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Abstract
Promoting behavioural diversity is critical for
solving games with non-transitive dynamics
where strategic cycles exist, and there is no con-
sistent winner (e.g., Rock-Paper-Scissors). Yet,
there is a lack of rigorous treatment for defining
diversity and constructing diversity-aware learn-
ing dynamics. In this work, we offer a geometric
interpretation of behavioural diversity in games
and introduce a novel diversity metric based on de-
terminantal point processes (DPP). By incorporat-
ing the diversity metric into best-response dynam-
ics, we develop diverse fictitious play and diverse
policy-space response oracle for solving normal-
form games and open-ended games. We prove
the uniqueness of the diverse best response and
the convergence of our algorithms on two-player
games. Importantly, we show that maximising the
DPP-based diversity metric guarantees to enlarge
the gamescape – convex polytopes spanned by
agents’ mixtures of strategies. To validate our
diversity-aware solvers, we test on tens of games
that show strong non-transitivity. Results suggest
that our methods achieve at least the same, and
in most games, lower exploitability than PSRO
solvers by finding effective and diverse strategies.

1. Introduction
Nature exhibits a remarkable tendency towards diversity
(Holland et al., 1992). Over the past billions of years, natural
evolution has discovered a vast assortment of unique species.
Each of them is capable of orchestrating, in different ways,
the complex biological processes that are necessary to sus-
tain life. Equally, in computer science, machine intelligence
can be considered as the ability to adapt to a diverse set
of complex environments (Hernández-Orallo, 2017). This
suggests that the intelligence of AI evolves with environ-
ments of increasing diversity. In fact, recent successes in
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developing AIs that achieve super-human performance on
sophisticated battle games (Vinyals et al., 2019b; Ye et al.,
2020) have provided factual justifications for promoting
behavioural diversity in training intelligent agents.

In game theory, the necessity of pursuing behavioural diver-
sity is also deeply rooted in the non-transitive structure of
games (Balduzzi et al., 2019). In general, an arbitrary game,
of either the normal-form type (Candogan et al., 2011) or
the differential type (Balduzzi et al., 2018a), can always be
decomposed into a sum of two components: a transitive
part and a non-transitive part. The transitive part of a game
represents the structure in which the rule of winning is tran-
sitive (i.e., if strategy A beats B, B beats C, then A beats C),
and the non-transitive part refers to the structure in which
the set of strategies follows a cyclic rule (e.g., the endless
cycles among Rock, Paper and Scissors). Diversity matters
especially for the non-transitive part simply because there
is no consistent winner in such part of a game: if a player
only plays Rock, he can be exploited by Paper, but not so if
he has a diverse strategy set of Rock and Scissor.

In fact, many real-world games demonstrate strong non-
transitivity (Czarnecki et al., 2020); therefore, it is critical to
design objectives in the learning framework that can lead to
behavioural diversity. In multi-agent reinforcement learning
(MARL) (Yang & Wang, 2020), promoting diversity not
only prevents AI agents from checking the same policies
repeatedly, but more importantly, helps them discover niche
skills, avoid being exploited and maintain robust perfor-
mance when encountering unfamiliar types of opponents.
In the examples of StarCraft (Vinyals et al., 2019b), Soccer
(Kurach et al., 2020) and autonomous driving (Zhou et al.,
2020), learning a diverse set of strategies has been reported
as an imperative step in strengthening AI’s performance.

Despite the importance of diversity (Yang et al., 2021), there
is very little work that offers a rigorous treatment in even
defining diversity. The majority of work so far has followed
a heuristic approach. For example, the idea of co-evolution
(Durham, 1991; Paredis, 1995) has drawn forth a series of
effective methods, such as open-ended evolution (Standish,
2003; Banzhaf et al., 2016; Lehman & Stanley, 2008), pop-
ulation based training methods (Jaderberg et al., 2019; Liu
et al., 2018), and auto-curricula (Leibo et al., 2019; Baker
et al., 2019). Despite many empirical successes, the lack
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of rigorous treatment for behavioural diversity still hinders
one from developing a principled approach.

In this work, we introduce a rigorous way of modelling
behavioural diversity for learning in games. Our approach
offers a new geometric interpretation, which is built upon
determinantal point processes (DPP) that have origins in
modelling repulsive quantum particles (Macchi, 1977) in
physics. A DPP is a special type of point process, which
measures the probability of selecting a random subset from a
ground set where only diverse subsets are desired. We adapt
DPPs to games by formulating the expected cardinality of a
DPP as the diversity metric. The proposed diversity metric
is a general tool for game solvers; we incorporate our di-
versity metric into the best-response dynamics, and develop
diversity-aware extensions of fictitious play (FP) (Brown,
1951) and policy-space response oracles (PSRO) (Lanctot
et al., 2017). Theoretically, we show that maximising the
DPP-based diversity metric guarantees an expansion of the
gamescape spanned by agents’ mixtures of policies. Mean-
while, we prove the convergence of our diversity-aware
learning methods to the respective solution concept of Nash
equilibrium and α-Rank (Omidshafiei et al., 2019) in two-
player games. Empirically, we evaluate our methods on tens
of games that show strong non-transitivity, covering both
normal-form games and open-ended games. Results confirm
the superior performance of our methods, in terms of lower
exploitability, against the state-of-the-art game solvers.

2. Related Work
Diversity has been extensively studied in evolutionary com-
putation (EC) (Fogel, 2006) where the central focus is mim-
icking the natural evolution process. One classic idea in
EC is novelty search (Lehman & Stanley, 2011a), which
searches for models that lead to different outcomes. Quality-
diversity (QD) (Pugh et al., 2016) hybridises novelty search
with a fitness objective; two resulting methods are Nov-
elty Search with Local Competition (Lehman & Stanley,
2011b) and MAP-Elites (Mouret & Clune, 2015). For solv-
ing games, QD methods were applied to ensure policy di-
versification among learning agents (Gangwani et al., 2020;
Banzhaf et al., 2016). Despite remarkable successes (Jader-
berg et al., 2019; Cully et al., 2015), quantifying diversity
in EC is often task-dependent and hand-crafted; as a re-
sult, building a theoretical understanding of how diversity is
generated during learning is non-trivial (Brown et al., 2005).

Searching for behavioural diversity is also a common topic
in reinforcement learning (RL). Specifically, it is studied
under the names of skill discovery (Eysenbach et al., 2018;
Hausman et al., 2018), intrinsic exploration (Gregor et al.,
2017; Bellemare et al., 2016; Barto, 2013), or maximum-
entropy learning (Haarnoja et al., 2017; 2018; Levine, 2018).
These solutions can still be regarded as QD methods, in the

sense that the quality refers to the cumulative reward, and
dependent on the context, diversity could refer to policies
that visit new states (Eysenbach et al., 2018) or have a
large entropy (Levine, 2018). Two related works in RL,
yet with a different scope, are Q-DPP (Yang et al., 2020b),
which adopts DPP to factorise agents’ joint Q-functions in
MARL, and DvD (Parker-Holder et al., 2020), which studies
diversity based on the ensembles of policy embeddings.

For two-player zero-sum games, smooth FP (Fudenberg &
Levine, 1995) is a solver that accounts for diversity through
adopting a policy entropy term in the original FP (Brown,
1951). When the game size is large, Double Oracle (DO)
(McMahan et al., 2003) provides an iterative method where
agents progressively expand their policy pool by, at each
iteration, adding one best response versus the opponent’s
Nash strategy. Online DO (Dinh et al., 2021) considers
a no-regret best response. PSRO generalises FP and DO
via adopting a RL subroutine to approximate the best re-
sponse (Lanctot et al., 2017). Pipeline-PSRO (McAleer
et al., 2020) trains multiple best responses in parallel and
efficiently solves games of size 1050. PSROrN (Balduzzi
et al., 2019) is a specific variation of PSRO that accounts
for diversity; however, it suffers from poor performance in a
selection of tasks (Muller et al., 2019). Since computing NE
is PPAD-Hard (Daskalakis et al., 2009), another important
extension of PSRO is α-PSRO (Muller et al., 2019), which
replaces NE with α-Rank (Omidshafiei et al., 2019; Yang
et al., 2020a), a solution concept that has polynomial-time
solutions on general-sum games. Yet, how to promote di-
versity in the context of α-PSRO is still unknown. In this
work, we develop diversity-aware extensions of FP, PSRO
and α-PSRO, and show on tens of games that our diverse
solvers achieve significantly lower exploitability than the
non-diverse baselines.

3. Notations & Preliminary
We consider normal-form games (NFGs), denoted by
〈N ,S,G〉, where each player i ∈ N has a finite set of
pure strategies Si. Let S =

∏
i∈N Si denote the space

of joint pure-strategy profiles, and S−i denote the set of
joint strategy profiles except the i-th player. A mixed
strategy of player i is written by πi ∈ ∆Si where ∆ is
a probability simplex. A joint mixed-strategy profile is
π ∈ ∆S, and π(S) =

∏
i∈N π

i(Si) represents the prob-
ability of joint strategy profile S. For each S ∈ S, let
G(S) =

(
G1(S), ...,GN (S)

)
∈ RN denote the vector of

payoff values for each player. The expected payoff of player
i under a joint mixed-strategy profile π is thus written as
Gi(π) =

∑
S∈S π(S)Gi(S), also asGi(πi,π−i).

3.1. Solution Concepts of Games
Nash equilibrium (NE) exists in all finite games (Nash et al.,
1950); it is a joint mixed-strategy profile π in which each



Modelling Behavioural Diversity for Learning in Open-Ended Games

player i ∈ N plays the best response to other players s.t.
πi ∈ BRi(π−i) := arg maxπ∈∆Si

[
Gi(π,π−i)

]
. For

ε > 0, an ε-best response to the π−i is BRi
ε(π
−i) :={

πi : Gi
(
πi,π−i

)
≥ Gi

(
BRi(π−i),π−i

)
− ε
}

, and an
ε-NE is a joint profile π s.t. πi ∈ BRi

ε(π),∀i ∈ N . The
exploitability (Davis et al., 2014) measures the distance of a
joint strategy profile π to a NE, written as

Exploit.
(
π
)
=
∑
i∈N

[
Gi(BRi(π−i),π−i

)
−Gi(π)]. (1)

When the exploitability reaches zero, all players reach their
best responses, and thus π is a NE.

Computing NE in multi-player general-sum games is PPAD-
Hard (Daskalakis et al., 2009). No polynomial-time solution
is available even in two-player cases (Chen et al., 2009).
Additionally, NE may not be unique. α-Rank (Omidshafiei
et al., 2019) is an alternative solution concept, which is
built on the response graph of a game. Specifically, α-Rank
defines the so-called sink strongly-connected components
(SSCC) nodes on the response graph that have only incom-
ing edges but no outgoing edges. The SSCC of α-Rank
serves as a promising replacement for NE; the key asso-
ciated benefits are its uniqueness, and its polynomial-time
solvability inN -player general-sum games. A more detailed
description of α-Rank can be found in Appendix A.

3.2. Open-Ended Meta-Games
The framework of NFGs is often limited in describing real-
world games. In solving games like StarCraft or GO, it is
inefficient to list all atomic actions; instead, we are more
interested in games at the policy level where a policy can
be a “higher-level” strategy (e.g., a RL model powered by a
DNN), and the resulting game is a meta-game, denoted by
〈N ,S,M〉. A meta-game payoff table M is constructed by
simulating games that cover different policy combinations.
With slight abuse of notation1, in meta-games, we respec-
tively use Si to denote the policy set (e.g., a population of
deep RL models), and use πi ∈ ∆Si to denote the meta-
policy (e.g., player i plays [RL-Model 1, RL-Model 2] with
probability [0.3, 0.7]), and thus π = (π1, ...,πN ) is a joint
meta-policy profile. Meta-games are often open-ended be-
cause there could exist an infinite number of policies to play
a game. The openness also refers to the fact that new strate-
gies will be continuously discovered and added to agents’
policy sets during training; the dimension of M will grow.

In the meta-game analysis (a.k.a. empirical game-theoretic
analysis) (Wellman, 2006; Tuyls et al., 2018), traditional
solution concepts (e.g., NE or α-Rank) can still be computed
based on M, even in a more scalable manner, this is because
the number of “higher-level” strategies in the meta-game
is usually far smaller than the number of atomic actions of

1NFGs and meta-games are different by the payoffG vs. M.

the underlying game. For example, in tackling StarCraft
(Vinyals et al., 2019a), hundreds of deep RL models were
trained, which is a trivial amount compared to the number
of atomic actions: 1026 at every time-step.

Many real-world games (e.g., Poker, GO and StarCraft) can
be described through an open-ended zero-sum meta-game.
Given a game engine φ : S1×S2 → R where φ(S1, S2) > 0
if S1 ∈ S1 beats S2 ∈ S2, and φ < 0, φ = 0 refers to losses
and ties, the meta-game payoff is

M =
{
φ(S1, S2) : (S1, S2) ∈ S1 × S2}. (2)

A game is symmetric if S1 = S2 and φ(S1, S2) =
−φ(S2, S1),∀S1, S2 ∈ S1; it is transitive if there is a
monotonic rating function f such that φ(S1, S2)=f(S1)−
f(S2),∀S1, S2 ∈ S1, meaning that performance on the
game is the difference in ratings; it is non-transitive if φ
satisfies

∑
S2∈S2 φ(S1, S2) = 0,∀S1 ∈ S1, meaning that

winning against some strategies will be counterbalanced by
losses against others; the game has no consistent winner.
Lastly, the gamescape of a population of strategies (Bal-
duzzi et al., 2019) in a meta-game is defined as the convex
hull of the payoff vectors of all policies in S, written as:

Gamescape
(
S
)

:=
{∑

i

αi ·mi : α ≥ 0,α>1 = 1,mi = M[i,:]

}
. (3)

3.3. Game Solvers
In solving NFGs, Fictitious play (FP) (Brown, 1951) de-
scribes the learning process where each player chooses a
best response to their opponents’ time-average strategies,
and the resulting strategies guarantee to converge to the NE
in two-player zero-sum, or potential games. Generalised
weakened fictitious play (GWFP) (Leslie & Collins, 2006)
generalises FP by allowing for approximate best responses
and perturbed average strategy updates. It is defined by:

Definition 1 (GWFP) GWFP is a process of {πt}t≥0 with
πt ∈

∏
i∈N ∆Si , following the below updating rule:

πit+1 ∈
(
1− αt+1

)
πit + αt+1

(
BRi

εt(π
−i
t ) +M i

t+1

)
. (4)

As t→∞, αt → 0, εt → 0 and
∑
t≥1 αn =∞. {Mt}t≥1

is a sequence of perturbations that satisfies: ∀T > 0,

lim
t→∞

sup
k

{∥∥∥ k−1∑
i=t

αi+1Mi+1

∥∥∥ s.t.
k−1∑
i=n

αi ≤ T
}

= 0. (5)

GWFP recovers FP if αt = 1/t, εt = 0 and Mt = 0,∀t.
A general solver for open-ended (meta-)games involves an
iterative process of solving the equilibrium (meta-)policy
first, and then based on the (meta-)policy, finding a new
better-performing policy to augment the existing popula-
tion (see the pseudocode in Appendix B. The (meta-)policy
solver, denoted as S(·), computes a joint (meta-)policy pro-
file π based on the current payoff M (or,G) where different
solution concepts can be adopted (e.g., NE or α-Rank).
With π, each agent then finds a new best-response policy,
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Table 1. Variations of Different (Meta-)Game Solvers
Method (Meta-)Policy S Oracle O Game type

Self-play (Fuden-
berg et al., 1998)

[0, ..., 0, 1]N BR(·) N -player
potential

GWFP (Leslie &
Collins, 2006)

UNIFORM BRε(·) 2-player
zero-sum or
potential

D.O. (McMahan
et al., 2003)

NE BR(·) 2-player
zero-sum

PSRON (Lanctot
et al., 2017)

NE BRε(·) 2-player
zero-sum

PSROrN (Bal-
duzzi et al., 2019)

NE Eq. (8) Symmetric
zero-sum

α-PSRO (Muller
et al., 2019)

α-Rank Eq. (6) N -player
general-sum

Our Methods NE / α-Rank Eq. (13) / (14) 2-player
general-sum

which is equivalent to solving a single-player optimisation
problem against opponents’ (meta-)policies π−i. One can
regard a best-response policy as given by an Oracle, denoted
by O. In two-player zero-sum cases, an Oracle represents
O1(π2) = {S1 :

∑
S2∈S2 π

2(S2) · φ(S1, S2) > 0}. Gen-
erally, Oracles can be implemented through optimisation
subroutines such as gradient-descent methods or RL algo-
rithms. After a new policy is learned, the payoff table is
expanded, and the missing entries will be filled by running
new game simulations. The above process loops over each
player at every iteration, and it terminates if no players can
find new best-response policies (i.e., Eq. (1) reaches zero).

With correct choices of (meta-)policy solver S and Oracle
O, various types of (meta-)game solvers can be summarised
in Table 1. For example, it is trivial to see that GWFP is
recovered when S = UNIFORM(·) and Oi = BRi

ε(·).
Double Oracle (D.O.) and PSRO methods refer to the cases
when the (meta-)solver computes NE. Notably, when S = α-
Rank, Muller et al. (2019) showed that the standard best
response fails to converge to the SSCC of α-Rank; instead,
they propose α-PSRO where the Oracle is computed by the
so-called Preference-based Best Response (PBR), that is,

Oi
(
π−i

)
⊆ argmax

σ∈Si
Eπ−i

[
1
[
Mi(σ, S−i) >Mi(Si, S−i)

]]
.

(6)

3.4. Existing Diversity Measures
Promoting behavioural diversity can lead to learning more
effective strategies and achieving lower exploitability in per-
formance. The smooth FP method (Fudenberg & Levine,
1995) incorporates the policy entropy H(π) when finding
the best response to advocate diversity, written as πi ∈
BRi

ε(π
−i) = arg maxπ∈∆Si

[
Gi(π,π−i) + τ · H(π)

]
where τ is a weighting hyper-parameter. In the case of
τ → 0 as training goes on, smooth FP converges to the
GWFP process almost surely (Leslie & Collins, 2006).

Entropy measures the diversity of a policy in terms of its

randomness; however, when it comes to solving open-ended
(meta-)games, measuring diversity against peer models in
the population becomes critical. Towards this end, effective
diversity (ED) (Balduzzi et al., 2019) is proposed to quantify
the diversity for a population of policies S by

ED
(
S
)
= π∗

> bMc+ π
∗, bxc+ := x if x ≥ 0 else 0. (7)

M is the meta-payoff table of S, and π∗ is the NE of M.
The intuition of ED is that, using the Nash distribution en-
sures that the diversity is only related to the best-responding
models, and the rectifier bxc+ quantifies the number of
variations of how those “winner” models (those within the
support of NE) beat each other. Under this design, if there
is only one dominant policy in S, then ED(S) = 0, thus no
diversity. To promote ED in training, a variation of PSRO –
PSROrN – is introduced, written as:

O1(π2) =
{
S1 :

∑
S2∈S2

π2,∗(S2) · bφ(S1, S2)c+ > 0
}
. (8)

In short, the ED in PSROrN encourages players to amplify
its strengths and ignore its weaknesses in finding a new
policy. On symmetric zero-sum games, if both players play
their Nash strategy (this assumption will be removed by our
method), then Eq. (8) guarantees to enlarge the gamescape.

Nonetheless, focusing only on the winners can sometimes
be problematic, since weak agents may still hold the promise
of tackling niche tasks, and they can serve as stepping stones
for discovering stronger policies later during training. For
example, when training StarCraft AIs, overcoming agents’
weaknesses was found to be more important than amplify-
ing strengths (Vinyals et al., 2019b), a completely oppo-
site result to PSROrN . Another counter example that fails
PSROrN is the RPS-X game (McAleer et al., 2020):

G =

 0 −1 1 −2/5
1 0 −1 −2/5
−1 1 0 −2/5
2/5 2/5 2/5 0

. (9)

In RPS-X, if the initial strategy pool of PSROrN starts from
either {R}, {P} or {S}, then the algorithm will terminate
without exploring the fourth strategy because the best re-
sponse to {R,P,S} is still in {R,P,S}; however, the fourth
strategy alone can still exploit the population of {R,P,S} by
getting a positive payoff of 2/5. Also see in Appendix C
how our method can tackle this problem.

4. Our Methods
Instead of choosing between amplifying strengths or over-
coming weaknesses, we take an altogether different ap-
proach of modelling the behavioural diversity in games.
Specifically, we introduce a new diversity measure based
on a geometric interpretation of games modelled by a de-
terminantal point process (DPP). Due to the space limit, all
proofs in this section are provided in Appendix D.
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Figure 1. G-DPP. The squared volume of the grey cube equals to
det(L{Si

1,S
i
2,S

i
3}
). The probability of selecting {Si2, Si3} from

G-DPP (the yellow area) is smaller than that of selecting {Si1, Si2}
which has orthogonal payoff vectors. The diversity in Eq. (11) of
the population {Si1},{Si1, Si2},{Si1, Si2, Si3} are 0, 1, 1.21.

4.1. Determinantal Point Process
Originating in quantum physics for modelling repulsive
Fermion particles (Macchi, 1977; Kulesza et al., 2012), a
DPP is a probabilistic framework that characterises how
likely a subset of items is to be sampled from a ground set
where diverse subsets are preferred. Formally, we have

Definition 2 (DPP) For a ground set Y = {1, 2, ...,M}, a
DPP defines a probability measure P on the power set of Y
(i.e., 2Y ), such that, given an M ×M positive semi-definite
(PSD) kernel L that measures the pairwise similarity for
items in Y , and let Y be a random subset drawn from the
DPP, the probability of sampling ∀Y ⊆ Y is written as

DPP(L) := PL
(
Y = Y

)
∝ det

(
LY

)
= Volume2 ({wi}i∈Y )

where LY := [Li,j ]i,j∈Y denotes a submatrix of L whose
entries are indexed by the items included in Y . Given a
PSD kernel L = WW>,W ∈ RM×P , P ≤M , each row
wi represents a P -dimensional feature vector of item i ∈
Y , then the geometric meaning of det(LY ) is the squared
volume of the parallelepiped spanned by the rows of W that
correspond to the sampled items in Y .

A PSD matrix ensures all principal minors of L are non-
negative (i.e., det(LY ) ≥ 0,∀Y ⊆ Y), which suffices
to be a proper probability distribution. The normaliser
of PL(Y = Y ) can be computed by

∑
Y⊆Y det(LY ) =

det(L + I), where I is the M ×M identity matrix.

The entries of L are pairwise inner products between item
vectors. The kernel L can intuitively be thought of as rep-
resenting dual effects – the diagonal elements Li,i aim to
capture the quality of item i, whereas the off-diagonal ele-
ments Li,j capture the similarity between the items i and j.
A DPP models the repulsive connections among the items
in a sampled subset. For example, in a two-item subset,

since PL
(
{i, j}

)
∝
∣∣∣∣ Li,i Li,j

Lj,i Lj,j

∣∣∣∣ = Li,iLj,j − Li,jLj,i,

we know that if item i and item j are perfectly similar such
that wi = wj , and thus Li,j =

√
Li,iLj,j , then these two

items will not co-occur, hence such a subset of Y = {i, j}
will be sampled with probability zero.

4.2. Expected Cardinality: A New Diversity Measure
Our target is to find a population of diverse policies, with
each of them performing differently from other policies due
to their unique characteristics. Therefore, when modelling
the behavioural diversity in games, we can naturally use the
payoff matrix to construct the DPP kernel so that the simi-
larity between two policies depends on their performance in
terms of payoffs against different types of opponents.

Definition 3 (G-DPP, Fig. (1)) A G-DPP for each player
is a DPP in which the ground set is the strategy population
Y = S, and the DPP kernel L is written by Eq. (10), which
is a Gram matrix based on the payoff table M.

LS = MM> (10)

For learning in open-ended games, we want to keep adding
diverse policies to the population. This is equivalent to
say, at each iteration, if we take a random sample from the
G-DPP that consists of all existing policies, we hope the
cardinality of such a random sample is large (since policies
with similar payoff vectors will be unlikely to co-occur!).
In this sense, we can design a diversity measure based on
the expected cardinality of random samples from a G-DPP,
i.e., EY∼PLS

[
|Y|
]
. By the following proposition, we show

that computing such a diversity measure is tractable.

Proposition 4 (G-DPP Diversity Metric) The diversity
metric, defined as the expected cardinality of a G-DPP, can
be computed in O(|S|3) time by the following equation:

Diversity
(
S
)
= EY∼PLS

[
|Y|
]
= Tr

(
I− (LS + I)−1). (11)

A nice property of our diversity measure is that it is well-
defined even in the case when Y has duplicated policies,
as dealing with redundant policies turns out to be a criti-
cal challenge for game evaluation (Balduzzi et al., 2018b).
In fact, redundancy also prevents us from directly using
det
(
LS
)

as the diversity measure because the determinant
value becomes zero with duplicated entries.

Expected Cardinality vs. Matrix Rank. There is a funda-
mental difference between using expected cardinality and
using the rank of a payoff matrix as the diversity measure.
The matrix rank is the maximal number of linearly indepen-
dent columns, though it can measure the difference between
the columns, it cannot model the diversity. For example, in
RPS, a strategy of [99% Rock, 1% Scissor] and a strategy
of [98% Rock, 2% Scissor] are different but they are not
diverse as they both favour playing Rock. If one strategy
is added into the population whilst the other already exists,
the rank of the payoff matrix will increase by one, but the
increment on expected cardinality is minor. In Fig. (1),
adding the green strategy only contributes to the expected
cardinality by 0.21. This property is particularly important
for learning in games, in the sense that finding a diverse
policy is often harder than finding just a different policy. To
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summarise, we show the following proposition.

Proposition 5 (Maximum Diversity) The diversity of a
population S is bounded by Diversity

(
S
)
≤ rank(M),

and if M is normalised (i.e., ||M[i,:]|| = 1,∀i), we have
Diversity

(
S
)
≤ rank(M)/2. In both cases, maximal di-

versity is reached if and only if M is orthogonal.

Expected Cardinality vs. Effective Diversity. We also ar-
gue that the principles that underpin Eq. (7) and Eq. (11) are
different. Here we illustrate from the perspective of matrix
norm. Notably, maximising the effective diversity in Eq. (7)
is equivalent to maximising a matrix norm, in the sense that
ED(S) = 1

2 ‖π
∗ �M� π∗‖1,1 where � is the Hadamard

product and ‖A‖1,1 :=
∑
ij |aij |. In comparison, the propo-

sition below shows that maximising our diversity measure
in Eq. (11) will also maximise the Frobenius norm of M.

Proposition 6 (Diversity vs. Matrix Norm) Maximising
the diversity in Eq. (11) also maximises the Frobenius norm
of ‖M‖F , but NOT vice versa.

Geometrically, for a given matrix M, considering the box
which is the image of a unit cube (in the 3D case) that is
stretched by M, the Frobenius norm represents the sum
of lengths of all diagonals in that box regardless of their
directions (the orange lines in Fig. (1)). Therefore, whilst
the ‖ · ‖1,1 norm reflects the idea that ED(S) in Eq. (7)
accounts for the winners within the Nash support only, the
Frobenius norm, on the contrary, considers all strategies’
contribution to diversity. We show later that this results in
significant performance improvements over PSROrN .

Notably, it is worth highlighting that the opposite direction
of Proposition 6 is not correct, that is, maximising ‖M‖F
will NOT necessarily lead to a large diversity. A counter-
example in Fig. (1) is that, if one of the orange lines is long
but the rest are short, though the Frobenius norm is large,
the expected cardinality is still small. Thus, the diversity
metric in Eq. (11) cannot simply be replaced by ‖M‖F . We
also provide empirical evidence in Appendix F.

4.3. Diverse Fictitious Play
With the newly proposed diversity measure of Eq. (11), we
can now design diversity-aware learning algorithms. We
start by extending the classical FP to a diverse version such
that at each iteration, the player not only considers a best
response, but also considers how this new strategy can help
enrich the existing strategy pool after the update. Formally,
our diverse FP method maintains the same update rule as
Eq. (4), but with the best response changing into

BRi
ε(π
−i)

= argmax
π∈∆Si

[
Gi(π,π−i)+ τ ·Diversity

(
Si ∪ {π}

)]
(12)

where τ is a tunable constant. A nice property of diverse FP
is that the expected cardinality is guaranteed to be a strictly

concave function; therefore, Eq. (12) has a unique solution
at each iteration. We have the following proposition:

Proposition 7 (Uniqueness of Diverse Best Response)
Eq. (11) is a strictly concave function. The resulting best
response in Eq. (12) has a unique solution.

Intuitively, the diverse FP process will almost surely con-
verge to a GWFP process as long as τ → 0 and thus will
enjoy the same convergence guarantees as GWFP (i.e., to a
NE in two-player zero-sum or potential games). However,
in order to prove such connection rigorously, we need to
show the sequence of expected changes in strategy, which
is induced by finding a strategy that maximises Eq. (12) at
each iteration, is actually a uniformly bounded martingale
sequence that satisfies Eq. (5). We show the below theorem:

Theorem 8 (Convergence of Diverse FP) The perturba-
tion sequence induced by diverse FP process is a uniformly
bounded martingale difference sequence; therefore, diverse
FP shares the same convergence property as GWFP.

4.4. Diverse Policy-Space Oracle
When solving NFGs, the total number of pure strategies is
known and thus a best response in Eq. (12) can be computed
through a direct search, and the uniqueness of the solution
is guaranteed by Proposition 7. When it comes to solving
open-ended (meta-)games, the total number of policies is
unknown and often infinitely many. Therefore, a best re-
sponse has to be computed through optimisation subroutines
such as gradient-based methods or RL algorithms. Here we
extend our diversity measure to the policy space and develop
diversity-aware solvers for open-ended (meta-)games.

In solving open-ended games, at the t-th iteration, the algo-
rithm maintains a population of policies Sit learned so far by
player i. Our goal here is to design an Oracle to train a new
strategy Sθ, parameterised by θ ∈ Rd (e.g., a deep neural
net), which both maximises player i’s payoff and is diverse
from all strategies in Sit. Therefore, we define the ground
set of the G-DPP at iteration t to be the union of the existing
Sit and the new model to add: Yt = Sit ∪

{
Sθ

}
.

With the ground set at each iteration, we can compute the
diversity measure by Eq. (11). Subsequently, the objective
of an Oracle can be written as

O1(π2) = argmax
θ∈Rd

∑
S2∈S2

π2(S2) · φ(Sθ, S
2) (13)

+ τ ·Diversity
(
S1 ∪

{
Sθ

})
where π2(·) is the policy of the player two; depending on

the game solvers, it can be NE, UNIFORM, etc.

Based on Eq. (13), we can tell that the diversity of policies
during training comes from two aspects. The obvious aspect
is from the expected cardinality of the G-DPP that forces
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Figure 2. Exploitability and diversity vs. training iterations (num-
ber of times a solution concept is computed) on the AlphaStar
meta-game (size 888 × 888). Our method achieves the lowest
exploitability by finding a diverse population of 50 policies.

agents to find diverse policies. The less obvious aspect is
from how the opponents are treated. Although the (meta-
)policy of player 2 is determined by π2(·), the learning
player will have to focus on exploiting certain aspects of
π2(·) in order to acquire diversity. This is similar in manner
to selecting a diverse set of opponents. Theoretically, we
are able to show that our diversity-aware Oracle can strictly
enlarge the gamescape. Unlike PSROrN (see Proposition 6
in Balduzzi et al. (2019)), we do NOT need to assume the
opponents are playing NE before reaching the result below.

Proposition 9 (Gamescape Enlargement) Adding a new
best-response policy Sθ via Eq. (13) strictly enlarges the
gamescape. Formally, we have

Gamescape
(
S
)
( Gamescape

(
S ∪

{
Sθ

})
.

Implementation of Oracles. When the game engine φ is
differentiable, we can directly apply gradient-based methods
to solve Eq. (13). In general, many real-world games are
black-box, thus we have to seek for gradient-free solutions
or model-free RL algorithms. To tackle this, we provide
zero-order Oracle and RL-based Oracle as approximation
solutions to Eq. (13), and list their pseudocode and time
complexity in Appendix H.

4.5. Diverse Oracle for α-Rank
We also develop diverse Oracles that suit α-Rank. Note that
α-Rank is a replacement solution concept for NE on N -

player general-sum games; therefore, the goal of learning is
finding all SSCCs on the response graph. Since the standard
best response does not have convergence guarantees, we
introduce a diversity-aware extension based on α-PSRO
(Muller et al., 2019) whose Oracle is written in Eq. (6).
Specifically, we adopt the quality-diversity decomposition
of DPP (Affandi et al., 2014) to unify Eq. (6) and Eq. (11).
Given L = WW>, we can rewrite the i-th row of W to
be the product of a quality term qi ∈ R+ and a diversity
feature wi ∈ RP , thus Lij = qiwiw

>
j qj . We design the

quality term to be the exponent of the PBR value in Eq. (6),
and the diversity feature follows G-DPP in Eq. (10), that is,

qi = exp
(
Eπ−i

[
1[Mi(σ, S−i) >Mi(Si, S−i)]

])
,wi =

M[i,:]

‖M‖F
.

The resulting diversity-aware Oracle that suits α-Rank is:

Oit(π−i) = argmax
π∈∆Si

Tr
(
I−

(
LSit∪{π}

+ I
)−1
)
. (14)

The following theorem shows the convergence result of our
diverse α-PSRO to SSCC on two-player symmetric NFGs.

Theorem 10 (Convergence of Diverse α-PSRO)
Diverse α-PSRO with the Oracle of Eq. (14) con-
verges to the sub-cycle of the unique SSCC in the
two-player symmetric games.

5. Experiments & Results
We compare our diversity-aware solvers with state-of-the-
art game solvers including self-play, PSRO (Lanctot et al.,
2017), Pipeline-PSRO (McAleer et al., 2020), rectified
PSRO (Balduzzi et al., 2019), and α-PSRO (Muller et al.,
2019). We investigate the performance of these algorithms
on both NFGs and open-ended games. Our selected games
involve both transitive and non-transitive dynamics. If an
algorithm fails to discover a diverse set of policies, it will
be trapped in some local strategy cycles that are easily ex-
ploitable (e.g., recall the illustrative example of the RPS-X
game in Section 3.4, and see how our method can tackle this
game in Appendix C. Therefore, we focus on the evaluation
metrics of exploitability in Eq. (1) and how extensively the
gamescapes are explored. We note that the confidence inter-
vals represented in Figs. (2, 4a, 4b) represent the standard
deviation in the exploitability at each iteration over multiple
seeds, where the number of seeds is reported in Appendix G.
One exception is the comparison between α-PSRO and di-
verse α-PSRO, since the solution concept is α-Rank, instead
of exploitability that measures distance to a NE, we apply
the metric of PCS-score (Muller et al., 2019) – the number
of SSCC that has been found – for fair comparison. We
provide an exhaustive list of hyper-parameter and reward
settings in Appendix G.

Real-World Meta-Games. We test our methods on the
meta-games that are generated during the process of solving
28 real-world games (Czarnecki et al., 2020), including
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Figure 3. Non-transitive mixture model. Exploration trajectories during training and Performance vs. Diversity comparisons.
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Figure 4. a) Performance of our diverse PSRO vs. PSRO, diverse PSRO vs. PSROrN on the Blotto Game, b) PCS-Score comparison of
our diverse α-PSRO vs. α-PSRO on NFGs with variable sizes.

AlphaStar and AlphaGO. In Fig. (2), we report the results
over the AlphaStar game that contained the meta-payoffs for
888 RL policies, and report the results of the other 27 games
in Appendix E. We used Algorithm 2 in Appendix H where
agents are defined at the metagame level and correspond to
mixed strategies of the underlying game. The results show
that our diverse-PSRO method will, at worst, perform as
well as existing PSRO baselines, but in many cases (e.g.,
Fig 2,3,4) will outperform in terms of exploitability, and
will always outperform in terms of diversity. In particular,
we believe that the performance advantage comes from the
fact that without accounting for behavioural diversity, PSRO
baselines tend to enter into a cyclic phase where repetitive
strategies already in the population are found, whereas our
diversifying measure can help discover novel strategies that
consequently lead to lower exploitability. While many of
the baselines have saturated in finding diverse strategies,
our method keeps finding novel effective strategies which
leads to a near zero exploitability in almost all 28 games.
In AlphaStar, our method achieves the best performance
by only using less than 50 out of 888 RL policies, and
with the population size growing, the exploitability keeps
approaching zero while other methods saturate.

Non-Transitive Mixture Model. This game consists of
seven equally-distanced Gaussian humps on the 2D plane.
Each strategy corresponds to a point on the 2D plane, which,
equivalently, represents the weights that each player puts on
the humps, measured by the likelihood of that point in each

Gaussian distribution. The payoff of the game that includes
both non-transitive and transitive components is given by:

π
1,>


0 1 1 1 −1 −1 −1
−1 0 1 1 1 −1 −1
−1 −1 0 1 1 1 −1
−1 −1 −1 0 1 1 1
1 −1 −1 −1 0 1 1
1 1 −1 −1 −1 0 1
1 1 1 −1 −1 −1 0

π
2

+
1

2

7∑
k=1

(π
1
k − π

2
k).

Since there are infinite number of points on the 2D plane,
this game is open-ended. A winning player must learn to
stay close to the Gaussian centroids whilst also exploring
all seven Gaussians to avoid being exploited. In Fig. (3),
we show the exploration trajectories for different algorithms
along with the plot of exploitability vs. diversity. Results
suggest that both PSRO and PSROrN fail to complete the
task; we believe it is due to the same reason as RPS-X where
strategy cycling occurs. In contrast, DPP-PSRO solves
the task almost perfectly, reaching zero exploitability, by
generating a population of diverse and effective strategies.

Colonel Blotto. Blotto is a classical resource allocation
game that is widely analysed for election campaigns (Rober-
son, 2006). In this game, two players have a budget of coins
which they simultaneously distribute over a fixed number of
areas. An area is won by the player who puts the most coins,
and the player that wins the most areas wins the game. We
report the results on the game with 3 areas and 10 coins over
10 games. We test how a diverse PSRO player performs
in terms of exploitability against a PSRO and a PSROrN

player, respectively. Fig. (4a) shows that our method (dark
colours) consistently achieves a lower exploitability than the
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opponent player of either PSRO or PSROrN (light colours).

Diverse α-PSRO. As the PBR in Eq. (6) requires looping
through all strategies in Si, we test our method on randomly
generated zero-sum NFGs with varying dimensions. We
do not employ the novelty-bound suggested in Muller et al.
(2019) to illustrate how the original α-PSRO displays strong
cyclic behaviour, which stops it from finding even a few
underlying SSCC elements. Results in Fig. (4b) suggest
that our diverse α-PSRO can effectively prevent the learner
from exploring the same strategic cycles during training;
it is therefore able to find more SSCCs of α-Rank, and
outperform α-PSRO on the PCS-score.

6. Conclusion
We offer a geometric interpretation of behavioural diversity
for learning in games by introducing a new diversity mea-
sure built upon the expected cardinality of a DPP. Based on
the diversity metric, we propose general solvers for normal-
form games and open-ended (meta-)games. We prove the
convergence of our methods to NE and α-Rank in two-
player games, and show theoretical guarantees of expanding
the gamescapes. On tens of games, our methods achieve
lower exploitability than PSRO variants by finding both
effective and diverse strategies.
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Pérolat, J., Jaderberg, M., and Graepel, T. Open-ended
learning in symmetric zero-sum games. In ICML, vol-
ume 97, pp. 434–443. PMLR, 2019.

Banzhaf, W., Baumgaertner, B., Beslon, G., Doursat, R.,
Foster, J. A., McMullin, B., De Melo, V. V., Miconi, T.,
Spector, L., Stepney, S., et al. Defining and simulating

open-ended novelty: requirements, guidelines, and chal-
lenges. Theory in Biosciences, 135(3):131–161, 2016.

Barto, A. G. Intrinsic motivation and reinforcement learn-
ing. In Intrinsically motivated learning in natural and
artificial systems, pp. 17–47. Springer, 2013.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based explo-
ration and intrinsic motivation. In Advances in neural
information processing systems, pp. 1471–1479, 2016.

Brown, G., Wyatt, J., Harris, R., and Yao, X. Diversity cre-
ation methods: a survey and categorisation. Information
Fusion, 6(1):5–20, 2005.

Brown, G. W. Iterative solution of games by fictitious play.
Activity analysis of production and allocation, 13(1):374–
376, 1951.

Candogan, O., Menache, I., Ozdaglar, A., and Parrilo, P. A.
Flows and decompositions of games: Harmonic and po-
tential games. Mathematics of Operations Research, 36
(3):474–503, 2011.

Chen, X., Deng, X., and Teng, S.-H. Settling the complexity
of computing two-player nash equilibria. Journal of the
ACM (JACM), 56(3):1–57, 2009.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. Robots
that can adapt like animals. Nature, 521(7553):503–507,
2015.

Czarnecki, W. M., Gidel, G., Tracey, B., Tuyls, K., Omid-
shafiei, S., Balduzzi, D., and Jaderberg, M. Real world
games look like spinning tops. arXiv, pp. arXiv–2004,
2020.

Daskalakis, C., Goldberg, P. W., and Papadimitriou, C. H.
The complexity of computing a nash equilibrium. SIAM
Journal on Computing, 39(1):195–259, 2009.

Davis, T., Burch, N., and Bowling, M. Using response func-
tions to measure strategy strength. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 28,
2014.

Dinh, L. C., Yang, Y., Tian, Z., Nieves, N. P., Slumbers, O.,
Mguni, D. H., and Wang, J. Online double oracle. arXiv
preprint arXiv:2103.07780, 2021.

Durham, W. H. Coevolution: Genes, culture, and human
diversity. Stanford University Press, 1991.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. Diversity
is all you need: Learning skills without a reward function.
In International Conference on Learning Representations,
2018.



Modelling Behavioural Diversity for Learning in Open-Ended Games

Fogel, D. B. Evolutionary computation: toward a new
philosophy of machine intelligence, volume 1. John Wiley
& Sons, 2006.

Fudenberg, D. and Levine, D. Consistency and cautious fic-
titious play. Journal of Economic Dynamics and Control,
1995.

Fudenberg, D., Drew, F., Levine, D. K., and Levine, D. K.
The theory of learning in games, volume 2. MIT press,
1998.

Gangwani, T., Peng, J., and Zhou, Y. Harnessing distribu-
tion ratio estimators for learning agents with quality and
diversity. arXiv preprint arXiv:2011.02614, 2020.

Gregor, K., Rezende, D. J., and Wierstra, D. Variational
intrinsic control. 2017.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
ICML, 2017.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
Conference on Machine Learning, pp. 1861–1870, 2018.

Hausman, K., Springenberg, J. T., Wang, Z., Heess, N.,
and Riedmiller, M. Learning an embedding space for
transferable robot skills. In International Conference on
Learning Representations, 2018.

Hernández-Orallo, J. The measure of all minds: evaluating
natural and artificial intelligence. Cambridge University
Press, 2017.

Holland, J. H. et al. Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. MIT press,
1992.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L.,
Lever, G., Castaneda, A. G., Beattie, C., Rabinowitz,
N. C., Morcos, A. S., Ruderman, A., et al. Human-level
performance in 3d multiplayer games with population-
based reinforcement learning. Science, 364(6443):859–
865, 2019.

Kulesza, A., Taskar, B., et al. Determinantal point pro-
cesses for machine learning. Foundations and Trends®
in Machine Learning, 5(2–3):123–286, 2012.

Kurach, K., Raichuk, A., Stańczyk, P., Zajac, M., Bachem,
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