metropolis - Dream Theater 1 1  

Metropolis Pt. 1 - Dream Theater 1 1  

Money - Pink Floyd 1 1  

Moonlight Sonata - Stu Hamm 1 1  

My Favourite Things - John Coltrane 1 1  

My Heart Will Go On - Celine Dion 1 1  

NIB - Black Sabbath 1 1  

Night’s Blood - Dissection 1 1  

Ology - Living Colour 1 1  

Omnipresent Perception - Beyond Creation 1 1  

Only Ash Remains - Necrophagist 1 1  

Opus Pocus - Jaco Pastorius 1 1  

Orion - Metallica 1 1  

Over the Rainbow - Jeff Back 1 1  

Phantome of the Opera - Iron Maiden 1 1  

Power - Marcus Miller 1  1 

Pull Me Under - Dream Theater 1 1  

Ramble On - Led Zeppelin 1 1  

Roundabout - Yes 1 1  

Saday Maday - Mick Kern 1 1  

School Days - Stanley Clarke 1 1  

School Daze - W.A.S.P. 1 1  
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Table B.4: Table showing the suggested most difficult/complex basslines and the number 
of times it was suggested. 

 

Bassline 
Voters 

 Total Male Female 

Servitude of Souls - Spawn of Possession 1 1  

Sex Machine - James Brown 1 1  

She’s so Smart - Venus Grove 1 1  

Shyboy - Talas/David Lee Roth 1 1  

Somebody Else’s Guy - Jocelyn Brown 1 1  

Sophisticated Lady - Duke Ellington 1 1  

Space Cadet - Kyuss 1 1  

Spain - Chich Corea 1 1  

Sweet Emotion - Screaming 1 1  

Thank You Lord - Israel Houghton 1 1  

The Day of The Baphomets - The Mars Volta 1 1  

The Duelist - Iron Maiden 1 1  

The Fire Sermon - Micheal Manring 1 1  

The Glass Prison - Dream Theater 1 1  

The Hurt that Finds You First - Meshuggah 1 1  

The Lemon Song - Led Zeppelin 1  1 

Toccata 1 1  

Two Princes - The Spin Doctors 1 1  

U Can’t Hold No Groove - Victor Wooten 1 1  

Unexpect - Spiral Architect 1 1  

Virtual Insanity - Jamiroquai 1  1 

Walking Away - Streetlight Manifesto 1 1  

West Side Story - Original Electric Bass Book 1 1  

Wynona’s Big Brown Beaver - Primus 1 1  

Xenochrist - The Faceless 1 1  

You Can’t Hurry Love - The Supremes 1 1  

Total Voters 253 236 17 

 



346  

 

B.5 Technique Competency Results 

B.5.1 Technique 

 
Table B.5: Technique Competence Skew and Correlation With Total Playing Time 

 

Technique Skew Degrees of Freedom Pearson p Spearman p 

2 Finger Plucking -1.310 501 0.101 0.023 0.210 <0.001 

1 Finger Pluck -1.263 501 0.121 0.006 0.215 <0.001 

Hammer on -1.132 501 0.072 0.107 0.244 <0.001 

Pull off -0.919 501 0.013 0.776 0.242 <0.001 

Dead Note Plucked/Picked. -0.853 501 0.107 0.016 0.294 <0.001 

Using a Pick -0.564 501 0.020 0.659 0.066 0.137 

Harmonic -0.480 501 0.150 0.001 0.347 <0.001 

Chords 3 note voicing -0.475 501 0.112 0.012 0.339 <0.001 

Palm muting using a pick -0.462 501 0.056 0.209 0.179 <0.001 

Double Stops -0.451 501 0.182 <0.001 0.411 <0.001 

Palm muting finger pluck -0.439 501 0.142 0.001 0.347 <0.001 

Palm muting thumb pluck -0.321 501 0.146 0.001 0.325 <0.001 

Thumb Pluck -0.318 501 0.185 <0.001 0.313 <0.001 

Popping -0.175 501 0.100 0.025 0.193 <0.001 

Dead note popped -0.112 501 0.107 0.016 0.259 <0.001 

Dead note slapped -0.071 501 0.112 0.012 0.281 <0.001 

3 Finger Plucking 0.012 501 0.074 0.097 0.241 <0.001 

Raking 0.039 501 0.103 0.021 0.298 <0.001 

Chords 4 note voicing 0.107 501 0.143 0.001 0.281 <0.001 

Artificial Harmonic 0.115 501 0.143 0.001 0.378 <0.001 

Slapping 0.125 501 0.127 0.004 0.214 <0.001 

Tapping with plucking hand 0.213 501 0.109 0.014 0.218 <0.001 

Fretting hand left hand slap 0.411 501 0.139 0.002 0.300 <0.001 

Double Thumb down stroke 0.532 501 0.162 <0.001 0.283 <0.001 

Two Handed Tapping 0.635 501 0.097 0.029 0.184 <0.001 

Double Thumb up stroke 0.712 501 0.135 0.002 0.293 <0.001 
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Figure B.1: Reported competencies in performing each bass guitar technique. 
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Figure B.2: Boxplot of the total playing time of respondents for the competencies they 
reported for performing each bass playing technique. 
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B.5.2 Expression 

 
Table B.6: Expression Competence Skew and Correlation With Total Playing Time 

 

Expression Skew Degrees of Freedom Pearson p Spearman p 

Slide -1.136 498 0.095 0.034 0.290 <0.001 

Applying no expression -0.994 480 0.183 <0.001 0.217 <0.001 

Bend a note by a semitone -0.675 488 0.268 <0.001 0.361 <0.001 

Trill using hammer on/pull offs -0.657 488 0.143 0.002 0.314 <0.001 

Bending a note by a quarter tone -0.564 487 0.148 0.001 0.329 <0.001 

Slow Vibrato -0.562 486 0.153 0.001 0.348 <0.001 

Fast Vibrato -0.361 484 0.126 0.005 0.326 <0.001 

Bending a note by whole tone -0.344 488 0.131 0.004 0.327 <0.001 

Trill by sliding between notes -0.257 481 0.314 <0.001 0.354 <0.001 
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Figure B.3: Reported competencies in performing each expression technique. 
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Figure B.4: Boxplot of the total playing time of respondents for the competencies they 
reported for performing each expression technique. 

 
B.5.3 Dynamic 

 
Table B.7: Dynamic Competence Skew and Correlation With Total Playing Time 

 

Dynamic Skew Degrees of Freedom Pearson p Spearman p 

f - forte - loud -1.040 479 0.120 0.009 0.249 <0.001 
No indicated dynamic -0.972 462 0.060 0.197 0.208 <0.001 
cresc - crescendo - getting louder -0.957 479 0.138 0.002 0.264 <0.001 
ff - fortissimo - very loud -0.946 478 0.125 0.006 0.263 <0.001 
mf - mezzo forte - moderately loudly -0.866 477 0.115 0.012 0.243 <0.001 
dim - diminuendo - getting soft -0.749 478 0.156 0.001 0.300 <0.001 
mp - mezzo piano - moderately soft -0.741 476 0.143 0.002 0.311 <0.001 
p - piano - soft -0.715 478 0.105 0.021 0.293 <0.001 

pp - pianissimo - very soft -0.620 476 0.159 <0.001 0.324 <0.001 
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Figure B.5: Reported competencies in performing each dynamic technique. 
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Figure B.6: Boxplot of the total playing time of respondents for the competencies they 
reported for performing each dynamic technique. 
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B.5.4 Accent 

 
Table B.8: Accent Competence Skew and Correlation With Total Playing Time 

 
Articulation Skew Degrees of Freedom Pearson p Spearman p 

No indicated articulation -1.131 463 0.039 0.396 0.190 <0.001 

Staccato - shortening the notes duration -1.080 491 0.070 0.120 0.278 <0.001 

Accent - note played louder -0.992 492 0.077 0.086 0.244 <0.001 

Tenuto - holding the note for its full duration -0.922 492 0.103 0.022 0.232 <0.001 

Legato - notes are played smoothly and are connected -0.774 492 0.079 0.081 0.266 <0.001 
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Figure B.7: Reported competencies in performing each accent technique. 
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Figure B.8: Boxplot of the total playing time of respondents for the competencies they 
reported for performing each accent technique. 
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Table B.9: Intervals Competence Skew and Correlation With Total Playing Time 
 

Interval Skew Degrees of Freedom Pearson p Spearman p 

Perfect Octave - 12 semitones -1.269 501 0.041 0.355 0.260 <0.001 
Minor 3rd - 3 semitones -1.150 501 0.039 0.379 0.272 <0.001 
Perfect 5th - 7 semitones -1.126 501 0.093 0.038 0.288 <0.001 
Perfect 4th 5 semitones -1.068 501 0.113 0.011 0.287 <0.001 
Minor 2nd - 1 semitone -1.047 501 0.066 0.141 0.261 <0.001 
Unison - 0 semitones -1.039 501 0.061 0.172 0.259 <0.001 
Major 3rd - 4 semitones - 2 whole tones -1.025 501 0.096 0.032 0.267 <0.001 
Major 2nd - 2 semitones - 1 whole tone -0.998 501 0.069 0.121 0.273 <0.001 
Major 7th - 11 semitones -0.879 501 0.081 0.069 0.277 <0.001 
Minor 7th - 10 semitones -0.840 501 0.093 0.038 0.302 <0.001 
Minor 6th - 8 semitones -0.748 501 0.105 0.019 0.321 <0.001 
Major 6th - 9 semitones -0.747 501 0.103 0.021 0.322 <0.001 
Augmented 4th Diminished 5th - 6 semitones -0.725 501 0.079 0.077 0.326 <0.001 
9th - 14 semitones -0.504 501 0.132 0.003 0.354 <0.001 
Flat 9th - 13 semitones -0.404 501 0.146 0.001 0.366 <0.001 
Sharp 9 - 15 semitones -0.364 501 0.119 0.008 0.358 <0.001 
11th - 17 semitones -0.331 501 0.127 0.004 0.368 <0.001 
Flat 11th - 16 semitones -0.274 501 0.131 0.003 0.357 <0.001 
Sharp11th - 18 semitones -0.262 501 0.132 0.003 0.355 <0.001 
13th - 20 semitones -0.238 501 0.133 0.003 0.355 <0.001 
Flat 13th - 19 semitones -0.234 501 0.134 0.003 0.353 <0.001 

Sharp 13th - 21 semitones -0.177 501 0.138 0.002 0.350 <0.001 

 
B.5.6 Shift Distance 
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Table B.10: Shift Distance Competence Skew and Correlation With Total Playing Time 
 

Distance Skew Degrees of Freedom Pearson p Spearman p 

1 -1.947 501 0.080 0.075 0.112 0.012 
2 -1.870 501 0.099 0.026 0.160 <0.001 
3 -1.636 501 0.113 0.011 0.167 <0.001 
4 -1.367 501 0.093 0.038 0.218 <0.001 
5 -1.139 501 0.110 0.014 0.230 <0.001 
6 -0.875 501 0.112 0.012 0.301 <0.001 
7 -0.756 501 0.123 0.006 0.310 <0.001 
8 -0.493 501 0.094 0.036 0.297 <0.001 
12 -0.493 501 0.079 0.077 0.271 <0.001 
9 -0.399 501 0.095 0.034 0.286 <0.001 
10 -0.299 501 0.106 0.018 0.296 <0.001 
11 -0.239 501 0.101 0.023 0.285 <0.001 
More.than.12.frets. -0.188 501 0.093 0.037 0.279 <0.001 

 
B.5.7 Fret Area 

 
Table B.11: Fret Area Competence Skew and Correlation With Total Playing Time 

 

Location Skew Degrees of Freedom Pearson p Spearman p 

Open.string.up.to.4th.fret. -1.738 501 0.128 0.004 0.233 <0.001 

Between.5th.and.11th. -1.166 501 0.075 0.095 0.289 <0.001 

Between.12th.and.17th. -0.453 501 0.126 0.005 0.351 <0.001 

18th.fret.and.beyond. -0.020 501 0.154 0.001 0.359 <0.001 
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Figure B.13: Reported competencies in performing in each fret area. 
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Figure B.14: Box plot of the total playing time of respondents for the competencies they 
reported for performing in each fret area. 
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B.5.8 Playing Speed 

 
Table B.12: Playing Speed Competence Skew and Correlation With Total Playing Time 

 

Playing Speed Skew Degrees of Freedom Pearson p Spearman p 

94 -1.658 501 0.054 0.225 0.200 <0.001 
85 -1.637 501 0.008 0.864 0.173 <0.001 
104 -1.601 501 0.054 0.228 0.201 <0.001 
78 -1.595 501 0.058 0.194 0.187 <0.001 
115 -1.565 501 0.026 0.557 0.230 <0.001 
70 -1.535 501 0.050 0.261 0.178 <0.001 
126 -1.465 501 0.026 0.567 0.217 <0.001 
64 -1.366 501 0.060 0.181 0.166 0.000 
139 -1.244 501 0.054 0.230 0.234 <0.001 
58 -1.214 501 0.059 0.187 0.155 0.000 
52 -1.205 501 0.059 0.187 0.138 0.002 
48 -1.096 501 0.059 0.188 0.140 0.002 
43 -1.053 501 0.064 0.151 0.128 0.004 
153 -0.995 501 0.068 0.130 0.224 <0.001 
39 -0.978 501 0.069 0.120 0.126 0.005 
36 -0.968 501 0.059 0.189 0.104 0.019 
169 -0.793 501 0.051 0.251 0.187 <0.001 
187 -0.602 501 0.056 0.212 0.241 <0.001 
206 -0.446 501 0.083 0.062 0.266 <0.001 
227 -0.251 501 0.099 0.027 0.269 <0.001 
250 -0.130 501 0.106 0.018 0.248 <0.001 
272 0.050 501 0.110 0.013 0.250 <0.001 
300 0.178 501 0.117 0.008 0.241 <0.001 
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Figure B.15: Reported competencies in performing at each Playing Speed (click rate). 
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Figure B.16: Box plot of the total playing time of respondents for the competencies they 
reported for performing at each Playing Speed (click rate). 
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B.5.9 Key Signature 

 
Table B.13: Key Signature Competence Skew and Correlation With Total Playing Time 

 

Key Signature Skew Degrees of Freedom Pearson p Spearman p 

C Major - A Minor - 0 Sharps/Flats -1.202 501 0.075 0.092 0.301 <0.001 
G Major - E Minor - 1 Sharp -1.097 501 0.151 0.001 0.354 <0.001 
D Major - B Minor - 2 Sharps -1.034 501 0.134 0.003 0.356 <0.001 
F Major - D Minor - 1 Flat -1.019 501 0.158 <0.001 0.359 <0.001 
A Major - F# Minor - 3 Sharps -0.986 501 0.198 <0.001 0.380 <0.001 
E Major - C# Minor - 4 Sharps -0.967 501 0.146 0.001 0.383 <0.001 
Bb Major - G.Minor - 2 Flats -0.889 501 0.145 0.001 0.388 <0.001 
Eb Major - C.Minor - 3 Flats -0.855 501 0.151 0.001 0.386 <0.001 
B Major - G..Minor - 5 Sharps -0.784 501 0.157 <0.001 0.374 <0.001 
Ab Major - F.Minor - 4 Flats -0.752 501 0.157 <0.001 0.398 <0.001 
Db Major - Bb.Minor - 5 Flats -0.638 501 0.141 0.002 0.392 <0.001 
Gb Major - Eb.Minor - 6 Flats -0.594 501 0.143 0.001 0.385 <0.001 
C# Major - A# Minor - 7 Sharps -0.594 501 0.170 <0.001 0.376 <0.001 
F# Major - D# Minor - 6 Sharps -0.591 501 0.204 <0.001 0.416 <0.001 

Cb Major - Ab Minor - 7 Flats -0.563 501 0.146 0.001 0.389 <0.001 
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Figure B.18: Box plot of the total playing time of respondents for the competencies they 
reported for performing in each key signature. 
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B.5.10 Time Signature 

 
Table B.14: Time Signature Competence Skew and Correlation With Total Playing Time 

 

Time Signature Skew Degrees of Freedom Pearson p Spearman p 

4/4 -2.469 501 0.093 0.037 0.140 0.002 
3/4 -1.369 501 0.090 0.044 0.297 <0.001 
2/4 -1.241 501 0.114 0.010 0.256 <0.001 
2/2 -1.186 501 0.094 0.034 0.242 <0.001 
6/8 -1.109 501 0.106 0.018 0.317 <0.001 
5/4 -0.618 501 0.121 0.007 0.291 <0.001 

12/8 -0.616 501 0.165 <0.001 0.329 <0.001 
7/8 -0.411 501 0.172 <0.001 0.300 <0.001 
3/8 -0.349 501 0.128 0.004 0.339 <0.001 
9/8 -0.251 501 0.158 <0.001 0.322 <0.001 
12/16 -0.098 501 0.153 0.001 0.302 <0.001 
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Figure B.20: Box plot of the total playing time of respondents for the competencies they 
reported for performing in each time signature. 
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B.6 Comparing Reported Competencies by Gender 

 
Table B.15: Kruskal-Wallis ANOVA Test Results Testing Gender as a Factor In Reported 
Competencies. 

 

Musical Element Group Musical Element 
Median Kruskal Wallis Test 

 Male Female P Value Statistic 

Technique 1 Finger Pluck 5 4 0.133 2.262 

2 Finger Plucking 5 5 0.248 1.333 

3 Finger Plucking 3 3 0.411 0.676 

Raking 3 2.5 0.342 0.903 

Thumb Pluck 3 2.5 0.042 4.142 

Using a Pick 4 2.5 0.007 7.163 

Slapping 3 2.5 0.078 3.099 

Popping 3 3 0.141 2.164 

Double Thumb - 2 2 0.307 1.046 

up stroke     

Double Thumb - 2 1.5 0.293 1.107 

down stroke     

Palm muting - 3 2.5 0.081 3.049 

thumb pluck     

Palm muting - 4 2 0.018 5.595 

using a pick     

Palm muting - 4 3 0.688 0.161 

finger pluck     

Tapping - with 3 2 0.065 3.405 

plucking hand     

Two Handed 2 1 0.016 5.787 

Tapping     

Fretting hand left 2 2 0.715 0.133 

hand slap     

Hammer on 5 4.5 0.269 1.224 

Pull off 4 4 0.235 1.409 

Harmonic 4 3 0.070 3.292 

Dead note - 4 4 0.196 1.670 

plucked picked     

Dead note - 3 2 0.250 1.323 

slapped     

Dead note - 3 3 0.879 0.023 

popped     

Artificial Har- 3 1.5 0.006 7.492 

monic     
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Table B.15 continued from previous page 

Musical Element Group Musical Element 
Median Kruskal Wallis Test 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

and are con- 

nected 

 No indicated ar- 

ticulation 

5 5 0.809 0.058 

Expression Applying no ex- 

pression 

5 4 0.868 0.028 

 
Male Female P Value Statistic 

 
Double Stops 4 3 0.266 1.237 

 Chords - 3 note 4 3 0.345 0.892 

 voicing     

 Chords - 4 note 3 2 0.422 0.643 

 voicing     

Dynamic pp - pianissimo - 4 4 0.858 0.032 

 very soft     

 p - piano - soft 4 4 0.884 0.021 

 mp - mezzo piano 4 4 0.647 0.210 

 - moderately soft     

 No indicated dy- 4 5 0.636 0.225 

 namic     

 mf - mezzo forte 4 4 0.768 0.087 
 - moderately 

loudly 

    

 f - forte - loud 5 5 0.791 0.070 

 ff - fortissimo - 4 4 0.172 1.863 

 very loud     

 cresc - crescendo - 4 4 0.607 0.264 

 getting loud     

 dim - diminuendo 4 4 0.816 0.054 

 getting soft     

Accent Accent - note 5 4 0.214 1.546 

 played louder     

 Staccato - short- 5 4.5 0.433 0.615 

 ening the notes     

 duration     

 Tenuto - holding 4 4 0.261 1.265 

 the note for its     

 full duration     

 Legato - notes are 4 4 0.624 0.240 

 played smoothly     
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Table B.15 continued from previous page 

Musical Element Group Musical Element 
Median Kruskal Wallis Test 

 
Male Female P Value Statistic 

Bending a note 4 3 0.279 1.174 

by a quarter tone     

Bend a note by a 4 3.5 0.196 1.675 

semitone     

Bending a note 4 3 0.144 2.132 

by whole tone     

Fast Vibrato 4 3 0.066 3.380 

Slow Vibrato 4 3 0.024 5.122 

Trill using ham- 4 4 0.486 0.485 

mer on pull offs     

Trill by sliding 4 3 0.072 3.235 

between notes     

Slide 5 4 0.022 5.264 

Interval Unison - 0 Semi- 4 4.5 0.899 0.016 

tones     

Minor 2nd - 1 4 4 0.717 0.132 

semitone     

Major 2nd - 2 4 4 0.590 0.290 

semitones - 1     

Whole tone     

Minor 3rd - 3 4 4 0.612 0.257 

semitones     

Major 3rd - 4 4 4 0.415 0.665 

semitones - 2     

whole tones     

Perfect 4th - 5 4 4 0.755 0.097 

semitones     

Augmented 4th 4 4 0.811 0.057 

Diminished 5th -     

6 semitones     

Perfect 5th - 7 4 4 0.336 0.925 

semitones     

Minor 6th - 8 4 4 0.780 0.078 

semitones     

Major 6th - 9 4 4 0.944 0.005 

semitones     

Minor 7th - 10 4 4 0.761 0.093 

semitones     

Major 7th - 11 4 4 0.421 0.648 

semitones     
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Table B.15 continued from previous page 

Musical Element Group Musical Element 
Median Kruskal Wallis Test 

 
Male Female P Value Statistic 

Perfect Octave - 5 4 0.112 2.523 

12 semitones     

Flat 9th - 13 4 3 0.655 0.199 

semitones     

9th - 14 semitones 4 3.5 0.449 0.574 

Sharp 9 - 15 semi- 4 3 0.323 0.978 

tones     

Flat 11th - 16 3 3 0.275 1.194 

semitones     

11th - 17 semi- 3 3 0.411 0.675 

tones     

Sharp11th - 18 3 3 0.495 0.467 

semitones     

Flat 13th - 19 3 3 0.686 0.163 

semitones     

13th - 20 semi- 3 3 0.732 0.118 

tones     

Sharp 13th - 21 3 3 0.687 0.162 

semitones     

Shift Distance (Frets) 1 5 5 0.981 0.001 

2 5 5 0.860 0.031 

3 5 5 0.646 0.211 

4 5 5 0.758 0.095 

5 5 4 0.441 0.595 

6 4 4 0.141 2.171 

7 4 3.5 0.033 4.526 

8 4 3.5 0.118 2.442 

9 4 3.5 0.103 2.661 

10 4 3.5 0.102 2.672 

11 4 3 0.138 2.199 

12 4 3.5 0.076 3.140 

More than 12 4 3 0.086 2.941 

frets     

Playing  area (Fret Range) Open string up to 5 5 0.080 3.075 

4th fret     

Between 5th and 5 5 0.986 0.000 

11th     

Between 12th and 4 3 0.003 9.083 

17th     
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Table B.15 continued from previous page 

Musical Element Group Musical Element 
Median Kruskal Wallis Test 

 
Male Female P Value Statistic 

18th fret and be- 3 2 0.005 7.781 

yond     

Playing  Speed (click rate) 300 3 2 0.002 9.366 

272 3 2 0.002 9.787 

250 3 2.5 0.004 8.391 

227 4 2 0.001 10.159 

206 4 3 0.012 6.377 

187 4 3 0.004 8.155 

169 4 4 0.229 1.449 

153 4 3.5 0.027 4.889 

139 5 4 0.050 3.858 

126 5 4 0.151 2.065 

115 5 4 0.064 3.441 

104 5 4.5 0.310 1.031 

94 5 4.5 0.500 0.455 

85 5 4 0.160 1.974 

78 5 4.5 0.700 0.148 

70 5 4 0.370 0.805 

64 5 4.5 0.694 0.155 

58 5 4 0.725 0.124 

52 5 4 0.801 0.064 

48 5 4.5 0.909 0.013 

43 5 4.5 0.674 0.177 

39 4 4.5 0.561 0.339 

36 4 4.5 0.477 0.506 

Key Signatures C Major - A Mi- 5 5 0.981 0.001 

nor - 0 Sharps     

Flats     

F Major - D Mi- 4 5 0.541 0.374 

nor - 1 Flat     

Bb Major - G Mi- 4 4 0.790 0.071 

nor - 2 Flats     

Eb Major - C Mi- 4 4 0.911 0.012 

nor - 3 Flats     

Ab Major - F Mi- 4 4 0.681 0.168 

nor - 4 Flats     

Db Major - Bb 4 3.5 0.194 1.689 

Minor - 5 Flats     
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Table B.15 continued from previous page 

Musical Element Group Musical Element 
Median Kruskal Wallis Test 

 
Male Female P Value Statistic 

 
Gb Major - Eb 4 3 0.064 3.442 

 Minor - 6 Flats     

 Cb Major - Ab 4 3 0.122 2.391 

 Minor - 7 Flats     

 G Major - E Mi- 4 5 0.794 0.069 

 nor - 1 Sharp     

 D Major - B Mi- 4 5 0.597 0.280 

 nor - 2 Sharps     

 A Major - 4 4 0.598 0.278 

 F#Minor - 3     

 Sharps     

 E Major - 4 4 0.266 1.236 

 C#Minor - 4     

 Sharps     

 B Major - 4 3.5 0.324 0.971 

 G#Minor - 5     

 Sharps     

 F#Major - 4 3 0.163 1.948 

 D#Minor - 6     

 Sharps     

 C#Major - 4 3 0.106 2.606 

 A#Minor - 7     

 Sharps     

Time Signatures 2/2 5 5 0.955 0.003 

 2/4 5 4.5 0.803 0.062 

 3/4 5 4 0.461 0.544 

 3/8 4 3.5 0.799 0.065 

 4/4 5 5 0.916 0.011 

 5/4 4 3.5 0.233 1.424 

 6/8 5 4 0.438 0.603 

 7/8 4 3 0.303 1.063 

 9/8 3 3 0.177 1.823 

 12/8 4 3.5 0.369 0.806 

 12/16 3 2 0.037 4.328 
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Appendix C 

 

Perceived Bass Playing Difficulty 

Study Raw Results 

 
C.1 Participant Sub Groups’ Votes 

 
Table C.1: Percentage of participants, with significance levels reported, from from the 
“Expert Listeners" Group voting the excerpt in the row as being more difficult than the 
excerpt in the column. 

 
 
 
 
 
 
 
 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 Atl Asd Aww Asz Ahe Ary Acs Amm 

Atl       

Asd 50%      

Aww 75% 75%     

Asz 75% 100% 75%    

Ahe 75% 75% 100% 50%   

Ary 100% 100% 100% 75% 50%  

Acs 100% 100% 100% 100% 75% 50% 
Amm 100% 75% 100% 100% 75% 75% 50% 
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Table C.2: Percentage of participants, with significance levels reported, from the 
“OrdinaAry Listeners" Group voting the excerpt in the row  as being more difficult than   
the excerpt in the column. 

 

Atl Asd Aww Asz Acs Ary Amm Ahe 
 

Atl 

Asd 

Aww 

Asz 

Acs 

Ary 

Amm 93%∗∗∗ 95%∗∗∗ 90%∗∗∗ 88%∗∗∗ 

Ahe 97%∗∗∗ 98%∗∗∗ 90%∗∗∗ 92%∗∗∗ 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 
 
 
 
 

 
Table C.3: Percentage of participants, with significance levels reported, from the “Only 
Musicians" Group voting the excerpt in the row  as  being more difficult than the excerpt   
in the column. 

 

Atl Asd Aww Asz Acs Ary Ahe Amm 
 

Atl 

Asd 

Aww 

Asz 

Acs 

Ary 

Ahe 97%∗∗∗ 98%∗∗∗ 92%∗∗∗ 90%∗∗∗ 

Amm 95%∗∗∗ 95%∗∗∗ 93%∗∗∗ 90%∗∗∗ 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

52%  

62% 55% 

63% 62% 53% 

 

90%∗∗∗   

97%∗∗∗ 87%∗∗∗  

97%∗∗∗ 85%∗∗∗ 60% 

98%∗∗∗ 97%∗∗∗ 92%∗∗∗ 80%∗∗∗ 

100%∗∗∗ 92%∗∗∗ 87%∗∗∗ 87%∗∗∗ 

 

52%  

61% 62% 

62% 57% 51% 

 

87%∗∗∗   

95%∗∗∗ 85%∗∗∗ 

97%∗∗∗ 87%∗∗∗ 64%∗  

98%∗∗∗ 97%∗∗∗ 92%∗∗∗ 80%∗∗∗ 

100%∗∗∗ 93%∗∗∗ 89%∗∗∗ 87%∗∗∗ 
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Table C.4: Percentage of participants, with significance levels reported, from the “Non- 
Expert Musicians" Group voting the excerpt in the row as being more difficult than the 
excerpt in the column. 

 

Atl Asd Aww Asz Acs Ary Amm Ahe 

 
 
 
 
 
 
 

 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 
 
 
 
 

 
Table C.5: Percentage of participants, with significance levels reported, from the “Bass 
Players" Group voting the excerpt in the row as being more difficult than the excerpt in  
the column. 

 

Atl Asd Aww Asz Ary Acs Ahe Amm 
 

Atl 

Asd 

Aww 

Asz 

Ary 

Acs 98%∗∗∗ 96%∗∗∗ 92%∗∗∗ 86%∗∗∗ 

Ahe 96%∗∗∗ 98%∗∗∗ 90%∗∗∗ 88%∗∗∗ 

Amm 98%∗∗∗ 96%∗∗∗ 96%∗∗∗ 90%∗∗∗ 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Atl     

Asd 89%∗∗∗   

Aww 96%∗∗∗ 86%∗∗∗  

Asz 98%∗∗∗ 86%∗∗∗ 63% 
Acs 98%∗∗∗ 96%∗∗∗ 91%∗∗∗ 79%∗∗∗   

Ary 100%∗∗∗ 93%∗∗∗ 88%∗∗∗ 88%∗∗∗ 53%  

Amm 95%∗∗∗ 96%∗∗∗ 93%∗∗∗ 89%∗∗∗ 63% 56% 
Ahe 98%∗∗∗ 

100%∗∗∗ 91%∗∗∗ 93%∗∗∗ 63% 63% 51% 

 

92%∗∗∗   

94%∗∗∗ 82%∗∗∗ 

98%∗∗∗ 86%∗∗∗ 64%  

100%∗∗∗ 92%∗∗∗ 86%∗∗∗ 86%∗∗∗ 

 54%  

62% 60% 

60% 64% 56% 
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Table C.6: Percentage of participants, with significance levels reported, from the “Non- 
Expert Bass Players" Group voting the excerpt in the row as being more difficult than the 
excerpt in the column. 

 

Atl Asd Aww Asz Ary Acs Ahe Amm 
 

Atl 

Asd 

Aww 

Asz 

Ary 

Acs 

Ahe 

Amm 98%∗∗∗ 98%∗∗∗ 96%∗∗∗ 89%∗∗∗ 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 
 
 
 
 

 
Table C.7: Percentage of participants, with significance levels reported, from the “Other 
Instrument Players" Group voting the excerpt in the row as being more difficult than the 
excerpt in the column. 

 
 
 
 
 
 
 
 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

54%  

63% 63% 

59% 65% 54% 

 

96%∗∗∗ 

96%∗∗∗ 83%∗∗∗ 

 

100%∗∗∗ 

100%∗∗∗ 

85%∗∗∗ 

91%∗∗∗ 

63% 

85%∗∗∗ 87%∗∗∗ 

98%∗∗∗ 96%∗∗∗ 91%∗∗∗ 85%∗∗∗ 

98%∗∗∗ 100%∗∗∗ 89%∗∗∗ 91%∗∗∗ 

 

Atl Asd Aww Asz Acs Amm Ary Ahe 

Atl        

Asd 

Aww 

64% 

100%∗∗∗ 100%∗∗∗ 

     

Asz 

Acs 

91%∗ 

100%∗∗∗ 

91%∗ 

100%∗∗∗ 

64% 

91%∗ 

 

55% 

   

Amm 82% 91%∗ 82% 91%∗ 55%   

Ary 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 91%∗ 82% 55%  

Ahe 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 64% 73% 64% 
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Table C.8: Percentage of participants, with significance levels reported, from the “Do not 
Play an Instrument" Group voting the excerpt in the row as being more difficult than the 
excerpt in the column. 

 
 
 
 
 
 
 
 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Table C.9: Percentage of participants, with significance levels reported, from the “Teachers" 
Group voting the excerpt in the row as being more difficult than the excerpt in the column. 

 

Atl Asd Aww Asz Ahe Ary Acs Amm 
 

Atl 

Asd 76%∗ 

Aww 90%∗∗∗ 95%∗∗∗ 

Asz 95%∗∗∗ 100%∗∗∗ 62% 

Ahe 90%∗∗∗ 95%∗∗∗ 90%∗∗∗ 81%∗∗ 

 

 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Table C.10: Percentage of participants, with significance levels reported, from the “Expert 
Listeners Teachers" Group voting the excerpt in the row as being more difficult than the 
excerpt in the column. 

 
 
 
 
 
 
 
 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 Atl Asd Asz Amm Aww Ary Acs Ahe 

Atl 
      

Asd 100%      

Asz 67% 67%     

Amm 67% 67% 67%    

Aww 100% 100% 100% 67%   

Ary 100% 67% 67% 67% 67%  

Acs 100% 100% 100% 67% 100% 67% 
Ahe 67% 67% 67% 100% 67% 33% 67% 

 

Ary 100%∗∗∗ 100%∗∗∗ 86%∗∗ 90%∗∗∗ 57% 
Acs 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 95%∗∗∗ 52% 52% 

Amm 100%∗∗∗ 95%∗∗∗ 
95%∗∗∗ 81%∗∗ 62% 48% 57% 

 

 Asd Atl Aww Ahe Asz Acs Ary Amm 

Asd       

Atl 67%      

Aww 100% 67%     

Ahe 67% 67% 100%    

Asz 100% 67% 100% 67%   

Acs 100% 100% 100% 67% 100%  
Ary 100% 100% 100% 67% 67% 67% 
Amm 67% 100% 100% 100% 100% 67% 100% 
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Table C.11: Percentage of participants, with significance levels reported, from the “Non- 
expert Bass Teachers"  Group voting the excerpt in the row as being more difficult than  
the excerpt in the column. 

 

Atl Asd Aww Asz Ary Ahe Acs Amm 

 
 
 
 
 
 
 

 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 
 
 
 
 

 
Table C.12: Percentage of participants, with significance levels reported, from the “Bass 
Teachers" Group voting the excerpt in the row as being more difficult than the excerpt in 
the column. 

 

Atl Asd Aww Asz Ahe Ary Acs Amm 
 

Atl 

Asd 87%∗∗ 

Aww 87%∗∗ 93%∗∗∗ 

Asz 93%∗∗∗ 100%∗∗∗ 60% 

Ahe 87%∗∗ 93%∗∗∗ 93%∗∗∗ 80%∗ 

Ary 100%∗∗∗ 100%∗∗∗ 80%∗ 87%∗∗ 53%  

Acs 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 53% 60% 

Amm 100%∗∗∗ 93%∗∗∗ 100%∗∗∗ 87%∗∗ 67% 67% 67% 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Atl       

Asd 100%∗∗∗      

Aww 92%∗∗ 92%∗∗     

Asz 100%∗∗∗ 100%∗∗∗ 50%    

Ary 100%∗∗∗ 100%∗∗∗ 75% 92%∗∗   

Ahe 92%∗∗ 100%∗∗∗ 92%∗∗ 92%∗∗ 50%  

Acs 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 67% 50% 
Amm 100%∗∗∗ 100%∗∗∗ 100%∗∗∗ 83%∗ 58% 58% 67% 
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Table C.13: Percentage of participants, with significance levels reported, from the “Other 
Instrument Teachers" Group voting the excerpt in the row as being more difficult than the 
excerpt in the column. 

 

Atl Asd Aww Asz Amm Ahe Acs Ary 

 
 
 
 
 
 
 

 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 
 
 
 
 

 
Table C.14: Percentage of participants, with significance levels reported, from the “Non- 
teachers" Group voting the excerpt in the row as being more difficult than the excerpt in 
the column. 

 
 

 
Atl 

Asd 

Aww 

Asz 

Acs 

Ary 

Atl Asd Aww Asz Acs Ary Amm Ahe 

 

 
 
 

 
53% 

 

 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Atl 
    

Asd 50%   

Aww 100%∗ 100%∗  

Asz 100%∗ 100%∗ 67% 
Amm 100%∗ 100%∗ 83% 67%   

Ahe 100%∗ 100%∗ 83% 83% 50%  

Acs 100%∗ 100%∗ 100%∗ 83% 67% 50% 
Ary 100%∗ 100%∗ 100%∗ 100%∗ 100%∗ 67% 67% 

 

Amm 91%∗∗∗ 93%∗∗∗ 88%∗∗∗ 93%∗∗∗ 63% 60% 

Ahe 98%∗∗∗ 98%∗∗∗ 91%∗∗∗ 
93%∗∗∗ 67%∗ 70%∗ 58% 

 

93%∗∗∗   

98%∗∗∗ 81%∗∗∗ 

95%∗∗∗ 79%∗∗∗ 60%  

98%∗∗∗ 95%∗∗∗ 88%∗∗∗ 74%∗∗ 

100%∗∗∗ 88%∗∗∗ 88%∗∗∗ 84%∗∗∗ 
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Table C.15: Percentage of participants, with significance levels reported, from the “Non- 
teachers who play an Instrument" Group voting the excerpt in the row as being more 
difficult than the excerpt in the column. 

 

Atl Asd Aww Asz Acs Ary Amm Ahe 
 

Atl 

Asd 92%∗∗∗ 

Aww 98%∗∗∗ 80%∗∗∗ 

Asz 98%∗∗∗ 80%∗∗∗ 65% 

Acs 98%∗∗∗ 95%∗∗∗ 88%∗∗∗ 72%∗∗ 

Ary 100%∗∗∗ 90%∗∗∗ 90%∗∗∗ 85%∗∗∗ 55% 

Amm 92%∗∗∗ 95%∗∗∗ 92%∗∗∗ 95%∗∗∗ 65% 62% 

Ahe 100%∗∗∗ 100%∗∗∗ 92%∗∗∗ 95%∗∗∗ 68%∗ 72%∗∗ 55% 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

 
 
 
 
 

 
Table C.16: Percentage of participants, with significance levels reported, from the “Non- 
teaching Bass Players" Group voting the excerpt in the row  as being more difficult than  
the excerpt in the column. 

 

Atl Asd Aww Asz Ary Acs Ahe Amm 
 

Atl 

Asd 97%∗∗∗ 

Aww 97%∗∗∗ 76%∗∗ 

Asz 100%∗∗∗ 79%∗∗ 67% 

Ary 100%∗∗∗ 88%∗∗∗ 88%∗∗∗ 85%∗∗∗ 

Acs 97%∗∗∗ 94%∗∗∗ 88%∗∗∗ 79%∗∗ 52% 

Ahe 100%∗∗∗ 100%∗∗∗ 91%∗∗∗ 94%∗∗∗ 73%∗ 67% 

Amm 97%∗∗∗ 97%∗∗∗ 94%∗∗∗ 97%∗∗∗ 61% 67% 52% 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 
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Table C.17: Percentage of participants, with significance levels reported, from the “Non- 
teaching Non-expert Bass Players" Group voting the excerpt in the row as being more 
difficult than the excerpt in the column. 

 

Atl Asd Aww Asz Acs Ary Ahe Amm 

 
 
 
 
 
 
 

 
∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Atl     

Asd 97%∗∗∗   

Aww 97%∗∗∗ 78%∗∗  

Asz 100%∗∗∗ 78%∗∗ 69% 
Acs 97%∗∗∗ 94%∗∗∗ 88%∗∗∗ 78%∗∗    

Ary 100%∗∗∗ 88%∗∗∗ 88%∗∗∗ 84%∗∗∗ 50%   

Ahe 100%∗∗∗ 100%∗∗∗ 91%∗∗∗ 94%∗∗∗ 69% 72%∗  

Amm 97%∗∗∗ 97%∗∗∗ 94%∗∗∗ 97%∗∗∗ 69% 62% 53% 
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Table C.18: Percentage of participants, with significance levels reported, from the “Non- 
Teaching Other Instrument Players" Group voting the excerpt in the row as being more 
difficult than the excerpt in the column. 

 
 
 
 
 
 
 
 

∗p < .05, ∗∗p < .01, ∗∗∗p < .001 

Atl Asd Aww Acs Asz Ary Ahe Amm 

Atl       

Asd 

Aww 

71% 

100%∗ 100%∗ 

    

Acs 100%∗ 100%∗ 86%    

Asz 86% 86% 57% 57%   

Ary 100%∗ 100%∗ 100%∗ 86% 86%  

Ahe 100%∗ 100%∗ 100%∗ 71% 100%∗ 71% 

Amm 71% 86% 86% 57% 86% 71% 14% 
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Appendix D 

 

Assessing Musical Similarity for 

Computational Music Creativity 

Study Setup Code 

 
import  glob 

import random 

import i t e r t o o l s 

import s h u t i l 

import os 

import csv 

 

 
def makeFolder ( f o l d e r ) : 

i f not os . path . e x i s t s ( f o l d e r ) : 

os . makedirs ( f o l d e r ) 

 
# make i t t e r a t i o n s 

#  i t e r t o o l s . permutations  () 

 

 
#  Get   a l l    the  audio  t racks  

f i l e l i s t = glob . glob ( " audio / ∗ . wav" ) 

 
# Setup d e f au l t parameters #groups_ 

folder = "JAES − Study 1" groups_ folder   

=   "JAES�−�Study� 2 " 

number_of_audio_tracks   =   5 

num_of_groups   =   6 
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# S e l ect a random sample of audio t racks 

sample   =   random . sample ( f i l e l i s t   ,    number_of_audio_tracks ) 

 

 
makeFolder ( g r o u p s_ f o ld e r ) 

 

 
o f i l e   =  open ( g r o u p s_ f old e r   +   "/" 

+   g r o u p s_ f o ld e r 

+ " _ a u d i o f i l e s " 

+  " . csv " , "wb" ) 

w r i te r = csv . w r i te r ( o f i l e , d e l i m i t e r=’ , ’ , 

quotechar=’ " ’ , 

quoting=csv .QUOTE_ALL) 

w r i te r . writerow ( sample ) 

o f i l e . c l o s e ( ) 

 
# sample = [ " a" , " b " , " c " ,  " d" ,  " e "] 

# Want to keep t rack of what 

# Assign the permutations to 6 groups 

 
# Setup l i s t of groups 

groups = [ ] 

for   n   in   range ( 0 ,    num_of_groups ) : 

groups . append ( [ ] ) 

 
# Assign the permutations  to each  group 

# according to Allan et a l ( 2007 ) 

group = 0 

for p in i t e r t o o l s . permutations ( sample , 3 ) : 

i f group >= 6 : 

group = 0 

groups [ group ] . append ( p ) 

group += 1 

 
# Copy the audio f i l e s to the group f o l d e r s : 

g_num  =   1 

for g in groups : 

# make a f o l d er  for the group 

group_dir   =   g r o u p s_ f o ld e r   +   "/G"   +   str (g_num) 
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makeFolder ( group_dir ) 

#  write   out  the  sampling  to  a   csv  f i l  e 

o f i l e   =  open ( group_dir   +   " . c sv " ,    "wb" ) 

w r i te r = csv . w r i te r ( o f i l e , d e l i m i t e r=’ , ’ , 

quotechar=’ " ’ , 

quoting=csv .QUOTE_ALL) 

w r i te r . writerow ( [ "A" , "B" , "C" ] ) 

 
q_num  =   1 

for p in g : 

q_dir   =   group_dir   +   ’ /Q ’   +   str (q_num) 

makeFolder ( q_dir ) 

# writ e  out the quest ion to the csv f i l e 

w r i te r . writerow ( p ) 

 
a_num  =   1 

for a u d i o f i l e in p : 

i f   a_num  ==   1 : 

s h u t i l  . copy ( a u d i o f i l e  ,    q_dir   +   "/" 

+   str (q_num) 

+ "−A. wav" ) 

i f   a_num  ==   2 : 

s h u t i l  . copy ( a u d i o f i l e  ,    q_dir   +   "/" 

+   str (q_num) 

+ "−B . wav" ) 

i f   a_num  ==   3 : 

s h u t i l  . copy ( a u d i o f i l e  ,    q_dir   +   "/" 

+   str (q_num) 

+ "−C. wav" ) 

a_num  +=  1 

 
# increment question number 

q_num  +=  1 

# Increment the group number 

g_num  +=  1 

o f i l e . c l o s e ( ) 
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Appendix E 

 

Complexity 

 
E.1 Duration Weights Polynomials 

 
 
 

 

 
 

 

 

 

Figure E.1: A plot of the polynomial fit to the Mbpm complexity weights 
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Figure E.2: A plot of the polynomial fit to the MTbpm complexity weights 

 
 
 

Figure E.3: A plot of the polynomial fit to the relative probability duration complexity 
weights 

 
 

 

 

       

       

       

       

 
 

 

Figure E.4: A plot of the polynomial fit to the Dbpm complexity weights 
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Figure E.5: A plot of the polynomial fit to the DTbpm complexity weights 

 
E.2 Missing Shift Positions Polynomials 

 

 
A plot of the polynomial fitted to the shift distance (sd) complexity weights for the M complexity 

weight set with zero fret added 
 

M MT with zero fret value added 0.997 + -0.52x + 1.31x^2 + -1.16x^3 + 0.48x^4 + -0.0979x^5 + 0.0108x^6 + -6.12E-04x^7 + 1.41E-05x^8 R² = 
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Figure E.6: A plot of the polynomial fit to Msd complexity weights 
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A plot of the polynomial fitted to the shift distance (sd) complexity weights for the MT 

complexity weight set with zero fret added 
 

MT with zero fret value added 0.916 + 0.43x + -0.364x^2 + 0.093x^3 R² = 0.997 
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Figure E.7: A plot of the polynomial fit to the MTsd complexity weights 
 
 
 
 
 
 
 

 
A plot of the polynomial fitted to the shift distance (sd) complexity weights for the D 

complexity weight set. 
 

complexity weights of the 12th fret and beyond complexity weights excluding the 12th fret and beyond 

0.855 + 0.0823x + 5.56E-03x^2 R² = 0.987 
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Figure E.8: A plot of the polynomial fit to the Dsd complexity weights 
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A plot of the polynomial fitted to the shift distance (sd) complexity weights for the DT 

complexity weight set. 
 

complexity weights of the 12th fret and beyond complexity weights excluding the 12th fret and beyond 0.0865*x + 0.799 R² = 0.956 
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Figure E.9: A plot of the polynomial fit to the DTsd complexity weights 
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A plot of the polynomial fitted to the dynamic (dy) complexity weights 

for the M complexity weight set too predict the 'fff' complexity weight. 
 
 
 
 

1.3 

 
1.2 

 
1.1 

 
1.0 

 
0.9 

 
0.8 

 
0.7 

 
1.33 + -0.245x + 0.0456x^2 R² = 1 

 
    

    

    

0 1 2 3 4 

 
1 = 'ff', 2 = 'f', 3 = 'mf' 

 

 

(a) Polynomial to predict the complexity weight for dynamic ‘fff’ for Mdy 

complexity weights. 
 

A plot of the polynomial fitted to the dynamic (dy) complexity weights for 

the M complexity weight set too predict the 'ppp' complexity weight. 
 

1.55 + -0.479x + 0.119x^2 R² = 1 

 
1.6 

 
 
 

 
 

1.4 
 
 
 

 
 

1.2 

 
 

 
1.0 

0 1 2 3 4 

 
1 = 'pp', 2 = 'p', 3 = 'mp' 

 

(b) Polynomial to predict the complexity weight for dynamic ‘ppp’ for 
Mdy complexity weights. 

Figure E.10 
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A plot of the polynomial fitted to the dynamic (dy) complexity weights for the 

MT complexity weight set too predict the 'fff' complexity weight. 
 

2.85 + -2.78x + 0.72x^2 R² = 1 
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1 = 'ff', 2 = 'f', 3 = 'mf' 

 
 

(a) Polynomial to predict the complexity weight for dynamic ‘fff’ for MTdy 

complexity weights. 
 

A plot of the polynomial fitted to the dynamic (dy) complexity weights 

for the MT complexity weight set too predict the 'ppp' complexity 
 

4.42 + -3.05x + 0.655x^2 R² = 1 

 
5 

 
 

 
4 

 
 

 
3 

 

 

 
2 

 
 

1 

 
0 1 2 3 4 
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(b) Polynomial to predict the complexity weight for dynamic ‘ppp’ for 
MTdy complexity weights 

Figure E.11 
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A plot of the polynomial fitted to the dynamic (dy) complexity weights 

for the D complexity weight set too predict the 'fff' complexity weight. 
 

1.11 + -0.0894x + 0.0173x^2 R² = 1 
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(a) Polynomial to predict the complexity weight for dynamic ‘fff’ for Ddy 

complexity weights. 
 

A plot of the polynomial fitted to the dynamic (dy) complexity weights 

for the D complexity weight set too predict the 'ppp' complexity weight. 
 

1.2 + -0.0943x + 0.013x^2 R² = 1 
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(b) Polynomial to predict the complexity weight for dynamic ‘ppp’ for Ddy 

complexity weights. 

Figure E.12 
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A plot of the polynomial fitted to the dynamic (dy) complexity weights 

for the DT complexity weight set too predict the 'fff' complexity weight. 
 

3.19 + -3.04x + 0.768x^2 R² = 1 
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(a) Polynomial to predict the complexity weight for dynamic ‘fff’ for DTdy 

complexity weights. 
 

A plot of the polynomial fitted to the dynamic (dy) complexity weights for 

the DT complexity weight set too predict the 'ppp' complexity weight. 
 

3.91 + -3.36x + 0.813x^2 R² = 1 
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(b) Polynomial to predict the complexity weight for dynamic ‘ppp’ for 
DTdy complexity weights. 

Figure E.13 
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E.4 Complexity Weight Values 

 
Table E.1: Complexity Weight Sets 

 

Complexity Musical Element Group 

Weight Set Complexity Weights Sets 
 

M {Mpt, Met, Mei, Mat, Mdy , Mdi, Mdu, Mioi, Mts, Mbpm, Min, Mks, Msd, Mfp, 

Mfpi } 

MS {MSpt, MSet, MSei, MSat, MSdy, MSdi, MSdu,  MSioi,  MSts,  MSbpm,  MSin, 

MSks, MSsd, MSfp, MSfpi} 

MT {MTpt, MTet, MTei, MTat, MTdy,  MTdi,  MTdu,  MTioi,  MTts,  MTbpm,  MTin, 

MTks, MTsd, MTfp, MTfpi} 

MTS {MT Spt, MT Set, MT Sei, MT Sat, MT Sdy, MT Sdi, MT Sdu, MT Sioi, MT Sts, 

MT Sbpm, MT Sin, MT Sks, MT Ssd, MT Sfp, MT Sfpi} 

D {Dpt, Det, Dei, Dat, Ddy , Ddi, Ddu, Dioi, Dts, Dbpm, Din, Dks, Dsd, Dfp, Dfpi}   
DT {DTpt, DTet, DTei, DTat, DTdy, DTdi, DTdu, DTioi, DTts, DTbpm, DTin, DTks, 

  DTsd, Mfp, Mfpi}  
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Table E.2: Complexity Weights for the playing technique musical element group. 
 

Playing Technique Mpt MSpt MTpt MTSpt Dpt DTpt 

2_finger_pluck 1.000 1.000 1.000 1.000 1.000 1.000 
1_finger_pluck 1.136 1.095 0.996 0.997 1.233 1.120 

hammer_on 0.611 0.688 0.683 0.751 1.239 1.159 
pull_off 1.049 1.035 1.245 1.167 1.372 1.246 

dead_note_pluck_pick 2.233 1.693 2.173 1.666 1.660 1.341 
pick 3.735 2.243 6.071 2.822 1.851 1.767 

natural_harmonic 2.877 1.955 2.997 1.999 1.976 1.509 
palm_mute_pick 4.008 2.324 5.362 2.670 1.976 1.682 

double_stop 3.841 2.275 3.505 2.171 2.041 1.491 
palm_mute_pluck 3.737 2.244 3.599 2.201 2.058 1.464 

3_note_chord 3.371 2.128 3.436 2.149 2.110 1.589 
palm_mute_thumb_pluck 4.232 2.387 4.525 2.466 2.243 1.648 

thumb_pluck 3.997 2.321 4.498 2.459 2.264 1.702 
pop 4.259 2.395 5.785 2.762 2.465 1.923 

dead_note_pop 4.871 2.553 5.784 2.762 2.541 1.901 
dead_note_slap 4.875 2.555 5.592 2.721 2.594 1.915 
3_finger_pluck 6.339 2.875 9.984 3.457 2.982 2.686 

slap 5.553 2.712 7.703 3.121 3.132 2.437 
ranking 6.615 2.929 8.324 3.221 3.152 2.338 

4_note_chord 6.780 2.960 9.112 3.338 3.532 2.713 
artificial_harmonic 6.893 2.981 7.966 3.165 3.557 2.420 

tap 6.872 2.977 9.393 3.378 3.689 2.975 
fretting_slap 7.723 3.125 8.929 3.312 3.984 2.581 

double_thumb_upstroke 8.417 3.235 12.005 3.701 5.082 4.172 
two_handed_tap 9.199 3.350 13.758 3.883 6.073 4.884 

double_thumb_downstroke 9.799 3.433 14.010 3.908 6.225 5.647 

 
 
 
 

Table E.3: Complexity Weights for the articulation technique musical element group. 
 

  Articulation Technique Mat MSat MTat MTSat Dat DTat  
 

no articulation 1.000 1.000 1.000 1.000 1.000 1.000 
legato 2.158 1.659 1.069 1.049 1.168 1.100 

staccato 0.969 0.978 0.338 0.420 1.080 1.048 
accent 1.519 1.333 0.532 0.615 1.135 1.047 

tenuto 1.032 1.023 0.585 0.664 1.068 1.073 
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Table E.4: Complexity Weights for the dynamic technique musical element group. 
 

Dynamic Technique Mdy,di MSdy,di MTdy,di MTSdy,di Ddy,di DTdy,di 

dim 1.206 1.141 1.398 1.262 1.161 1.161 
pp 1.360 1.239 2.029 1.599 1.186 1.186 
mf 1.000 1.000 1.000 1.000 1.000 1.000 

f 0.194 0.256 0.176 0.234 1.017 1.017 
cresc 0.862 0.897 0.687 0.754 1.139 1.139 
none 0.744 0.802 1.818 1.495 1.102 1.102 

p 0.439 0.525 0.946 0.960 1.063 1.063 
ppp 1.550 1.350 4.420 2.438 1.200 3.910 
mp 1.144 1.100 1.172 1.119 1.177 1.177 
ff 0.925 0.945 0.793 0.842 1.126 1.126 

fff 1.330 1.220 2.850 1.945 1.110 3.190 

 
 

 
Table E.5: Complexity Weights for the expression technique musical element groups. 

 

Expression Technique Met,ei GMSet,ei MTet,ei MTSet,ei Det,ei DTet,ei 

none 1.000 1.000 1.000 1.000 1.000 1.000 
vibrato 2.209 1.682 1.901 1.536 1.207 1.323 

trill 1.943 1.557 1.506 1.325 1.247 1.265 
slow-vibrato 1.596 1.376 1.456 1.296 1.106 1.261 
quater_bend 2.200 1.678 1.532 1.341 1.579 1.281 
fast-vibrato 2.823 1.935 2.345 1.742 1.309 1.385 

trill-slide 4.385 2.429 3.002 2.001 1.545 1.536 
slide 0.147 0.198 0.145 0.196 1.013 1.048 

whole_bend 3.647 2.216 2.840 1.941 1.525 1.501 

half_bend 1.095 1.067 1.240 1.164 1.167 1.275 

 
 

 
Table E.6: Complexity Weights for the fret position musical element groups. 

 

Fret Possition Mfp,fpi MSfp,fpi MTfp,fpi MTSfp,fpi Dfp,fpi DTfp,fpi 

0-4 1.000 1.000 1.000 1.000 1.000 1.000 
5-11 1.513 1.329 2.463 1.792 1.242 1.114 
12-17 7.597 3.104 12.450 3.750 2.084 1.506 

18+ 28.541 4.885 60.847 5.951 3.320 1.982 
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Table E.7: Complexity Weights for the interval musical element group. 
 

  Interval (semitones) Min MSin MTin MTS in Din DTin  
 

0 1.000 1.000 1.000 1.000 1.000 1.000 
1 0.572 0.653 0.589 0.668 1.092 1.074 
2 0.681 0.749 1.044 1.031 1.112 1.092 
3 0.352 0.435 0.270 0.344 1.083 1.052 
4 0.583 0.663 0.604 0.681 1.107 1.082 
5 0.523 0.606 0.413 0.499 1.104 1.051 
6 1.767 1.468 2.439 1.782 1.251 1.150 
7 0.434 0.520 0.330 0.412 1.083 1.054 
8 1.337 1.225 1.178 1.123 1.242 1.143 
9 1.302 1.203 1.278 1.188 1.230 1.136 
10 1.143 1.100 1.257 1.175 1.200 1.119 
11 0.929 0.947 1.400 1.263 1.194 1.146 
12 0.360 0.444 0.390 0.475 1.053 1.031 
13 2.936 1.977 2.849 1.944 1.452 1.224 
14 2.439 1.782 2.603 1.849 1.407 1.247 
15 3.205 2.072 3.587 2.197 1.509 1.292 
16 4.210 2.381 5.259 2.646 1.612 1.353 
17 3.868 2.283 4.483 2.455 1.586 1.334 
18 4.256 2.394 5.155 2.622 1.581 1.339 
19 4.782 2.531 6.321 2.872 1.622 1.376 
20 4.775 2.530 6.148 2.837 1.633 1.382 

21 5.423 2.683 7.350 3.062 1.688 1.427 



403  

\ 

\ 

Z 

Z
\ 

Z 
Z A

Z 

Major 7.781 

F

Z
\ 

Major 11.147 
\ 

\
Z 

 
 
 
 
 
 
 
 

 

Table E.8: Complexity Weights for the key signature musical element group. 
 

  Key Signature Mks MSks MTks MTSks Dks DTks  

 
 
 
 

 
D Major 2.285 

F  Minor 2.826 

E Major 3.887 

B  Major 3.855 

B Major 6.280 
F Minor 7.781 

D Major 10.298 

E Minor 11.297 

C

Z 

Major  11.603 

C Major 1.000 1.000 1.000 1.000 1.000 1.000 
A Minor 1.000 1.000 1.000 1.000 1.000 1.000 
E Minor 1.491 1.317 4.251 2.393 1.064 1.033 
G Major 1.491 1.317 4.251 2.393 1.064 1.033 
D Minor 2.632 1.861 3.964 2.311 1.097 1.042 
F Major 2.632 1.861 3.964 2.311 1.097 1.042 

 1.716 2.107 1.636 1.102 1.031 
B Minor 2.285 1.716 2.107 1.636 1.102 1.031 

 1.936 3.043 2.015 1.132 1.049 
A Major 2.826 1.936 3.043 2.015 1.132 1.049 
C Minor 3.887 2.289 3.332 2.115 1.142 1.052 

 2.289 3.332 2.115 1.142 1.052 
G Minor 3.855 2.279 5.687 2.741 1.155 1.073 

 2.279 5.687 2.741 1.155 1.073 
C Minor 5.200 2.632 7.482 3.084 1.203 1.098 
E Major 5.200 2.632 7.482 3.084 1.203 1.098 
G Minor 6.280 2.864 9.621 3.409 1.236 1.120 

 2.864 9.621 3.409 1.236 1.120 
 3.134 11.952 3.695 1.284 1.150 
 3.134 11.952 3.695 1.284 1.150 

B Minor 10.298 3.498 15.404 4.036 1.332 1.168 
 3.498 15.404 4.036 1.332 1.168 

G Major 11.297 3.620 16.824 4.156 1.339 1.173 
 3.603 15.833 4.073 1.339 1.167 

D Minor 11.147 3.603 15.833 4.073 1.339 1.167 
 3.620 16.824 4.156 1.339 1.173 

A Minor 11.603 3.656 18.260 4.268 1.353 1.184 
 3.656 18.260 4.268 1.353 1.184 

C Major 12.515 3.757 20.048 4.396 1.368 1.195 

A Minor 12.515 3.757 20.048 4.396 1.368 1.195 
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Table E.9: Complexity Weights for the shifting distance musical element group. 
 

  Shift Distance (frets) Msd MSsd MTsd MTSsd Dsd DTsd  
 

0 1.000 1.000 1.000 1.000 1.000 1.000 
1 1.003 1.002 1.041 1.029 1.062 1.041 
2 1.092 1.065 1.059 1.042 1.053 1.011 
3 1.635 1.398 1.325 1.217 1.092 1.030 
4 3.566 2.191 3.069 2.025 1.209 1.084 
5 5.491 2.698 6.048 2.817 1.339 1.166 
6 12.434 3.748 11.404 3.633 1.633 1.285 
7 13.886 3.896 13.811 3.889 1.688 1.328 
8 22.095 4.530 31.503 5.023 1.930 1.471 
9 29.559 4.934 43.281 5.469 2.084 1.601 
10 40.551 5.377 63.929 6.021 2.381 1.770 
11 47.724 5.607 88.682 6.487 2.517 1.897 
12 33.214 5.097 58.052 5.884 2.073 1.686 

13+ 77.698 6.298 140.595 7.146 3.092 2.162 

 
 
 
 
 
 
 

Table E.10: Complexity Weights for the time signature distance musical element group. 
 

Time Signature Mts MSts MTts MTSts Dts DTts 

2/2 25.140 4.708 25.174 4.710 1.452 1.254 
2/4 15.961 4.084 15.900 4.079 1.391 1.212 
3/4 9.408 3.380 6.146 2.837 1.317 1.133 
4/4 1.000 1.000 1.000 1.000 1.000 1.000 
5/4 61.940 5.976 74.749 6.243 2.184 1.775 
3/8 86.753 6.455 91.094 6.525 2.417 1.825 
5/8 52.670 5.746 52.676 5.746 1.954 1.523 
6/8 18.587 4.292 14.258 3.931 1.491 1.222 
7/8 87.257 6.464 96.323 6.605 2.607 1.974 
9/8 108.024 6.768 117.746 6.892 2.692 2.024 

12/8 62.961 5.999 58.002 5.883 1.976 1.498 

12/16 130.517 7.039 149.839 7.237 3.074 2.286 
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Table E.11: Complexity Weights for the tempo (bpm) musical element group. 

 

  Tempo (bpm) Mbpm MSbpm MTbpm MTSbpm Dbpm DTbpm  
 

36 7.923 3.158 12.439 3.748 1.376 1.308 
39 7.530 3.093 10.856 3.568 1.368 1.275 
43 5.225 2.638 7.865 3.148 1.294 1.214 
48 4.528 2.467 6.366 2.881 1.267 1.199 
52 3.697 2.232 5.524 2.706 1.212 1.164 
58 3.254 2.089 4.647 2.497 1.191 1.142 
64 2.741 1.903 3.685 2.228 1.142 1.109 
70 1.614 1.386 2.055 1.611 1.071 1.055 
78 1.314 1.211 1.181 1.125 1.046 1.019 
85 1.000 1.000 1.000 1.000 1.000 1.000 
94 1.313 1.210 1.411 1.270 1.053 1.028 
104 1.521 1.334 1.860 1.516 1.076 1.044 
115 1.330 1.220 1.102 1.072 1.083 1.038 
126 1.806 1.489 2.152 1.656 1.122 1.068 
139 3.096 2.034 3.193 2.068 1.227 1.122 
153 4.935 2.569 7.102 3.018 1.391 1.242 
169 6.699 2.945 11.196 3.608 1.523 1.418 
187 8.285 3.215 12.653 3.771 1.723 1.467 
206 11.979 3.698 14.847 3.986 2.084 1.688 
227 15.804 4.071 19.199 4.336 2.541 1.941 
250 18.675 4.298 25.772 4.743 2.798 2.139 
272 22.519 4.556 31.866 5.039 3.234 2.336 

300 27.786 4.847 41.017 5.393 3.662 2.687 
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E.5 Audio Excerpt Transcriptions 

E.5.1 Original Transcriptions 
 
 
 

 
 

Figure E.14: Transcription of excerpt Atl 
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Figure E.15:  Transcription of excerpt Aww 

 
 

 

 

 

Figure E.16:  Transcription  of excerpt Asz 
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Figure E.17: Transcription of excerpt Asy 
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Figure E.18: Transcription of excerpt Acs 
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Figure E.19: Transcription of excerpt Amm 
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Figure E.20: Transcription of excerpt Ahe 
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Figure E.21: Transcription of excerpt Ary 
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E.5.2 Monophonic Versions 
 

 

 

 

Figure E.22: Transcription of excerpt Aww converted to a monophonic bassline 
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Figure E.23: Transcription of excerpt Ahe converted to a monophonic bassline 
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Appendix F 

 

Adorn-o 

 
F.1 Adjusted feature.similarity function 

 
data . frame . input . f e a t u r e . s i m i l a r i t y <− function ( 

df . in = data . frame ( ) , 

mel . f n s=l i s t . f i l e s ( path=dir , pattern=" . csv " ) , 

dir=" . " , 

f e a t u r e s=c ( "p . range " ) , 

use . segmentation=FALSE, 

method=" e u c l i d e a n " , 

e u c l . stand=TRUE, 

corpus . dens . l i s t . fn=NULL, 

average=TRUE) { 

 
#  This  i s   checks  f or  a   data . frame , i f i t s 

#  i f i t i s   empty i t i s s e t to mel . f eat  

# and  the  f eat  u r e . s i m i l a r i t y  cal  cu l a t es , 

#  i f   not ,   the s i m i l a r i t y i s computed , 

# operating as the or i g i n a l 

# f eat  u r e . s i m i l a r i t y funct ion  . 

i f ( length ( df . in ) == 0 ){ 

mel . f e a t <− compute . f e a t u r e s ( 

melody . f i l e n a m e s=mel . fns , 

dir=dir , output=" melody . wise " , 

use . segmentation=use . segmentation ) 
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} else { 

mel . f e a t <−df . in 

} 

 
# o r i g i n a l f eat u r e . s i m i l a r i t y code : 

. . . . . . . . . . . . 

 

} 

 

F.2 Rhythm .rhy file specification in Extended Backus Naur 

Form 

(time_signature) ::= ‘T’ , ‘{’ , (time_signature_numerator ) , ‘/’ , (time_signature_denominator ) , ‘}’; 

(ticksPerQuarternote) ::= ‘TPQ’ , ‘{’ , (ticks_per_quaternote) , ‘}’ ; 

(measure_velocities) ::= ‘V’ ‘ , ‘{’ , (velocity_vector ) , ‘}’ ; 

(measure_info) ::= (time_signature) , ‘\n’ , (ticksPerQuarternote) , ‘\n’ , (measure_velocities) , [ , ‘\n’ 

, (measure_info) ] ; 
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Appendix G 

 

Investigating a Theory of Musical 

Virtuosity Using Adorn-o Materials 

and Statistical Test Results for 

Mediocre.Virtuosity Ratings 

 
G.1 Audio Stimuli 

The audio stimuli used within study outlined in Chapter 9,1 can be found within the Audio 

Examples folder within the supplementary materials. The labelling scheme is as follows: 

<id>_<virtuosity level>_<top percentile>_<musical similarity percentile>_<complexity weight>_<difficulty weight>.mp3 

 

 

G.2 Shapiro-Wilk  Tests  for Normality 
 
 
 
 
 
 
 
 
 
 
 
 

 
1The description of how each sample was produced is also found in Section 9.2.4.1 



418  

 
 

 
 

V C D 
Musicians Bass Musicians 

 
 
 
 
 
 
 
 
 
 

Table G.1: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline  
B1 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 

 
 
 
 

V C D 
All Bass Musicians 

 
 
 
 
 
 
 
 
 
 

Table G.2: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline  
B2 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 

 W p W p W p 

1 1 0.964 0.072 0.917 0.228 0.969 0.264 
-1 1 0.965 0.080 0.882 0.077 0.971 0.312 

0 1 -1 0.945 0.009 0.926 0.302 0.926 0.006 
1 0 0.962 0.061 0.908 0.170 0.950 0.047 
0 1 0.959 0.041 0.928 0.317 0.945 0.031 

1 1 0.929 0.002 0.917 0.228 0.969 0.264 
-1 1 0.953 0.023 0.882 0.077 0.971 0.312 

0.5 1 -1 0.954 0.025 0.926 0.302 0.926 0.006 
1 0 0.892 0.000 0.908 0.170 0.950 0.047 

0 1 0.954 0.023 0.928 0.317 0.945 0.031 

1 1 0.950 0.015 0.917 0.228 0.969 0.264 
-1 1 0.972 0.182 0.882 0.077 0.971 0.312 

1 1 -1 0.967 0.103 0.926 0.302 0.926 0.006 
1 0 0.962 0.056 0.908 0.170 0.950 0.047 

0 1 0.959 0.043 0.928 0.317 0.945 0.031 

 

 W p W p W p 

1 1 0.913 0.000 0.892 0.104 0.928 0.007 
-1 1 0.936 0.003 0.792 0.005 0.963 0.152 

0 1 -1 0.929 0.002 0.854 0.032 0.932 0.010 
1 0 0.799 0.000 0.780 0.004 0.802 0.000 

0 1 0.910 0.000 0.760 0.002 0.939 0.018 

1 1 0.858 0.000 0.892 0.104 0.928 0.007 
-1 1 0.882 0.000 0.792 0.005 0.963 0.152 

0.5 1 -1 0.799 0.000 0.854 0.032 0.932 0.010 
1 0 0.868 0.000 0.780 0.004 0.802 0.000 

0 1 0.806 0.000 0.760 0.002 0.939 0.018 

1 1 0.814 0.000 0.892 0.104 0.928 0.007 
-1 1 0.908 0.000 0.792 0.005 0.963 0.152 

1 1 -1 0.847 0.000 0.854 0.032 0.932 0.010 
1 0 0.846 0.000 0.780 0.004 0.802 0.000 
0 1 0.813 0.000 0.760 0.002 0.939 0.018 

 



Table G.4: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline 
B4 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 
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V C D 
All Bass Musicians 

 
 
 
 
 
 
 
 
 
 

Table G.3: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline  
B3 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 

 
 
 
 

V C D 
All Bass Musicians 

  W p W p W p 

1 1 0.969 0.126 0.878 0.067 0.982 0.708 
-1 1 0.960 0.046 0.868 0.050 0.978 0.514 

0 1 -1 0.976 0.275 0.966 0.841 0.981 0.650 
1 0 0.966 0.090 0.886 0.086 0.968 0.236 
0 1 0.978 0.335 0.939 0.444 0.967 0.212 

1 1 0.964 0.075 0.878 0.067 0.982 0.708 
-1 1 0.984 0.615 0.868 0.050 0.978 0.514 

0.5 1 -1 0.944 0.008 0.966 0.841 0.981 0.650 
1 0 0.952 0.019 0.886 0.086 0.968 0.236 

0 1 0.971 0.159 0.939 0.444 0.967 0.212 

1 1 0.977 0.320 0.878 0.067 0.982 0.708 
-1 1 0.976 0.296 0.868 0.050 0.978 0.514 

1 1 -1 0.976 0.296 0.966 0.841 0.981 0.650 
1 0 0.974 0.216 0.886 0.086 0.968 0.236 

0 1 0.981 0.489 0.939 0.444 0.967 0.212 

 

 W p W p W p 

1 1 0.987 0.788 0.960 0.750 0.985 0.809 
-1 1 0.978 0.354 0.936 0.411 0.980 0.592 

0 1 -1 0.982 0.534 0.959 0.739 0.979 0.579 
1 0 0.973 0.202 0.933 0.373 0.970 0.265 
0 1 0.956 0.029 0.935 0.391 0.958 0.092 

1 1 0.963 0.066 0.960 0.750 0.985 0.809 
-1 1 0.976 0.287 0.936 0.411 0.980 0.592 

0.5 1 -1 0.932 0.002 0.959 0.739 0.979 0.579 
1 0 0.960 0.047 0.933 0.373 0.970 0.265 
0 1 0.951 0.017 0.935 0.391 0.958 0.092 

1 1 0.974 0.239 0.960 0.750 0.985 0.809 
-1 1 0.974 0.219 0.936 0.411 0.980 0.592 

1 1 -1 0.970 0.141 0.959 0.739 0.979 0.579 
1 0 0.983 0.578 0.933 0.373 0.970 0.265 
0 1 0.952 0.019 0.935 0.391 0.958 0.092 
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V C D 
All Bass Musicians 

 
 
 
 
 
 
 
 
 
 

Table G.5: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline  
B5 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 

 
 
 
 

V C D 
All Bass Musicians 

 
 
 
 
 
 
 
 
 
 

Table G.6: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline  
B6 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 

  W p W p W p 

1 1 0.966 0.088 0.921 0.261 0.955 0.073 
-1 1 0.980 0.447 0.902 0.141 0.962 0.143 

0 1 -1 0.977 0.319 0.895 0.113 0.977 0.482 
1 0 0.980 0.433 0.935 0.390 0.984 0.765 
0 1 0.978 0.350 0.938 0.436 0.961 0.126 

1 1 0.943 0.007 0.921 0.261 0.955 0.073 
-1 1 0.955 0.026 0.902 0.141 0.962 0.143 

0.5 1 -1 0.900 0.000 0.895 0.113 0.977 0.482 
1 0 0.951 0.016 0.935 0.390 0.984 0.765 

0 1 0.972 0.176 0.938 0.436 0.961 0.126 

1 1 0.979 0.392 0.921 0.261 0.955 0.073 
-1 1 0.976 0.269 0.902 0.141 0.962 0.143 

1 1 -1 0.977 0.324 0.895 0.113 0.977 0.482 
1 0 0.982 0.511 0.935 0.390 0.984 0.765 

0 1 0.978 0.354 0.938 0.436 0.961 0.126 

 

 W p W p W p 

1 1 0.951 0.018 0.899 0.130 0.960 0.119 
-1 1 0.928 0.002 0.889 0.093 0.935 0.013 

0 1 -1 0.899 0.000 0.846 0.026 0.913 0.002 
1 0 0.925 0.001 0.932 0.359 0.914 0.002 

0 1 0.977 0.31 0.983 0.991 0.976 0.441 

1 1 0.931 0.002 0.899 0.130 0.960 0.119 
-1 1 0.943 0.008 0.889 0.093 0.935 0.013 

0.5 1 -1 0.917 0.001 0.846 0.026 0.913 0.002 
1 0 0.885 0.000 0.932 0.359 0.914 0.002 

0 1 0.940 0.005 0.983 0.991 0.976 0.441 

1 1 0.921 0.001 0.899 0.130 0.960 0.119 
-1 1 0.959 0.043 0.889 0.093 0.935 0.013 

1 1 -1 0.949 0.013 0.846 0.026 0.913 0.002 
1 0 0.935 0.003 0.932 0.359 0.914 0.002 
0 1 0.940 0.006 0.983 0.991 0.976 0.441 
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V C D 
All Bass Musicians 

 
 
 
 
 
 
 
 
 
 

Table G.7: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline  
B7 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 

 
 
 
 

V C D 
All Bass Musicians 

 
 
 
 
 
 
 
 
 
 

Table G.8: Shapiro-Wilk test for normality on ratings for stimuli produced from Bassline  
B8 with virtuosity level V, playing complexity weight C and perceived difficulty weight D. 

  W p W p W p 

1 1 0.965 0.08 0.941 0.468 0.959 0.108 
-1 1 0.978 0.363 0.976 0.952 0.977 0.479 

0 1 -1 0.973 0.197 0.927 0.307 0.972 0.339 
1 0 0.968 0.113 0.963 0.792 0.957 0.092 
0 1 0.972 0.191 0.919 0.247 0.956 0.084 

1 1 0.982 0.529 0.941 0.468 0.959 0.108 
-1 1 0.979 0.379 0.976 0.952 0.977 0.479 

0.5 1 -1 0.955 0.027 0.927 0.307 0.972 0.339 
1 0 0.957 0.034 0.963 0.792 0.957 0.092 

0 1 0.959 0.04 0.919 0.247 0.956 0.084 

1 1 0.982 0.496 0.941 0.468 0.959 0.108 
-1 1 0.986 0.696 0.976 0.952 0.977 0.479 

1 1 -1 0.963 0.068 0.927 0.307 0.972 0.339 
1 0 0.972 0.175 0.963 0.792 0.957 0.092 

0 1 0.978 0.356 0.919 0.247 0.956 0.084 

 

 W p W p W p 

1 1 0.891 0.000 0.729 0.001 0.923 0.005 
-1 1 0.912 0.000 0.877 0.065 0.917 0.003 

0 1 -1 0.856 0.000 0.795 0.006 0.855 0.000 
1 0 0.837 0.000 0.761 0.002 0.831 0.000 

0 1 0.851 0.000 0.711 0.001 0.902 0.001 

1 1 0.860 0.000 0.729 0.001 0.923 0.005 
-1 1 0.963 0.066 0.877 0.065 0.917 0.003 

0.5 1 -1 0.878 0.000 0.795 0.006 0.855 0.000 
1 0 0.862 0.000 0.761 0.002 0.831 0.000 

0 1 0.871 0.000 0.711 0.001 0.902 0.001 

1 1 0.889 0.000 0.729 0.001 0.923 0.005 
-1 1 0.837 0.000 0.877 0.065 0.917 0.003 

1 1 -1 0.856 0.000 0.795 0.006 0.855 0.000 
1 0 0.867 0.000 0.761 0.002 0.831 0.000 
0 1 0.866 0.000 0.711 0.001 0.902 0.001 
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G.3 Nemenyi post hoc test p values where the Friedman test 

showed a significant difference 

G.3.1 Between Different Virtuosity Level Parameterisations 
 
 

Participant vs Nemenyi post hoc tests p Value 

Group V= V= C=1 D=1 C=1 D=0 

 H M 0.690 0.000 
All H L 0.011 0.434 

 M L 0.100 0.025 
 H M 0.007 

Bass H L 0.979 
 M L 0.012 
 H M 0.976 0.021 

Musicians H L 0.038 0.337 

 M L 0.064 0.423 
 

Table G.9: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B1. 

 

 
Participant vs Nemenyi post hoc tests p Value 

Group V= V= C=-1 D=1 C=1 D=-1 

 H M 0.029 0.003 
All H L 0.090 0.959 

 M L 0.892 0.007 
Bass    

 H M 0.001 

Musicians H L 0.948 

 M L 0.002 
 

Table G.10: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B2. 

 

G.3.2 Between Virtuosity Levels (V) and the Unadorned (U) perfor- 

mance 
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Participant vs Nemenyi post hoc tests p Value 

Group V= V= C=1 D=-1 C=0 D=1 

 H M 0.029 0.972 
All H L 0.799 0.022 

 M L 0.004 0.041 
Bass    

 H M 0.044 0.834 

Musicians H L 0.682 0.012 

 M L 0.004 0.057 
 

Table G.11: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B3. 

 
 
 
 

Participant vs Nemenyi post hoc tests p Value 

Group V= V= C=1 D=1 C=0 D=1 

 H M 0.029 0.972 
All H L 0.799 0.022 

 M L 0.004 0.041 
Bass    

 H M 0.044 0.834 

Musicians H L 0.682 0.012 

 M L 0.004 0.057 
 

Table G.12: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B4. 

 
 

 

Group 
vs Nemenyi post hoc tests p Value 

 
 
 
 
 

Table G.13: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B5. 

 V= V= C=1 D=1 C=1 D=-1 C=1 D=0 

 H M  0.041 0.046 
All H L  0.945 0.799 

 M L  0.090 0.192 

Bass      

 H M 0.117   

Musicians H L 0.963   

 M L 0.064   
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Participant  vs  Nemenyi post hoc tests p Value 

Group V=  V= C=1 D=0 

 H  M 0.029 
All H  L 0.892 

 M  L 0.090 
Bass     

 H  M 0.033 

Musicians H  L 0.806 

 M  L 0.145 
 

Table G.14: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B6. 

 
 
 

Participant  vs  Nemenyi post hoc tests p Value 

Group V=  V= C=-1 D=1 C=1 D=-1 

H M 0.333 
All 

Bass 

Musicians 

H L 0.661 
M L 0.058 

H M 0.583 
H L 0.082 
M L 0.485 

Table G.15: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B7. 

Group 
vs Nemenyi post hoc tests p Value 

 
 
 
 
 

 
Table G.16: Nemenyi post hoc test p values where the Friedman test showed a significant 
difference between the virtuosity ratings for the stimuli from Bassline B8. 

 V= V= C=1 D=1 C=1 D=-1 C=0 D=1 

 H M 0.972  0.632 
All H L 0.013  0.008 

 M L 0.006  0.000 
 H M  0.979  

Bass H L  0.122  

 M L  0.079  

 H M 0.999  0.365 

Musicians H L 0.057  0.082 

 M L 0.064  0.001 
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   Nemenyi post hoc tests p Value 
C=1 D=1 C=1 D=0 

H 0.272 0.603 
All 

 

Bass 

 

Musicians 

M 0.775 0.033 
L 0.626 1.000 

H 0.903 
M 0.071 
L 0.838 

H 0.594 0.671 
M 0.696 0.348 

  L 0.620 0.930  

Table G.17: Nemenyi post hoc tests p values between V=Unadorned and V where the 
Friedman test showed a significant difference between the Mediocre.Virtuosity ratings 
for the stimuli from Bassline B1. 

 
 
 
 
 
 
 
 

Bass 

Musicians 

 
 

 
 
 
 
 
 

H 0.491 
M 0.043 
L 0.811 

Table G.18: Nemenyi post hoc tests p values between V=Unadorned and V where the 
Friedman test showed a significant difference between the Mediocre.Virtuosity ratings 
for the stimuli from Bassline B2. 

G.3.3 Between Virtuosity Levels (V) and the Original (B) performance 

Group U vs V= 

Group U vs V= 
Nemenyi post hoc tests p Value 

C=1 D=-1 

 H 0.513 
All M 0.116 

 L 0.831 
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Group      U vs V= 
Nemenyi post hoc tests p Value 

 
 
 
 
 

Table G.19: Nemenyi post hoc tests p values between V=Unadorned and V where the 
Friedman test showed a significant difference between the Mediocre.Virtuosity ratings 
for the stimuli from Bassline B3. 

 

Group U vs V= 
Nemenyi post hoc tests p Value 

 
 
 
 
 

Table G.20: Nemenyi post hoc tests p values between V=Unadorned and V where the 
Friedman test showed a significant difference between the Mediocre.Virtuosity ratings 
for the stimuli from Bassline B4. 

 

Group U vs V= 
Nemenyi post hoc tests p Value 

 
 
 
 
 

Table G.21: Nemenyi post hoc tests p values between V=Unadorned and V where the 
Friedman test showed a significant difference between the Mediocre.Virtuosity ratings 
for the stimuli from Bassline B5. 

 C=1 D=1 C=-1 D=1 C=1 D=-1 C=1 D=0 C=0 D=1 

 H 0.125 0.224 0.255 0.490 0.425 

All M 0.998 0.468 0.920 0.020 0.224 

 L 0.014 0.006 0.030 0.091 0.000 

Bass       

 H 0.153 0.886 0.466  0.811 

Musicians M 0.995 0.744 0.886  0.393 

 L 0.129 0.017 0.059  0.001 

 

 C=1 D=1 C=0 D=1 

 H 0.009 0.626 
All M 0.974 0.000 

 L 0.040 0.535 

Bass    

 H 0.008 0.720 
Musicians M 0.995 0.003 

 L 0.013 0.767 

 

 C=1 D=1 C=1 D=-1 C=1 D=0 

All H 0.125 0.053 0.894 
All M 0.006 0.000 0.030 

All L 0.125 0.030 0.447 

Bass    0.520 

 H 0.370 0.129 0.466 
Musicians M 0.009 0.003 0.012 

 L 0.516 0.153 0.285 
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Group U vs V= 
Nemenyi post hoc tests p Value 

 
 
 
 
 

Table G.22: Nemenyi post hoc tests p values between V=Unadorned and V where the 
Friedman test showed a significant difference between the Mediocre.Virtuosity ratings 
for the stimuli from Bassline B7. 

 
 
 
 
 
 
 
 
 

 
Group U vs V= 

Nemenyi post hoc tests p Value 

  C=1 D=1 C=-1 D=1 C=0 D=1 

 H 0.813 0.076 0.974 
All M 0.813 1.000 0.364 

 L 0.170 0.831 0.030 

Bass     

 H   1.000 
Musicians M   0.285 

 L   0.107 
 

Table G.23: Nemenyi post hoc tests p values between V=Unadorned and V where the 
Friedman test showed a significant difference between the Mediocre.Virtuosity ratings 
for the stimuli from Bassline B8. 

 C=-1 D=1 C=1 D=-1 

 H 0.848  

All M 0.865  

 L 0.158  

 H  0.071 
Bass M  0.799 

 L  1.000 

Musicians    
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Group B vs V= 
Nemenyi post hoc tests p Value 

  C=1 D=1 C=1 D=0 

 H 0.775 0.125 
All M 1.000 0.535 

 L 0.289 0.670 

 H  0.665 
Bass M  0.339 

 L  0.838 

Musicians    
 

Table G.24: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B1. 

 

 

Group B vs V= 
Nemenyi post hoc tests p Value 

C=1 D=-1 

 H 0.468 
All M 0.307 

 L 0.490 

Bass   

 H 0.370 
Musicians M 0.181 

 L 0.326 
 

Table G.25: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B2. 
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Group B vs V= 
Nemenyi post hoc tests p Value 

C=1 D=-1 

 H 0.974 
All M 0.053 

 L 0.999 

Bass   

 H 0.978 
Musicians M 0.059 

 L 0.988 
 

Table G.26: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B3. 

 
 
 

   Nemenyi post hoc tests p Value 
C=1 D=1 C=0 D=1 

H 0.018 0.974 
All 

Bass 

Musicians 

M 0.974 0.004 
L 0.098 0.999 

H 0.027 1.000 
M 1.000 0.024 

  L 0.043 1.000  

Table G.27: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B4. 

Group 
B vs V= Nemenyi post hoc tests p Value 

C=1 D=-1 

H 0.714 
All 

Bass 

Musicians 

M 0.002 
L 0.224 

Table G.28: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B5. 

Group B vs V= 
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Group B vs V= 
Nemenyi post hoc tests p Value 

 
 
 
 
 

Table G.29: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B6. 

 

Group B vs V= 
Nemenyi post hoc tests p Value 

  C=-1 D=1 C=1 D=-1 C=1 D=0 C=0 D=1 

 H 0.001 0.000 0.000 0.083 
All M 0.000 0.000 0.000 0.003 

 L 0.022 0.001 0.003 0.016 

 H 0.426 0.930   

Bass M 0.048 0.339   

 L 0.712 0.020   

 H 0.003 0.000 0.001 0.118 
Musicians M 0.000 0.001 0.001 0.003 

 L 0.027 0.066 0.007 0.012 

Table G.30: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B7. 

 

Group B vs V= 
Nemenyi post hoc tests p Value 

 
 
 
 
 

Table G.31: Nemenyi post hoc tests p values between V=B and V where the Friedman test 
showed a significant difference between the Mediocre.Virtuosity ratings for the stimuli 
from Bassline B8. 

 C=-1 D=1 C=1 D=0 

 H 0.044 0.865 
All M 0.036 0.196 

 L 0.985 1.000 

Bass    

 H 0.048 0.720 
Musicians M 0.048 0.326 

 L 0.988 0.999 

 

 C=1 D=1 C=-1 D=1 C=1 D=-1 C=1 D=0 C=0 D=1 

 H 0.003 0.170 0.000 0.040 0.016 
All M 0.003 0.000 0.002 0.006 0.001 

 L 0.894 0.001 0.053 0.580 1.000 

Bass       

 H 0.008 0.212 0.000 0.265 0.129 
Musicians M 0.017 0.000 0.012 0.043 0.003 

 L 0.767 0.001 0.015 0.811 0.999 

 



431  

 

G.4 Boxplots 

G.4.1 Virtuosity Level Parameterisation 
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Figure G.1: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B1 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.2: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B2 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.3: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B3 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.4: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B4 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.5: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B5 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.6: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B6 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.7: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B7 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.8: Box plots comparing Mediocre.Virtuosic between virtuosity levels: L, M 
and H for Bassline B8 by each participant group. ‘n.s’ = no significance, * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Figure G.9: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B1 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.10: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B2 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.11: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B3 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.12: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B4 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.13: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B5 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.14: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B6 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.15: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B7 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.16: Box plots comparing Mediocre.Virtuosic between playing complexity (Cw) 
and perceived difficulty (Dw) weigh pairs: Cw=1 Dw=1, Cw=-1 Dw=1, Cw=1 Dw=-1, 
Cw=1 Dw=0 and Cw=0 Dw=1 for Bassline B8 by each participant group. ‘n.s’ = no 
significance, * = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers 
are indicated by dots. 
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Figure G.17: Box plots comparing Mediocre.Virtuosic between U and B for each virtu- 
osity level: L, M and H for Bassline B1 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.18: Box plots comparing Mediocre.Virtuosic between U and B for each virtu- 
osity level: L, M and H for Bassline B2 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.19: Box plots comparing Mediocre.Virtuosic between U and B for each virtu- 
osity level: L, M and H for Bassline B3 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.20: Box plots comparing Mediocre.Virtuosic between U and B for each virtu- 
osity level: L, M and H for Bassline B4 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.21: Box plots of comparing Mediocre.Virtuosic between U and B for each vir- 
tuosity level: L, M and H for Bassline B5 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.22: Box plots of comparing Mediocre.Virtuosic between U and B for each vir- 
tuosity level: L, M and H for Bassline B6 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.23: Box plots of comparing Mediocre.Virtuosic between U and B for each vir- 
tuosity level: L, M and H for Bassline B7 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.24: Box plots comparing Mediocre.Virtuosic between U and B for each virtu- 
osity level: L, M and H for Bassline B8 by each participant group. ‘n.s’ = no significance, 
* = p < 0.05, ** = p < 0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated 
by dots. 
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Figure G.25: Box plots comparing the Mediocre.Virtuosic ratings between U and B for 
each participant group and each Bassline. ‘n.s’ = no significance, * = p < 0.05, ** = p < 
0.01, *** = p < 0.001, **** = p < 0.0001. Outliers are indicated by dots. 
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Appendix I 

 

Ethical Approval 

 
I.1 QMREC1506 - Bass Guitar Player Competence 

 

 
                 Queen Mary, University of London 

Room W117 
Queen’s Building 
Queen Mary University of London 
Mile End Road 
London E1 4NS 

 

Queen Mary Ethics of Research Committee 
Hazel Covill 
Research Ethics Administrator 
Tel: +44 (0) 20 7882 7915 
Email: h.covill@qmul.ac.uk 

 
c/o Professor Geraint Wiggins 
CS 311 
Department of Computer Science 
Queen Mary University of London 
Mile End 
London 

 

To Whom It May Concern: 

 
 
 
 
 

 
10th May 2016 

 
Re: QMREC1506 – Bass Guitar Player Competence. 

 

I can confirm that Mr Callum Goddard has completed a Research Ethics 
Questionnaire with regard to the above research. 

 

The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require  the 
scrutiny of the full Research Ethics Committee. 

 
Yours faithfully 

 

Ms Hazel Covill – QMERC Administrator Patron: Her Majesty the Queen 

Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 
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I.2 QMREC1671 - Musical similarity of bar extracts from 

Basslines 

 

 

                 Queen Mary, University of London 

Room W117 
Queen’s Building 
Queen Mary University of London 
Mile End Road 
London E1 4NS 

 
Queen Mary Ethics of Research Committee 
Hazel Covill 
Research Ethics Administrator 
Tel: +44 (0) 20 7882 7915 
Email: h.covill@qmul.ac.uk 

c/o Professor Geraint Wiggins 
CS311 
Electronic Engineering 
and Computer Science 
Mile End 
London 30th October 2017 

 
 

To Whom It May Concern: 

Re: QMREC1671 - Musical similarity of bar extracts from bass lines. 
 

I can confirm that Callum Goddard has completed a Research Ethics 
Questionnaire with regard to the above research. 

 

The result of which was the conclusion that their proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require  the 
scrutiny of the full Research Ethics Committee. 

 

Yours faithfully 

 
 

 
Mr Jack Biddle – Research Approvals Advisor Patron: Her Majesty the Queen 

Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 

mailto:h.covill@qmul.ac.uk
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I.3 QMREC1975 - Difficulty Perception of Basslines 

 

 
                 Queen Mary, University of London 

Room W117 
Queen’s Building 
Queen Mary University of London 
Mile End Road 
London E1 4NS 

 
Queen Mary Ethics of Research Committee 
Hazel Covill 
Research Ethics Administrator 
Tel: +44 (0) 20 7882 7915 
Email: h.covill@qmul.ac.uk 

 

c/o Professor Geraint Wiggins 
CS311 - Dept. of Computer Science 
Queen Mary University of London 
Mile End Road 
London 19th April 2017 

 

To Whom It May Concern: 

Re: QMREC1975 – Difficulty Perception of Bass Lines 
 

I can confirm that Callum Goddard has completed a Research Ethics 
Questionnaire with regard to the above research. 

 

The result of which was the conclusion that his proposed work does not present 
any ethical concerns; is extremely low risk; and thus does not require  the 
scrutiny of the full Research Ethics Committee. 

 

Yours faithfully 
 

Ms Hazel Covill – QMERC Administrator Patron: Her Majesty the Queen 

Incorporated by Royal Charter as Queen Mary 

and Westfield College, University of London 

 

 

mailto:h.covill@qmul.ac.uk
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I.4 QMREC2507 - Bass Guitar Performance Study 

 

 
                 Queen Mary, University of London 

Room W117 
Queen’s Building 
Queen Mary University of London 
Mile End Road 
London E1 4NS 

 

Queen Mary Ethics of Research Committee 
Hazel Covill 
Research Ethics Facilitator 
Tel: +44 (0) 20 7882 7915 
Email: research-ethics@qmul.ac.uk 

 

c/o Dr Mathieu Barthet 
School of Electronic Engineering 
and Computer Science 
Queen Mary University of London 
Mile End Road 
London 
E1 4NS 
United Kingdom 

 

To Whom It May Concern: 

Re: QMERC2507 – Bass Guitar Performance Study 

 
 
 
 
 
 
 

20 October 2020 

 

I can confirm that Callum Goddard has completed a Research Ethics 
Questionnaire with regard to the above study. 

 
The result of which was the conclusion that the proposed work does not present 
any ethical concerns; is low risk; and thus does not require the scrutiny of the full 
Research Ethics Committee. 

 

Yours faithfully 
 

Dr Mantalena Sotiriadou – Research Ethics Facilitator 
 

Patron: Her Majesty the Queen 

Incorporated by Royal Charter as Queen Mary 
and Westfield College, University of London 
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Queen Mary, University of London 
Room W117 
Queen’s Building 

Queen Mary University of London 
Mile End Road 
London E1 4NS 

 

Queen Mary Ethics of Research Committee 
Hazel Covill 
Research Ethics Facilitator 
Tel: +44 (0) 20 7882 7915 
Email: research-ethics@qmul.ac.uk 

 

c/o Dr Mathieu Barthet 
School of Electronic Engineering and 
Computer Science 
Queen Mary University of London 
Mile End Road 
London 
E1 4NS 
United Kingdom 

 

To Whom It May Concern: 

Re: QMERC2507- Bass Guitar Performance Study. 

 
 
 
 
 
 
 

22 December 2020 

 
I can confirm that Callum Goddard has completed a Research Ethics 
Questionnaire with regard to the above study. 

 
The result of which was the conclusion that the proposed work does not present 
any ethical concerns; is low risk; and thus does not require the scrutiny of the full 
Research Ethics Committee. 

 
Amendment 

 
An amendment was approved on 22nd December 2020 (minor changes to the 
Participant Information Sheet) via Research Ethics Facilitator’s Action. 

 

Yours faithfully 
 

Mantalena Sotiriadou – Research Ethics Facilitator 
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Queen Mary, University of London 
Room W117 
Queen’s Building 
Queen Mary University of London 
Mile End Road 
London E1 4NS 

 
Queen Mary Ethics of Research Committee 
Hazel Covill 
Research Ethics Facilitator 
Tel: +44 (0) 20 7882 7915 
Email: research-ethics@qmul.ac.uk 

 

c/o Dr Mathieu Barthet 
School of Electronic Engineering and 
Computer Science 
Queen Mary University of London 
Mile End Road 
London 
E1 4NS 
United Kingdom 

 

To Whom It May Concern: 

Re: QMERC2507- Bass Guitar Performance Study. 

 
 
 
 
 
 
 

11 January 2021 

 
I can confirm that Callum Goddard has completed a Research Ethics 
Questionnaire with regard to the above study. 

 

The result of which was the conclusion that the proposed work does not present 
any ethical concerns; is low risk; and thus does not require the scrutiny of the full 
Research Ethics Committee. 

 

Amendment 
 

An amendment was approved on 11th January 2021 (changes to the 
recruitment strategy of the study) via Research Ethics Facilitator’s Action. 

 

Yours faithfully 
 

Mantalena Sotiriadou – Research Ethics Facilitator 

 
 

mailto:research-ethics@qmul.ac.uk
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