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Abstract

Diffuse Optical Imaging (DOI) techniques are an ever growing field of research as they are non-

invasive, compact, cost-effective and can furnish functional information about human tissues.

Among others, they include techniques such as Tomography, which solves an inverse reconstruc-

tion problem in a tissue volume, and Mapping which only seeks to find values on a tissue surface.

Limitations in reliability and resolution, due to the ill-posedness of the underlying inverse problems,

have hindered the clinical uptake of this medical imaging modality. Multimodal imaging and Deep

Learning present themselves as two promising solutions to further research in DOI. In relation to the

first idea, we implement and assess here a set of methods for SOLUS, a combined Ultrasound (US)

and Diffuse Optical Tomography (DOT) probe for breast cancer diagnosis. An ad hoc morphological

prior is extracted from US B-mode images and utilised for the regularisation of the inverse problem

in DOT. Combination of the latter in reconstruction with a linearised forward model for DOT is

assessed on specifically designed dual phantoms. The same reconstruction approach with the incor-

poration of a spectral model has been assessed on meat phantoms for reconstruction of functional

properties. A simulation study with realistic digital phantoms is presented for an assessment of a

non-linear model in reconstruction for the quantification of optical properties of breast lesions. A set

of machine learning tools is presented for diagnosis breast lesions based on the reconstructed optical

properties. A preliminary clinical study with the SOLUS probe is presented. Finally, a specifically

designed deep learning architecture for diffusion is applied to mapping on the brain cortex or Diffuse

Optical Cortical Mapping (DOCM). An assessment of its performances is presented on simulated

and experimental data.
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Impact Statement

Nowadays, Diffuse Optical Imaging (DOI) presents important challenges that hinder the clinical

uptake of this imaging modality. However, the potentialities of the techniques involved have steered

research towards the ultimate goal of availability of DOI in clinical scenarios.

This thesis work is inserted in this framework from two perspectives:

• The design and implementation of reconstruction techniques for a novel multimodal probe

prototype, combining Diffuse Optical Tomography (DOT) with Ultrasound (US) which has

been developed by the SOLUS consortium;

• The preliminary assessment of novel deep learning image reconstruction techniques in the

context of DOI and particularly Diffuse Optical Cortical Mapping.

Novelty of the work for SOLUS. The SOLUS project is the first attempt to have a hand-held device

combining US and time-resolved multi-wavelength DOT. It is the result of an international collab-

oration on many fronts. The novelty of the probe required extensive work both from hardware and

software points of view. This thesis focuses on the development of the reconstruction techniques to

be used in SOLUS. A set of strategies have been developed for the combination of data gathered

from the SOLUS probe. The semi-automatic and automatic extraction of relevant information for

DOT from Ultrasound images has been a major focus of this part of the thesis. In turn, this al-

lowed to design ad hoc regularisers for the solution of DOT and to test their performances against

other commonly used reconstruction approaches. A simulation pipeline for the SOLUS probe and

US+DOT multimodal probes has been developed for an extensive study of the reconstruction and

classification techniques before the finalisation of the probe. To the best of our knowledge, this is

the first time that such a US+DOT simulation pipeline has been developed.

Novelty of the work for DOCM. Deep learning has revolutionised the field of medical imaging. In

this thesis, we explore the application of Diffnet, a deep learning architecture specifically tailored

for the solution of diffusive problems, to the 3D photon propagation related to DOCM. We present 4

more variations of Diffnet, each of them aimed at exploring different aspects of the application of

deep learning in imaging, such as the interpretability of the networks or their relation to the physical

model of the data. A study on simulations and experimental data is presented. Apart from the
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intrinsic novelty in the applied methods, it is the first time that such an assessment, focused on the

heterogeneities of the propagation media, is presented, to the best of our knowledge.
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Chapter 1

Introduction

In this chapter, we introduce the concept of Diffuse Optical Imaging (DOI) and the challenges

that hinder the clinical uptake of this imaging modality. In Section 1.1.1, we introduce a novel

US+DOT multimodal probe (SOLUS) which was developed under the European Union’s frame-

work program funding research, technological development, and innovation Horizon 2020 (H2020).

In Section 1.1.2, we introduce the basic concepts of functional brain mapping via DOI. Finally, we

give an outline of the rest of this thesis.

1.1 Motivation

Photon propagation in highly scattering media can be described as a diffusive process [1]. This

approximation is often considered valid in human soft tissues for photons in the Near Infra-red and

in the red part of the Visible range (NIR-Visible) [2]. Thus, all of the techniques based on the

injection and measurement of NIR-Visible photons in tissues for deep probing purposes fall under

the wide category of Diffuse Optics (DO) [3].

Recent progress in the related technologies has seen significant advances in developing minia-

turised devices for DO at low cost [1, 4]. An ever-growing application for DO is the reconstruction

of functional (e.g. blood parameters ) and/or physiological ( e.g. tissues’ composition) images of hu-

man tissues, that generally falls under the name of Diffuse Optical Imaging (DOI) or Diffuse Optical

Tomography (DOT) [3, 5]. However, clinical uptake of these modalities has been limited by the low

resolution, artefacts and high noise in the reconstructed images, which are consequences of the se-

vere ill-posedness of the underlying inverse problem. Despite these drawbacks, DOI is still an active

and growing branch of research worldwide because of its non-invasiveness and cost-effectiveness

with respect to other commonly used imaging techniques [6]. Moreover, the spectral nature of DO

admits a spectroscopic - and therefore functional - analysis of soft tissues, that is crucial for clinical

diagnosis [3, 7, 8, 9]. Hereby, we present two of the main applications of DOI for clinical applica-

tions: Breast Cancer Diagnosis [10] and Functional Brain Mapping [11, 12]. For both, we highlight

some of the challenges that limit their uptake in clinical scenarios.



2 Chapter 1. Introduction

1.1.1 Diffuse Optical Tomography for Cancer Diagnosis

A leading application for DOT is in Breast Cancer diagnosis i.e. in the discrimination of benign

and malignant lesions [13]. When characterising the diagnostic performances of medical imaging

techniques, commonly accepted figures of merit are sensitivity and specificity [14]. Sensitivity - or

recall - is defined as the percentage of detected positive cases, i.e. of actually detected cancers, over

the number of all the positive cases. Specificity is the number of true negative cases detected as such

over the total of negative cases [15]. We also mention here precision, which is the ratio between

correctly identified positive cases and the total of positive diagnoses, and accuracy, defined as the

ratio between the correct diagnoses and total number of examinations. A graphical representation of

these parameters is displayed in Figure 1.1.
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Figure 1.1: Graphic representation of some commonly accepted figures of merit for the characterisa-

tion of the diagnostic performances of medical imaging techniques. On the left, the possible outputs

of a medical diagnosis are shown where each dot represents a test case. Inside the central circle

are the cases that are recognised as positive (malignant) by the technique. The true distribution

of positive and negative cases is represented by colours. On the right, we represent the graphical

interpretation of accuracy, recall (or sensitivity), precision and specificity.

Nowadays, imaging protocols for breast cancer diagnosis include X-ray mammography, Com-

puted Tomography (CT), Magnetic Resonance Imaging (MRI) and Ultrasound (US) imaging. Of

these, US imaging is regarded as the state of the art and a major tool for Breast Cancer diagno-

sis. It is an established imaging technique, benefiting from cost-effectiveness, non-invasiveness and

sensitivity close to 100% [16]. The high resolution of US Brightness mode (B-mode) images leads

to clinical diagnosis based on detecting anomalous morphology [17]. The tumours are classified

into different categories depending on their shape by means of the ACR-BI RADS®Atlas [18]. Le-

sions with clearly defined and round borders and main elongation parallel to the skin surface are
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usually considered to be benign. Shaded jagged borders and elongation of the lesion in the vertical

direction are often associated with malignancy. Additionally, Shear Wave Elastography (SWE) and

Colour Doppler Ultrasound (CDU) give relevant insight on the stiffness and vascularisation of the

tissues [19]. Nevertheless, the specificity of US imaging is around 80% and operator-dependent [20].

Consequently, patients often need to go through expensive and often invasive medical exams for a

confirmatory diagnosis [21].

Adopting DOT as a suitable complementary technique to US imaging e.g. in a multimodal

probe [22], could lead to significant economical and clinical benefits. The interest in multimodality

imaging is advancing with the ever increasing progress in systems and reconstruction techniques [23,

24]. The idea of combining DOT with a higher resolution, well-posed, structural imaging modal-

ity was suggested early in the development of the field [25, 26], and the availability of more than

one modality in a single probe naturally leads to the question of how to best combine them rather

than just treating them separately [27, 28, 29]. In particular, the combination of DOT with US has

shown promising results, especially regarding Breast Cancer Diagnosis [26, 30, 31, 32]. At the same

time, the combination of optical and acoustic measurements has led to several Coupled Physics

Imaging modalities such as Photoacoustic Tomography (PAT) [33] and Ultrasound Modulated Op-

tical Tomography (UMOT) [34]. These methods are so-named because a measurement involves the

cross-generation of one type of phenomenon from another [35]. Efforts have been spent in designing

new dual probes [13, 36] and in characterising tumours also by their reconstructed absorption as a

mean to better classify them and predict their reaction to therapy [37, 38, 39, 40].

The SOLUS System

In this thesis, we introduce the combined US+DOT hand-held probe developed by the SOLUS con-

sortium in H2020 [41, 42, 43, 44].

The major innovation that allowed the design of the SOLUS probe is the smart optode [45]. This

is a compact standalone photonic device for Time-Domain Diffuse Optical Tomography (TD-DOT).

Its main components are:

• A set of 8 laser diodes. Each diode emits exclusively one wavelength among: 640, 670,

830, 905, 930, 970, 1020 and 1050 nm. The choice of the emitted wavelengths depended on

considerations on the spectral properties of breast tissues [46, 47]. The Full Width at Half

Maximum (FWHM) of the laser pulses is in the order of 100 ps, with a repetition rate of

80MHz. The average pulse power for pulses of FWHM< 240 ps was measured to be between

1.5 and 6mW depending on the wavelength and distributed over an area of few mm2. With

these parameters, the lasers are considered to be eye safe [48].

• A Fast-Gated Silicon Photon-Multiplier (SiPM) composed of 1728 Single Photon Avalanche

Diodes (SPADs) [45]. This has a controllable activation area that can go from the one of a

single SPAD (< 50µm2) up to 8.6mm2, thus allowing for an effective photon detection for



4 Chapter 1. Introduction

distances varying from less than 1 cm to more than 5 cm;

• An integrated Time-to-Digital-Converter (TDC) with 128 channels of ∼ 78 ps.

In the SOLUS probe, a total of 8 smart optodes are arranged in two parallel rows of 4 optodes with a

linear US transducer of length 5.5 cm at the centre between them. The distance between the two rows

of detectors, taken from the centre of the detectors is 21.6mm. The distance between two detectors

in the same row is 13mm. A total of 8 sets of laser diodes are placed externally. The distance from

the centre of each set of laser diodes to its closer detector is 6.7mm. A picture of the SOLUS probe

is shown in Figure 1.2.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 731877. The project is an initiative of the Photonics Public Private Partnership.
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Sensors

14

Top view Side view

8 sets of 8 laser diodes

8 detectors

8 wavelengths per firing optode

635 nm 670 nm 830 nm 915 nm 940 nm 980 nm 1030 nm 1064 nm

8 x 8 x 8 = 512 CURVES

US Transducer

B-mode+SWE+CD +

Sensors

14

Top view Side view

8 sets of 8 laser diodes

8 detectors

8 wavelengths per firing optode

635 nm 670 nm 830 nm 915 nm 940 nm 980 nm 1030 nm 1064 nm

8 x 8 x 8 = 512 CURVES

US Transducer

B-mode+SWE+CD +
Figure 1.2: Overview of the final SOLUS probe. Courtesy of Giulia Maffeis from Politecnico di

Milano (POLIMI). Left: view of the SOLUS probe with respect to operator hand. Center: Front

view of the probe with US transducer ( highlighted in green), two rows of detectors ( highlighted in

white) and the 8 sets of laser diodes ( highlighted in yellow). Right: Side view of the probe.

The final system is shown in Figure 1.3. The probe is mounted on the existing Supersonic

Mach®30 US unit - by Hologic SuperSonic Imagine (Hologic-SSI), France - thus allowing both a

traditional US exam and a combined US+DOT examination.

We finally note that the SOLUS consortium had planned for the building of two prototypes of

the SOLUS probe. At the time of writing, only one prototype had been completed and therefore all

mentions in this thesis to the SOLUS probe refer to this first prototype, unless specified otherwise.

It should be further noted that the second prototype has since been completed.
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Figure 1.3: Photograph of the complete SOLUS system on the Hologic-SSI Aixplorer®Mach 30.

On the left-hand side of the image, the SOLUS screen and the SOLUS probe are shown. Courtesy

of [42].

The Clinical Exam. In September 2021, the clinical evaluation of the first SOLUS probe prototype

started. A clinical exam with the SOLUS system is subdivided in steps. After a traditional US

exam, the patient presenting a breast lesion is asked to proceed - after signing the relative informed

consent - to an examination with the SOLUS probe. The status of the probe’s optical components is

assessed by measuring their Impulse Response Function (IRF) with a specifically designed IRF box.

We refer to Section 3.2 and Section 5.1.1 for more details regarding the IRF use and its acquisition

with the system. The position of the lesion is assessed by the radiologist by means of the US

transducer in the probe. After positioning the US imaging plane along the main axis of the lesion a

B-mode image, a SWE and a CDU are taken. The first optical acquisition follows: for each firing

optode and emitted wavelength, the activation area of each detector is adjusted to record a total

100
,

000 photon per second. We note that, for a given source with a specific wavelength, all detectors

are activated simultaneously. The proper optical acquisition is then performed for a total duration

of 10ms per firing optode and emitted wavelength, so that a number of 103 photons is recorded

for each triplet of source, detector and wavelength. With the same activation area of the SiPMs

selected for the first acquisition, the optical measurement is replicated for three other positions of

the examination: perpendicular to the main axis of the lesion, far from the lesion, but on the same

breast and finally on the contralateral position. The last two optical measurements are taken as

reference for healthy tissues. A schematic overview of the measurement positions can be found in

Figure 1.4. The total time for an examination is ca. 15 minutes. After the examination, an online

tomographic reconstruction is computed. The examination is then repeated up to three times, each

with a different radiologist, to investigate how the results depend on the operator and hear feedback

on system usability from the medical doctors.
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This project has received funding from the European Union’s Horizon 2020 research and innovation programme

under grant agreement No 731877. The project is an initiative of the Photonics Public Private Partnership.
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Acquisition Procedure

Figure 1.4: Schematic representation of the 4 optical acquisitions that are part of one SOLUS ex-

amination. The red lines indicate the position of the US transducer. The first acquisition is taken

by placing the US transducer along the axis of maximum elongation of the lesion. The second is

taken perpendicularly to position 1. The third and fourth acquisitions are aimed at giving reference

measurements probing the optical properties of healthy tissues. Respectively on the same breast far

from the lesion and on the contralateral. Courtesy of Giulia Maffeis (POLIMI).

At the time of writing, a total of 16 patients - out of the final goal of 40 - has been examined

with the SOLUS system. For most of them, 3 radiologists were available, for a total of 41 available

examinations. An overview of the patients is shown in Table 1.1. The average age of patients is 45

years. In total, 5 malignant and 11 benign lesions with average size of 1.8 cm were examined.

At the beginning of the research period that brought to this work, the design of the SOLUS

probe was already defined by the consortium. In this thesis, we present instead some of the major

contributions that have been made to select, implement and assess a suitable DOT reconstruction

strategy to be operated with the multimodal data coming from SOLUS. The absence of clinical data

until the approaching end of the project has characterised many of the steps undertaken here. First,

an appropriate strategy to incorporate the information coming from US probe into DOT has been

formulated, as shown in Chapter 5. There, also a first assessment of the strategy is performed on

specifically designed phantoms, with data collected by an experimental setup mimicking the final

probe. In Chapter 6, it is presented a more extensive study - based on simulations with digital phan-

toms - that was aimed at exploring the diagnostic capabilities of SOLUS with machine learning tech-

niques. Finally, with the completed probe, clinical data were analysed in Section 6.3.2. The features

of the final probe imposed constraints on the previously studied strategies. A partial characterisation

of SOLUS as a diagnostic tool is thus shown in the same section. The final characterisation will

be completed in 2023, after two years since the end of the project and the beginning of the clinical

assessment [42].
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Patient Age (years) # of Radiologists Lesion size (cm) Diagnosis

1 50 1 2.0 Benign

2 30 1 1.0 Benign

3 26 3 2.1 Benign

4 41 1 3.5 Malignant

5 67 2 2.2 Malignant

6 37 3 1.0 Benign

7 69 3 1.4 Benign

8 59 3 1.5 Benign

9 47 3 1.2 Malignant

10 68 3 1.3 Malignant

11 46 3 2.0 Benign

12 46 3 1.8 Benign

13 47 3 1.8 Benign

14 25 3 1.4 Benign

15 47 3 3.0 Malignant

16 21 3 1.4 Benign

Table 1.1: Overview of patients examined with the SOLUS system at the time of writing.
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1.1.2 Diffuse Optical Imaging for Functional Brain Mapping and Use of Deep

Learning

Functional brain mapping is an important part of contemporary neuroscience, aiming at providing

insight on human brain activity [11, 12, 49, 50]. Commonly used techniques in the field are Func-

tional Magnetic Resonance Imaging (fMRI) and Position Emission Tomography (PET) [51]. How-

ever, both techniques suffer from important limitations such as high costs and immobility. Moreover,

PET uses radioactive tracers, while fMRI poses constraints on the subjects e.g. the absence of metal-

lic implants. Diffuse Optical Imaging, being less expensive and portable, is an alternative to both

techniques [52]. It relies on the high optical contrast of blood with respect to other human tissues,

thus being suitable for imaging the haemodynamics of the brain [53, 54]. The principle of the tech-

nique is the injection and detection of light in the NIR-Visible range in the skull of a patient [55, 56].

Injected photons undergo a series of scattering and absorption events and are then measured back

at the scalp [57]. A change of absorption e.g. by blood influx to the cortex of the brain, will then

have an effect on the measurements. Thus, haemodynamics in the cortex can be induced in patients

e.g. by physical stimuli such as finger-tapping [58] or by speech-related tasks [59], and measured.

The ever-developing technology in the field over the years brought to the construction of densely

packed arrays of source and detectors [12, 60]. Since the change of absorption is largely limited to

the cortex, a full tomography can be avoided and, instead, a mapping between 2-dimensional im-

ages - from scalp to cortex - can be modelled [52]. This allows to reconstruct images of the brain

activation areas in a technique commonly referred to as Diffuse Optical Cortical Mapping (DOCM)

or Functional Near Infrared Spectroscopy (fNIRS) [61]. An example of the application principle,

experimental setup and results of DOCM can be found in Figure 1.5.

(a) (b)

Figure 1.5: (a): Schematics of the working concept of DOCM. Light is injected at the skull, after

travelling through layers of tissues, the photons are measured back at the skull from an array of

detectors. The way photons propagate depends on the properties of the tissues e.g. from the quantity

of blood in the cortex. Image shown as courtesy of [6]. (b): Experimental setup for DOCM. Two

arrays of optodes are set on the skull of a patient. The image on the right displays the change of

absorption measured by the two sets. Image shown as courtesy of [62].

DOCM can provide good qualitative images of haemodynamics in experimental setups, but

suffers from important disadvantages that arise from the ill-posedness of the underlying inverse
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problem, which does not make it robust enough for clinical scenarios yet e.g. for what concerns

its spatial resolution, repeatability and quantitation [6, 50, 56, 63]. For these reasons, quantitative

analysis via full tomographic reconstructions has been explored in literature at the cost of more

sophisticated setups and computational burden [52].

In this thesis, Deep Learning is proposed as a partial solution to the limits of two-dimensional

mapping. In recent years, machine learning has seen huge developments and its application in med-

ical imaging has been pervasive in research environments, with an ever-increasing attention towards

neural networks and deep learning [64, 65, 66]. Most of the proposed networks in imaging are

based on Convolutional Neural Networks (CNNs) [67], with the assumption that the most relevant

image transformation operators are subject to a certain degree of spatial correlation, thus allowing

to discard the much more computationally expensive Fully Connected Neural Networks (FCNNs).

In CNNs, the desired output is mainly obtained by a series convolutions of the input with a set of

learned filters [68]. Recently, many variations to this methodology have been developed in order

to allow to capture larger spatial correlations in the input images without dramatically increasing

the number or the size of the filters. Among them, U-net surged to be the most widely accepted

and utilised method to learn and apply image to image transformations [69]. The main strength of

U-net resides in the presence of skip connections, upsamplings and pooling that allow the weights

to effectively act on different parts of the image at the same time, thus widening the field of view

of the net and reducing the problem of vanishing gradients. The success of CNNs and U-net is so

widespread that they have been used also to solve mathematical and physical problems for which

convolutions might not represent - in principle - a sensitive solution. However, the application of

such methods to the most broad phenomena comes with some problems. As the most interesting

ones for the following discussion based on machine learning for optical diffusion phenomena, we

cite [70]:

• The lack of direct interpretability of the hidden layers in the nets [71];

• The use of a larger number of weights than necessary, with a direct consequence on the dura-

tion of training as well as on the final execution time;

• The frequent lack of previous physical knowledge incorporated in the net structures;

• A trend to instability, hindering the generalisation with data different from that used in training

even if they are different realisations of the same physical phenomenon [72].

In this thesis, we explore the application of machine learning to imaging through diffusive

media, an imaging problem related to DOCM. The diffusive nature of the phenomenon is taken

into account via specifically-designed model-based deep learning networks. After assessing the

performances of the proposed networks on simulations, we tested our techniques with experimental
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data. A proof of concept is also shown for measurements in reflectance, paving the way for the

application of the technique for DOCM.

1.2 Outline of the Thesis
The thesis is structured as follows:

• In Chapter 2, we give a brief introduction of the mathematics and terminology of forward

problems and inverse problems in imaging, numerical optimisation, machine learning and

deep learning;

• In Chapter 3, we present the problem of DOT and some of the mathematical tools that have

been employed for reconstruction;

• In Chapter 4, we briefly describe the key elements of US wave propagation in human tissues.

We proceed with a comparison of some of the most successful simulation softwares in the

field;

• Chapter 5 is devoted to the development of the reconstruction strategies for the SOLUS probe.

The algorithms for the extraction of morphological information from the US B-mode images

are presented. A validation on phantoms for the reconstruction strategies with an experimental

setup is shown.

• Chapter 6 focuses on the diagnostic performances of SOLUS. After a first assessment with

ad hoc simulations, a preliminary evaluation on clinical data is presented;

• In Chapter 7, we assess the performances of specially designed neural networks for the prob-

lem of imaging through diffusive media. An evaluation of the methods is performed via sim-

ulations and experimental data. A proof of concept for an application closer to the reflectance

measurement used in DOCM is also shown;

• Chapter 8 presents possible future works and the conclusion of the thesis;

• Appendices A, B and C contain supplementary material for the discussions in Chapter 5 and

7.



Chapter 2

Mathematical Preliminaries

In this chapter, we show some of the mathematical concepts and tools that are used throughout the

thesis. In Section 2.1, we introduce some of the concepts behind the mathematical modellisation

and numerical solution of Forward Problems with a focus on Finite Difference Method and Finite

Element Method. In Section 2.2, we give an overview of Inverse Problems with a focus on imaging.

Well-known applications and methods such as variational priors are introduced. In Section 2.3, we

show some of the most commonly used numerical optimisation algorithms with a focus on steepest

descent methods, Newton methods and conjugate gradient methods. Finally, in Section 2.4, machine

learning is treated, with a focus on the terminology and tools that are applied in the remaining part

of the thesis.

2.1 Forward Modelling
We focus here on the concepts used in the modellisation of forward problems. These involve the

calculations of quantities that can be observed once that a set of parameters are known [73]. Many

problems in physical, biological and social sciences are quantitatively described by Partial Differen-

tial Equations (PDEs) [74]. In Section 2.1.1, we introduce some of their basic notions and nomencla-

ture that will be used throughout the thesis. After that, we proceed by showing some computational

methods used to solve PDEs numerically.

2.1.1 Partial Differential Equations and Green Functions

Given a set of d + 1 independent variables, r = (r1, r2, ..., rd) and t, defined over the domain

Ω × [0, T ], a PDE is a differential equation whose unknown is a multivariable function u(r, t) ∈

X(Ω × [0, T ]), with X Hilbert space of inner product ⟨·, ·⟩X , and which contains derivatives of

u(r, t) with respect to more than one variable [73]. A generic PDE can be written as the relation

[75]:

H(u,w) : F

(
w, r, t, u,

d

dt
u,

d2

dt2
u, ...,

dpt

dtpt
,

∂

∂r1
u,

∂

∂r2
u, ...,

∂

∂rd
u, ...,

∂p1+p2+...+pd

∂rp1

1 ∂rp2

2 ...∂rpd

d

u

)
= q

(2.1)
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where w ∈ Y is a set of data of the equation defined over a Hilbert space Y , q(r, t) ∈ X(Ω× [0, T ])

is a source term, pi is the maximum order of derivation with respect to the ith component of r

and pt is the maximum order of derivation with respect to the variable t. We refer to the quantity

max {p1, p2, ..., pd, pt} as the order of the equation [73]. A PDE expressed as Equation (2.1) is said

to be in its strong formulation.

In general, a problem in the form of Equation (2.1) is defined to be well-posed when [76]:

1. A solution u ∈ X(Ω× [0, T ]) exists for each w ∈ Y ;

2. u is unique;

3. u is stable with respect to perturbations in w, i.e. given H(u1, w1) and H(u2, w2), then

u1 → u2 as w1 → w2.

A PDE is defined linear if F is linear with respect to u(r, t) and its derivatives. In such case, we can

define a linear differential operator J depending on w, such that Equation (2.1) can be written as:

Ju(r, t) = q(r, t). (2.2)

The solution G(r, r′, t, t′) of Equation (2.2) when the source term is a delta function q(r, t) = δ(r−

r′, t− t′) in r′, t′:

JG(r, r′, t, t′) = δ(r− r′, t− t′),

is called Green function [76]. Finding an analytical solution to Equation (2.2) is often impossible.

However, it can be shown that the solution u(r, t) to Equation (2.2) can be expressed as:

u(r, t) = G(r, r′, t, t′) ∗ q(r, t) (2.3)

where ∗ indicates the operation of convolution. Finally, we mention that for a correct modellisation

of a phenomenon via a PDE, conditions over the boundary ∂Ω, t = 0, t = T of Ω × [0, T ] need to

be defined [74]. Three main types of boundary conditions can be defined:

1. Dirichlet boundary conditions: u(r, t) = w(r, t);

2. Neumann boundary conditions: n̂ · ∇u(r, t) = w(r, t), with n̂ outer normal to ∂Ω;

3. Robin boundary conditions: ∇u(r, t) + ξu(r, t) = w(r, t), with ξ constant.

We note that the above can give rise to mixed boundary conditions when two or more of them are

defined over different portions of ∂Ω.

2.1.2 Numerical Solutions

In many practical scenarios, it is unfeasible or impossible to find an analytical exact solution u

satisfying Equation (2.1) [75]. The aim of numerical computation for PDEs is to give instead an

approximate solution, uh ∈ Xh(Ω × [0, T ]) of finite dimension Nh, to Equation (2.1) such that
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uh → u as Nh → ∞ [73]. Here, h is referred to as a characteristic measure for the elements of Xh,

discretisation of X . We briefly recall here two of the methods to solve PDEs numerically: Finite

Difference Methods (FDMs) in Section 2.1.2 and Finite Element Methods (FEMs) in Section 2.1.2.

Both methods aim at formulating Equation (2.2) as one or more algebraic problems in the form:

Jf = g, (2.4)

where f and g are respectively the vectors of coefficients of the projections of u and q on the basis

{ehi : i = 1, · · · , Nh} of finite dimensions Nh defined by the used method. We have:

f =


f1

f2
...

fNh

 , g =


g1

g2
...

gNh

 , s.t. uh =

Nh∑
i=1

fiehi, qh =

Nh∑
i=1

giehi. (2.5)

The solution of Equation (2.4) can be found via a set of numerical optimisation methods. We give

an overview of some of these methods in Section 2.3.

Finite Difference Methods

FDMs aims at solving PDEs by approximating derivatives with finite differences. Supposing a dis-

cretised approximation uh(r, t) of u(r, t) is available over a grid of spacing h, the partial derivative
∂
∂ri

u with respect to a variable ri in a generic grid point r can be approximated at the first order by:

∂

∂ri
u(r, t) ≃ D+

i,huh(r, t) :=
uh(r+ hv̂i, t)− uh(r, t)

h
(2.6)

∂

∂ri
u(r, t) ≃ D−

i,huh(r, t) :=
uh(r, t)− uh(r− hv̂i, t)

h
(2.7)

where v̂i is a versor pointing towards the ith dimension of r. D+
i,h and D−

i,h represent respectively

two different approximations of ∂
∂ri

u by forward and backward differences with step size h. We note

that the formulae above degenerate to the definition of partial derivative when h → 0. Expanding

u(r, t) along v̂ it can be shown that the approximation error of Equation (2.6) and Equation (2.7) is

proportional to h [77]. Another option is given by the central difference approximation Dc
i,h2

:

∂

∂ri
u(r, t) ≃ Dc

i,h2
uh(r, t) :=

uh(r+
1
2hv̂i, t)− uh(r− 1

2hv̂i, t)

h

which can be shown to be a second order approximation to ∂
∂ri

u, i.e. the approximation error is

proportional to h2 [77]. Other orders for the approximations of ∂
∂ri

u can be obtained e.g. by using

the method of undetermined coefficients which aims at finding an expression:

∂

∂ri
u(r, t) ≃

Nj∑
j=0

cju(r+ jhv̂i, t),

where the coefficients cj can be found e.g. by using the Taylor expansion formula [77]. Higher order

of derivatives can be found by combining a set of finite difference derivatives. As an example, we
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show here an approximation for the Laplacian operator ∇·∇ in two dimensions which, in Cartesian

coordinates, reads:

∇ · ∇ =
∂2

∂r1
2 +

∂2

∂r2
2 . (2.8)

One can choose:

∂2

∂ri
2u(r, t) ≃ D+

i,h2

(
Dc

i,h2
uh(r, t)

)
=

u(r+ hv̂i, t)− 2u(r, t) + u(r− hv̂i, t)

h2
, (2.9)

where we assumed the same step size h for all dimensions involved. Inserting Equation (2.9) in

Equation (2.8) gives:

∇ · ∇u(r, t) ≃ uh(r+ hv̂1, t) + uh(r+ hv̂2, t)− 4uh(r, t) + uh(r− hv̂1, t) + uh(r− hv̂2, t)

h2
,

which allows to write the Laplacian operator as a convolution stencil, such that, at a given point

strictly in the domain:

∇ · ∇u(r, t) ≃


0 1 0

1 −4 1

0 1 0

 ∗ uh(r, t). (2.10)

After that a finite difference expression of the differential operators is found, it is possible to approx-

imate Equation (2.1) into Equation (2.4), thus allowing to retrieve the vector of coefficients f as in

(2.5). We refer to [77], for a thorough discussion of the topic, including the results of stability and

convergence for the FDM solutions.

Finite Element Methods

FEMs arise when solutions - u ∈ X(Ω × [0, T ]) with X Hilbert space - to Equation (2.2) are

sought in the weak sense [75]. A PDE can be written in its weak formulation for a given test

function v ∈ X(Ω) and its numerical solution can be obtained by means of the Galerkin method

[75]. In the following, we report the principles of the Galerkin-Finite Element methods used for

computations presented in this thesis [73]. Given a weak formulation of the problem, we look for a

finite approximation uh ∈ Xh(Ω× [0, T ]) of u such that:

Xh ⊂ X, dimXh = Nh < ∞ ∀h > 0.

Choosing a finite set of basis functions {ehi : i = 1, · · · , Nh} of Xh, we express the approximated

solution uh as:

f =


f1

f2
...

fNh

 s.t. uh =

Nh∑
i=1

fiehi, (2.11)

similarly to what has been done in Equation (2.5). A popular choice for {ehi : i = 1, · · · , Nh} is

given by triangle functions or linear elements [73].
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We briefly describe here the FEM modellisation of the equations:

∇ · ∇u(r) = q(r), (2.12)

d

dt
u(r, t) +∇ · ∇u(r, t) = q(r, t), (2.13)

as similar problems will be present in the rest of the thesis.

FEM Formulation of Equation (2.12). Assuming a smooth u(r), the weak formulation of

Equation (2.12) can be obtained by multiplying the latter by a test function v ∈ X(Ω) and in-

tegrating over Ω, thus having:

Find u(r) ∈ X(Ω) s.t. a(u(r), v(r)) = G (v(r)) , ∀v ∈ X(Ω),

where a(u, v) =
∫
Ω

∇u(r) · ∇v(r) dr is a bilinear form, and G(v) is a functional acting on the test

function v, which, neglecting boundary conditions for simplicity, is G(v) =
∫
Ω

q(r)v(r)dr. The

approximation over a discretised space Xh will be given by:

Find uh ∈ Xh(Ω) s.t. a(uh, vh) = G(vh), ∀vh ∈ Xh(Ω), (2.14)

which is called Galerkin problem. Validation of the condition in Equation (2.14) for each basis ehj

requires that:

a(uh, ehj) = G(ehj), j = 1, 2, . . . Nh.

Which, by Equation (2.11), gives:

Nh∑
i=1

fia(ehi, ehj) = G(ehj), j = 1, 2, . . . Nh. (2.15)

Defining the stiffness matrix J of entries:

aij = a(ehi, ehj),

and the vector g with elements gi = G(ehi) the set of relations in Equation (2.15) is analogous to

the linear system in Equation (2.29). J is sparse by construction, meaning that most of its entries

are null - in the specific case, far from its diagonal [73]. Many effective computational methods

dramatically improve their time performances when dealing with sparse matrices as J [78].

FEM Formulation of Equation (2.13). The variational formulation of Equation (2.13) can be writ-

ten as [73, 75]:

Find u(r, t) ∈ X(Ω× [0, T ]) s.t.∫
Ω

d

dt
u(r, t)v(r, t)dr+ a(u(r, t), v(r, t)) = G (v(r, t)) ∀v ∈ X(Ω× [0, T ]),

(2.16)

where u(r, t) and v(r, t) are assumed smooth in Ω, where a(u, v) =
∫
Ω

∇u(r) · ∇v(r) dr is a bi-

linear form and where the functional G (v(r, t)) =
∫
Ω

q(r, t)v(r, t)dr when neglecting boundary
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conditions. The Galerkin problem relative to Equation (2.16) follows:

Find uh(r, t) ∈ Xh(Ω× [0, T ]) s.t.∫
Ω

d

dt
uh(r, t)vh(r, t)dr+ a(uh(r, t), vh(r, t)) = G (vh(r, t)) ∀vh ∈ Xh(Ω× [0, T ]),

(2.17)

where Xh is a semi-discretisation of X in Ω, but not in [0, T ].

The Galerkin approximate solution to Equation (2.17) can be written as Equation (2.11), where

we note that the coefficients fi = fi(t) are time dependent, due to the semi-discretisation of the

problem. We rewrite (2.17) as:∫
Ω

Nh∑
i=1

d

dt
fi(t)ehiehjdr+ a

(
Nh∑
i=1

fi(t)ehi, ehj

)
= G(ehj) j = 1, 2, · · · , Nh,

which can be rearranged into:

Nh∑
i=1

d

dt
fi(t)

∫
Ω

ehiehjdr︸ ︷︷ ︸
mi,j

+

Nh∑
i=1

fj(t) a
(
ehi, ehj

)︸ ︷︷ ︸
ai,j

= G(ehj)︸ ︷︷ ︸
gj(t)

j = 1, 2, · · · , Nh.

The latter can be written is matrix form as:

M
d

dt
f(t) + Jf(t) = g(t). (2.18)

where M of elements mi,j is called mass matrix and can be shown to be positive definite [73].

The solution to Equation (2.18) can be found by approximating the entries in d
dt f(t) with finite

differences [73].

Applying the θ-method [79] one gets:

M
f(t+ ht)− f(t)

ht
+ J [θhf(t+ ht) + [1− θh] f(t)] = θhg(t+ ht) + [1− θh]g(t),

where ht is the time step. The values chosen for θh give rise to different stepping schemes. We show

here some particular cases:

• For θh = 0, the Explicit Euler method is adopted:

M
f(t+ ht)− f(t)

ht
+ Jf(t) = g(t),

which is accurate to the first-order of ht and is stable only if:

∃ c > 0 s.t. ht ≤ ch2 ∀h > 0;

• For θh = 1 the Implicit Euler method is obtained:

M
f(t+ ht)− f(t)

ht
+ Jf(t+ ht) = g(t+ ht), (2.19)

which is also accurate to the first-order of ht and is unconditionally stable as θh ≥ 1
2 [73].

Moreover, J is time-independent, which allows the stiffness matrix to be computed only once;



2.2. Imaging and Inverse Problems 17

• For θh = 1
2 the Crank-Nicolson method arises:

M
f(t+ ht)− f(t)

ht
+

1

2
J (f(t+ ht) + f(t)) =

1

2
(g(t+ ht) + g(t)) ,

which is unconditionally stable and the only option with a second-order accuracy with respect

to ht.

Other considerations about stability and convergence of the solutions go beyond the aims of

this introduction and we refer to [73, 77] for further explanations.

2.2 Imaging and Inverse Problems
Imaging can be described as the process of retrieving intelligible spatial information in the form

of images f from a set of measured data g [80]. It is a well-assessed process in nature e.g. when

animals and humans convert data, coming into their eyes in the form of radiation reflected by objects

into a spatial interpretation of what surrounds them. In this case, the relation between the image and

data is accurately described by the laws of geometrical optics and radiation-matter interaction. The

process can be generalised for any physical model as [81]:

g = A(f) (2.20)

where A : X → Y is an operator describing the relationship between f and g with X and Y Hilbert

spaces with respective inner products ⟨· , · ⟩X and ⟨· , · ⟩Y . For many imaging techniques, an accu-

rate mathematical representation of A is available (e.g. via the solution of a PDE); however, given g,

finding the solution of Equation (2.20) for f is often non-trivial [82]. We remark that the definition

of well-posedness given for Equation (2.1) in Section 2.1.1, can be adapted for Equation (2.20) by

respectively substituting u and w with f and g respectively. When the direct problem stemming

from Equation (2.20) is well-posed, the operator A has a well-defined continuous inverse operator

A−1 so that A−1Af = f . If A is a compact linear operator then a Singular Value Decomposition

(SVD) vj , sj , uj is possible so that [83]:

A(vj) = sjuj and A∗(uj) = sjvj ,

where A∗ is the adjoint operator of A with:

⟨ui, uj⟩Y = δi,j

⟨vi, vj⟩X = δi,j ,

and where sj are the eigenvalues of the operator. The result of the operator A on an object f can be

expressed as:

A(f) =

∞∑
j=0

sj ⟨f, vj⟩X uj ,
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which can be seen as a decomposition in generalised frequencies of A. From this expression, a

generalised representation for the inverse of A - or pseudo-inverse [82] - can be written:

A†(g) =

∞∑
j=0

⟨g, uj⟩Y
sj

vj . (2.21)

so that AA†g = g. As a consequence, a reconstruction f recon of the image can be operated by:

f recon = A†g,

which is equivalent to the minimisation of an appropriate Loss Function L : X × Y → R:

f recon = argmin
f∈X

(L(A(f), g) = D(A(f), g)) , (2.22)

with D = ∥A(f) − g∥2Y , which allows to operate an image reconstruction without the computa-

tional effort of the singular value decomposition. Equation (2.21) shows that the contribution of

the eigenvalues of A to the construction of the pseudo-inverse increases with 1
sj

. This is source of

instability for the pseudo-inverse operator, as small perturbations of the data g might lead to big

perturbations of f recon. A quantification of the discrepancy between f recon and the ground truth

image f truth is given by the estimation error εX = ∥f recon − f truth∥X . Furthermore, two factors

need to be considered. Noise in the measurements can not be eliminated in any real application, with

direct consequences on the reliability of the pseudo-inverse operator to find a correct solution. Sec-

ondly, A is often the mathematical modellisation of a complex physical phenomenon and a perfect

agreement between the two is unrealistic. The effect of additive noise η can be taken into account

mathematically by [82]:

gη = A(f) + η. (2.23)

A schematic representation of the framework of inverse problems and the relations among variables

is shown in Figure 2.1.

In general, the inverse problem arising from Equation (2.23) is solved via minimisation over X

of an opportune loss function in the form [82]:

L(A(f), gη) = D(A(f), gη) + τR(f) (2.24)

where τ and R are respectively a regularisation parameter and a regulariser introduced to promote

some features of the sought solution and thus balancing the artefacts arising from the ill-posedness of

the inverse problem. Following, we give a Bayesian interpretation of Equation (2.24), which is useful

for selecting the most opportune data-fitting term D, as well as for giving a further interpretation of

the term R.
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X Y

f A

A†

η
gη

εX
f recon

f truth

Figure 2.1: Schematic representation of the general framework for inverse problems. A model A

brings an image f from image space X to the data g in the data space Y . The noise η moves

the data randomly in Y to gη . The pseudo-inverse model A† reconstructs the noisy data gη into a

reconstructed image f recon. The image error εX is defined as the distance in X from f recon to the

true image f truth.

2.2.1 Bayesian Interpretation

Finding the best solution for Equation (2.23) is equivalent to searching the most probable f given gη

[84]:

P (f |gη) =
P (f) P (gη|f)

P (gη)
,

where Bayes rule has been applied. The problem can still be treated as a minimisation problem by

selecting the loss function as the negative log-likelihood of P (f |gη) as:

L(f, gη) = − log (P (f |gη)) = − log (P (gη|f))− log (P (f)) + log (P (gη)) , (2.25)

with the term P (gη) having a normalisation effect on the formula, but not playing a role in the

minimisation of L. Thus, the minimisation is only operated on the negative log-likelihood of a data-

fitting probability − log (P (gη|f)) and on the negative log-likelihood of the prior − log (P (f)).

When no hypothesis is made on f , then L degenerates to:

L(f, gη) = D(f, gη) := − log (P (gη|f)) . (2.26)

subject to Equation (2.23).

Hypotheses on the distribution of η give different expressions for L. Here, we give examples

of expressions for L supposing Gaussian and Poisson Noise. Without particular loss of generality,

we consider a discretisation f and g of f and g over the respective spaces X and Y . Equation (2.23)

becomes:

gη = A(f) + η. (2.27)
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The elements fi of f are defined so that:

f(r) =
∑
i

fiei(r)

where {ei} is a suitable basis of X . An analogous discussion is valid for gη .

Gaussian Noise. Gaussian noise can be described as a Gaussian process over a generic coordinate

y characterised by mean µ(y) and autocorrelation S(y, y), so that η(y) ∼ GP(µ(y),S(y, y)). The

same expression degenerates for discrete variables. The noise vector can be described as to be drawn

from a multivariate Gaussian distribution with probability density function given by:

η(y) ∼ N (η;µ,Σ) =
1

(2π)
n
2

√
det(Σ)

e−
1
2 ⟨η−µ,Σ−1(η−µ)⟩

Y

where Σ is the covariance matrix. With zero-mean white noise µ = 0, the random variable gη is

such that:

P (gη|f) ∼ N (gη;A(f),Σ) =
1

(2π)
n
2

√
det(Σ)

e−
1
2 ⟨gη−A(f),Σ−1(gη−A(f))⟩

Y ,

which by Equation (2.26) is equivalent to minimising:

L(A(f),gη) =
〈
gη −A(f),Σ−1 (gη −A(f))

〉
Y
.

For a diagonal Σ, the expression degenerates to the quadratic data-fitting term of Equation (2.22).

Poisson Noise. The case taking into account η coming from a Poisson distribution stems from

similar considerations. The latter, differently from Gaussian noise, is not additive, but the data gη

itself is modelled as a Poisson distribution e.g. depending on experimental settings such as the time

of measurement [85]. A Poisson process over y with expectation value λp(y) is characterised by a

distribution in the form:

P(y;λp) =


λ
j(y)
p

j(y)!
e−λp(y) if j ∈ N ≥ 0

0 otherwise

where j is the positive integer number of observations for the variable y. Upon discretisation, the

process can be described by a multivariate Poisson distribution [86], with probability density func-

tion:

P(y;λp) =


∏
i

λp
yi

i

yi!
e−λpi if yi ∈ N ≥ 0

0 otherwise,

where yi is the number of observations for the ith entry of y and the entries of y are consid-

ered to be statistically independent from each other. Thus, setting P (gη|f) ∼ P(gη;A(f)), by

Equation (2.26) one gets:

L(A(f),gη) =
∑
i

(A(f))i − gηi log(A(f))i.
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By the Central Limit Theorem, the Poisson distribution for a large number of observations can

be approximated by a Gaussian of mean λp and covariance matrix λpI [82]. Thus, the data-fitting

term can be approximated by:

L(A(f),gη) =
〈
gη −A(f), (

√
A(f) I)−1 (gη −A(f))

〉
Y

≃
〈
gη −A(f), (

√
gη I)−1 (gη −A(f))

〉
Y
,

where the value √
gηI substitutes the covariance matrix to avoid non-linear effects deriving from a

direct application of A(f).

2.2.2 Variational Priors

In many ill-posed problems, the inclusion of a priori information log (P (f)) in Equation (2.25)

is necessary to obtain sensible reconstructions [82]. The search for suitable priors to enforce the

optimal solution of an inverse problem is an active branch of research [87, 88]. 0th order Tikhonov

regularisation is a particular case given by:

R (f) = ∥f∥2X , (2.28)

which penalises f from having a large norm.

The effect of a prior in the form of Equation (2.28) in the minimisation Equation (2.24) results

in a low-pass filtering of the generalised frequencies in Equation (2.21) [82]. A filter qτ (s2j ) can be

applied to the pseudo-inverse operator so that:

f recon
qτ =

∞∑
j=0

qτ (s
2
j )

sj
⟨g, uj⟩Y vj .

The choice of:

qτ (s
2
j ) =

s2j
s2j + τ

,

can be demonstrated to be equivalent to the application of Equation (2.28) in Equation (2.24) [82].

Other well-known choices for the filter include the Truncated Singular Value Decomposition (TSVD)

for which qτ (s
2
j ) = 1 for s2j > τ and 0 otherwise.

Tikhonov regularisers refer to any quadratic penalty term in the form:

R(f) = ∥Lf∥2X .

Under Bayesian interpretation, we get that for Tikhonov regularisers:

R(f) = − logP (f) = ∥Lf∥2X ⇐⇒ P (f) = e−⟨Lf,Lf⟩X = e−⟨f,C
−1f⟩

X

where C−1 = L∗L expresses the covariance of f , with L∗ adjoint operator of L. When L is in the

form of a derivative operator Dβ with β multi-index:

R(f) = ∥Dβf∥2X ,

a Tikhonov regulariser is said to be of the bth order, with b maximum order of derivation.
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2.3 Numerical Optimisation
Even when a loss function is identified, it is usually unfeasible to find its minimum analytically or

to compute the pseudo-inverse of the discrete operator A [89]. For this reason, several minimisation

algorithms have been developed over the years. Giving a comprehensive treatment of the theory

of numerical optimisation is out of the scope of this thesis. Instead, we give an overview of the

principles of numerical optimisation with respect to the most used techniques in the field. Unless

specified otherwise, we indicate as ⟨·, ·⟩ the inner product in the Euclidean space.

Let us consider the discretised minimisation problem:

f recon = argmin
f

(
L(A(f),gη) =

1

2
∥Af − gη∥2

)
, (2.29)

stemming from Equation (2.27). Numerical methods for the solution of Equation (2.29) usu-

ally rely on generating a sequence of iterates fk so that, after m iterations, L (A(fk),gη) <

L (A(fk−m),gη) , ∀m < k [89].

We focus here on steepest descent methods, Newton methods and conjugate gradient methods

for problems that can be written in the least squares form of Equation (2.29). For ease of notation

and without any loss of significance, in the remainder of the section, we write L(A(f),gη) as L(f).

All the methods here considered arise from the second-order Taylor expansion of L(fk):

m2(p) := L(fk + αp) = L(fk) + ⟨p, [∇fkL](fk)⟩ +
1

2
⟨p, [HfkL](fk)p⟩ + o(∥p∥2). (2.30)

Steepest Descent Methods. Steepest descent methods use Equation (2.30) to find the optimal di-

rection p along which L decreases [90]. An iteration is such that:

fk+1 = fk + αkpk,

where pk is a descent direction for small αk. L(fk+1) < L(fk) when ⟨pk,∇fkL⟩ < 0. The direction

of steepest descent is given for pk = −∇fkL(fk), which, for the loss function in Equation (2.29) is:

−∇fkL(fk) = J∗(fk) [gη −A(fk)] ,

where J∗ is the adjoint of the Fréchet derivative - corresponding to the Jacobian in finite dimensions

- of the operator A [75]. The resulting procedure is shown in Algorithm 1. The selection of the

step size αk is itself an optimisation problem falling under the category of line-search methods. The

exact line-search algorithm selects αk by solving: argminα L (fk + αpk). However, this kind of

approach may result computationally expensive [89]. Other approaches consider the selection of αk

by backtracking, so that the update satisfies a set of conditions e.g. Wolfe conditions, assuring global

convergence and a non negligible descent at each iterate [90].
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Algorithm 1 Steepest descent

1: Initialise f0, k = 0 ;

2: while Stopping criterion not satisfied do

3: pk = −[∇fkL](fk);

4: Select αk;

5: fk+1 = fk + αkpk

6: k = k + 1

7: end while

Newton Methods. Newton methods arise by assuming the second-order Taylor expansion m2(p)

of L(fk + p) in Equation (2.30) is an accurate approximation for L(f) [90]. Setting ∇pm2(p) = 0

one gets:

αkpk = −[HfkL]−1(fk)[∇fkL](fk).

where, for L as in Equation (2.29):

HfkL(fk) = J∗(fk)J(fk)−∇fkJ
∗(fk) [gη −A(f)] . (2.31)

In Algorithm 2, we display the final algorithm. Newton descent works as long as the Hessian of

Algorithm 2 Newton Method

1: Initialise f0, k = 0 ;

2: while Stopping criterion not satisfied do

3: αkpk = −[HfL]−1(fk)[∇fkL](fk);

4: fk+1 = fk + αkpk

5: k = k + 1

6: end while

L is positive definite, which can not be assured in general [89]. Moreover, the calculation of the

full Hessian can often be computationally unfeasible. The Gauss-Newton method stems from these

considerations by approximating HfL(fk) in Equation (2.31) with HGN,fkL(f) defined as :

HGN,fkL(fk) := J∗(fk)J(fk),

which is symmetric positive definite [89]. We note that in the case of a linear forward operator, one

gets HGN,fkL(fk) = HfkL(fk). The Gauss-Newton algorithm follows by substituting HfkL(fk)

with HGN,fkL(fk) in Line 3 in Algorithm 2 so that the final algorithm reads as shown in Algorithm 3.

We note that in this case the step lengths αk needs to be appropriately selected as the Gauss-Newton

descent direction is not guaranteed to be the minimising one.

A further development is given by the Levenberg-Marquardt method which applies a regulari-

sation to calculate the update step αkpk in a trust region fashion and allows to minimise least-square
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Algorithm 3 Gauss-Newton Method

1: Initialise f0, k = 0 ;

2: while Stopping criterion not satisfied do

3: pk = −[HGN,fkL]−1(fk)[∇fkL](fk);

4: Select αk;

5: fk+1 = fk + αkpk

6: k = k + 1

7: end while

expressions with (nearly) rank-deficient HGN,fkL(fk) [89]. The update step is calculated by solving:

(HGN,fkL(fk) + λkI)αkpk = −∇fkL(fk), (2.32)

where λk is a variable parameter. The operator on the left-hand side of Equation (2.32) is guaran-

teed to be symmetric positive definite for any λk > 0. We show an example of the approach in

Algorithm 4. We note that the smaller λk, the closer the descent direction will be to the Gauss-

Newton direction. Starting with a large value, λk is made smaller if a descent direction for L(fk) is

found.

Algorithm 4 Levenberg-Marquardt Method

1: Initialise f0, k = 0, λ0, 0 < C < 1 ;

2: while Stopping criterion not satisfied do

3: αkpk = − ([HGN,fkL](fk) + λkI)
−1

[∇fkL](fk) ;

4: if L(fk−1 + αkpk) < L(fk−1) then

5: λk+1 = Cλk

6: else

7: λk = λk/C

8: Go to Line 3

9: end if

10: fk+1 = fk + αkpk

11: k = k + 1

12: end while

Other methods approximating the Hessian of L by a matrix Bk fall into the category of Quasi-

Newton methods. We refer to [89] for some of the most popular: BFGS, Broyden, DFP, SR1.

Conjugate Gradient Methods. The first conjugate gradient method was developed for the solution

linear systems of equations:

Jsf = g, (2.33)
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where Js is a symmetric positive definite matrix. We note that the expression in Equation (2.33)

is analogous to the system in Equation (2.4) for FEM. The residual of Equation (2.33) is defined

as re(f) := Jsf − g. The method is based on the notion of conjugate vectors. A set of vectors

{pk : k = 0, · · · , l− 1} is said to conjugate with respect to an operator Js if:

⟨pi,Jspj⟩ = 0, if i ̸= j.

Given such a set of conjugate directions with respect to Js, it can be shown that, for any f0, the

update formula fk+1 = fk + αkpk will converge to f truth in k ≤ l iterations with αk = − ⟨re,k,pk⟩
⟨pk,Jspk⟩

and re,k := re(fk). However, calculating and storing a whole set of conjugate vectors can be ineffi-

cient. This problem is solved by conjugate gradient methods by computing a new vector pk only by

knowing pk−1 and assuring nevertheless that the set of update directions is conjugate with respect

to Js. This form implies that the residuals are orthogonal and that any descent direction pk and any

residual re,k are contained in the Krylov space K (Js, re,0, k) of order k:

K (Js, re,0, k) :=
{
re,0,Jre,0,J

2re,0, · · · ,Jkre,0
}
.

We show the resulting procedure in Algorithm 5.

Algorithm 5 Conjugate Gradient I

1: Initialise f0;

2: Set re,0 = Jsf0 − g, p0 = re(f0), k = 0;

3: while Stopping criterion not satisfied do

4: αk = − ⟨re,k,pk⟩
⟨pk,Jspk⟩ ;

5: fk+1 = fk + αkpk;

6: re,k+1 = Jsfk − g;

7: βk =
⟨re,k+1,Jspk⟩
⟨pk,Jspk⟩

8: pk+1 = −re,k+1 + βk+1pk

9: k = k + 1

10: end while

An optimisation of the previous algorithm is done by setting [89]:

αk =
⟨re,k, re,k⟩
⟨pk,Jspk⟩

, re,k+1 = re,k + αkJspk βk =
⟨re,k+1, re,k+1⟩

⟨rk, re,k⟩
.

This version of the conjugate gradients method is shown in Algorithm 6. We mention that precon-

ditioning for eigenvalue clustering can also be used to increase the convergence rate of conjugate

gradient methods.

Even though conjugate gradients methods were designed for the solution of linear systems in

the form of Equation (2.33), they can be adapted to more general inverse problems. We consider

linear inverse problems in the form:

f recon = argmin
f

(
L =

1

2
∥Jf − gη∥2

)
,
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Algorithm 6 Conjugate Gradient II

1: Initialise f0;

2: Set re,0 = Jsf0 − g, p0 = re(f0), k = 0;

3: while Stopping criterion not satisfied do

4: αk =
⟨re,k,re,k⟩
⟨pk,Jpk⟩ ;

5: fk+1 = fk + αkpk;

6: re,k+1 = re,k + αkJspk;

7: βk =
⟨re,k+1,re,k+1⟩

⟨rk,re,k⟩

8: pk+1 = −re,k+1 + βk+1pk

9: k = k + 1

10: end while

where J is a linearisation of the discrete operator A in Equation (2.27). Differently from the operator

Js defined Equation (2.33), this is not necessarily a square matrix. The convexity of the problem

allows to identify two ways to solve the problem:

• The solution of the normal equations associated with the functional : J∗Jf = J∗gη;

• The minimisation of L via factorisation techniques such SVD, QR decompositions or iterative

methods such as LSQR [89];

As shown above, the solution of the normal equations is particularly convenient with the method of

conjugate gradients. When dealing with the non-linear problem in Equation (2.29), the conjugate

gradients method can be adapted e.g. by introducing a line-search step by the algorithms of Fletcher-

Reeves or Polak-Ribière. In Algorithm 7, we display the method devised by Fletcher-Reeves. Polak-

Ribière is obtained by substituting Line 7 of the previous algorithm with:

βk =
⟨re,k+1 − re,k, re,k+1⟩
⟨re,k+1 − re,k,pk⟩

.

Finally, we remark that a regularisation term can be taken into account in the previous dis-

cussion while keeping the least square form of Equation (2.29) [83]. In discretised settings, one

gets:

f recon = argmin
f

(
L(f) = 1

2
∥A(f)− gη∥2 +

1

2
τ∥Lf∥2

)
⇐⇒

f recon = argmin
f

L(f) = 1

2

∥∥∥∥∥∥
 A
√
τL

 (f)−

gη

0

∥∥∥∥∥∥
2
 ,

(2.34)

with ⟨f ,L∗Lf⟩Y ≡ R(f) and which will be recalled in Section 3.4 for the application of the pre-

sented methods for regularised inverse problems in DOI.
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Algorithm 7 Non-linear Conjugate Gradient (Fletcher-Reeves)

1: Initialise f0;

2: Set re,0 = −∇f0L(f0), p0 = re(f0), k = 0;

3: while Stopping criterion not satisfied do

4: Select αk;

5: fk+1 = fk + αkpk;

6: re,k+1 = −∇fkL(fk);

7: βk =
∥re,k+1∥2

∥re,k∥2

8: pk+1 = −re,k+1 + βk+1pk

9: k = k + 1

10: end while

2.4 Machine Learning
Machine learning is a class of statistical methods that aims at finding an optimal set of parameters Θ,

called weights, defining an operator AΘ. Differently from the discussion presented above, machine

learning considers problems for which a number of examples of f is accessible. A first classification

of machine learning methods can made by the availability of gη [67, 68]:

1. Supervised learning supposes that both f and the corresponding gη are available;

2. Unsupervised learning deals with problems for which gη is non-existent or not available.

In general, a machine learning method can be described by defining a dataset, a model, a loss func-

tion and an optimisation procedure. Training is the procedure by which the parameters Θ of the

model are optimised to Θ̂ such that:

Θ̂ = argmin
Θ

L (AΘ(f),gη) . (2.35)

In the next section, we mention some of the basic concepts adopted to correctly train a machine

learning method. After that, we briefly introduce some of the most used methods in the field: Linear

and Logistic Regression, Support Vector Machines (SVMs) and Neural Networks. For each of them,

we specify their model AΘ and their main features.

2.4.1 Dataset Splitting, Overfitting, Underfitting and Regularisation

All supervised machine learning methods rely on the inference from a known set of data. To ensure

a certain degree of generalisation of the methods, datasets are split in 3 [67]:

1. A Training Dataset;

2. A Validation Dataset;

3. A Test Dataset.
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The training dataset is the one over which the minimisation in Equation (2.35) is obtained. The

validation dataset is used to assess the performances of the minimisation procedure and the test

dataset evaluates the final performances of the model after training. The entity of the split mainly

depends on the availability and quality of data. This is also necessary to check any abnormalities in

the methods performances, especially their contrasting abilities of making good predictions and of

generalising. This is often referred to as the bias-variance trade-off [67]. A model is considered to

be overfitted when it makes good predictions on a training dataset, but is too sensitive to fluctuations

of the data, thus decreasing the performances at testing. As an example, this can happen when the

model is too complex with respect to the desired transformation and no other bounds on the training

are posed. Conversely, a model is considered underfitted when it is insensitive to some or all the

main features of the data. In this case, the performances at testing and those in validation can be

equally bad. Solutions to obtain a suitable trade-off include an increase of available data e.g. via

data augmentation, or regularisation, introducing soft constrains on the values that the parameters Θ

can assume. When iterative methods are used to solve Equation (2.35), early stopping can also be

considered i.e. stopping the training when the validation error is minimum. A schematic of the bias-

variance trade-off is shown in Figure 2.2. A too simple model may lead to underfitting of the data,

so that the prediction will be biased. As the model complexity increases, more information from

the dataset is captured, thus resulting in a bias reduction. However, the variance of the prediction

increases as the model overfits the data, resulting in a large error during testing.

Figure 2.2: Schematic of the bias-variance trade-off. Courtesy of [91].

2.4.2 Linear and Logistic Regression

Linear regression uses a model in the form [92]:

AΘf = ΘT f +Θ0 (2.36)
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where Θ is a vector of the same dimensions of f and Θ0 is a scalar. As per the discussion above, the

distribution of the noise η in the data gη is the most appropriate factor determining the most suitable

loss function to minimise.

When the data gη is binary, linear regression can also be used for classification by giving a

probabilistic interpretation to its output. However, the model’s output is continuous whereas the task

requires a probabilistic one. In addition to this, the model is too sensitive to imbalanced data [67].

A more suitable fitting procedure for binary data is instead given by logistic regression. Here, the

model reads as:

AΘ(f) =
1

1 + e−(Θ0+ΘT f)
.

2.4.3 Support Vector Machines

Given a set of data-points of two classes, Support Vector Machines (SVMs) aim at classification

by defining the hyperplane that maximises the margin between the two types of data-points [67].

Mathematically this can be quantified by a hinge-loss in the form:

L(AΘ(f),Θ;gη) = τ ∥Θ∥+ 1

N

N∑
i=1

max(0, 1− gηi ·AΘ(fi)), (2.37)

where gηi is the actual class of a data-point, AΘ(fi) is the prediction of the model and where i

indicates the index of the considered sample in the dataset. The penalty term τ ∥Θ∥ is introduced

as a trade-off between the size of the margin and the number of samples lying on the correct side

of it [93]. The minimisation of Equation (2.37) can be shown to be equivalent to the minimisation

problem [67]:

argmin
Θ,ξ

τ ∥Θ∥+ 1

N

N∑
i=1

ξi s.t. ξi > 0, gηi ·AΘ(fi) > 1− ξi ∀i. (2.38)

A SVM is called linear when the model AΘ is given by Equation (2.36). In this case, it can be

shown that the hyperplane Θ̂ satisfying Equation (2.38) can be expressed as a linear combination of

data points:

Θ̂ =

N∑
i=1

αifi,

where sparsity in the collection of entries α = {αi} is enforced by the hinge-loss in Equation (2.37).

The data-points fi for which αi > 0 are defined to be support vectors. When a linear model results

to be too simplistic for a correct classification of the data-points, a non-linear transformation φ can

be applied to the samples in the dataset [94]. Thus, the separation boundaries will be modelled as a

linear combination of the transformed dataset, giving:

AΘ(f) = Θ0 +

N∑
i=1

αi φ(fi) · φ(f) = Θ0 +
∑
i

αiK(f , fi)

where K : X ×X → R is a kernel function such that K(x,y) = φ(x) · φ(y) and where the kernel

trick has been applied [95]. The non-linearity φ is chosen such that the transformed dataset φ (f) is

linearly separable.
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2.4.4 Neural Networks

Neural networks can be used in classification tasks, but their versatility allowed them to become one

of the most used machine learning architectures in various tasks, spanning from computer vision to

medical imaging and generative networks [68]. What distinguishes neural nets from other machine

learning frameworks is how the model AΘ is composed, by concatenating layer operators A(k)
Θ,φk

characterised by a non-linearity φk. The final expression is given by the composition of multiple

non-linear operators or layer operators so that:

AΘ(f) = A(n)
Θ,φn

◦A(n−1)
Θ,φn−1

◦ · · · ◦A(1)
Θ,φ1

(f),

where n represents the depth of the network, f (k) = A(k)
Θ,φk

(f (k−1)) is the kth layer of the network,

with φk activation function. We note that in this notation f ≡ f (0). The input f (k) of a layer operator

can be a set of images
{
f
(k)
i : i = 1, · · · , N

}
: in this case, each element of the set is defined as

channel. The same is valid for the output of a layer operator.

The use of neural nets exploded in recent years after the first implementation of the multi-

layer perceptron in the 1980s [96]. Such renaissance of neural networks is to be understood as

a consequence of the progresses of computational science over the recent years, that go from the

availability of GPUs allowing for a fast training of an ever-increasing number of weights, to the

implementation of weight initialisation techniques and architectures that allow to tackle problems

common to neural networks such as vanishing gradients [68, 97, 98].

Fully Connected Neural Networks

In Fully Connected Neural Networks (FCNNs) each layer operator A(k)
Θ,φk

is composed by a matrix

operator A(k)
Θ followed by a non-linearity, so that:

A(k)
Θ,φk

(f (k−1)) = φk

(
A

(k)
Θ f (k−1)

)
+Θ

(k)
0 ,

where Θ0 is a bias term and where a commonly used expression for φk is the Rectified Linear Unit

(ReLU):

ReLU(x) := max{0, x},

enforcing a degree of sparsity for the following layer. Choices for non-linearities are various and

mostly depend on the application of the network or can also be learned [99]. Due to its use in the

thesis, we mention here the Exponential Linear Unit (ELU):

ELU(x) =

ex − 1 x < 0

x x ≥ 0,

which does not have null derivative for x < 0. FCNNs are theoretically able to capture correlations

among all the entries of f . However, this requires large sizes for this kind of networks, thus limiting

their use. Because of this, the training also needs some precautions. Often it is not possible to retrieve



2.4. Machine Learning 31

an explicit minimisation formula for L or even to evaluate the result of neural nets over the whole set

of available data. A stochastic minimisation approach is utilised instead: the training dataset is split

in minibatches and optimisation of the weights is obtained by means of iterative updates calculated

over each minibatch. Research is progressing towards the implementation of architectures able to

exploit the inherent correlations in the inputs or e.g. to reduce the problem of vanishing gradients

[68].

Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a type of neural network designed to treat data with a

known grid-like topology. Under the hypothesis of spatial correlation in the data, it is possible to

design an operator C(k)
Θ,φk

such that a layer operator:

A(k)
Θ,φk

(f (k−1)) = C(k)
Θ,φk

(f (k−1)) :=

{
φk

(
Θ

(k)
0,j +

Nin∑
i=1

Θ
(k)
i,j ∗ f (k−1)

i

)
: j = 1, . . . , Nout

}

where i and j are the channel indices of input and output layer respectively, Θ(k)
i,j is a layer-specific

convolution kernel and φk is a generic nonlinear function. Often φk is composed of a non-linearity

such as ReLU followed by a pooling (or downsampling) layer Ps. This operates a discretisation

by applying a suitable non-linear transformation over a kernel of size s, resulting in a reduction

of the image dimension. A common pooling layer - and utilised in this thesis - is given by max-

pooling, whose kernel operates a max over the input. In both convolution and pooling operations,

the stride parameter along a direction is defined to be the number of pixel shift, over the input

image, between the application of the same kernel [67]. Throughout the thesis, unless specified

otherwise, we assume the stride, for all presented convolution and pooling operations, to be 1 along

all dimensions. Because of their ability to enforce sparsity, sharing parameters and equivariability,

CNNs are widely used for tasks of pattern recognition in pictures for which the computational costs

of FCNNs are prohibitively high. We mention that also upsampling layers can be used in CNNs.

This allows to implement deep learning architectures called encoder-decoder structures [100]. In

this case, the input is mapped into a lower dimension by a neural network called encoder e.g. a

CNN with downsampling operators [101]. The low-dimensional features selected by the encoder

are then fed into a decoder network - e.g. a CNN with upsampling layers - to generate an output with

higher dimensionality. We note that the concept behind encoder-decoder structures is not exclusive

to CNNs, even though they have been extensively used for the solution of inverse problems as in

U-net [69].

Residual Networks

Residual Networks were born as a partial solution to the vanishing gradients problem [102]. This

occurs as a result of the minimisation procedures used in the training of the networks, e.g. when

using activation functions with small derivatives in most of their domain, such as sigmoid [103]. As
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training methods rely on calculating the gradient of the loss function via the chain rule, the sensi-

tivity of the loss function to layers decreases with their depth. Residual Networks aim at tackling

the problem by having skip-connections that allow the propagation of gradients from deeper lay-

ers. Given two generic intermediate layer operators A(k,1)
Θ,φk

and A(k,2)
Θ,I , a residual network operator

R̆
(k)

Θ,φk
is defined such that:

A(k)
Θ,φk

(f (k−1)) = R̆
(k)

Θ,φk
(f (k−1)) :=

[
A(k,2)

Θ,I ◦A(k,1)
Θ,φk

+ I
]
(f (k−1)),

where we note that the input and output numbers of channels of the operator are necessarily equal.

The structure of the residual network layer operator allows an easier propagation of the gradients

through the identity operator for deeper layers. Residual networks were initially developed using

convolutional layers for computer vision tasks [102]. As the number of channels is fixed between

input and output in a residual network, many architectures rely on other layer operators between

residual layers to change their cardinality. With a slight abuse of terminology, in the following, we

refer to this last layer operator and in particular to:

A(k)
Θ,φk

(f (k−1)) = R(k)
Θ,φk

(f (k−1)) :=
[
C(k)
Θ,φk

◦ R̆
(k)

Θ,φk

]
(f (k−1)), (2.39)

with:

R̆
(k)

Θ,φk
=
[
C(k,2)
Θ,I ◦ C(k,1)

Θ,φk
+ I
]
,

as convolutional residual block.

When clear from the contest, in the following, we drop the notation indicating the layer number

and the non-linearity and we refer to a layer operator R(k)
Θ,φk

or C(k)
Θ,φk

by Rs
Nin→Nout

or Cs
Nin→Nout

,

respectively, where Nin refers to the input channels, Nout to the output channels and the superscript

s to the dimensionality of the convolution kernels involved.

2.5 Summary
In this chapter, we introduced some mathematical tools commonly used in the solution of forward

and inverse problems. Numerical methods used in the solution of forward problems modelled as

PDEs were presented. An introduction to the formalism of inverse problems in imaging was given,

then some of the most commonly used approaches for the definition of an appropriate minimisation

problem were shown. A brief overview of the general techniques for numerical optimisation was

given for completeness. Finally, the basic theory of machine learning and deep learning was given.

The next chapter will focus on the mathematical modellisation of the forward and inverse problem

for DOI.



Chapter 3

Theory of Diffuse Optical Tomography

We present here the theoretical fundamentals of DOT and DOI in general. In Section 3.1, we present

the physical model of photon propagation in human tissues. After briefly introducing some of the

experimental techniques and technologies related to optical acquisition in Section 3.2, we define, in

Section 3.3, the forward and inverse problem for DOI. Finally, we present some of the most used

strategies for DOI, with a particular attention to the linearisation of its forward operator.

3.1 Partial Differential Equations for Diffusive Optics
The forward problem used in Diffuse Optical Imaging (DOI) is derived from physical approxima-

tions of the Radiative Transfer Equation (RTE) which, in turn, stems from energetic considerations

[104]. A conservation law can be written by considering the Spectral Radiance Lν at position r,

along the direction ŝ at time t. This is defined as the differential energy dEν of a beam of photons

of frequency ν flowing through an infinitesimal area element dA, with an infinitesimal solid angle

dΩ̂ in an infinitesimal time dt [105]:

Lν (r, ŝ, t) :=
dEν

dA · dΩ̂ dt
.

The latter is related to other physical quantities of interest such as the Radiance L :=
∫
Lνdν,

the Photon Radiance ϕ := 1
hν

L(r,ŝ,t)
c with h Planck Constant, the Density of Photons or Flu-

ence Φ(r, t) :=
∫
4π

ϕ(r, ŝ, t) dΩ̂ and the Photon Current J↗(r, t) :=
∫
4π

ŝϕ(r, ŝ, t) dΩ̂ [2, 104]. In

Table 3.1, we report a summary of these quantities.

Neglecting non-linear effects, coherence and polarisation of a propagating monochromatic

beam, the change in time of the energy in an infinitesimal volume dV can be due to [105]:

1. The divergence of the beam;

2. The presence of light sources Q;

3. The optical properties of the medium i.e. absorption µa and elastic scattering µs, assumed to

be to be dependent only on r.
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Name Definition Units

Spectral Radiance Lν (r, ŝ, t) :=
dEν

dA·dΩ̂ dt
J

m2·sr·s·Hz

Radiance L (r, ŝ, t) :=
∫
Lν dν

J
m2·sr·s

Photon Radiance ϕ(r, ŝ, t) := 1
hν

L(r,ŝ,t)
c

1
m3·sr

Photon Density/Fluence Φ(r, t) :=
∫
4π

ϕ(r, ŝ, t) dΩ̂ 1
m3

Photon Current J↗(r, t) :=
∫
4π

ŝϕ(r, ŝ, t) dΩ̂ 1
m3

Table 3.1: Summary of the main physical quantities used here for the derivation of the Diffusion

Equation (DE) and related theory.

dA

µs(r), µa(r), Q(r, t)

ŝ

ŝ′

dΩ̂

dΩ̂′

Figure 3.1: Schematics of contributions of energy conservation law in Radiative Transfer theory.

Drawing inspired by [104].
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A schematic representation of the contributions involved is given in Figure 3.1. The RTE is

then given by [2]:(
1

c

d

dt
+ ŝ · ∇+ µt(r)

)
L (r, ŝ, t) = µs(r)

∫
Ω̂′

L (r, ŝ, t) Ξ (ŝ, ŝ′) dΩ̂′ +Q (r, ŝ, t) (3.1)

where µt(r) := µa(r) + µs(r) is an intrinsic attenuation coefficient of light for a given medium

arising from the sum of absorption and scattering phenomena, respectively described by µa(r) and

µs(r). The scattering coefficient µs(r) is assumed to be the density number of scatterers times their

cross-section. The energy in the volume scattered from a direction ŝ′ to ŝ is taken into account by the

integral term on the right-hand side of the equation. The Phase function Ξ(ŝ, ŝ′) is the probability

density function of a beam incoming from direction ŝ′ to be scattered along direction ŝ. Ξ is assumed

to be only dependent on the cosine of the angle between the incident and scattered beam: Ξ (ŝ′, ŝ) =

Ξ (ŝ′ · ŝ). The scattering anisotropy of the medium can be described by a coefficient gΞ:

gΞ =

∫
Ω̂

(ŝ′ · ŝ) Ξ (ŝ′ · ŝ) dΩ̂.

We note that Equation (3.1) holds true also when substituting L(r, ŝ, t) with ϕ(r, ŝ, t).

Solutions to the Radiative Transfer Equation. While the RTE represents a valid model for light

propagation in media, its solution is analytically and computationally challenging.

Analytical solutions are known for a limited number of cases [2] and the most accurate numer-

ical solutions are given by Monte-Carlo methods, which are a set of statistics-based computational

algorithms [106]. Monte-Carlo methods do not solve explicit mathematical models, but perform a

large number of randomised single-case trials to obtain results which approach the expected solu-

tion. For this reason, they are often used as a surrogate of the ground truth for many mathematical

models of complex phenomena. The main principle behind the application of Monte-Carlo methods

in photon propagation in turbid media is the simulation of photon propagation paths. The probability

of scattering and absorption events is given by a probabilistic interpretation of µs(r) and µa(r) re-

spectively. The inverse of these quantities is an expression of the mean path length a photon travels

before being respectively scattered, or absorbed by a chromophore [107]. The photon direction after

each scattering event is also calculated via a probabilistic intrepretation of Ξ. When a large number

of photons is simulated, it is possible to have a statistical analysis of the various photon paths to re-

trieve optical quantities such as L(r, ŝ, t). We note that because of the simulation method itself, any

retrieved quantity will be inherently subject to noise e.g. Poisson noise in the case of photon propa-

gation [106]. Even though Monte-Carlo simulations are deemed to be the most accurate numerical

solution for photon propagation, they are computationally expensive and often approximations to

Equation (3.1) are adopted for faster computation e.g. with Finite Element Method (FEM) [73].

The PN Approximation and Derivation of the Diffusion Equation. The PN approximation is

often used as a mean to reduce the original form of the RTE to a simpler one [78]. This is done by
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expanding the terms, Q(r, t), Ξ(ŝ · ŝ′) and L(r, ŝ, t) or ϕ(r, ŝ, t) in series of spherical harmonics and

truncating them at the N th order.

The P1 approximation is often considered an adequate approximation for modelling photon

propagation in DOI [78]. When applied, it returns two equations, one scalar and one vectorial, that

in the case of the RTE in ϕ(r, ŝ, t) are [78]:(
1

c

d

dt
+ µt(r)

)
Φ(r, t) +∇ · J↗(r, t) = µs(r)Ξ0Φ(r, t) + q0,0(r, t), (3.2)(

1

c

d

dt
+ µt(r)

)
J↗(r, t) +

1

3
∇Φ(r, t) = µs(r)Ξ1Φ(r, t) + q1(r, t), (3.3)

where Ξ0 can be approximated to 1 for human tissues in the NIR-Visible range and where Ξ1 can

be shown to be equal to gΞ [104]. A simpler form of these equations can be written by assuming

an isotropic source so that Q := q0 = q0,0 and by defining the diffusion coefficient κ(r) and the

reduced scattering coefficient µ′
s(r) as:

µ′
s(r) := (1− gΞ)µs(r),

κ(r) :=
1

3 (µa(r) + µ′
s(r))

.

Equation (3.2) and Equation (3.3) become:(
1

c

d

dt
+ µa(r)

)
Φ(r, t) +∇ · J↗(r, t) = Q(r, t), (3.4)(

1

c

d

dt
+

1

3κ(r)

)
J↗(r, t) +

1

3
∇Φ(r, t) = µ′

s(r)Φ(r, t). (3.5)

A last physical approximation is the diffusion approximation. This is based on the assumption

that biological tissues are characterised by a high albedo i.e. µ′
s(r) ≫ µa(r), so that, from a prob-

abilistic point of view, a photon needs to undergo a large number of scattering events before being

absorbed. In turn, the fractional change of J↗ in the mean time between two scattering events can

be considered small so that d
dtJ↗ → 0 as µ′

s

µa
→ ∞ [104, 108]. Equation (3.5) degenerates to Fick’s

Law [78]:

J↗(r, t) = −κ(r)∇Φ(r, t). (3.6)

Substituting Equation (3.6) into Equation (3.4) one gets the time-dependent Diffusion Equation

(DE):
1

c

d

dt
Φ(r, t)−∇ · κ(r)∇Φ(r, t)+µa(r)Φ(r, t) = Q(r, t), (3.7)

and its frequency-dependent counterpart:

−∇ · κ(r)∇Φ(r, ω) + i
ω

c
Φ(r, ω) + µa(r)Φ(r, ω) = Q(r, ω).

We note here that a number of ways can be followed to reach the DE as result. For future

reference in the thesis, we mention that it can also be retrieved by considering a non-absorbing

medium and then by adding the dependence of the fluence on the absorption from the RTE. This
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leads to the Lambert-Beer law [2] and it allows to express κ(r) in Equation (3.4) as [109, 110, 111,

112]:

κ(r) :=
1

3µ′
s(r)

. (3.8)

3.1.1 Boundary Conditions and Sources

Robin boundary conditions are applied to describe the diffusion of light in finite systems [108].

They arise by assuming that at the domain boundary ∂Ω no photons, except for the ones injected by

Q(r, t), are travelling in the direction opposite to the surface outer normal n̂:

ϕ(r, ŝ, t) = 0 if n̂ · ŝ < 0 on ∂Ω,

which, however, can not be exactly satisfied for Φ(r, t) in Equation (3.7), as the latter does not

depend on ŝ. Instead, the total flux is set to be null. By the P1 approximation of ϕ(r, ŝ, t), one gets:

0 =

∫
ŝ·n̂

ŝϕ(r, ŝ, t) dΩ̂ = −1

4
Φ(r, t) +

1

2
J↗(r, t) · n̂.

Applying Fick’s law of Equation (3.6) and taking in consideration the Fresnel refraction coefficient

R and the deriving AR := 1+R
1−R one gets [113]:

Φ(r, t) + 2κ(r)AR
∂

∂n̂
Φ(r, t) = 0 on ∂Ω.

The time-dependent diffusion model reads as [114]:
1

c

d

dt
Φ(r, t)−∇ · κ(r)∇Φ(r, t) + µa(r)Φ(r, t) = Q(r, t) inΩ× (0, T ]

Φ(r, t) + 2κ(r)AR
∂

∂n̂
Φ(r, t) = 0 on ∂Ω× (0, T ] ,

(3.9)

which can be demonstrated to be a well-posed problem [76, 78].

Modellisation of the Source Term. The introduction of a collimated source of light at rs ∈ ∂Ω

and t = 0 is commonly modelled as an isotropic term at one scattering length from the surface [78,

108, 115]:

Q(r, t) = δ

(
r− rs +

1

µ′
s(rs)

n̂, t

)
.

Other modellisations for the source term include the possibility to have a diffused source defined

over a portion of the boundary ∂Ωs ⊂ ∂Ω. In this case, the source is defined as a diffused inward-

directed photon current and can be incorporated in the model in Equation (3.9) by setting Q(r, t) = 0

and changing the boundary conditions such that [116]:
Φ(r, t) + 2κ(r)AR

∂

∂n̂
Φ(r, t) = 0 on ∂Ω\∂Ωs × (0, T ]

Φ(r, t) + 2κ(r)AR
∂

∂n̂
Φ(r, t) = −4Isws(r, t) on ∂Ωs × (0, T ]

(3.10)

where Is is the peak strength of the source flux and w(r, t) is a weighting function.
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3.1.2 Analytical Solutions

The analytical Green function G(Φ)(r, r′, t, t′) for calculating the quantity Φ in Equation (3.9) is

known only for a limited number of geometries and homogeneous optical coefficients [76, 117]. For

an infinite medium and a delta-like source in a r′ at time t′, the Green function reads as:

G(Φ) (r− r′, t− t′) =
1

[4π κ c (t− t′)]
3
2

e
− |r−r′|2

4πκ c (t−t′) e−µa c (t−t′).

For completeness, we also report here the expression for the time-independent case:

G(Φ) (r− r′) =
1

(2π)
3
2

1

2κ |r− r′|
e−µeff |r−r′|, (3.11)

where µeff :=
(
µa

κ

) 1
2 =

√
3µa(µa + µ′

s).

A simple geometry of interest for its affinity with reflectance measurements is the one consid-

ering a semi-infinite medium. Its Green function reads:

G(Φ) (r− r′, t− t′) =
1

[4π κ c (t− t′)]
3
2

e
−µa c (t−t′)− ξ2

4κ c (t−t′)

(
e
− (z−z′)2

4κ c (t−t′) − e
− (z+z′)2

4κ c (t−t′)

)
(3.12)

where the source is set at a depth z′ = 1
µ′
s

and ξ =
(
x2 + y2

) 1
2 . Solutions for heterogeneous coef-

ficients and for arbitrary geometries require the use of numerical methods such as Finite Difference

Methods, Finite Element Methods or Monte-Carlo methods [2, 78, 118].

3.1.3 Light in Biological Tissues

The DE is an approximation for monochromatic light propagating in biological soft tissues where

the absorption coefficient µa depends on the properties of the probed tissues.

The absorption coefficient over a range of wavelengths λ can be related to the absorption spec-

trum of chromophores present in biological tissues and their concentrations Ci by the Beer Law

[119]:

µa(r, λ) =

NC∑
i

Ci(r)εi(λ), (3.13)

where εi := µai(λ)
Ci

is the extinction coefficient of the ith chromophore with absorption spectrum

µai(λ). Chromophores that are more likely to absorb NIR-Visible light in human breast tissues

are Oxy-Haemoglobin (Hb), Deoxy-Haemoglobin (HbO2), Lipid, Water (H2O) and Collagen. In

Figure 3.2, we show a plot of the extinction coefficients εi of the mentioned chromophores.

Also the scattering coefficient µs(r) may give insight on the probed tissues such as the distri-

bution of non-uniformities in tissues. An explanation of scattering in biological tissues can be given

starting from Mie scattering theory. This gives an exact solution for the spectral dependence of scat-

tering and anisotropy coefficients in the case of scatterers in the form of dielectric spheres of varying

radii in an uniform background [120]. However, for complex systems such as human tissues, the

spectral behaviour of scattering can be described by a semi-empirical λ-law [121]:

µ′
s(r, λ) = a(r)

(
λ

λ0

)−b(r)

(3.14)
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(λ
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Figure 3.2: Graph of the extinctions coefficients εi over λ for the main chromophores present in

human soft tissues: Hb, HbO2, Lipid, H2O and Collagen. Due to its dependence on temperature, we

note that the extinction coefficient of water is taken for a reference temperature of 37◦C - we refer

to Section 5.4 and Figure 5.18 for details.

where a(r) is proportional to the concentration of Mie scatterers, b(r) is a non-dimensional param-

eter dependent on the radius of the scatterers and λ0 is a reference wavelength.

Finally, we note that Equation (3.13) and Equation (3.14) define an operator E from a(r), b(r)

and the concentrations C(r) = {Ci(r) : i = 1, · · · , NC} to the optical coefficients, such that:

µa(r, λ)

µ′
s(r, λ)

 = E


C(r)

a(r)

b(r)

 . (3.15)

3.2 Experimental Setup and Noise
Time-Domain Diffuse Optical Tomography (TD-DOT) is a modality of DOT that aims at recon-

structing 3D images from time-dependent signals. The quantity y(t) that is experimentally mea-

sured by TD-DOT detectors - such as the ones described in Section 1.1.1 - is the exitance Γ(rm, t)

at a generic measurement point rm on ∂Ω so that:

y(t) = MmΦ(r, t) := Γ(rm, t) = κ
∂

∂n̂
Φ(rm, t) =

1

2AR
Φ(rm, t) (3.16)

where Mm is a measurement operator for the mth detector. A more realistic model for a detector

can be also used by introducing a weighting function wm(r− rm), such that:

y(t) = MmΦ(r, t) :=

∫
∂Ω

wm(r− rm)Γ(r, t) dr, (3.17)

which degenerates to Equation (3.16) for wm(r − rm) = δ(r − rm). However, a full one-shot

time-characterisation of a detected light pulse is technically impossible due to the short times and
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the low energies involved in TD-DOT. Time Correlated Single Photon Counting (TCSPC) is a com-

mon technique employed to overcome this problem. For each pulse, only the time of arrival of the

first photon is registered as a unit addition in an appropriate time-bin [122]. The detection of two

photons is negligible due to the low intensity of the input beams employed. When this procedure is

repeated for many laser pulses, the distribution of the number of photons in time will resemble the

profile of y(t) [108]. A direct consequence of the TCSPC approach is that y(t) can not be consid-

ered a deterministic quantity, but will be the result of a process dominated by Poisson statistics. A

schematic of the principle is shown in Figure 3.3. Time resolution in this approach is limited by the

Figure 3.3: Schematic showing the principle of TCSPC. At each laser pulse, the first detected photon

is added to the corresponding time bin of a histogram. As more photons are recorded, the histogram

becomes a more accurate approximation to the signal. Courtesy of [123].

time uncertainty between the arrival time of each photon and the generation time of the correlated

electric signal. This deviation from the theoretical model is described for each detecting experimen-

tal set-up by a characteristic Impulse Response Function (IRF), which is incorporated into the model

by operating a convolution of the theoretical model with the IRF of the acquisition system, so that

[124]:

yexperimental(t) = ytheoretical(t) ∗t IRF(t). (3.18)
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3.3 Definition of Forward and Inverse Problem for TD-DOT
The ultimate goal of TD-DOT is finding three-dimensional optical and physiological information for

the probed tissue. The associated forward problem can be defined as:

Definition 3.3.1 (Forward Problem for TD-DOT). Given a set of sources in positions rs ∈ ∂Ω for

s = 1, · · · ,Ns, a set of detectors placed in rm ∈ ∂Ω for m = 1, · · · ,Nm, and a medium with

optical properties µa(r), µ′
s(r), r ∈ Ω, find the collection of measurements ys,m(t) so that for each

source-detector couple s,m:

ys,m(t) = As,m(f) := MmΦs(r, t) with f :=

µa(r)

µ′
s(r)

 , (3.19)

where Φs(r, t) indicates the density of photons due to a source s.

Analogously, the inverse problem can be defined as:

Definition 3.3.2 (Inverse Problem for TD-DOT). Given a set of source in positions rs ∈ ∂Ω for

s = 1, · · · ,Ns and a set of detectors placed in rm ∈ ∂Ω for m = 1, · · · ,Nm, for given collection

measurements ys,m(t) over each source-detector couple, find the optical coefficients µa(r), µ′
s(r) so

that Equation (3.19) is satisfied.

The extension to the coefficient retrieval in a multi-wavelength system is straightforward. When

more than one probing wavelength is available, it is possible to incorporate a spectral model to relate

optical coefficients to the tissues’ components as in Equation (3.13) and Equation (3.14). Thus, the

problem of finding the optimal optical coefficients is combined with a process of spectral unmixing

[119, 125, 126]. One gets:

ys,m(t) = AE s,m(fC) := MmΦs(r, t)

with fC =


C(r)

a(r)

b(r)

 and AE s,m := As,mE
(3.20)

The related inverse problem follows:

Definition 3.3.3 (Inverse Problem for DOT with incorporated spectral model). Given a set of source

in positions rs ∈ ∂Ω for s = 1, · · · ,Ns and a set of detectors placed in rm ∈ ∂Ω for m =

1, · · · ,Nm, for given collection measurements ys,m(t) over each source-detector couple find the

tissue components C(r), a(r) and b(r) so that Equation (3.20) is satisfied.

3.4 Reconstruction Approach
Image reconstruction in TD-DOT, considered as an inverse problem, is severely ill-posed and calls

for the use of regularisation techniques as the ones introduced in Section 2.2.2. A suitable aug-

mented objective function with a penalty term as in Equation (2.24) is defined and minimised.
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Under the assumption of multivariate Gaussian noise and time-dependent measurements, as by

Section 2.2.1, a suitable data fitting term is given by:

D(A(f), y) =
1

2

Ns∑
s=1

Nm∑
m=1

NTW∑
k=1

(
P̃k [ys,m(t)]− P̃k ([As,m (f)] (t)])

)2
σ2
s,m,k

(3.21)

where P̃k is a pre-processing operator to be applied after the measurement operator Mm. For time-

dependent data, P̃k can be a binning operator for computational cost reduction:

P̃k (x(t)) =

∫ Tk+1

Tk

x(t) dt.

Another pre-processing operator is given by a self-normalisation of the time-binned measurements

by area:

P̃k (x(t)) =

∫ Tk+1

Tk
x(t) dt∑NTW

k=1

∫ Tk+1

Tk
x(t) dt

. (3.22)

An analogous discussion can be derived for the application of the spectral model.

The term τR(f) in Equation (2.24) is designed to control the propagation of noise in the images

and/or to enhance desirable features with τ being a scaling term controlling the effect of the regu-

larisation. Regularisation techniques are typically based on global descriptors such as the overall

magnitude of the reconstructed images and/or image features such as edges and can be expressed in

simple mathematical expressions such as 0th and 1st order Tikhonov functionals already introduced

in Section 2.2.2 [82]. When a prior insight on the nature of the probed domain is known, we can

derive ad hoc regularisers, e.g. in presence of a prior segmentation χΩ of a target region (e.g. a breast

lesion), a weighted edge penalty term can be given by:

R(f ;χΩ) =

∫
Ω

γ(χΩ(r))|∇f(r)|2dr, (3.23)

where f is an image (which can be µa(r) or µ′
s(r) in the case of DOT) and γ(χΩ) ∈ [0, 1] is a

function that tends to zero at the locations of edges in χΩ and tends to 1 in regions that do not

contain significant structural information. When both µa(r) and µ′
s(r) are to be reconstructed or the

spectral model in Equation (3.20) is applied, an analogous discussion can be made. In such case

Equation (3.23) is generalised for a vector of images f by:

R(f ;χΩ) =
∑
i

R(fi;χΩ). (3.24)

Other possible approaches to the regularisation of the DOT inverse problem rely on the reduc-

tion of parameters in reconstruction such as in dual-mesh approaches [127]. Here, f is expressed

over a basis and a mapping from this basis to the one used for evaluating A is defined. Then it is

possible to try to adaptively define the image representation to constrain the reconstruction e.g. by

defining larger voxels outside of an opportune region of interest.

For a more thorough review of reconstruction techniques with ad hoc priors the reader can

consult [80] or Section 5.1.3 of this thesis.
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3.4.1 Linearisation

Even with the due approximations leading to the DE, the forward operator for photon propagation

often results to be too computationally expensive for an extensive use in clinical settings. On the

other hand, many of the non-linear optimisation techniques in Section 2.3 rely on the calculation of

the Jacobian of the forward model. In detail, a linearised model around a set of coefficients µa0, µ′
s0

can be introduced so that for a perturbation δf strictly contained in Ω:

ys,m = As,m(f0) + Js,m(f0)δf with δf :=

δµa

δµ′
s

 , f0 :=

µa0

µ′
s0

 , (3.25)

where Js,m(f0) is the Jacobian of the model Js,m in f0 and δµa and δµ′
s are perturbations in the

absorption and scattering coefficients respectively.

For a measurement operator given by the identity:

δΦs(rm, t) =−
∫ ∞

−∞

∫
Ω

δµa (r
′)G(Φ) (rm, r

′, t′)G(Φ) (r′, rs, t− t′) dr′dt′

−
∫ ∞

−∞

∫
Ω

δκ (rs)∇r′G(Φ) (rm, r
′, t′) · ∇r′G(Φ) (r′, rs, t− t′) dr′dt′

=−
∫
Ω

δµa (r
′)G(Φ) (rm, r

′, t′) ∗t G(Φ) (r′, rs, t) dr
′

−
∫
Ω

δκ (rs)∇r′G(Φ) (rm, r
′, t′) ∗t ∇r′G(Φ) (r′, rs, t) dr

′.

where the Green functions G are here obtained for optical coefficients given by f0 and where the

notation G(·) indicates that the Green function is calculated for the quantity in superscript between

brackets.

When considering the exitance as measurement operator as in Equation (3.16):

δys,m = Mm [Φs(r, t) + δΦs(r, t)]−Mm [Φs(r, t)] =

= (κ+ δκ)
∂

∂n̂
Φs(r, t) + δκ

∂

∂n̂
δΦs(r, t) = κ

∂

∂n̂
δΦs,

the corresponding formula is given by:

δys,m(t) =−
∫ ∞

−∞

∫
Ω

δµa (r
′)G(y) (rm, r

′, t′)G(Φ) (r′, rs, t− t′) dr′dt′

−
∫ ∞

−∞

∫
Ω

δκ (r′)∇r′G(y) (rm, r
′, t′) · ∇r′G(Φ) (r′, rs, t− t′) dr′dt′

. (3.26)

The reciprocity theorem states that the Green function for the identity operator for the source-

detector couple s,m is equal to the Green function for the source-detector couple m, s [117]:

G(Φ)(rm, r
′, t) = G(Φ)(r′, rm, t),

which allows to calculate the Green functions in Equation (3.26) by placing a source in rm and

measuring Φm at the source position rs. In discretised setting, for a fixed source-detector couple
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s,m :


δys,m(t1)

...

δys,m(tNt
)

 =


[
G(y)(rm, r, t) ∗t G(Φ)(r, rs, t)

]
(t1)

[
∇G(y)(rm, r, t) ∗t ∇G(Φ)(r, rs, t)

]
(t1)

...
...

︸ ︷︷ ︸
Js,m(µa0)

[
G(y)(rm, r, t) ∗t G(Φ)(r, rs, t)

]
(tNt

) ︸ ︷︷ ︸
Js,m(µ′

s0)

[
∇G(y)(rm, r, t) ∗t ∇G(Φ)(r, rs, t)

]
(tNt

)


δµa

δκ

 , (3.27)

which finally allows to write the Jacobian Js,m defined in Equation (3.25) by Equation (3.8) and the

deriving relation:

δκ = − 1

3(µ′
s0)

2
δµ′

s.

The model for the complete set of source-detector couples easily follows adding the equations

into the system. The linearisation of the model allows to operate a non-linear reconstruction to

solve Equation (2.34), e.g. via Gauss-Newton method [128] or other optimisation algorithms in

Section 2.3. Reconstruction with a non-linear model is the most accurate and it allows to virtu-

ally obtain any value in agreement with the DE for the reconstructed image. A demonstration of

the potentialities of these approaches is shown in Section 6.1.4. However, the minimisation with

a non-linear model can also be time-demanding so that a linearised approach might preferred in

some clinical scenarios at the cost of less reliable reconstructions. With a linearised model and

quadratic regulariser, the inverse problem can be formulated analogously as the minimisation of

Equation (2.34) [83] with:

f recon = f0 + argmin
f

L(f) = 1

2

∥∥∥∥∥∥
 SJ
√
τL

 f −

y
0

∥∥∥∥∥∥
2
 (3.28)

where S is a diagonal matrix of the inverse standard deviations of each measurement 1
σs,m

, y is the

collection of time measurement for each source-detector couple. We note that the effect of the pre-

processing operator P̃k in Equation (3.21) can be incorporated in the quantities S,J and y. Unless

specified otherwise, we use LSQR to solve Equation (3.28) throughout this thesis.

Extension to Self-Normalised Measurements by Area

When dealing with a time-resolved approach, it is useful to run reconstruction methods taking as

input self-normalised measurements e.g. by area. This mitigation measure can be introduced in the

pre-processing operator P̃k and it may partially limit the mismatch between the theoretical model

and the measurements which can be caused by experimental non-idealities e.g. coupling errors [129].

Thus, we require the gradient expression for the case of area normalised measurements for the con-

tinuous generalisation of the pre-processing operator in Equation (3.22) i.e. :

y(n)s,m(t) :=
ys,m(t)∫
ys,m(t) dt

,
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where the terms with the superscript (n) refer to self-normalised data. For a source-detector couple

s,m, the self-normalised Jacobian J
(n)
s,m will be given by [130]:

J(n)
s,m =

Js,m

Ays,m

− y(n)s,m

J
(CW)
s,m

Ays,m

, (3.29)

where Ay(t) =
∫∞
−∞ ys,m(t)dt and J

(CW)
s,m is the linearised forward model for time-independent or

continuous-wave measurements.

Spectral Jacobian

We report here an expression for the linearisation of the model in Equation (3.20). When considering

a set of Nλ wavelengths {λi : i = 1, · · · , λNλ
} the model in Equation (3.25) is composed of Nλ

independent systems, such that:



yλ1

yλ2

...

yλNλ


=



Jλ1
0 · · · · · · 0

0 Jλ2
0 · · · 0

...
. . . . . . . . .

...
...

. . . . . . . . .
...

0 · · · · · · 0 JλNλ





δfλ1

δfλ2

...

δfλNλ


,

where the subscript λi indicates the wavelength to which the quantities refer to and where Jλi

can also be self-normalised. By the definition of spectral model given in Equation (3.15), for NC

chromophores, a and b, the set of optical coefficients for all wavelengths δfλ will be:

δfλ = E(fC0
) +E(fC0

)δfC,

where E(fC0) is the Jacobian of the spectral model around fC0
, written as:

E(fC0) =



EC1,1 EC1,2 · · · EC1,NC
0 0

0 0 · · · 0 Ea1 Eb1

EC2,1 EC2,2 · · · EC2,NC
0 0

0 0 · · · 0 Ea2 Eb2

...
... · · ·

...
...

ECNλ,1 ECNλ,2 · · · ECNλ,NC
0 0

0 0 · · · 0 EaNλ
EbNλ


,

with:

ECj,i :=
dεi(λj)Ci

dCi

∣∣∣∣
Ci,0

= εi (λj)

Eaj :=
d

da

1

3a

(
λj

λ0

)b
∣∣∣∣∣
a0,b0

= − 1

3a20

(
λj

λ0

)b0

Ebj :=
d

db

1

3a

(
λj

λ0

)b
∣∣∣∣∣
a0,b0

=
1

3a0

(
λj

λ0

)b0

log

(
λj

λ0

)
.
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3.5 Summary
This chapter focused on the mathematical modellisation of photon propagation in turbid media.

We first introduced the RTE which accurately describes photon propagation and can be effectively

solved with Monte-Carlo methods. After a set of approximations, we derived the DE, which allows

numerical solutions with FEM and analytical solutions for some simple geometries. After giving

some insights on the known optical properties of biological tissues and the nature of DOT from an

experimental point of view, we presented the definition of forward and inverse problem stemming

from the DE. Finally, we introduced some of the commonly used reconstruction approaches for DOT

and TD-DOT specifically. After the definition of an appropriate loss function, we briefly discussed

linear and non-linear approaches for DOT. While linear approaches are more convenient from the

computational point of view, non-linear ones have noteworthy potential for the reconstruction of any

perturbation as long as the DE holds.

The following chapter will introduce US Imaging with related simulation tools, as one of the

main components of SOLUS.



Chapter 4

Theory of Ultrasound Imaging

Ultrasound imaging is a well-assessed technology and the state of the art for breast cancer diagnosis

[16]. In this chapter, we give an outline of its working principles. Within the SOLUS project,

the DOT aspect considers US as additional information, but the results of the latter are not object

of research. On the other hand, the lack of experimental data has required the implementation of

realistic US simulations for testing. In Section 4.1, we briefly derive and study the wave equation

for ultrasound pressure waves in human tissues. In Section 4.2, we give a short introduction to

the principles of ultrasound imaging. Finally, in Section 4.3, we compare some of the ultrasound

simulators that are most commonly used in literature.

4.1 The Wave Equation

The homogeneous sound wave equation for a medium stems from considerations on the conservation

of mass and momentum, subject to the state equation in solids [131, 132]:



d

dt
ρT (r, t) +∇ · (ρT (r, t)uT (r, t)) = 0 Cons. of mass

d

dt
uT (r, t) + uT (r, t) · ∇ (ρT (r, t)uT (r, t)) +

1

ρT (r, t)
∇ρT (r, t) = 0 Cons. of momentum

pT (r, t) = v2sρT (r, t) State Equation,
(4.1)

where ρT (r, t) is the mass density of medium, uT (r, t) is the speed of the medium particles, pT (r, t)

is the pressure exerted on the medium particles and vs is the sound speed of the medium. The

equation of state in Equation (4.1) is retrieved from considerations based on low-energy phenomena

[133]. We define the acoustic pressure p(r, t) and the acoustic speed u(r, t) as perturbations with

respect to the respective ambient values p0 and u0, such that:

pT (r, t) = p0 + p(r, t)

uT (r, t) = u0 + u(r, t)

ρT (r, t) = ρ0 + ρ(r, t).
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We note that p0, u0 and ρ0 are assumed to be constant over space for the present discussion. How-

ever, for a more accurate modellisation, spatially varying ambient quantities can be assumed, as in

Equation (4.9).

The final set of expressions is formulated as:

d

dt
ρ(r, t) + ρ0∇ · u(r, t) = 0

d

dt
u(r, t) +

1

ρ0
∇p(r, t) = 0

p(r, t) = v2sρ(r, t),

(4.2)

which can be combined to yield the linear acoustic equation in free space:

1

v2s

d2

dt2
p(r, t)− ρ0∇ · 1

ρ0
∇p(r, t) = 0. (4.3)

We note that Equation (4.2) can be modified to take into account sources in the formulae for

momentum and mass conservation [133, 134]:

d

dt
ρ(r, t) + ρ0∇ · u(r, t) = QM (r, t)

d

dt
u(r, t) +

1

ρ0
∇p(r, t) = QF (r, t)

p(r, t) = v2sρ(r, t)

,

where QF is a force term and QM a mass source. The corresponding inhomogenous wave equation

reads as [133]:

1

v2s

d2

dt2
p(r, t)− ρ0∇ · 1

ρ0
∇p(r, t) = −ρ0∇ ·QF (r, t) +

d

dt
QM (r, t). (4.4)

4.1.1 Analytical Solutions

Equation (4.3) is a wave equation. Analytical solutions are known for a variety of geometries.

Hereby, we consider harmonic plane waves. A mathematical expression for a harmonic plane wave

is given by:

p (r, t) = R
{
A0e

i(k·r±ωUSt)
}
, (4.5)

where ωUS is the frequency of the US wave, A0 is the amplitude of the wave, k is the wave vector

and R {·} is the operator extracting the real part. The relation between ωUS and k is called dispersion

relation. For the linear acoustic equation, it is valid that:

ωUS = vs |k| .

A generic pressure wave can be expressed as superposition of plane waves so that:

p (r, t) =

∫
F [p(r, t)] (k) ei(k·r±ωUSt)dk.

where F [·] indicates the Fourier transform. Substituting the harmonic plane wave expression in the

conservation of momentum in Equation (4.2), the relation between p(r, t) and u(r, t) becomes:

p(r, t) = ρ0vs |u(r, t)| =: Z |u(r, t)| ,
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which allows to relate p(r, t) and u(r, t) by means of the characteristic impedance Z, dependent on

the properties of the medium. When a source term is present in the acoustic equation, the solution

may be found, as per Equation (2.3), via convolution with its Green function GUS(r, t). In 3D one

gets [134]:

GUS (r, t) =
1

4π |r|
δ

(
t− |r|
vs

)
.

4.1.2 Wave-like Phenomena

Propagation of acoustic waves at the interface of two regions of different characteristic acoustic

impedance, Z1 and Z2 respectively, is treated by assuming that [134]:

1. the acoustic pressure is continuous at the boundary;

2. the particle velocities normal to the boundary are equal.

At the boundary between the two regions of Z1 and Z2, part of the amplitude A0,i of an incident

wave pi(r, t) is transmitted with a wave pt(r, t) of amplitude A0,t, while the remaining part pr(r, t)

of amplitude A0,r is reflected. As a consequence, the transmission T and reflection R of an incident

wave at an angle θi read as:

T :=
A0,t

A0,i
=

Z2 cos θi − Z1 cos θt
Z1 cos θt + Z2 cos θi

R :=
A0,r

A0,i
=

2Z2 cos θi
Z1 cos θt + Z2 cos θi

,

where θt is the transmission angle, and it is related to the incident angle by the Snell law [135]:

sin (θi)

vs1
=

sin (θt)

vs2
.

Other phenomena of interest when considering acoustic waves are reflections due to scattering

and propagation in shadow areas due to diffraction. Scattering effects arise from the structure of

tissues that are can be considered as fluids with a set of heterogeneities called scatterers. A medium

with high density of scatterers, and thus prone to have echo phenomena, may be referred to as

echogenic. The opposite is true for anechoic materials. The most important scattering events in

tissues can be classified in three categories depending on the size d of the relative scatterer [136]:

1. Diffusive, with 2π
ωUS

≫ d;

2. Diffractive, with 2π
ωUS

≃ d;

3. Specular, with the 2π
ωUS

≪ d.

In addition to the attenuation due to wave phenomena, absorption phenomena become impor-

tant as acoustic waves propagate for long distances. In harmonic planar waves, as the one con-

sidered here, the absorption is modelled by applying an exponential decay of coefficient αUS to

Equation (4.5), such that:

p (r, t) = R
{
A0e

i(k·r±ωUSt)
}
e−αUS|r|.
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Major causes of attenuation in tissues are given by viscous absorption and relaxation phenomena

[135].

Viscous absorption is due, at microscopic level, to the conversion of energy into heat because

of friction. This can result from shear viscosity i.e. the momentum dispersion because of colliding

particles, or from bulk viscosity i.e. the unelastic compression of the medium [136]. The absorption

coefficient due to viscosity αvisc is modelled to be dependent on ω2
US so that [137]:

αvisc ≈ ω2
US

( 4
3ηS + ηB

2pT v3s

)
,

where ηS is the coefficient for shear viscosity and ηB the coefficient of bulk viscosity.

A second set of phenomena accounting for the absorption of the wave is due to molecular

relaxation. When the vibrational levels of molecules are excited, a relaxation time τrelax passes

before the internal energy reaches equilibrium. In presence of a periodic sound wave, the relaxation

time causes a phase shift between the input wave and the response of the medium. The out-of-phase

wave is thus dissipated into heat, as the resulting change to the translational molecular motion is

no longer in phase with the acoustic wave. The amount of energy lost from the acoustic wave per

acoustic wavelength λUS is therefore proportional to this phase difference [138]:

αrelaxλUS ∝ ωUSτrelax
1 + (ωUSτrelax)2

,

so that the absorption coefficient grows quadratically with ωUS for ωUS → 0 and is constant for

ωUSτrelax → ∞. In human tissues, the combination of viscous absorption and relaxation phenomena

results in an empirical λUS-law for modellisation of αUS [139], such that:

αUS(ωUS) ≈ αUS0ω
x
US,

where typical values for x in human tissues are between 1 and 1.5 and αUS - in units of dB
cm×MHzx

- in soft tissues varies between 0.14 for blood and 0.75 for breast tissues. We also report here the

extreme values of αUS = 2.17 × 10−3 dB
cm×MHzx for water at 20◦C and αUS = 7.75 dB

cm×MHzx for

skull bone.

4.2 Principles of US Imaging
The first historical procedure to obtain diagnostic imaging performed with ultrasound waves was the

Amplitude mode, often shortened into A-mode [140, 141, 142]. A group of piezoelectric elements in

a transducer emits an ultrasound pulse into the tissue to be probed [20]. Differences in the impedance

of the tissue scatter part of the impulse back to the transducer, which, in turn, generates an electric

signal in each element of the transducer due to the piezoelectric effect. The signals received are then

combined to give a single Radio-Frequency (RF) signal which is rectified, demodulated and shown

as a function of time, called A-mode scan line, which, assuming a constant sound speed vs, can be

expressed as a function of distance [133].
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Another option used for clinical purpose is the motion-mode imaging or M-mode [20]. Here

multiple A-mode scan lines are taken in time, revealing the change in the tissues’ position.

Brightness mode (B-mode) imaging is based on the acquisition of multiple A-mode scan line

in space [20]. In order to do so, a spatially defined A-mode scan line is acquired by a selected

group of elements of the transducer, also called active elements. Once obtained the RF signal for

the active elements, the US beam is stepped sideways by exciting a different set of elements. All the

spatially-defined A-mode scans are then converted to grey-scale and displayed in a 2D array to form

an image. Conversion to grey-scale images is operated by a set post-processing techniques that are

applied to the received signals.

In Figure 4.1, we display an example of a result that can be obtained with ultrasound in A-mode

and B-mode. For an insight on the US B-mode post-processing steps, we refer to [133, 143].

Figure 4.1: Comparison of B-mode (top, zoomed in image on the right) and A-mode (bottom)

ultrasound of a bladder. Courtesy of [144].

4.2.1 Artefacts

Some assumptions on the properties of the tissues are made to obtain a B-mode image. The dif-

ferences between the theoretical model and reality are sources of artefacts in the images [143]. In

particular, it is assumed:

• A constant sound velocity;

• Single scattering events only;

• Constant attenuation coefficient;



52 Chapter 4. Theory of Ultrasound Imaging

• Pulses travelling only along beam axis;

• No elevation focus i.e. the ultrasound waves are focused on the plane of imaging.

Artefacts are non-desirable properties of the final images, but they can not be eliminated and charac-

terise any real-looking US B-mode image. Here, we briefly mention and describe some of the most

common artefacts:

• Speckles are random signals that are due to constructive interference of US waves when a high

density of scatterers is present;

• Reverberation is the replication of a signal due to multiple reflections of the US waves between

two highly reflecting portions of tissues;

• Shadowing is the presence of shadow zones in the image due to the impossibility of the US

waves to propagate through a certain region of the tissues;

• Enhancement is a phenomenon analogous to shadowing by which some portions of the US

image are unnaturally bright due to regions of tissue with low attenuation;

• Target misregistration is the misplacement of features of the tissues in the resulting image

due to differences between the tissues’ speed of sound and the one assumed during image

formation;

• Mirror-image is the shift of tissues’ features from their true position due to secondary scatter-

ing due to a strong reflector.

• Refractions happen when large variations in the sound speed of the probed medium are

present. This causes a target misregistration i.e. some features of the image are shifted with

respect to the true position in the probed tissues.

A visualisation of the most common artefacts is shown in Figure 4.2.
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Figure 4.2: Visualisation of some of the most common artefacts of Ultrasound B-mode imaging

listed in Section 4.2.1. Speckles are a characteristic of all US images here shown. Courtesy of [145].

4.3 US Modelling
Computational US has been an ever-growing branch of research since Field-II made its first appear-

ance in 1996 [146]. Subsequently, many US simulators have been proposed and each of them differs

from its competitors in a variety of factors such as the model of propagation for acoustic waves, the

numerical method used or the physical model for tissues. The use of US simulators was deemed

essential for a thorough assessment of the methods presented in this thesis. We consider here the

simulators Field-II [146], SIMUS [147], CREANUIS [148] and k-Wave [133]. A thorough compar-

ison of these software is out of scope for this thesis, thus we summarise here the main differences in

methodologies and aims. Part of the work here presented has been published in [149]. Apart from

k-Wave, all of the considered simulators have a mesh-free numerical solver: acoustic scatterers with

defined properties are placed in the computational domain and an acoustic field is then propagated.

The signal recorded at the transducer is the result of the interaction of the acoustic field with the

scatterers. This approach allows a certain flexibility in simulating the position and translation of

scatterers in tissues. Speckles in the simulated B-mode images arise from the random position of

scatterers, while the general acoustic properties of the medium are usually kept constant.

Field-II. Field-II is based on the concept of a transducer’s impulse response function h(r, t), the

main assumptions being: a linear wave equation, scatterers acting as monopole sources and weak

scattering phenomena. By Huygens’ principle, in a homogeneous medium, the spatial impulse re-

sponse function h(r1, t) at r1 from an aperture surface S is [150]:

h(r1, t) =

∫
S

1

2π |r1 − r2|
δ

(
t− |r1 − r2|

vs

)
dS, (4.6)

where δ(t) is a point-like source, r2 is the position of the transducer and vs is the speed of

sound in the medium. The expression in the integral of Equation (4.6) is the Green function for
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the problem of retrieving the velocity potential from a particle moving on the border of a semi-

infinite medium [150, 151]. Thus, the emitted pressure field can be retrieved by the convolution:

p(r1, t) = ρ0
∂
∂t |u| ∗r h(r1, t) with ∗r spatial convolution operator, thus getting the Rayleigh inte-

gral [146], with ρ0 density of the medium and u velocity at the front face of the transducer. In this

scenario, a point-like change in pressure and sound speed in the medium can be introduced by a term

fm(r1) so that:

p(r1, t) = Vpe(t) ∗t fm(r1) ∗r hpe(r1, t), (4.7)

where Vpe is the electronic impulse response function, hpe is a two-ways impulse response function

taking into account the transmitting and receiving impulses and ∗t denotes a convolution in time.

Equation (4.7) is solved for a number of scatterers placed in the medium, and the results are summed

to generate one B-mode scan line. We refer to [152, 153] for details on the topic.

SIMUS. The simulation assumptions used in SIMUS are the same as Field-II [147]. It is fully

open source and the main computation is performed in Fourier space. This brings a set of numerical

advantages and ease of use, especially for what regards frequency-dependent characteristics of Ul-

trasound imaging. However, as Field-II, SIMUS is limited to linear propagation of acoustic waves

and to single scattering phenomena that do not allow to reproduce artefacts such as reverberation,

shadowing or mirror image artefacts.

CREANUIS. The addition of a heterogeneous non-linear parameter and a GPU-based solver are the

main features introduced by CREANUIS [148, 154, 155]. The software is still particle-based, how-

ever, under the approximation of weak non-linear phenomena, two pressure fields are propagated,

one that is linear p(1)(r, t) and a second non-linear one p(2)(r, t). In absence of sources, one has:

(
∇ · ∇ − 1

v2s

d2

dt2

)
p(1)(r, t) = 0(

∇ · ∇ − 1

v2s

d2

dt2

)
p(2)(r, t) = −

(
1 +

B

2A

)
1

p0v4s

d2

dt2
p(1)(r, t)

2
, (4.8)

where B
A is the acoustic non-linearity parameter [156]. The propagation of the two fields is made

in Fourier domain and solved via the Generalized Angular Spectrum Method (GASM) [155]. The

second harmonic field p(2)(r, t) is dependent on the value of the fundamental one p(1)(r, t). As with

Field-II and SIMUS, the scan lines are obtained by placing scattering particles in the medium and

back-propagating both fields to the transducer.

The main limitation of CREANUIS and of the other particle-based simulators described above

is the limited flexibility in simulating a heterogeneous speed of sound, density and other spatial

properties in tissues, that are only handled by the position and amplitude of scatterers. In turn, this

limits the number of real-like artefacts that can be obtained from a simulation.
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k-Wave. k-Wave is a mesh-based non-linear simulator based on the set of acoustic equations [133,

157, 158]: 

d

dt
u(r, t) = − 1

ρ0(r)
∇p(r, t)

d

dt
ρ(r, t) = (2ρ(r, t)− ρ0(r))∇ · u(r, t)− u(r, t) · ∇ρ0(r)

p(r, t) = v2s

(
ρ(r, t) +

B

2A

ρ2(r, t)

ρ0(r)
+ d · ρ0(r)− L(F )ρ2(r, t)

)
,

(4.9)

where L(F ) is a fractional Laplacian term accounting for dispersion and acoustic absorption [158,

159] and d is the acoustic particle displacement [133]. We note that, differently from the discus-

sion to obtain Equation (4.2), ρ0(r) and the other ambient quantities are not considered constant in

space. Moreover, the acoustic absorption and dispersion are taken into account. Non-linear acoustic

effects are added by including the terms 2ρ(r, t) and B
2Aρ2(r, t) with B

A non-linearity parameter as

in Equation (4.8). Acoustic sources are simulated by adding a source term to the first and/or second

equation in Equation (4.4). The set of equations are solved with a pseudospectral method with the

spatial components of the acoustic quantities that are calculated in k-space. One B-mode scan-line

is obtained by defining a grid, a source, a detector, a medium and solving the set of equations (4.9)

in the system. In principle, the approach followed in k-Wave allows to simulate heterogeneous me-

dia and artefacts such as speckles, shadowing and reverberations that come naturally from the wave

equation and allow for more realistic simulations [160].

A schematic comparison of the considered US simulators, modelled after the one in [160], can

be found in Table 4.1. Given its characteristics, k-Wave has been chosen as the main tool for US

simulations that are presented in Chapter 6.

Field-II SIMUS CREANUIS k-Wave

Numerical Method Meshfree Meshfree Meshfree Mesh-based

Governing acoustic equations Linear Linear Non-linear Non-linear

Time domain Temporal Harmonic Temporal Both [160]

Space domain x, y, z x, y, z kx, ky, kz x, y, z + k

Medium Homo. Homo. Hete. Hete.

Scattering Weak Weak Weak Multiple

Artefacts No No No Yes

Table 4.1: Summary of the properties of the considered US simulators.

4.4 Summary
This chapter aimed at giving the theoretical basis for ultrasound imaging. A focus was given to B-

mode imaging, as the main US technique used throughout the thesis. Finally, a set of US simulators

was presented. For the scope of this work, k-Wave was selected as the main simulation software
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for ultrasound. The next chapter will introduce the strategies that have been elaborated for recon-

struction with the SOLUS probe, with a focus on linear reconstruction methods. An assessment with

experimental data will then be presented.



Chapter 5

Reconstruction Methods for SOLUS:

Validation on Experimental Data

This chapter presents the main strategies developed for optical reconstruction with the SOLUS probe.

After a general overview of the proposed methods, an assessment of said strategies for fast recon-

struction is performed on experimental data obtained on silicone and meat phantoms.

The chapter is structured as follows. In Section 5.1, we present the main strategies for re-

construction, with considerations on the adopted pre-processing of data and a literature review for

US+DOT joint reconstruction. In Section 5.2, we present two methods for the extrapolation of a

morphological prior from US B-mode image: one based on the concept of distance transform and

one implemented using deep learning. In Section 5.3, we assess, on silicone phantoms, a fast recon-

struction method with morphological prior extracted via distance transform. Finally, in Section 5.4,

we assess the incorporation of a spectral model to the US-guided reconstructions with experimental

data obtained on meat phantoms.

The results in this chapter are the outcome of a collaboration with the physics department of

POLIMI, Hologic-SSI and Ospedale San Raffaele (OSR). In detail, POLIMI provided the silicone

and meat phantoms with the relative experimental measurements ( including the IRF characterisa-

tion) used here for reconstruction as well as the software platform where the algorithms presented

here were inserted. Hologic-SSI provided US B-mode pictures of the silicone phantoms developed

at POLIMI and OSR provided anonymised US B-mode of real breast lesions. The contribution of the

author focused on the definition of the strategies for the integration of US in DOT and the consequent

implementation and assessment of the segmentation, extrapolation and reconstruction algorithms.

Part of the work here presented has been published in [161, 162, 163, 164].

5.1 Strategy Overview for SOLUS Reconstructions
For the purpose of obtaining a tomographic reconstruction, the result of a SOLUS acquisition in

Chapter 1 is here considered to be composed of:
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• One US B-mode image of the lesion;

• One optical acquisition in the region of the lesion;

• One optical acquisition of the background i.e. healthy tissue.

In the work here presented, the information coming from SWE and CDU has been neglected and

the information coming from the additional optical acquisitions mentioned in Section 1.1.1 has been

considered redundant.

Four main strategies have been identified to obtain optical reconstructions from SOLUS data.

The principal differences among them regard the inclusion of a spectral model for human tissues

in the optical problem and the incorporation of constraints based on the US data for the optical

reconstructions.

• Strategy 1A, which is displayed in Figure 5.1, implements a traditional DOT reconstruction.

The data coming from each probing wavelength is treated as independent from the others. For

each probing wavelength, the raw optical data is pre-processed and a tomography is obtained

based on a model of photon propagation. A global regulariser such as 0th order or 1st order

Tikhonov is used. The optical reconstructions and the images obtained with the US probe are

then assembled to formulate a diagnosis.

Strategy 1B still considers the data from different wavelengths to be uncorrelated, but enforces

consistency between the structural information retrieved by US and the DOT reconstructions.

Thus, after pre-processing of the raw data, optical tomographies are obtained for each wave-

length by applying a US-based constrain. The US-consistent optical reconstructions are com-

bined with the US data to formulate a final diagnosis. A schematic is shown in Figure 5.2.

• The inclusion of a spectral model describing the relation between the data coming from the

different wavelengths is the main feature of Strategies 2A and 2B, respectively shown in

Figure 5.3 and Figure 5.4.

In Strategy 2A, a photon propagation model is combined with a spectral model for human

tissues to obtain spectrally consistent reconstructions from all the pre-processed data at once.

The resulting tomographies will display functional properties of the tissues. An assessment of

the lesion is performed afterwards.

In Strategy 2B instead, consistency is enforced between US data, photon propagation model

and spectral model for human tissues. The pre-processed data for all wavelengths are re-

constructed at once to obtain US-consistent functional tomographies. The data are finally

combined to formulate a diagnosis on the lesion.

We note that the diagnosis of the lesion is not necessarily made by a human operator and that in

Chapter 6 we propose some automatic methods for classification.
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Figure 5.1: Schematic of Strategy 1A described in Section 5.1.

Figure 5.2: Schematic of Strategy 1B described in Section 5.1.
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Figure 5.3: Schematic of Strategy 2A described in Section 5.1.

Figure 5.4: Schematic of Strategy 2B described in Section 5.1.
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5.1.1 TCSPC and IRF Acquisition with the SOLUS System

For completeness, we briefly mention here some technical aspects of the optical acquisition with the

SOLUS probe.

The IRF of SOLUS is taken with a specifically fabricated IRF box, a hollow black Polyvinyl

chloride 3D-printed box of 68.5× 51.8× 32.0mm with no upper lid. In particular, the upper part of

the box presents an intelocking slot to fit the SOLUS probe. After fixing the SOLUS probe on the

open part of the IRF box, an IRF acquisition consists in running the same procedure defined for the

first clinical optical acquisition described in Section 1.1.1. The absence of diffusive processes allows

to measure the shape of the IRF after a time given by photon propagation in air. Neglecting secondary

reflections of the laser beams, the fastest optical path from source to detector is considered. The time

of flight of photons through this path is then removed by applying the appropriate time shift to the

raw IRFs. We note that the theoretical time of flight thus calculated has been verified to match the

experimentally measured one.

TCSPC, as described in Section 3.2, has been applied as a working principle for the optical

acquisition in the SOLUS probe. As mentioned in Section 1.1.1, its TDC allows for collection in

128 time bins of average width of ∼ 78 ps. A number of ∼ 103 photons is foreseen for the acquisition

of a signal ys,m for each source-detector couple s,m. However, TCSPC has important limitations

that arise from saturation of counting electronics and pile-up distortions [165]. These are made

particularly important by the characteristics of the measured signal. Heuristically, considering the

Green function in Equation (3.12), it can be seen that information on the absorption of the material

can be deduced by the tail of the measurement. That is also the region for which shot noise is

higher, under the assumption of Poisson statistics due to TCSPC. In order to increase the dynamic

range of the optics - and thus decrease noise in the tail of the curves - Fast Gating is applied during

SOLUS measurements [166, 167]. We show a scheme for the principle of fast gating for TD-DOT in

Figure 5.5. The technique consists in applying a time-gate to the detectors so that only photons with

Fig. 2
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Figure 5.5: Schematics of the principle of fast gating for Ndelay = 6. For each delay a gated curve

of fixed photon count is acquired with TCSPC. After acquisition, the reconstruction of the curve is

performed allowing for a much larger dynamical range of the measured optical power. Courtesy of

[168].
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arrival times inside the gate are measured until the required photon count is reached. After measuring

with an initial delay, the time-gate is shifted in time and the measurement is repeated so as to probe

different time regions of the curve for a number Ndelay of time delays [169]. We note here that the

windowing procedure suffers from non-idealities such as slow rising and descent times. Due to this

phenomenon, for a single delay, detectors measure for times that are long enough to acquire a signal

that can already be used in reconstruction. After the acquisition of the Ndelay time gates, the full

curves ys,m(t) are obtained through a process of curve reconstruction [170]. Throughout the thesis,

we consider raw data either to come from a single delay or to have already undergone the process of

curve reconstruction.

5.1.2 Considerations on Data Pre-processing

Measurements in diffuse optics are often subject to experimental non-idealities [1, 129]. For miti-

gation of these, reconstruction approaches in TD-DOT often rely on the acquisition of a reference

measurement and a signal measurement [171]. The acquisition of a reference measurement is ad-

vantageous for reconstruction with respect to a medium with known (or assumed) optical properties

as it allows to avoid mismatches with theoretical data due to model and experimental error. The

following assumption is made here:

Assumption 5.1.1 In the case of SOLUS, the optical contrast in the tissues is mainly given by the

lesion itself.

Thus, measurements far from the lesion are considered to come from a homogeneous medium.

One of the most prevalent distortions in the data is the coupling error that, depending on the

source-detector couple s,m, affects the amplitude of the measured signal ys,m(t) differently [129].

The consistency of the theoretical model with the measured signal is then hindered with one-shot

measurements. Thus, for SOLUS, a self-normalisation pre-processing operator P̃k as the one in

Equation (3.22) was adopted.

5.1.3 Considerations on the Model for Reconstruction

In the following, we show what have been the most used approaches in literature for the combination

of US and DOT imaging. After that, we define the approach in the case of SOLUS for this chapter.

US+DOT Joint Reconstruction in literature

US B-mode imaging is a well-established technique in breast cancer diagnosis [17, 172]. As men-

tioned in Section 4.2, its working principle is the propagation of acoustic waves through human

tissues, which are described by a characteristic impedance [20]. Even though nowadays, it is possi-

ble to acquire information from 3D portions of human tissues [173], the majority of US probes used

in clinical settings are designed to image planes rather than volumes.

Over the last decades, medical imaging through multimodal acquisitions has seen a rising inter-

est because of its potential in overcoming the limitations of single technique approaches. The high
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resolution of US imaging together with its non-invasive nature has made it a natural choice to furnish

complementary prior information to apply in DOT reconstructions, which are affected by low space

resolution and by uncertainty both in the localisation of breast lesions as well as in the evaluation of

their components [26]. As mentioned in Section 3.4, the ill-posedness of DOT calls for appropriate

regularisation techniques, often expressed as a penalty term to augment an objective function as in

Equation (2.24). Penalty terms can be based on global descriptors such as the overall magnitude of

the reconstructed images and/or image features such as edges and can be expressed in simple math-

ematical expressions such as 0th and 1st order Tikhonov functionals [82]. When considering how

to make use of an auxiliary modality such as the US data we employ here, the penalty term needs

to be designed appropriately. For a general overview of regularisation strategies in multimodality

imaging, we refer to [80] and the references therein. For applications of these methods in US+DOT,

strategies differ between those that group pixels to impose a lower-dimension in the space being

solved [22, 36, 127, 174] and those keeping a uniform resolution and imposing an image-based prior

[29, 80, 175].

In the dual-mesh approach [174] the prior information on the precise localisation of breast in-

clusions given by the US is used to define a Region of Interest (ROI) in the computational grid with

a finer mesh and a background with larger grid points. The total number of parameters of the inverse

problem is thus reduced with a consequent gain of contrast in the reconstructed images. Based on

this technique, a combined US+DOT probe with a 3D US array [36] was used to retrieve a 3D ROI.

The difficulty in deriving a 3D structure of a lesion from US measurements led to methods with

constraints on the ROI search space [22]. Here, an ellipsoidal inclusion is assumed for a first re-

construction based on the dual-mesh approach. A second step is then aimed at refining the retrieved

inclusion by perturbing its centre and radii and selecting the most appropriate combination. [176]

proposed to select the ROI of the ultrasound based on the results of a semi-automatic segmentation

with a threshold-based method. The segmentation is shown to perform well on US images charac-

terised by high contrast. However, the ROI was selected on the basis of the maximum elongation of

the inclusion in the US imaging plane thus losing part of the information recovered in the segmen-

tation. An imaging-based prior was applied to combined US+DOT measurements in [175]. Several

US B-mode scans were used as a reference image to directly generate a regularisation matrix based

on its intensity, thus avoiding the explicit segmentation of the images. However, as mentioned in

Section 4.2.1, US images of breast lesions are characterised by high variability and artefacts such as

shadowing. This poses some challenges to an extensive use of the method. Moreover, arrays of US

images might not be available during clinical exams.

Chosen Approach for SOLUS

While US imaging is able to output images in real time, computations for TD-DOT often require

longer time scales, especially for more accurate images. In order to supply an optical reconstruction
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also during a standard clinical exam, two types of reconstruction were foreseen for SOLUS:

1. Online: A fast optical reconstruction (∼ 5′) to combine in-session with the US examination;

2. Offline: A more accurate reconstruction (∼ 10 hours ) for later examination.

The focus of this chapter is on the online reconstruction, while methods for an offline reconstruction

will be presented in Chapter 6. In order to have a fast tomography, a linearised approach, as the one

described in Section 3.4.1, is followed.

Following Assumption 5.1.1, we consider breast tissues far from the lesion to be optically

homogeneous. Thus, the analytical model in Equation (3.12), combined with Equation (3.18) is

used for a non-linear global fit on the self-normalised background measurements [128]. We note that

when applying a spectral model, also Equation (3.15) needs to be included in the fit. The retrieved

homogeneous values for the optical properties µ′
s,bulk and µa,bulk are then used as linearisation

point f0 for the calculation of the Jacobian as in Equation (3.27)1. We choose to incorporate the

information coming from the available US B-mode image UP, by adopting an edge-regulariser in the

form of Equation (3.23) to construct the minimisation problem in Equation (3.28).

Next, in Section 5.2, we propose two methods for extracting the information from the US B-

mode image for building such a regulariser.

5.2 Prior Extraction
The chosen approach for US-guided reconstruction requires the extraction of a 3D prior from a

2D B-mode image. In the following discussion, to impose the (approximate) segmentation, in

Equation (3.23) we choose:

γ(χΩ) = exp

[
−|∇χΩ|

β

]
, (5.1)

where χΩ is derived from a 2D B-mode Ultrasound image UP via an extrapolation procedure and β

is a threshold parameter which is chosen to be equal to 5 for the whole thesis; hereafter P specifies

the plane in which the US image is taken.

We propose here two methodologies for extrapolation of 3D priors from UP:

• A semi-automatic one, based on a process of 2D curve fitting for segmentation of UP and on

the concept of Distance Transform (DT) for obtaining the final 3D image [177]. We refer to

this procedure as DT-extrapolation;

• One that can be fully automated, based on a learned extrapolation operator. We refer to this

methodology as ML-extrapolation.

1We note that for this study the forward model is linearised for a vector

δµa

δκ

. The retrieved reconstructed µ′
s
recon is

then obtained by Equation (3.8) as µ′
s
recon =

µ′
s,bulk

1+3µ′
s,bulk

δκrecon .
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5.2.1 DT-extrapolation: Segmentation and Extrapolation Based on Snake

Fitting and Distance Transform

The approach used for DT-extrapolation consists of 2 steps:

1. A user-assisted semi-automatic segmentation of the B-mode image to separate the lesion from

the rest of the breast;

2. A 3D extrapolation procedure to obtain the final shape to insert in Equation (5.1).

Segmentation

In order to semi-automatically identify the region where an inclusion is in UP, a snake-based method

was implemented [178]: given some initial user-defined control points
{
p
(0)
i : i = 1, · · · , N

}
close to the edges of the inclusion, an active contour fitting procedure finds an optimal set{
popt
i : i = 1, · · · , N

}
whose cubic spline interpolation CP (s) = Spline

({
popt
i

})
, defined for

a parametrisation s, approximates the border of the lesion [179, 180]. An appropriate loss function

L(CP) is defined as the sum of two energy terms:

L(CP) =

1∫
0

[Eint(CP(s)) + Eim,σ(CP(s))] ds, (5.2)

and minimised. The first contribution Eint, related to the internal energy of CP (s), is given by:

Eint =
1

2

(
a(s)

∣∣∣∣ ddsCP(s)

∣∣∣∣2 + b(s)

∣∣∣∣ d2ds2
CP(s)

∣∣∣∣2
)
, (5.3)

where the choice of a and b affects the appearance of CP(s) such as the presence of corners. The

term Eim,σ in the second contribution of Equation (5.2) takes into account the characteristic features

of UP. The characteristics of US B-mode images allow to look for inclusions’ borders where a

smoothed version of the Laplacian:

U∇·∇
Pσ

= Gσ(r) ∗ ∇ · ∇UP(r),

is small enough, with Gσ(r) Gaussian smooth term in 2D with standard deviation σ. In these

settings, a characteristic function is defined so that:

χPUP,σ,10%
:=

1 if U∇·∇
Pσ

< P10%

(∣∣U∇·∇
Pσ

∣∣)
0 otherwise

; Eim,σ = DT
(
χPUP,σ,10%

)2
,

where P10% represents the percentile value of the first 10% pixels with lowest values and the

threshold of 10% was chosen empirically. The application of the square of the DT [177, 181]

on χPUP,σ,10% furnishes a potential, which is minimum along the relevant features of the lesion and

quadratically increasing with the distance from them. This is valid defining DT on the Euclidean

distance from the zero pixels of χPUP,σ,10%. A faster and more robust convergence has been obtained

by using two further expedients:
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1. With a small change in the procedure, the user is asked to select the points close to the borders

of the inclusion and on its internal side. An additional term can then be added to Eim so that:

Eim,σ = DT
(
χPUP,σ,10%

)2
+DT

(
χP

(0)
)2

, (5.4)

where χP
(0) is the segmentation stemming from the cubic spline interpolation of the initial

set of points CP
(0)(s) := Spline

(
{p(0)

i }
)

so that DT
(
χP

(0)
)2

acts as a repulsive term from

the user-selected area, thus avoiding local minima due to the most internal structures of the

lesion. A segmentation is then obtained by minimising Equation (5.2) with respect to the

control points, i.e. :

{
popt
i

}
= argmin

{pi}
{L (CP(s) = Spline ({pi}))} i = 1, . . . , N. (5.5)

2. A solution suggested in [182] introduces a parallel minimisation in scale-space [183] so

that the minimisation is not totally affected by the choice of a single σ. In this scenario,

a set of {σk : k = 1, · · · , Nσ} is chosen and minimisation of L is operated for each pre-

defined smoothing from the largest σmax to the smallest one σmin. A characteristic length

r̂ =
∥∥DT

(
χ(0)

)∥∥
∞ is defined. The set {σk : k = 1, · · · , Nσ} of Nσ evenly spaced σs is

defined between σmax = 0.7 r̂ and σmin = 0.15 r̂.

The final process is given in Algorithm 8.

Algorithm 8 Active Contour Fitting for Breast Lesions Segmentation: Minimisation in Scale-space

1: Manually select
{
p
(0)
i : i = 1, · · · , N

}
;

2: Calculate initial contour CP
(0)(s) by spline interpolation and derive χ

(0)
P ;

3: for k = 1 → Nσ do

4: Compute Loss Function by means of Equation (5.2) with (5.3), (5.4) and σk;

5: Find
{
popt
i : i = 1, · · · , N

}
using (5.5);

6: Set
{
popt
i : i = 1, · · · , N

}
as new initial guess;

7: end for

8: Calculate final contour Copt
P (s) by spline interpolation of

{
popt
i : i = 1, · · · , N

}
.

The internal energy parameters in Equation (5.3) are chosen as a = 0 and b = 1. Nσ was set to be 15

by a procedure of trial and error. In Figure 5.6, a segmentation example obtained with the described

method is shown. In Figure 5.7, we show the result of the application of the segmentation procedure

to an image UP taken on one specifically designed bi-modal phantom developed at POLIMI. We

refer to Section 5.3.1 for a more detailed description of the bi-modal phantoms used in this chapter.
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Figure 5.6: Example of application of semi-automatic segmentation as in Algorithm 8 on US image

of breast lesion, courtesy of OSR. The characteristic length for the multiscale snake was found

to be r̂ = 75 pixels. The initial segmentation was obtained with the spline interpolation of 10

points. From (d) to (f) a subset of U∇·∇
Pσ

is displayed. The features identified in UP are shown

to be refined as σ decreases. However, also internal structures are highlighted in the process. The

same behaviour, with a clear focus on the local minima of the potentials, can be observed from (g)

to (i) which show the respective DT
(
U∇·∇
Pσ

)2
. The addition of DT

(
χP

(0)
)2

in (c) acts then as

a repulsive term from the local minima inside the initial segmentation. From (j) to (l) the full

function Eim is shown. (b) shows in detail the improvement brought in the segmentation from

our snake-based method. (a): Original Image UP. (b): Blue: χP
(0), Green: Final Segmentation χP.

(c): DT
(
χP

(0)
)2

. (d): χPUP,σ1,10%. (e): χPUP,σ8,10%. (f): χPUP,σ15,10%. (g): DT
(
χPUP,σ1,10%

)2
.

(h): DT
(
χPUP,σ8,10%

)2
. (i): DT

(
χPUP,σ15,10%

)2
. (j): Eim,σ1

. (k): Eim,σ8
. (l): Eim,σ15

.
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Figure 5.7: Application of semiautomatic segmentation on US images taken on bimodal phantoms,

courtesy of Hologic-SSI. (a): Original Image. (b): Blue: χ(0)
P , Green: Final segmentation χDT

P .

Extrapolation

In order to apply a structural prior as defined in Equation (3.23) and Equation (5.1), a 3D charac-

teristic volume χΩ needs to be extrapolated from the segmentation χP of UP. For this reason, an

operator T is defined such that:

χΩ := TχP.

Finding an analytical expression for T is not possible without some strong and mostly qualitative

assumptions. Here, we present a possible implementation TDT which, as for the snake implemen-

tation, makes use of the concept of the distance transform. Hereafter, we refer to the result of the

DT-extrapolation procedure as χDT
Ω . The basic idea is to assume that the clinician guiding the US

acquisition selects the slice with the maximal cross-sectional area of the lesion and that the out-of-

plane extension of the lesion diminishes smoothly. In order to implement such conditions, a height

function yext(x, z) was defined over the plane {(x, z) ∈ P}. This was designed to control the

extension of the inclusion out of the US imaging plane P by extrapolating a smooth shape. Thus:
yext(x, z) = c

√
2 ∥DT(χP) ∥∞ DT(χP) (x, z)−DT(χP)

2

c =

√
A

π
∥DT(χP)∥∞

where A is the area of the inclusion χP so that c, in absence of statistical insight on the distribution

of the lesions’ shape, ensures that the out-of-plane extrusion is never bigger than the radius of the

sphere whose middle section has the same area of the inclusion portrayed in χP. The extrusion

operator will finally read as:

χDT
Ω (x, y, z) = TDTχP(x, z) =

1 y2 < y2ext(x, z)

0 elsewhere

An example of a shape retrieved upon the application of TDT on the final segmentation in

Figure 5.6(b), can be seen in Figure 5.8(a). Results of the final extrapolation procedure on the
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segmentation shown in Figure 5.7 are shown in Figure 5.8(b). A validation for TDT proves to be

complex on experimental data. In this chapter, we show an assessment made on its effect as a prior

in optical reconstructions in Section 5.3. A further assessment based on simulations is reported in

Chapter 6.
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Figure 5.8: 3D rendering of the result of the extrapolation performed as described in Section 5.2.1 on

χP. (a): Extrapolated inclusion χDT
Ω from χP shown in Figure 5.6(b). (b): Extrapolated inclusion

χDT
Ω from χP shown in Figure 5.7. The volume of χP is 736 mm3. The experimental cylindrical

inclusion has volume of ∼ 950 mm3.

5.2.2 ML-extrapolation: A Machine Learning Algorithm for Prior Extrac-

tion

We propose here a machine learning approach for the extrapolation of 3D images from SOLUS data.

The topic falls in the wider category of 3D reconstruction in machine vision. After a contained

literature review, we propose a novel ad hoc method for reconstruction of 3D lesions for the case at

hand. The method is assessed on simulations in Section 6.2.1, inserted in the wider discussion of

Chapter 6, where also a tool for the generation of 3D lesion shapes will be presented, thus allowing

to build a suitable dataset for training, validation and testing of the proposed methods.

Literature Review

3D objects reconstruction from one or more images is an active branch of research due to its many

practical applications that span from medical diagnosis to robotics, to industrial control, to visual

recognition et cetera [184]. Initial solutions in this field were characterised by a geometrical ap-

proach, where at least two images were combined to furnish a 3D representation of an object [185].

In these settings, the recovery of the third dimension is treated as an inverse problem, where the

forward model is the geometrical projection of a three-dimensional object onto predefined imaging

planes [186]. The strong ill-posedness of this approach makes the reconstruction from single images

prohibitive and effective results are obtained solely when considering two or more 2D representa-

tion of the target as it happens with stereo-based techniques or with shape-from-silhouettes methods
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[187]. On the other hand, having more than one image may result to be impossible or prohibitively

expensive. Speculations on the human ability to easily solve such ill-posed problems also from sin-

gle images suggest that an adequate prior knowledge of the objects to reconstruct might be the key

for advancements in this field [185]. For these reasons, the approach to the problem has recently

seen a hugely increasing attention to machine learning based methods for their ability to incorporate

the necessary prior knowledge from their training datasets [68]. In these scenarios, the problem can

formulated, analogously to Section 2.4, as:

Definition 5.2.1 Given a set of N 2D-images {fPi : i = 1, · · · , N} representing a 3D object fΩ,

the predictor AΘ depending of some optimal fixed weights Θ̂ is learned so that:

Θ̂ = argmin
Θ

L (AΘ ({fPi}) , fΩ) ,

where L is an appropriate distance metric measuring the discrepancy between the network’s predic-

tion and the target object.

The most appropriate approach to the problem largely depends on the typology of the available

inputs and desired targets. The inputs may be classified depending on their quality and on their

quantity. A video is an example of many images of the same object taken in sequence with a single

method. Other predictions may rely on single images, or on a series of images taken by different

imaging techniques or from different perspectives.

Depending on the desired outputs, three main distinctions may be made [185]:

1. Volumetric representations: the output is represented in a regular grid of voxels. These meth-

ods are usually regarded as memory inefficient, but they ease their implementation allowing

the use of typical machine learning operations such as convolutions;

2. Surface representations: the output is expressed on a non-regular mesh;

3. Intermediate: Instead of having and end-to-end predictions, some intermediate representations

of the object are learned in sequential steps.

Networks used for these tasks usually rely on encoder-decoder structures, as in Section 2.4.4. Con-

volutions, down-samplings and up-samplings play a crucial role in exploiting the spatial correlation

of the data and in avoiding the extreme memory requirements of FCNNs [101]. While the encoding

steps into latent space can be considered to follow the same rules for all three output representations,

the decoding stage plays an important role for the final output representation [102, 188, 189].

Volumetric Representation. The volumetric representation of the output can in turn be classified

into two branches:

1. A binary map in which voxels with value 1 are part of the object and voxels with values 0

are part of the background. This representation can be extended to a probabilistic measure for

which, to each voxel a probability, rather than a Boolean number, is assigned.
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2. A signed distance function, where each voxel represents the distance between its position and

the surface of the object. The distance is assumed to be negative if the voxel is inside the

object, while it is zero on the object’s surface.

The standard approach to obtain volumetric output from an encoded input is given by a CNN decoder

that usually mirrors the encoding stage. This method is not new for many machine vision tasks that

rely on the same principle e.g. in U-net that is regarded now as the state of the art for tasks such as

segmentation or medical imaging post-processing [69]. The same approach is followed by [188] and

by MarrNet in [190], where also an intermediate step recovering 2.5D sketches is implemented.

Extensions to this methodology are followed in literature [191, 192, 193, 194, 195, 196, 197].

Surface Representation. Even though networks with volumetric outputs are easily implementable,

they are severely memory-inefficient, thus undermining the possibility of high resolution reconstruc-

tions [188]. However, it is typically enough to retrieve the surface of the object in fΩ to obtain a

satisfactory reconstruction. Thus, the volumetric information required from grid-based methods re-

sults to be redundant. Three main categories of surface representation methods can be identified in

the literature: parametrisation-based, deformation-based and point-based.

• Parametrisation-based techniques aim at reconstructing volumes as parametric surfaces. In

this case, a mapping from a regular parametrisation domain depending on the input {fPi}

and a volume is learned. Spherical parametrisations are widely used in literature, but they

efficiently represent only genus-0 surfaces [198, 199, 200]. In this sense, machine learning

based approaches insert themselves in the identification of suitable surface parametrisations

[201, 202]. In [201] a 3-branch network is implemented for surface representation, with each

branch aimed at finding the best representation of the surface along each correspondent Carte-

sian axis x, y or z. The approach followed in [202] disentangles the information given by the

input into a detection map and a depth map. The two intermediate results are then combined

by yet another branch. These methods have been shown to work for low-genus surfaces [185].

An increase of genus is possible with the method proposed in [200], where the surface is de-

composed in a predefined number of patches depending on the genus required. A network with

a number of branches equal to that of the patches is then trained to reconstruct the patches and

to merge them to form the final output surface. Summarising, parametrisation-based methods

result to be efficient with low genus surfaces or for surfaces that fall in a well-defined category.

• Deformation-based networks aim at retrieving the final shape by learning a deformation op-

erator ∆def.
Θ depending on the input images {fPi}. The deformation operator is applied to a

template to obtain the final 3D shape. Depending on the initial assumptions, ∆def.
Θ can act as

a linear displacement of the vertices, as a deformation of a mean shape along an orthonormal

basis of the dataset e.g. obtained by Principal Components Analysis (PCA) [67], or as a defor-

mation of the mesh over which the initial template is defined itself [203, 204]. Many choices
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for the template are available. As an example, it can be a sphere, an ellipsoid or also a 3D

shape chosen from a dataset by selecting the most alike to the input. Other approaches rely on

unsupervised methods over the whole dataset [185].

• One last presented category of methods for surface representation approaches is given by

point-based methods. Here a surface is described by an unordered set of point coordinates in

space so that also fine details of objects can be recovered in principle. Similarly to other papers

in literature, networks aiming at reconstructing point-based representations are composed by

an encoder-decoder structure. The main issue in this set of methodologies mainly derives from

the difficult adaptation of commonly used machine learning structures to the problem [185].

Architecture and Methodology

For our aim, we choose here a volumetric approach, as it allows to use common machine learning

operations such as convolutions. Moreover, lesions can be represented as 3D binary masks and the

resolution of DOT does not pose challenging memory requirements for commonly available GPUs.

Inspired by the disentangled encoder-decoder network structure in MarrNet [190], we consider the

DOT reconstruction - composed of µrecon
a (r, λ) and µ′

s
recon

(r, λ) - and the US image UP as three

disentangled sources of information for the same object. An overview of the general structure of the

proposed architecture can be found in Figure 5.9. The optical reconstructions are feed directly into

an encoder branch of the network.

For what regards UP, more steps are devised. In order to input a tensor with the same dimensions

as the optical reconstructions to the encoder branch for ultrasound, two learned operators are here

proposed:

1. A first net SΘ0
to operate a feature extraction from UP and get χ̂P

S .

2. A second net TΘ1
to operate a transformation on χ̂P

S to obtain χ̂Ω
T , which presents the same

dimensions of µrecon
a (r, λ) and µ′

s
recon

(r, λ). Spectral dimensions are matched by a plain

replication of χ̂Θ1
for each considered λ.

We note that SΘ0
can be substituted by a segmentation operator as the one of Section 5.2.1 and an

appropriate resizing. However, a plain resizing of UP could result in an important loss of information

due to the difference of resolution between UP and µrecon
a (r, λ) or µ′

s
recon

(r, λ).

Five networks to retrieve χML
Ω were devised and named starting from the available inputs:

1. Net-Opt : Only µrecon
a (r, λ) and µ′

s
recon

(r, λ) are inputted in the network. This approach is

fully automated;

2. Net-Opt+UP: Both the optical reconstructions and a US B-mode image are used as input in

the network. This approach is fully automated;
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µrecon
a µa-Encoder

µ′
s
recon µ′

s-Encoder Decoder χML
Ω

χ̂S
P χ̂T

Ω-Encoderχ̂T
ΩTΘ1

SΘ0

UP
Figure 5.9: Strategy overview for the ML-extrapolation. µrecon

a and µ′
s
recon are directly fed into

a dedicated learned 3D encoder. Encoding of UP is performed through a longer pipeline. First,

a limited number of features χ̂S
P are extracted from the ultrasound data via the learned operator

SΘ0
. After that TΘ1

performs an up-sampling to output χ̂T
Ω with the same dimensions of the optical

reconstructions. χ̂T
Ω is finally inputted to a dedicated 3D encoder. Finally, the features extracted by

the 3D encoders are fed into a 3D decoder to obtain the final lesion shape χML
Ω . A minor modification

of the strategy can be made, by neglecting SΘ0
and feeding directly a segmentation of the lesion to

TΘ1
.
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3. Net-Opt+χP: The optical reconstructions and a segmentation of the image are used as input

in the network. This approach may require partial input from the operator for segmentation;

4. Net-UP: only the US B-mode image is used to find the final 3D lesion shape. This approach

is fully automated;

5. Net-χP: only a segmentation is used for the prior extrapolation. This approach does not

make use of SΘ0
and it may require partial input from the operator for segmentation.

An encoder-decoder structure based on U-net [69] and generalised with three-dimensional convo-

lutions was devised for the practical implementation of networks. Each encoder branch of the net-

work is composed of 4 layers of three-dimensional convolutional residual blocks of Equation (2.39)

[102] as shown in Figure 5.10. The number of input channels Nin of the encoders was set to

R3×3×3

Nin→8

P2×2×2

R3×3×3
8→16

P2×2×2

R3×3×3
16→32

P2×2×2

R3×3×3
32→32

Figure 5.10: Architecture of the 3D encoders implemented. It consists of the encoding branch of a

3D U-net. The number of input channels Nin is set to be equal to the number of available probing

wavelengths. The convolutional filters were designed to have a size of 3× 3× 3. A total of 4 layers

has been implemented.

be equal to the number of probing wavelengths. The convolutions were chosen to have kernels of

3×3×3. An activation function φres was added at the end of each residual block, consisting of ELU

and followed by a max-pooling operation with kernel 2 × 2 × 2, so that: φres = P2×2×2 ◦ ELU.

The output of each φres is concatenated with the corresponding results from the other two branches
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∥

∥

∥

∥

R3×3×3
24→1

R3×3×3
48→24

R3×3×3
96→48

R3×3×3
96→96

Figure 5.11: Architecture of the proposed 3D decoder. The outputs of the encoders are concatenated

(blocks with symbol ∥) along the channel dimension and then fed to the up-sampling branch of a

U-net. The convolutional filters were designed to have a size of 3× 3× 3. A total of 4 layers has

been implemented. Sigmoid was chosen as final activation function. The result of the decoder is

thus a 3D image with values ranging from 0 to 1.



76 Chapter 5. Reconstruction Methods for SOLUS: Validation on Experimental Data

along the channel dimension and is forwarded to the decoder network in Figure 5.11 [205]. The

decoder branch was designed with the same logic of the encoding branches with a single branch of

4-layer residual blocks and up-sampling.

For what regards the nets SΘ0
and TΘ1

we chose respectively:

• A 4-layer CNN with convolutions of kernel 3× 3, ReLU activation function and max-pooling

of 2× 2;

• A 1-layer FCNN to extrapolate χ̂Θ0
as to match the spatial dimensions of the optical recon-

structions. This is followed by a replication operator along the channel dimensions to match

also the spectral dimensions.

Training

Among the overlap metrics that have been developed in literature, we focused on the fuzzy Dice

Score (fDSC) [206]:

fDSC :=
2TC

TC+ 1
with TC :=

∑
i min(Xi, Yi)∑
i max(Xi, Yi)

(5.6)

which assigns a value between 0 and 1 to evaluate the similarity degree of two continuous images

X and Y with index i. In the case of binary images, the fDSC degenerates to the conventional Dice

Score (DSC), which is a metric for the overlap between two inputs, also reported in Equation (6.2)

[207]. This will be used in Section 6.2.1 as an evaluation metric for the final results of the methods

here proposed. The fDSC plays a key role in avoiding local minima during training with respect to

its conventional counterpart.

The loss function was defined as:

L(χML
Θ , χT

Θ;χ
truth
Ω ) = −w1(st)× fDSC(χ̂T

P , χ
truth
Ω )− w2(st)× fDSC(χML

Ω , χtruth
Ω ) (5.7)

where w1(st) and w2(st) are coefficients depending on the step number st, which are chosen to be:

w1(st) =

1 st < 200

0.001 st ≥ 200,
w2(st) =

0 st < 200

1 st ≥ 200.

The loss was minimised by means of Adam optimiser for a maximum of 80000 steps [208]. Early

stopping for loss minima for the validation dataset for st > 200 was adopted to avoid overfitting

[68]. The size of the training batches was set to 1. In order to implement all the networks defined

above, we set to zero the inputs of the redundant branches during training.

The focus of the rest of this chapter is on the validation of the optical reconstruction prior with

experimental data. This allowed for a limited number of geometries for the inclusions, thus making

an assessment of ML-extrapolation prohibitive for the lack of meaningful data to use during training.

Validation of the ML-extrapolation is instead presented in Chapter 6, where also a pipeline for the

generation of multimodal data is shown.
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5.3 Assessment of Edge-regularised Linear Model
Hereby, we present an assessment of Strategy 1B with respect to the plain TD-DOT reconstruction

proposed in Strategy 1A. As already mentioned in Section 5.1.3, we aim at studying the perfor-

mances of the online reconstruction on phantoms. Thus, we propose a linearised approach to optical

reconstruction in this framework. In Section 5.3.1, we briefly present the dual-modality phantoms

that have been designed at POLIMI for the SOLUS project. In addition to that, we describe the ex-

perimental conditions for the experimental mock-up of the SOLUS probe performed by the physics

department of POLIMI. Results are shown in Section 5.3.2. Finally, we present a discussion of the

results and conclude the section.

5.3.1 Phantoms

Joint US+DOT heterogeneous phantoms were specifically developed by the SOLUS consortium for

this study and for future experimental validation of the multimodal probe. Their detailed description

can be found in [209]. Solid materials were preferred to obtain stable and durable phantoms. In

particular, an echogenic contrast for US investigations between bulk and perturbation phantoms was

obtained thanks to the combination of two different silicones: the Ecoflex 00-30 (Smooth-On, Inc.

PA, USA) silicone rubber (used for the bulk, i.e. a rectangular parallelepiped featuring a 100× 120

mm2 surface and a 40 mm thickness) and the Sylgard S184 (Dow Corning Corp. CA, USA) silicone

elastomer (used for perturbations, i.e. cylinders with volumes of ∼ 1 cm3 -11 mm diameter, 10 mm

height- or ∼ 6 cm3 - 22 mm diameter, 15 mm height-). Since echogenicity in Sylgard S184 is lower

than in Ecoflex 00-30, their combination allowed to simulate anechoic lesions inside echogenic

tissues.

The bulk phantom has, on one surface, two cylindrical cavities (volume of ∼ 1 cm3 and ∼ 6

cm3) where perturbations of equivalent volume can be inserted. Three slices (with thicknesses of

5, 15 or 25 mm) made of the same material as the bulk can be used to cover perturbations so as to

simulate different depths of the lesion inside the tissue. In Figure 5.12, we show the picture of the

components from which a phantom is assembled.

Both bulk and perturbation phantoms were fabricated with different optical properties by adding

different calibrated (at 690 nm wavelength) quantities of titanium (IV) oxide powder (Sigma Aldrich,

USA) as a scattering element and toner powder (Infotec, Toner Black 46/l) as absorber, thus permit-

ting an almost flat absorption coefficient over a broad spectral range. It is worth noting that the recipe

was validated demonstrating the independence between acoustic properties and the concentration of

absorbers and scatterers (in the concentrations of interest for this study) [209]. Here, a bulk phantom

with (nominally) µ′
s ≃ 1 mm−1 and µa ≃ 0.01 mm−1 was used, with a top slice of 5 mm thick-

ness (featuring same optical properties as the bulk) covering a 1 cm3 perturbation with (nominally)

µ′
s = 1 mm−1 and µa = 0.005, 0.01, 0.02, 0.04 or 0.06 mm−1.
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Figure 5.12: Picture of the components used to assemble a phantom. On the right, the main bulk of

size 120 × 100 × 40 mm is shown. Two cylindrical holes are placed respectively at 35 and 50 mm

from the further edge of the bulk shown in the picture. These are used to insert the cylindrical

inclusions ( one large and one small) of different optical and acoustic properties, on the bottom-left

corner of the image, inside the bulk. The large inclusion has height 15 mm and radius 11 mm while

the small one has height 10 mm and diameter 5.5 mm. The depth of the inclusions in the phantoms

is controlled by covering the combination of main bulk and inclusions with one or more of the bulk

lids of thickness 5, 15 and 25 mm that are shown in the left of the image. The bulk lids have the

same optical and acoustic properties of the main bulk. Homogeneous phantoms are assembled by

inserting inclusions of the same material of the bulk in the phantom. Courtesy of Giulia Maffeis

(POLIMI).
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Mock-up System and Experimental Acquisition. For the sake of the present study, US measure-

ments were taken using an SL18-5 US probe connected to an Aixplorer v11 system (Hologic-SSI)

operated with customised settings (optimised for imaging into silicone phantoms, e.g. transmit and

receive demodulation frequency = 5 MHz, voltage = 72 V, 2 half cycles, speed of sound set to 980

m/s). TD-DOT measurements presented here were taken using a time-resolved diffuse spectroscopy

laboratory research prototype [210] in a scanning fashion. As described in Section 3.2, the IRF of

the system, taking into account the finite width of the light source and other possible broadening

factors, such as fibre temporal dispersion, detector response, et cetera used in the generation of the

Jacobian by convolution with Equation (3.26) as by Equation (3.18). Both source and detection fi-

bres were manually switched between 8 different locations (holes into a 3D printed black Polyvinyl

chloride plate placed on top of the phantom), thus resulting into a single DOT acquisition composed

by 64 source-detector pairs per wavelength. The 8 locations were chosen so as to be analogous of the

SOLUS probe geometry [19] (characterised by 8 DOT acquisition points around the US transducer).

In detail, the acquisition geometry was composed by two lines of 4 measurement points each. Mea-

surement points on the same line are at an intermediate distance of 12 mm, while the two lines are

separated by 20 mm. A schematic of the acquisition geometry can be found in Figure 5.13. Each

assembled phantom was probed over 8 wavelengths of 635, 670, 830, 915, 940, 980, 1030, 1065

nm.

Z

X

Y

ℙ

US Transducer Optodes

Figure 5.13: Schematic of measurements’ geometry. Detectors and sources are aligned in two rows

parallel to the direction of the US scan. The plane of US imaging P is set to be at y = 0. The plane

z = 0 identifies the surface of the domain.
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5.3.2 Results

A validation of the optical reconstruction on phantoms was performed by experimentally reproduc-

ing the measurements’ geometry that is designed for the SOLUS project [19] by making use of

the specifically designed phantoms described in Section 5.3.1. A reference measurement yref was

obtained on the sole bulk, so that the linearisation in Equation (3.25) reads as:

ys,m ≃ yrefs,m + Js,m(f0)δf .

Supposing the optical coefficients of the bulk to be known, the Jacobian was built following the

discussion in Section 3.4.1. The analytical model for a semi-infinite slab in Equation (3.12) was

chosen to compute the Green functions necessary for linearisation in Equation (3.26). The refer-

ence values of the homogeneous optical coefficients µ′
s0 and µa0 were assumed to be equal to those

in the bulk. The pre-processing operator in Equation (3.22) was applied to the measured signals.

Each experimental ys,m was sampled with a total NTW = 20 equally-spaced time windows in a

manually selected Temporal Region of Interest (TROI). We note that because of the pre-processing

step here described, the Jacobian was modified accordingly by means of Equation (3.29). The re-

construction domain Ω was a cuboid of 64 mm × 58 mm × 32 mm, discretised with cubic voxels

of side 2 mm. We compared results with regularisation using i) 0th order Tikhonov prior, ii) edge-

weighted prior given by Equation (3.23) with the shape χDT
Ω recovered using the DT-extrapolation

method in Section 5.2.1 and shown in Figure 5.8(b). In Figure 5.14 and Figure 5.15, two examples

of absorption reconstruction with 0th order Tikhonov and with edge-weighting prior are shown. In

Table 5.1 more detailed results are given for the examples displayed. It can be seen that the pro-

posed method improves quantification of the optical properties of the inclusion with respect to 0th

order Tikhonov regularisation. This statement holds true also when considering the integral value

of the reconstructed δµa,in over the region of the inclusion. However, in the case of Figure 5.15

an important discrepancy may be observed between ground truth and reconstructions. This can be

partly explained by the inadequacy of the Born approximation model in Equation (3.26) in describ-

ing situations characterised by high optical contrasts. The same effect will be shown in Figure 6.4

when comparing the accuracy of the Born approximation with respect to a non-linear model on a toy

problem. Also the localisation of the inclusion, especially with regard to its elongation, is enhanced

by the use of the proposed edge-weighting prior. We also tested using the edge-weighted prior and

the exact 3D shape (figures not shown); no particular quantification improvements were found with

the exact shape, suggesting that the approximate shape-recovery method is adequate for providing

quantitative estimates of the optical properties with the employed model.
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Figure 5.14: Results for λ = 830 nm. µtruth
a,bulk = 0.0075 mm−1, µtruth

a,in = 0.0037 mm−1. (a): Left:

absorption reconstruction (mm−1) obtained with 0th order Tikhonov regularisation. Right: ΩROI of

the inclusion retrieved with DOT as by Equation (5.8). (b): Left: absorption reconstruction (mm−1)

with edge-weighting prior obtained as described in Section 5.2.1. Right: ΩROI of the inclusion

retrieved with DOT as by Equation (5.8).
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Figure 5.15: Results. µtruth
a,bulk = 0.0075 mm−1, µtruth

a,in = 0.0285 mm−1. (a): Left: absorption re-

construction (mm−1) with 0th order Tikhonov regularisation. Right: ΩROI of the inclusion retrieved

with DOT as by Equation (5.8). (b): Left: absorption reconstruction (mm−1) with edge-weighting

prior obtained as described in Section 5.2.1. Right: ΩROI of the inclusion retrieved with DOT as by

Equation (5.8).
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Mean Integral in ΩROI Centre of mass Displacement Elongation

Fig. δµa,in

∫
ΩROI

δµa,indr x y z d ∆x ∆y ∆z

(×10−3mm−1) (mm2) ( mm) ( mm) ( mm) ( mm) ( mm) ( mm) ( mm)

Truth 5.14 −3.8 −3.97 0 0 10 0 12 10 12

5.15 21.04 22.2 0 0 10 0 12 10 12

TK0 5.14 −0.6 −1.5 −0.3 −1.3 8.3 2.2 14 24 12

5.15 0.84 2.22 −1.2 −1.6 8.6 2.4 16 26 10

edge-TK1 5.14 −3.38 −2.81 0.5 −0.6 10.1 0.8 12 12 12

5.15 4.87 4.01 0.2 −0.6 9.5 0.8 12 12 12

Table 5.1: Table of results for the examples shown in Figure 5.14 and Figure 5.15. Comparison,

for ground truth, reconstructed absorption with 0th order Tikhonov regularisation (TK0) and Edge-

weighting prior (edge-TK1) using χDT
Ω , the mean value of the absorption inside the inclusion, the

integral of the reconstructed δµa,in in a Region of Interest (ROI) identifying the inclusion, the centre

of mass of the inclusion along x, y and z, the displacement d between the centre of mass of the

ground truth and of the reconstructed inclusions, its maximum elongations ∆x,∆y and ∆z in the

computational grid.

5.3.3 Discussion and Conclusions

For a systematic analysis of the results, each reconstructed inclusion was assumed to be localised in

the region ΩROI defined as:

ΩROI :=

{
r s.t.

∣∣∣∣µrecon
a (r)−median [µrecon

a (r)]

std [µrecon
a (r)]

∣∣∣∣ > 4

}
. (5.8)

The representative absorption value in the inclusion was then set to be µrecon
a,in = mean [µrecon

a (ΩROI)]

while the reconstructed value in the bulk µrecon
a,bulk = mean [µrecon

a (Ω\ΩROI)]. From the right-hand

side of Figure 5.14 and Figure 5.15, it can be seen that localisation of the inclusion is improved with

the application our structural prior, as expected. In Figure 5.16, an overview of the quality of the

reconstructions with and without structural prior obtained with DT-extrapolation is given. On the

abscissa the set of the absorption nominal contrast of the probed phantoms as NC =
µtruth
a,in

µtruth
a,bulk

for all

wavelengths is displayed, while the ordinates show the mean reconstructed contrast RC =
µrecon
a,in

µrecon
a,bulk

in the case of the application of a 0th order Tikhonov regularisation (circles) and of the structural

prior (crosses). An optimal reconstruction would see the scatter points lying along the bisector of

the axes’ origin. While able to reconstruct the sign of the perturbation correctly, 0th order Tikhonov

regularisation is far from ideal for what regards quantification. A sensible improvement can be

observed when applying a structural prior as the one described in Section 5.2.1.

Finally, we introduced a method for the application of structural priors coming from US imag-

ing to DOT. A semi-automatic segmentation procedure was shown to be able to extract the region

of an inclusion from an ultrasound image. A further step based on the concept of distance trans-



84 Chapter 5. Reconstruction Methods for SOLUS: Validation on Experimental Data

0 1 2 3 4 5 6 7

NC =  
a,in
truth  / 

a,bulk
truth

0

0.5

1

1.5

2

2.5

R
C

 =
 

a,
in

re
co

n
 / 

a,
bu

lk
re

co
n

Recontructed Contrast vs target contrast with DT prior,  = 0.01 (+), s,bulk   1 mm -1   a,bulk   0.01 mm -1

a
  = 0.005 mm -1

a
  = 0.01 mm -1

a
  = 0.02 mm -1

a
  = 0.04 mm -1

a
  = 0.06 mm -1

Figure 5.16: Plot of reconstructed contrasts of absorption RC =
µrecon
a,in

µrecon
a,bulk

over the nominal values

NC =
µtruth
a,in

µtruth
a,bulk

. Crosses indicate the reconstructed values of the inclusion with edge-regularising

prior obtained with DT-extrapolation as per Section 5.2.1. Circles are the contrast reconstructed

with 0th order Tikhonov regularisation.

form is then applied to the retrieved segmentation to extrapolate a 3D shape. Such procedure is not

expected to accurately represent any three-dimensional lesion, but its use allows to regularise the

problem of DOT, with benefits for localisation and quantification consequently. The method was

assessed by means of experimental data taken of specifically designed phantoms. The application of

an edge-prior obtained by means of the devised strategy shows to improve the quantification of DOT

reconstructions with respect to plain global regularisations such as 0th order Tikhonov. Finally, it is

shown that quantification is improved systematically for a wide range of optical contrasts between

bulk and inclusion.

5.4 Assessment of Edge-regularised Linear Model with Spectral

Constrains
Having assessed the benefits of Strategy 1B, we present here a study designed to test the perfor-

mances of Strategy 2B i.e. the integration of a spectral model for tissues during reconstruction. As

before, we focus here on methods for the online reconstruction for a diagnosis during the clinical

exam. The application of a spectral model is necessary to translate the optical properties into physi-

ological quantities usable in clinics. In literature, this process goes by the name of spectral unmixing

[125, 126]. For the case in object two approaches were devised:

1. A first step using an optical reconstruction wavelength by wavelength reconstruction following

Strategy 1B. A second step to fit the optical properties to derive the components of tissues.

Hereafter, we refer to this procedure as separate wavelength approach;
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2. A spectral reconstruction incorporating the component properties in the forward model as in

Equation (3.20). We refer to this as spectral approach.

Among the theoretical advantages given by the spectral approach, we can list the reduction

of the number of parameters to reconstruct from 16 (8 absorptions and 8 scatterings) to 7 (5 chro-

mophore concetrations and 2 scattering parameters). This may be beneficial for the robustness of the

results, especially for the scattering parameter for which the dimensionality reduction is stronger.

At the same time, drawbacks can be identified. The introduction of a second model to the diffusion

equation is itself a source of error, both for what regards modellisation and for the ill-posedness of

the procedure of spectral unmixing [119]. Moreover, the spectral approach relies on two linearisa-

tions, one for the optical model in Equation (3.19) and one for the spectral model in Equation (3.15).

This poses stricter limits to the accuracy of the model for large contrasts.

In the following, we present a study of the proposed methods for experimental data obtained on

meat phantoms. These have been designed to mimic some of the lesions that can be found in human

breasts. In Section 5.4.1, we briefly present such meat phantoms and their main characteristics.

As presented in Section 3.1.3 for human tissues, 5 chromophores and 2 scattering parameters were

selected for spectral characterisation and tomographic reconstruction. Thereafter, we report the

results of the spectral approach in comparison to the separate wavelength one. Unless specified

otherwise, the experimental setup and the acquisition routine are the same described in Section 5.3.1.

5.4.1 Meat Phantoms

Silicone phantoms are useful for a thorough quantification of the system performances in a controlled

environment. However, they can hardly be used as surrogates for breasts without the introduction

of complex processes. Among the limits of commonly used silicone phantoms, we cite the lack of

heterogeneities mimicking the optical variability of healthy tissues in the bulks and the non appli-

cability of the spectral model for breasts. To overcome these limitations, a set of phantoms derived

from animal meat have been assembled by POLIMI, partner of the SOLUS consortium [163, 164].

Lard, veal, tendon and ham were selected as the main components of three heterogeneous phantoms

probed to simulate the behaviour of three different clinical scenarios:

• Inclusion of Ham in bulk of Lard to mimic a Tumour in Adipose Breast;

• Inclusion of Lard in bulk of Veal to mimic a Lipoma in Dense Breast;

• Inclusion of Tendon in bulk of Lard to mimic a Fibroadenoma in Adipose Breast.

Each inclusion was cut to be a cube of side ∼ 10 mm. A geometrical schematics of the inclusion

in the bulk is shown in Figure 5.17. Considering the geometrical centre of the optodes as the origin

of the reference system, the centre of the inclusion was placed at ∼ 10 mm from the surface of

each phantom, at the origin of the x-axis and at ∼ 5 mm along the y-axis. The optical properties
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Figure 5.17: Drawing of the approximate size and position of the inclusions with respect to the

optodes used in acquisition. The same geometry was used as χΩ in Equation (5.1) for the generation

of the weighting-edge regulariser in Equation (3.23).

of the tissues were measured over the NIR-Visible spectrum with a super continuum laser. The

concentration of the chromophores were then retrieved via an homogeneous spectral fit [211]. In

Table 5.2, we show the retrieved chromophore concentrations for each cut individually. In Table 5.3,

we display the retrieved optical properties of the selected meat cut wavelength by wavelength. These

nominal properties are assumed hereafter to be the conventionally true values for the considered

phantoms.

Hb HbO2 Lipid H2O Collagen a b

(µM) (µM) (mg/cm3) (mg/cm3) (mg/cm3) (mm−1)

Ham 27.1 0.0 0 1070 220 0.254 1.45

Lard 1.1 0.7 1038 47 0 1.787 0.99

Tendon 3.0 0.9 382 633 21 3 0.4

Veal 19.7 0.0 110 1009 117 0.797 1.59

Table 5.2: Table of the measured chromophores (Hb, HbO2, Lipid, H2O, Collagen) and scattering

parameters (a, b) for the meat cuts utilised to build the heterogeneous meat phantoms. Components

were retrieved by means of a homogeneous fitting with a spectral model.

Differently from the data acquisition procedure described in Section 5.3.1, no ultrasound image

was used for this study which is focused on the assessment of the spectral model. The segmenta-

tion χΩ used in Equation (5.1) was chosen to be the same as the nominal one shown in Figure 5.17.

Even though meat phantoms were introduced as an attempt to mimic the structure and composition

of human breasts, some important differences are to be noted. The measured blood composition of

meat cuts in Table 5.2 is different from the one that is found in living tissues, as the concentration of

Hb with respect to HbO2 results to be higher with respect to clinical scenarios [46]. Even though the
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λ (nm) 635 670 830 915 940 980 1030 1065

Ham
µa (mm−1) 0.0373 0.0213 0.0104 0.0157 0.0231 0.0516 0.0294 0.0196

µ′
s (mm−1) 0.3712 0.3147 0.2147 0.2080 0.2228 0.2970 0.2204 0.1898

Lard
µa (mm−1) 0.0037 0.0015 0.0013 0.0100 0.0074 0.0050 0.0080 0.0053

µ′
s (mm−1) 1.7613 1.6395 1.4248 1.3493 1.2949 1.2002 1.2158 1.2253

Tendon
µa (mm−1) 0.0057 0.0027 0.0032 0.0082 0.0139 0.0278 0.0191 0.0138

µ′
s (mm−1) 2.7777 2.8547 2.6797 2.5606 2.4950 2.1544 2.3233 2.5782

Veal
µa (mm−1) 0.0279 0.0178 0.0091 0.0159 0.0261 0.0537 0.0298 0.0199

µ′
s (mm−1) 0.9385 0.8508 0.5873 0.5547 0.5710 0.6376 0.5172 0.4791

Table 5.3: Table of the optical properties (µ′
s, µa) of the meat cuts by wavelength. Optical properties

were retrieved by means of an homogeneous fitting with the analytical solution of the diffusion

equation in semi-infinite space (Equation (3.12)).

extinction coefficients introduced in Section 3.1.3 are dependent on the ambient conditions, they are

considered constant at a first approximation. One of the components for which this approximation

is less valid is water. As shown in Equation (5.18) the absorption spectrum of H2O is dependent on

temperature [212]. The spectral position of the absorption peak shifts towards lower wavelengths

as the temperature increases. This shift, combined to the high absorption in the peak and its width

makes quantification of water challenging, especially with a linear approach such as the one pro-

posed here [119]. Even though meat phantoms should be considered to have room temperature, we

choose to use the extinction coefficient of water at 37◦ C.

Figure 5.18: Spectra of water in the NIR-Visible for temperatures ranging from 15◦C to 65◦C. As

can be seen, the peak absorption increases with the temperature. At the same time it can be observed

a spectral shift of the peak towards lower wavelengths. Courtesy of [212].
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5.4.2 Results

We show here the main results for what regards the spectral reconstructions. Here, a stronger focus

is given to a qualitative assessment of the techniques behaviour over the whole probing spectrum.

Complete results for the quantification of single tissue components and optical properties by wave-

length are given in Appendix A.

Ham in Lard. In Figure 5.19, we show the reconstruction of the tissue components for the meat

phantom with ham inclusion in lard. As expected, the ham inclusion presents a sharp increase

of concentration for the components characterising blood, water and collagen. At the same time,

lipids are shown to decrease in the inclusion with respect to the bulk made of lard. We note that

the tomographies of scattering parameters result to be noisier with respect to the chromophores’

reconstructions. In Figure 5.20, we display a comparison in performances of the separate wavelength

approach with respect to the spectral one. Quantification of the optical properties of the inclusion

have been extracted from the tomographies by averaging µrecon
a and µ′

s
recon in the region identified

by χΩ reported in Figure 5.17. Spectral behaviour for the absorption coefficient shows that while

the separate wavelength approach has a better approximation to the nominal absorption for most of

the probed wavelengths, especially longer ones, the overall nominal spectral behaviour seems to be

better captured by the spectral approach as can be observed from the peak at 980 nm which is shifted

to 1030 nm for the separate wavelength approach. For this phantom, scattering is better retrieved by

the spectral approach where the average mismatch with the nominal values is set to 0.07 mm−1 with

respect to the mismatch of 0.48 mm−1 obtained with the separate wavelength approach.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 5.19: Tomographies with spectral approach for phantom with ham inclusion in lard bulk. A

regularisation parameter τ = 0.002 was selected. (a): Reconstruction of Hb (µM). (b): Reconstruc-

tion of HbO2 (µM). (c): Reconstruction of Lipids (mg/cm3). (d): Reconstruction of H2O (mg/cm3).

(e): Reconstruction of Collagen. (f): Reconstruction of a (mm−1). (g): Reconstruction of b.
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(a) (b)

Figure 5.20: Comparison of retrieved absorption and scattering spectra for phantom of ham inclu-

sion in a lard bulk. For a better visualisation of the contrast retrieved by the method, the nominal

bulk values are also plotted. (a): Plot of the retrieved values of the inclusion’s absorption over

wavelength. (b): Plot of the retrieved values of the inclusion’s scattering over wavelength.

Lard in Veal. Optical tomographies with the proposed method for the phantom with lard inclusion

in veal bulk are presented in Figure 5.21. While, as expected, the contrast for Hb shows a prevalence

of blood in the bulk with respect to the inclusion, the contrast for HbO2 has sign against expecta-

tions, but is negligible in value. Less lipids and more H2O are retrieved in the inclusion than in the

bulk, following the expectations in the sign of contrasts for these two quantities. Reconstruction of

collagen is characterised by large noise. In Figure 5.22, we plot the results of the quantification of

the optical properties of the inclusion wavelength by wavelength. For what regards absorption, with

respect to the previous phantoms, performances of the two approaches are similar for all wavelengths

but 635 nm. Here, the spectral approach presents a lower quantification error of 1.7 × 10−3 mm−1

with respect to the one of 17×10−3 mm−1 obtained with the separate wavelength approach. As with

the previous phantom, the spectral approach better captures the overall nominal spectral behaviour

of the inclusions for absorption and has a clear benefit for the quantification of scattering for which

the mismatch with the nominal values averages to 0.13 mm−1.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 5.21: Tomographies with spectral approach for phantom with lard inclusion in veal bulk. A

regularisation parameter τ = 0.03 was selected. (a): Reconstruction of Hb (µM). (b): Reconstruc-

tion of HbO2 (µM). (c): Reconstruction of Lipids (mg/cm3). (d): Reconstruction of H2O (mg/cm3).

(e): Reconstruction of Collagen. (f): Reconstruction of a (mm−1). (g): Reconstruction of b.
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(a) (b)

Figure 5.22: Comparison of retrieved absorption and scattering spectra for phantom of lard inclusion

in a veal bulk. For a better visualisation of the contrast retrieved by the method, the nominal bulk

values are also plotted. (a): Plot of the retrieved values of the inclusion’s absorption over wave-

length. (b): Plot of the retrieved values of the inclusion’s scattering over wavelength.

Tendon in Lard. Finally, in Figure 5.23, we show the spectral reconstructions for the phantom

with a tendon inclusion in a lard bulk. Contrast signs in tomographies are all in agreement with the

expected ones. In particular, the tendon inclusion presents higher concentrations of Hb, HbO2, H2O

and Collagen. Concentration of lipids is lower in the inclusion with respect to the lard bulk. Scatter-

ing is shown to be better retrieved by the spectral approach. Quantification of the optical properties of

the inclusions with respect to the probing wavelength is shown in Figure 5.24. No clear difference in

performances can be observed between the two approaches. However, the overall spectral behaviour

of the inclusion seems to be better captured by the spectral approach. We note that the nominal scat-

tering behaviour for the inclusion deviates from the exponential λ-law in Equation (3.14). In turn,

the spectral approach does not capture the main spectral properties of scattering, unlike the separate

wavelength approach. In both cases, the retrieved scattering underestimates the nominal one.

The values of the reconstructed optical and tissue properties are shown in Appendix A along

with additional quantifications of the results.

5.4.3 Discussion and Conclusions

We presented a method for the reconstruction of functional properties of tissues for TD-DOT. A set

of three meat phantoms were designed for the assessment of the technique: i) ham in lard, ii) lard

in veal, iii) tendon in lard. The nominal optical and physiological properties of the meat cuts were

retrieved by homogeneous fitting. The spectral model was able to directly retrieve the components

of the probed tissues. Results for scattering coefficients showed an improvement of quantification

and stability of performances over the spectrum. No substantial improvement can be assessed with

respect to the separate wavelength approach for absorption from a purely quantitative point of view.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 5.23: Tomographies with spectral approach for phantom with tendon inclusion in lard bulk.

Null values of scattering for the separate wavelength approach derive from negative found in re-

construction. A regularisation parameter τ = 0.02 was selected. (a): Reconstruction of Hb (µM).

(b): Reconstruction of HbO2 (µM). (c): Reconstruction of Lipids (mg/cm3). (d): Reconstruction of

H2O (mg/cm3). (e): Reconstruction of Collagen. (f): Reconstruction of a (mm−1). (g): Reconstruc-

tion of b.
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(a) (b)

Figure 5.24: Comparison of retrieved absorption and scattering spectra for phantom of tendon in-

clusion in a lard bulk. For a better visualisation of the contrast retrieved by the method, the nominal

bulk values are also plotted. (a): Plot of the retrieved values of the inclusion’s absorption over

wavelength. (b): Plot of the retrieved values of the inclusion’s scattering over wavelength.

However, the spectral behaviour, e.g. the position of absorption peaks, shows a better resemblance

with the ground truth values. Quantification of water and collagen is usually the least accurate. This

can be related to the proposed spectral model which can result to be inappropriate or over-simplistic

for the case in object [212] e.g. neglecting the temperature-dependent peak shift of water. In addition

to this, the approach used here relies on a double linearisation, which reduces the accuracy of the

reconstructions for large contrasts.

5.5 Clinical Relevance of the Chapter
Hereby, we briefly highlight how the work presented is relevant from a clinical perspective. The

SOLUS probe is itself the first hand-held probe combining US imaging and multi-wavelength TD-

DOT. This chapter highlighted which reconstruction strategies for DOT can be deemed suitable in

such a device. In particular, it has been assessed the introduction of an ad hoc regularisation based

on US, also in combination with a spectral model. In turn, the application of an US-based prior led

to the definition of two shape extrapolation procedures of lesions from B-mode images. The clinical

relevance of the chapter can be divided by subject as follows:

• Relevance of the DT-extrapolation:

The segmentation of US B-mode images is not strictly related to the application in combina-

tion for DOT. The method proposed in the chapter is one of the many that can be taken in

consideration in clinical scenarios when a refined segmentation might be too time-consuming.

The extrapolation method has been tailored for the protocol of a SOLUS acquisition, but can

in general be used to provide a rough initial estimate of the lesion volume when the right
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conditions apply.

• Relevance of the assessment on silicone phantoms:

The assessment of the silicone phantoms allows to speculate about the future application of

the proposed US prior for regularisation of DOT. The improvement of quantification shows

that the methods described in the chapter might furnish additional information to formulate

a diagnosis based on the optical properties of breast lesions. A wider deployment of the

method in clinical scenarios, though, will need to pass through a set of steps demonstrating

the reliability of the method in vivo.

• Relevance of the assessment on meat phantoms:

The application of a spectral model was shown to be applicable to DOT in combination with a

US based prior. In clinical scenarios, this could be used to retrieve meaningful physiological

information - such as the concentration of blood - about the probed tissues in a coherent

way. An increase of the number of probing wavelengths may also help the spectral unmixing

process, thus resulting beneficial in future clinical application of the more general method.

The techniques presented here are undergoing a clinical validation on 40 patients at OSR at

the time of writing. After that, the study might be extended to a larger scale, in order to evaluate a

possible commercialisation of the device.

5.6 Summary
This chapter gave an overview of the reconstruction strategies that were devised for optical recon-

struction with SOLUS, with a focus on the implementation of online reconstructions. Two main

groups were defined, one operating optical or functional reconstruction without exploiting the mor-

phological information given by US and one that exploited it instead. After giving a brief intro-

duction on the acquisition routine in the SOLUS probe, we defined a reconstruction strategy. Two

methods for prior extraction from the US were introduced: DT-extrapolation and ML-extrapolation.

A proof of concept for reconstruction was given for two sets of phantoms (silicone and meat), de-

signed to probe the reliability of the proposed strategies. The nature of the experimental data did

not allow to assess the ML-extrapolation at this stage. An assessment will be shown in Chapter 6.

Because of the time requirements, a linearised model was proposed for online reconstruction so

that preliminary results could already be available at the end of a clinical exam. The assessment

of the model on silicone phantom with prior retrieved by DT-extrapolation showed the benefits of

a US+DOT combined approach for reconstruction. The study on meat phantoms showed that the

use of an incorporated spectral model in reconstruction might be beneficial for quantification of

scattering and for an insight on the spectral properties of the retrieved absorption coefficient.

The following chapter will treat the application of a non-linear model in reconstruction and

the implementation of classification methods for the diagnosis of lesions. The study is carried first
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on simulations, allowing a more thorough test of the performances of the DT-extrapolation and the

application and evaluation of the ML-extrapolation. Finally, a preliminary clinical study with the

SOLUS probe will be shown.



Chapter 6

Validation of Diagnostic Performances:

Study on Simulations and Preliminary

Results on Clinical Data

This chapter is divided into two main parts. The first, composed of Section 6.1 and Section 6.2,

focuses on the implementation of realistic simulations to mimic the data coming from the SOLUS

probe. A method for offline reconstruction is then tested on simulated data. After that, a set of

machine learning algorithms is proposed and tested for classification of lesions into benign and

malignant. Part of the work presented in this part was published in [149].

The second part, in Section 6.3, aims at showing some preliminary results obtained on clinical

data. After assessing the status of the probe, an appropriate reconstruction strategy has been chosen

among the ones presented in the thesis. A preliminary automatic classification of lesions into benign

and malignant is then attempted.

Also the results of this chapter - and specifically of Section 6.3 - are the result of collaborations

between institutes that allowed the first prototype of the SOLUS probe to come to life. The codes

presented in the previous chapter have been integrated in the larger software of the SOLUS system

by Commissariat à l’énergie atomique et aux énergies alternatives (CEA). The clinical trial started in

OSR with the technical assistance of POLIMI. The contribution of the author for this section focused

on the analysis of the data offline, assessing which reconstruction strategy was better suited for

offline reconstruction in light of the characteristics of the prototype and running a first classification

attempt of lesions starting from clinical data.

6.1 A pipeline for the Simulation, Reconstruction and Classifi-

cation of Combined US+DOT Data
Often, the technical specifications of a medical imaging probe and the main objectives of a study

define the best reconstruction strategy to adopt, but newly designed physical devices require a time
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span of months or even years before being assessed on clinically relevant cases and statistical figures

can be extracted [213, 214]. Having realistic simulations would, to some degree, help assessing

proposed reconstruction approaches before clinical evaluation, also from a statistical point of view.

Recently, a Virtual Imaging Clinical Trial for Regulatory Evaluation (VICTRE) was proposed as a

tool for tomosynthesis of realistic breast digital phantoms for applications in X-ray mammography

[215] and was subsequently adopted as a test database for other optical imaging applications [216,

217, 218]. Hereby, we propose a simulation pipeline based on VICTRE for the generation of func-

tional phantoms for a combined US+DOT hand held probe, adopting - as an example - the integrated

probe developed in the SOLUS project [44]. Based on this, we identify a reconstruction method and

a classification procedure with the aim of best discriminating benign lesions from malignant ones.

To our knowledge, it is the first time that US and DOT standalone simulations are combined for the

characterisation of such a multimodal probe. A strategy for the combination of acoustic and optical

properties of tissues has instead already been presented in [217, 219].

In Section 6.1.2 and 6.1.3, we show the procedure used to generate respectively US simulations

and optical data from a VICTRE digital phantom. In Section 6.1.4 and 6.1.5, we present the re-

construction method that has been adopted to retrieve the optical properties of the simulated lesions

and the classification method to separate them into benign and malignant. Finally, we present an

assessment of the techniques in Section 6.2.

6.1.1 Generation of Breast Digital Phantoms

VICTRE is a simulation pipeline aiming at giving a realistic tomosynthesis of breast digital phan-

toms [215, 218]. A digital phantom is a voxelised image, where each voxel is assigned to a tissue

class: Glandular, Adipose, Artery, Vein, Terminal Duct Lobular Unit (TDLU), Duct, Nipple, Skin,

Muscle, Ligament [217, 220]. For simplicity, in the following discussion, we refer to a VICTRE

phantom as an operator V : Ω → N assigning an index i representing a tissue to a region in 3D

space so that i = Vr. The effect is a decomposition of the domain Ω in subsets Ωi composed of a

single tissue so that Ω =
⋃

i Ωi. The software also allows to simulate the compression that a breast

undergoes in a standard mammography exam and for the generation of tumour-like shapes [221].

We simulated a total of Nvictre ∼ 700 left breasts, where the fat-fraction was the main parameter

that was changed to simulate the most frequent types of breasts. The resolution was set to 0.5mm

as a compromise between the resolution of US and computational effort.

Here, we choose to compress the breast to 45 mm along the axis going from head to feet to

simulate the mild compression given by a hand held probe with flat surface. We note that this

arrangement does not take into account some peculiarities of hand-held devices such as the effects

of the chest wall. For each digital phantom, a lesion of average radius varying from 6 to 13.5 mm

was generated and inserted in the tissues after compression.

Building on VICTRE, we present here a simulation pipeline for a dual-mode probe inspired by
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the SOLUS probe described in Section 1.1.1. The acquisition procedure and the reference system

with respect to the position of the probe were selected to be the same as in Chapter 5. We show a

schematic of the simulated acquisition system in Figure 6.1. The disposition of the optodes follows

the one of the SOLUS probe given in Figure 1.2, where all the sources of each optode have been

placed in the position of the source closest to the detector. For simplicity, each lesion was placed in

P
Ω

x y

z

z = 0

US Transducer Detectors Sources

Figure 6.1: Geometry definition. A VICTRE phantom is compressed between two paddles to 45mm.

A cuboid region Ω is extracted to serve as ground truth in the discussion. A SOLUS-like probe is

simulated on the top surface of the considered domain. The imaging plane P of the US transducer is

set to be at the origin of the y-axis.

the phantom so as to have its centre of mass at a maximum distance of 0.3 max yext from the US

imaging plane P, with max yext maximum elongation of the lesion along y. In the following, we

present a simulation approach to generate US and optical data from the VICTRE phantoms.

In Section 6.1.4, we present an optical reconstruction method based on a two-region non-linear

model and, in Section 6.1.5, we apply some commonly used classification methods to assess the

separability of the reconstructed lesions into benign and malignant classes. The whole procedure of

generation and compression of the digital phantoms took circa 3h on a virtual machine of 20 GB of

RAM assembled on a computational cluster.
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6.1.2 Definition of the Medium and Approach for Ultrasound Simulations

As already mentioned in Section 4.3, we choose k-Wave as simulation tool for US. The system

in Equation (4.9) describes the contrast in a US image as the result of spatially changing acoustic

properties - speed and density - in tissues [20]. Two different scales of contrast are observed in

a B-mode breast image: a macroscopic one, visible at the interfaces of tissues and a microscopic

one, that is due to changes in characteristic impedance at the cellular level and results in regions

of different brightness in the images depending on the tissues [222]. We present a VICTRE-based

acoustic digital phantom that aims at having the same dual scale of heterogeneities. To each tissue,

identified by the index i = Vr, is assigned an average sound speed and standard deviation such that

for each point r in Ωi the speed of sound vs(r) for r ∈ Ωi is defined to be a stationary Gaussian

Process GP such that:
v̄si ∼ N (µi, σi,macro)

{vs}r∈Ωi
∼ GP (v̄si, σi,micro) ,

where N (µ, σ) is a normal distribution of mean µ and standard deviation σ, v̄si defines the average

speed of sound in the tissue i and it is extracted from a normal distribution of mean µi and standard

deviation of σi,macro. The standard deviation σi,micro acts as a source of microscopic contrast de-

pending on the tissues. The mean speed of sound µi and macroscopic standard deviation σi,macro of

adipose tissues, glandular tissues and lesions have been assigned following [223]. In Figure 6.6(a)

and Figure 6.6(b), we give an example of simulated maps for v̄s and the piece-wise function σmicro

over the imaging plane P. The resulting speed of sound can be found in Figure 6.6(c). The acoustic

properties of the remaining tissues were drawn from the same distribution as the glandular ones.

The microscopic contrast in the lesions was selected to be lower than the level of noise of all the

surrounding tissues, as often happens in US B-mode images, where lesions are less bright. The mi-

croscopic standard deviation for each of the other tissues was randomly selected to be between 1%

and 5% of the average speed of sound of the tissues.

Simulation Approach. In order to reduce the computational cost of the B-mode simulations, a

smaller transducer consisting of only the active elements (42 out of 256 present in total the SO-

LUS probe) of the whole transducer is simulated; for each scan line the smaller transducer is moved

along the scanning direction. Thus, it is possible to simulate a portion of the simulated medium for

each scan line. This allows to have a finer grid to simulate higher US frequencies [133]. With these

settings, the simulation of a B-mode image took ∼ 7 hours to run on a virtual machine with a 10 GB

GPU assembled on a computational cluster.

In Table 6.1, we give the main simulation parameters used. Where possible, the simulation

parameters have been set to be equal to those of the final SOLUS probe. Even though some speckles

are present in the images, we note that to model fully-developed speckles, a high number of scatterers

per wavelength would be required. We choose here to limit the number of scatterers in order to

reduce the computational effort.
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Centre Frequency 7 MHz

Focus 15 mm

Elevation Plane Focal Point 16 mm

Fractional Bandwidth 80%

# elements 256

Height 4 mm

Pitch 0.2 mm

Kerf 0.001 mm

Width 0.198 mm

Scan lines 200

Grid Size Point 516× 172× 86

Grid Size 45× 15× 7.5 mm

∆x,∆y,∆z 0.0872 mm

Perfectly matched layer 30× 10× 5

∆t 8.9 ns

T 67 µs

vs0 1465 m
s

Table 6.1: Main simulation parameters for the generation of ultrasound B-mode images.
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6.1.3 Optical Modelling

As already mentioned, photon propagation in tissues can be approximated by the diffusive model in

Equation (3.9), where photons migration is described via a diffusive process of the fluence Φ(r, t)

which is dependent on the properties of absorption µa(r) and reduced scattering µ′
s(r) of the medium

[112]. In general, the forward model to calculate the signal observed by a detector in position rm

due to a source in rs can be expressed as the model in Equation (3.19). The solution of the DE for

complex systems and heterogeneous coefficients requires the use of numerical solvers such as FEM,

introduced in Section 2.1 [79]. Experimental conditions are incorporated in the model by convolving

the exitance with the experimental impulse response function measured with a time-resolved diffuse

spectroscopy laboratory research prototype as in Equation (3.18) [210]. Among the many numerical

tools available for the implementation of FEM, we choose the software TOAST++ [224].

The optical coefficients over different wavelengths µa(r, λ) and µ′
s(r, λ) can be linked to the

functional properties of the tissues via the spectral model in Equation (3.15), that relates the func-

tional properties of tissues to a set of 2 × Nλ optical coefficients, with Nλ number of the prob-

ing wavelengths. We use the functional information of each VICTRE phantom to assign an op-

tical ground truth to each tissue. The wavelengths chosen for the simulations of the system are

635, 670, 685, 785, 905, 930, 975, 1060 nm as explored in [47]. This set of wavelengths is suitable

for the retrieval of the chromophores already shown in Figure 3.2: Hb, HbO2, lipids, H2O and col-

lagen. For each tissue present in the digital phantoms, a chromophore concentration was drawn

and then inserted in Equation (3.13) to retrieve its absorption spectrum. In Figure 6.2, we show the

simulated absorption spectra for each tissue.
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Figure 6.2: Spectra used in simulations for the components generated by VICTRE. Blood ves-

sels and other tissues are presented in different images for visualisation purposes due to scale.

(a): Absorption spectra of blood vessels. A smaller saturation has been chosen for veins.

(b): Absorption spectra simulated for the other tissues.

For the scattering coefficient, the parameters a in Equation (3.14) were drawn from a

normal distribution such that a ∼ N
(
1.5 mm−1, 0.25 mm−1

)
for benign lesions and a ∼

N
(
1.4 mm−1, 0.25 mm−1

)
for malignant lesions and healthy tissues [47]. The scattering parameter
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b in Equation (3.14) was also drawn from a normal distribution so that b ∼ N (0.3, 0.05). Addi-

tionally, for each λ a term η ∼ N (0, 0.1µ′
s(λ)) was added to µ′

s(λ) as a source of noise in the

model in Equation (3.14) such that µ′
s = a λ

λ0

−b
+ η. In order to take into account also cysts, in the

simulations 25% of benign lesions were set to have a ∼ N (0.3mm−1, 0.01mm−1). We refer to [9]

for the absorption properties of breast lesions and their connection to benign and malignant nature.

The number of benign and malignant lesions was 349 and 379, respectively. No spatial variation of

the optical coefficients inside each tissue was simulated at this stage. Unless specified otherwise, we

refer to the simulated optical properties of lesions as µtruth
a and µ′

s
truth (i.e. ground truth).

A set of optical data was simulated without any lesion. A non-linear global fit of the homoge-

neous optical coefficients µa0 and µ′
s0 was then applied [128]. In Figure 6.3, we display the set of

absorption and scattering properties simulated for benign lesions, malignant lesions and the effective

optical properties for breast healthy tissues. The latter have been obtained generating optical data

from the breast without inclusion and fitting an homogeneous analytical optical model to the data.

(a) (b)

Figure 6.3: Spectral plot of optical coefficients for breast bulk (blue), benign (green) and malignant

(red) inclusions. The effective optical coefficient values for the breast have been obtained by fitting a

homogeneous analytical model to the reference optical data obtained by simulating a breast with no

inclusion. (a): Absorption spectra of Malignant lesions, Benign lesions and Healthy Breast tissues.

(b): Scattering spectra of Malignant lesions, Benign lesions (excluding cysts), Cysts and Healthy

Breast tissues.

Optical data were simulated with a cuboid domain of computation of side 64 × 58 × 30mm

with cubic voxels of side 2 mm. Time stepping was performed by the implicit Eulerian scheme

in Equation (2.19), with a time step of 25 ps for a total of 400 steps. Sources were defined as

photon currents, leading to boundary conditions as the one defined in Equation (3.10). The weighting

function ws(r, t) was chosen to be a Gaussian of Full Width at Half Maximum (FWHM) 0.5 mm

at t = 0 and zero for t > 0 [116, 225]. Detectors were defined with the measurement operator in

Equation (3.17), with Gaussian weighting function wm of FWHM 1 mm. Noise in the measurements

was modelled by sampling a Poisson variable with mean and variance equal to an expected number

of detected photons N expect. This number was estimated as the number of photons detectable at the
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largest source-detector distance for a 1 minute clinical examination with large area SiPM detectors

[226, 227] and is equal to the area under the curve, i.e. N expect =
∫∞
−∞ MmΦs(r, t)dt. The photon

counts for other source-detector distances were rescaled linearly by their individual integrals over

time.

We note that, as a result of the compression, the dimensions of the phantoms are on average

6.3% smaller than the domain of computation for the optical data. For ease of computation, the

remaining part, originally occupied by air, was assigned to adipose or glandular tissue depending

on which tissue was prevalent in the remainder of the breast.

6.1.4 Reconstruction

For what concerns the optical reconstruction, for each triplet of source, detector and wavelength, we

choose a two-region non-linear diffusion forward model in the form:

ys,m(t) = [As,m (HχΩh)] (t+ tshift) with h :=


µa,in

µa,bulk

µ′
s,in

µ′
s,bulk


where µa,in, µ′

s,in are the coefficients inside the inclusion, µa,bulk, µ′
s,bulk are the optical coefficients

in the bulk and tshift is a fictitious time shift parameter that is included to improve convergence in

reconstruction. The operator As,m is the same as Equation (3.19) and the operator HχΩ
applied to

h returns the optical coefficients over the whole domain. HχΩ
supposes prior knowledge on the

morphology of the domain χΩ e.g. by means of ultrasound information.

The choice of a non-linear model is justified by considerations about the maximum contrast that

can be retrieved between inclusion and bulk in a two-region model. In Figure 5.16, we showed

how edge-weighting regularisation helps in increasing the maximum retrieved contrasts with respect

to a global regulariser such as 0th order Tikhonov. Nonetheless, the behaviour of reconstructed

contrasts with respect to the nominal ones deviates from the ideal one as nominal contrasts increase.

In Figure 6.4, we show the linearity study obtained on a toy problem. The forward problem defined

here was run for a two-region model defined by a background and a spherical inclusion of radius

7.5mm with centre placed at a depth of 15mm from the geometrical centre of the optodes matrix.

Simulations were made by keeping fixed reduced scattering µ′
s = 1mm−1 for the whole domain and

bulk absorption µa,bulk = 0.01mm−1. The absorption of the sphere was changed from a minimum

of 0.02mm−1 to 0.1mm−1. Poisson noise from a photon count of 107 and an experimental IRF

measured for the experimental system described in Section 5.3.1, were included in the simulations.

Reconstructions were performed by the linear methods already used in Chapter 5 - with 0th order

Tikhonov regularisation (TK0) and edge-weighting 1st order Tikhonov regularisation (edge-TK1)

- and a two-region non-linear fit with FEM (2-reg-fit). For both the edge-TK1 and 2-reg-fit, the

ground truth shape of the inclusion was set as prior. As can be seen from Figure 6.4, reconstructions
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with linear models suffer from important limits in the reconstruction of the inclusion values. Even

though the benefits of the application of an edge-weighting prior with respect to TK0 are clear, a

sublinear behaviour can be observed, with the reconstructed contrasts saturating for large contrasts

in the ground truth. On the other hand, a clear improvement can be seen with the use of a non-linear

model which is theoretically able to reconstruct any contrast as long as the diffusion approximation

and the two-region model hold.

Figure 6.4: Linearity study on toy problem with spherical inclusion.

Details for Reconstruction. Having provided a justification for the choice of a non-linear model,

we proceed here with the details of the reconstruction procedure. As with the forward model used

in simulations, we include an experimental IRF as by Equation (3.18). As before, the IRF was the

one taken on the experimental system at POLIMI and described in Section 5.3.1. To limit non-

idealities present in any experimental system such as noise and amplitude mismatches, we use here

the pre-processing operator in Equation (3.22). Here, we automatically select a TROI ranging from

T1 where the curve first reaches 10% of its peak to TNTW+1 where it last reaches values of 1% of

the peak. In Figure 6.5 we show the TROI thus defined on a simulated curve. A set of NTW = 80

equally spaced bins (Tk, Tk+1) for k = 1, · · · , NTW along the TROI were selected.

Similarly to the general approach introduced in Section 3.4, reconstructions for each wave-

length are performed by solving a minimisation problem of the form:hrecon

treconshift

 = argmin
h,tshift

{L(h) = D ([A (HχΩ
h)] (t+ tshift), y(t))} ,

where treconshift is neglected for the sake of the reconstruction and where the definition for the term D
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Figure 6.5: Example of the selection of TROI on a simulated curve self-normalised by maximum.

The TROI, which is highlighted in green, goes from where the curve first reaches 10% of its peak to

where it decreases to 1%.

is given in Equation (3.21) with, for the chosen pre-processing operator and under the assumption of

Poisson noise: σ2
s,m,k =

P̃k[ys,m(t)]∑NTW
k=1

∫ Tk+1
Tk

ys,m(t) dt
. We minimise the objective function by means of the

MATLAB solver lsqcurvefit with constraints on the values of h so that 0 < µa < 0.06 mm−1

and 0 < µ′
s < 2.2 mm−1 [228]. The absolute value of the fictitious time parameter tshift was limited

to 25 ps. Only source-detector distances greater than 27mm have been considered. Thus, a subset

of all the available curves was selected: to allow for convergence of the absorption parameters over

scattering [2] as well as to mitigate the effect of local perturbations e.g. because of highly absorbing

blood vessels that hinder the validity of a two-region model. The fitting procedure took circa 60

minutes per wavelength for each phantom on a virtual machine with 300 MB of GPU. Overall, the

procedure of simulation and reconstruction took circa 18 hours per breast, with the most important

hardware requirements needed for the simulation of B-mode images.

6.1.5 Classification

We investigated the applicability of machine learning classification methods to the reconstructed

optical properties µa,in and µ′
s,in of the inclusions for a total of 16 features per lesion. To ease

the visualisation of 16-dimensional data, a dimensionality reduction with PCA was employed. As

a result of this preliminary analysis, log-normalisation of data was applied to guarantee a higher

degree of separability. Among the many techniques that are available in literature and introduced in

Section 2.4, three main methods have been explored for classification: logistic regression, a SVM

and a FCNN [67].

The logistic regression was implemented with the Python library scikit-learn [229]. A

regularisation parameter ( C in the library’s documentation) ranging from 0.5 and 5 was chosen to

guarantee the minimum accuracy error on the training dataset.
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A non-linear SVM was implemented with the Python library scikit-learn [229]. The

SVM was optimised by choosing which kernel amongst Gaussian, polynomial and sigmoidal and

which regularisation parameter ( C in the library’s documentation) ranging from 0.5 and 5 guar-

anteed the minimum accuracy error on the training dataset. Separation of the dataset for logistic

regression and SVM was done with a practical split ratio of 60 : 40 between training and test

datasets.

A FCNN was implemented with the Python library Tensorflow [230] and was composed of

four layers with ReLU activation function for the hidden layers and a sigmoid for the final layer.

The width of the fully connected layers were respectively 16, 32, 16 and 1. Hinge-loss was selected

as loss function [231]. Separation of the dataset in training, validation and test datasets was done

with an heuristic split ratio of 60 : 20 : 20 as this was shown to ensure comparable performances of

the net for all three datasets.

Quantification of the performances for the mentioned techniques was performed by means of

figures of merit like the ones introduced in Figure 1.1. Of them, accuracy (acc.), precision (prec.),

recall (rec.), plus the F1-score (F1), were considered:

acc. =
TM+TB

TB+ TM+ FB+ FM

prec. =
TM

TM+ FM

rec. =
TM

TM+ FB

F1 =
2prec.× rec.

acc.+ prec.
,

(6.1)

where TM is the number of correctly identified malignant lesions, TB is the number of correctly

benign ones, while FM and FB are the numbers of incorrectly identified malignant and benign

lesions respectively.

6.2 Assessments of Results on Simulation Pipeline
We assess our results from three points of view. At first, in Section 6.2.1, we qualitatively show the

simulated US B-mode images . After that, we apply the prior extraction procedures as described in

Section 5.2.1 for DT-extrapolation and Section 5.2.2 for ML-extrapolation. As a second assessment

in Section 6.2.2, we analyse the performances of the optical reconstructions. As a last step, we show

how the reconstruction impacts on the separability of the lesions into benign and malignant classes

in Section 6.2.3.

6.2.1 Assessment of US Simulations and Extrapolation Methods

In Figure 6.6 and 6.7, we show some of the B-mode images simulated via the method presented in

Section 6.1 and the main acoustic properties of the media. The images present characteristics of real

B-mode images, such as shadowing and speckles. The method is able to simulate breast structures

as they are present in the corresponding VICTRE digital phantom. The simulated inclusions result
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to be less scattering than the rest of the tissues in the background and their borders are highlighted

by means of the simulated contrast in the characteristic impedance with respect to the surrounding

area. For each inclusion, a set of 3 − 4 control points was selected by the user close to the internal

border of the inclusion itself. The snake fitting procedure presented in Section 5.2.11 was applied to

retrieve a segmentation of the image as shown in Figure 6.6(e), 6.7(e). In Figure 6.8 and Figure 6.9,

we show the results of the extrapolation routines defined in Section 5.2.1. An assessment of the

extrapolation procedure was performed by means i) of the DSC [207, 232, 233]:

DSC (X,Y ) =
2
∑

i |Xi × Yi|∑
i |Xi|+

∑
i |Yi|

, (6.2)

where Xi and Yi are the ith elements of two binary images X and Y ranging from 0 and 1, ii) of the

volume mismatch and iii) of the displacement between the centre of mass of the ground truth and

of the retrieved images. An analogous quantification has been performed for the segmentation pro-

cedure alone. We remind that the fDSC in Equation (5.6) degenerates to Equation (6.2) for binary

images. Results are shown in Table 6.2. The DSC shows that the 3D extrapolation procedure intro-

duces a source of error with respect to the previous step of segmentation. Other considered metrics

were the relative mismatch in area dA ( for segmentation) and volume dV ( for 3D extrapolation)

and the displacement of the centre of the lesions. While the displacement of the inclusion results to

be negligible with respect to the computational grid chosen for the optical reconstruction, there is a

general underestimation of the size of the inclusions by about 50% of the ground truth value. This

is mainly due to the different speed of sound of the inclusion with respect to the selected vs0 used in

the image formation.

DSC dA |dV Displacement (mm)

x y z

Segmentation 0.71 (0.13) −0.33 (0.16) 0.03 (0.13) - 0.15 (0.07)

Extrapolation 0.55 (0.14) −0.5 (0.17) 0.04 (0.13) 0.08 (0.05) 0.14 (0.08)

Table 6.2: Table displaying the average performances of snake segmentation and final DT-

extrapolation procedure presented in Section 5.2.1. Standard deviations of the quantities are shown

in parenthesis. In general, both the segmentation and the extrapolation procedure underestimate the

dimensions of the ground truth shape. As expected the DSC of the extrapolation procedure shows

a worse agreement between retrieved shape and ground truth with respect to the sole segmentation.

Displacements in the lesion position are negligible with respect to the grid resolution used here for

DOT reconstruction.

1We note that, in this work, the snake fitting procedure was operated on a number of control points which was double with

respect to the user-selected ones. The extra control points were selected automatically along the spline defined by the initial

user-selected ones so as to maximise their distance along the spline parameter s.
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Figure 6.6: B-mode image generation: Example 1. (a): Map of v̄s over P. (b): Map of σmicro

over P. (c): vs (r) for r ∈ P. (d): B-mode image. (e): Segmentation. Blue is the user-defined

segmentation, green is the final one. DSC = 0.80, dA = −0.26.
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Figure 6.7: B-mode image generation: Example 2. (a): Map of v̄s over P. (b): Map of σmicro

over P. (c): vs (r) for r ∈ P. (d): B-mode image. (e): Segmentation. Blue is the user-defined

segmentation, green is the final one. DSC = 0.76, dA = −0.32.



6.2. Assessments of Results on Simulation Pipeline 111

(a)

0

30

10

20

z(
m

m
)

20

y(mm)

20

30

x(mm)

10
10

0 0

(b)

0

30

10

20

z(
m

m
)

20

y(mm)

20

30

x(mm)

10
10

0 0

(c)

0

30

10

20

z(
m

m
)

20

y(mm)

20

30

x(mm)

10
10

0 0

(d)

Figure 6.8: Ground truth and final extrapolation for Example 1 from Figure 6.6. (a): Ground

Truth Lesion χtruth
Ω . (b): χDT

Ω obtained with DT-extrapolation, DSC = 0.46, dV = −0.68.

(c): χML
Ω obtained with Opt+χP, DSC = 0.77, dV = −0.14. (d): χML

Ω obtained with Opt+UP,

DSC = 0.49, dV = −0.63.
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Figure 6.9: Ground truth and final extrapolation for Example 2 from Figure 6.7. (a): Ground

Truth Lesion χtruth
Ω . (b): χDT

Ω obtained with DT-extrapolation , DSC = 0.68, dV = −0.39.

(c): χML
Ω obtained with Opt+χP, DSC = 0.82, dV = 0.09. (d): χML

Ω obtained with Opt+UP,

DSC = 0.78, dV = 0.26.
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Assessment of ML-extrapolation

We present here the results of the application of the ML-extrapolation techniques introduced in

Section 5.2.2. The simulated breasts were divided into three datasets of 424, 141, and 141 samples,

respectively for training, validation and testing with an heuristic 60 : 20 : 20 dataset split. The

split ensured comparable performances of the methods for training, validation and test datasets. The

same figures of merit used for the DT-extrapolation are also shown for this case in Table 6.3. All

ML-extrapolation techniques presented here have better performances than the DT-extrapolation.

As expected, architectures that present both inputs have better performances, with Net-Opt+χP

being the best-performing. We note that the architecture Net-Opt presents the second-best DSC,

but has high variability for what regards the estimation of the volume. With respect to Net-Opt+χP,

Net-Opt+UP has the advantage of being fully automated. This allows speculations on its future use

e.g. upon modification of SΘ0 with a more sophisticated architecture for segmentation. In Figure 6.8

and Figure 6.9, we also show the results of the extrapolation routines with Net-Opt + χP and

Net-Opt+UP. With respect to DT-extrapolation, the retrieved shapes look closer, in dimensions

and shape, to the ground truth.

Network DSC dV Displacement (mm)

x y z

Net-Opt+χP 0.74 ( 0.14 ) 0.0016 ( 0.32 ) 0.2 (1.6) 0.024 (1.1) 0.11 (1.9)

Net-Opt+UP 0.7 ( 0.15 ) 0.099 ( 0.59 ) 0.11 (1.7) 0.14 (1.3) 0.15 (2.5)

Net-Opt 0.71 ( 0.15 ) 0.19 ( 0.86 ) 0.27 (1.5) 0.11 (1.4) 0.26 (2.2)

Net-χP 0.66 ( 0.21 ) 0.015 ( 0.31 ) 0.33 (4.4) 0.25 (2.1) 0.19 (3.6)

Net-UP 0.64 ( 0.24 ) 0.019 ( 0.42 ) 0.084 (4.6) 0.084 (2) 0.081 (3.9)

Table 6.3: Table displaying the average performances of the ML-extrapolation procedure defined

in Section 5.2.2. Standard deviations of the quantities are shown in parenthesis. All architectures

proposed here outperform, by means of the DSC, the DT-extrapolation procedure. Moreover, no

major under- or overestimation of the lesions is present at the cost of a larger standard deviation of

the results. Displacements in the lesion position are negligible with respect to the grid resolution

used here for DOT reconstruction.

6.2.2 Assessment of Optical Reconstruction

A first assessment aimed at retrieving µa,in and µ′
s,in inside the inclusion with the two regions defined

by the ground truth lesion i.e. χtruth
Ω . In Figure 6.10, we plot all the retrieved values of absorption

and scattering coefficients obtained in reconstruction versus the ground truth value. In Figure 6.10(a)

and Figure 6.10(b) a scatter plot of reconstructed inclusions vs ground truth values are shown. Each

scatter plot consists of 724 lesions × 8 wavelengths scatter points. As can be seen, points tend to



114 Chapter 6. Validation of Diagnostic Performances

cluster around the optimal behaviour highlighted by the black dashed line representing the ground

truth. As expected, this behaviour is more accentuated for absorption, while present, but less preva-

lent for scattering. In Figure 6.10(c), a set of violin plot shows the statistics of the ground truth and

retrieved values by wavelength.

As a second step, reconstructions were performed by retrieving χDT
Ω with the DT-extrapolation.

In Table 6.4, we show the average quantification errors for the lesions in the cases of two regions

defined by the ground truth lesion shapes and defined by the DT-extrapolation procedure. As ex-

pected, the latter exhibits larger errors. 25% of the retrieved values have a relative difference with

the ground truth higher than 50%. The percentage decreases to 18% of the retrieved values when the

ground truth lesion shape is used in reconstruction.

(a) (b)
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Figure 6.10: Comparison of ground truth optical coefficients and reconstructed ones using the

ground truth χtruth
Ω as two-region delimiter. (a): Scatter plot of ground truth lesion absorption vs

reconstructed lesion absorption. (b): Scatter plot of ground truth lesion scattering vs reconstructed

lesion scattering. (c): Violin plots of ground truth (dark) and retrieved (light) absorptions by wave-

length. Green represents benign lesions and red malignant ones. Blue ticks represent the 5th, 25th,

75th and 95th percentiles of the distribution of the retrieved absorptions.
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Two-region εµa
=

µrecon
a −µtruth

a

µtruth
a

#(|εµa |>0.5)
Nλ×Nvictre

εµ′
s
=

µ′
s
recon−µ′

s
truth

µ′
s
truth

#
(
|εµ′

s
|>0.5

)
Nλ×Nvictre

χtruth
Ω 0.08 (0.64) 0.18 0.35 (0.79) 0.1

χDT
Ω 0.13 (0.76) 0.25 0.16 (0.89) 0.13

Table 6.4: Display of reconstruction error for the optical coefficients of the inclusion for a total

of Nvictre × Nλ ∼ 5600 reconstructions. While the average error for absorption for both cases is

limited to 13%, variability in the performances is higher as highlighted by the standard deviation in

parenthesis. We also show for both coefficients the fraction of reconstructions with absolute error

higher than 50%. The value of this is around 18% of reconstructions when using the ground truth

lesions shape in the fit and increases to 25% when using χDT
Ω .

6.2.3 Assessment of Classification

In Figure 6.11, we show the scatter plot of the first three components for i) ground truth, ii) opti-

cal coefficients in the case of reconstruction with an ideal two-region model χtruth
Ω and iii) recon-

struction with χDT
Ω obtain with DT-extrapolation. The separation of the phantoms into benign and

malignant is clear from the ground truth. A noticeable decrease in separation is observed upon op-

tical reconstruction from optical data, especially in the case of the two-region model obtained from

DT-extrapolation.

(a) (b) (c)

Figure 6.11: PCA of ground truth and reconstructed values of the inclusion with the three axes

representing the first three principal components of the dataset. The separation is neat on the ground

truth. A certain degree of separation can also be observed after reconstruction with the ground

truth shape χtruth
Ω defining the two regions. Results are apparently worse when defining the two-

region extrapolating χDT
Ω from the US B-mode simulations. However the dataset can have better

separability in higher dimensions or applying a non-linear transformation. (a): PCA of ground truth

- log normalisation. (b): PCA of non-linear model fit - log normalisation. (c): PCA of non-linear

model fit with US prior - log normalisation.

Results of the application of logistic regression, SVM and the FCNN described in Section 6.1.5

are shown in Table 6.5. In general, the FCNN performs better than other proposed methods, at a cost

of larger training time (5 minutes) and fine tuning of the hyperparameters. All the applied methods



116 Chapter 6. Validation of Diagnostic Performances

show an optimal prediction for what concerns the ground truth. When the coefficients are retrieved

with our reconstruction method, all the figures appreciably decrease. The accuracy, when the two

regions are identified by the ground truth, is over 80%. In general, recall is higher than the precision,

so that malignant lesions are more easily identified as such with respect to benign ones.

Model Two-region FCNN (%) SVM (%) Log. Regr. (%)

Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Ground - 100 100 100 100 100 100 100 100 100 100 100 100

Sep.Wav. χtruth
Ω 83.5 85.7 83.0 84.4 81.4 79.6 85.5 82.4 76.9 73.6 85.5 79.1

Sep.Wav. χDT
Ω 75.4 76.1 79.7 77.9 78.0 79.3 76.7 78.0 69.1 68.5 72.5 70.4

Table 6.5: Overall results for classification. All considered methods can correctly classify all the

lesions by giving their ground truth as input. Upon reconstruction with the ideal two-region def-

inition χtruth
Ω , accuracy decreases to 83.5% in the best case scenario, given by FCNN. When the

two-region definition χDT
Ω is retrieved by the US image performances generally decrease. The best

case scenario is given by SVM that reaches an accuracy of 78%.

6.2.4 Discussion on Results Obtained on Simulations

We proposed a simulation pipeline based on VICTRE for the generation of realistic US B-mode

images and DOT data. The method allows to generate a dataset for a newly designed probe on a

shorter time scale and with larger variability than that which is obtainable experimentally in clinics.

We generated a total of 349 benign and 379 malignant samples complete of B-mode images and

optical data. We assessed a two-region fitting reconstruction method on the simulated data, where

the two-region system was extracted from the B-mode images. The procedure of segmentation and

3D prior extraction was evaluated. On average, the volumes retrieved with DT-extrapolation resulted

to underestimate the physical dimensions of the ground truth lesions of about 50% in volume. The

displacement with respect to the centre of mass of the lesions resulted to be less than the resolution

of the computational grid of the optical reconstructions of 2 mm used here. The DSC evaluating the

performances of extrapolation increases from 0.55 up to 0.74 when applying ML-extrapolation to

the available data. However, further assessments will need to be undertaken before the procedure

could be applied to real data e.g. on the robustness of the methods in presence of noisier data.

The utilised optical reconstruction method does not suffer from model approximation error as

the optical contrast between bulk and inclusion increases. In general, the reconstructed values of

the inclusions approximate the actual values of the ground truth with somewhat frequent exceptions,

absorption relative errors higher that 50% are present in 18% of reconstructions with an ideal two-

region definition and 25% when the two regions are extracted from a US B-mode image. The

number of reconstructions with relative errors higher than 50% generally increases when using also

measurements coming from shorter source-detector distances in reconstruction, suggesting a limit
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of the two-region model. Nonetheless, a certain degree of separation between benign and malignant

inclusions is still observable when doing principal component analysis on the log-normalised data.

Three classification methods have been tested on the results of the reconstructions: a SVM, a FCNN

and logistic regression. SVM and logistic regression show comparable results, while FCNN has a

better classification performances at the cost of a higher training time. The classification displays an

accuracy close to 84% when using an ideal two-region reconstruction. When the two-region system

is inferred by the US, a worsening in the performances of classification is observable, bringing the

best accuracy to 78% for SVM.

Future steps will explore other methods for the extrapolation of the two regions from the US B-

mode images. Other approaches for a possible improvement in the quantification of lesions optical

properties may include the integration of a spectral model also in reconstruction as in [164]. Future

steps in the simulations may include more realistic ways to simulate the compression of breasts to

make it better resemble the one given by hand-held probes.

Finally, in the next section, we will present a preliminary study with real data obtained from the

SOLUS probe.

6.3 Preliminary Study on Clinical Data
We show here some of the preliminary results obtained during the clinical testing of the SOLUS

probe described in Section 1.1.1. In Section 6.3.1, we highlight some practical issues of the first

SOLUS probe prototype and consequently we present the adopted reconstruction and classification

strategy. In Section 6.3.2, we present the results of such approach. Finally, we draw some conclu-

sions in Section 6.3.3.

6.3.1 Practical Issues and Mitigations

The SOLUS probe is the first prototype for a hand-held probe combining US and multi-wavelength

TD-DOT [42]. The novelty of the project presented unforeseen challenges that affected the fabrica-

tion of the probe. Here, we summarise the biggest issues from the point of view of TD-DOT and the

consequent mitigation choices that have been made.

Of the originally designed 8 full optodes described in Section 1.1.1, only three detectors and

7 sets of diodes were available at the moment of clinical validation. This was due to techni-

cal problems that damaged the electronics of the optodes after the assembly of the probe. In

Figure 6.12, we display which components were available for clinical testing. Characterisation

of the laser outputs found the probing wavelengths to be the ones presented in Section 1.1.1 -

640, 675, 830, 905, 930, 970, 1020 and 1050 nm. With these settings, an optical acquisition con-

sisted of a total of 7 × 3 × 8 = 168 measurements ys,m(t) of the 512 initially planned. For each

source-detector couple, a total of ∼ 103 photon counts was designed for the acquisition over the le-

sion, obtained from a count rate of 105 photons per second for and acquisition of 10 ms. This allows
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Figure 6.12: Highlight of the available components at the moment of clinical validation of the SO-

LUS probe. Of the 8 set of laser diodes, 7 were available for clinical evaluation - here highlighted in

yellow. The available detectors were reduced from 8 to the 3 highlighted in white in the picture due

to damages.

to avoid saturation of the signal, but translates to higher noise with respect to common experimental

setups where the photon count can be higher [226]. In addition to this, the quality of the measure-

ments obtained from the measurements suffers from high instability. At the same time, measured sig-

nals yref(t) on homogeneous phantoms showed disagreement with the theoretical model upon homo-

geneous fitting [128], resulting in a underestimation of the optical absorption of the probed media.

Reconstruction Approach. For these reasons, we choose, for the clinical exams, to proceed only

with the linearised analytical approach introduced in Section 3.4.1 and applied in Section 5.3 and

- with the addition of a spectral model - Section 5.4. While absolute optical and physiological

properties are challenging to retrieve with these settings, we aim at the reconstruction of the optical

contrast comparing the average values inside and outside the retrieved segmentation χDT
Ω . We note

that an online reconstruction was already run for each case at the time of the clinical exam. However,

the tomographies presented in the following have been recomputed a second time offline to allow for

a more accurate selection of the reconstruction parameters e.g. TROI, reconstruction parameter τ .

Classification Approach. Following the reconstructions from the data coming from the clinical

exams in Table 1.1, a classification has been performed via SVM and Logistic Regression as in

Section 6.1.5. Due to the limited number of samples at this initial stage, each reconstruction obtained

during a clinical exam - operated as in Section 1.1.1 - was considered to be a standalone sample. This

includes the reconstructions coming from the same patients for different radiologists and for different

combinations of reference and signal acquisitions shown in Figure 1.4.
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With this assumptions, a total of 162 samples was obtained. 116 benign and 42 malignant.

Differences in the number of samples with the nominal one in Table 1.1 are due to problems in

the acquisition during the exam e.g. technical failure for a certain acquisition geometry. Due to

the limited availability of data, we choose the leave-one-out approach [234] to test classification

performances with SVM and logistic regression. Performances are evaluated by means of recall

(rec.) and specificity (spec.) in Equation (6.1). With respect to the simulation study presented in

Section 6.1.5, we increase the number of features for each reconstruction from 16 to 46 by including:

• 7 background tissue components;

• 7 inclusion tissue components;

• 8 absorption coefficients inside the inclusion;

• 8 scattering coefficients inside the inclusion;

• 8 absorption coefficients in the bulk;

• 8 scattering coefficients in the bulk.

Values inside the inclusion are taken as the average value over the region identified by the retrieved

χDT
Ω .

6.3.2 Tomographic Images and Lesion Classification

Hereby, we present an example of reconstruction with the SOLUS probe on Patient 4: a 41 years old

woman presenting a malignant lesion of maximum elongation of 3.5 cm. In Figure 6.13, we show the

US B-mode image obtained with the system and the extrapolated lesion shape χDT
Ω obtained from

the DT-extrapolation presented in Section 5.2.1, with preliminary manual segmentation operated by

the radiologist.

The lesion shape was then used as prior for reconstruction by Strategy 1B and Strategy 2B de-

scribed in Section 5.1 for online analysis i.e. solving the system in Equation (3.28). The grid size

was chosen to be 62× 58× 60mm with a voxel size of 2× 2× 2mm. High noise in the measure-

ments called for a regularisation parameter τ = 1, higher than the one selected for the experimental

data in Section Equation (5.3). A TROI going from 90% to 10% of the peak was chosen for each

source-detector couple and binned with NTW = 20 homogeneous times windows. Higher thresh-

olds and smaller number of time bins were chosen with respect to Section 6.1.4. This was done as

an error mitigating measure: i) by neglecting the parts of the ys,m(t) that are noisier and less con-

sistent with the analytical model used and ii) by averaging over larger time windows. In addition

to that, a limited number of time bins results in less computationally demanding calculations for

the Jacobian as per Equation (3.27). In Figure 6.14, we show the TROI thus defined on a measured

curve. With these parameters, the reconstruction for a single wavelength took circa 60 seconds. The
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(a) (b)

Figure 6.13: (a): US B-mode image for Patient 4 as taken from the SOLUS system. (b): Extrap-

olated lesion shape χDT
Ω after manual segmentation from a radiologist and application of method in

Section 5.2.1.
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Figure 6.14: Example of the selection of TROI on a simulated curve self-normalised by maximum.

The TROI, which is highlighted in green, goes from where the curve first reaches 90% of its peak to

where it decreases to 10%. This selects the part of the curve that is less affected by Poisson noise

and model error.
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complete set of reconstructions, with and without application of a spectral model comprehensive of

the DT-extrapolation took ∼ 20 minutes. We note that the reduction of number of source-detector

couples has resulted in a decrease of the reconstruction time. Figure 6.15 is an example of 3D clini-

cal image for µa(r) and µ′
s(r) obtained with the online reconstruction using Strategy 1B - enforcing

consistency between US and DOT as presented in Figure 5.2 - with measurements coming from

λ = 830 nm. As can be seen, the method is able to reconstruct images on clinical data. A relative

difference of absorption of almost 100% is registered between background and lesion.

(a) (b)

Figure 6.15: Reconstruction via online Strategy 1B of optical properties of Patient 4 for λ = 685 nm.

(a): Reconstruction of Absorption (mm−1). (b): Reconstruction of Scattering (mm−1).

In Figure 6.16, we show the reconstructions of the tissues’ components via Strategy 2B - which

featured the addition of a spectral model, already presented in Figure 5.4. With respect to the back-

ground values, a steep increase in Hb and especially in HbO2 can be observed. The tomography is in

agreement with the indications given by US examination, as high enough blood concentrations with

respect to healthy tissues are indicators of malignancy of lesion. However, unexpected values and

contrasts are registered for other tissue components: lipids, H2O and collagen. The concentration of

H2O in healthy and malignant tissues is not in line with the (higher) expected ones. The same is true

for collagen, for which no appreciable contrast is found. The concentration of lipids is unexpected

for healthy tissues in a 41 years old patient [235] and anomalous in the lesion, which is expected to

be less rich in lipids with respect to the surrounding tissues. The trends highlighted for Patient 4 are

recurrent for other examinations.

In Figure 6.17, we show the violin plots for the reconstructed absolute optical and physiolog-

ical values for patients’ lesions. Reconstructions with Strategy 1B highlight differences between

malignant and benign lesions, especially for lower wavelengths. However, a general underestima-

tion of the values can be observed when comparing with values commonly found in literature [46,

107, 226]. A stronger deviation from the expected values can be seen for Strategy 2B. Here, the

concentrations of water and collagen are lower than the expected ones and do not show particular

differences between benign and malignant lesions. On the other hand, blood parameters, and espe-

cially HbO2, can be considered to be in the norm and highlight important differences between the
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 6.16: Reconstruction via online Strategy 2B of functional properties of Patient 4. (a): Recon-

struction of Hb (µM). (b): Reconstruction of HbO2 (µM). (c): Reconstruction of Lipids (mg/cm3).

(d): Reconstruction of H2O (mg/cm3). (e): Reconstruction of Collagen. (f): Reconstruction of a

(mm−1). (g): Reconstruction of b.
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Figure 6.17: Overview of reconstructed absorptions and functional properties of lesions. (a): Violin

plots of absorptions retrieved by wavelength with Strategy 1B. Green represents benign lesions and

red malignant ones. (b): Violin plots of tissues’ components retrieved with Strategy 2B. Green

represents benign lesions and red malignant ones.

kinds of lesions [46].

An overview of the reconstructed contrasts between lesion and background can be seen in

Figure 6.18. A clear trend can be observed for malignant lesions having larger contrasts than the

benign ones with respect to the surrounding healthy tissues. This holds especially for reconstructions

obtained with Strategy 1B and for the reconstructions of blood parameters with Strategy 2B. We

note that the contrast for scattering does not show particular differences between malignant and

benign lesions.

In Table 6.6, we show the results for classification. As can be seen, the results on TD-DOT

reconstructions with the SOLUS probe suffer from a low recall. This can, however, be compensated

by the high recall of US imaging [16]. On the other hand, the specificity results to be higher than

90% for all the classification methods involved.

SVM (%) Log. Regr. (%)

Rec. 57 54

Spec. 91 93

Table 6.6: Overall results for classification for clinical data. While recall is close to 55 % for both

classification techniques, specificity is higher than 90%.

While these preliminary results are encouraging, the unbalance of the dataset between benign

and malignant lesions, the use of data coming from the same patient for multiple samples and the use

of the leave-one-out method for testing call for a more thorough study of the technique for proper

validation.
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Figure 6.18: Overview of reconstructed contrasts of absorptions and physiological properties of le-

sions with respect to healthy tissues. (a): Violin plots of retrieved absorption contrasts by wavelength

(Strategy 1B). Green represents benign lesions and red malignant ones. (b): Violin plots of contrasts

by tissues’ components (Strategy 2B). Green represents benign lesions and red malignant ones.

6.3.3 Conclusions on Clinical Study

We have presented a preliminary clinical study with the SOLUS probe. After highlighting some

of the problematics of the status of the probe, we proposed ad hoc methods for reconstruction and

consequent automatic classification of the lesions. Comparisons of retrieved parameters with respect

to commonly accepted values show a general underestimation of the optical and tissues properties.

This holds true for the retrieved concentrations of water and collagen. Nonetheless, a distinction

between benign and malignant lesions can be observed. This trend is predominant when looking at

the retrieved contrast between lesions and surrounding tissues. Malignant lesions are characterised

by larger contrast for all considered parameters. While this is expected for most of components,

the predominance of lipids in the lesions is not in agreement with the expectations [46]. Further

studies will need to be undertaken in understanding the hardware and software causes for these

discrepancies, which are enhanced by the limited number of available optodes. Finally, we presented

a machine learning based classification of lesions by their optical and functional properties. Recall

and specificity have been used as main performances evaluators due to their wide use in clinical

scenarios [14]. Statistical evaluation has been performed by using the leave-one-out method and

considering each reconstruction as a standalone sample. While recall is lower than 60%, specificity

is higher than 90% for both classification methods proposed. Even though encouraging, these results

need to be validated on a larger and more balanced dataset.

6.4 Clinical Relevance of the Chapter
The first part of this chapter displayed an attempt to define methods for the diagnostic potentialities

of an instrument like SOLUS in absence of experimental data e.g. because of the device not being
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built already. This included the formulation of a simulation pipeline, a reconstruction procedure and

a final classification of the lesions. The second part of the chapter moved to the first application of

the SOLUS probe (once ready) in clinical scenarios. The trial is itself one of the last steps required

before the validation of the probe on a larger scale. The clinical relevance of the chapter can be

divided by subject as follows:

• Relevance of the combined US+DOT simulation tool:

The development of new medical devices requires a considerable amount of time before the

first prototype is able to collect real data. The framework presented in the chapter allows to

simulate the data coming from a US B-mode and optical multimodal probe such as SOLUS.

In turn, this can be used, as in this chapter, to assess a set of proposed methodologies.

• Relevance of the assessment of DT-extrapolation and ML-extrapolation:

The work allowed to run an assessment of the extrapolation techniques presented in Chapter 5

on a set of numerically generated lesions. The validation of ML-extrapolation showed promis-

ing results for the methodology that can be further developed for future use in SOLUS.

• Relevance of the reconstructions and of the results on classification:

The reconstruction method here proposed assessed the performances of DOT using a two-

domain non-linear model obtained with the DT-extrapolation. Results obtained this way were

used to test a set of classification techniques to discriminate malignant and benign lesions

based on their reconstructed optical properties on both simulated and experimental data. The

work shows the potentialities of US-aided DOT for tumour diagnosis e.g. breast cancer for the

SOLUS project.

• Relevance of the preliminary results of clinical trial and steps to potential deployments in

clinics:

The SOLUS probe is currently being tested at OSR. The first prototype suffers from practical

issues e.g. a limited number of available detectors, high noise, mismatch of measurements with

theory and and other commonly used experimental setups, that hindered the imaging process

and the resulting diagnostic potentialities. Nevertheless, results showed how DOT could give

further insight on the properties of breast lesions. A fully functioning prototype - or a new

system with a next generation of optodes - is expected to improve the performances of the

system, making the clinical deployment of multimodal US+DOT probes probable in the near

future.

6.5 Summary
This chapter introduced a US-DOT simulation pipeline for realistic simulations of breasts. The

pipeline was thought as a mean to test new methods for SOLUS while the probe was still unavailable.
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A non-linear method was tested for reconstruction and a set of machine learning methods were

proposed and assessed for automatic diagnosis of lesions. An assessment of the ML-extrapolation

was also presented. Finally, a preliminary clinical study with the final SOLUS probe is shown. After

describing the status of the probe, we proposed a final reconstruction strategy and we briefly assessed

the diagnostic capabilities of the instrument based on the sole retrieved optical properties.

The next chapter will move focus from TD-DOT and SOLUS to DOCM as an application of

model-based deep learning for problems arising in DOI.



Chapter 7

Non-linear Diffusion Networks for Imaging

through Diffusive media

In this chapter, we present a study to explore how machine learning architectures can be applied to

reconstructions in DOI.

After introducing the main problem at hand in Section 7.1 and its mathematical formalisation

as forward and inverse problem in Section 7.2; In Section 7.3, we present the theory of a set of

model-based neural networks developed to work with non-linear diffusion and the steps devised

for an assessment of those. Methods are proposed by building on the main concept of Diffnet,

first presented in [236]. Simulations and related results with the proposed methods are presented in

Section 7.4.1 and Section 7.4.2 respectively. In Section 7.4.3, we present the acquisition of experi-

mental data, after which we present an assessment on them in Section 7.4.4. Finally, in Section 7.5,

we discuss the results and draw some conclusions.

Part of the work presented in this chapter is the outcome of a collaborative work with the De-

partment of Medical Physics and Biomedical Engineering at UCL which furnished the phantoms and

performed the acquisition of the experimental data in Section 7.4.3. The contributions of the author

went from the definition of the proposed methods, simulation, acquisition and testing procedures to

the assessment of the presented techniques, passing through the generation and acquisition of the

datasets not presented in Section 7.4.3.

7.1 Motivation and Strategy
Hereby, we study the application of machine learning algorithms specifically tailored for problems

arising in DOI [237]. In Section 1.1.2, we introduced DOCM as an example of Diffuse Optical

Imaging that could benefit from the potentialities of deep learning. As a preliminary step to its

application in DOCM, we focus on the simpler problem of imaging through randomly diffusive me-

dia. We briefly show here how the two problems are related. In DOCM, the light emitted from the

sources travels through scattering media to illuminate the cortex. The haemodynamics of the brain

influences the way the light is reflected back to the detectors, namely by a change of absorption in



128 Chapter 7. Non-linear Diffusion Networks for Imaging through Diffusive media

tissues. A typical measurement in DOCM acquires two sets of data, with and without stimulation

of the brain; we refer to these as u1 and u0 respectively. The data respectively refers to two dif-

ferent absorption states on the cortex: µ(l)
a 1 and µ

(l)
a 0. Assuming, at a first approximation, a linear

dependence of the data on the absorption:

u0 − u1 = J
(
µ(l)
a 0 − µ(l)

a 1

)
. (7.1)

where J is linear mapping from absorption to measured exitance. With homogeneous illumination

on the cortex Φ(l), and identical for the two states, the forward problem can be considered analogous

to the propagation of a light source Φ(l) × (µ
(l)
a 1 − µ

(l)
a 0) through an unknown scattering medium.

Setting u(f) := u0 − u1 and u(i) := Φ(l) × (µ
(l)
a 1 − µ

(l)
a 0), Equation (7.1) reads as:

u(f) = Ju(i), (7.2)

which can be seen as describing the propagation of an image (or light source) u(i) through a turbid

medium defining J. No solution for this forward problem can be proposed without information on

the scattering properties of the propagation medium. J is unknown and any solution to the inverse

problem stemming from Equation (7.2) falls into the wider category of blind deconvolution [238].

Recently, deep learning architectures have been suggested for the solution to forward and in-

verse problems involving diffusion equation and other PDEs [239, 240, 241, 242, 243, 244]. Here-

after, we consider the architecture Diffnet, first proposed in [237], and we explore its perfor-

mances for the inversion of light propagation through diffusive media. In Section 7.2, we define

the problem of imaging through scattering media. In Section 7.3, we give a brief introduction

to Diffnet and propose modifications to the network for the problem in object. Following, we

show how datasets for training have been obtained. In Section 7.4.2, we first test our upgrades of

Diffnet for datasets generated via FEM and Monte-Carlo. In the same section, we also introduce

measurements in reflectance, as an attempt to assess the presented methods on a problem closer to

the physical reality of DOCM. After that, we show results for experimental data obtained from a

number of propagation media in Section 7.4.4. Finally, we discuss the results in Section 7.5.

7.2 Statement of the Problem
We define the forward problem of light propagation through unknown turbid media as follows:

Definition 7.2.1 (Forward problem: imaging in transmission through turbid media) Let there be

a bounded medium in Ω characterised by an unknown reduced scattering coefficient µ′
s(r), r ∈ Ω

and unknown absorption coefficient µa(r) ≪ µ′
s(r), r ∈ Ω. Given a time-independent source of

photons u(i) with support on a surface ∂Ω(i), find the exitance u(f) at the surface ∂Ω(f) as shown

in Figure 7.1. We define a propagation operator Aµ′
s,µa

such that:

u(f) = Aµ′
s,µa

u(i). (7.3)
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Ω

µ′
s(r), µa(r)

∂Ω(f)

∂Ω(i)

Figure 7.1: Schematic of domain for forward and inverse problem for photon propagation through

scattering media. The medium is characterised by a reduced scattering coefficient µ′
s(r) and an

absorption coefficient µa(r). ∂Ω(f) and ∂Ω(i) are subsets of the boundary ∂Ω.

We note that, differently from Equation (7.2), the hypothesis on the linearity of the propagation

operator has been relaxed in Equation (7.3). The definition of the inverse problem follows as:

Definition 7.2.2 (Inverse problem: imaging in transmission through turbid media) Let there be a

bounded medium in Ω characterised by an unknown reduced scattering coefficient µ′
s(r), r ∈ Ω and

an unknown absorption coefficient µa(r) ≪ µ′
s(r), r ∈ Ω. Given the measured exitance u(f) at a

surface ∂Ω(f), find the corresponding time-independent source of photons u(i) on ∂Ω(i) such that

Equation (7.3) is satisfied.

As shown in Chapter 3, the forward problem for light propagation in turbid media can be ap-

proximated and solved analytically for simple geometries and homogeneous coefficients. Numerical

solutions are available for a wider range of situations, provided that the optical properties inside Ω

are known. It is not possible to solve the forward problem without prior knowledge on the medium.

In the following discussion, we focus on the inverse problem assuming a propagation through media

with spatially varying reduced scattering. For simplicity, we limit the discussion to the case of a

cuboid Ω, with ∂Ω(i) and ∂Ω(f) being opposite faces.

7.3 Methods

We describe here the main ideas behind the implementation of Diffnet. Starting from these,

the framework introduced by Diffnet will be adapted for the problem at hand in the following

sections.
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Diffnet is a neural network that has been developed to model linear and non-linear diffusion

problems in imaging [237] of the type:
d

dt
u(r, t) = ∇ · [κ (u(r, t))∇u(r, t)] r, t ∈ R2 ×

(
T (i), T (f)

]
u(r, T (i)) = u(i)(r) r ∈ R2.

An operator KT can be defined to find u(f) := u(r, T (f)), so that:

u(f)(r) = KTu
(i) =

T (f)∫
T (i)

∫
R2

KADF
T (r, r′, u(r′, t))u(i)(r′) dr′ dt,

where KADF
T is a non-stationary, non-linear and time-dependent kernel modelling an anisotropic

diffusion flow [237]. In general, no analytical expression is available for the operator KADF
T . A

numerical solution is given by an explicit stepping scheme over t, so that at a given time t(k):

u(k+1)(r) ≃ Dexpl
δt (κ(k))u(k)(r) := u(k)(r)+ δtLκu

(k)(r) ≃ u(k)(r)+

t(k)+δt∫
t(k)

Lκu(r, t)dt, (7.4)

where u(k) := u(r, t(k)) and Lκu(r, t) := ∇ · [κ (u(r, t))∇u(r, t)]. It follows that, given a source

u(i), the final state u(f) at time T (f) is given by:

u(f) = Dexpl
δt (κ(f−1)) ◦ Dexpl

δt (κ(f−2)) · · · Dexpl
δt (κ(i+1)) ◦ Dexpl

δt (κ(i))u(i). (7.5)

Discretisation in ΩP follows from the finite difference approximation of the Laplacian operator

that is expressed as a sparse sub-diagonal matrix and that, analogously to Equation (2.10), can be

graphically represented as a 5-point stencil so that:

Lκ =


κr,q

κr−1,q −4κr−1,q κr,q

κr,q−1

 =:


κ̃1(r)

κ̃2(r) −4 κ̃3(r) κ̃4(r)

κ̃5(r)

 , (7.6)

where r and q are indices of the discretised κ along x and y respectively. An analogous expression

to Equation (7.5) can be conjectured for the inverse problem:

u(i) = Eexpl
δt (ζ(i+1)) ◦ Eexpl

δt (ζ(i+2)) · · · Eexpl
δt (ζ(f−1)) ◦ Eexpl

δt (ζ(f))u(f), (7.7)

where term ζ is analogous of κ for inverse diffusion. By Taylor expansion, it can be shown that

Eexpl
δt (ζ) ≃ I− δtLζ where Lζu(r, t) := ∇ · [ζ(u(r, t))∇u(r, t)].

The principle of Diffnet stems from Equation (7.4) and Equation (7.7) to retrieve the final

discretised state u(f) from u(i) and vice versa. It relies on defining and training a set of estimator

networks K(k)
Θ to find, at each step - or layer - k, the optimal update Dexpl

δt (κ(k)) or Eexpl
δt (ζ(k)) from a

given u(k), thus operating a non-linear mapping from image to update. The structure of the Laplacian

Lκ in the update is defined, in the forward case, by the Equation (7.6): the network K
(k)
Θ - a CNN
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in [237] - outputs as set of 5 images κ̃i that are assembled to form the stencil which is then applied

to u(k), resulting in a non-stationary convolution. A loose interpretation between the output of K(k)
Θ

and κ in Equation (7.3) is also possible through Equation (7.6). Thus, we refer to the output images

κ̃i of the estimator network K
(k)
Θ with the term meta-weights. An analogous discussion is valid for

the inverse case. We note that, differently from Equation (7.3), a finite domain ΩP × (T (i), T (f)]

needs to be defined for a practical implementation, thus calling for boundary conditions. These are

assumed to be incorporated in the Diffnet update defined by the meta-weights κ̃i.

7.3.1 Diffnet and photon propagation

As shown in Section 3.1, also photon migration through highly scattering media can be approximated

by a diffusive process, but its nature is inherently 3D. On the other hand, Diffnetwas designed for

the solution of problems arising in 2D non-linear diffusion. Thus, we formulate here the hypothesis

motivating our application of Diffnet for 3D photon diffusion as:

Hypothesis 7.3.1 Given the inverse problem defined in Definition 7.2.2, the 3D photon propagation

can be reversed by a learned time-dependent 2D non-linear diffusion operator.

This hypothesis is graphically displayed in Figure 7.2: the forward model is a 3D process of

photon migration in a cuboid volume Ω from a source u(i) placed at the bottom surface of the

domain. The photon propagation can be characterised by scalar reduced scattering and absorption

coefficients µ′
s(r) and µa(r) respectively. The exitance u(f) is measured on ∂Ω(f) at the top face of

Ω. Diffnet aims at retrieving the source u(i) as a process of time-dependent non-linear diffusion

of u(f) as in Equation (7.3). The z dimension of the cuboid is substituted by time and the diffusion

operates on a two-dimensional domain ΩP. As a possible interpretation, the image at a certain time in

the inverse problem can be associated to the fluence at the surface z(x, y) of the forward problem. As

explained in Section 7.3.2, a tensor diffusion coefficient ζ(u) is assumed throughout the discussion.

Following, we start from theoretical and practical considerations to propose four different im-

plementations of Diffnet:

• TDiffnet-0 in Section 7.3.2;

• TDiffnet-1 also in Section 7.3.2;

• TDiffnet-2 in Section 7.3.3;

• TDiffnet-3 in Section 7.3.4.
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µ′
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u(f)
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3D Photon Migration

z
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Non-linear Diffusion

ζ(u)

ΩP × (T (i), T (f)]

Figure 7.2: Schematic of Hypothesis 7.3.1 behind the application of Diffnet for imaging through

diffusive media.

7.3.2 Generalisation to a Tensorial Diffusion Coefficient: TDiffnet-0 and

TDiffnet-1

Following a suggestion in [237], we report here a generalisation in case of tensor diffusion coeffi-

cients κ → κ in Equation (7.3).

Considering a tensor as a set of 4 bi-dimensional discretised images of indices r, q:

κ =

κ0,0
r,q κ0,1

r,q

κ0,1
r,q κ1,1

r,q

 ,

the corresponding Laplacian operator reads:

Lκ =


− 1

4

(
κ0,1
r−1,q + κ1,0

r,q+1

)
κ1,1
r,q

1
4

(
κ0,1
r+1,q + κ1,0

r,q+1

)
κ0,0
r−1,q −

(
κ0,0
r−1,q + κ1,1

r,q−1 + κ0,0
r,q + κ1,1

r,q

)
κ0,0
r,q

1
4

(
κ0,1
r−1,q + κ1,0

r,q−1

)
κ1,1
r,q−1 − 1

4

(
κ0,1
r+1,q + κ1,0

r,q−1

)
 . (7.8)

Equation (7.8) degenerates into the 5-point stencil when no off-diagonal components are

present for the diffusion tensor κ. We can interpret the difference between the implementation

of the stencil with the original Diffnet architecture and the one derived from a tensor κ as the

addition of mixed diffusion terms in the process, so that now diffusion can be considered as a local

process involving not only the first 4 neighbouring pixels, but the first 8 ones. Detailed steps to reach

the expression in Equation (7.10) can be found in Appendix B.

Analogously, a diffusion tensor for inverse diffusion can be defined:

ζ =

ζ0,0r,q ζ0,1r,q

ζ0,1r,q ζ1,1r,q

 . (7.9)
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The Laplacian operator for the inverse problem is then given by:

Lζ =


− 1

4

(
ζ0,1r−1,q + ζ1,0r,q+1

)
ζ1,1r,q

1
4

(
ζ0,1r+1,q + ζ1,0r,q+1

)
ζ0,0r−1,q −

(
ζ0,0r−1,q + ζ1,1r,q−1 + ζ0,0r,q + ζ1,1r,q

)
ζ0,0r,q

1
4

(
ζ0,1r−1,q + ζ1,0r,q−1

)
ζ1,1r,q−1 − 1

4

(
ζ0,1r+1,q + ζ1,0r,q−1

)
, (7.10)

where we label the entries ζ̃i of Lζ as:

Lζ =:


− 1

4 ζ̃1 ζ̃2
1
4 ζ̃3

ζ̃4 −4ζ̃5 ζ̃6

1
4 ζ̃7 ζ̃8 − 1

4 ζ̃9

 . (7.11)

Equation (7.10) paves the way to the direct retrieval of the diffusion tensor ζ from the meta-

weights ζ̃i.

Similarly to the original work in [237], a Diffnet implementation can be devised in order to

make the estimator networks K(k)
Θ retrieve the entries of the new Laplacian Lζ from u(k). We refer

to this architecture as Tensorial-Diffnet-1 or TDiffnet-1 (TD1). A schematic of a layer

of TD1 is given in Figure 7.4.

When no dependence from u(k) is enforced on the diffusion tensor ζ, we will refer to the network

as Tensorial-Diffnet-0 or TDiffnet-0 (TD0). We note that in this case the estimator

network K
(k)
Θ is substituted by a non-linearity φ applied to a learned set of weights Θ(k), which

is necessary to enforce non-negativity to the meta-weights ζ̃i. We present a schematic of TD0 in

Figure 7.3. In general, we will refer with the term Tensorial-Diffnet (TDiffnet) to any

u(k) u(k+1)

ζ̃7

ζ̃4

ζ̃1

ζ̃8

ζ̃5

ζ̃2

ζ̃9

ζ̃6

ζ̃3

L
(k)
ζ from Equation (7.11), ζ̃i ≡ φ

(
Θ(k)

)

I− δt L
(k)
ζ

Figure 7.3: Schematic of TDiffnet-0 (TD0). At a given layer k a Laplacian operator L(k)
ζ is

obtained by applying a non-linearity φ to a set of weights Θ. An explicit diffusion step I − δt L
(k)
ζ

is then applied to u(k) to obtain u(k+1). We note that also the time stepping δt is learned.

of the networks stemming from Diffnet and introduced in the chapter.
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u(k) u(k+1)

K
(k)
Θ

L
(k)
ζ from Equation (7.11)

ζ̃7

ζ̃4

ζ̃1

ζ̃8

ζ̃5

ζ̃2

ζ̃9

ζ̃6

ζ̃3

I− δt L
(k)
ζ

Figure 7.4: Schematic of TDiffnet-1 (TD1). At a given layer k, an estimator network K
(k)
Θ maps

an image u(k) to a Laplacian operator L(k)
ζ . An explicit diffusion step I− δt L

(k)
ζ is then applied to

u(k) to obtain u(k+1). We note that also the time stepping δt is learned.

Following, we describe two alternative implementations of TDiffnet: TDiffnet-2

and TDiffnet-3. TDiffnet-2, in Section 7.3.3, will make use of the relation between

Equation (7.9) and Equation (7.10) for the retrieval of the Laplacian operator. TDiffnet-3, in

Section 7.3.4, will retrieve an optimal stencil for the inversion of photon propagation from reference

data.

7.3.3 TDiffnet-2

Equation (7.8) expresses a relation between the tensor ζ in Equation (7.9) and the corresponding

Laplacian Lζ for a given layer. Thus, the estimator network can be trained to output ζ rather than

the Laplacian operator.

A further heuristic step is here also considered by considering a diffusive model as the one

in Equation (3.9) for the forward problem. Each layer of non-linear diffusion can be considered

to represent u(k) as the fluence Φ on a surface z(k)(x, y). As the following layer evaluates u(k+1)

i.e. the fluence Φ at a surface z(k+1) = z(k) + dz(k)(x, y), we introduce here an absorption term µ

such that:

Φ(x, y, z + dz(k)(x, y)) = Φ(x, y, z) +

z(k)+dz(x,y)∫
z

[
Lκ(x,y)Φ(x, y, z)− µΦ(x, y, z)

]
dz

An analogous model is then defined for the inverse problem, by making the estimator network output

a term µ acting as an absorption coefficient.

A schematic of the proposed TDiffnet-2 (TD2) is shown in Figure 7.5.
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u(k) u(k+1)

K
(k)
Θ

ζ0,1

ζ0,0

ζ1,1

ζ1,0

µ

µ, L
(k)
ζ from Equation (7.10)

I− δt
(
L
(k)
ζ − µI

)
Figure 7.5: Schematic of TDiffnet-2 (TD2). At a given layer k, an estimator network K

(k)
Θ

maps an image u(k) to a diffusivity tensor ζ and a scalar absorption term µ. The Laplacian operator

L
(k)
ζ is calculated by means of Equation (7.10). An explicit diffusion step I − δt

(
L
(k)
ζ − µI

)
is

then applied to u(k) to obtain u(k+1). We note that also the time stepping δt is learned.

7.3.4 TDiffnet-3

So far, the discussion has considered the problem of imaging through diffusive imaging as a

R2(ΩP) → R2(ΩP) map. Thus, the input u(f)
n encodes the information on both the diffusivity of the

medium and on the input u(i)
n , where the subscript n indicates a sample from a dataset. The network

is expected to retrieve the information on the medium from u
(f)
n and to find a suitable deconvolution

kernel. This approach is appropriate for a fixed mapping describing the diffusion coefficient κ(u) as

in Equation (7.3), but it is not strictly needed for the problem at hand for which Aµ′
sn

,µan
depends

only on the intrinsic properties µ′
sn, µan of the propagation medium. We propose here a change in

the original input-output structure proposal. For each medium characterised by µ′
sn, µan, we also

propagate a fixed reference image c(i) so that c(f)n can be measured on ∂Ω(f). Thus, c(f)n carries

information for µ′
sn, µan and c(i), with c(i) constant throughout the dataset. The considered forward

model for each sample n is: c(f)n

u
(f)
n

 = Aµ′
sn,µan

c(i)
u
(i)
n

 .

Starting from c
(f)
n , the estimator network is thus tasked with finding the best approximation to Lζ to

deconvolve u(f)
n . A scheme of the proposed network is shown in Figure 7.6. We note that the chain-

rule back-propagation during training does not reach u
(f)
n . Unlike the other networks proposed here,

this network might also be used for solving the forward problem i.e. by switching u
(f)
n and u

(i)
n as

input and output. We refer to this network as TDiffnet-3 (TD3).

The propagation of a fixed light distribution c
(i)
n is unlikely to occur in diffusion through diffu-
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sive media. However, it can be practical for measurements in reflectance as reported in Section 7.4.2.

u(k) u(k+1)

K
(k)
Θ

c(k) c(k+1)

ζ̃7

ζ̃4

ζ̃1

ζ̃8

ζ̃5

ζ̃2

ζ̃9

ζ̃6

ζ̃3

L
(k)
ζ from Equation (7.11)

I− δtL
(k)
ζ

I− δtL
(k)
ζ

Figure 7.6: Schematic of TDiffnet-3 (TD3). At a given layer k, an estimator network K
(k)
Θ maps

an image c(k) to a Laplacian operator L(k)
ζ . An explicit diffusion step I − δt L

(k)
ζ is then applied

to u(k) and c(k) to obtain respectively u(k+1) and c(k+1). We note that also the time stepping δt is

learned.

In Table 7.1, we give a synthetic outline of the proposed implementations of TDiffnet.

Name Acronym Section Figure Principle

TDiffnet-0 TD0 7.3.2 7.3 No dependence of ζ(k) on u(k).

TDiffnet-1 TD1 7.3.2 7.4 K
(k)
Θ outputs the meta-weights ζ̃i at layer k.

TDiffnet-2 TD2 7.3.3 7.5
K

(k)
Θ outputs the diffusion tensor ζ(k) at layer

k.

TDiffnet-3 TD3 7.3.4 7.6
K

(k)
Θ outputs the meta-weights ζ̃i at layer k

from a set of reference data c(k).

Table 7.1: Summary of the TDiffnet implementations proposed and assessed throughout the

chapter.
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7.3.5 Choice of the Estimator Network and Other Considerations on the Im-

plementation

The estimator network is what allows Diffnet and TDiffnet to be flexible while keeping a

model-based update. However, the choice on the architecture for KΘ is mostly arbitrary. The origi-

nal Diffnet paper utilises a 3-layers CNN to reproduce the non-linearity between the u(k) and the

corresponding diffusion coefficient κ(u(k)) [237]. Here instead, we choose to increase the field of

view of the network by utilising a CNN with skip connections as in Figure 7.7.

C3×3
Nin→32

P2×2

C3×3
32→32

P2×2

C3×3
32→32

P2×2

C3×3
32→32

+

+

+

C3×3
32→Nout

C3×3
32→32

C3×3
32→32

C3×3
32→32

C3×3
32→32

Figure 7.7: CNN of the Estimator Network K
(k)
Θ in Equation (7.12) for the proposed implemen-

tations of TDiffnet. Each of the convolution filters has been selected to have a size of 3 × 3.

The number of channels through the network is kept to 32, with a number of input channels of

Nin = 1 and a number of output channel Nout of 9 or 5 depending on the proposed implementation

of TDiffnet. The output of the network is then summed to a set of learned weights and the non-

linearity in Equation (7.13) is applied.

We choose:

KΘu
(k)
n = φ(Θ0 +CNNΘu

(k)
n ), (7.12)

where Θ0 is a set of learned constant weights with the same dimensions of the Laplacian Stencil

and φ is an activation function defined as φ(x) = 1 + ELU(x). The structure resembles that of

U-net, but no residual networks are used and the maximum number of channels is fixed to 32.

Each convolutional filter was chosen to have a size of 3 × 3. The network is adapted to output 9 or

5 images, as required from the proposed structure of the update. An ELU activation function was

selected as non-linearity between the layers of the estimator network. As with the estimator network,

no assessment is here proposed for the number of layers, which was fixed to 5. A final activation

function φ(out) for TDiffnet was selected to be:

φ(out)(x) = tanh (ReLU(x)) , (7.13)

thus enforcing non-negativity and maximum values of 1 for the outputs u(out). With these conditions,
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for images of 60× 60 pixels, the memory requirements for TD1 are:

5︸︷︷︸
# Layers

×

60× 60× 9︸ ︷︷ ︸
Θ0

+3× 3× 32 + 6 (3× 3× 32× 32) + 3× 32× 9︸ ︷︷ ︸
CNNΘ

× 4Bytes ≃ 1.8GB

We compare the results of the proposed implementation of TDiffnet with U-net (U) [69],

which is referred to as the golden standard for many medical imaging tasks. A schematic of the

implementation used here can be found in Figure 7.8. With these settings, U-net roughly requires

R3×3
Nin→32

P2×2

R3×3
32→64

P2×2

R3×3
64→128

P2×2

R3×3
128→128

+

+

+

R3×3
32→1

R3×3
64→32

R3×3
128→64

R3×3
128→128

Figure 7.8: Implementation of U-net used as comparison metric with TDiffnet. The convolu-

tional filter were designed to have a size of 3× 3. A total of 4 layers has been implemented.

6.2GB GPU memory. A short overview of the specifications of proposed networks is presented in

Table 7.2.

All nets proposed were implemented with Tensorflow [230]. Each dataset was heuristically

divided in training, validation and test sets by keeping a ratio among their number of samples of

80 : 20 : 20. Performances of the networks on training, validation and test datasets showed com-

parable results with the proposed splitting. For TDiffnet, training was performed for a total of

30000 steps with Adam Optimiser minimising a normalised l2-Loss function:

L(u(out), utruth) =

√∑
i

(
u(out) − utruth

)2√∑
i (u

truth)
2

(7.14)

with i pixel index of the images. The learning parameter was decreased every 5000 steps by a factor

0.6. Training for a number of 6 learning parameters from 5×10−4 and 5×10−6 was performed. For
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U TD0 TD1 TD2 TD3

Interpretability Small Partial Partial Yes Partial

Execution Speed Slow Very Fast Fast Fast Fast

Models Inhomogenous diffusion - No Yes Yes Yes

Memory requirements (GB) 6.2 0.65 1.8 1.5 1.8

Training time Long Very Short Short Short Short

Model-based No Yes Yes Yes Yes

Table 7.2: Qualitative overview of the proposed networks with respect to U-net. Memory require-

ments are shown assuming images of 60× 60 pixels.

each training session, the most suitable learning parameter was chosen as the one giving the smallest

validation error. For U the number of steps during training was set to 80000. Early stopping during

training was adopted by assessing the networks on the test set at the stage where the validation error

was minimum.

7.4 Generation of Datasets and Assessment of Techniques
Three tests have been devised for the assessment of the proposed networks:

1. Test A: Assessment of the inverse operator in Equation (7.3) when µ′
s and µa are constant in

the domain Ω;

2. Test B: Assessment of the performances of TDiffnet with one-per-dataset spatially varying

µ′
s;

3. Test C: Assessment of the performances of TDiffnet with one-per-sample spatially varying

µ′
sn.

A first assessment of TDiffnet for 3D photon propagation with FEM and Monte-Carlo (MC)

simulations focused on Test A and Test C. In Section 7.4.1, we report how the simulation datasets

were generated. After the assessment on simulations, TDiffnet was applied to a set of experi-

mental data, assessing its performances for Test A, B and C. In Section 7.4.3, we report how the

experimental data were acquired.

7.4.1 FEM and Monte-Carlo Simulations

The diffusion approximation of the operator Aµ′
sn,µan

for a sample n is given by the boundary

value problem in Equation (3.9), with a sample-dependent diffusion coefficient κn := 1
3µ′

sn
, where

d
dtΦ(r, t) = 0 and where the sample-dependent source Qn(r) has support on ∂Ω(i) and is defined

as:

Qn(r) =

u(i)
n on ∂Ω(i)

0 otherwise.
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In this scenario u
(f)
n correspond to the exitance on ∂Ω(f). Following common experimental pro-

cedures, both u
(i)
n and u

(f)
n were self-normalised by their peak value. The forward problem was

solved by means of FEM with the software TOAST++ [224]. Ω was set to be a cuboid of dimensions

60 × 60 × 15 mm meshed with cubic elements of side 1 mm. ∂Ω(i) was set on the plane at z = 0

and ∂Ω(f) at z = 15 mm. µa was set to a constant value of 10−3 mm−1.

Simulations with Monte-Carlo were performed with the software mcx [106, 245]. Similarly to

the simulations with FEM, a cuboid domain of 60× 60× 15 mm voxelised into cubes of side 1 mm

was considered. As simulations are inherently time-dependent, a total time range of from 0 to 6 ns

with a time step of 10−2 ns was simulated. Sources were modelled to be a set pattern Qn(r)δ(t) of

Nph photons on ∂Ω(i), launched with initial direction −n̂. Simulations were stopped once a desired

number of photons Nph was measured on ∂Ω(f). As before, we consider here sources to be self-

normalised by their maximum. mcx computes the time-dependent fluence Φn(r, t) in the volume Ω.

The considered output value u
(f)
n was thus given by the time-integrated fluence on ∂Ω(f).

In order to assess the differences between FEM and Monte-Carlo a comparison of the Green

functions of the two models was performed for a range of homogeneous reduced scattering coeffi-

cients µ′
s, ranging from 0.05 to 2 mm−1. A point-like source was placed at rs at the centre on ∂Ω(i).

For Monte-Carlo, a total of 108 photons was simulated. In Figure 7.9, we display a set of Green

functions for µ′
s = 0.25, 0.5, 1, 2 mm−1. For completeness, we also show the results by using the

analytical Green function for an unbounded medium reported in Equation (3.11). Good agreement

was found among the models for larger scattering. For MC, a typical spike can be observed in the

output as the propagation regime can not be considered diffusive. In general, the analytical model,

computed here for an infinite medium, overestimates the FWHM with respect to FEM and MC.

The FWHM is similar for all three methods provided that 1
µ′
s
≪ |rs − rm|, with rm positions of

the detectors. This can be better observed in Figure 7.10, where we show the FWHM of the Green

functions of all three models as scattering increases. As expected, the DE shows to be a poor ap-

proximation when the source-detector distance is smaller or comparable to 1
µ′
s

[78]. The analytical

model, taken here for an infinite medium, overestimates the FWHM with respect to FEM and MC.

We note that in literature there are better approximations to the diffusion equation that limit

the discrepancy with the RTE solved by Monte-Carlo [78, 113, 116]. However, we choose here to

completely rely on the DE for FEM to assess the performances of TDiffnet with purely diffusive

problems.
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µ′
s = 0.25 mm−1 µ′
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Figure 7.9: Comparison of different Green functions for Analytical, FEM and MC models for prop-

agation through 15 mm of media with µ′
s of 0.25, 0.5, 1 and 2 mm−1 for a source in the centre of

∂Ω(i). The last row presents a view of the Green functions along the axis y = 0.

Figure 7.10: Comparison of the FWHMs of the Green functions of Analytical, FEM and MC models

for propagation through media of thickness 15 mm and increasing scattering. The FWHMs are

closest among the models when considering strongly scattering materials, while they differ the most

for less turbid media.
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Introduction of Heterogeneities

For Test C, we introduced random heterogeneities for each µ′
sn. Each dataset was characterised by

an average scattering coefficient µ̄′
s, a normalisation coefficient p defining the peak values of µ′

sn(r)

with respect to µ̄′
s, and a correlation length lcorr defining the properties of the heterogeneities. For

each sample n inside the dataset, given lcorr, µ̄′
s and p:

rn(r) ∼ GPr∈Ω (0, 1) Random generator

slcorr(r) = exp

(
− r2

l2corr

)
Low-pass kernel

fn,lcorr(r) = F -1 [F [rn(r)]F [slcorr(r)]] Convolution

µ′
sn(r) = µ̄′

s + p
fn,lcorr −meanfn

max fn,lcorr −min fn,lcorr
Final normalisation

where F is the Fourier transform and the parameters µ̄′
s, p and lcorr are fixed for each dataset. We

note that propagation through a homogeneous medium corresponds to p = 0. Even though the

correlation length lcorr plays an important role in the propagation, we limited the simulations to a

fixed value of 15 mm for all test scenarios.

We generated two groups of datasets, one with the FEM solution of the DE and one with MC

methods as described above. Each group contains all combinations of datasets with one µ̄′
s among

0.25, 0.5, 1 or 2 mm−1 and heterogeneities of p = 0, 0.2, 0.5 or 0.8. Source samples were selected

from the EMNIST dataset [246]. For simplicity, we will indicate a particular simulated dataset with

the notation: ⟨Group, µ̄′
s( mm), p,Nph⟩, e.g. the dataset simulated with FEM with µ̄′

s = 1 mm−1,

p = 0.5 is indicated as ⟨FEM, 1, 0.5,−⟩.

In Figure 7.11 and Figure 7.12, we display, respectively for FEM and MC, a sample result of

propagation with µ̄′
s = 1 mm−1 for p = 0 and p = 0.5, i.e. from ⟨FEM, 1, 0,−⟩ and ⟨MC, 1, 0, 107⟩.

Moreover, for MC, also a dataset for each Nph among 105, 106 and 107 was simulated. We show

the effect that Nph has on the level of noise for a sample image in Figure 7.13. As expected, noise is

predominant for the lowest photon count, while its importance is reduced for higher photon counts

e.g. Nph = 107.

In Table 7.3, we summarise the main parameters chosen for the simulation datasets.
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Figure 7.11: Overview of simulation results for sample 1 of Dataset ⟨FEM, 1, 0.5,−⟩ in compar-

ison to the corresponding sample in ⟨FEM, 1, 0,−⟩. In images from (a) to (d) we show different

slices of the simulated inhomogeneous µ′
s1(r) along the z-axis. It can be seen how the hetero-

geneities are slowly varying in the domain. In images from (e) to (h) and from (i) to (l), we

show the effects of propagation respectively for sample u
(i)
1 and for the fixed reference measure-

ment c(i). (a): µ′
s1(r)|z=0mm from Dataset ⟨FEM, 1, 0.5,−⟩. (b): µ′

s1(r)|z=5mm from Dataset

⟨FEM, 1, 0.5,−⟩. (c): µ′
s1(r)|z=10mm from Dataset ⟨FEM, 1, 0.5,−⟩. (d): µ′

s1(r)|z=15mm from

Dataset ⟨FEM, 1, 0.5,−⟩. (e): u
(i)
1 . (f): u

(f)
1 from Dataset ⟨FEM, 1, 0,−⟩. (g): u

(f)
1 from

Dataset ⟨FEM, 1, 0.5,−⟩. (h): Difference of u
(f)
1 from Dataset ⟨FEM, 1, 0.5,−⟩ and u

(f)
1 from

Dataset ⟨FEM, 1, 0,−⟩. (i): c(i). (j): c
(f)
1 from Dataset ⟨FEM, 1, 0,−⟩. (k): c

(f)
1 from Dataset

⟨FEM, 1, 0.5,−⟩. (l): Difference of c
(f)
1 from Dataset ⟨FEM, 1, 0.5,−⟩ and c

(f)
1 from Dataset

⟨FEM, 1, 0,−⟩.
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Figure 7.12: Overview of simulation results for sample of sample 1 of Dataset ⟨MC, 1, 0.5, 107⟩

in comparison to the corresponding sample in ⟨MC, 1, 0, 107⟩. In images from (a) to (d) we show

different slices of the simulated inhomogenoeous µ′
s1(r) along the z-axis. It can be seen how the het-

erogeneities are slowly varying in the domain. In images from (e) to (h) and from (i) to (l) we show

the effects of propagation respectively for a sample u(i)
1 and for the fixed reference measurement c(i).

The presence of noise is visible upon subtraction in between the corresponding samples of the two

datasets in (h) and (l). (a): µ′
s1(r)|z=0mm from Dataset ⟨MC, 1, 0.5, 107⟩. (b): µ′

s1(r)|z=5mm from

Dataset ⟨MC, 1, 0.5, 107⟩. (c): µ′
s1(r)|z=10mm from Dataset ⟨MC, 1, 0.5, 107⟩. (d): µ′

s1(r)|z=15mm

from Dataset ⟨MC, 1, 0.5, 107⟩. (e): u
(i)
1 . (f): u

(f)
1 from Dataset ⟨MC, 1, 0, 107⟩. (g): u

(f)
1 from

Dataset ⟨MC, 1, 0.5, 107⟩. (h): Difference of u(f)
1 from Dataset ⟨MC, 1, 0.5, 107⟩ and u

(f)
1 from

Dataset ⟨MC, 1, 0, 107⟩. (i): c(i). (j): c
(f)
1 from Dataset ⟨MC, 1, 0, 107⟩. (k): c

(f)
1 from Dataset

⟨MC, 1, 0.5, 107⟩. (l): Difference of between c
(f)
1 from Dataset ⟨MC, 1, 0.5, 107⟩ and c

(f)
1 from

Dataset ⟨MC, 1, 0, 107⟩.
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Group Model µ̄′
s (mm)−1 p Nph # datasets # samples Test

Train Valid. Test A B C

FEM DE 0.25, 0.5, 1, 2 0, 0.2, 0.5, 0.8 - 16 800 200 200 ✓ ✓

MC RTE 0.25, 0.5, 1, 2 0, 0.2, 0.5, 0.8 105, 106, 107 48 800 200 200 ✓ ✓

Table 7.3: Summary of the groups of simulated datasets used for the assessment of the proposed

implementations of TDiffnet. Groups FEM and MC were generated by the simulations meth-

ods reported in Section 7.4.1. They were designed for a systematic test of the performances of

TDiffnet in reversing photon propagation through arbitrarily heterogeneous propagation media.

Specifically, to run assessments with Test A (with p = 0) and Test C.
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Figure 7.13: Effect of variation of Nph in MC simulations from datasets ⟨MC, 1, 0.5, 105⟩,

⟨MC, 1, 0.5, 106⟩ and ⟨MC, 1, 0.5, 107⟩ on the sample already displayed in Figure 7.12. (a): u(f)
1

from Dataset ⟨MC, 1, 0, 105⟩. (b): u(f)
1 from Dataset ⟨MC, 1, 0, 106⟩. (c): u(f)

1 from Dataset

⟨MC, 1, 0, 107⟩. (d): c(f)1 from Dataset ⟨MC, 1, 0, 105⟩. (e): c(f)1 from Dataset ⟨MC, 1, 0, 106⟩.

(f): c(f)1 from Dataset ⟨MC, 1, 0, 107⟩.
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7.4.2 Assessment on Simulations

We present here the results of the application of the proposed implementations of TDiffnet (TD0,

TD1, TD2, TD3) and U-net (U) on the datasets introduced in Section 7.4.1. Results were quan-

tified by means of the normalised l2-error as in Equation (7.14) and the Structural Similarity Index

Measure (SSIM) [247]. The average l2-errors and SSIMs were obtained for each test dataset. Unless

specified otherwise, quantifications are accompanied with the standard deviation of the metrics be-

tween parentheses. To avoid confusion with the notation utilised for the forward problem, we refer

here with the suffices (0) and (out) respectively to the inputs and outputs of the networks. Where

indicated, the suffix (k) refers the quantity to the kth layer of the network.

Assessment on FEM Group

A first assessment on simulations was obtained for the group of datasets FEM. This aimed at proving

the reliability of Hypothesis 7.3.1 i.e. that TDiffnet can reverse time-independent 3D diffusion

with a time-dependent 2D non-linear diffusion. In Figure 7.14, we show an overview of the results

for Test Dataset ⟨FEM, 1, 0.5,−⟩. Results for TD1, TD2 and U show comparable performances

with all reconstructed images close to the target ones. Despite the strong diffusion of the input image,

both TD2 and TD1, with an l2-error of 0.37 are able to reconstruct with a good level of detail the

samples presented. Some exceptions can be reported for some samples with fine structures, such as

the third sample from the top-left, in position (3, 1). As a proof of the adequacy of the model, it can

be seen that the linear diffusion operated by TD0 gives an average l2-error of 0.8 and is not able to

reconstruct any major detail of the target images. Worth of mention is the performance of TD3, with

l2-error of 0.66, which is shown to capture some information carried by c(i) on µ′
sn to reconstruct

images with a finer detail than TD0.

In Figure 7.15, we show the behaviour of the l2-error of the various nets with respect to variation

of the parameter p characterising the strength of the heterogeneities. TD2, TD1 and U follow the

expected behaviour for which the error increases as spatial variations of µ′
sn increase. All three

networks present comparable error with TD2 being the best performing of the three, followed by

TD1. It is worthwhile to note that, despite having an update structure more rigidly linked to diffusive

processes, TD2 performs better than TD1. TD0 is not affected by the parameter p, but has in general

very low performances. TD3 does not show to have a clear dependence on p while having lower

error than TD0.

In Figure 7.16, we show a similar analysis with SSIM. As expected, all the plots show a mir-

rored behaviour to that of the l2-error in Figure 7.15. Here the differences in quantification among U,

TD2 and TD1 are more enhanced, with the implementations of TD2 having the best performances,

followed by TD1 and U.

The l2-errors with respect to p and µ̄′
s are also represented in the heatmaps in Figure 7.17. In

general, all networks present lower errors for small p and large µ̄′
s, as would be expected from the
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(a) Inputs (b) Targets

(c) TD0 (d) TD1 (e) TD2

(f) TD3 (g) U

Figure 7.14: Overview of results for Dataset ⟨FEM, 1, 0.5,−⟩. (a): Samples of u
(0)
n for Dataset

⟨FEM, 1, 0.5,−⟩. (b): Samples of target reconstruction. (c): Results for TD0. l2-error =

0.81 (0.056), SSIM = 0.57 (0.018). (d): Results for TD1. l2-error = 0.37 (0.077), SSIM =

0.94 (0.02). (e): Results for TD2. l2-error= 0.37 (0.071), SSIM = 0.94 (0.02). (f): Results for

TD3. l2-error = 0.66 (0.1), SSIM = 0.79 (0.038). (g): Results for U. l2-error = 0.4 (0.079),

SSIM = 0.88 (0.028).
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study in Figure 7.10 for FEM. TD0 and TD3 present the largest errors.

Analogously, SSIMs are shown in heatmaps in Figure 7.18. As with the l2-error in Figure 7.17,

all networks present lower errors for small p and large µ̄′
s. Better performances of TD1 and TD2

with respect to U are highlighted with this metric.
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Figure 7.15: Overview of behaviour of l2-error with respect to p for the datasets simulated with

FEM. (a): Plots of l2-error(p) for FEM datasets with µ̄′
s = 0.25 mm−1. (b): Plots of l2-error(p) for

FEM datasets with µ̄′
s = 0.5 mm−1. (c): Plots of l2-error(p) for FEM datasets with µ̄′

s = 1 mm−1.

(d): Plots of l2-error(p) for FEM datasets with µ̄′
s = 2 mm−1.

In Table C.1, we display all the reconstruction l2-errors and SSIM scores for group FEM. In

general, the error increases with the FWHM in Figure 7.10, as expected.
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Figure 7.16: Overview of behaviour of SSIM with respect to p for the datasets simulated with

FEM. (a): Plots of SSIM(p) for FEM datasets with µ̄′
s = 0.25 mm−1. (b): Plots of SSIM(p) for

FEM datasets with µ̄′
s = 0.5 mm−1. (c): Plots of SSIM(p) for FEM datasets with µ̄′

s = 1 mm−1.

(d): Plots of SSIM(p) for FEM datasets with µ̄′
s = 2 mm−1.
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Figure 7.17: Overview of performances of the proposed networks by heatmaps of l2-errors for µ̄′
s

and p for datasets in the FEM group. µ̄′
s increases from left to right while p from bottom to top.

(a): l2-error(µ̄′
s, p) heatmap for TD0. (b): l2-error(µ̄′

s, p) heatmap for TD1. (c): l2-error(µ̄′
s, p)

heatmap for TD2. (d): l2-error(µ̄′
s, p) heatmap for TD3. (f): l2-error(µ̄′

s, p) heatmap for U.
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Figure 7.18: Overview of performances of the proposed networks by heatmaps of SSIM for µ̄′
s

and p for datasets in the FEM group. µ̄′
s increases from left to right while p from bottom to top.

(a): SSIM(µ̄′
s, p) heatmap for TD0. (b): SSIM(µ̄′

s, p) heatmap for TD1. (c): SSIM(µ̄′
s, p) heatmap

for TD2. (d): SSIM(µ̄′
s, p) heatmap for TD3. (f): SSIM(µ̄′

s, p) heatmap for U.

Assessment on MC Group

The tests on MC group of datasets aimed at assessing the performances of the proposed imple-

mentations of TDiffnet for data coming from RTE-based propagation and in presence of noise.

Analogously to what done with FEM, we present in Figure 7.19 the results of the application on

Dataset ⟨MC, 1, 0.5, 107⟩, Dataset ⟨MC, 1, 0.5, 106⟩ and Dataset ⟨MC, 1, 0.5, 105⟩ with 6 × 6 ma-

trices of samples. To display all three level of noise simulated in a compact visualisation, we change

Nph every two rows of these matrices, from 105 to 107 from top to bottom. As expected from the

results for group FEM, TD0 has the worst performances, with an l2-error of circa 0.8 for all levels

of noise. TD3 results to be the most affected by the noise in the image as it returns visually sharper

images as the noise is reduced. This has repercussions on the behaviour of the l2-error that goes

from 0.79, close to TD0, to 0.7 as the noise is reduced. On the other hand, the sharpness of the

outputs of TD1, TD2 and U does not seem to be affected by the noise of the input. However, it can

often be observed that not all features of the targets are reproduced in the reconstructed images. An

example is the result in position (1, 1). Such errors are less frequent with lower noise. This can be

observed with the performances of the respective l2-errors that decrease of circa 0.11 from higher to

lower amount of noise. We note that this decrease is of the same order of magnitude as that observed

for TD3.

The behaviour of the l2-error and SSIM for the datasets displayed in Figure 7.19 can be found

in Figure 7.20. The l2-error over noise presents small changes for TD0 depending on Nph. All other

networks present a linear improvement of the performances of circa 0.1 in the l2-error with respect

to the increase of two order of magnitude of Nph. With all levels of noise TD3 performs better than

TD0. The increase is steeper for the SSIM of the results obtained with TD3.

A partial explanation to the stronger dependence of TD3 on noise can be found in the way the

acquisition is performed. This is stopped once the sum of the photon counts on all detectors reaches

Nph. Thus, for c(f) the mean photon count per detector carrying signal is lower than the one for

u(f).
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(a) Inputs (b) Targets

(c) TD0 (d) TD1 (e) TD2

(f) TD3 (g) U

Figure 7.19: Overview of results for datasets in MC group with µ̄ = 1 mm−1 and p =

0.5. Results are arranged in matrices of 6 × 6 samples and Nph is changed every two

rows. From top to bottom, the first two rows present results for Nph = 105, the third

and fourth for Nph = 106 and the last two for Nph = 107. (a): Samples of u
(0)
n

for datasets from MC group with µ̄′
s = 1 mm−1 and p = 0.5. (b): Samples of tar-

get reconstruction. (c): Results for TD0. l2-error = 0.81 (0.059), 0.8 (0.058), 0.8 (0.057),

SSIM = 0.56 (0.022), 0.56 (0.022), 0.57 (0.022). (d): Results for TD1. l2-error =

0.51 (0.092), 0.45 (0.084), 0.38 (0.076), SSIM = 0.88 (0.034), 0.91 (0.028), 0.93 (0.021).

(e): Results for TD2. l2-error = 0.49 (0.085), 0.45 (0.075), 0.38 (0.071), SSIM =

0.89 (0.032), 0.91 (0.028), 0.93 (0.021). (f): Results for TD3. l2-error = 0.79 (0.066),

0.77 (0.078), 0.7 (0.094), SSIM = 0.59 (0.035), 0.66 (0.046), 0.76 (0.041). (g): Results

for U. l2-error = 0.49 (0.098), 0.45 (0.084), 0.4 (0.075), SSIM = 0.84 (0.037),

0.85 (0.034), 0.87 (0.026).
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Figure 7.20: Dependence of networks performance on Nph for MC datasets with µ̄ = 1 mm−1 and

p = 0.5. (a): Plot of l2-error with respect to Nph. (b): Plot of SSIM with respect to Nph.

In Figure 7.21 we report, for completeness, the behaviours of the nets with respect to p in the

case of µ̄′
s = 1 and Nph = 106. TD1, TD2 and U show similar l2-error for all ps considered.

However, SSIM highlights a better performance for TDiffnet with respect to U. With this level

of noise TD3 still performs better than TD0.
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Figure 7.21: Dependence of networks performance on p for MC dataset with µ̄ = 1 mm−1 and

Nph = 106. (a): Plot of l2-error with respect to p. (b): Plot of SSIM with respect to p.

One of the features of Diffnet and TDiffnet is the possibility to retrieve partially inter-

pretable insights on the deconvolution process operated by the network. We show here some test

cases from Dataset ⟨MC, 1, 0.5, 106⟩.

In Figure 7.22 we give an example for what regards TD0. As can be seen no particular feature

of u(0) can be observed in the meta-weights ζ̃i. No strong differences in the applied stencils can be
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observed between layers either.

On the other hand, the meta-weights ζ̃i for TD1, displayed in Figure 7.23, show to be largely

dependent on the current state u(k). As conjectured, each layer of the net operates a partial decon-

volution on the image that results to be sharper after each layer.

We show in Figure 7.24 a test case for TD2. With respect to the other implementations of

TDiffnet, a stronger interpretability of the output of the estimator network is possible as a diffu-

sion tensor ζ and an absorption term µ. In particular, the absorption term µ(k) highlights some of

the features that are present in the (k + 1)th layer. It can be seen how, from the second layer on, the

off-diagonal components of the diffusion tensor play an important role in the deconvolution, thus

assessing the importance of a tensorial diffusion process for the problem at hand. As with TD1 a

clear deconvolution trend, from blurred to sharp image is visible after each layer.

Finally, in Figure 7.25, we show an example of deconvolution procedure for TD3. To both

c(k) and u(k) is applied the same stencil, obtained from the estimator network starting from c(k−1).

While the stencils vary with each layer, high noise prevents a proper deconvolution to a sharp image.

We note that c(k) does not get closer to the chequerboard target shown in Figure 7.12(i) after each

layer.

In Table C.2, we display all the reconstruction l2-errors and SSIM scores for group MC.

The same results, for what concerns the l2-errors and SSIMs, are also visually represented in the

heatmaps in Figure 7.26 and Figure 7.27 respectively. All networks present lower errors for small

ps, as expected. As with FEM, the relative error performances with respect to µ̄′
s, for fixed noise,

roughly follows the behaviour of the FWHM of the relative Green function in Figure 7.10, with

higher errors given for µ̄′
s = 1 mm−1. TD0 and TD3 present the largest errors, which are compara-

ble for Nph = 105. However, results for TD3 have a better quantification for higher photon counts.

As expected, the error increases with noise. As with the FEM simulations, TD2 appears to be, in

average, the most fit for the task of blind deconvolution even though by a small margin. This is best

seen when considering the quantification by SSIM.
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Figure 7.22: Overview of layer outputs and Laplacian operators for TD0 applied to a sample of

Dataset ⟨MC, 1, 0.5, 106⟩. A learned operator L(0)
ζ is applied to the input image u(0) to obtain u(1).

The procedure is repeated for a total of 5 times, after which the non-linearity in Equation (7.13) is

applied to u(5) to get the final result u(out). Due to the structure of the network, no dependence of

L
(k)
ζ on u(k) is observed. We show the target image utruth for comparison. The result of the network

presents few details of the target image.
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Figure 7.23: Overview of layer outputs and Laplacian operators for TD1 applied to a sample of

Dataset ⟨MC, 1, 0.5, 106⟩. A mapping k(0) from the input image u(0) to the Laplacian L
(0)
ζ is oper-

ated. The latter is then applied to u(0) to get u(1). The procedure is repeated for a total of 5 times,

after which the non-linearity in Equation (7.13) is applied to u(5) to get the final result u(out). We

note how L
(k)
ζ is dependent on u(k). We show the target image utruth for comparison. The result of

the network is a sharp image which resembles the target.
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Figure 7.24: Overview of layer outputs and Laplacian operators for network TD2 applied to a sample

of Dataset ⟨MC, 1, 0.5, 106⟩. A mapping k(0) from the input image u(0) to a tensorial diffusion ζ(0)

and absorption coefficient µ(0) is operated. The update in Figure 7.5 is then applied to obtain the

Laplacian operator L(0)
ζ and the update step to get u(1) from u(0). The procedure is repeated for a

total of 5 times, after which the non-linearity in Equation (7.13) is applied to u(5) to get the final

result u(out). We note how ζ(k) and µ(k) are dependent on u(k). In particular, µ(k) is shown to

highlight the features of the target that are propagated in the next layer. We show the target image

utruth for comparison. The result of the network is a sharp image which resembles the target.
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Figure 7.25: Overview of layer outputs and Laplacian operators for TD3 applied to a sample of

the Dataset ⟨MC, 1, 0.5, 106⟩. A mapping k(0) from the input image c(0) to the Laplacian L
(0)
ζ is

operated. The latter is then applied to the input image u(0) to get u(1). The procedure is repeated for

a total of 5 times, after which the non-linearity in Equation (7.13) is applied to u(5) to get the final

result u(out). We note how L
(k)
ζ is dependent on c(k), but not on u(k). We show the target image

utruth for comparison. The result of the network is noisy, but presents some features of the target

such as the central hole which is faint in u(0).
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(f) TD0, Nph = 106
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(i) TD3, Nph = 106
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Figure 7.26: Overview of performances of the proposed networks by heatmaps of l2-error for µ̄′
s

and p for datasets in MC group. µ̄′
s increases from left to right while p from bottom to top. Each

row of heatmaps presents a different photon count from 105 (top) to 107 (bottom). Each column

represents a different network used for reconstruction, from left to right: TD0, TD1, TD2, TD3,

U. (a): l2-error(µ̄′
s, p) heatmap for TD0, Nph = 105. (b): l2-error(µ̄′

s, p) heatmap for TD1, Nph =

105. (c): l2-error(µ̄′
s, p) heatmap for TD2, Nph = 105. (d): l2-error(µ̄′

s, p) heatmap for TD3,

Nph = 105. (e): l2-error(µ̄′
s, p) heatmap for U, Nph = 105. (f): l2-error(µ̄′

s, p) heatmap for TD0,

Nph = 106. (g): l2-error(µ̄′
s, p) heatmap for TD1, Nph = 106. (h): l2-error(µ̄′

s, p) heatmap for

TD2, Nph = 106. (i): l2-error(µ̄′
s, p) heatmap for TD3, Nph = 106. (j): l2-error(µ̄′

s, p) heatmap for

U, Nph = 106. (k): l2-error(µ̄′
s, p) heatmap for TD0, Nph = 107. (l): l2-error(µ̄′

s, p) heatmap for

TD1, Nph = 107. (m): l2-error(µ̄′
s, p) heatmap for TD2, Nph = 107. (n): l2-error(µ̄′

s, p) heatmap

for TD3, Nph = 107. (o): l2-error(µ̄′
s, p) heatmap for U, Nph = 107.
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Figure 7.27: Overview of performances of the proposed networks by heatmaps of SSIM for µ̄′
s

and p for datasets in MC group. µ̄′
s increases from left to right while p from bottom to top. Each

row of heatmaps presents a different photon count from 105 (top) to 107 (bottom). Each column

represents a different network used for reconstruction, from left to right: TD0, TD1, TD2, TD3, U.

(a): SSIM(µ̄′
s, p) heatmap for TD0, Nph = 105. (b): SSIM(µ̄′

s, p) heatmap for TD1, Nph = 105.

(c): SSIM(µ̄′
s, p) heatmap for TD2, Nph = 105. (d): SSIM(µ̄′

s, p) heatmap for TD3, Nph = 105.

(e): SSIM(µ̄′
s, p) heatmap for U, Nph = 105. (f): SSIM(µ̄′

s, p) heatmap for TD0, Nph = 106.

(g): SSIM(µ̄′
s, p) heatmap for TD1, Nph = 106. (h): SSIM(µ̄′

s, p) heatmap for TD2, Nph = 106.

(i): SSIM(µ̄′
s, p) heatmap for TD3, Nph = 106. (j): SSIM(µ̄′

s, p) heatmap for U, Nph = 106.

(k): SSIM(µ̄′
s, p) heatmap for TD0, Nph = 107. (l): SSIM(µ̄′

s, p) heatmap for TD1, Nph = 107.

(m): SSIM(µ̄′
s, p) heatmap for TD2, Nph = 107. (n): SSIM(µ̄′

s, p) heatmap for TD3, Nph = 107.

(o): SSIM(µ̄′
s, p) heatmap for U, Nph = 107.
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Assessments in Reflectance Geometry

We present here a proof of concept for the application of the proposed networks for data obtained

with a reflectance geometry, as this circumstance is closer to the underlying phenomenon in DOCM.

Still considering a cuboid domain Ω, a source - or a set of sources - is placed on the boundary ∂Ω(m).

Light is measured by an array of detectors placed on the same boundary. The optical coefficients in Ω

are assumed to have a three-layer structure with the middle layer being much smaller than the other

two. We consider the absorption coefficient to be time-dependent in its middle layer, alternating

between two states µ(l)
a 0 and µ

(l)
a 1. This is analogous to the concept of the model underlying DOCM

and depicted in Figure 1.5. Upon a specific task, the haemodynamics of the brain is considered

to change in the cortex, affecting the light absorption there, while keeping the rest of the optical

properties of the surrounding regions constant. Finally, given a set of measurements at the boundary,

the aim is to reconstruct the change in absorption dµ
(l)
a in the middle layer due to a change of state.

Definition of Forward and Inverse Problem in Reflectance Geometry. The forward problem for

the reflectance geometry is defined as follows:

Definition 7.4.1 (Forward problem: imaging in reflectance through turbid media) Let there

be a bounded medium in Ω characterised by an unknown reduced scattering coefficient

µ′
s(r), r ∈ Ω and two possible states for the absorption coefficient µa0(r) ≪ µ′

s(r), r ∈ Ω and

µa1(r) ≪ µ′
s(r), r ∈ Ω. Let furthermore µa0(r)− µa1(r) have support over a plane P(l) so that:

µa0(r)− µa1(r) :=

− dµa
(l) on P(l)

0 elsewhere.

Given a set time-independent source of photons Q
(i)
s , s = 1, . . . ,NQ with support on a surface

∂Ω(m), find the difference of the exitances u(f,s,0) and u(f,s,1) at the surface ∂Ω(m) due to a change

of absorption −dµ
(l)
a for a source s. We define a propagation operator Aµ′

s,s
and a difference

propagation operator Ãµ′
s,s such that:

u(f,s,0) − u(f,s,1) = Aµ′
s,s
(µa0)−Aµ′

s,s
(µa1) =: Ãµ′

s,s

(
dµa

(l)
)
. (7.15)

The definition of the inverse problem follows as:

Definition 7.4.2 (Inverse problem: imaging in reflectance through turbid media) Let there be a

bounded medium in Ω characterised by an unknown reduced scattering coefficient µ′
s(r), r ∈ Ω

and two states of the absorption coefficient µa0(r) and µa1(r) as defined above. Given the mea-

sured exitances u(f,s,0) and u(f,s,1) at a surface ∂Ω(m) due to the two states of absorption, find the

corresponding change of absorption on the plane P(l) such that Equation (7.15) holds.

Simulations and Considerations on Application of the Networks to the Data. Simulations were

performed with Monte-Carlo, using the software mcx [106]. Two case datasets were simulated:
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1. One with a single planar source Qplanar
1 with support over ∂Ω(m);

2. One with a set Qpoint
s of 9 point-like sources evenly placed over a square of side 45 mm, which

is in turn placed in the centre of ∂Ω(m).

For both cases simulations were performed on a domain of 60 × 60 × 20 mm with cubic voxels of

side 1 mm and time stepping as in Section 7.4.1. The domain was subdivided in two layers of 10

mm each. The layer farther from ∂Ω(m) presented an homogeneous scattering µ′
s and absorption

µa0 of 4 mm−1 and 0.01 mm−1 respectively. For each simulated sample, the scattering properties of

the layer closest to ∂Ω(m) were assigned with the method presented in Section 7.4, with parameters

µ̄′
s = 1 mm−1, p = 0.5, lcorr = 15 mm. The absorption µa0 was chosen to be 0.01 mm−1. The

change in the absorption dµ
(l)
a in P(l) was simulated in a layer of depth 1 mm placed between 10 mm

and 11 mm from ∂Ω(m). Here the scattering was kept equal to 4 mm−1. As with the simulations in

Section 7.4.1, dµ(l)
a was extracted from the EMNIST dataset. Given a EMNIST sample:

dµa
(l) =

0.59 mm−1 if EMNIST sample ≥ 0.5

0 if EMNIST sample < 0.5.

Simulations were launched for both statuses of the absorption until the difference in the recorded

photons for each simulated source reached 2 × 109. For both datasets a total of 1200 samples were

simulated, divided for training, validation and testing as for the datasets in Table 7.3.

As mentioned, the first dataset was acquired from a single planar source Qplanar
1 defined over

∂Ω(m). The application of the methods presented in Section 7.3 to this simulated dataset was

straightforward by inputting, for each simulated sample, the max-normalised differential exitance

u
(0)
n := u

(f,1,0)
n − u

(f,1,1)
n . The target image was set to be the max-normalised dµa

(l)
n used in sim-

ulation. Finally, an average value u
(f,1,0)
train of all u(f,1,0)

n in the training dataset was calculated. The

reference input for TD3 was then taken to be the max-normalised c(0) := u
(f,1,0)
n − u

(f,1,0)
train .

The application of TDiffnet and U-net to the second dataset was analogous. The extra

dimension of the samples given by the multi-source approach was treated by increasing the channel

dimensions of the input to Ns. An example of the target and input data for this dataset can be seen in

Figure 7.28. As mentioned in Figure 7.7 and Figure 7.8, the number of input channels for each K
(k)
Θ

could be modified accordingly. After the core of TDiffnet, the results were summed over the

channel dimension and fed into the final non-linearity of Equation (7.13) to obtain the final output.
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Target := dµa
(l)
1

u
(f)
1 := u

(f,s,0)
1 − u

(f,s,1)
1

s = 1 s = 2 s = 3

s = 4 s = 5 s = 6

s = 7 s = 8 s = 9

Figure 7.28: Target image dµa
(l)
1 and input image u(0)

1 := u
(f,s,0)
1 −u

(f,s,1)
1 in the case of reflectance

dataset with many point-like sources. We note that u(f)
1 in this case is composed by a set of Ns

images - each due to a source Qpoint
s - which are concatenated along the channel dimension in order

to be inputted to the proposed networks.
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Results. In Figure 7.29, we show a sample of the results obtained on the first dataset with planar

source. Even though the data was generated in a reflectance geometry, the results are in line with the

other test cases presented for the transmission. TD0 still presents the worst performances with an

l2-error of 0.81. Quantification of TD3 suggests an improvement in the reconstructions, but images

are still qualitatively lacking, with an l2-error of 0.71. TD2, TD1 and U have all comparable

performances with l2-error= 0.44 and are able to reconstruct visually sharp and detailed images

also in this scenario. Differences in the quantification can be observed considering the SSIM which

results to be of 0.92, 0.91, 0.88 for TD2, TD1 and U respectively.

(a) Inputs (b) Targets

(c) TD0 (d) TD1 (e) TD2

(f) TD3 (g) U

Figure 7.29: Overview of results for Monte-Carlo dataset in reflection simulated with single pla-

nar source Qplanar
1 . (a): Samples of u

(0)
n from first dataset in reflectance. (b): Samples of tar-

get reconstruction. (c): Results for TD0. l2-error = 0.81 (0.060), SSIM = 0.42 (0.033).

(d): Results for TD1. l2-error = 0.44 (0.076), SSIM = 0.91 (0.021). (e): Results for TD2.

l2-error = 0.44 (0.072), SSIM = 0.92 (0.024). (f): Results for TD3. l2-error = 0.71 (0.087),

SSIM = 0.68 (0.042). (g): Results for U. l2-error = 0.44 (0.076), SSIM = 0.86 (0.025).

In Figure 7.30, we present a set of results obtained on the second dataset in reflection, obtained
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with a set of 9 point-like sources. In general, an improvement in the quantification of the results can

be observed with respect to the previous dataset, which featured the same optical properties for the

propagation media. TD1 is observed to perform better than TD2 and U with both l2-error, which is

0.35 with respect to 0.37 of the other two, and SSIM, which is 0.95, higher of 0.01 and 0.05 than

the ones of TD2 and U respectively. However, all three networks are qualitatively shown to be able

to reconstruct with fine detail most of the target images.

(a) Targets (b) TD0 (c) TD1

(d) TD2 (e) TD3 (f) U

Figure 7.30: Overview of results for Monte-Carlo dataset in reflection simulated with many

point-like sources Qpoint
s . An example of how the input images look like can be found in

Figure 7.28. (a): Samples of target reconstruction. (b): Results for TD0. l2-error = 0.80 (0.058),

SSIM = 0.57 (0.019). (c): Results for TD1. l2-error = 0.35 (0.069), SSIM = 0.95 (0.017).

(d): Results for TD2. l2-error = 0.37 (0.059), SSIM = 0.94 (0.018). (e): Results for TD3.

l2-error = 0.68 (0.079), SSIM = 0.67 (0.045). (f): Results for U. l2-error = 0.37 (0.079),

SSIM = 0.90 (0.028).

7.4.3 Experimental Data

For what regards imaging through turbid media, a validation on real-world data was performed on

three datasets gathered experimentally. Three different types of propagation media were considered:

• Emulsions of Milk in Water;

• Emulsions of Talc in Gelatin;

• Combinations of Polyvinyl Alcohol (PVA) Phantoms.

Each type was selected to assess the ability of TDiffnet to operate a blind deconvolution from
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a source diffused via different processes of photon propagation as per Test A, B and C described in

Section 7.4.

Emulsions of Milk in Water

Emulsions of milk in water were chosen as homogeneous propagation media, i.e. for Test A. Whole

milk was poured in a fish tank filled with water of depth 3 cm. After the acquisition of a dataset

( MILK 1), more milk was poured and a second acquisition was taken ( MILK 2). Each dataset

acquisition consisted of the procedure described in Algorithm 9.

Algorithm 9 Acquisition: EXP1 and EXP2

1: Initialise setup

2: Insert propagation medium

3: for n ∈ {1, 2, 3, · · · , N} do ▷ Acquisition of Data

4: Project EMNIST sample u
(i)
n

5: Acquire picture of u(f)
n

6: end for

7: Remove propagation medium ▷ Acquisition of Ground Truth

8: for n ∈ {1, 2, 3, · · · , N} do

9: Project EMNIST sample u
(i)
n

10: Acquire picture of u(i)
n

11: end for

We refer to the set of phantoms acquired in this fashion with the name EXP1.

A sample of the results can be seen in Figure 7.31: the change in the concentration of milk

changes the diffusion of the propagation medium, but its optical properties can be considered homo-

geneous.

Tag u
(i)
1 u

(f)
1

MILK 1

MILK 2

Figure 7.31: Examples of images obtained in datasets from group EXP1. This group of experimental

datasets was selected for Test A.
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Emulsions of Talc in Gelatin

Both the emulsion of talc in gelatin and the PVA phantoms were chosen because of the possibility

to introduce stable heterogeneities in their optical properties. Geloglass (https://products.p

regel.com.au/pgau/geloglass-fruit-finish.html ) is a jelly-like material that

after a short heat-up, e.g. in a microwave oven, becomes mechanically stable for long enough as to

allow for the acquisition of a dataset with Algorithm 9. To get spatially varying optical properties,

more emulsions with different concentrations of talc in Geloglass were heated-up and put in the

same container right before solidification. The result is a propagation medium with spatially varying

optical properties. Three phantoms of Geloglass and talc were selected. This set of phantoms - to

which we refer to as EXP2 - was used to assess the performances of TDiffnet with Test B.

In Figure 7.32, we show results of the acquisition. As can be seen, diffused samples are highly

dependent on the heterogeneities in the propagation medium, which are fixed in space with respect

to the position of the source. Resulting images present high distortion of the input source.

Tag u
(i)
1 u

(f)
1

TALC 1

TALC 2

TALC 3

Figure 7.32: Examples of images obtained in datasets from group EXP2. This group of experimental

datasets was specifically selected for Test B.

Combinations of PVA Phantoms

Polyvinyl Alcohol is a polymer often used in pharmaceutical and biomedical fields [248]. The neces-

sary mechanical stability of the material can be obtained by physical cross-linking: in this procedure,

an aqueous solution of PVA is made undergo a series of freezing and defreezing (or freeze-thaw) cy-

cles [249]. After each Freeze-Thaw cycle (FT) the rigidity and stability of the medium increase, thus

allowing to have a self-sustaining material in the form of rigid-gel. As PVA becomes more rigid, also

a concomitant change in its turbidity can be observed. Optical scattering is shown to increase after

every FT, thus allowing to fine tune the FTs in order to obtain phantoms with the desired average

https://products.pregel.com.au/pgau/geloglass-fruit-finish.html
https://products.pregel.com.au/pgau/geloglass-fruit-finish.html
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scattering properties [248]. The optical scattering of the resulting material is not spatially homoge-

neous and a ”marbling” effect can be observed. An example of how a phantom looks can be seen in

Figure 7.33.

Figure 7.33: A4 slab of PVA material of 5 mm depth obtained after 1 FT. It can be seen how

the material is characterised by spatially inhomogeneous optical properties. Courtesy of Efthymios

Maneas (UCL).

Mechanical stability, tunability of scattering through FTs and presence of inhomogeneities al-

lowed us to select PVA as a suitable phantom material for an experimental assessment of TDiffnet

with Test C. We consider here the procedure for the fabrication of photoacoustic phantoms described

in [249, 250, 251]. The phantoms were provided by Dr. Efthymios Maneas, senior research fellow

at the Department of Medical Physics and Biomedical Engineering at UCL, who also collaborated

on the acquisition of the experimental data. Briefly, the PVA solution was made of 10% PVA crystal

powder with deionised water, which was mechanically mixed at 90◦C for 1 h. The PVA solution was

then allowed to cool down in room temperature and it was then used for casting to create two PVA

slabs. Laser cut acrylic moulds of 5 mm thickness were used to cast the PVA solution and 0.5% solid

glass spheres were added and manually mixed to provide acoustic backscattering. Finally, the PVA

slabs were placed in the freezer for 12 h and then, they were allowed to thaw at room temperature for

another 12 h to complete a FT cycle. The acoustic properties of such phantoms were regulated by

the addition of glass spheres in the solution of PVA. The acoustic backscattering of such phantoms

can be altered with the addition of solid glass spheres in the PVA solution, while the acoustic atten-

uation can be increased with the increasing number of FT cycles [252]. We note that such procedure

does not influence the optical properties of the medium [139]. After a first set of measurements was

performed, one of the PVA slabs underwent a second FT. The mechanical properties of PVA phan-
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toms also allowed to have layered propagation media. In Table 7.4, we display how the 2 PVA slabs

mentioned in the above were combined in 4 different propagation media with relative tag names.

Tag Layer 1 Layer 2

PVA 1 1 FT - 5 mm -

PVA 2 1 FT - 5 mm 1 FT - 5 mm

PVA 3 2 FT - 5 mm -

PVA 4 2 FT - 5 mm 1 FT - 5 mm

Table 7.4: Table of PVA propagation media. Each phantom is characterised by the number of Freeze-

Thaw cycles it underwent, and by its thickness. The effects of propagation for each of the phantoms

can be seen in Figure 7.38.

PVA phantoms allowed to run a final assessment on the qualities of TDiffnet, such as its

behaviour in presence of random heterogeneities i.e. Test C. An experimental setup, as the one

shown in Figure 7.34, was utilised for the acquisition of data: a propagation medium was placed

on a screen while projecting input images from the EMNIST dataset [246]. A camera was placed

above both objects in order to take pictures of the source after diffusion. After that, the phantom was

removed and acquisition of the ground truth was performed. The implemented experimental setup

was suitable for the generation of datasets for Test A and B, for all three types of propagation media

proposed.

The generation of a dataset featuring random heterogeneities for Test C was performed by

changing, for each sample, the area of the screen where the source was projected, thus probing

different parts of the PVA phantoms. We display a scheme of the principle in Figure 7.35. A first

EMNIST sample u
(i)
1 is projected through a portion of the phantom ( PVA 3 in the picture ) to

acquire the corresponding u
(f)
i . The acquisition of the second sample is performed by projecting

u
(i)
2 on another region of the phantom. The two regions were chosen to be partially overlapping.

u
(f)
2 will be the result of propagation of the source through a medium with different heterogeneities

with respect to the u
(f)
1 sample. The procedure is repeated for each input-output couple (u

(i)
n , u

(f)
n )

in the dataset.

In order to keep track of the movements over the screen, we made use of the reference mea-

surement c(i), initially devised for TD3 in Section 7.3.4. In particular, we chose c(i) to be the one in

Figure 7.12(i), thus allowing to have a spatial reference when no propagation medium was in place.

A background acquisition was also performed to remove undesired light sources. The acquired

image was then subtracted from the final acquisition to obtain u
(f)
n . An overview of the quality of

the images taken during acquisition is shown in Figure 7.36.

In Algorithm 10 at Page 170, we describe the acquisition procedure step by step.

The implemented setup and followed algorithm could be used to generate suitable datasets for
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Figure 7.34: Setup of the experiment. A EMNIST sample is projected on a display, placed under a

phantom. The sample acts as a source of photons undergoing propagation in a turbid medium ( PVA

3). The diffused sample is then acquired by a camera placed on top of the phantom. Left: Physical

modellisation of the experiment. Centre: Schematics of the experimental setup. Right: Final ex-

perimental setup with phantom PVA 3. Courtesy of Efthymios Maneas (UCL).

u
(f)
1 u

(f)
2 . . . u

(f)
n

Figure 7.35: Schematic of the acquisition of data by probing different portions of the medium.
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(a) (b) (c)

(d) (e) (f)

Figure 7.36: Example of acquisition with background subtraction. Samples u
(i)
n and c(i) are pro-

jected from a screen. One picture of u(f)
n and c

(f)
n are taken respectively, together with background

due to ambient illumination, particularly visible on the right-hand side of the images. The back-

ground is then subtracted to obtain the final diffused samples. (a): u(i)
n . (b): u(f)

n with background.

(c): u(f)
n . (d): c(i). (e): c(f)n with background. (f): c(f)n .

Algorithm 10 Acquisition: EXP 3

1: Initialise setup

2: Insert phantom

3: Acquire background

4: for n ∈ {1, 2, 3, · · · , N} do ▷ Acquisition of Data

5: Select projection region n in screen

6: Project chequerboard c(i)

7: Acquire picture of c(f)n

8: Project EMNIST sample u
(i)
n

9: Acquire Picture of u(f)
n

10: end for

11: Remove Phantom ▷ Acquisition of Ground Truth

12: for n ∈ {1, 2, 3, · · · , N} do

13: Select projection region n in screen

14: Project chequerboard c(i)

15: Acquire picture of c(i)n

16: Project EMNIST sample u
(i)
n

17: Acquire picture of u(i)
n

18: end for
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Test C i.e. a relation 1 to 1 was established between the projected source and its propagation medium.

This is shown in Figure 7.37, where we present a subset of the results c(f)n of the propagation of c(i)

over different portions of Phantom PVA 3. As can be seen each c
(f)
n , even though originating from

the same source, presents unique features due to the propagation through a specific region of the

phantom.

(a) c(f)607 (b) c(f)672 (c) c(f)707 (d) c(f)777 (e) c(f)779

Figure 7.37: Samples of diffused chequerboards c
(f)
n after transmission through different regions

of phantom PVA 3 following Algorithm 10. The same input c(i) is used as source, however, the

respective outputs c(f)n present different features, depending on the nth region of PVA 3 selected for

propagation.

The described acquisition was performed on all the phantoms defined in Table 7.4, thus gener-

ating a group of datasets, which we refer to as EXP3.a. In Figure 7.38, we show samples for this

group of datasets. As can be seen, distortions of the input image in phantoms increases from PVA 1

to PVA 4.

As a last assessment an acquisition of data aimed at evaluating the performances of TDiffnet

with respect to the average size of the heterogeneities. For this, two groups of datasets - EXP3.b and

EXP3.c - were acquired, with propagation media PVA 3 and PVA 4. With respect to the previously

described acquisitions, for each dataset a different size of u(i)
n with respect to the dimensions of the

heterogeneities was selected. For each selected propagation medium, a total of 6 sizes of u(i)
n - from

S1 to S6 - were used for acquisition. Samples from datasets in EXP3.b and EXP3.c and relative

tag names are respectively shown in Figure 7.39 and Figure 7.40. We note that for both groups of

datasets the recorded images result more blurred and noisier as the relative size of the input with

respect to the phantom decreases.
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Tag u
(i)
1 u

(f)
1 c

(f)
1

PVA 1

PVA 2

PVA 3

PVA 4

Figure 7.38: Example of images obtained in datasets from group EXP3.a for Test C. The composition

of each propagation medium can be found in Table 7.4. Each dataset of the group was acquired by

propagating EMNIST samples through different portions of the medium at each time. This obtained

the effect of assigning a unique propagation medium to each projected sample.
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Tag u
(i)
1 u

(f)
1 c

(f)
1

S1

S2

S3

S4

S5

S6

Figure 7.39: Example of images obtained in datasets from group EXP3.b for Test C. Each dataset of

the group was acquired by propagating EMNIST samples through different portions of the phantom

PVA 3 at each time. This obtained the effect of assigning a unique propagation medium to each

projected sample. Each dataset features a characteristic size of the projected source with respect to

the size of the phantom heterogeneities. Dataset S1 has the larger projection size with respect to the

phantom.
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Tag u
(i)
1 u

(f)
1 c

(f)
1

S1

S2

S3

S4

S5

S6

Figure 7.40: Example of images obtained in datasets from group EXP3.c for Test C. Each dataset

of the group was acquired by propagating EMNIST samples through different portions of Phantom

PVA 4 at each time. This obtained the effect of assigning a unique propagation medium to each

projected sample. Each dataset features a characteristic size of the projected source with respect to

the size of the phantom heterogeneities. Dataset S1 has the larger projection size with respect to the

phantom.
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Overview of the experimental datasets. We divide the experimental datasets in 5 groups:

1. EXP1: It features 2 different concentrations of Whole Milk in Water. Some samples are shown

in Figure 7.31. The group was selected to assess TDiffnet performances on Test A;

2. EXP2: It features 3 different concentrations and spatial distributions of Talc in Geloglass.

Some samples are shown in Figure 7.32. The group was selected to assess TDiffnet per-

formances of Test B;

3. EXP3.a: It features 4 different combinations of PVA phantoms to obtain 4 propagation media

with unique characteristics, as per Table 7.4. The acquisition process was designed to probe

different portion of the material at each projection. The group, for which samples are shown

in Figure 7.38, was selected as part of Test C;

4. EXP3.b: It features 6 datasets obtained with with phantom PVA 3. Each dataset is charac-

terised by the relative size of the projection area with respect to the size of the heterogeneities

in the propagation medium. The acquisition process was designed to probe different portion

of the material at each projection. The group, for which samples are shown in Figure 7.39,

was selected as part of Test C;

5. EXP3.c: It has the same features of group EXP3.b, but was obtained with phantom PVA 4.

The group, for which samples are shown in Figure 7.40, was selected as part of Test C.

A general overview of the properties of each group of datasets, obtained from experiments, can

be found in Table 7.5.
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Group Medium # datasets # samples Test

Train Valid. Test A B C

EXP1 Water+Milk 2 700 175 175 ✓

EXP2 Gelo.+Talc 3 700 175 175 ✓

EXP3.a PVA 4 800 200 200 ✓

EXP3.b PVA 6 800 200 200 ✓

EXP3.c PVA 6 800 200 200 ✓

Table 7.5: Summary of the groups of experimental datasets used for the assessment of the proposed

implementations of TDiffnet. Experimental groups were acquired with the procedures described

in Section 7.4.3 to test the perfomances of TDiffnet with real-world data. Each group aimed at

testing the networks under different photon propagation scenarios. EXP1 and EXP2 were acquired

for Test A and B respectively. Group EXP3.a assessed TDiffnet for Test C with a fixed correlation

length of the heterogeneities in the propagation media. Finally, a study of the dependence of the

performances of TDiffnet on the correlation length of the phantoms’ heterogeneities was made

by means of groups EXP3.b and EXP3.c.

7.4.4 Assessment on Experimental Data

Hereby, we present the results obtained on the experimental data described in Section 7.4.3. As in

Section 7.4.2, the quantification of the performances was obtained by means of l2-error and SSIM.

Assessment on EXP1 and EXP2

A first assessment of the performances on experimental data has been carried on group EXP1. We

display some results for MILK 2 in Figure 7.41. The reconstructions with homogeneously turbid me-

dia have a comparable small l2-error for all networks proposed, apart from TD0; the latter presents

worse reconstructions with respect to the other proposed networks, showing the need for a non-linear

operator to retrieve a suitable Lζ for the inversion of 3D diffusion with a 2D diffusion operator also

for experimental data obtained with an homogeneous propagation medium. In detail, the l2-error

for TD0 was 0.77, while it decreased to 0.24 and 0.25 for TD2 and TD1 respectively. In this case,

the quantification shows an advantage of these two implementations of TDiffnet over U, which

registers an l2-error of 0.33. Complete results obtained for the group in Table C.3.

Also results for Test B, obtained on the group of datasets EXP2, highlight the good quality of

reconstruction with the proposed methods. This is, despite the strong distortions introduced in the

input images due to the heterogeneities in the propagation media. We give a sample of results for

TALC 1 in Figure 7.42. With respect to what has been shown for MILK 2, the l2-errors for TD2,

TD1 and U are all comparable ∼ 0.33. An overview of the quantification for the whole group EXP2

can be found in Table C.4.
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(a) Inputs (b) Targets (c) TD0

(d) TD1 (e) TD2 (f) U

Figure 7.41: Overview of results for Dataset MILK 2 in group EXP1. (a): Samples of u(0)
n for dataset

MILK 2. (b): Samples of target reconstruction. (c): Results for TD0. l2-error = 0.77 (0.064),

SSIM = 0.61 (0.012). (d): Results for TD1. l2-error = 0.25 (0.07), SSIM = 0.96 (0.02).

(e): Results for TD2. l2-error= 0.24 (0.065), SSIM = 0.97 (0.016). (f): Results for U. l2-error =

0.33 (0.062), SSIM = 0.89 (0.022).
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(a) Inputs (b) Targets (c) TD0

(d) TD1 (e) TD2 (f) U

Figure 7.42: Overview of results for Dataset TALC 1 in group EXP2. (a): Samples of u
(0)
n

for Dataset TALC 1. (b): Samples of target reconstruction. (c): Results for TD0. l2-error =

0.75 (0.061), SSIM = 0.68 (0.013). (d): Results for TD1. l2-error = 0.33 (0.066), SSIM =

0.94 (0.023). (e): Results for TD2. l2-error= 0.34 (0.064), SSIM = 0.94 (0.02). (f): Results for

U. l2-error = 0.33 (0.068), SSIM = 0.92 (0.02).
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Assessment on EXP3

Finally, we present here the results on Test C, on groups EXP3.a, EXP3.b and EXP3.c.

We show in Figure 7.43 a sample of results for Dataset PVA 2. All nets were able to operate a

deconvolution of the input image, with TD2, TD1 and U giving comparable reconstructions close

to the target images with l2-error of 0.51. This confirms the assessment given for the simulated

datasets in Section 7.4.2. A certain degree of deconvolution can be observed also for TD3 and TD0.

Between the two, TD3 is shown to have visually sharper images with l2-error of 0.67 with respect

to the one recorded for TD0 (0.7).

(a) Inputs (b) Targets

(c) TD0 (d) TD1 (e) TD2

(f) TD3 (g) U

Figure 7.43: Overview of results for Dataset PVA 2 in EXP3.a. (a): Samples of u(0)
n for Dataset

PVA 2. (b): Samples of target reconstruction. (c): Results for TD0. l2-error = 0.7 (0.06),

SSIM = 0.75 (0.016). (d): Results for TD1. l2-error = 0.51 (0.065), SSIM = 0.84 (0.027).

(e): Results for TD2. l2-error = 0.51 (0.063), SSIM = 0.87 (0.029). (f): Results for TD3.

l2-error = 0.67 (0.063), SSIM = 0.74 (0.018). (g): Results for U. l2-error = 0.51 (0.063),

SSIM = 0.79 (0.028).

In Figure 7.44, we display plots of the l2-error and SSIM of the proposed network for each
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dataset in group EXP3.a. As expected, the l2-error increases as the media are thicker or undergo

more FTs. With respect to Test A and Test B, the performances for Test C result to be degraded for

all network presented. l2-error highlights better performances for TD1, TD2 and U for all phantoms.

U presents a lower l2-error for highly scattering phantoms. However, TD2 results to have higher

SSIM with respect to the other networks for all phantoms, confirming the results obtained on group

MC. Results for TD3 converges to the ones of TD0 for the most scattering media.

In Table C.5, we report the quantification of results for all phantoms in EXP3.a.
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Figure 7.44: Overview of quantification for test obtained on group EXP3.a. (a): Plot of average

l2-error with respect to each phantom in group EXP3.a. (b): Plot of average SSIM with respect to

each phantom in group EXP3.a.

As a last assessment of Test C, we present the results for what regards the change in the relative

size of the heterogeneities of the phantoms with respect to the projected sample. As done throughout

the chapter, we display samples of the results in matrices of 6 × 6. In order to display some results

of all datasets of each group in a compact visualisation, we show results coming from each dataset

in a row of the matrices, from S1 to S6 from top to bottom. We show a sample of the results

in Figure 7.45 and Figure 7.46 obtained on group EXP3.b and EXP3.c respectively. As with the

previous case TD2, TD1 and U qualitatively present the best performances for all datasets with a

limited effect of noise. The success of TD3 with respect to TD0 is limited for datasets with smaller

sizes of the input images with respect to the phantom heterogeneities.

Overviews of l2-error and SSIM for EXP3.b and EXP3.c are shown in Figure 7.47 and

Figure 7.48 respectively. Both figures show the same trends for both groups of datasets. In gen-

eral, performances of all networks decrease with smaller sizes of the inputs. As can be seen, the

performances of TD3 converge to the ones of TD0 for smaller sizes of EMNIST. It can be observed

that TD1 and TD2 have comparable results for all sizes presented. With respect to TD1 and TD2,

U has a larger error for larger sizes of the projected samples S1 and S2, but has a lower error for
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(a) Inputs (b) Targets

(c) TD0 (d) TD1 (e) TD2

(f) TD3 (g) U

Figure 7.45: Overview of results for datasets in EXP3.b. Results are arranged in matrices of 6 × 6

samples and the relative size of the samples with respect to the phantom changes for every row,

from S1 (top) to S6 (bottom). We refer to Table C.6 for the quantification of the results here shown.

(a): Samples of u(0)
n for datasets from EXP3.b. (b): Samples of target reconstruction. (c): Results

for TD0. (d): Results for TD1. (e): Results for TD2. (f): Results for TD3. (g): Results for U.
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(a) Inputs (b) Targets

(c) TD0 (d) TD1 (e) TD2

(f) TD3 (g) U

Figure 7.46: Overview of results for datasets in EXP3.c. Results are arranged in matrices of 6 × 6

samples and the relative size of the samples with respect to the phantom changes for every row, from

S1 (top) to S6 (bottom). We refer to Table C.6 for the quantification of the results here shown. (a):

Samples of u(0)
n for datasets from EXP3.c. (b): Samples of target reconstruction. (c): Results for

TD0. (d): Results for TD1. (e): Results for TD2. (f): Results for TD3. (g): Results for U.
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smaller ones S5 and S6. A possible explanation can be found in the quantity of noise present in the

images obtained from smaller projections. By this hypothesis, U results more reliable in presence

of strong noise with respect to TD1 and TD2 which, however, are more suitable for the problem

in optimal experimental conditions as also shown in the study with Monte-Carlo. Another explana-

tion, consistent with the previous one, might consider the lack of information in the data, which is

suggested from the convergence of the results of TD3 and TD0 for S5 and S6. Thus, the results

would be heavily dependent on the a priori information incorporated in the models, and especially

U, which has more weights. Further validation should be undertaken to explore these statements.

As a last note, we note that the overviews of SSIM in Figure 7.47 and Figure 7.48 show TD2 to be

the network with the best performances for all cases considered. It is followed by TD1, U, TD3 and

TD0. Complete results are shown in Table C.6.
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Figure 7.47: Overview of quantification for test obtained on group EXP3.b. (a): Plot of average

l2-error with respect to each phantom in group EXP3.b. (b): Plot of average SSIM with respect to

each phantom in group EXP3.b.
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Figure 7.48: Overview of quantification for test obtained on group EXP3.c. (a): Plot of average

l2-error with respect to each size in group EXP3.c. (b): Plot of average SSIM with respect to each

size in group EXP3.c.

7.5 Discussion and Conclusions

In this chapter, we introduced the problem of imaging through diffusive media by treating it as a

simplification of DOCM. In Hypothesis 7.3.1, we conjectured that the photon propagation happen-

ing in the forward model could be reversed by a process of time-dependent non-linear diffusion.

Building on the original concept of Diffnet, we proposed four implementations of TDiffnet

(TD0, TD1, TD2, TD3) which we tested against U-net. These were tested on simulations - by

means of Finite Element Method and Monte-Carlo - and on experimental data. The tests aimed at

analysing the performances of TDiffnet with various degrees of intra-dataset variability.

Results on FEM simulations highlighted the suitability of non-linear 2D diffusion to reverse 3D

photon propagation. In particular TD0 resulted to be unsuitable for a correct deconvolution of the

diffused samples. This is true for all of the cases studied.

Results on MC simulations aimed at assessing the performances of the proposed nets: i) in

presence of noise, ii) when the forward model is not purely diffusive. The unsuitability of TD0 was

confirmed for all levels of noise, while the results for TD1, TD2 and U were qualitatively constant,

apart for minor details in the reconstructions. This was highlighted upon quantification. The network

most affected by noise level was TD3, for which the input of higher noise could be observed in less

sharp reconstructions.

As a step towards clinical scenarios, we proposed an application of the networks on Monte-

Carlo simulations of optical data in reflectance. Results with a planar source were in line with

what was obtained in transmission. They showed the possibility to use TDiffnet also in this

scenario. Results with a set of isotropic sources required small modifications of the proposed nets, by
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modifying their input channels and adding a summation over channels before the final non-linearity

for TDiffnet. Reconstructions with TD1, TD2 and U were visually sharp and showed details of

the target images. TD1 was shown to be quantitatively better than TD2 and U.

Finally, the networks were tested on experimental data. Results with group EXP1 showed

how TDiffnet can operate a reconstruction on real-world data. Analogously, EXP2 proved the

suitability of the networks proposed also in presence of strong distortions of the images, provided

that the propagation medium was fixed through the dataset. Testing on datasets from the groups

EXP3.a, EXP3.b and EXP3.c aimed at assessing the performances of non-linear diffusion networks

in presence of varying heterogeneities. Results confirmed the analysis operated on simulations for

EXP3.a. Studies on EXP3.b and EXP3.c showed that for small sizes of the source, an advantage of

U over non-linear networks was suggested. However, this was not confirmed by the quantification

with SSIM, for which TD2 and TD1 still resulted to operate the best reconstructions. Further

studies, e.g. with Monte-Carlo simulations, should ascertain whether the better l2-error of U in

this case derived from a better noise resistance or from a stronger overfitting over the input dataset

i.e. EMNIST.

In general, TD2, TD1 and U had comparable results and could reconstruct fine details for most

of the proposed cases. Upon quantification with l2-error and SSIM, TD2 resulted to be the best

performing net, followed by TD1 and U. It is worthwhile noting that the structure of TD1 should

be able to reproduce exactly the results of TD2. However, this is not observed in the results. A

possible explanation could lie in the lower number of meta-weights used in TD2, which may act

as a regulariser for the network during training. Further studies will need to be undertaken on the

topic. TD0 resulted to be the most unsuitable net. While TD3 had the most general structure, further

studies need to validate its performances with respect to the other networks here proposed. In this

sense, a possible way forward might be the application on data simulated on two different sets of

sources e.g. training with a dataset with EMNIST sources and testing on MNIST or vice versa.

7.6 Clinical Relevance of the Chapter
The chapter is to be intended as a preliminary study on the potentialities of the proposed networks

in DOCM. The clinical relevance of the chapter can be divided by subject as follows:

• Relevance of the theoretical model:

The work here presented is inserted in the wider framework of deep learning applications in

medicine. The theoretical model poses itself as a novel approach for a potentially fast and

more accurate retrieval of brain haemodynamics with respect to the currently used techniques

in DOCM.

• Relevance of the results on simulations:

Simulations are an important benchmark for the preliminary validation of a medical imaging
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technique in absence of real data. The results described in the chapter showed that the pre-

sented methods can be deemed suitable for the reconstruction of optical properties in problems

closely related to DOCM.

• Relevance of the results on experimental data:

Experimental data presented in the chapter gave further insight on the potentialities of the

proposed methodologies with real data. This step was necessary for the validation of the tech-

niques in scenarios without the ideal conditions that are reproduced in simulations e.g. satura-

tion of the camera, background illumination.

• Steps to potential deployment in clinics:

The work presented in the chapter is to be considered exploratory for the application of a set

of novel techniques in DOCM. The steps for a potential deployment in clinics pass from an

in-depth validation of the techniques with data more closely related to the problem of DOCM.

While a part of this could be done on simulations or phantom measurements, validation with

clinical data will require a strategy for a reliable training of the nets in absence of ground truth

values.

7.7 Summary
This chapter presented the progress made towards a possible application of machine learning meth-

ods to DOI. In particular, we derived a set of deep neural networks based on the concept Diffnet

for reversing photon propagation between two surfaces. The next chapter will conclude this thesis

by showing possible research directions and applications originating from the topics and results that

have been presented so far.
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Future Work and Conclusions

This chapter concludes the thesis: i) by indicating possible research directions for the topics that

have been presented, ii) by summarising the main results that have been obtained in this work.

In Section 8.1, we show some possible future works for what regards the SOLUS probe. In

Section 8.2, we explore what future research directions for Diffnet and TDiffnet there might

be. Finally, in Section 8.3, we present a summary of the work and of the key results obtained in this

thesis.

8.1 Future Work for SOLUS
The SOLUS project came to an end in December 2021 and clinical validation is foreseen to end

in 2023 [42, 44]. The novelty of the technology involved has required an intense effort by all con-

tributing partners. From the computational point of view, which this thesis mainly focused on, the

major challenges regarded the implementation of ad hoc techniques without a readily available val-

idation with the probe itself. The problem has been addressed in Chapter 6 in particular, where a

sophisticated pipeline for simulations was adopted. However, the final probe presented complica-

tions that were not foreseen either from simulations or from experimental setups as the one presented

in Chapter 5. For this reason, some of the developed approaches were discarded or modified once

the clinical data with the first SOLUS probe prototype were available. We propose here some of the

possible research topics that can be addressed:

1. Incorporation of SWE and CDU into reconstructions. The simulation and reconstruction

methods presented in this thesis neglected the availability of SWE [253] and CDU images

taken during the clinical exam [254, 255]. Nevertheless, as shown in Chapter 1, both tech-

niques are used as part of a standard SOLUS examination with the aim of giving insight about

the functional properties of probed tissues. Such information can be incorporated in the DOT

reconstructions e.g. with an adequate penalty term in Equation (2.24). A minor modification

of Equation (3.24) such that:

R(f ;χΩ) =
∑
i

Ri(fi;χi,Ω).



188 Chapter 8. Future Work and Conclusions

would allow to design an ad hoc regulariser Ri(fi;χi,Ω) for each entry of f . In the case of

SWE and CDU, the information might be deemed appropriate for the reconstruction of tissues’

components using the spectral model in Equation (3.20). A suitable option might be given by

the regularisation approach followed in [175] for Ri(fi;χi,Ω) with i indexing Hb and HbO2

for CDU and Collagen for SWE [131, 136, 256, 257, 258, 259]. Moreover, these could be

combined with a non-negativity constraint [89] on the reconstructed respective contrasts when

CDU and SWE indicate an increased vascularisation or collagen ( deduced by the stiffness of

tissues) in the lesion.

(a)

(b) (c)

Figure 8.1: Complete Ultrasound examination of Patient 05, presenting a malignant lesion of diam-

eter ∼ 2.2 cm. CDU shows the presence of blood vessels inside the lesion, a sign of malignancy.

Also SWE is consistent with the diagnosis, showing stiffer tissues in the lesion with respect to the

background. (a): US B-mode image. (b): Result of CDU examination. (c): Result of SWE.

2. Sensor Position and Prior Extrapolation. The extraction of a plausible 3D representation

χΩ of the lesion from SOLUS data is one of the major challenges in the adopted strategies

adopted in Chapter 5 and Chapter 6. A possible solution might arise by exploiting a magnetic

3D position sensor which is inserted in the SOLUS probe. With this, we propose to generalise

to 3D the segmentation method presented in Section 5.2.1. The way forward can be chosen
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among many options. We propose here two ideas that could be implemented.

A first simpler approach can be to acquire different sections of the lesion. The orientation

and position of the probed sections would then be related spatially, thanks to the position

sensor. After applying the snake-based segmentation to all of them, the segmentations can be

combined in space by linear interpolation to retrieve the 3D lesion. However, we note that this

approach might require a large number of user inputs.

A second more sophisticated approach may attempt to keep the same user input as the method

in Section 5.2.1. After acquisition of the US B-mode images over various sections of the

lesion, the user is asked to provide an initial rough segmentation of the US image taken along

the plane P of maximum elongation of the lesion. An extrapolation procedure such as the

one based on the distance transform can be used to generate control points in the dimension

orthogonal to P. A 3D spline surface CΩ can then be defined. Following, an appropriate

generalisation of the loss function in Equation 5.2 for the set of B-mode images and CΩ can

be minimised to reach the final 3D segmentation.

3. Use of US imaging for classification. Chapter 6 presented methods for classification of

lesions based only optical reconstructions. This was necessary, as simulated lesion shapes

were assigned to be benign and malignant disregarding their morphological features. How-

ever, the shape of a lesion is strictly correlated to its nature [17] and should be included for

more realistic simulations.

We propose here to ask a clinician to label the generated lesion shapes into benign and malig-

nant beforehand. Simulation parameters of US and TD-DOT will then be chosen accordingly.

Thus, also the US images would carry information about the lesion nature and could be used

as features in a classification method. We note that in this scenario - for which also simula-

tions of US images carry meaningful information on the malignancy of the lesions and are

therefore employed for classification - methods for the generation of CDU and SWE images

should be implemented for completeness of the simulation pipeline. A common approach for

classification would be to generate a contained feature vector from the US images - e.g. via

a CNN - to be concatenated with the features extracted from the optical reconstructions as in

Section 6.1.5.

4. Further testing of ML for prior extraction, ML for regulariser extraction. In

Section 5.2.2, we presented a machine learning algorithm for the generation of plausible 3D

lesion shapes χML
Ω starting from an US slice and an optical reconstruction. In Section 6.2.1,

we provided a first assessment of the technique on simulations. Research for this topic may

proceed on various paths. We mention here a couple of them.

Even though the networks presented in Section 5.2.2 showed good performances in finding
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the optimal shape, further validation is still required on the performances of such priors upon

application for optical reconstruction. Moreover, other networks, such as Generative Adver-

sarial Network [68], might be better suited for the task. So far the ML-extrapolation focused

on finding the ideal χML
Ω to insert in Equation (3.23). Learning regularisers for medical recon-

struction has become a common approach in literature over the last years [260].

• As a first proposal, only the loss function in Equation (5.7) will change as to include a

term accounting for the accuracy of the optical reconstructions, e.g. :

Lµa,µ′
s
= α∥µa

(out) − µtrue
a ∥2 + β∥µ′

s
(out) − µ′

s
true∥2

where α and β are constants and µa
(out) and µ′

s
(out) are obtained via the reconstruction

process in Equation (3.28) with regulariser given by R(f ;χML
Ω ) of Equation (3.23).

• The same addition to the loss function, might direct further advancements at learning a

map from data to a suitable regulariser RΘ(f ;U , µ′
s
recon

, µa
recon), where µ′

s
recon and

µa
recon are again obtained via the minimisation in Equation (3.28) with a 0th order

Tikhonov regulariser. Even though viable, the approach proposed here poses some chal-

lenges, mainly related to the implementation of solvers in commonly used tools for ma-

chine learning e.g. lack of efficient sparse solvers and memory requirements.

5. Correction of the SOLUS measurements and non-linear model in reconstruction. The

smart optode is the first optical component to have condensed a TD-DOT probing and detec-

tion utility in a volume of few cm3 [42]. The novelty of the technology, however, inevitably

brought some unexpected challenges and non-idealities with respect to commonly used exper-

imental setups, as highlighted in Section 6.3.1. In turn, this did not allow to use some of the

most accurate models for optical reconstruction or even to give reliable absolute values for the

optical properties of healthy tissues, as more data more adherent to the theoretical model were

required. This mismatch between the SOLUS measurements ySOLUS(t) and commonly avail-

able experimental ones yexperimental(t) - e.g. obtained on phantoms with the system described

in Section 5.3.1 - can be represented as a distance in data space Y in Figure 2.1. We propose

here to learn a transformation FΘ : Y → Y on ySOLUS such that:∥∥FΘy
SOLUS − yexperimental

∥∥
Y
→ min .

Many learning approaches can be devised for such a goal. Hereby, we suggest a method that

aims at learning FΘ while decoupling the correction on ySOLUS from the optical properties of

the probed materials. We can define map FΘ that depends on the Impulse Response Function

of the SOLUS system IRFSOLUS such that:∥∥FΘ

(
IRFSOLUS

)
∗ ySOLUS − yexperimental

∥∥2
l2
→ min .

The procedure would have two main advantages:
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(a) The mapping would not depend on the nature of the probed materials, but only on the

status of the probe given by IRFSOLUS;

(b) By Equation (3.18) it is possible to define a learned IRFΘ := FΘ

(
IRFSOLUS

)
∗

IRFSOLUS to apply in reconstruction.

We note that advantage (a) is also a hypothesis on the nature of the probe. A training set can

thus be measured by a set of phantom measurements with SOLUS and with the experimental

setup. We note that due to the instability of SOLUS, the same phantom can be measured many

times. A possible implementation for FΘ can rely on one CNN per source-detector couple.

8.2 Future Work on Diffnet and TDiffnet
Diffnet is still at an early stage of its development. In this thesis, we showed how its structure

can be adapted to diffusion problems in 3D, with focus to aspects such as interpretability and gener-

alisability. Its flexibility allows to speculate on further advancements that can be implemented. We

divide here possible future lines of research on Diffnet into two main categories:

1. Advancements on the Net. A set of implementations can still be devised for Diffnet.

Hereby, we list a few and we briefly discuss them.

(a) Diffnet in 3D. Hypothesis 7.3.1 formulated in Section 7.3.1 assumes that a time-

dependent non-linear diffusion could reverse a process of time-independent diffusion

in 3D. However, the structure of Diffnet can also be generalised to account for 3D

diffusion in time, e.g. by Equation (B.1) with a 7 or 27-point stencil for a scalar or tensor

diffusion coefficient respectively [261]. The operated mapping would go from a 3D

image to a 3D image. Assuming a cubic domain, the support of u(0) would be limited

to the top of the cube and the u(out) would have its support at the bottom. In order to

have a non-zero output u(out) a minimum number of layers as thick as the domain would

need to be implemented. We note that this implementation could be suitable also for

TD-DOT.

(b) Addition of a convection term. A convection term can be added to the DE in

Equation (7.3) such that:

d

dt
u(r, t) = ∇ · κ (u(r, t))∇u(r, t) +∇ · β (u(r, t))u(r, t)

The convection term ∇ · β (u(r, t))u(r, t) can be implemented in Diffnet as two

stencil terms representing a derivative for each dimension of the considered domain. The

results of the stencils are then summed. Following the implementation given by TD2,

two more images will be required from the estimation network KΘ. Each of these will

be multiplied by u(k) and a stencil derivative operator will be applied to them. Finally,
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the two resulting images will be summed. We note that this approach might pave the

way to consider new applications for Diffnet.

(c) Generalising the gradient expression. TD0, TD1 and TD3 are stencil-based flavours

of Diffnet, i.e. they aim at updating the image u(k) by learning a Laplacian operator.

However, this strategy mixes the contributions of the diffusion tensor κ and of the ∇ ·∇

operator, making it impossible to decouple the two. The structure of TD2, on the other

hand, only learns κ and consequently calculates the expression for the corresponding

anisotropic Laplacian Lκ. This approach is more coherent with the mathematical for-

mulation of the DE. A further advancement on the implementation of TD2 can aim at

learning a generalised nabla operator NΘ. This could be of use, e.g. when modelling

a mapping between two non-flat surfaces. In two dimensions and using central finite

differences, NΘ can be expressed as a vector of two stencils in the form:

NΘ =



0 0 0

νΘ,x,− 0 νΘ,x,+

0 0 0

0 νΘ,y,+ 0

0 0 0

0 νΘ,y,− 0


,

which allows an expression for its transpose N∗
Θ. Finally, a generalised anisotropic

Laplacian expression can be calculated as:

Lκ = N∗
ΘκΘNΘ.

We note that a further generalisation can be obtained increasing the size of the stencil or

designing NΘ to be a full matrix or an network itself.

(d) Unsupervised Training for TD3. TD3 was presented in Section 7.3.4 as a way to

decouple the information coming from the medium from that coming from the source

u(i). As an expedient, a fixed source term c(i) was propagated through the medium.

TD3 was then trained to obtain the best set of Laplacian operators to apply to u(f) from

c(f), in order to obtain u(i). The main assumption being that the deconvolution operator

only depends on the medium and not on u(i).

A further step might aim at training TD3 to directly output c(i) from any c(f). Training,

in such sense, would resemble a sort of unsupervised learning where attention should be

paid as to avoid that TD3 finds trivial solutions to the problem i.e. the desired output

c(i) should be obtained solely through a diffusive process on c(f). After training, the

Laplacian operators outputted by TD3 should be applied to the actual diffused source

u(f) to obtain u(i).
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(e) Implicit Step and Automatic stop of update. For the implementations of TDiffnet

in Section 7.3.5, the explicit stepping scheme of Equation (7.4) has been adopted. More-

over a fixed number of steps and same number estimator network has been devised. In

principle, a single estimator network K
(k)
Θ can be used to output the ideal Laplacian at

each layer k. We propose here two modifications to TDiffnet for: i) the implementa-

tion of an implicit stepping scheme, ii) an automatic selection of the number of steps.

The use of an implicit stepping scheme can be considered straightforward, but it demands

high computational requirements. These could be reduced by exploiting the properties

of sparse matrices. However, support for sparse matrices is limited in commonly used

machine learning toolboxes such as Tensorflow [230]. In turn, this requires the de-

velopment of adequate tools for an integration of the implicit stepping scheme.

The automatic selection of the number of steps could be implemented in various ways.

We present here an approach that could be followed. We propose to train a net

BΘ(u
(0), u(k), u(k−1)) to recognise when the current layer u(k) is considered to be an

acceptable solution of the net or whether it needs to be updated at least once. We note

that the output of BΘ could not be a binary flag to avoid vanishing gradients.

2. Advancements on the sophistication of simulations. The work in Chapter 7 is a preliminary

feasibility study for the application of TDiffnet for the problem of DOCM. The simulations

with Monte-Carlo are what is numerically closest to the reality of photon propagation, but a

simple model for the medium has been used. Hereby, we hint as the next steps that could be

implemented:

(a) Datasets with random µ̄′
s. The datasets considered in the thesis for the study of

TDiffnet presented a degree of variability in the spatial distribution of the hetero-

geneities in µ′
s, but the average scattering µ̄′

s was fixed to a single value. A further

assessment of TDiffnet for the problem of imaging through diffusive media should

remove this constraint on the single dataset by allowing each of its samples to have a

range of values allowed for µ̄′
s.

(b) Layered geometry and curved surfaces. The introduction of the heterogeneities pre-

sented in Section 7.4 is hardly a correct depiction of the optical variability that can be

found in DOCM. A closer approximation to the path the photons undergo in DOCM is

given by a layered geometry. Taking as reference Figure 1.5(a) a set of tissues can be

simulated e.g. scalp, skull and intracranial fluid. A final step towards realistic simula-

tion will aim at having curved surface interfaces such as the wrinkled one between brain

cortex and intracranial fluid.

(c) Reduction of the number of optodes. The simulations presented so far assumed a

density of detecting optodes of 1
mm2 . This is unrealistic for clinical practices. Thus, a
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smaller set of optodes should be simulated. The effect of such a decrease of data for

reconstruction calls for a partial restyle of Diffnet and the deriving TDiffnet. An

option can be to apply an oversampling operator to the input images. Another possibility

can be to decrease the resolution of the reconstruction.

(d) Multi-wavelength approach. As a last addition to simulations, we propose here to

adapt the simulation method to spectral data e.g. by including a spectral model such as

the one in Section 3.1.3.

8.3 Conclusions
This thesis proposed a set of methods to improve the reconstruction of images in DOI. After giving

a brief theoretical introduction on forward and inverse problems, numerical optimisation, machine

learning, DOT and US, two main problems were studied:

1. The development of methods for simulation, reconstruction and automatic lesion classification

for a multimodal probe for breast screening combining Ultrasound and Time-Domain Diffuse

Optical Tomography;

2. A preliminary study for the introduction of some machine learning methods for imaging

through diffusive media with an outlook for an application in DOCM.

The SOLUS probe was presented in Chapter 1.

In Chapter 5, we defined the reconstruction strategies for the SOLUS probe. A major differen-

tiation was made between strategies incorporating the US information in the optical reconstructions

and those that do not. Two methods for the extrapolation of suitable prior information from US were

presented: DT-extrapolation and ML-extrapolation. These strategies have been assessed on two sets

of experimental data, with dual silicone phantoms in Section 5.3 and meat phantoms in Section 5.4.

At this stage, a linear approach was used. Results obtained with silicone phantoms showed the re-

liability of the DT-extrapolation on the US B-mode image of a cylindrical inclusion. Incorporating

the extrapolated US information into the optical reconstructions showed to be beneficial for a more

accurate quantification of the inclusions’ properties. The results obtained on meat phantoms showed

the suitability of the incorporation of a spectral model in reconstruction too. While no clear benefits

could be assessed for single wavelength absorption reconstructions, the spectral behaviour showed a

resemblance to the nominal one. Benefits in quantification could be observed for scattering instead.

Limitations in the amount of available data were addressed by the use of realistic simulations

in Chapter 6. A sophisticated model for breasts was used as ground truth to simulate the resulting

data for B-mode imaging and photon propagation. Optical properties found in literature were used

as ground truth for the simulated tissues. Results of B-mode imaging simulations showed qual-

itative agreement with features commonly found in real images. These were used to extensively
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assess the DT-extrapolation and ML-extrapolation. DT-extrapolation showed a general volume un-

derestimation of the lesions with respect to the corresponding ground truths. On the other hand,

ML-extrapolation showed promising results to overcome such limits and more studies should be

undertaken to further assess the method. A non-linear optical reconstruction method, based on a

two-region fitting was used to retrieve optical information from the lesions. The two-region separa-

tion was obtained via DT-extrapolation of the simulated US-images. Results showed that in most

of the cases, the quantification is not affected by the contrast between lesion and background, thus

overcoming a limitation of the linear approaches utilised in Chapter 5. Furthermore, the method

allowed classification of lesions from the retrieved optical properties via commonly used machine

learning methods. A maximum classification accuracy of 83.5% was obtained. Finally, a clinical

study with the completed SOLUS probe was presented. The practical issues of the first SOLUS

prototype did not allow for a reliable absolute quantification of the optical properties from the avail-

able measurements. Thus, a linear approach aiming at quantifying optical contrasts was chosen

instead. We note that the results presented are expected to improve with a fully operational probe.

A degree of separation could be observed between benign and malignant lesions, especially when

considering the relative difference in optical properties with respect to the background. A study with

a spectral model showed HbO2 to be the most effective chromophore to identify malignancy. The

study was biased by the low number of samples and the unbalance between benign and malignant

lesions. Nonetheless, a specificity higher than 90% was registered upon classification with Logistic

Regression and SVMs. Further investigation will be needed once that more samples will be gathered.

In Chapter 7, a preliminary study for the application of the Deep Learning Network TDiffnet

was presented. Starting from considerations on DOCM, the underlying problem has been simplified

to that of source reconstruction after propagation through unknown diffusive media. A set of im-

plementations was shown and their performances were compared to that of U-net. Each of the

proposed TDiffnet presented different features. Assessments have been performed on data ob-

tained from 3D diffusion, 3D photon propagation and experimental data. In general, two of the

proposed implementations of TDiffnet, TD2 and TD1 have comparable or better performances

than the ones of the implemented U-net.

Finally, this thesis explored new methods in DOI. It was shown how this imaging modality is

a growing branch of research with interesting approaches that can be developed for improvements

of the related techniques. In general, current trends of research often consider the application of

multimodality and machine learning algorithms as possible advancements in the field. Here, we

provided a set of methods to prove how DOI could benefit from these and in what way.
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Appendix A

Complementary Results for Chapter 5

This appendix presents some supplementary results for Section 5.4. We present a set of tables to

compare the quantification of the optical properties and of the tissues’ components in the case of re-

construction with the spectral approach and the separate wavelengths one. Throughout the appendix,

nominal values are indicated with the suffix nom.

To obtain the optical coefficients from the tissues’ components, the spectral model in

Section 3.1.3 has been used. The quantification of the tissues’ components from the optical prop-

erties obtained from the separate wavelength approach has been obtained by fitting of the spectral

model with non-negativity constraint. MATLAB functions lsqlin and lsqcurvefit have been

used for the scope, respectively for retrieval of chromophores and of scattering parameters. Quan-

tification for Lipids, Water and Collagen is also shown as a percentage, where the sum of the three

concentrations is set to 100%.

In Table A.1 and Table A.2, we show the results for the phantom of ham inclusion in lards bulk.

At lower wavelengths the absorption is better quantified by the spectral model, while for longer

wavelengths the separate wavelengths approach seems more suitable for reconstruction. However the

plots indicate that the spectral behaviour of the inclusion is better captured by the spectral model even

though quantification for single wavelength separate wavelength approach can result beneficial. This

can be seen by the wrong quantification of the concentration of lipids when the separate wavelength

approach is used. We note that this pattern is present in all three phantoms considered.

In Table A.3 and Table A.4, we show the results for the phantom of ham inclusion in lard bulk.

Quantification of absorption shows comparable results between the two methods, while scattering

benefits from a spectral approach. While quantification of blood parameters is better for the spec-

tral approach, the performances of reconstructions for lipids and collagen benefit from the separate

wavelength approach.

In Table A.5 Table A.6, we show the results for the phantom of tendon inclusion in lard bulk.

No systematic difference is highlighted in the quantification of the optical properties. Also the

tissue components do not benefit strongly from one or the other approach, with lipids being better
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quantified by the spectral approach and collagen by the separate wavelength approach.

Figure Model 635 nm 670 nm 830 nm 915 nm 940 nm 980 nm 1030 nm 1065 nm

µa,in

(10−3 mm−1)

Nominal 37 21 10 16 23 52 29 20

Sep. Wave 7.9 6.7 4.2 12 13 15 25 8

Spectral 12 8.1 4.4 6.9 8.1 13 11 6.7

µrecon
a,in − µnom

a,in

(10−3 mm−1)

Sep.Wave 29 15 6.2 4 9.9 36 4.8 12

Spectral 26 13 6 8.8 15 38 19 13

µa,in

µa,bulk

Nominal 9.8 16 7.5 1.6 3.1 13 3.9 4

Sep. Wave 1.9 3.4 3.1 1.3 1.8 3.9 3.5 1.5

Spectral 3 3.1 2.5 0.76 0.91 3.8 1.4 1.3

µ′
s,in

(mm−1)

Nominal 0.37 0.31 0.21 0.21 0.22 0.3 0.22 0.19

Sep. Wave 3.8 0.74 0.48 0.39 0.42 0.66 0.42 0.37

Spectral 0.44 0.41 0.33 0.3 0.29 0.28 0.27 0.26

µ′
s
recon
,in − µ′

s
nom
,in

(mm−1)

Sep.Wave -2.1 -0.41 -0.26 -0.17 -0.19 -0.35 -0.19 -0.17

Spectral 0.064 0.098 0.12 0.094 0.071 0.016 0.047 0.069

µ′
s,in

µ′
s,bulk

Nominal 0.3 0.26 0.24 0.26 0.29 0.39 0.31 0.28

Sep. Wave 1.5 0.55 0.48 0.38 0.42 0.64 -6 0.47

Spectral 0.27 0.28 0.33 0.36 0.36 0.37 0.39 0.4

Table A.1: Table of reconstructed optical properties for the meat phantom of ham inclusion in lard

bulk. For the case of reconstruction with the spectral approach, the spectral model of Section 3.1.3

has been applied to retrieve the optical coefficients. We present here three figure of merit for each

optical coefficient at each wavelength: the absolute quantification of the inclusion, the absolute

difference between reconstructed property and nominal one, the retrieved contrast between values

in the inclusion and the bulk. Worth of note is the quantification of scattering, that benefits from

the incorporation of a spectral model in reconstruction. Better quantification for absorption can be

found the spectral approach at lower wavelengths.
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Figure Model
Hb

(µM)

HbO2

(µM)

Lipid

(mg × cm−3)

H2O

(mg × cm−3)

Collagen

(mg × cm−3)

a

(mm−1)

b

xin

Nominal 27 0 0 (0%) 1100 (83%) 220 (17%) 0.25 1.5

Sep. Wave 7.2e-10 1.2e-05 780 (63%) 220 (18%) 230 (19%) 1.9 4.4

Spectral 3.6 3.1 0 (0%) 170 (48%) 180 (52%) 0.44 1

xreconin - xnom
in

Sep.Wave 27 -1.2e-05 -780 850 -7.9 -1.7 -2.9

Spectral 23 3.1 0 900 37 0.18 0.45

xreconin

xreconbulk

Nominal 25 0 0 21 220 0.14 1.5

Sep. Wave 5.1e-10 7.6e-06 0.97 9.4 4.7 1.2 2.6

Spectral 3.1 2.2 0 10 3.6 0.27 0.56

Table A.2: Reconstructed components for meat phantom of ham inclusion in lard bulk. Tissue

components for the separate wavelength approach have been obtained by applying the fit procedure

described in this appendix. In the case of Lipids, Water and Collagen, we also report the relative

quantification, 100% being the sum of the concentrations of the three. The spectral model overesti-

mates the presence of HbO2 while underestimating the one of Hb. Both quantities are close to zero

for the separate wavelength approach. As expected, no lipids are retrieved for the inclusion in the

case of the spectral approach. However, quantification for water is too low.
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Figure Model 635 nm 670 nm 830 nm 915 nm 940 nm 980 nm 1030 nm 1065 nm

µa,in

(10−3 mm−1)

Nominal 3.7 1.5 1.3 10 7.4 5 8 5.3

Sep. Wave 20 3.8 3.2 11 7.4 10 7 4.3

Spectral 5.4 5 3.1 7.8 5.9 3.5 10 7.2

µrecon
a,in − µnom

a,in

(10−3 mm−1)

Sep.Wave -17 -2.3 -1.9 -0.83 -0.051 -5.5 0.97 1

Spectral 1.7 3.5 1.8 2.2 1.4 1.5 2.2 1.9

µa,in

µa,bulk

Nominal 0.13 0.084 0.14 0.63 0.28 0.093 0.27 0.27

Sep. Wave 0.72 0.23 0.35 0.7 0.3 0.23 0.26 0.23

Spectral 0.2 0.28 0.34 0.46 0.23 0.071 0.35 0.4

µ′
s,in

(mm−1)

Nominal 1.8 1.6 1.4 1.3 1.3 1.2 1.2 1.2

Sep. Wave 1.5 1.4 0 0 0 0 0 0

Spectral 3 2.9 2.7 2.6 2.6 2.6 2.5 2.5

µ′
s
recon
,in − µ′

s
nom
,in

(mm−1)

Sep.Wave 0.22 0.27 1.4 1.3 1.3 1.2 1.2 1.2

Spectral 0.12 0.13 0.13 0.13 0.13 0.14 0.13 0.13

µ′
s,in

µ′
s,bulk

Nominal 1.9 1.9 2.4 2.4 2.3 1.9 2.4 2.6

Sep. Wave 1.5 1.5 0 0 0 0 0 0

Spectral 2.9 3.1 3.8 4.2 4.3 4.5 4.7 4.9

Table A.3: Table of reconstructed optical properties for the meat phantom of lard inclusion in veal

bulk. For the case of reconstruction with the spectral approach, the spectral model of Section 3.1.3

has been applied to retrieve the optical coefficients. We present here three figure of merit for each

optical coefficient at each wavelength: the absolute quantification of the inclusion, the absolute

difference between reconstructed property and nominal one, the retrieved contrast between values

in the inclusion and the bulk. Application of a spectral model in reconstruction avoids unrealistic

values for scattering, that, with a separate wavelength approach is null for higher wavelengths. Also

higher contrasts are reached with a spectral approach. Comparable results for the quantification of

absorption are shown.
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Figure Model
Hb

(µM)

HbO2

(µM)

Lipid

(mg × cm−3)

H2O

(mg × cm−3)

Collagen

(mg × cm−3)

a

(mm−1)

b

xin

Nominal 1.1 0.7 1000 (95%) 52 (4.9%) 1 (0.01%) 1.8 0.99

Sep. Wave 15 0.0077 600 (80%) 150 (20 %) 0.0035 (0%) 1.8 14

Spectral 0 0.0011 360 (56%) 0 (0%) 280 (44 %) 3 0.34

xreconin - xnom
in

Sep.Wave -14 0.69 420 -98 1 0.026 -13

Spectral 1.1 0.7 660 52 280 1.2 0.65

xreconin

xreconbulk

Nominal 0.11 Inf 9.2 0.052 0.0085 2.2 0.62

Sep. Wave 0.94 0.02 2.7 0.19 1.5e-05 1.7 12

Spectral 0 1 1.8 0 1 2.9 0.25

Table A.4: Reconstructed components for meat phantom of lard inclusion in veal bulk. Tissue

components for the separate wavelength approach have been obtained by applying the fit procedure

described in this appendix. In the case of Lipids, Water and Collagen, we also report the relative

quantification, 100% being the sum of the concentrations of the three. The spectral model retrieves

acceptable concentrations of HbO2 and Hb in the inclusion. The latter is largely overestimated by

the separate wavelength approach. However, concentrations of water, lipids and collagen are better

retrieved by a separate wavelength approach in this case.
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Figure Model 635 nm 670 nm 830 nm 915 nm 940 nm 980 nm 1030 nm 1065 nm

µa,in

(10−3 mm−1)

Nominal 5.7 2.7 3.2 8.2 14 28 19 14

Sep. Wave 6 2.8 2.4 7.8 8.4 7.8 6.5 6.6

Spectral 5.9 4.4 3.1 7.6 7.9 8.3 8.9 6

µrecon
a,in − µnom

a,in

(10−3 mm−1)

Sep.Wave -0.39 -0.13 0.81 0.38 5.6 20 13 7.2

Spectral 0.24 1.7 0.018 0.64 6 19 10 7.8

µa,in

µa,bulk

Nominal 1.5 0.78 2 0.78 1.9 5.3 2.1 2.6

Sep. Wave 1.6 1.6 1.4 0.72 1.1 1.4 0.72 1.2

Spectral 1.7 1.7 1.4 0.82 0.86 1.7 1.1 1

µ′
s,in

(mm−1)

Nominal 2.8 2.9 2.7 2.6 2.5 2.2 2.3 2.6

Sep. Wave 2.5 2.6 2.6 1.4 1.7 1.4 1.5 2.3

Spectral 1.7 1.7 1.4 0.82 0.86 1.7 1.1 1

µ′
s
recon
,in − µ′

s
nom
,in

(mm−1)

Sep.Wave 0.31 0.23 0.11 1.1 0.77 0.73 0.8 0.25

Spectral 0.42 0.56 0.62 0.6 0.57 0.27 0.48 0.77

µ′
s,in

µ′
s,bulk

Nominal 1.6 1.7 1.8 1.8 1.9 1.7 1.9 2.1

Sep. Wave 1.3 1.5 1.7 0.93 1.2 1.1 1.2 1.7

Spectral 1.2 1.3 1.3 1.3 1.4 1.4 1.4 1.4

Table A.5: Table of reconstructed optical properties for the meat phantom of tendon inclusion in lard

bulk. For the case of reconstruction with the spectral approach, the spectral model of Section 3.1.3

has been applied to retrieve the optical coefficients. We present here three figure of merit for each

optical coefficient at each wavelength: the absolute quantification of the inclusion, the absolute

difference between reconstructed property and nominal one, the retrieved contrast between values in

the inclusion and the bulk. No systematic difference in performances between the two methods can

be observed.
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Figure Model
Hb

(µM)

HbO2

(µM)

Lipid

(mg × cm−3)

H2O

(mg × cm−3)

Collagen

(mg × cm−3)

a

(mm−1)

b

xin

Nominal 3 0.9 380 (37%) 630 (61%) 21 (2%) 3 0.4

Sep. Wave 3.2 3.2 570 (80%) 100 (15%) 36 (5.1 %) 2.6 0.86

Spectral 0.21 3.7 370 (64 %) 82 (14%) 130 (22%) 2.4 0.51

xreconin - xnom
in

Sep.Wave -0.23 -2.3 -180 530 -15 0.4 -0.46

Spectral 2.8 2.8 15 550 110 0.64 0.11

xreconin

xreconbulk

Nominal 2.7 1.3 0.38 12 21 1.7 0.4

Sep. Wave 22 1.9 0.66 2.6 0.5 1.4 1.3

Spectral 1.1 1.2 0.45 2.4 2 1.2 0.7

Table A.6: Reconstructed components for meat phantom of tendon inclusion in lard bulk. Tissue

components for the separate wavelength approach have been obtained by applying the fit procedure

described in this appendix. In the case of Lipids, Water and Collagen, we also report the relative

quantification, 100% being the sum of the concentrations of the three. The values of HbO2 and Hb

are better retrieved by a separate wavelength approach. Concentration of lipids in the inclusion is

well retrieved by the spectral approach, while collagen is better reconstructed by a separate wave-

length approach. Water is not correctly reconstructed by any of the methods proposed.
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Appendix B

Derivation of Laplacian Stencil Operator for

Tensorial Diffusion

Hereby, we show the derivation of Equation (7.8).

Setting d
dtu = 0 and neglecting boundary conditions, we aim to write the finite difference

approximation of the m-dimensional diffusion operator Lκ = ∇ · κ∇:

Lκu(r) :=

[
∂

∂ri
κi,j(r)

∂

∂rj

]
u(r)

where we use Einstein’s notation as in the rest of the appendix. The above formula for m dimensions,

i.e. i = 0, 1, · · · ,m can be discretised for the case for which, without loss of generality, u ∈ RNm

and is vectorised along its rows. We can write:

u → ur

κi,j → κi,j
r .

We can express the discrete differential operators introduced in Section 2.1.2 as:

D+
i = δr,c−Ni − δr,c

D+,∗
i = −

(
δr,c+Ni − δr,c

)
Dc

i =
1

2

(
δr,c−Ni − δr−Ni,c

)
Dc,∗

i = −1

2

(
δr,c+Ni − δr+Ni,c

)
,

where δw,v is the Kronecker delta and the suffix ∗ represents the adjoint form of the operator to which

it is applied. With respect to the expression reported previously e.g. in Equation (2.6), we neglect the

discretisation index h in the derivative operators for ease of notation. Among the possible ways to

compute the finite difference derivative operators, we choose to use the forward difference D+
i for

double derivative along the same direction and the central difference Dc
i when dealing with mixed

derivative, so that:

∂

∂ri
κi,j(r)

∂

∂rj
= δi,jD

+,∗
i κi,jD+

j + (1− δi,j)D
c,∗
i κi,jDc

j .
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After discretisation, we can write:

∂

∂ri
κi,j(r)

∂

∂rj
→− δi,j

(
δl,r+Ni − δl,r

)
κi,j
r

(
δr,q−Nj − δr,q

)
− (1− δi,j)

1

2

(
δl,r+Ni − δl+Ni,r

)
κi,j
r

1

2

(
δr,q−Nj − δr−Nj ,q

)
=− δi,j

(
δl,r+Niκi,j

r δr,q−Nj − δl,r+Niκi,j
r δr,q − δl,rκ

i,j
r δr,q−Nj + δl,rκ

i,j
r δr,q

)
− (1− δi,j)

× 1

4

(
δl,r+Niκi,j

r δr,q−Nj − δl,r+Niκi,j
r δr−Nj ,q − δl+Ni,rκ

i,j
r δr,q−Nj + δl+Ni,rκ

i,j
r δr−Nj ,q

)
=−

(
δl,r+Niκi,i

r δr,q−Ni − δl,r+Niκi,i
r δr,q − δl,rκ

i,i
r δr,q−Ni + δl,rκ

i,i
r δr,q

)
− (1− δi,j)

× 1

4

(
δl,r+Niκi,j

r δr,q−Nj − δl,r+Niκi,j
r δr−Nj ,q − δl+Ni,rκ

i,j
r δr,q−Nj + δl+Ni,rκ

i,j
r δr−Nj ,q

)
=w′

l,q + w′′ = wl,q.

(B.1)

with l, q = 0, 1 · · · , Nm free indexes, where w′
l,q can be interpreted as the result of a diagonal κ.

For the bi-dimensional case of m = 2, we get:

w′
l,q = −

(
δl,r+Niκi,i

r δr,q−Ni − δl,r+Niκi,i
r δr,q − δl,rκ

i,i
r δr,q−Ni + δl,rκ

i,i
r δr,q

)
= −κ0,0

l−1δl−1,q−1 − κ1,1
q−Nδl−N,q−N + κ0,0

l−1δl−1,q + κ1,1
l−Nδl−N,q

+ κ0,0
l δl,q−1 + κ1,1

l δl,q−N −
(
κ0,0
l + κ1,1

l

)
δl,q

= −
[
κ0,0
l−1δl−1,q−1 + κ1,1

l−Nδl−N,q−N +
(
κ0,0
l + κ1,1

l

)
δl,q

]
+ κ0,0

l−1δl−1,q

+ κ1,1
l−Nδl−N,q

+ κ0,0
l δl,q−1

+ κ1,1
l δl,q−N

and, considering only the combinations i = 0, j = 1, and j = 1, i = 0 to take the term 1− δi,j into

account we can write:

−4w′′
l,q = δl,r+Niκi,j

r δr,q−Nj − δl,r+Niκi,j
r δr−Nj ,q − δl+Ni,rκ

i,j
r δr,q−Nj + δl+Ni,rκ

i,j
r δr−Nj ,q

= κ0,1
l−1δl−1,q−N + κ1,0

l−Nδl−N,q−1

− κ0,1
l−1δl−1,q+N − κ1,0

l−Nδl−N,q+1

− κ0,1
l+1δl+1,q−N − κ1,0

l+Nδl+N,q−1

+ κ0,1
l+1δl+1,q+N + κ1,0

l+Nδl+N,q+1

=
(
κ0,1
l−1 + κ1,0

l+N

)
δl,q−N+1

−
(
κ0,1
l−1 + κ1,0

l−N

)
δl,q+1+N

−
(
κ0,1
l+1 + κ1,0

l+N

)
δl,q−1−N

+
(
κ0,1
l+1 + κ1,0

l−N

)
δl,q+N−1

We can rearrange the previous expression as a sparse sub-diagonal matrix where the index l indicates
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its rows and the index q its columns. The nine diagonal terms will be:

d0 = −
(
κ0,0
l−1 + κ1,1

l−N + κ0,0
l + κ1,1

l

)
d1 = +κ0,0

l

dN−1 = −1

4

(
κ0,1
l−1 + κ1,0

l+N

)
dN = +κ1,1

l

dN+1 = +
1

4

(
κ0,1
l+1 + κ1,0

l+N

)
d−1 = +κ0,0

l−1

d−N+1 = −1

4

(
κ0,1
l+1 + κ1,0

l−N

)
d−N = +κ1,1

l−N

d−N−1 = +
1

4

(
κ0,1
l−1 + κ1,0

l−N

)
which can be visually represented as a 9-point stencil convolution kernel of spatially varying filters

as in Equation (7.8).
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Appendix C

Complementary Results for Chapter 7

In this appendix, we present the quantification of the presented networks for all datasets considered

in the study of Chapter 7. As done previously, quantification is obtained by means of l2-error and

SSIM.

In Table C.1 and Table C.2, we present all the results obtained on the datasets obtained by

simulation, FEM and MC respectively, as described in Section 7.4.1.

In Table C.3, we show the quantification of the results obtained for testing with dataset EXP1,

with propagation media made of milk in water. Table C.4 presents the results for the datasets in

group EXP2, with phantoms of talc in Geloglass. In Table C.5 shows the quantification of the results

obtained with group EXP.a. Finally, Table C.6 displays the results for the groups of datasets EXP3.b

and EXP3.c.

µ̄′
s p TD0 TD1 TD2 TD3 U

l2 SSIM l2 SSIM l2 SSIM l2 SSIM l2 SSIM

0.25 0 0.83 (0.054) 0.56 (0.014) 0.32 (0.073) 0.95 (0.016) 0.28 (0.06) 0.97 (0.012) 0.72 (0.099) 0.74 (0.051) 0.4 (0.086) 0.86 (0.033)

0.25 0.2 0.83 (0.055) 0.57 (0.014) 0.36 (0.082) 0.94 (0.019) 0.34 (0.073) 0.95 (0.018) 0.71 (0.098) 0.74 (0.039) 0.41 (0.082) 0.85 (0.033)

0.25 0.5 0.83 (0.055) 0.57 (0.014) 0.4 (0.086) 0.93 (0.024) 0.39 (0.08) 0.93 (0.023) 0.75 (0.093) 0.71 (0.047) 0.43 (0.084) 0.85 (0.03)

0.25 0.8 0.83 (0.055) 0.57 (0.014) 0.43 (0.088) 0.91 (0.03) 0.43 (0.082) 0.91 (0.028) 0.72 (0.097) 0.73 (0.05) 0.46 (0.093) 0.84 (0.032)

0.5 0 0.82 (0.055) 0.56 (0.016) 0.31 (0.07) 0.96 (0.015) 0.28 (0.057) 0.97 (0.011) 0.68 (0.097) 0.75 (0.041) 0.39 (0.082) 0.87 (0.03)

0.5 0.2 0.82 (0.055) 0.56 (0.016) 0.34 (0.074) 0.95 (0.018) 0.33 (0.074) 0.95 (0.017) 0.67 (0.11) 0.78 (0.046) 0.39 (0.078) 0.86 (0.03)

0.5 0.5 0.82 (0.055) 0.57 (0.016) 0.38 (0.085) 0.93 (0.023) 0.38 (0.077) 0.93 (0.021) 0.68 (0.1) 0.78 (0.042) 0.41 (0.086) 0.86 (0.033)

0.5 0.8 0.82 (0.056) 0.57 (0.016) 0.42 (0.089) 0.92 (0.027) 0.42 (0.082) 0.92 (0.025) 0.71 (0.097) 0.74 (0.05) 0.45 (0.093) 0.85 (0.032)

1 0 0.81 (0.056) 0.57 (0.018) 0.29 (0.062) 0.96 (0.012) 0.27 (0.059) 0.97 (0.011) 0.67 (0.1) 0.77 (0.04) 0.34 (0.076) 0.91 (0.026)

1 0.2 0.81 (0.056) 0.57 (0.018) 0.33 (0.069) 0.95 (0.016) 0.32 (0.067) 0.96 (0.015) 0.63 (0.098) 0.81 (0.036) 0.35 (0.076) 0.9 (0.027)

1 0.5 0.81 (0.056) 0.57 (0.018) 0.37 (0.077) 0.94 (0.02) 0.37 (0.071) 0.94 (0.02) 0.66 (0.1) 0.79 (0.038) 0.4 (0.079) 0.88 (0.028)

1 0.8 0.81 (0.056) 0.57 (0.018) 0.41 (0.083) 0.92 (0.025) 0.41 (0.078) 0.92 (0.024) 0.64 (0.1) 0.81 (0.037) 0.44 (0.081) 0.86 (0.03)

2 0 0.81 (0.057) 0.57 (0.02) 0.29 (0.063) 0.97 (0.012) 0.26 (0.055) 0.97 (0.01) 0.68 (0.1) 0.78 (0.043) 0.32 (0.071) 0.9 (0.024)

2 0.2 0.81 (0.057) 0.57 (0.02) 0.32 (0.067) 0.96 (0.015) 0.31 (0.063) 0.96 (0.013) 0.6 (0.1) 0.82 (0.039) 0.36 (0.08) 0.9 (0.025)

2 0.5 0.81 (0.057) 0.57 (0.02) 0.37 (0.07) 0.94 (0.019) 0.36 (0.069) 0.94 (0.019) 0.61 (0.1) 0.82 (0.038) 0.4 (0.078) 0.88 (0.028)

2 0.8 0.81 (0.057) 0.57 (0.02) 0.4 (0.081) 0.92 (0.024) 0.4 (0.073) 0.92 (0.023) 0.63 (0.1) 0.8 (0.035) 0.43 (0.081) 0.88 (0.026)

Table C.1: Results of quantification of the proposed methods for group of datasets FEM.
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µ̄′
s p Nph TD0 TD1 TD2 TD3 U

(mm−1) l2 SSIM l2 SSIM l2 SSIM l2 SSIM l2 SSIM

0.25 0 105 0.75 (0.04) 0.58 (0.013) 0.12 (0.059) 0.99 (0.01) 0.13 (0.056) 0.99 (0.0098) 0.54 (0.07) 0.68 (0.03) 0.13 (0.057) 0.99 (0.011)

0.25 0 106 0.72 (0.037) 0.59 (0.012) 0.0093 (0.012) 1 (0.00057) 0.026 (0.011) 1 (0.00068) 0.53 (0.088) 0.71 (0.028) 0.011 (0.021) 1 (0.00068)

0.25 0 107 0.71 (0.037) 0.61 (0.01) 0.0037 (0.0021) 1 (6.9e− 05) 0.014 (0.0059) 1 (0.00023) 0.33 (0.071) 0.81 (0.027) 0.0043 (0.0094) 1 (0.00014)

0.25 0.2 105 0.74 (0.045) 0.58 (0.016) 0.17 (0.082) 0.98 (0.017) 0.18 (0.079) 0.98 (0.017) 0.55 (0.079) 0.66 (0.031) 0.18 (0.082) 0.98 (0.017)

0.25 0.2 106 0.72 (0.042) 0.6 (0.015) 0.028 (0.034) 1 (0.0022) 0.04 (0.026) 1 (0.0023) 0.52 (0.059) 0.71 (0.034) 0.03 (0.036) 1 (0.0021)

0.25 0.2 107 0.71 (0.041) 0.61 (0.014) 0.0033 (0.0015) 1 (3.1e− 05) 0.019 (0.0046) 1 (0.00032) 0.3 (0.073) 0.88 (0.032) 0.0044 (0.013) 1 (0.00021)

0.25 0.5 105 0.73 (0.072) 0.59 (0.037) 0.27 (0.13) 0.95 (0.037) 0.27 (0.12) 0.96 (0.034) 0.66 (0.078) 0.62 (0.039) 0.27 (0.12) 0.92 (0.041)

0.25 0.5 106 0.73 (0.071) 0.6 (0.036) 0.13 (0.11) 0.99 (0.02) 0.13 (0.1) 0.99 (0.019) 0.42 (0.094) 0.8 (0.043) 0.12 (0.098) 0.99 (0.016)

0.25 0.5 107 0.72 (0.064) 0.61 (0.035) 0.042 (0.069) 1 (0.012) 0.05 (0.052) 1 (0.01) 0.4 (0.073) 0.77 (0.058) 0.042 (0.071) 1 (0.013)

0.25 0.8 105 0.73 (0.11) 0.6 (0.044) 0.33 (0.15) 0.93 (0.044) 0.32 (0.15) 0.94 (0.044) 0.65 (0.12) 0.64 (0.041) 0.33 (0.15) 0.92 (0.05)

0.25 0.8 106 0.74 (0.11) 0.6 (0.047) 0.23 (0.15) 0.96 (0.033) 0.24 (0.14) 0.96 (0.036) 0.61 (0.11) 0.66 (0.044) 0.22 (0.13) 0.96 (0.032)

0.25 0.8 107 0.72 (0.09) 0.62 (0.041) 0.12 (0.12) 0.98 (0.02) 0.13 (0.12) 0.99 (0.02) 0.44 (0.11) 0.81 (0.044) 0.12 (0.1) 0.99 (0.017)

0.5 0 105 0.81 (0.057) 0.56 (0.017) 0.49 (0.086) 0.88 (0.033) 0.49 (0.087) 0.89 (0.031) 0.8 (0.065) 0.57 (0.022) 0.49 (0.096) 0.82 (0.038)

0.5 0 106 0.81 (0.056) 0.56 (0.018) 0.43 (0.075) 0.91 (0.029) 0.42 (0.066) 0.92 (0.027) 0.78 (0.074) 0.63 (0.043) 0.42 (0.079) 0.85 (0.033)

0.5 0 107 0.8 (0.054) 0.57 (0.018) 0.24 (0.051) 0.97 (0.016) 0.23 (0.049) 0.97 (0.015) 0.65 (0.076) 0.75 (0.051) 0.24 (0.047) 0.96 (0.015)

0.5 0.2 105 0.81 (0.057) 0.56 (0.017) 0.5 (0.087) 0.87 (0.034) 0.5 (0.083) 0.88 (0.033) 0.8 (0.058) 0.56 (0.021) 0.5 (0.091) 0.83 (0.035)

0.5 0.2 106 0.81 (0.056) 0.56 (0.018) 0.43 (0.072) 0.9 (0.028) 0.42 (0.068) 0.92 (0.026) 0.7 (0.071) 0.72 (0.055) 0.42 (0.078) 0.87 (0.027)

0.5 0.2 107 0.8 (0.054) 0.57 (0.018) 0.26 (0.069) 0.96 (0.02) 0.26 (0.061) 0.97 (0.019) 0.65 (0.083) 0.75 (0.053) 0.27 (0.059) 0.95 (0.019)

0.5 0.5 105 0.81 (0.055) 0.56 (0.019) 0.53 (0.087) 0.86 (0.039) 0.51 (0.086) 0.87 (0.038) 0.81 (0.053) 0.54 (0.026) 0.52 (0.091) 0.81 (0.04)

0.5 0.5 106 0.8 (0.054) 0.57 (0.018) 0.43 (0.099) 0.9 (0.039) 0.42 (0.091) 0.91 (0.035) 0.67 (0.09) 0.72 (0.056) 0.43 (0.09) 0.85 (0.029)

0.5 0.5 107 0.8 (0.053) 0.58 (0.019) 0.28 (0.1) 0.96 (0.026) 0.28 (0.092) 0.96 (0.026) 0.66 (0.087) 0.74 (0.06) 0.28 (0.085) 0.95 (0.023)

0.5 0.8 105 0.81 (0.06) 0.57 (0.024) 0.53 (0.11) 0.85 (0.046) 0.52 (0.096) 0.86 (0.044) 0.8 (0.061) 0.52 (0.042) 0.53 (0.096) 0.77 (0.052)

0.5 0.8 106 0.8 (0.059) 0.58 (0.027) 0.44 (0.12) 0.9 (0.042) 0.43 (0.11) 0.91 (0.038) 0.67 (0.098) 0.72 (0.057) 0.42 (0.1) 0.86 (0.039)

0.5 0.8 107 0.79 (0.055) 0.59 (0.029) 0.32 (0.12) 0.94 (0.035) 0.32 (0.11) 0.94 (0.036) 0.61 (0.1) 0.74 (0.054) 0.31 (0.1) 0.93 (0.032)

1 0 105 0.81 (0.059) 0.56 (0.022) 0.51 (0.092) 0.88 (0.034) 0.49 (0.085) 0.89 (0.032) 0.79 (0.066) 0.59 (0.035) 0.49 (0.098) 0.84 (0.037)

1 0 106 0.8 (0.058) 0.56 (0.022) 0.45 (0.084) 0.91 (0.028) 0.45 (0.075) 0.91 (0.028) 0.77 (0.078) 0.66 (0.046) 0.45 (0.084) 0.85 (0.034)

1 0 107 0.8 (0.057) 0.57 (0.022) 0.38 (0.076) 0.93 (0.021) 0.38 (0.071) 0.93 (0.021) 0.7 (0.094) 0.76 (0.041) 0.4 (0.075) 0.87 (0.026)

1 0.2 105 0.81 (0.059) 0.56 (0.022) 0.51 (0.088) 0.87 (0.035) 0.5 (0.088) 0.88 (0.033) 0.79 (0.065) 0.58 (0.033) 0.5 (0.094) 0.83 (0.036)

1 0.2 106 0.8 (0.058) 0.56 (0.022) 0.45 (0.086) 0.9 (0.029) 0.46 (0.08) 0.9 (0.029) 0.78 (0.069) 0.63 (0.042) 0.45 (0.086) 0.85 (0.033)

1 0.2 107 0.8 (0.057) 0.57 (0.022) 0.39 (0.076) 0.93 (0.022) 0.4 (0.077) 0.93 (0.023) 0.71 (0.092) 0.75 (0.042) 0.4 (0.081) 0.88 (0.026)

1 0.5 105 0.81 (0.059) 0.56 (0.022) 0.54 (0.089) 0.86 (0.037) 0.53 (0.086) 0.86 (0.034) 0.8 (0.061) 0.57 (0.029) 0.53 (0.096) 0.82 (0.038)

1 0.5 106 0.8 (0.058) 0.56 (0.022) 0.49 (0.085) 0.89 (0.031) 0.48 (0.082) 0.89 (0.03) 0.75 (0.083) 0.7 (0.048) 0.48 (0.084) 0.83 (0.035)

1 0.5 107 0.8 (0.057) 0.57 (0.022) 0.42 (0.08) 0.91 (0.024) 0.43 (0.078) 0.91 (0.023) 0.71 (0.086) 0.74 (0.043) 0.43 (0.083) 0.87 (0.027)

1 0.8 105 0.81 (0.057) 0.56 (0.022) 0.57 (0.088) 0.84 (0.041) 0.55 (0.086) 0.85 (0.037) 0.79 (0.065) 0.59 (0.033) 0.55 (0.096) 0.78 (0.038)

1 0.8 106 0.81 (0.057) 0.57 (0.023) 0.5 (0.089) 0.88 (0.033) 0.49 (0.079) 0.88 (0.033) 0.78 (0.067) 0.62 (0.053) 0.49 (0.089) 0.85 (0.035)

1 0.8 107 0.81 (0.057) 0.57 (0.022) 0.45 (0.082) 0.9 (0.026) 0.45 (0.072) 0.9 (0.027) 0.72 (0.09) 0.75 (0.045) 0.44 (0.082) 0.86 (0.029)

2 0 105 0.79 (0.06) 0.56 (0.028) 0.47 (0.086) 0.9 (0.03) 0.47 (0.085) 0.9 (0.029) 0.77 (0.067) 0.62 (0.038) 0.47 (0.091) 0.84 (0.034)

2 0 106 0.79 (0.059) 0.57 (0.028) 0.42 (0.085) 0.92 (0.025) 0.42 (0.078) 0.92 (0.025) 0.76 (0.077) 0.69 (0.046) 0.42 (0.087) 0.88 (0.03)

2 0 107 0.79 (0.059) 0.58 (0.027) 0.36 (0.081) 0.94 (0.02) 0.36 (0.073) 0.94 (0.02) 0.7 (0.091) 0.75 (0.044) 0.38 (0.079) 0.89 (0.028)

2 0.2 105 0.79 (0.061) 0.56 (0.028) 0.47 (0.085) 0.9 (0.031) 0.47 (0.084) 0.9 (0.03) 0.77 (0.072) 0.61 (0.038) 0.47 (0.094) 0.84 (0.036)

2 0.2 106 0.79 (0.059) 0.57 (0.028) 0.43 (0.089) 0.91 (0.026) 0.43 (0.083) 0.92 (0.025) 0.76 (0.076) 0.66 (0.046) 0.42 (0.09) 0.87 (0.032)

2 0.2 107 0.79 (0.059) 0.58 (0.026) 0.37 (0.073) 0.94 (0.019) 0.36 (0.068) 0.94 (0.019) 0.7 (0.087) 0.74 (0.048) 0.38 (0.083) 0.88 (0.028)

2 0.5 105 0.79 (0.06) 0.56 (0.028) 0.49 (0.091) 0.88 (0.031) 0.49 (0.085) 0.89 (0.03) 0.77 (0.071) 0.61 (0.04) 0.48 (0.093) 0.84 (0.033)

2 0.5 106 0.79 (0.059) 0.57 (0.028) 0.44 (0.085) 0.91 (0.027) 0.44 (0.079) 0.91 (0.027) 0.76 (0.072) 0.66 (0.049) 0.44 (0.084) 0.87 (0.031)

2 0.5 107 0.79 (0.059) 0.58 (0.027) 0.39 (0.071) 0.93 (0.02) 0.39 (0.065) 0.93 (0.02) 0.69 (0.094) 0.76 (0.041) 0.4 (0.08) 0.88 (0.029)

2 0.8 105 0.79 (0.061) 0.56 (0.028) 0.51 (0.088) 0.87 (0.035) 0.51 (0.081) 0.88 (0.033) 0.78 (0.067) 0.6 (0.037) 0.5 (0.091) 0.83 (0.036)

2 0.8 106 0.79 (0.06) 0.57 (0.028) 0.47 (0.084) 0.89 (0.03) 0.46 (0.071) 0.9 (0.028) 0.76 (0.08) 0.64 (0.046) 0.46 (0.084) 0.86 (0.033)

2 0.8 107 0.79 (0.059) 0.58 (0.027) 0.42 (0.078) 0.92 (0.023) 0.42 (0.077) 0.92 (0.024) 0.7 (0.088) 0.75 (0.044) 0.41 (0.082) 0.89 (0.026)

Table C.2: Results of quantification of the proposed methods for group of datasets MC.

Phantom TD0 TD1 TD2 U

l2 SSIM l2 SSIM l2 SSIM l2 SSIM

MILK1 0.76 (0.061) 0.61 (0.013) 0.17 (0.076) 0.98 (0.019) 0.17 (0.07) 0.98 (0.016) 0.3 (0.061) 0.94 (0.019)

MILK2 0.77 (0.064) 0.61 (0.012) 0.25 (0.07) 0.96 (0.02) 0.24 (0.065) 0.97 (0.016) 0.33 (0.062) 0.89 (0.022)

Table C.3: Results of quantification of the proposed methods for group of datasets EXP1.
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Phantom TD0 TD1 TD2 U

l2 SSIM l2 SSIM l2 SSIM l2 SSIM

TALC1 0.75 (0.061) 0.68 (0.013) 0.33 (0.066) 0.94 (0.023) 0.34 (0.064) 0.94 (0.02) 0.33 (0.068) 0.92 (0.02)

TALC2 0.75 (0.064) 0.68 (0.013) 0.38 (0.1) 0.92 (0.025) 0.39 (0.1) 0.92 (0.026) 0.36 (0.1) 0.88 (0.029)

TALC3 0.78 (0.067) 0.66 (0.011) 0.32 (0.09) 0.94 (0.023) 0.34 (0.088) 0.94 (0.024) 0.34 (0.086) 0.93 (0.024)

Table C.4: Results of quantification of the proposed methods for group of datasets EXP2.

Phantom TD0 TD1 TD2 TD3 U

l2 SSIM l2 SSIM l2 SSIM l2 SSIM l2 SSIM

PVA1 0.63 (0.048) 0.75 (0.013) 0.35 (0.068) 0.94 (0.021) 0.35 (0.061) 0.94 (0.019) 0.47 (0.053) 0.82 (0.023) 0.36 (0.057) 0.91 (0.02)

PVA2 0.7 (0.06) 0.75 (0.016) 0.51 (0.065) 0.84 (0.027) 0.51 (0.063) 0.87 (0.029) 0.67 (0.063) 0.74 (0.018) 0.51 (0.063) 0.79 (0.028)

PVA3 0.74 (0.075) 0.73 (0.029) 0.66 (0.087) 0.78 (0.034) 0.65 (0.083) 0.8 (0.036) 0.73 (0.075) 0.72 (0.025) 0.64 (0.079) 0.71 (0.034)

PVA4 0.74 (0.079) 0.72 (0.046) 0.7 (0.087) 0.76 (0.027) 0.7 (0.087) 0.75 (0.034) 0.74 (0.077) 0.73 (0.023) 0.69 (0.089) 0.72 (0.026)

Table C.5: Results of quantification of the proposed methods for group of datasets EXP3.a.

Phantom Rel. Size TD0 TD1 TD2 TD3 U

l2 SSIM l2 SSIM l2 SSIM l2 SSIM l2 SSIM

PVA3 S1 0.7 (0.055) 0.74 (0.012) 0.4 (0.085) 0.91 (0.021) 0.4 (0.078) 0.94 (0.02) 0.62 (0.07) 0.79 (0.026) 0.43 (0.075) 0.9 (0.022)

PVA3 S2 0.73 (0.059) 0.73 (0.013) 0.5 (0.09) 0.88 (0.027) 0.49 (0.085) 0.89 (0.03) 0.67 (0.073) 0.76 (0.03) 0.5 (0.082) 0.84 (0.031)

PVA3 S3 0.74 (0.066) 0.74 (0.013) 0.56 (0.086) 0.83 (0.027) 0.55 (0.084) 0.86 (0.032) 0.7 (0.075) 0.75 (0.024) 0.55 (0.09) 0.78 (0.032)

PVA3 S4 0.75 (0.075) 0.72 (0.015) 0.6 (0.083) 0.82 (0.032) 0.6 (0.079) 0.83 (0.037) 0.73 (0.078) 0.73 (0.019) 0.6 (0.084) 0.76 (0.032)

PVA3 S5 0.75 (0.08) 0.73 (0.02) 0.64 (0.088) 0.8 (0.03) 0.65 (0.085) 0.82 (0.039) 0.74 (0.078) 0.73 (0.018) 0.64 (0.087) 0.75 (0.028)

PVA3 S6 0.75 (0.081) 0.74 (0.021) 0.66 (0.087) 0.77 (0.032) 0.66 (0.083) 0.8 (0.038) 0.74 (0.078) 0.74 (0.018) 0.64 (0.086) 0.71 (0.03)

PVA4 S1 0.73 (0.054) 0.73 (0.014) 0.46 (0.098) 0.89 (0.026) 0.45 (0.091) 0.92 (0.025) 0.67 (0.072) 0.77 (0.024) 0.48 (0.087) 0.85 (0.03)

PVA4 S2 0.75 (0.068) 0.73 (0.015) 0.56 (0.091) 0.85 (0.028) 0.56 (0.085) 0.87 (0.033) 0.71 (0.085) 0.75 (0.02) 0.56 (0.086) 0.8 (0.033)

PVA4 S3 0.76 (0.075) 0.73 (0.016) 0.62 (0.083) 0.82 (0.029) 0.62 (0.088) 0.83 (0.037) 0.74 (0.074) 0.74 (0.017) 0.61 (0.092) 0.75 (0.036)

PVA4 S4 0.77 (0.082) 0.72 (0.023) 0.67 (0.081) 0.77 (0.034) 0.67 (0.081) 0.78 (0.046) 0.76 (0.079) 0.72 (0.019) 0.65 (0.086) 0.72 (0.03)

PVA4 S5 0.77 (0.083) 0.73 (0.022) 0.7 (0.078) 0.77 (0.033) 0.7 (0.078) 0.78 (0.036) 0.77 (0.081) 0.73 (0.017) 0.68 (0.084) 0.7 (0.03)

PVA4 S6 0.77 (0.084) 0.73 (0.03) 0.72 (0.079) 0.75 (0.038) 0.71 (0.085) 0.77 (0.038) 0.76 (0.081) 0.74 (0.017) 0.69 (0.084) 0.75 (0.028)

Table C.6: Results of quantification of the proposed methods for group of datasets EXP3.b and

EXP3.c.
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