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Abstract—In this work, we concentrate on designing the
precoder for the multiple-input multiple-output (MIMO) dual
functional radar-communication (DFRC) system, where the dual-
functional waveform is designed for performing multiuser down-
link transmission and radar sensing simultaneously. Specifi-
cally, considering the signal-independent interference and signal-
dependent clutter, we investigate the optimization of transmit
precoding for maximizing the sensing signal-to-interference-plus-
noise ratio (SINR) at the radar receiver under the constraint of
the minimum SINR received at multiple communication users
and per-antenna power budget. The formulated problem is
challenging to solve due to the nonconovex objective function
and nonconvex per-antenna power constraint. In particular, for
the signal-independent interference case, we propose a distance-
majorization induced algorithm to approximate the nonconvex
problem as a sequence of convex problems whose optima can be
obtained in closed form. Subsequently, our complexity analysis
shows that our proposed algorithm has a much lower computa-
tional complexity than the widely-adopted semidefinite relaxation
(SDR)-based algorithm. For the signal-dependent clutter case, we
employ the fractional programming to transform the nonconvex
problem into a sequence of subproblems, and then we propose
a distance-majorization based algorithm to obtain the solution
of each subproblem in closed form. Finally, simulation results
confirm the performance superiority of our proposed algorithms
when compared with the SDR-based approach. In conclusion,
the novelty of this work is to propose an efficient algorithm for
handling the typical problem in designing the DFRC precoder,
which achieves better performance with a much lower complexity
than the state-of-the-art algorithm.

Index Terms—Dual-functional radar-communication, radar
sensing, transmit precoding, signal-independent interference,
signal-dependent clutter,

I. INTRODUCTION

Wireless communications and radar sensing have devel-
oped in parallel for decades. Although there are many com-
monalities in their signal processing approaches and signal
waveforms, their developments have had limited intersections.
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However, as wireless communications research progresses to-
wards 5G-Advanced and 6G wireless networks, robust sensing
functionality as well as reliable wireless connectivity are
both regarded as important features, especially for location-
aware services [1], [2]. Accordingly, the research on integrated
sensing and communication (ISAC) has received increasing
attention in recent years [3]–[5].

Generally speaking, the research on ISAC has been con-
ducted in two main directions, i.e., the coexistence of
radar and communication (CRC) and dual functional radar-
communication (DFRC). CRC focuses on efficient man-
agement of the mutual interference between radar sensing
and wireless communications [6], [7] and it dates back
to 1960s [8]. To maximize the efficiency of coexistence,
the CRC time allocation was studied in [9]. The work of
[10] presented a spectral co-design for a statistical multiple-
input multiple-output (MIMO) radar and full-duplex multiuser
MIMO communications. In [11], a distributed beamforming
design approach was proposed for a joint distributed radar-
communications coexisting system. Employing multicarrier
waveforms, the authors of [12] considered the power allocation
design for handling the CRC spectrum sharing problem in
cluttered environments. By exploring constructive interference,
the work of [13] proposed a novel CRC coexistence mecha-
nisms. The energy efficiency optimization of the coexistence of
multiple-input multiple-output (MIMO) communications and
surveillance radar was considered in [14]. Different from CRC,
DFRC concentrates on designing a common signal waveform
on the same hardware platform for realizing radar sensing
and communications simultaneously [3], [4]. The key technical
challenge of DFRC is how to design a common waveform to
achieve the two functionalities of sensing and communications
simultaneously.

The authors of [4] pointed out that DFRC research can
be broadly divided into three directions: radar-centric design,
communication-centric design, and joint design. In radar-
centric design, the communication signal is embedded in
radar pulses. For example, the work of [15] employed linear
frequency modulated (LFM) signaling to integrate a simple
search radar and digital communications function. The work
of [16] adopted a multi-objective optimization algorithm to
design an integrative waveform for intrapulse radar-embedded
communications. Besides, the authors of [17] proposed a new
frequency modulation (FM) scheme for embedding commu-
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nication signals into radar waveforms under the constraint of
constant envelope constraint.

Communication-centric designs use the communication
waveform to realize radar-sensing functionality whose design
priority is still on communications. Such a design philosophy
of building perceptive mobile networks with the added radar
sensing is attractive and actively investigated [18], [19]. The
seminal work of [20] studied the design of communica-
tion waveforms, which can perform data transmission and
radar sensing simultaneously. After that, the study on the
communication-centric designs received the increasing atten-
tions [19]. Considering MIMO DFRC systems, the authors
of [18] employed the symbol-level precoding approach to
design the transmit signal waveform for radar sensing and
multiuser broadcasting. In [21], the authors jointly employed
the space-time adaptive processing and symbol-level precoding
approaches to design the signal waveform and receiving filter
for maximizing radar sensing signal-to-interference-plus-noise
ratio (SINR) under the constraints of communication quality-
of-service (QoS) and waveform. Considering that the radar
target may be a potential eavesdropper, the authors of [22]
proposed to design the transmit waveform for maximizing the
SINR of the radar under the physical layer security constraint.
The work in [23] further considered the joint optimization of
communication signal and artificial noise for securing wireless
communications and guaranteeing radar sensing performance.

The joint designs separated the waveform optimization from
existing communication and radar standards and offered a
trade-off between radar sensing and communications [24].
The advanced development of multi-antenna technology has
provided sufficient spatial degrees-of-freedom (DoF) to wire-
less communications, especially for massive MIMO, which
provided another design approach for the joint design in the
spatial domain [4]. The work in [25] proposed MIMO DFRC
beamforming designs for minimizing the Cramér-Rao bound
while guaranteeing communication QoS constraints. Adopting
the weighted sum of multi-user interference, waveform simi-
larity, and integrated sidelobe level as the objective function,
the work in [26] investigated the DFRC waveform design
for balancing the performance of communications and radar
sensing. The authors of [27] proposed several approaches for
investigating the optimal design of DFRC waveform under
radar-specific constraints. Furthermore, the authors of [28] pro-
posed a constructive interference based precoder optimization
approach to design the waveform for achieving a favorable
trade-off between radar and communications. In [29], a Pareto
optimization framework was proposed for MIMO DFRC, with
an achievable radar-communication performance region.

However, the works mentioned above all adopted the
symbol-level precoding to design the instantaneous DFRC
waveform, whose computational complexity is high when
considering the time-varying feature of communication sig-
nals [30]. To realize a low-complexity design, several works
resorted to design the transmit precoder by making the average
covariance satisfy the radar sensing performance. For instance,
the work of [30] proposed to adopt the weighted sum of radar
waveform and communication signals for achieving DFRC
functionality and a semidefinite relaxation (SDR)-based algo-

rithm is proposed to design the precoders of communication
symbols and radar waveform. Subsequently, the authors of [31]
fixed the covariance of the transmit waveform as the optimal
radar waveform for guaranteeing radar sensing performance
and optimized the transmit precoders of communication sig-
nals and radar waveform for balancing the SINR received
at multiple communication users. Besides, the work of [32]
adopted the rate-splitting multiple access technique to split the
message into a radar sequence and communication signals and
designed their precoders for achieving DFRC functionality.
Moreover, the work of [33] proposed to adopt non-orthogonal
multiple access to design a novel double spectrum sharing
strategy for facilitating the system design of joint radar and
multicast-unicast communications. In addition, the authors of
[34] developed an integrated communication, radar sensing,
and mobile-edge computing architecture, which jointly con-
sidered the radar sensing, multiuser broadcasting, and compu-
tation offloading energy consumption and the authors built a
multi-objective optimization problem to perform the resource
allocation. In conclusion, the added radar probing signals not
only increase the available spatial DoF, but also facilitate the
precoder design [30], [31]. However, it is worth noting that the
added probing signals exclusive to radar sensing will increase
the interference of wireless networks and degrade the network
performance. From the perspective of network interference
management, it is better to only transmit communication sig-
nals and optimize the communication precoder for achieving
the DFRC functionality [35]. Following this idea and consid-
ering MIMO radar and multiuser MIMO communications, the
authors of [36] adopted the successive convex approximation
(SCA) approach to design the precoder of communication
signals for achieving radar sensing and multiuser broadcasting.
Considering the issues of hybrid transmit beamforming de-
sign and direction-of-arrival estimation in multi-carrier DFRC
systems, the authors of [37] proposed a consensus alternat-
ing direction method of multipliers framework for handling
the resulting nonconvex optimization problem. Besides, the
authors of [38] considered the beamforming optimization of
a DFRC BS, where the energy efficiency of the multiuser
communication is maximized under the constraints of radar
sensing performance. The work in [39] studied the limited
feedforward waveform design for orthogonal frequency divi-
sion multiplexing (OFDM) DFRC systems, which considers
both the minimization of the Cramér-Rao bound on delay-
Doppler estimation and the maximization of the communica-
tions rate under radar similarity constraint. Considering full-
duplex communications for DFRC, the authors of [40] studied
the joint optimization of the downlink dual-functional transmit
signal, the uplink receive beamformers at the BS, and the
transmit power at the uplink users. The work in [41] studied
the precoder design for MIMO DFRC systems, where radar
and communication modes use distinct baseband waveforms
and the corresponding precoders are optimized for spatial
multiplexing. The novelty of our work is boldly and explicitly
contrasted to the open literature in Table-I

Nevertheless, the DFRC precoder optimization problem
is nonconvex in most cases. For handling this challenging
problem, the works mentioned above adopted SDR or SCA-
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TABLE I
OVERVIEW OF EXISTING LITERATURE

Feautures Proposed [35] [14] [7] [39] [40] [41] [11] [10] [29] [22] [25]
DFRC System Design ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

OFDM Waveform ✓ ✓ ✓
Multiuser Interference ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
SDR-Based Approach ✓ ✓ ✓

Radar Waveform Constraints ✓ ✓ ✓ ✓ ✓
Dedicated Radar Signal ✓ ✓ ✓ ✓ ✓ ✓ ✓

Signal Covariance Design ✓ ✓
Sensing SINR Maximization ✓ ✓ ✓
Broadcast Communciations ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spectrum Sharings ✓ ✓ ✓ ✓
Uplink Communications ✓ ✓ ✓

Clutter Interference ✓ ✓ ✓ ✓
Physical Layer Security ✓

based algorithms to approximate the nonconvex problem as
a sequence of convex problems to locate a suboptimal so-
lution. However, SDR-based algorithms lift the dimension
of optimization variables that increases the computational
complexity. In addition, the SCA-based algorithm needs a fea-
sible solution to enable the iterative algorithm, but a feasible
solution is also very difficult to obtain. Until now, there is still
a lack of an efficient algorithm for handling the nonconvex
optimization problem.

Against this background, this work proposes a distance-
majorization [42] induced low-complexity algorithm for han-
dling the DFRC precoder design. In our considered DFRC
system, a dual-functional base station (BS) performs radar
sensing to detect the targets in the presence of interfer-
ence and acts as a wireless broadcast transmitter to serve
multiple downlink users. Considering the signal-independent
interference [36], [43], [44] and signal-dependent clutter [45],
[46] respectively, we investigate the precoder optimization
problem to maximize the sensing SINR of the radar under
the constraints of the minimum SINR received at multi-
ple communication users and per-antenna power budget. In
particular, by employing the distance-majorization algorithm,
we approximate the considered problem as a sequence of
unconstrained convex problems whose analytical solutions can
be obtained in closed form. Accordingly, we can derive a low-
complexity DFRC precoder optimization algorithm. The key
challenges lie in reformulating the complex-domain optimiza-
tion problem as its real counterpart and obtaining the closed-
form solution of the subproblem at each iteration. Besides,
it is also challenging to establish the convergence of our
proposed distance-majorization algorithm to Karush-Kuhn-
Tucker (KKT) solutions of the original nonconvex problem
due to the problem reformulation. Our main contributions are
summarized as follows.

1) Considering the signal-independent interference, we
adopt the distance-majorization algorithm to incorporate
the minimum received SINR constraint and per-antenna
power budget into the objective function. Then, the con-
strained nonconvex optimization problem is approximated

as a sequence of unconstrained convex problems. More-
over, we prove that the approximate problem has the same
optimal solution as the original problem. Subsequently,
we obtain the analytical solution of each subproblem
in closed form through exploiting the Karush-Kuhn-
Tucker (KKT) conditions, which bypasses the need of
implementing the interior point method to handle an op-
timization problem and obtains a low-complexity design.

2) Considering the signal-dependent clutter, the precoder
design is a nonconvex optimization problem due to the
nonconvex objective function and constraints. We adopt
the fractional programming approach [47] for transform-
ing the nonconvex objective function into a multivariate
function that facilitates solving the problem. This is
because the obtained multivariate function is a convex
function of any variable when fixing the other ones. Then,
we propose an alternating optimization algorithm to solve
the problem iteratively. For handling the subproblem
during the iteration, we propose a distance-majorization
induced algorithm to solve it in closed form.

3) Our computational complexity analysis shows that our
proposed distance-majorization induced algorithm has a
much lower complexity than the SDR-based algorithm.
Moreover, for the signal-independent interference case,
our numerical results show that compared with the SDR-
based algorithm, our proposed algorithm not only arrives
at a better radar beampattern with larger power gains
at the target directions and lower nulling beamformer at
the interfering directions, but also acquires a larger radar
sensing SINR.

4) Considering the tracking scenario, the performance of our
proposed precoder design approach has been validated
by numerical results. Specifically, we design the DFRC
precoder with the imperfect angle estimation obtained by
the extended Kalman filter (EKF)-based tracking filter,
which can guarantee a very reliable target tracking perfor-
mance in the presence of signal-independent interference
and signal-dependent clutter.

Notation: ⊗, (· )T , (· )H , || · ||∗, || · ||2, and ||· ||F denote
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Fig. 1. Illustration of the considered MIMO-DFRC system.

the Kronecker product, the transpose, the conjugate transpose,
the nuclear norm, the L2 norm, and the Frobenius norm of a
matrix, respectively; Tr (· ) and (· )−1 denote the trace and the
inverse of a square matrix, respectively; Cn×n stands for an
n × n complex matrix and SN+ denotes the set of Hermitian
positive semi-definite N × N matrices; x ∼ CN (Λ,∆)
denotes the circularly symmetric complex Gaussian vector
having a mean vector of Λ and covariance matrix of ∆.
IN is the N × N identity matrix. E(·) is the expectation
operator. Diag (a1, . . . ,aN ) denotes a block diagonal matrix
where a1, . . . ,aN are the main-diagonal blocks. R(a) and
I(a) denote the real and imaginary parts of a complex number
a, respectively. O (·) is the big-O notation. ▽ (·) denotes the
gradient operator.

II. SYSTEM MODEL

As illustrated in Fig. 1, this work studies a MIMO DFRC
system, where a multi-antenna BS serves K users in the
downlink broadcast channel while performing radar sensing.
The dual functional radar-communication is achieved by de-
signing the transmit waveform. Following [36], [48], we only
adopt the communication waveform to perform radar sensing,
since such an assumption requires minimal changes in existing
wireless communication systems and does not introduce extra
interference to wireless networks. Assuming that the BS is
equipped with Nt transmit antennas and NR receive antennas,
we denote the transmitted signal in L time-slots as

x = Ws, (1)

where the digital baseband precoder is defined
by W ∈ CNt×K and the communication signal
s ≜

[
sT (1), . . . , sT (L)

]T ∈ CK×L. In addition, following
[30], [31], [49], the communication signals intended
to different users are assumed to be uncorrelated, i.e.,
E
(
ssH

)
= IK .

The objective of this work is to study the optimization of
the precoder W for maximizing the radar sensing performance
subject to multiple users’ individual quality of service (QoS)
constraints.

A. Multiuser Communication Performance

With the transmit signal x given in (1), the signal yk

received at the kth user can be derived as

yk = hH
k x+ nk

= hH
k W(:, k)s(k, :) +

∑
j ̸=k

hH
k W(:, j)s(j, :)︸ ︷︷ ︸

Multual Interference

+ nk, (2)

where W(:, k) is the kth column of W and s(k, :) is the kth
row of s. Besides, hH

k ∈ C1×Nt is the downlink Rayleigh
fading channel from the BS to the kth user whose elements
are assumed to follow CN (0, 1) and nk ∼ CN (0, σ2

c ) is the
received noise.

Based on the assumptions above, the receiver SINR at the
kth user is given by

ϱc,i (W) ≜
|hH

i W(:, i)|2∑
j ̸=i h

H
i W(:, j) (W(:, j))

H
hi + σ2

c

. (3)

B. MIMO Radar Sensing Performance

The signal received at the radar receiver is given by

x0 = tHy0 = tHA(υ)Ws+ tHc+ tHz0, (4)

where t is the linear receive filter adopted at the
radar, αi is the ith target radar cross section, A(υ) =∑

1≤i≤M αiαr(υi)α
T
t (υi), where M is the number of tar-

gets, at(υi) =
[
1, . . . , e−j2π(Nt−1)∆tsin(υi)

]T
, and ar(υi) =[

1, . . . , e−j2π(Nr−1)∆rsin(υi)
]T

are respectively the steering
vectors for the receive and transmit signals. In addition,
∆t and ∆r are antenna elements separation distances nor-
malized by the wave length, z0 =

[
zT0 (1), . . . , z

T
0 (L)

]T
is

the received noise, and z0(l) ∼ CN
(
0, σ2

rINr

)
. Besides,

c ≜
[
cT (1), . . . , cT (L)

]T ∈ CNr×L denotes the received
interference which can be modeled as signal-independent
interference [36], [43], [44] or signal-dependent clutter [45],
[46].

This paper considers the radar tracking scenario to design
the DFRC precoders, where the number and angles of the
targets can be acquired in the radar search mode to enable
target tracking. Besides, the number and angles of the targets
can also be regarded as the directions of interest needed to
sensing, where the DFRC base station (BS) emits signals
to detect potential targets in M spatial directions. Therefore,
following existing works on DFRC, e.g., [18], [21]–[36], we
assume that the number and angles of the targets are available
and the output SINR of the radar can be calculated as [36],
[43], [45]

ω (t,W) =
tHA(υ)WssHWHAH(υ)t

tHccHt+ tHz0zH0 t
. (5)
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As shown in [45], the optimal t∗ is the solution of minimum
variance distortionless response (MVDR) problem solution,
given by

t∗ =

(
ccH + z0z

H
0

)−1
A(υ)Ws

sHWHA(υ)H
(
ccH + z0zH0

)−1
A(υ)Ws

. (6)

Then, substituting (6) into (5), the output SINR of the radar
can be calculated as

ω̄ (W) = Tr
(
sHWHAH(υ)

(
ccH + z0z

H
0

)−1
A(υ)Ws

)
= Tr

(
ssH

L
WHAH(υ)

(
ccH

L
+

z0z
H
0

L

)−1

A(υ)W

)
(a)
≈ Tr

(
ΘWWH

)
, (7)

where Θ ≜ AH(υ)
(
Rc + σ2

cINr

)−1
A(υ). In addition, step

(a) holds asymptotically for a sufficiently large L [25], [31],
since E

(
ssH

)
= IK and c(i) ∼ C (0,Rc). The accuracy of

such an asymptotic result has been validated by simulation
results in [31, Section VII-F and VII-G].

We formulate the precoder design problem as the following
constrained optimization problem, which maximizes the SINR
of the MIMO radar under the minimal SINR received at each
user and per-antenna power constraint, i.e.,

max
W

Tr
(
ΘWWH

)
(8a)

s.t. ϱc,i ≥ Ri,∀i ∈ {1, . . . ,K} (8b)

diag
(
WWH

)
=
Ptot

Nt
I, (8c)

where Ri is the SINR constraint of the ith user. Besides,
we adopt the constant per-antenna power constraint, since the
radar needs a per-antenna power control for transmitting the
signal with maximal power budget [18], [26], [30].

Problem (8) is nonconvex due to the nonconvexity of the
objective function and constraint (8c). For handling problem
(8), traditional methods reformulate it as the rank-constrained
SDP [30]. However, different from [30, Theorem 1], the
rank-1 solution of problem (8) does not always exist due to
the absence of the dedicated beamforming matrix for radar
waveforms. Therefore, when applying the SDR algorithm,
extra work is needed to reconstruct a rank-1 solution, e.g.,
using the Gaussian randomization method [50] and penalty-
based approach [33], whose complexity is high. We adopt the
penalty-based algorithm as the benchmark to perform the per-
formance comparison, whose details are given in Appendix C.
As an alternative, this work employs the distance-majorization
induced algorithm [42] to propose a low-complexity joint
design algorithm, which adopts the deviation of the solution
from the feasible region as the penalty to transform the non-
convex optimization problem into a sequence of unconstrained
problems whose solutions can be derived in closed-form.

In the following, we first consider the signal-independent
(exogenous) interference including interference from other
radiators [44] to investigate the optimization of the precoder
W, which can be decomposed into a sequence of convex
problems by employing our proposed distance majorization al-
gorithm. Then, in Section IV, we consider the signal-dependent

(endogenous) interference due to the clutter generated by
the scatterers proximity to the radar for designing the pre-
coder W, which is nonconvex since the objective function
and the per-antenna power constraint are both nonconvex.
We jointly exploit the distance majorization algorithm and
fractional programming [47] to design an iterative algorithm
for transforming the nonconvex optimization problem into a
sequence of convex unconstrained problems.

III. SIGNAL-INDEPENDENT INTERFERENCE CASE

In this section, we first consider the signal-independent
interference which is distributed as CN (0, I) [36]. The cor-
responding covariance matrix Rc is constant, i.e., Rc ≜∑N

i=1 |βi|2ar(ψi)a
T
t (ψi), where N is the number of clutters

and βi is the amplitude of the ith interfering signal located at
angle ψi.

A. Distance Majorization Algorithm Induced Precoder Design

With no loss of optimality, by introducing additional phase
shifting to W(:, i) for making I

(
hH
i W(:, i)

)
= 0, the SINR

constraint (8b) can be recasted as√
1 +

1

Ri
hH
i Eiw ≥ ||Hiw + bi||F , I

(
hH
i Eiw

)
= 0, (9)

where

w =
[
WT (:, 1),WT (:, 2), . . . ,WT (:,K)

]T ∈ CKNt×1,

bi =
[
0Nt

, σ2
c

]T ∈ C(K+1)×1,

Ei =

0, . . . ,0︸ ︷︷ ︸
i−1

, I,0, . . . ,0︸ ︷︷ ︸
K−i

 ∈ CNt×KNt ,

Hi =

[
DIAG

(
hH
i ,h

H
i , . . . ,h

H
i

)
0T
Nt×1

]
∈ C(K+1)×NtK .

To facilitate the algorithm design, we use the following
identity [

R (Hw)
I (Hw)

]
=

[
R(H), −I(H)
I(H), R(H)

] [
R(w)
I(w)

]
. (10)

First, we reformulate the complex vector as its real counter-
part, given by

max
w̄

w̄T Θ̄w̄ (11a)

s.t.

√
1 +

1

Ri
gi,1w̄ ≥ ||H̄iw̄ + b̄i||F ,∀i ∈ {1, . . . ,K}

(11b)
gi,2w̄ = 0, ∀i ∈ {1, . . . ,K} (11c)

diag
(
WWH

)
=
Ptot

Nt
I, (11d)

where

w̄=
[
R (w)

T
, I (w)

T
]T
,gi,2 =

[
I
(
hH
i Ei

)
,R
(
hH
i Ei

)]
,

Θ̄ ≜

[
R (IK ⊗Θ) , −I (IK ⊗Θ)
I (IK ⊗Θ) , R (IK ⊗Θ)

]
, b̄i =

[
bi

0(Nt+1)×1

]
,

H̄i=

[
R(Hi), −I(Hi)
I(Hi), R(Hi)

]
, gi,1=

[
R
(
hH
i Ei

)
,−I

(
hH
i Ei

)]
.



6

Note that constraint (11c) is imposed for ensuring that the
imaginary part I

(
hH
i Eiw

)
= 0.

The challenges in handling problem (11) lie in the non-
convexity of the objective function and constraint (11d). The
nonconvexity can be handled by exploiting the strong duality
of the nonconvex quadratic problem [51, Section 5.2.3]. In
particular, through introducing a quadratic constraint, we have

max
w̄

w̄T Θ̄w̄ (12a)

s.t.(11b), (11c), (11d), (12b)

w̄T w̄ ≤ Ptot, (12c)

where the added constraint (12c) does not shrink the feasible
set due to per-antenna constraint (11d). Then, problem (11)
and problem (12) have the same optimal solution.

By employing the penalty method [52], the inequality
constraint (11b), constraint (11c), and per-antenna power con-
straint (11d) can be incorporated into the objective function
with an appropriate penalty parameter ρ, i.e.,

min
w̄

−w̄T Θ̄w̄+
ρ

2

∑
1≤i≤K

dist
([
gi,1w̄; H̄iw̄ + b̄i

]
,Ωi

)2
+
ρ

2
dist (w̄,Ξ)

2
+
ρ

2

∑
i

|gi,2w̄|2, (13a)

s.t. (12c), (13b)

where Ωi ≜
{
w̄|
√
1 + 1

Ri
gi,1w̄ ≥ ||H̄iw̄ + b̄i||2

}
and Ξ ≜{

W|diag
(
WWH

)
= Ptot

Nt
I
}

.
Lemma 1: When problem (12) is feasible, as ρ → +∞,

solving problem (13) yields the optimal solution of problem
(12).

Proof: The proof is similar to the proof of [53, Theorem
17.1], which is omitted for brevity.

However, the calculation of the dis-
tance dist

([
gi,1w̄; H̄iw̄ + b̄i

]
,Ωi

)2
=

infy∈Ω||
[
gi,1w̄; H̄iw̄ + b̄i

]
−

[
gi,1y; H̄iy + b̄i

]
||22 and

dist (w̄,Ξ)
2 are both complicated optimization problems.

Therefore, it is challenging to solve problem (13) directly.
As an alternative, we employ the majorization-minimization
algorithm [54] to approximate the objective function of
problem (13) as a sequence of tractable functions, as follows

Φ (w̄) ≜
ρ

2

∑
1≤i≤K

∣∣∣∣∣∣[gi,1w̄; H̄iw̄ + b̄i

]
−
[
r̂i(k); f̂i(k)

]∣∣∣∣∣∣2
2

− w̄T Θ̄w̄ +
ρ

2
||w̄ − ŵ(k)||2 + ρ

2

∑
1≤i≤K

|gi,2w̄|2,

(14)

where
[
r̂i(k); f̂(k)

]
is the vector

[
gi,1w̄; H̄iw̄ + b̄i

]
pro-

jected onto Ω, and ŵ(k) is the solution projected onto Ξ at
the kth iteration.

Using (14), the convex approximation of problem (13) at
the kth iteration is given by

minimize
w̄

Φ (w̄) , (15a)

s.t. w̄T w̄ ≤ Ptot. (15b)

Although problem (15) is the solution of a nonconvex
optimization problem due to −w̄T Θ̄w̄, its optimal solution
still satisfies its KKT condition due to the nonconvex quadratic
problem with strong duality [51, Section 5.2.3]. The corre-
sponding KKT condition is given as follows

− 2Θ̄w̄ + ϑw̄ + ρ (w̄ − ŵ) + ρgT
i,2gi,2w̄+

ρ
[
gi,1, H̄i

]T ([
gi,1w̄; H̄iw̄+b̄i

]
−
[
r̂i(k); f̂(k)

])
=0, (16)

w̄Hw̄ ≤ Ptot, (17)
ϑ ≥ 0, (18)

ϑ
(
w̄T w̄ − Ptot

)
= 0, (19)

where the multiplier ϑ is introduced for constraint (15b).
From the KKT condition above, we have(

−2Θ̄+ ϑI2KNt

)
w̄ +

∑
i

ρgT
i,1 (gi,1w̄ − r̂i(k))+

ρ (w̄ − ŵ(k)) +
∑
i

H̄T
i ρ
(
H̄iw̄ + b̄i − f̂i(k)

)
+

ρ
∑
i

gT
i,2gi,2w̄ = 0.

Accordingly, the optimized w̄ can be obtained as

w̄ = M−1N, (20)

where M ≜ 2ρ−1Θ̄ +
(
ρ−1ϑ∗ + 1

)
I2KNt +

∑
i g

T
i,2gi,2 +∑

i g
T
i,1gi,1 +

∑
i H̄

T
i H̄i and N ≜ ŵ(k) +

∑
i gi,1r̂i(k) −∑

i H̄
T
i

(
b̄i − f̂i(k)

)
. Besides, since w̄ is a decreasing func-

tion of ϑ∗, we can employ the bisection search algorithm [51]
to find ϑ∗ that satisfies (15b). Then, with the convergence
of majorization-minimization algorithm [54, Section II-C], a
KKT solution of problem (13) can be obtained by solving
problem (15) iteratively.

From (20), it is obvious that the analytical solution of w̄
can be obtained with the projected solutions r̂i(k) and f̂i(k)
whose analytical solutions are given as follows.

Theorem 1: Denoting ri ≜ gi,1w̄, and fi ≜ H̄iw̄ + b̄i, the
analytical result of

(
r̂i(k), f̂i(k)

)
projected onto Ωi is given

by (21) at the top of the next page, where αi =
√
1 + 1/Ri.

Proof: The proof is given in Appendix A.
The penalty parameter ρ is imposed to achieve the tradeoff

between satisfying the constraints and maximizing the sensing
SINR. A large penalty parameter ρ tends more to obtain
a feasible solution while a small ρ tends to maximize the
sensing SINR. Hence, we exploit the widely adopted updating
approach for designing ρ [55], [56]. In particular, we initialize
ρ = 1 which results in a large sensing SINR that may violate
the constraints in problem (11). Then, we gradually increase ρ
to pull the solution towards the optimal solution in the feasible
region.

To speed up the convergence rate, we incorporate Nes-
terov’s acceleration strategy [52] into our proposed distance
majorization algorithm which is summarized in Algorithm 1.
In the following theorem, we will show the convergence of
Algorithm 1 to a KKT solution of problem (12).

Theorem 2: Define that c1,i (w̄) ≜
dist

([
gi,1w̄; H̄iw̄ + b̄i

]
,Ωi

)
, c2 (w̄) ≜ dist (w̄,Ξ),
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(
r̂i(k), f̂i(k)

)
=


(
[||fi||2+αiri]

+

αi+
1
αi

, [||fi||2+1/αiri]
+

||fi||2+1/α2
i ||fi||2

fi

)
, if αiri < ||fi||2

(ri, fi) , if αiri ≥ ||fi||2
(21)

Algorithm 1 Proposed Distance Majorization Algorithm for
Solving Problem (11)
1: Initialize ρ = 1, c = 2, ρmax = 109, w̄(1) = w̄(0) ∈ R2NtK×1, the

convergence tolerance ϵ = 10−4, T = 30, and k = 1.
2: Repeat
3: z(k) = w(k) + k−1

k+2 (w(k) − w(k − 1)),

4: Obtain
(
r̂i(k), f̂i(k)

)
with Theorem 1, and obtain ŷ(k) =

√
Ptot
Nt

ȳ./ |ȳ| by
projecting ȳ into Ξ

5: Obtain w̄ with (20),
6: Update ρ = min (ρmax, cρ), every T iterations
7: k = k + 1,
8: Until ||w(k + 1) − w(k)||2 ≤ ϵ.

and c3,i (w̄) ≜ |gi,2w̄|, 1 ≤ i ≤ K. Suppose that a limit
point w̄∗ obtained by Algorithm 1 makes Υ(w̄∗, λ) ≜
−2Θ̄w̄∗ + 2λw̄∗ +

∑
1≤i≤K ρc1,i (w̄

∗)▽w̄∗c1,i (w̄
∗) +∑

1≤i≤K ρc3,i (w̄
∗)▽w̄∗c3,i (w̄

∗) + ρc2 (w̄
∗)▽w̄∗c2 (w̄

∗) →
0 as ρ → +∞, where λ is Lagrange multiplier associated
with constraint (12c). Then, if w̄∗ is feasible and the gradients
▽w̄∗c1,i (w̄

∗), ▽w̄∗c2 (w̄
∗), and ▽w̄∗c3,i (w̄

∗) are all linearly
independent, w̄∗ is a KKT solution of problem (12).

Proof: The proof is given in Appendix B.
Remark 1: As verified by [42, Section 4], the convergence

of distance-majoriation algorithm still holds for the general
nonconvex optimization due to Zangwill’s global convergence
theorem.

B. Computational Complexity Analysis

The computational complexity of our proposed Algorithm 1
is dominated by (20). In particular, ρ−1Θ̄+

∑
1≤i≤K gT

i,2gi,2+∑
1≤i≤K gT

i,1gi,1 +
∑

1≤i≤K H̄T
i H̄i =

[
A, B
C, A

]
where A,

B, and C are all block diagonal matrices. Specifically, A =
DIAG (A1,A2, . . . ,AK), B = DIAG (B1,B2, . . . ,BK),
C = DIAG (C1,C2, . . . ,CK),

Ai ≜
∑

1≤k≤K

(
R
(
hH
k

)T R
(
hH
k

)
+ I

(
hH
k

)T I
(
hH
k

))
+R

(
hH
i

)T R
(
hH
i

)
+
(
ρ−1 (ϑ∗ + ϱ) + 1

)
INt

+ I
(
hH
i

)T I
(
hH
i

)
+ ρ−1R (Θ) ,

Bi ≜
∑

1≤k≤K

(
−R

(
hH
k

)T I
(
hH
k

)
+ I

(
hH
k

)T R
(
hH
k

))
−R

(
hH
i

)T I
(
hH
i

)
−I

(
hH
i

)T R
(
hH
i

)
−ρ−1I (Θ) ,

Ci ≜
∑

1≤k≤K

(
−I
(
hH
k

)T R
(
hH
k

)
+R

(
hH
k

)T I
(
hH
k

))
− I

(
hH
i

)T R
(
hH
i

)
−I

(
hH
i

)T R
(
hH
i

)
+ρ−1I (Θ) ,

Then, with [57, eq. (1.7.12)], the inverse matrix M−1 is[ (
A−BA−1C

)−1
, −

(
A−BA−1C

)−1
BA−1

−
(
A−CA−1B

)−1
CA−1,

(
A−CA−1B

)−1

]
,

and the complexity of calculating w̄ in (20) is O
(
KN2.373

t

)
when we employ the Coppersmith-Winograd algorithm to
calculate the matrix inversion. Denoting by IDM the number
of iterations in our proposed distance majorization algorithm,
the corresponding complexity is O

(
IDMKN

2.373
t

)
.

In comparison, the worst-case computational complexity of
the considered benchmark algorithm given in Appendix C is
determined by solving an SDP problem. From [58], we know
that the worst-case complexity of solving an SDP problem
is O

(
n
1/2
sdp

(
msdpn

3
sdp +m2

sdpn
2
sdp +m3

sdp

))
log (1/ϵsdp),

where msdp is the number of semidefinite cone constraints,
nsdp is the dimension of the semidefinite cone, and ϵsdp is
the solution accuracy. Then, after inspecting problem (61),
the worst-case computational complexity of the benchmark
algorithm is O

(
Isdp

(
KN7

t +K2N5
t

)
log (1/ϵsdp)

)
, where

Isdp is the number of iterations.

Compared with the SDP-based benchmark algorithm, our
proposed distance majorization induced algorithm has much
lower computation complexity.

IV. SIGNAL-DEPENDENT CLUTTER CASE

Different from the previous section, we consider K signal-
dependent clutters in this section. In particular, the correspond-
ing received signal is given by

y0 = A(υ)Ws+

K∑
i=1

βiB(ψi)Ws+ z0, (22)

where B(ψi) ≜ αr(ψi)α
T
t (ψi).

Following the signal-independent clutter case, the optimal
radar output SINR for K signal-dependent clutters can be
derived as

ρ̂ (W) = Tr

(
sHWHAH(υ)

(
R̂c + z0z

H
0

)−1

A(υ)Ws

)

=Tr

ssH

L
WHAH(υ)

(
R̂c

L
+
z0z

H
0

L

)−1

A(υ)W


≈Tr

(
Θ̂WWH

)
, (23)

where R̂c =
∑K

i=1 β
2
i B(ψi)WssHWHBH(ψi) and Θ̂ ≜

AH(υ)
(∑K

i=1 β
2
i B(ψi)WWHBH(ψi) + IK

)−1

A(υ).

Through introducing auxiliary variables ri, vi, fi, and Y, the
precoder design for maximizing the radar output SINR in the
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presence of signal-dependent interference can be built as

maximize
W

ρ̂ (W) (24a)

s.t.

√
1 +

1

Ri
ri ≥ ||fi||F , (24b)

ri=gi,1w̄, fi = H̄iw̄ + b̄i, w̄ = ȳ, (24c)
vi=gi,2w̄, vi = 0, (24d)

diag
(
YYH

)
=
Ptot

Nt
I. (24e)

Problem (24) is challenging to solve directly, since the ob-
jective function and constraint (24e) are both nonconvex. To
complicate matters further, even if we adopt the SDR approach
given in Appendix C, the objective function is still nonconvex
and a feasible solution of problem (24) is still difficult to obtain
by solving its SDR-relaxed version.

To handle the nonconvexity of the objective function, we
employ fractional programming [47, Theorem 1] to obtain an
equivalent formulation of ρ̂ (W), given by

ρ̂ (W) = maximize
Γ

Ξ (W,Γ) , (25)

where Ξ (W,Γ) is given by (27) at the top of the next page
and the optimal Γ∗ is given by [47, Theorem 1]

Γ∗=

(
K∑
i=1

β2
i B(ψi)WWHBH(ψi)+IK

)−1

A(υ)W. (26)

In the following, we employ (25) to design an alternating
algorithm for obtaining an efficient solution of problem (24).

In particular, we first employ the matrix vectorization opera-
tion [57, Section 1.11.2] to obtain its vector formulation given
by (29) at the top of the next page. Moreover, to facilitate the
optimization algorithm design, we employ (10) to reformulate
(29) in the following real-valued form

Ξ̃ (w̄,Γ)=2w̄TΩ0 − w̄TΩ1w̄ − Tr
(
ΓHΓ

)
, (28)

where

Ω0 ≜

[
R
(
vec
(
AH(υ)Γ

))
I
(
vec
(
AH(υ)Γ

))] ,
Ω1 ≜

[
R (Λ) , −I (Λ)
I (Λ) , R (Λ)

]
,

Λ ≜
K∑
i=1

α2
i

(
IK⊗

(
AH(θi)ΓΓ

HA(θi)
))
.

Therefore, considering the signal-dependent clutter case,
with the fixed Γ, the precoder optimization for maximizing the
radar sensing SINR under the communications QoS require-
ments and per-antenna power constraint can be formulated as

maximize
W

Ξ̃ (w̄,Γ)

s.t. (24b), (24c), (24d), (24e). (30)

Then, following the distance majorization algorithm described
in Section III, the optimized W can be obtained by solving a

Algorithm 2 Proposed Distance Majorization Algorithm for
Handling Problem (30)
1: Initialize ρ = 1, c = 2, ρmax = 109, w̄(1) = w̄(0) ∈ R2NtK×1, the

convergence tolerance ϵ = 10−4, T = 30, and k = 1.
2: Repeat
3: z(k) = w(k) + k−1

k+2 (w(k) − w(k − 1)),

4: Obtain
(
r̂i(k), f̂i(k)

)
with Theorem 1,

5: Obtain w̄ with (20),
6: Update ρ = min (ρmax, cρ), every T iterations
7: k = k + 1,
8: Until ||w(k + 1) − w(k)||2 ≤ ϵ.

Algorithm 3 Proposed Alternating Optimization Algorithm
for Handling Problem (24)
1: Initialize Γ∗ ∈ CNt×K , the maximum number of iterations Imax, and n = 1.
2: Repeat
3: Obtaining w̄∗ by solving problem (30) with Algorithm 2,
4: Obtaining Γ∗ with (26),
5: n = n + 1,
6: Until |Ξ̃(w̄(n+1),Γ(n+1))−Ξ̃(w̄(n),Γ(n))|

Ξ̃(w̄(n),Γ(n))
≤ ϵ, or the maximum number of

iterations Imax is satisfied.

sequence of penalized problems, given by

maximize
w̄,ȳ,vi,ri,fi

Ξ̃ (w̄,Γ) +
ρ

2
||ȳ − ŷ(k)||2 + ρ

2

∑
i

|vi|2+

ρ

2

∑
1≤i≤K

∣∣∣∣∣∣∣∣[ri, fTi ]T −
[
r̂i(k), f̂

T
i (k)

]T ∣∣∣∣∣∣∣∣2
2

s.t. (24c), (24d). (31)

It is worth noting that different from problem (13), problem
(31) is convex whose optimal solution satisfies its KKT
condition given by

2Ω0 − 2Ω1w̄ −
∑

1≤i≤K

θ̂ig
T
i,1 −

∑
1≤i≤K

H̄T
i λ̂i + η̂

−
∑

1≤i≤K

τ̂ig
T
i,2 = 0,

θ̂i + ρ (ri − r̂i(k)) = 0,

λ̂i + ρ
(
fi − f̂i(k)

)
= 0,

− η̂ + ρ (ȳ − ŷ(k)) = 0,

τ̂i + ρvi = 0.

From the KKT condition above, the optimized w̄ can be
derived as

w̄ = M̂−1N̂, (32)

where M̂ ≜ 2
ρΩ1+I2KNt

+
∑

i g
T
i,2gi,2+

∑
1≤i≤K gT

i,1gi,1+∑
1≤i≤K H̄T

i H̄i and N̂ ≜ ŷ(k)+ 2
ρΩ0+

∑
1≤i≤K gi,1r̂i(k)−∑

1≤j≤K H̄T
i

(
b̄i − f̂i(k)

)
.

Finally, Algorithm 2 summarizes the proposed distance
majorization algorithm for handling problem (30).

Therefore, with the alternating algorithm, an efficient so-
lution of problem (24) can be obtained by updating Γ and
W alternatively. Algorithm 3 summarizes the corresponding
optimization algorithm.

Remark 2: The monotonic property of Algorithm 3 can
be proved by following the inexact block coordinate descent
algorithm studied in [59]. Specifically, considering the solution
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Ξ (W,Γ) ≜ Tr

(
2R
(
WHAH(υ)Γ

)
− ΓH

(
K∑
i=1

α2
iB(ψi)WWHBH(ψi) + IK

)
Γ

)
(27)

Ξ̂ (w,Γ) ≜ wHvec
(
AH(υ)Γ

)
+vecH

(
AH(υ)Γ

)
w−wH

(
K∑
i=1

α2
i

(
IK⊗

(
BH(ψi)ΓΓ

HB(ψi)
)))

w−Tr
(
ΓHΓ

)
(29)

(w̄(n),Γ(n)) obtained at the nth iteration, since w̄(n) is a
feasible solution of problem (30) at the (n + 1)th iteration,
it is obvious that Ξ̃ (w̄(n+ 1),Γ(n)) ≥ Ξ̃ (w̄(n),Γ(n)),
where w̄(n + 1) is the solution obtained by Algorithm
3 at the (n + 1)th iteration. Besides, considering (25),
we have Ξ̃ (w̄(n+ 1),Γ(n+ 1)) ≥ Ξ̃ (w̄(n+ 1),Γ(n)) ≥
Ξ̃ (w̄(n),Γ(n)). Therefore, in the iteration of Algorithm 3, the
objective function Ξ (W,Γ) has been proved to be monotone
increasing and its convergence can be guaranteed.

V. SIMULATION RESULTS

This section evaluates the performance of our proposed pre-
coder design algorithm in the presence of signal-independent
interference and signal-dependent clutter via computer sim-
ulations. Following [25], the noise powers are set as σ2

c =
σ2
r = 0 dBm and the communication channel is assumed to be

Rayleigh fading whose elements follow CN (0, 1). Besides, we
assume that the reflecting coefficient of the target, α =

√
0.5,

and consider three fixed interfering signals with the spatial
angles of ψ1 = 10o, ψ2 = −60o, ψ3 = 60o, and their
amplitudes |βi|2 = 0.1, i = 1, 2, 3 [49]. For the performance
comparison, the “SDR-based algorithm (SDRBA)” given in
Appendix C is adopted as the benchmark, where problem (8)
is first transformed into an SDP and the rank constraint is
handled by the penalty algorithm.

A. Signal Independent Interference Case

In this subsection, we first consider the signal independent
interference case, where Rc ≜

∑3
i=1 |βi|2ar(ψi)a

T
t (ψi) and

a target with the spatial angle of υ = 0o. In Fig. 2, the
beampatterns optimized by the SDRBA and our proposed al-
gorithm (PA) are both shown. Following [36], the beampattern
is defined as P (θ) =

∣∣tHA(υ)w
∣∣2 (dBm), where t is the

receiver filter defined in (6). The two design approaches both
place the main beam at the spatial angle of the target, and the
nulling beamformer at the interfering signals’ spatial angles
ψ1 = 10o, ψ2 = −60o, ψ3 = 60o. Furthermore, it is clear
that PA outperforms SDRBA, where the power gains of SDR
and PA at υ are 41.28 dBm and 40.6 dBm, respectively, when
Nt = 20 and K = 10, and the power gains are 36.85 dBm and
35.24 dBm, respectively, when Nt = 10 and K = 8. Besides,
PA also achieves a lower nulling beamformer gain than SDR
at the interference, which results in a larger SINR received
at the radar receiver. On the other hand, by comparing the
beampatterns with Nt = 20 and Nt = 10, we can find that the
maximum peak to sidelobe ratio reduces with the decreasing
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Fig. 2. The optimized beampatterns comparison for Nt = 20, Nr = 10,
K = 10, Ptot = 20 dBm, and Ri = 5 dB.
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Fig. 3. The sensing SINR versus the total transmit power Ptot for Nr = 10,
Ri = 0 dB, and different Nt and K.

Nt. Furthermore, the power gain at the direction of the target
decreases with the decreasing Nt, and the corresponding width
of the beam increases, since the decreasing Nt reduces the
spatial DoF which results in a wider spatial beamformer and
lower power gains at the desired direction.

Fig. 3 illustrates the behavior of the sensing SINR at the
radar receiver achieved by SDRBA and PA versus the total
transmit power, Ptot. With increasing Ptot, the sensing SINR
increases, since more power budget can be utilized to sense the
target and satisfy the SINR constraints of multiple users. Fur-
thermore, the sensing SINR also increases with the increasing
Nt. This is because increasing Nt can realize an improved
beampattern with decreasing beamwidth that improves the
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Fig. 4. Capon spatial spectral estimation in presence of signal-independent
interference: (a) two targets with υ1 = −10o and υ2 = 30o; (b) three targets
with υ1 = −10o, υ2 = 20o, and υ3 = 30o
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Fig. 5. The convergence rate of proposed Algorithm 1 with Nt = Nr = 10,
K = 8, Ptot = 10 dBm, Ri = 3 dB, and different penalty c.

energy concentration. Moreover, increasing Nt results in the
increasing array gains that also increase the sensing SINR.

For measuring the radar sensing performance in the pres-
ence of signal-independent interference, we consider a sce-
nario with multiple targets located at different spatial angles to

plot the Capon spatial spectrum in Fig. 4, which is calculated
with the least squares Capon method given in [60, Section III-
A]. From Fig. 4, we can find that the Capon spatial spectrum
has narrow peaks only at the target angles, which confirms the
angle estimation accuracy of the optimized beamforming.

Fig. 5 illustrates the impact of the penalty c on the con-
vergence rate of our proposed Algorithm 1 for three targets
locating at the spatial angles υ1 = 0o, υ2 = 20o, and υ3 = 40o

with the reflection coefficients α1 = α2 = α3 =
√
0.5 [49].

From Fig. 5, we can find that a larger c would improve the
convergence rate. But after increasing c beyond a threshold, the
achievable performance would deteriorate. Therefore, c should
be designed cautiously for achieving a tradeoff between the
achievable performance and convergence rate.

In Fig. 6, we consider a single moving vehicle to show
the impact of imperfect angle estimation on the sensing per-
formance during the target tracking. Specifically, we consider
the vehicle-to-infrastructure communication used in [61] and
adopt the EKF to estimate the angles of a moving vehicle.
For illustrating the impact of imperfect angle information on
the sensing performance, we do not consider the change of
the reflection coefficient. For completeness, the state evolution
model of the target is given as follows [61]

υn = υn−1 + d−1
n−1vn−1∆T sinθn−1 + ωυ,

dn = dn−1 − vn−1∆T cosθn−1 + ωd,

qn = qn−1 + ωq,

(33)

where ωυ ∼ CN
(
0, σ2

υ

)
, ωd ∼ CN

(
0, σ2

d

)
, and ωq ∼

CN
(
0, σ2

q

)
. In particular, following [61], we set the initial

velocity q0 = 20 m/s, the initial distance d0 = 25 m, the
initial angle υ0 = 9o, συ = 0.02o, σθ = 0.02o, σd = 0.1,
and σ2

v = 0.1. Besides, the other system parameters are
set as: measurement noise variance of 0.1, frequency of 30
GHz, total transmit power of Ptot = 10 dBm, and three
interfering signals with spatial angles of ψ1 = −(υ + 10o),
ψ2 = υ+20o, and ψ3 = υ+10o. Based on the state evolution
model and observation model, EKF is employed to track
the variation of the angle of the vehicle [61, Section III-A].
Fig. 6(a) and Fig. 6(b) respectively show the estimated angle
tracking performance and sensing SINR for PA and SDRBA
comparing with real ones. From the simulation results, we
can find that when the EKF can track a moving target, the
sensing performance of the proposed DFRC precoder design
can meet the target. In particular, although the imperfect angle
information predicted by EKF reduces the sensing SINR,
the performance degradation is slight, which confirms the
performance of our proposed DFRC precoder design approach
in the target tracking.

B. Signal Dependent Clutter Case

In this subsection, we consider three targets and interfer-
ing signals due to clutter with the same parameters as the
signal independent interference case, as described by (22).
Our proposed Algorithm 3 adopts the alternating algorithm to
handle the percoder optimization in the presence of clutters,
i.e., problem (24) through optimizing W and Γ alternatively.
Fig. 7 first shows the average convergence behavior of our



11

0 200 400 600 800 1000

Times (ms)

5

10

15

20

25

30

35
A

n
g

le
 (

d
e

g
)

Real Angle

Predicted Angle

(a)

0 200 400 600 800 1000

Times (ms)

29.4

29.6

29.8

30

30.2

30.4

30.6

30.8

31

31.2

S
IN

R
 (

d
B

)

PA Estimation

PA Real

SDR Estimation

SDRBA Real

(b)

Fig. 6. The sensing SINR for the radar tracking scenario with Nt = 15,
Nr = 20, and K = 10 in the presence of signal-independent interference:
(a) Angle tracking performances of EKF; (b) Sensing SINR comparison

proposed Algorithm 3, whose results are obtained by averaging
over 500 channel realizations. Algorithm 3 takes about 10 iter-
ations to converge to a stable solution, which verifies the fast
convergence rate and the efficiency of our proposed alternating
algorithm. Moreover, changing the system parameters, e.g., the
number of transmit antennas and served users does not have
a significant effect on the convergence rate of Algorithm 3,
which confirms its robustness.

Fig. 8 plots the optimized beampattern for different Nt,
where we observe that the beampatterns all radiate the highest
power at the target angles. However, the beamwidth at the
spatial angle of the target increases with the decreasing Nt,
since when the DoF is not sufficient, the beam should be
widened to support multiuser broadcasting and radar sensing
simultaneously.

Fig. 9 shows the optimized beampattern for different K.
With the increasing K, more resources should be sacrificed
to satisfy the SINR constraints of multiple users. Then,
the corresponding resource used for radar sensing decreases
accordingly. Therefore, from the simulation results in Fig.
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Fig. 7. Average convergence rate of our proposed Algorithm 3 with Nr = 10,
Ri = 3 dB, Ptot = 10 dBm and different Nt and K.
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Fig. 8. The optimized beampattern comparison for multiple targets with Nr =
10, K = 10, Ptot = 20 dBm, Ri = 0 dB, and different Nt

Fig. 9. The optimized beampattern comparison for multiple targets with Nr =
10, Nt = 10, Ptot = 10 dBm, Ri = 5 dB, and different K.

9, we can find that the power radiated at the target angle
decreases and the corresponding beamwidth also increases.
Moreover, the sidelobe also increases for serving multiple
communication users. These simulation results also confirm
the intuition that limited resources should balance the radar
sensing and multiuser broadcasting.
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Fig. 11. The sensing SINR versus the number of users K for Nt = 15,
Nr = 10, Ri = 5 dB, and different Ptot.

Fig. 10 illustrates the behavior of the sensing SINR at
the radar receiver. Different from the signal independent
interference case, the clutter interference originates from the
transmit signal which certainly increases with increasing Ptot.
However, through optimizing transmit beamforming and re-
ceiver, the clutter interference can be suppressed for improving
the sensing SINR at the radar receiver. Therefore, simulation
results show that the behavior of the sensing SINR at the
radar receiver is similar to the signal-independent case. More-
over, the sensing SINR also increases with the increasing Nt

and the decreasing K. This is because with the increasing
Nt, more spatial DoF can be utilized for serving multiuser
broadcasting and radar sensing. Accordingly, decreasing K
reduces the spatial resources used for communication signal
broadcasting, and then the corresponding spatial DoF used for
radar sensing increases and the sensing SINR of the radar
improves accordingly.

Fig. 11 shows the sensing SINR of the radar versus the
number of users, K for different Ptot. With the increasing K,
more resources should be utilized for communications due to
the constraints of the SINR received at multiple users. There-
fore, from Fig. 11, we observe that the sensing SINR decreases
with the increasing K. Moreover, from Fig. 11, we can also
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Fig. 12. Capon spatial spectral estimates in presence of signal-dependent
interference:(a) two targets with υ1 = 0o and υ2 = 30o;(b) three targets
with υ1 = −10o, υ2 = 0o, and υ3 = 30o.

find that the reduction rate of the sensing SINR decreases
with the increasing Ptot, since the increasing transmit power
counteracts the adverse effect brought by increasing K on the
sensing SINR at the radar receiver.

For measuring the radar sensing performance in the pres-
ence of signal-dependent interference, in Fig. 12, we consider
different numbers of targets to plot the Capon spatial spectrum.
Like the signal-independent interference, the Capon spectrum
has narrow peaks only at the target angles, which validates the
efficiency of our proposed Algorithm 3 in suppressing signal-
dependent interference.

In Fig. 13, we consider the same vehicle-to-infrastructure
communication scenario as Fig. 6 in cluttered environments.
The angle tracking performance of EKF is illustrated in
Fig. 13(a). Fig. 13(b) shows the real sensing SINR and the
estimated one of PA during the tracking stage, where the
clutter has the same parameters as the signal-independent in-
terference in Fig. 6. Obviously, the imperfect angle estimation
results in the performance degradation, but its degradation is
slight. Therefore, the simulation results in Fig. 13 confirm the
performance of our proposed DFRC precoder for tracking a
moving target even in cluttered environments.
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Fig. 13. The sensing SINR for the radar tracking scenario with Nt = 15,
Nr = 20, and K = 10 in the presence of signal-dependent clutter: (a) Angle
tracking performances of EKF; (b) Sensing SINR comparison

VI. CONCLUSIONS

In this paper, we have considered signal-independent inter-
ference and signal-dependent clutter to design the precoder of
the MIMO-DFRC system for maximizing the sensing SINR at
the radar receiver under the minimum SINR received at mul-
tiple communciation users and per-antenna power constraint.
We have proposed distance-majorization induced algorithms
to handle the nonconvexity of the objective function and per-
antenna power constraint, which transformed the nonconvex
design problem into a sequence of unconstrained convex
problems whose optimal solutions can be obtained in closed
form. Analytical results showed that compared with existing
SDR-based approach, the complexity of our proposed algo-
rithms is significantly lower. Besides, our simulation results
confirmed the superior performance of our proposed algorithm,
by comparing with the SDR-based approach. Therefore, the
contribution of this work is to propose a novel algorithm
for handling the nonconvex precoding optimization problem,
which achieves better DFRC performance than the state-of-

the-art algorithm with a much lower computational complexity.
Some future research directions are outlined as follows.

Firstly, this treatise assumes that the perfect channel state
information (CSI) is available for optimizing DFRC precoder.
However, we can only estimate imperfect CSI with the channel
estimation technique in practical systems. Then, one of the
open problems is to consider imperfect CSI to design efficient
algorithms to optimize robust DFRC precoder. Secondly, this
work does not consider the security of communication signals
aided radar sensing. However, the increasing radiation power
will make communication signals more vulnerable to eaves-
dropping attack. Therefore, it will be another problem how
to design the DFRC precoder for radar sensing and secure
communications.

APPENDIX A
PROOF OF THEOREM 1

In the proof, we only consider the case that
√

1 + 1
Ri
ri <

||fi||2. For notational brevity, we denote αi ≜
√
1 + 1

Ri
, ri ≜

gi,1w̄, and fi ≜ H̄iw̄ + b̄i. Accordingly, the projection of
(ri, fi) onto the set of Ω can be formulated as the following
optimization problem

minimize
r̂i(k),f̂i(k)

|r̂i(k)− ri|2 +
∣∣∣∣∣∣f̂i(k)− fi

∣∣∣∣∣∣2
2

(34a)

s.t. αir̂i(k) ≥ ||f̂i(k)||2, (34b)

where constraint (34b) defines the set of Ωi.
It is easy to prove that the optimal solution of problem (34)

satisfies the inequality constraint with equality. Its Lagrangian
is given by

L
(
r̂i(k), f̂i(k), µ

)
= |r̂i(k)− ri|2+

∣∣∣∣∣∣f̂i(k)− fi

∣∣∣∣∣∣2
2

+ µ
(
||f̂i(k)||22 − αir̂i(k)

)
, (35)

where µ is the dual variable. The analytical result of r̂i(k) and
f̂i(k) can be obtained from the KKT condition of problem (34),
given by

r̂i(k) = ri + αiµ, (36)

f̂i(k) = fi − µν, (37)

αir̂i(k) = ||f̂i(k)||2, (38)

where the subgradient ν ∈ C2(Nt+1)×1 of || · ||2 at f̂i(k) is
given by [62, Theorem 28.2]

ν = f̂i(k)/||f̂i(k)||2, if f̂i(k) ̸= 0, (39)

||ν||2 ≤ 1, if f̂i(k) = 0. (40)

When f̂i(k) = 0, we have r̂i(k) = 0. Therefore, assuming
that f̂i(k) ̸= 0, we have f̂i(k) = fi − µf̂i(k)/||f̂i(k)||2.
Denoting βi = 1 + µ/||f̂i(k)||2, we have fi = βif̂i(k) and
µ = βi||f̂i(k)||2 − ||f̂i(k)||2 .

Then, using (36), we have

r̂i(k)=ri+αi

(
βi||f̂i(k)||2 − ||f̂i(k)||2

)
(a)
=

1

αi
||f̂i(k)||2,

(41)
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where equality (a) is due to condition (38). Accordingly,
we have ri =

(
1
αi

+ αi − αiβi

)
||f̂i(k)||2 and ||fi||2 =

βiri
1
αi

+αi−αiβi
, since fi = βif̂i(k). Therefore, we have

βi =
||fi||2

(
αi +

1
αi

)
ri + αi||fi||2

. (42)

Besides, substituting (42) into (41), we have

r̂i(k) =
[||fi||2 + ri/αi]

+

αi +
1
αi

, (43)

where the operator [·]+ is used for guaranteeing the non-
negativity of r̂i(k).

Furthermore, since µ = βi||f̂i(k)||2 − ||f̂i(k)||2, we have

µ =

 ||fi||2
(
αi +

1
αi

)
ri + αi||fi||2

− 1

 ||f̂i(k)||2 (44)

(a)
=

(||fi||2/αi − ri)

αi + 1/αi
. (45)

where equality (a) is due to fi = βif̂i(k) and (42).
Since fi = βif̂i(k) and βi ≜ 1 + µ

||f̂i(k)||2
, we have

fi = f̂i(k)

(
1 +

µ

||f̂i(k)||2

)
(a)
= f̂i(k)

(
1 +

µ/αi

r̂i(k)

)
(46)

(b)
= f̂i(k)

(
1 +

1/αi (1/αi||fi||2 − ri)

[||fi||2 + 1/αiri]
+

)
, (47)

where step (a) is due to (38) and step (b) is due to (43) and
(45). Furthermore, from (47), we have

f̂i(k) = fi
[||fi||2 + 1/αiri]

+

[||fi||2 + 1/αiri]
+
+ 1/αi (1/αi||fi||2 − ri)

(a)
= fi

[||fi||2 + 1/αiri]
+

||fi||2 + 1/α2
i ||fi||2

, (48)

where equality (a) is due to the fact that [||fi||2 + 1/αiri]
+
=

0 when ||fi||2 + 1/αiri < 0.

APPENDIX B
PROOF OF THEOREM 2

Defining c1,i (w̄) ≜ dist
([
gi,1w̄; H̄iw̄ + b̄i

]
,Ωi

)
,

c2 (w̄) ≜ dist (w̄,Ξ), and c3,i (w̄) ≜ |gi,2w̄|, problem (12)
can be equivalently reformulated as follows

max
w̄,vi,ȳ,ri,fi

w̄T Θ̄w̄ (49a)

s.t.c1,i (w̄)=0, c2 (w̄)=0, c3,i (w̄)=0, 1≤ i≤K, (12c). (49b)

In the following, we prove that Algorithm 1 converges to
a KKT solution of problem (49). The KKT conditions of
problem (49) are given as follows

▽w̄∗L
(
w̄∗, ϖ∗

1,i, ϖ
∗
2 , ϖ

∗
3,i, λ

∗) = 0 (50)

c1,i (w̄
∗)=0, c2 (w̄

∗)=0, c3,i (w̄
∗)=0, 1≤ i≤K (51)

(w̄∗)
T
w̄∗ ≤ Ptot (52)

λ∗
(
(w̄∗)

T
w̄∗ − Ptot

)
= 0, (53)

where

L
(
w̄∗, ϖ∗

1,i, ϖ
∗
2 , ϖ

∗
3,i, λ

∗) = −w̄T Θ̄w̄ +
∑

1≤i≤K

ϖ∗
1,ic1,i (w̄

∗)

+ϖ∗
2c2 (w̄

∗)+
∑

1≤i≤K

ϖ∗
3,ic3,i (w̄

∗)+λ∗
(
(w̄∗)

T
w̄∗−Ptot

)
,

where ϖ∗
1,i, ϖ

∗
2 , ϖ∗

3,i, and λ∗ are Lagrange multipliers asso-
ciated with constraints in (49b). In the following, we exploit
[53, Theorem 17.2] to prove that the solution obtained by the
penalty method also satisfies conditions provided by Eqs. (50)-
(53).

With the penalty method, equality constraints can be moved
into the objective function as follows

min
w̄

−w̄T Θ̄w̄+
ρ

2

 ∑
1≤i≤K

(
c21,i (w̄) + c23,i (w̄)

)
+ c22 (w̄)


s.t. (12c). (54)

Obviously, problem (54) is equivalent to problem (13). The
Lagrangian associated with problem (54) is given by

L
(
w̄, λ̂

)
≜
ρ

2

 ∑
1≤i≤K

(
c21,i (w̄) + c23,i (w̄)

)
+ c22 (w̄)


− w̄T Θ̄w̄ + λ̂

(
w̄T w̄ − Ptot

)
, (55)

where λ̂ is the Lagrange multiplier associated with constraint
(12c). By differentiating L

(
w̄, λ̂

)
, we have

▽w̄L
(
w̄, λ̂

)
≜Υ

(
w̄, λ̂

)
=−2Θ̄w̄+

∑
1≤i≤K

ρc1,i (w̄)▽w̄c1,i (w̄)

+ 2λ̂w̄ +
∑

1≤i≤K

ρc3,i (w̄)▽w̄c3,i (w̄) + ρc2 (w̄)▽w̄c2 (w̄) .

When Υ
(
w̄∗, λ̂∗

)
→ 0, with the inequality ||a|| − ||b|| ≤

||a + b||, we have (56) at the top of the next page. Since the
gradients ▽c1,i(w̄∗), ▽c2(w̄∗), and ▽c3,i(w̄∗) are all linearly
independent, we can conclude that c1,i(w̄∗) = 0, c2(w̄∗) = 0,
and c3,i(w̄∗) = 0, which satisfies condition (51).

In addition, since lim
ρ→+∞

− 2Θ̄w̄ +∑
1≤i≤K ρc1,i (w̄)▽w̄c1,i (w̄) + 2λw̄ +∑
1≤i≤K ρc3,i (w̄)▽w̄c3,i (w̄) + ρc2 (w̄)▽w̄c2 (w̄) = 0,

condition (50) holds when we set

lim
ρ→+∞

ρc1,i (w̄
∗) = ϖ∗

1,i, 1≤ i≤K, (57)

lim
ρ→+∞

ρc2 (w̄
∗) = ϖ∗

2 , (58)

lim
ρ→+∞

ρc3,i (w̄
∗) = ϖ∗

3,i, 1≤ i≤K. (59)

Besides, conditions (52) and (53) obviously hold, since λ̂
is the Lagrange multiplier associated with constraint (12c).

Hence, as ρ → +∞, the KKT solution of problem (54)
also satisfies the KKT condition of problem (49). Furthermore,
we employ the majorization-minimization algorithm [54] to
design Algorithm 1 that solves the convex approximation
of problem (54), i.e., problem (15), iteratively. Then, since
Algorithm 1 satisfies conditions in [54, eq. (2) and eq. (3)], we
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∣∣∣∣∣∣
∣∣∣∣∣∣
∑

1≤i≤K

(c1,i (w̄
∗)▽w̄∗c1,i (w̄

∗)+c3,i (w̄
∗)▽w̄∗c3,i (w̄

∗))+c2 (w̄
∗)▽w̄∗c2 (w̄

∗)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤1

ρ

(∣∣∣∣∣∣Υ(w̄∗, λ̂∗
)∣∣∣∣∣∣

2
+
∣∣∣∣2λw̄∗ − 2Θ̄w̄∗∣∣∣∣

2

)
ρ→+∞−→ 0. (56)

can conclude that Algorithm 1 converges to a KKT solution
of problem (54), which also satisfies the KKT condition of
problem (49). Besides, since problem (49) is equivalent to
problem (12), the proof can be achieved.

APPENDIX C
BENCHMARK ALGORITHM: SDR-BASED ALGORITHM

We first introduce auxiliary variables Λi ≜ W(:, i)WH(:
, i) to reformulate the problem as the following semidefinite
programming

max
Λi∈S+Nt×Nt

K∑
i=1

Tr (ΘΛi) (60a)

s.t.
hH
i Λihi∑

j ̸=i h
H
i Λjhi + σ2

i

≥ Ri, i = 1, . . . ,K, (60b)

diag

(
K∑
i=1

Λi

)
=
Ptot

Nt
I, i = 1, . . . ,K, (60c)

rank (Λi) = 1, i = 1, . . . ,K. (60d)

Following [33], we employ the penalty-based method to
handle the rank constraint (60d). In particular, since when
constraint (60d) holds, we have ||Λi||∗ − ||Λi||2 = 0. Then,
when ς → +∞, problem (60) is equivalent to the following
problem

max
W

K∑
i=1

Tr (ΘΛi)− ς (||Λi||∗ − ||Λi||2)

s.t. hH
i Λihi ≥ Ri

∑
j ̸=i

hH
i Λjhi + σ2

i , (60c). (61)

However, its objective function is nonconvex due to ||Λi||2.
By employing the successive convex approximation method
[63], we approximate ||Λi||2 as Λ̄k

i ≜ −||Λi(k − 1)||2 −
Tr
(
vmax (Λi(k − 1))vH

max (Λi(k − 1)) (Λi −Λi(k − 1))
)
,

where Λi(k − 1) is the solution obtained at the (k − 1)th
iteration [33]. Accordingly, a KKT solution of problem (61)
can be obtained by solving a sequence of convex problems,
given by

max
W

K∑
i=1

Tr (ΘΛi)− ςΛ̄k
i , s.t. (61). (62)

Algorithm 4 summarizes the benchmark algorithm.
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