
 

 

 

 

 

Mycobacterium tuberculosis aggregates 

affect the early macrophage response to 

infection and are detectable in human 

lung tissue 

 

 

Hylton Errol Rodel 

Division of Infection and Immunity 

University College London 

PhD Supervisors: Prof. Alex Sigal and Prof. Mahdad 

Noursadeghi 

 

A thesis submitted for the degree of 

Doctor of Philosophy 

University College London 

December 2022 



2 
 

Declaration 
 

I, Hylton Errol Rodel, confirm that the work presented in this thesis is my own. 

Where information has been derived from other sources, I confirm that this has 

been indicated in the thesis.  

 

 

________________ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

Abstract 
 

Mycobacterium tuberculosis (Mtb) can infect macrophages as single or 

aggregated bacilli, where aggregate infection of macrophages was shown to 

have a substantially higher probability to result in macrophage death. Given 

that the response of macrophages to Mtb infection may determine the infection 

trajectory, it is important to understand the macrophage response to infection 

with Mtb aggregates. Here I investigated the early transcriptional response of 

monocyte derived macrophages (MDMs) to Mtb aggregate infection. I found 

that Mtb aggregates elicited the highest TNF-α and pro-inflammatory response 

relative to single Mtb bacilli. Additionally, aggregate-mediated MDM death was 

dependent on infection with live Mtb aggregates. I also investigated 

macrophage acidification in response to infection with Mtb aggregates and 

found that acidification, per Mtb bacillus, decreased as aggregate size 

increased. This suggests that Mtb aggregates have an advantage over single 

bacilli due to a weaker host response per mycobacterium. I also quantified Mtb 

aggregate number in human lung tissue sections using custom digital image 

analysis pipelines and developed a convolutional neural network (CNN) 

model, HyRoNet, to automate and expand the analysis. I found that Mtb 

aggregates occurred often, but not exclusively, in association with the 

granulomatous cavity surface. Together, these observations suggest a 

potentially important role for Mtb aggregation in the pathogenesis of Mtb. 
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Impact statement 
 

Understanding the pathogenic mechanisms of Mycobacterium tuberculosis is 

an important step in addressing tuberculous disease. Investigating the 

physical parameters of an infection, such as bacterial aggregation state, and 

how these parameters affect the host response could have applications in 

research as well as translational medicine. I have shown that Mtb aggregates, 

which have been demonstrated to result in enhanced cell death for host cells, 

elicit different transcriptional responses in macrophages relative to infection 

with single or multiple singlet Mtb bacteria. Identifying such unique 

transcription patterns could result in the development of therapeutics targeting 

these pathways to potentially alter infection trajectory. Quantitative data on the 

size distribution of aggregates in the transmission of tuberculosis could inform 

decision-making on the necessary level of respiratory protection (N95 

respirators, surgical masks, or cloth masks) for TB patients and contacts, 

which may be useful in resource-limited settings 

While there is a large body of raw data on Mtb distribution in human lung 

tissues in the form of histological image databases, these remain largely 

untapped as visual examination requires a huge amount of expert labour. The 

development of tools to automate and quantify the data in these reserves is 

an important barrier to overcome in order to gain access to new insights. The 

recent surge in interest for machine learning techniques highlights a potential 

toolset to solve this problem. I have developed a custom CNN model targeting 

the quantification of Mtb bacilli in such image databases. The information 

gleaned from the application of such tools to large datasets could inform on 

disease progression and be applied in a clinical context for fast and automated 

medical image analysis. 
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1 Chapter 1. Introduction 
 

1.1 Mycobacterium tuberculosis 
 

1.1.1 Tuberculosis disease 

Tuberculosis (TB) disease affects millions of people each year [1]. Cardinal 

symptoms for active disease include fever, night sweats, coughing (with 

bloodied expectorate) and fatigue [1]. The end of 2021 saw a World Health 

Organization (WHO) tuberculosis report indicating a drastic decrease in TB 

case reporting and a concerning increase in the number of deaths caused by 

TB for the for the first time since 2005 [2]. This is likely due to a reduction in 

access to treatment, mediated by the Covid-19 pandemic [1, 2]. Most cases of 

TB occur in low-income countries, listed as high TB burden countries by the 

World Health Organization (WHO), with South Africa among them. In South 

Africa, the WHO’s best estimate for total TB burden was 360 000 individuals, 

with a total mortality of around 58 000. This translates to the deaths of 

approximately 0.1% of the population of South Africa through infection with the 

Mtb bacteria in 2021 [2]. However, death and disease are not the only outcome 

for infection by Mycobacterium tuberculosis (Mtb) mycobacterium, the 

causative agent of TB. Most people who are infected will not progress to active 

tuberculous disease and can remain in a state known as latent TB infection. 

According to estimates using mathematical modelling approaches, the global 

burden of latent TB was approximately 23% of the global population in 2016. 

This translated to around 1.9 billion individuals [3]. This highlights one of the 

key challenges of the TB pandemic; understanding the transition to active 

disease, either from latent infection or as a result of host/pathogen interactions 

during primary infection events. 

 

1.1.2 The Mycobacterium tuberculosis mycobacterium 

Mtb is a facultative intracellular pathogen that was first characterized as the 

causative agent of tuberculosis by Robert Koch in 1882 [4]. The 

mycobacterium is part of a small group of closely related Mycobacterium 

species that can cause disease in human hosts, known as the Mycobacterium 
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tuberculosis complex, which includes M. africanum, M. microti and M. bovis 

[5, 6]. Mtb is an ancient and highly successful human pathogen and 

phylogenetic studies have shown extreme intraspecies genetic homogeneity, 

suggesting that Mtb has clonally co-evolved with its human host from 20 000 

– 35 000 years ago [6-8]. Other members of this genus are environmental 

organisms that do not cause tuberculosis and are known as non-tuberculous 

mycobacteria (NTM), although reports of NTM-associated disease have 

contributed to their clinical relevance in recent years [9-11]. A feature of 

mycobacteria is the presence of a unique cell envelope that contains mycolic 

acids. A property for which the genus is named. 

Mycobacteria are characterized by a lipid rich cell envelope that is resistant to 

Gram staining and acid alcohol washing. The mycobacterial cell envelope is 

approximately 60% lipid in composition and is a 3-part structure consisting of 

an inner membrane, a cell wall and a capsule [12, 13] (Figure 1.1 - adapted 

from Chen et. al [14]). In Mtb, the bacterial capsule is composed 

predominantly of neutral polysaccharides and proteins, including α-glucans, 

Figure 1.1: Schematic representation of a mycobacterial cell envelope 

Figure 1.1: Schematic representation of a mycobacterial cell envelope. 
Adapted w/o permission from Chen et al. 2018 [14] 

Peptidoglycan 

Arabinogalactan 

Outer membrane 

with mycolic acids 
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arabinomannans, mannans, and lipoproteins [15]. The inner membrane is a 

phospholipid bilayer, composed of glycerophospholipids and phosphatidyl 

dimannosides [16]. The cell wall of Mtb is a tripartite structure that consists of 

an outer membrane, containing long chain mycolic acids, that are covalently 

linked to the underlying arabinogalactan-peptidoglycan complex [17]. The 

abundance of lipids, and the presence of these long chain mycolic acids in the 

envelope of Mtb is considered responsible for the acid-fast staining property 

[18]. Acid fastness is the principle behind the Ziehl-Neelsen (ZN) 

mycobacterial staining technique, which has historically been used as a means 

of diagnosing clinical Mtb infection [19] (Figure 1.2). It is however noteworthy 

that ZN stain is more often retained by Mtb bacilli that are actively replicating, 

and dormant bacteria are less likely to stain as ZN positive [20, 21]. It is also 

noteworthy that deletion of KasB, the gene required for mycolic acid synthesis, 

Figure 1.2: ZN stained Mtb bacilli in resected human lung tissue 

Figure 1.2: ZN stained Mtb bacilli in resected human lung tissue. 

Mtb bacilli are stained magenta and indicated by black arrows. Cell nuclei 
are stained blue. Scale bar = 25 µm. 
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and thereby acid-fastness, both reduced active disease in mice infected with 

kasB deficient Mtb and abrogated bacterial cording, an aggregated 

mechanism of cellular growth, seen in replicating Mtb [18].  

 

1.1.3 Mycobacterium tuberculosis aggregation 

Mtb naturally aggregates during replication unless grown in the presence of a 

detergent [22, 23]. Robert Koch first described this behaviour when saying that 

Mtb bacteria “form small groups of cells which are pressed together and 

arranged in bundles” [4]. When grown in 7H9 culture media Mtb displays a 

mechanism of cell growth, termed cording, in which bacteria replicate and 

remain in close association with one another in filamentous “cords” (Figure 

1.3 A adapted from kaslum et al. [24]). Cording has been shown in ex-vivo 

experiments using alveolar macrophages and has long been considered a 

virulence factor during Mtb infection [25-27] (Figure 1.3 B adapted from 

Ufimtseva et al. [25]). 

 

 

Figure 1.3: Cording aggregation in Mtb bacilli 

Figure 1.3:  Cording aggregation in Mtb bacilli. Adapted w/o 
permission from Kalsum et al. 2017 and Ufimtseva et al. 2018 [24,25] 

Scanning electron micrograph of aggregated cording Mtb bacteria (A) and 
ZN-stained cording aggregate in an alveolar macrophage (B). 
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Cording was recently linked to the progression to active TB disease in a mouse 

model that was capable of generating the complete spectrum of tuberculous 

lesions seen in human TB disease [28]. C3HeB/FeJ mice that were infected 

with a cording variant of H37Rv Mtb developed exudative lesions 17 days post 

infection. In contrast, mice that were infected with a non-cording variant of 

H37Rv had little to no detectable lesions [28]. This highlights the importance 

of Mtb aggregation in the context of an in vivo Mtb infectious lifecycle. It must 

be noted however, that bacterial aggregation may be the result of cording 

growth or general bacterial clumping mediated by hydrophobic interactions of 

the lipid rich bacterial cell envelopes [29]. Despite this distinction, Mahamed 

et al. demonstrated that Mtb bacterial aggregation, including clumping, 

remains an important factor in determining host cellular fate by showing that 

macrophages infected with Mtb aggregates undergo cell death more 

frequently than macrophages infected with multiple single Mtb bacilli [30]. 

What is less clear, is the stage(s) in the infectious lifecycle of Mtb at which 

aggregation exerts the most profound effect on the host/pathogen interaction. 

Aggregation is considered a virulence factor during Mtb bacterial growth, but 

the recent demonstration of Mtb aggregate transmission in bio-aerosols could 

indicate a role for Mtb aggregates during the transmission stage of the Mtb 

lifecycle as well [31]. 

1.1.4 The Mycobacterium tuberculosis infection life-cycle 

Mtb is transmitted via airborne droplet nuclei during expectoration by Mtb 

infected individuals [32, 33]. The airborne Mtb bacilli are inhaled by new hosts 

and travel through the upper respiratory tract to implant on the surface of the 

human lung. At the lung surface, one of the first points of contact with the 

bacteria is the alveolar macrophage. These innate immune cells phagocytose 

the infecting bacteria and drive the recruitment of blood-derived macrophages, 

neutrophils and other immune cells to the site of infection [34]. This generates 

an inflammatory response that results in the development of a host protective 

structure, known as a granuloma, that attempts to “wall off” the pathogen 

(Figure 1.4 adapted from Ramakrishnan et al. [35]) [36-39]. At first, this 

organised multicellular structure is an aggregation of innate responders that 

phagocytose and attempt to eradicate the pathogen. This early phase of the 
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infection is typically characterised by bacterial replication and the killing of host 

phagocytes. Zebrafish models, using Mycobacterium marinum as the 

infectious agent, have demonstrated that the early granuloma environment 

may be conducive to pathogen replication by drawing in uninfected 

macrophages to the granuloma for productive infection by pathogen [40]. 

Inflammatory signals drive the recruitment of monocytes from the blood to the 

site of infection, which differentiate into specialized macrophage cellular 

subtypes. Such subtypes include foamy macrophages, epithelioid 

macrophages or multinucleated giant cells [41] (Figure 1.4 adapted from 

Ramakrishnan [35]). Dendritic cells are also recruited to the site of infection 

and, over time, an adaptive immune response develops. The development of 

an adaptive response can be delayed during an Mtb infection, but the 

recruitment of adaptive effector cell populations, such as T lymphocytes and 

B lymphocytes, during tuberculous disease progression usually correlates with 

enhanced pathogen control [42, 43]. These adaptive cells develop a cuff 

surrounding the granuloma. At core of the granuloma is a region that is 

typically characterized by a necrotic zone containing an abundance of dead 

host cells, cellular debris and Mtb bacteria which develops into a solid necrotic 

region known as caseum [35]. This caseus, hypoxic environment is considered 

to play an important role in transitioning the infecting bacteria to a dormant, 

non-replicating state that contains the pathogen but does not sterilize the 

infection [44]. Following granuloma development, an infection can remain 

stable and asymptomatic to the host, known as latent TB infection, or the 

infection may reactivate, escape immune containment and progress to active 

disease [45, 46]. Re-activation is typically characterized by liquefaction of the 

caseus, necrotic granuloma core, followed by rupture and cavitation [47]. This 

results in the expulsion of Mtb bacilli, through a productive cough, and spread 

of the pathogen to new hosts.  
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Figure 1.4: Schematic representation of the cellular composition of a 
classical tuberculous granuloma 

Figure 1.4: Schematic representation of the cellular composition of a 
classical tuberculous granuloma. Adapted w/o permission from 
Ramakrishnan 2012 [35] 

A classical tuberculous granuloma is composed predominantly of epithelioid 
macrophages recruited to the site of infection. These tightly associated cells 
surround the infecting bacteria within a necrotic core abundant in cellular 
debris. Giant multinucleated cells and foam cells, rich in accumulated lipids, 
also develop from macrophages within the granuloma. Other innate effector 
cells, such as neutrophils and NK cells, are also drawn to the site of infection. 
Dendritic cell participation links the innate response to the adaptive response, 
resulting in a cuff of B and T cells organised around the granuloma structure. 
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1.1.5 Mtb infection outcomes are heterogenous 

It is difficult to predict the outcome of a host immune response to Mtb. There 

is demonstrated variability between individuals in response to primary infection 

with the bacteria. Some individuals develop active TB disease after 1-3 years 

of infection, while others test positive for Mtb infection and never develop 

symptoms of TB [48]. Mtb infection can also transition to active disease after 

years of dormancy. This can occur as a result of a number of factors, such as 

immunocompromisation or treatment with TNF-α blockers [48, 49]. 

Furthermore, there is heterogeneity between granulomas within an individual 

lung. Some granuloma successfully contain the pathogen, while others within 

the same lung progress to cavitation [50]. While many known and unknown 

determinants likely affect the trajectory of an Mtb infection, Mahamed et. al 

demonstrated that Mtb aggregation state can affect individual cellular 

outcomes of infected macrophages. Infection with large Mtb aggregates 

elicited cell death that was similar to pyroptosis, a necrotic mode of cell death, 

in infected macrophages [30]. As one of the first cellular responders to an Mtb 

infection, a macrophage’s ability to react adequately to a pathogen may be an 

important determinant for overall infection trajectory. 

 

1.2 The Macrophage 

1.2.1 Macrophage activation 

Macrophages are a heterogenous and important population of innate immune 

cells that are among the first to respond to pathogens [51]. Tissue resident 

macrophages are a heterogenous population of cells, found in all mammalian 

organs, that function in clearance of cellular debris, immune surveillance, 

regulation of inflammation and other housekeeping functions [52]. Populations 

of alveolar macrophages, found in the lung, are first derived and established 

in the lung during embryonic development and are later self-replenished [53, 

54]. Historically, this steady-state phenotype of tissue macrophages 

constitutes a metabolic state known as the M2 macrophage (alternatively 

activated macrophage) [55]. Conversely, the M1 differentiation state 

represents a macrophage metabolic state geared towards inflammation and 
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anti-microbial activity (classically activated macrophage). This binary 

macrophage phenotype classification system has been considered an over-

simplification, as macrophages grouped into the M2 phenotype have been 

found to encompass a wide range of biological functions, and macrophage 

activation has been proposed to exist on a more complex spectrum as a result 

of stimulation with a multitude of host mediated and environmental stimuli 

(Figure 1.5 adapted from Mosser et al.) [56, 57]. However, the M1 and M2 

designations are useful when describing host macrophage responses to 

infectious stimuli. M2 macrophages can be driven towards the M1, classically 

Figure 1.5: The macrophage spectrum of activation 

Figure 1.5: The macrophage spectrum of activation. Adapted w/o 
permission from Mosser et al. 2008 [56] 

Macrophages are defined as being classically (M1) or alternately activated 
(M2) (A) but have been proposed to develop more complex activation 
spectra, with associated biological functions, as a result of stimulation with 
a variety of environmental and host mediated stimuli (B). 
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activated, phenotype through exposure to IFN-γ or TNF-α [56]. Additionally, 

studies in mice have shown that alveolar macrophages, closer to the M1 

phenotype, are more permissive to the growth of infecting Mtb than interstitial 

macrophages, a blood-derived M2 like macrophage, also found in the lung 

compartment [58]. Outside of tissue origin and activation state, macrophages 

may also differentiate into specific cellular subtypes during the course of an 

Mtb infection. 

 

1.2.2 Macrophage subtypes during a granulomatous 

response 

During mycobacterial contact at the surface of the lung, infected alveolar 

macrophages drive the recruitment of blood derived macrophages to the site 

of infection [59]. Here, macrophages often further differentiate into several 

subtypes during granuloma formation. This includes foamy macrophages, 

epithelial macrophages and giant cells [35]. Although the precise mechanism 

of differentiation to these cell types is poorly understood, some of their roles 

during Mtb infection have been identified. Foamy macrophages are 

characterized by excess lipid accumulation and are thought to represent an 

energy rich infectious niche for Mtb bacteria [60]. In vitro studies have also 

suggested that mycobacterial mycolic acids stimulate the differentiation of 

monocytes into foamy macrophages [61]. A study by Kim et al. demonstrated 

the spatial organisation of gene expression in a granuloma and showed that 

the central necrotic core, where Mtb bacteria are located, was characterized 

by an upregulation of genes involved in host lipid metabolism [62]. Epithelioid 

macrophages become tightly associated with one another and form a barrier 

around the infecting Mtb and are thought to be instrumental in granuloma 

formation [35]. Giant cells are the result of fusion between macrophages and 

have been shown to be deficient in the ability to phagocytose invading 

mycobacteria [63, 64]. The development of macrophage cellular subtypes 

during an Mtb infection may be an important determinant for infection 

trajectories, yet the individual macrophage is the most common point of first 

contact in the lung with the Mtb pathogen. Therefore, the ability of this cell type 
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to detect and respond to a mycobacterial infection may be an important and 

early factor for determining infection outcomes.  

 

1.3 Macrophage response to infection 

1.3.1 Macrophage pathogen sensing 

Macrophage function and activation state is influenced by the binding of 

substrate to cell receptors. Macrophages that perform homeostatic functions, 

such as removing cellular debris and phagocytosis of apoptotic host cells, use 

scavenger, complement, thrombospondin and phosphatidylserine receptors to 

detect ligands associated with these processes. These activities typically 

occur in the absence of immune cell signalling and do not generate an 

inflammatory response [65, 66]. Conversely, there are also ligands that elicit 

inflammation and an immune response when detected by macrophages [65]. 

These signals include bacterial surface proteins, bacterial or viral nucleic acids 

and are known as pathogen-associated molecular patterns (PAMPs). Other 

host-derived cellular stress signals, such as intracellular cytokines and debris 

generated as a result of traumatic cellular death, can likewise elicit a more 

inflammatory response when detected by macrophages and are known as 

damage-associated molecular patterns (DAMPs) [65]. Toll like receptors 

(TLRs) 1,2 and 4, found on the macrophage surface and within phagosomes, 

are PAMP receptors that function to detect Mtb, and other pathogens, when 

phagocytosed by patrolling macrophages [67-72]. Detection of pathogen by 

TLRs results in the induction of a protective inflammatory response that 

includes the production of cytokines such as TNF-α [69]. However, this 

protective signalling cascade, that involves the MYD88 adaptor molecule, has 

been shown to be dependent on phagosome acidification in macrophage 

infection models using Staphylococcus aureus [73]. Macrophage phagosome 

acidification/maturation is a process which Mtb is known to inhibit [74-76].  
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1.3.2 Phagolysosome acidification and maturation in 

response to pathogen 

Mtb inhibits the acidification of phagolysosomes during infection [74-76]. 

Phagosomes containing internalized pathogen becomes acidified via 

incorporation of a proton pump, V-ATPase, acquired from lysosomes into the 

nascent vesicle [77]. The resulting lowered pH within the compartment has 

historically been considered an antimicrobial defence mechanism [78]. 

However it has been demonstrated that Mtb survives at pH levels found in 

acidified phagosomes [79]. Acidification of the phagosome has been shown to 

be synergistic with other antibacterial mechanisms and has been recognised 

as an important signalling event in response to bacterial pathogen [77]. A lower 

intraphagosomal pH facilitates the action of digestive enzymes found within 

the phagosome. These enzymes liberate bacterial ligand for binding to TLRs 

[73]. TLRs in turn initiate a signalling cascade that can initiate an inflammatory 

and antibacterial response [80]. The MyD88 adaptor molecule has been 

demonstrated to play a critical, acidification-dependent role in this signalling 

cascade [73]. Inhibition or interference with this process therefore represent 

an opportunity for Mtb to generate sub-optimal host responses.  

 

1.3.3 Inhibition of phagosome maturation by Mtb 

Mtb is thought to interfere with phagolysosome maturation via a number of 

mechanisms [81-87]. Mannose-capped lipoarabinomannan is a lipoglycan, 

found in association with the mycobacterial cell wall, that has been shown to 

prevent phagosome maturation via inhibition of the membrane trafficking lipid 

phosphatidylinositol 3-phosphate (PI3P). This prevents the acquisition of 

lysosomes by nascent Mtb-containing phagosomes [81-83]. Additionally, the 

bacterial secreted phosphatase SapM has been shown to slow phagosome 

maturation via cleavage of PI3P [84]. Furthermore, Mtb can directly interfere 

with V-ATPase assembly and thereby directly inhibit phagosome acidification 

using the bacterial secreted protein tyrosine phosphatase (PtpA) [85]. Another 

bacterial lipid, trehalose dimycolate, has been shown to slow phagosome 

maturation when coated onto magnetic beads and phagocytosed by 
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macrophages [86]. The inhibition of acidification in the macrophage 

phagosome is also an important step in the ESX-1 mediated rupture of Mtb 

containing phagosomes [87]. It is noteworthy that phagosome maturation and 

acidification can be restored in IFN-γ activated macrophages and that resting 

macrophages are more susceptible to inhibition of the phagosome maturation 

process [88, 89]. However, Mahamed et al. showed that activated MDMs, that 

were infected with Mtb aggregates, became acidified prior to undergoing 

necrotic cell death [30]. This indicates that Mtb aggregates were able to 

overcome the macrophage response even after phagosomes become 

acidified. 

 

1.3.4 The Macrophage transcriptional response to infection 

The macrophage transcriptome exhibits profound remodelling as a result of 

cellular exposure to bacteria. Microarray studies have shown that through 

exposure to a broad range of bacterial components, including Mtb antigen, 

host macrophages upregulate a common set of genes that activate the cells 

and prime them for an immune response [90]. A study using Cap Analysis of 

Gene Expression (CAGE) showed that macrophage infection with Mtb 

resulted in a broad transcriptional response, upregulating genes for 

transcription factors in both M1 and M2 macrophage activation states [91]. 

Gene cassettes that were upregulated encompassed a wide array of biological 

functions such as pro-inflammation, cell death, negative regulation of 

apoptosis, and cytokine or chemokine signalling targeting other immune cells, 

such as neutrophils [90, 92]. A study involving M1 polarized macrophages 

demonstrated that activated macrophages infected with Mtb induced many 

inflammatory gene pathways, and that the effects of Mtb infection on 

macrophage transcriptional profiles mimicked those seen for activation by IFN-

γ [93]. Ontogenetically distinct macrophage populations show differing 

metabolic transcriptional profiles during Mtb infection, with alveolar 

macrophage populations being more permissive to Mtb growth and favouring 

fatty acid oxidation rather than glycolysis as seen for interstitial macrophages 

that restricted bacterial replication in infected mice [58]. These transcriptional 
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responses to infection can therefore be important determinants of 

antimicrobial activity and cellular infection outcomes. 

 

1.3.5 Initiation of macrophage antimicrobial effector 

functions 

Transcriptional initiation of antimicrobial effector functions can be elicited 

through a number of pathways (Figure 1.6 adapted from MacMicking [80]). 

IFN-γ has been identified as a primary inducer of macrophage activation, and 

is typically produced by other immune cells, such as CD4+ T-lymphocytes, in 

the context of a bacterial infection [94, 95]. Stimulation with this cytokine 

initiates transcription through a STAT1 mediated pathway (Figure 1.6 

adapted from MacMicking [80]). TNF-α and IL1-β are also important 

cytokines that have been implicated in the control of mycobacterial 

infections.[96, 97] TNF-α induced responses result from binding of TNF-α to 

the type 1 TNF receptor (TNFR1) and can share a common signal transduction 

pathway with receptor binding of IL-1β and IL-1α by IL-1R1/IL-1RAcP 

(Interleukin receptors) and binding of Mtb derived ligands to TLRs 1,2 and 4 

(Figure 1.6 adapted from MacMicking [80]). It is also noteworthy that the IL-

1R1 and TLR receptor signal transduction passes through the MyD88 adapter 

molecule pathway, which has been shown to be dependent on phagosome 

acidification for effective pathogen processing, and that IL1-B can upregulate 

both TNF-α secretion and TNFR expression [73, 98].  Induction of these 

pathways leads to the production of antimicrobial effectors that include a 

variety of reactive oxygen species (ROS) or reactive nitrogen species (RNS), 

antimicrobial peptides (AMPs), or the generation of an autophagic response 

(also known as xenophagy), a protective cell death mechanism that targets 

invading bacteria [99-101]. Although binding of these receptors mediates 

important antimicrobial activities, these responses do not always successfully 

eradicate the invading pathogen. IL-1β has been shown to play an important 

role in the induction of an inflammatory mode of cell death, known as 

pyroptosis, that facilitates the rupture of an infected cell and subsequent 

spread of Mtb bacteria to neighbouring cells [102]. TNF-α, while important in 
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antimicrobial signalling cascades, can have pleiotropic effects in the context 

of an Mtb infection (see below). 

 

 

 

 

Figure 1.6: Schematic overview of signalling cascades involved in initiation of 
macrophage antimicrobial effector functions 

Figure 1.6: Schematic overview of signalling cascades involved in 
initiation of macrophage antimicrobial effector functions. Adapted w/o 
permission from MacMicking 2014. [80] 

NF-κB transcriptionally mediated macrophage antimicrobial effector 
mechanisms can be elicited through stimulation of TLRs 1,2 and 4 by Mtb 
ligands, via stimulation of interleukin receptors (IL1-R1/IL-1RAcP) by IL-1β/α 
or by TNF-α binding to tumour necrosis factor receptors (TNFR1/p55). 
STAT1 mediated antimicrobial effector functions can be elicited via 
stimulation interferon gamma receptors (IFNGR1/IFNGR2). 
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1.3.6 TNF-α and the response to Mtb infection 

TNF-α is responsible for generating a multitude of host responses to combat 

Mtb infection. TNF-α is predominantly produced by monocyte/macrophage cell 

types in response to cytokine or bacterial products but can also be produced 

by other immune cells such as T-lymphocytes, B lymphocytes and natural killer 

cells [103]. TNF-α is an inducer of the transcription factor NF-κB, which 

regulates the transcription of a large number of inflammatory gene products 

[104] (Figure 1.6 adapted from MacMicking [80]). TNF-α has also been 

demonstrated to be instrumental in the recruitment of leukocytes to the site of 

Mtb infection, as well as being implicated in the organisation of a granuloma 

into a structure capable of containing the pathogen [105, 106]. The importance 

of TNF-α is highlighted in the reactivation of tuberculous disease in patients 

receiving immunotherapy with TNF-α suppressors [107]. Excess TNF-α has 

also been implicated in programmed macrophage necrosis, an inflammatory 

mode of cell death that results in release of Mtb bacilli into surrounding tissue 

[108]. Interestingly, this cytokine has also been implicated in the induction of 

apoptosis, a mechanism of host cell death that can have anti-inflammatory and 

protective effects in the context of a microbial infection [109]. 

 

1.3.7 Macrophage death as a response to infection with Mtb 

Induction of cell death can result in enhanced control of invading pathogens 

and some mechanisms of host cell death can be more beneficial than others. 

Macrophages infected with virulent Mtb undergo more necrotic cell death than 

macrophages infected with avirulent Mtb, where apoptosis was the 

predominant mechanism of cell death [110, 111]. These two modes of host 

cell death can be categorised as inflammatory and non-inflammatory 

mechanisms respectively. Inflammatory modes of cell death include 

pyroptosis, necroptosis or trauma induced necrosis, while non-inflammatory 

modes of cell death include mechanisms such as apoptosis or autophagy [65]. 

Non-inflammatory mechanisms of cell death afford other host phagocytes an 

opportunity to contain Mtb infection without excess inflammatory immune 

activation. This is mediated via retention of host cellular membrane integrity 
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for a period after cell death induction. This prevents the release of DAMPs into 

the extracellular environment and has been suggested to have a protective 

effect in the context of an Mtb infection [65, 112, 113] (Figure 1.7 adapted 

from Kono and Rock). A recent study also showed that Mtb elicits a broad 

range of both inflammatory and non-inflammatory host cell death responses, 

including apoptosis, while simultaneously downregulating apoptosis, resulting 

in a net enhancement of bacterial survival [114]. Interestingly, apoptosis has 

also been proposed as a mechanism by which Mtb can promote bacterial 

infection of additional host phagocytes when infected with a high MOI of Mtb 

[115]. The release of DAMPs, cytokines and chemokines, following 

Figure 1.7: Schematic of consequences of pro and anti-inflammatory modes of 
cell death 

Figure 1.7: Schematic of consequences of pro and anti-inflammatory 
modes of cell death. Adapted w/o permission from Kono and Rock 
2008. [65] 

Apoptotic cell death results in retention of membrane integrity by dead host 
cells, allowing anti-inflammatory and innocuous phagocytosis by patrolling 
phagocytes. Necrotic mechanisms of cell death result in rapid cell membrane 
rupture and release of DAMPs into the extracellular space which can 
generate an inflammatory response in phagocytes detecting DAMPs. 
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inflammatory modes of cell death, into the surrounding tissue elicits the 

migration of additional phagocytes/immune cells to the site of infection and 

has been proposed as a mechanism through which Mtb draws new targets for 

infection and spread of bacteria. [40, 65, 116]. A phenomenon termed serial 

killing, shown by Mahamed et. al, has demonstrated that a single Mtb 

aggregate can kill several infected phagocytes in succession with increasing 

probability of eliciting inflammatory host cell death [30]. 

 

1.3.8 The Macrophage response to infection with Mtb 

aggregates 

A study by Mahamed et al. investigated the effects of Mtb MOI and 

aggregation state on macrophage death when infected with Mtb bacteria. 

Blood-derived human macrophages showed increased cell death when 

infected with aggregated Mtb. This, and other, studies showed that a higher 

Mtb MOI elicits host cell death faster and more frequently in macrophages [30, 

114, 117] (Figure 1.8, adapted from Mahamed et. al [30]). Interestingly, 

MDMs that were infected with a single large aggregate of Mtb had a higher 

probability of undergoing cell death than MDMs that phagocytosed a similar 

number of Mtb bacteria in the form of several smaller aggregates or multiple 

single bacteria [30] (Figure 1.9, adapted from Mahamed et. al [30]). The 

study also made several other observations relating to the infection dynamics 

of Mtb aggregates. Mtb aggregates that infect and kill host macrophages grow 

preferentially within the remains of dead MDMs, relative to extracellular media 

or within live MDMs [30]. A single Mtb aggregate has the potential to kill more 

than one host cell and can elicit death sequentially in MDMs that phagocytose 

the same aggregate in a process described as “serial killing” [30] (Figure 1.10, 

adapted from Mahamed et. al [30]). Once a Mtb aggregate has infected and 

killed a MDM (and proliferated in the cellular remains), it is equally or more 

cytotoxic to other phagocytes that pick up the same bacterial clump [30]. 

Finally, the macrophage death elicited by high MOI Mtb infection more closely 

resembles necrotic mechanisms of cellular death, such as pyroptosis, and not 

apoptosis [30]. This shows that the cellular fate of a macrophage infected with 
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Mtb can be affected by physical parameters of the infecting bacteria such as 

bacterial number and aggregation state. Elucidating the early transcriptional 

response of macrophages that are infected by Mtb aggregates could therefore 

reveal signalling events that characterise a failed cellular response. 

 

 

 

 

Figure 1.8: The number of infecting Mtb bacilli determines probability of 
phagocyte death 

Figure 1.8: The number of infecting Mtb bacilli determines probability of 
phagocyte death. Adapted w/o permission from Mahamed et al. 2017. [30] 

Frequency of cell death (colour scale bar) in Mtb infected MDMs (n = 720) 
increases with increasing number of phagocytosed Mtb bacilli. There is a 
marked decrease in the time (x - axis) to cell death and an increase in frequency 
of cell death, at ~30 infecting bacilli, relative to macrophages infected with a 
lower number of Mtb bacilli (y-axis). 



39 
 

 

 

 

Figure 1.9: Single large aggregates of Mtb are more cytotoxic than multiple single Mtb 
single Mtb 

Figure 1.10: Mtb aggregates kill multiple phagocytes in successive phagocytic 
events 

Figure 1.10: Mtb aggregates kill multiple phagocytes in successive 
phagocytic events. Adapted w/o permission from Mahamed et al. 2017. 
[30] 

Infecting Mtb aggregates (red) infect and kill macrophages with probability 
P1 and increase in size/bacillary number within the dead macrophage. This 
infection cycle repeats for subsequent phagocytes internalizing the bacterial 
clump, with probability of death from infection Pn > P3 > P2 > P1. 

Figure 1.9: Single large aggregates of Mtb are more cytotoxic than 
multiple single Mtb. Adapted w/o permission from Mahamed et al. 2017. 
[30] 

Total fraction of cell death (y-axis) for macrophages internalizing a single 
large aggregate (black line, n = 62) was 71%. Total fraction of dead 
macrophages internalizing a similar number of Mtb bacilli as multiple smaller 
aggregates or singles (red line, n = 47) was 47% in comparison.  
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1.4 RNA sequencing and expression analysis 

RNA expression analyses have been used to great effect in understanding 

cellular transcriptional responses to infection. Microarray data has historically 

provided insight into expression patterns in a targeted fashion, where the 

expression of specific genes can be investigated [92, 118]. The advent of high 

throughput sequencing technology, such as that applied on platforms like the 

Illumina NextSeq, provides a hypothesis free means to investigate cellular 

expression patterns without limiting the scope of the genes being analysed 

[119]. Additionally, the variety of software packages that can be employed to 

investigate the resultant read-count data has increased in recent years. The R 

programming platform supports a number of bioinformatics packages that are 

specifically developed for processing cellular population expression data. 

Such packages include DESeq2, EdgeR, limma and others. DESeq2 has 

demonstrated good performance, in terms of differential expression (DE) 

analysis, relative to other packages and comes with a variety of additional tools 

for transcriptional data analysis [120, 121]. RLog normalization is a robust 

algorithm used by DESeq2 that minimizes the disproportionate effects of 

genes with either very high or very low read counts by coercing the data to 

have a similar dynamic range (homoscedastic). This regularizes the data so 

that it is better suited to interpretation using dimensionality reduction 

techniques, such as the principal component analysis (PCA), employed during 

expression clustering analysis [122]. During DE analysis, which directly 

compares expression patterns between treatment conditions, DESeq2 makes 

statistical inferences using a negative binomial distribution model. It is 

noteworthy that the DE analysis, as applied by DESeq2, constitutes a separate 

analysis technique, that uses a log fold change shrinkage technique to reduce 

the influence of genes with low statistical significance, that is distinct from the 

RLog normalization applied during expression clustering [122]. Sequencing 

technologies are an instrumental arm of bioinformatics aimed at investigating 

cellular genetic phenomena. The analysis of biological image databases 

represents another facet of bioinformatics aimed at extracting information 

resulting from data generated from imaging techniques such as microscopy. 
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1.5 Image analysis in infection biology 

1.5.1 Microscopic image analysis 

Much of our understanding of Mtb comes from the study of stained tissue 

slides [123]. Microscopic analysis is one of the earliest tools used to 

investigate microbial pathogens and forms the basis of some of our 

fundamental observations on the morphology of Mtb during infection as well 

as the host granulomatous response to infection. The advent of digital imaging 

platforms, tools and experimental models to directly image interactions 

between host and pathogen have also provided deeper insight into TB 

disease. Transparent Zebrafish models, in conjunction with fluorescent time-

lapse microscopy have shown real-time granuloma development in response 

to infection with Mycobacterium marinum [40, 42]. The 3D structure of a 

granuloma in an Mtb positive human lung, in a departure from the classical 

spherical granuloma model, has been revealed to be more like that of a 

branching “ginger root” structure using digital reconstruction of CT scan 

images [124]. Mahamed et al. used a confocal fluorescent time-lapse 

microscopy system to investigate the macrophage death response following 

infection with Mtb aggregates [30]. Software platforms, like QuPath or ImageJ, 

afford the user a wide variety of tools with which to examine pathological 

features in histological tissue sections [125, 126]. Most approaches used for 

quantifying bacteria during microscopic analysis have been applied to in vitro 

bacterial culture or sputum smears, as opposed the more complex and visually 

heterogenous environment of a histological tissue slide [127, 128]. The size 

and complexity of these images, and the effort required for manual 

quantification of any stained bacteria that might be found in them, make these 

datasets good targets for the incorporation of machine learning (ML) 

techniques to automate image interrogation as far as possible. 

 

1.5.2 Machine learning and digital image analysis 

Deep learning machine models have been elemental in medical image 

analysis [129-132]. ML has been applied to tasks such as image 

segmentation, anatomical structure identification, diagnosis and classification 
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in the context of histopathological staining [129]. For such analyses, a typical 

pipeline requires data pre-processing that involves sampling and feature 

extraction to obtain useful information from the raw image data [130]. Several 

types of ML models exist, such as deep convolutional neural networks (NN), 

support vector machines or polynomial regression.  

 

1.6 Machine learning 

Machine learning is a branch of artificial intelligence that employs a variety of 

mathematical models that use existing data to make predictions or 

classifications on unseen data (Figure 1.11 adapted from Alzubaidi et al) 

[132]. Over time the model can improve in performance by incorporating more 

training data to improve the model fit. This is done by altering model 

parameters. For most ML models, this process can be broken into 3 steps 

during training, with each step represented by specific mathematical 

expressions/algorithms (Figure 1.12). This generally includes a hypothesis 

function, model cost function and a gradient descent algorithm. Once a 

model’s parameters are trained, predictions/classifications are made in a 

single step (Figure 1.12). 

 

1.6.1 Machine learning definitions 

A data point, or observation, is a discrete unit of information. Observations can 

be composed of one or more metrics, known as features or variables, that 

describe its properties [133]. Features can include information such as length, 

width, or colour, of an observation depending on the dataset. Variables are 

denoted with an 𝑥 in mathematical expressions seeking to model a dataset 

and are accompanied by coefficient terms. Theses coefficients are known as 

parameters and form the basis of a model’s ability to change and fit to a 

dataset [133]. Parameters are denoted by an uppercase theta (𝜃) in model 

expressions. A hypothesis,  denoted as  ℎ𝜃(𝑥), is the part of the model 

equation that describes the output or prediction of a model, given a set of input 

features and parameters in the expression. A hypothesis function is the 

expression that describes a model’s prediction, given a set of input features 
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and parameters [133]. Equation [1] describes a linear regression model, 

where the ℎ𝜃(𝑥) (hypothesis of 𝑥) is equal to 𝜃0 plus the product of 𝜃1 ∙ 𝑥1.  

ℎ𝜃(𝑥) =  𝜃0 +  𝜃1𝑥1     [1] 

ML models change the value of parameters in the hypothesis function to 

enable a better fit of the training data. A model’s performance, when compared 

to a dataset can be monitored using a cost function. 

Figure 1.11: Machine learning is a branch of artificial intelligence 

Figure 1.11: Machine learning is a branch of artificial intelligence. 
Adapted w/o permission from Alzubaidi et al. 2021. [132] 

Artificial intelligence broadly encompasses mathematical models that 
dynamically react to data. Machine learning encompasses a group of 
algorithms whose performance can increase when exposed to increasing 
amounts of data. Deep learning describes a smaller group of complex neural 
network models that are typically trained using large datasets. 
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1.6.2 The model cost function 

ML models are trained by incrementally reducing the cost of a model fit on a 

training dataset. Cost is calculated by comparing model predictions to pre-

labelled data (also known as ground truths) and calculating an error term [134]. 

This process is analogous to a least squares error analysis. However, each 

type of ML model (including linear, polynomial or logistic regression, among 

Figure 1.12: Schematic overview of machine learning model training and 
application 

Figure 1.12: Schematic overview of machine learning model training 
and application 

Labelled training data is used as input during model training. A model 
generates a prediction with a 1) hypothesis function. These predictions are 
then compared to data labels in the 2) cost function to estimate model error. 
New parameters are calculated from model cost using the 3) gradient 
descent algorithm and applied to the model. This cycle is repeated until the 
model achieves minimal cost (convergence). A trained machine learning 
model can then be applied to unseen data to generate 
predictions/classifications. 



45 
 

others) has a specific cost function [134]. Varying model parameters will 

change the cost of a model, and there are parameter values at which model 

cost will be at its lowest. Finding the parameter values at which a model 

achieves the lowest possible cost represents the optimal possible fit of a model 

to a training dataset (Figure 1.13) [134]. Reaching this minimum cost value is 

the goal of ML models and achieving this known as model convergence. 

Several algorithms have been developed to automate this process, however, 

gradient descent is one of the most commonly employed.         

 

1.6.3 Gradient descent 

Gradient descent changes model parameters using an iterative, stepwise 

process. The gradient descent algorithm calculates the partial derivative of the 

cost function with respect to a particular set of parameter values [134]. This 

generates a tangent to the cost function from which a gradient can be 

extracted. This gradient provides directionality at each step and dictates 

whether the algorithm will add or subtract from the parameter values in the 

subsequent iteration of gradient descent (Figure 1.13) [134, 135]. The size of 

Figure 1.13: Model cost as a function of parameter value 

Figure 1.13: Model cost as a function of parameter value. 

A ML model cost (blue line) will vary as a result of changing parameter values 
(𝜃𝑛). Gradient descent descent (perforated black line) varies model 
parameters to enable model convergence on minimal model cost (red circle). 
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each step of gradient descent is determined at each iteration, is dependent on 

model cost and is affected by the variable α (Figure 1.13 α). This means the 

pathway of gradient descent changes dynamically in response to changing 

model performance (Figure 1.13 black perforated line). The step size 

becomes smaller as the algorithm approaches a minimum cost value because 

the gradient is less steep, and the model cost is lower [135]. This makes the 

algorithm less likely to overshoot convergence but does not obviate the need 

to calibrate an appropriate value for α (Figure 1.13 red circle). α is an example 

of a hyperparameter. Hyperparameters are distinct from the parameters 

present in the hypothesis function of a ML model and are used to optimize and 

control the fit of a model to the training data. 

 

1.6.4 Hyperparameters 

1.6.4.1  Learning rate 

The hyperparameter α is known as the learning rate [134]. If α is too large or 

too small a model may fail to converge on a minimum cost value. A large value 

for α can cause gradient descent steps sizes that are too large and generate 

an erratic gradient descent path. This can result in a failure to converge and 

potential underfitting of the data (high model variance), making it a poor 

predictor. Conversely, if α is too small the step size may be insignificant and 

the model may take too long to converge, likewise resulting in a poor fit to the 

data [135]. Notably, a perfect model convergence/fit may also be detrimental 

to performance when applied to unseen data. As this can lead to overfitting of 

the training data and poor model generalization when making predictions on 

unseen data (high model bias). This can be avoided by adding a regularization 

term to the model and controlled with the λ hyperparameter. 

 

1.6.4.2  Model regularization 

Overfitting can lead to poor model performance but can be controlled by model 

regularization [134, 136]. Biased ML models follow training data too closely 

(Figure 1.14 Overfit Model), while high variance models do not fit the data 
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closely enough (Figure 1.14 Underfit Model). By ensuring a model achieves 

minimum cost during gradient descent and then applying regularization term 

to “relax” the fit, a ML model can generalize better when the applied on real 

world data (Figure 1.14 Regularized Model). A regularization term penalises 

model parameter values to limit the minimum cost a ML model can achieve 

during gradient descent. The hyperparameter λ is used to determine the 

magnitude of correction the regularization term applies to the model. This 

ensures that a ML model can only fit training data imperfectly, but still allows 

a model to fit the overall trend of the data and achieve better generalization 

when applied to unseen datasets. 

 

1.6.5 Supervised and unsupervised learning 

ML model training can be supervised or unsupervised [137, 138]. A supervised 

ML model takes advantage of pre-labelled data. In the case of a classification 

model, this means that training data has been annotated with the correct 

labels, typically through human data curation [139]. A model uses these labels 

as a “gold standard” to construct a decision boundary between labelled 

Figure 1.14: Overview of model bias and variance 

Figure 1.14: Overview of model bias and variance 

ML models (black perforated line) that do not adequately model data (red 
circles) are Underfit. ML models that follow data too closely and do not 
perform well on unseen data. Regularized ML models fit the data imperfectly, 
but closely enough to enable good performance on unseen data. 
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observations in the training data. This learned boundary can then be applied 

to unseen data to generate classifications. This method leverages human 

capacity to discriminate between data labels (via manual data curation) to 

generate better decision boundaries (Figure 1.15 – Logistic regression). On 

the other hand, an unsupervised learning algorithm uses training data that has 

not been manually curated [140]. The training data for unsupervised ML is 

labelled using clustering algorithms and takes advantage of natural differences 

in the data that cause it to group. This is typically accomplished using 

dimensionality reduction algorithms, such as principal component analysis 

(PCA) [140]. The current study makes use of supervised ML. 

 

1.6.6 Prediction and classification 

ML models can be used to predict values, based on the relationships between 

variables in a dataset, or they can be used to classify individual observations 

in a dataset into pre-defined groups [134]. The latter relies on two fundamental 

techniques; linear and logistic regression. Linear regression is used to 

generate predictions on unseen data by fitting a curve to a training dataset 

(Figure 1.15 Linear regression). Unseen observations are assigned a value 

based on their features in relation to a fitted regression line [134]. The 

hypothesis function in such cases returns a value in the same units as the 

response variable in the data to which the regression line was fit (Figure 1.15 

Linear regression hypothesis function). Logistic regression is used to 

classify/assign labels to observations in a dataset (Figure 1.15 Logistic 

regression). Observations are assigned a label based on their position 

relative to a decision boundary, a line that transects the data and described in 

the hypothesis function [134, 141]. (Figure 1.15 Logistic regression 

decision boundary). The expression for the decision boundary is found in the 

exponential term of the base 𝑒 (Figure 1.15 Logistic regression, hypothesis 

function). This expression also contains the terms for the dataset features 

and parameters (Figure 1.15 Logistic regression, perforated red line). The 

full hypothesis function for logistic regression takes the form of the sigmoid 

function, which asymptotes at 0 and 1 [141]. This means that the function 

evaluates to a probability that an observation is part of a particular label class, 
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and therefore class labels can be assigned by user-defined thresholds. The 

logistic regression classification model is the basic unit for the individual nodes 

of a computational neuron, the key component of a convolutional neural 

network (CNN) classification model [142]. 

 

 

1.7 Deep Learning 

Deep learning is a branch of ML that deals with multi-layered neural networks 

that learn using large training datasets (Figure 1.11). 

Figure 1.15: Comparison of linear and logistic regression 

Figure 1.15: Comparison of linear and logistic regression 

Linear regression (black perforated line) is used to generate predictions based 
on relationships between variables in the training data (red circle). Logistic 
regression is used to generate decision boundaries (red perforated line) that 
classify the data into different groups (blue circles and green circles). 
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1.7.1 The computational neuron 

CNNs are composed of basic computational units known as neurons. Neurons 

can have varying composition, but all have the same fundamental structure 

that is composed of an input layer, an output layer and one or many hidden 

layers (Figure 1.16) [143]. The structure of a computational neuron can be 

compared to a biological neuron. The input layer of a computational neuron is 

where data is input into the CNN algorithm structure (Figure 1.16 - panel 1). 

This is analogous to the dendrites of a biological neuron receiving signals from 

other cells. In the case of the computational neuron, the signals received in 

the input layer are the features of an observation in a dataset (Figure 1.16 

panel 1, 𝒙𝟏,𝒙𝟐 and 𝒙𝟑). These features are then multiplied by parameter 

matrices and used as input for logistic regression functions. The output of 

these functions constitutes what is known as the activations in the hidden layer 

of the neural network (Figure 1.16, panel 2, 𝒂𝟏
𝟏, 𝒂𝟐

𝟏 and 𝒂𝟑
𝟏) [138].  

Individual activations are commonly referred to as nodes. Each node uses all 

features from an observation in a dataset, multiplied by a unique parameter 

matrix, to calculate an activation value. Therefore, the output of each node is 

a unique value that incorporates all the data available for a single observation. 

This allows a computational neuron to form a unique hypothesis at each node 

of a network [143]. These nodes in turn form a matrix which is multiplied by 

another unique parameter matrix and used as input for a final, single logistic 

regression node (Figure 1.16 panel 3). The output of this final node is the 

hypothesis/classification for the entire computational neuron. For a CNN the 

calculation that evaluates to the overall classification/hypothesis for a neuron, 

beginning at the input layer and ending at the output layer, is known as forward 

propagation [134, 144]. The cost calculation and gradient descent algorithms 

for CNNs are also unique. The calculation of model gradients, used during 

gradient descent, for CNNs is referred to as backpropagation [145, 146]. A 

number of variations on the CNN model exist and can be applied in data-

specific contexts. Recurrent Neural networks, for example, can take a variable 

number of features as input [132]. For the purposed of the current study 

however, where there is a defined set of features extracted from an image, a 

standard CNN was most suited. 
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Figure 1.16: Schematic overview and comparison of computational and 
biological neurons 

Figure 1.16: Schematic overview and comparison of computational and 
biological neurons 

A computational neuron accepts data as input in the input layer, where a 
biological neuron receives signals at the dendrites (1). The hidden layers of 
a computational neuron generate unique hypotheses in the hidden layers 
where biological neurons pass signal along an axon (2) The output layer of 
a computational neuron generates a classification for data received in the 
input layer, where a biological neuron transmits signals to other neurons at 
the axon terminals (3). 
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1.8 Aims 

Macrophages are an important population of innate responder cells that are 

among the first to encounter Mtb during transmission. Understanding the initial 

cellular transcriptional response of these cells, in the context of a cytotoxic Mtb 

aggregate infection, could be instrumental in predicting overall infection 

trajectory and reveal novel targets for intervention. Likewise, understanding 

mechanistic factors in the host-pathogen interaction, such as mycobacterial 

viability and phagosomal acidification, during an Mtb aggregate infection could 

reveal important determinants of infection outcome. Mtb aggregates have 

previously been found in resected lung tissue and shown to exacerbate 

infection outcomes in a rabbit model [147, 148]. The extent to which they are 

present in an in vivo human granulomatous environment, however, has not 

been quantified. Understanding the distribution and abundance of Mtb 

aggregates present in a granuloma may be informative in establishing whether 

this bacterial phenotype represents a relevant mechanism of pathogenesis. 

However, manually quantifying aggregated Mtb in scanned tissue slides is a 

time-consuming endeavour. Automated detection of Mtb bacilli in diagnostic 

sputum smears is widely employed [149-152], but solutions for Mtb detection 

in the more heterogenous context of tissue sections are less common. A 

reliable and more automated solution for detecting these bacilli is possible by 

training a CNN, as they are regularly applied to contemporary image 

classification tasks [129, 130]. 

In the current study I aim to investigate the macrophage response to Mtb 

aggregate infection and to assess the potential relevance of Mtb aggregates 

during human lung infection. The objectives are:  

1. To understand the effect of Mtb multiplicity of infection and aggregation state 

on the macrophage transcriptional response (Chapter 3).  

2. To investigate the effect of Mtb aggregate viability on macrophage death 

and acidification in response to infection with Mtb aggregates (Chapter 3).  

3. To develop a custom image analysis pipeline to automate the quantification 

of Ziehl-Neelsen stained Mtb bacilli in human lung tissue sections (Chapter 

4).  
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4. To quantify Mtb aggregates in TB positive human lungs and investigate the 

distribution of Mtb aggregates at pathological sites during in vivo infection 

(Chapter 5). 
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2 Chapter 2. Materials and methods 

2.1 Ethical statement 

Written informed consent was obtained for blood drawn from adult healthy 

volunteers (University of KwaZulu-Natal Institutional Review Board approval 

BE022/13). Written informed consent was obtained for lung sections from 

clinically indicated lung resections resulting from TB complications (University 

of KwaZulu-Natal Institutional Review Board approval BE019/13).  

 

2.2 Macrophage culture 

Peripheral blood mononuclear cells were isolated using density gradient 

centrifugation in Histopaque 1077 (Sigma-Aldrich, St Louis, MO). Purified 

CD14+ monocytes were obtained by positive selection using anti-CD14 

microbeads (Miltenyi Biotec, San Diego, CA). For RNA-Seq experiments, 

CD14+ monocytes were seeded at 1 x 106 cells per well in non-tissue culture 

treated 35 mm 6-well plates. For time-lapse microscopy protocols, CD14+ 

monocytes were seeded at 0.2 x 106 cells per 0.01% fibronectin (Sigma-

Aldrich) coated 35 mm glass bottom optical dishes (Mattek, Ashland, MA). 

Monocytes were differentiated in macrophage growth medium containing 1% 

each of HEPES, sodium pyruvate, L-glutamine, and non-essential amino 

acids, 10% human AB serum (Sigma-Aldrich), and 50 ng/ml GM-CSF 

(Peprotech, Rocky Hill, NJ) in RPMI. The cell culture medium was replaced 

one, three, and six days after plating. 

 

2.3 Mtb culture and macrophage infection 

Fluorescent H37Rv Mtb was derived by transforming the parental strain with 

a plasmid with mCherry under the smyc' promoter (generous gift from D. 

Russell). Mtb were maintained in Difco Middlebrook 7H9 medium enriched 

with oleic acid-albumin-dextrose catalase supplement (BD, Sparks, MD). 

Three days prior to macrophage infection, Mtb were grown in Tween 80-free 

media. On the day of infection, exponentially growing bacterial culture was 

pelleted at 2000g for 10 min, washed twice with 10 ml PBS, and large 
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aggregates broken up by shaking with sterilized 2–4 mm glass beads for 30 s 

(bead beating). 10 ml of PBS was added, and large clumps were further 

excluded by allowing them to settle for 5 min. To generate single Mtb bacilli, 

the bacterial suspension was passed through a 5 µm filter syringe after 

aggregate preparation. The resulting singlet and aggregate Mtb suspensions 

were immediately used to infect MDMs. Mtb grown in media containing Tween 

80 (Sigma-Aldrich) surfactant was grown in parallel with detergent free Mtb 

culture to monitor bacterial growth and calibrate macrophage infection using 

optical density. MDM were infected with 150µl Mtb aggregate suspension or 

1000µl singlet suspension for 3 hours, washed with PBS to remove 

extracellular Mtb and incubated for a further 3 hours. Where heat-killing was 

required, the Mtb suspension was placed in a heating block for 20 minutes at 

80oC. 

 

2.4 Isolation of infected macrophage populations for 

RNASeq 

After infection (as above), MDMs were lifted from non-tissue culture treated 

plates, using 1ml of Accutase (Sigma-Aldrich) cell dissociation reagent per 

35mm well, and transferred to FACS tubes. The cell viability stain Draq7 

(BioStatus, Leicestershire, UK) was added at a concentration of 1:1000 per 

sample. Macrophage populations were separated into high and low Mtb 

infected populations using Mtb mCherry fluorescence levels (measured at 

561nm) (Figure 3.1). Dead cells were removed based on DRAQ7 signal 

(633nm excitation). I estimated the number of bacilli per infected macrophage 

by comparing fluorescence distributions of Mtb in FACS data to the 

corresponding Mtb fluorescence distribution from confocal microscopy. 

Previous observations have shown a tight correspondence between bacterial 

colony forming units (CFU) and bacterial fluorescence (Supplementary 

material Figure 8.1 adapted from Mahamed et al. [30]). Infected MDMs, at 

10 000 cells per tube, were sorted into Trizol (Thermo-Fischer, 

Massachusetts, USA) and snap frozen in a dry ice and 99 percent isopropanol 

slurry using a BD FACSAria III flow cytometer (BD, New Jersey, US). 
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2.5 RNASeq 

Snap frozen MDM samples were stored at -80oC before transport and 

sequencing. Sample cDNA libraries were prepared according to protocols 

established by John J. Trombetta et al. [153]. Zymogen Direct-Zol RNA 

Miniprep Kits (Zymo Research corporation, Irvine, CA)  were used to extract 

RNA from cells frozen in Trizol, according to manufacturer instructions, 

followed by an RNAClean SPRI bead Cleanup (Beckman Coulter Life 

Sciences, Indianapolis, IND) and cDNA library prep using the Maxima H minus 

reverse transcriptase kit (Thermo-Fischer, Massachusetts, USA). The KAPA 

HiFi HotStart readymix (Sigma-Aldrich, St Louis, MO) was used for whole 

transcriptome amplification prior to adapter ligation, sequence pooling and 

sequencing on an Illumina NextSeq 500/550 instrument (Illumina, San Diego, 

CA) at the Shalek lab in the Broad Institute of MIT in Boston (Merkin Building, 

415 Main St, Cambridge, MA 02142, United States). Transcripts were aligned 

to human reference hg19 and read count libraries generated using the RSEM 

software package [154]. Fastq sequence files were uploaded to the NCBI GEO 

(https://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE173560. 

 

2.6 Transcriptomics data analysis 

Read count libraries for each of the 15 replicates per infection condition were 

generated at an average read depth of 4 per base [155] and processed using 

the DESeq2 package for the R programming platform (R foundation, Vienna, 

Austria) [122]. Metadata and read count matrices from each batch were 

concatenated into a single metadata and read count matrix prior to processing. 

For PCA count matrices were R-log normalized in DESeq2 and corrected for 

batch effects using the SVA ComBat package for R [156]. Read count matrices 

were RLog normalized and arranged in descending order by variance across 

treatment conditions, and the top 0.1% of variable genes plotted in a PCA to 

assess clustering. The DESeq2 negative binomial model was used to perform 

differential expression (DE) analysis, including blood donor as a factor. Genes 

identified in DE analysis were cross-referenced with RLog normalized, 

variance ordered lists to narrow gene candidate lists. Candidate genes were 
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then tested for significant differences between infection conditions using a 

Hochberg corrected, non-parametric Mann-Whitney U-test. Ranked gene lists 

generated by DESeq2 DE analysis were used in gene set enrichment analysis 

(GSEA) using the Hallmark molecular signatures database [157] 

(https://www.gsea-msigdb.org/gsea/msigdb/index.jsp). Normalised 

enrichment scores were calculated for each of the comparisons and arbitrary 

cut-off values of p < 0.001 and FDR < 0.005 were used to identify significant 

functional regulatory categories between infection comparisons. 

 

2.7 Cytokine Analysis 

MDMs were isolated, differentiated, and infected with single or aggregated Mtb 

suspension, as above, and incubated for 3h before being washed with PBS to 

remove extracellular Mtb and incubated for a further 3h. Supernatant was 

collected, 0.2µm filtered and frozen prior to cytokine quantification. Cytokine 

levels were measured using a custom R&D Systems Luminex cytokine panel 

kit (R & D Systems, Minneapolis, MN), according to kit instructions, on a Biorad 

Bioplay 200 instrument (BioRad, California, US).  

 

2.8 Microscopy 

Macrophages and bacteria were imaged using an Andor (Andor, Belfast, UK) 

integrated Metamorph-controlled (Molecular Devices, Sunnyvale, CA) Nikon 

TiE motorized microscope (Nikon Corporation, Tokyo, Japan) with a 20x, 0.75 

NA phase objective. Images were captured using an 888 EMCCD camera 

(Andor). Temperature and C02 were maintained at 37oC and 5% using an 

environmental chamber (OKO Labs, Naples, Italy). During time-lapse 

protocols, images were captured once every ten minutes for the duration of 

the time-lapse. For each image acquisition, images were captured at 

wavelengths applicable to fluorophores used in the analysis and included 

transmitted light (phase contrast), 561nm (Red fluorescent protein), and 

640nm (DRAQ7, lysotracker). Image analysis for fluorescence microscopy 

was conducted using custom written MATLAB (Mathworks, Massachusetts, 

USA) script. Single cells were manually segmented prior to fluorescent signal 

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp
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quantification. For each cell, fluorescent signal in each channel was quantified 

as pixel intensity. 

 

2.9 Macrophage acidification 

Single cell fluorescence data for lysotracker acidification was acquired at a 

single time point at 6 hours post infection using the confocal microscopy 

system described above. MDMs on fibronectin coated optical dishes were 

infected with 400µl Mtb aggregate suspension (Materials and methods 

section 2.3) and incubated for 3 hours before being washed with PBS to 

remove any cell free Mtb and incubated for a further 2 hours. 1 hour prior to 

microscopic image acquisition, 75nM Lysotracker (Thermo-Fischer, 

Massachusetts, USA) was added to wells. Image data was processed as 

above to determine pixel fluorescence intensity in each fluorescent channel 

per cell (Materials and methods section 2.8). Macrophage surface 

area/volume (SA/V) model fit was to 3/𝑟 (a simplified expression 

for 𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎/𝑠𝑝ℎ𝑒𝑟𝑖𝑐𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 ), where 𝑟 was aggregate 

radius. 

 

2.10  Combination staining of human lung 

Human lung tissue was cut into 2 mm thick sections and picked on charged 

slides. Slides were baked at 56oC for 15 minutes. Mounted sections were 

dewaxed in xylene followed by rinse in 100% ethanol and 1 change of SVR 

(95%). Slides were then washed under running water for 2 minutes followed 

by antigen retrieval via heat induced epitope retrieval (HIER) in Tris-sodium 

chloride (pH 6.0) for 30 minutes. Slides were then cooled for 15 minutes and 

rinsed under running water for 2 minutes. Endogenous peroxide activity was 

blocked using 3% hydrogen peroxide for 10 minutes at room temperature (RT). 

Slides were then washed in PBST and blocked with protein block (Novolink) 

for 5 min at RT. Sections were incubated with primary antibodies for CD68 

(M0814-CD68-KP1, DAKO,1:3000) followed by washing and incubation with 

the polymer (Novolink) for 30 minutes at RT. Slides were then washed and 

stained with DAB for 5 minutes and washed under running water for 5 minutes. 
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For combination staining, slides were incubated with heated carbol fuchsin for 

10 minutes and then washed in running tap water. 3% acid alcohol was applied 

to the slide to decolourize for 30 seconds or until sections appeared clear. 

Slides were then washed in running tap water for 2 minutes and where then 

counter stained with methylene blue. Slides were rinsed under running water, 

dehydrated, and mounted in Distyrene Plasticiser Xylene (DPX). 

 

2.11 Image Processing 

All image processing pipelines were developed using the MATLAB® 

programming platform. 

2.11.1 Image scanning and input 

Stained tissue sections were scanned to digital .ndpi format using a 

Nanozoomer 2.0 rs (Hamamatsu, Yokohama, Japan) slide scanner. RGB 

Images of resected lung tissue in .ndpi format were converted to .TIFF file 

types (without compression), using the NDPITools plugin for the ImageJ 

software package [158], to enable compatibility with MATLAB® (Mathworks, 

Massachusetts, USA) image processing functions. The resultant image files 

were imported into MATLAB® in smaller sections (tiles) to circumvent 

maximum array dimension constraints. This was calculated by finding the 

image array size (in pixels) along each dimension of the image and 

determining a divisor that resulted in a value closest to 5000 pixels. The full 

image was then divided into sections without remainder (Code appendix 

section 8.2.1).   

 

2.11.2 Image pre-processing 

Each layer of an input RGB image matrix was separated into individual 

grayscale matrices that contained only red (R), blue (B) or green (G) pixel 

intensity values. Additional cyan (C), magenta (M) and yellow (Y) grayscale 

intensity matrices were calculated from the R, G and B matrices using element 

wise matrix addition and subtraction. C was calculated by first adding B to G 

pixel intensity and then subtracting R pixel intensity, M by adding R to B and 
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then subtracting G, and Y by adding R to G and then subtracting B (Code 

appendix section 8.2.1).   

 

2.11.3 Binary masks 

I generated a binary image mask, for each input image tile, to extract only the 

pixels that fell within the ZN colour profile. I generated 3 biased grayscale 

image matrices that had higher intensity values in pixels that contributed most 

to the ZN colour profile (section 4.2.2, R, G or B pixel values). This was done 

using element wise matrix subtraction. To upwardly bias M pixel intensities, I 

subtracted the G intensity matrix from the M matrix, for R I subtracted C from 

the R matrix and for B, I subtracted Y from the B matrix. I then removed 

background noise using the mean and standard deviation of pixel intensity for 

the individual biased matrices so that only higher intensity pixel values 

remained (Code appendix section 8.2.1). I created the final binary mask 

using element wise Boolean intersection between the 3 biased matrices. 

Pixels that were common to all 3 matrices were labelled as 1, and those that 

were not common in all 3 were labelled as 0. 

 

2.11.4 Feature extraction 

Binary masks (Materials and methods section 2.11.3) were used to select 

ZN-stained pixels in RGB images. Each binary mask was applied to the 

corresponding RGB image of origin to extract only pixels at positions where 

the binary matrix had a value of 1. Pixels selected in this way were then 

grouped by proximity. All pixels that were in direct contact with another pixel 

were considered to be a single object, with unique features, and allocated a 

unique identification number. Feature data for each object was then extracted 

from the RGB image (Section 4, Figure 4.1). These featured included the 

mean, median, mode, maximum, sum and standard deviation for R, G and B 

pixel intensities, as well as hue, saturation, value, pixel area, circularity, 

eccentricity, solidity, scale-invariant feature transform (SIFT) features and 

maximally stable extremal regions (MSER) features per object (Code 
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appendix section 8.2.1) [159, 160]. Feature data for objects and unique ID 

numbers were stored in a separate database for each scanned slide. 

 

2.11.5 Manual object curation 

I reduced the number of objects that did not match the ZN colour profile by 

manually removing them from the database for each slide. Mean R, G and B 

values for all objects were plotted on a 3D axis (Section 4, Figure 4.3). On 

the same set of axes, I plotted the mean R, G and B values of a separate and 

complementary database of objects that were derived from the same image 

tile. Complementary object databases were derived identically and in parallel 

to ZN object databases but using extracted pixels whose colour profiles were 

the opposite of ZN (Materials and methods section 2.11.3). This guided the 

coarse manual removal of a large number of objects that did not belong to the 

target distribution of ZN stained Mtb (ZN-Mtb), prior to further individual object 

validation (Materials and methods section 2.11.6).  

 

2.11.6 Individual object validation 

I validated individual ZN-Mtb objects generated by feature extraction 

(Materials and methods section 2.11.4) in the context of the immediately 

surrounding tissue. For each tile generated from tissue slides during image 

pre-processing (Materials and methods section 2.11.2) I generated a 

MATLAB® figure and overlaid the positions of the objects generated by feature 

extraction. For each tile I manually inspected all objects at these positions and 

removed those objects that were not ZN-Mtb from the database (Code 

appendix section 8.2.3). Additionally, aggregated or single Mtb classification 

was manually validated for a single slide. I calculated the mean area of 

manually validated single Mtb bacteria in pixels and used a conversion factor, 

stored in image metadata, to estimate bacterial size in microns. Mean single 

Mtb area was then used to estimate the number of bacteria in Mtb objects. I 

used the largest single bacterium as a cut-off value, after which Mtb objects 

were classified as aggregates. Datasets for each slide were then modified to 
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include the manually validated labels for all objects. These datasets were 

saved for CNN training or graphing.  

 

2.12  Convolutional neural network 

All CNN functions were developed using the MATLAB® programming 

platform. 

 

2.12.1 Initialization of CNN parameter weights 

Code for the convolutional neural network was written based on methods 

(feedforward neural networks, backpropagation and gradient descent) 

collated, reviewed and developed by Jürgen Schmidthuber and others [146, 

161], using the MATLAB® programming platform (Mathworks, Massachusetts, 

USA). A randomized matrix of parameters was generated for each layer of 

nodes in the neural network to provide a non-zero set of starting parameters 

for optimizing NN model cost according to equation [2] (Code appendix 

section 8.2.14). 

Θ𝑗 =  𝐴 ∙ 2𝜀 −  𝜀     [2] 

Where Θ𝑗 is a randomized matrix of parameters for layer 𝑗 of the NN, and 𝐴 is 

a randomized 𝑚 ∙ 𝑛 matrix with dimension 𝑚 matching the number of nodes in 

the input layer and 𝑛 matching the number of nodes in the output layer. 𝜀 is 

defined as in equation [3] 

𝜀 = √6/√(𝑚 + 𝑛)     [3] 

 

2.12.2 Forward propagation 

Once parameter matrices were initialized, 𝑚 ∙ 𝑛 training data matrices 𝑋 

(where 𝑚 is number of training examples and 𝑛 is the number of features) 

were fed into a forward propagation algorithm to generate a prediction for each 

training example using the randomized parameter matrices. For node 
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activations in the first input layer 𝑗 of the CNN, equation [4] was used to 

calculate the activations 𝑎𝑗 . 

𝑎𝑗 = 𝑔(Θ𝑗𝑋 )      [4] 

Where 𝑔(𝑧) is the sigmoid function as defined in equation [5]. 

𝑔(𝑧) =
1

1+𝑒−𝑧 
      [5] 

For hidden layers (𝑗) of the CNN or in the output hypothesis layer, activation is 

calculated as defined in equations [6] and [7] respectively (Code appendix 

section 8.2.15). 

𝑎𝑗 = 𝑔(Θ𝑗𝑎𝑗−1 )     [6] 

ℎΘ(𝑥) = 𝑔(Θ𝑗𝑎𝑗−1 )     [7] 

 

2.12.3 CNN cost function 

Equation [8] was then used to determine the cost 𝐽(Θ) (cost 𝐽, given parameter 

matrices Θ) associated with a hypothesis prediction by the NN, given example 

𝑖 (ℎΘ(𝑥𝑖)). 

𝐽(Θ) = −
1

𝑚
[∑ ∑ 𝑦𝑘

𝑖

𝐾

𝑘=1

𝑚

𝑖=1

log (ℎΘ(𝑥𝑖))𝑘 + (1 − 𝑦𝑘
𝑖 ) log (1 − (ℎΘ(𝑥𝑖))𝑘] 

+
𝜆

2𝑚
∑ ∑ ∑ (Θ𝑗𝑖

𝑙 )2

𝑠𝑙+1

𝑗=1

𝑠𝑙

𝑖=1

𝐿−1

𝑙=1

 

           

   [8] 

Where 𝑚 corresponds to number of training examples, 𝑖 is the 𝑖𝑡ℎ training 

example and 𝑘 is the 𝑘𝑡ℎ solution corresponding to training example 𝑖, such 

that 𝑦𝑘
𝑖  is the 𝑘𝑡ℎ solution corresponding to the training example 𝑥𝑖 and 

 (ℎΘ(𝑥𝑖))𝑘 is the prediction  ℎΘ , given training example 𝑥𝑖 and that 

corresponds to solution 𝑦𝑘. 𝜆 is a constant forming part of the regularization 

term in equation [8]. 𝑙 is the number of layers in the neural network, and 𝑠𝑙 is 
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the number of units 𝑠 in network layer 𝑙. The regularization term is applied only 

so long as 𝑗 ≠ 0 (Code appendix section 8.1.7). 

 

2.12.4 CNN Gradient descent and backpropagation 

Gradient descent was used to adjust parameters for each layer of the NN and 

optimize the cost 𝐽(Θ), until convergence, as described in equation [9]. 

Θ𝑖𝑛
𝑗

∶=  Θ𝑖𝑛
𝑗

−  𝛼
𝜕

𝜕Θ
𝑖𝑛
𝑗 𝐽(Θ)    [9] 

𝛼 is a constant describing the learning rate of gradient descent. 
𝜕

𝜕Θ
𝑖𝑛
𝑗 𝐽(Θ) is the 

partial derivative of the cost function 𝐽(Θ) with respect to Θ𝑖𝑛
𝑗

. Where Θ𝑖𝑛
𝑗

 

corresponds to the parameter in the 𝑖𝑡ℎ row and the 𝑛𝑡ℎ column from the 

parameter matrix in layer 𝑗. The partial derivative of 𝐽(Θ) with respect to 

parameter Θ𝑖𝑛
𝑗

 was calculated using backpropagation as described by P 

Werbos [146], using equations [10], [11],[12] and [13]. 

𝛿𝑗
𝑙 = 𝑎𝑗

𝑙 − 𝑦𝑗      [12] 

𝛿𝑗
𝑙 = (Θ𝑙)𝑇𝛿𝑙+1  ∙ 𝑎𝑙 ∙ (1 − 𝑎𝑙)   [11] 

Δ𝑖𝑗
𝑙 : = Δ𝑖𝑗

𝑙 + 𝑎𝑗
𝑙𝛿𝑗

𝑙+1     [12] 

D𝑖𝑗
𝑙 : =

1

𝑚
Δ𝑖𝑗

𝑙 + λΘ𝑖𝑗
𝑙      [13] 

Where 𝛿𝑗
𝑙 is the error of node 𝑗 in layer 𝑙, and equation [9] is applied only to the 

output layer of the NN and equation [11] to all other layers except the first 

(input) layer, for which there is no error term. (Θ𝑙)𝑇 denotes the transpose of 

the parameter matrix for layer 𝑙. Δ𝑖𝑗
𝑙  is the cumulative error for all nodes in all 

layers. D𝑖𝑗
𝑙  is equal to the partial derivative term 

𝜕

𝜕Θ
𝑖𝑛
𝑗 𝐽(Θ) and is regularized so 

long as 𝑗 ≠ 0. 
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3 Chapter 3: The transcriptional response of 

macrophages infected with Mtb aggregates 
 

3.1 Background 

It has previously been shown that infection of macrophages with Mtb 

aggregates leads to an enhanced cell death response [30]. The frequency of 

macrophage death increased with increasing numbers of infecting Mtb, and 

time until cell death was inversely related to increasing numbers of infecting 

Mtb bacilli (Introduction, Figure 1.7). Interestingly, MDMs infected with single 

large Mtb aggregates died at a higher frequency than MDMs that were infected 

with a similar number of Mtb bacilli that were phagocytosed as multiple singles 

or smaller aggregates (Introduction, Figure 1.8). The type of cell death 

elicited in MDMs more closely resembled a necrotic cell death mechanism, 

such as pyroptosis, rather than apoptosis. And Mtb growing within dead MDMs 

showed higher growth rates than Mtb in extracellular media or live MDMs. 

Moreover, Mtb aggregates that killed MDMs could kill subsequent phagocytes 

that internalized the aggregates with greater efficiency (Introduction, Figure 

1.9). 

These observations prompted investigation of transcriptional regulatory events 

during the early cellular response to infection with Mtb aggregates. I wanted 

to identify the transcriptional signatures that characterized the increased cell 

death response seen in macrophages infected with Mtb aggregates. I 

designed experiments to characterize the transcriptional and functional 

response of macrophages to infection with Mtb aggregates. I investigated the 

differences between transcription profiles of MDMs infected with Mtb 

aggregates and MDMs infected with Mtb singlets at a similar MOI. I also 

investigated the transcriptional differences between macrophages infected 

with singlet Mtb bacilli at high MOI and low MOI.  

Additionally, I wanted to investigate the effect of Mtb aggregates on 

macrophage phagosomal acidification. Phagosome acidification is an 

important intracellular signalling event in response to phagocytosed 

pathogens (Introduction section 1.3.2-1.3.3). Acidification facilitates the 
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liberation of bacterial ligands by facilitating the activity of hydrolytic enzymes. 

PAMPs are then free to bind to TLRs which form part of a cellular signalling 

cascade in response to invading pathogens. Mtb is known to inhibit the 

phagosome acidification process. I wanted to determine if differences in 

macrophage phagosomal acidification could be caused by differences in the 

physical sizes of Mtb aggregates, and therefore whether differences in the 

cellular response to Mtb aggregates might be mediated by acidification that 

depended on aggregate size. I also wanted to investigate whether Mtb 

aggregates had to be alive to elicit any changes in the host death response, 

and whether bacterial viability had an effect on the macrophage acidification 

response. I set up experiments to quantify and model MDM cell death and 

acidification in response to infection with Mtb aggregates using time-lapse and 

single time point confocal fluorescence microscopy. 

 

Research questions:  

• Do macrophages respond differently to infection with Mtb aggregates, 

compared to infection with Mtb singles or multiple singles, during early 

transcriptional responses? 

• Is macrophage acidification related to Mtb aggregate size during 

phagocytosis? 

• Do Mtb aggregates need to be alive to elicit macrophage death? 

 

Hypotheses:  

• Mtb aggregate-infected macrophages have a unique transcriptional 

signature relative to Mtb singles, or multiple singles, during the early 

transcriptional response to infection. 

• Macrophage acidification is dependant on Mtb aggregate size during 

phagocytosis 

• Mtb aggregates must be alive in order to elicit cell death in infected 

macrophages 
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Objectives:  

• Infect MDMs with Mtb aggregates or Mtb singles, sort macrophages by 

bacterial MOI using bacterial fluorescence and RNAseq the resultant 

populations 

• Check for broad changes in gene expression between Mtb aggregate 

infected, Mtb single infected, and multiple single Mtb infected MDMs 

using clustering analysis 

• Refine transcriptional results using differential expression analysis and 

identify single gene candidates that differ between infection conditions 

• Identify functional changes, or functionally similar groups of genes, 

between infection conditions using Gene Set Enrichment Analysis. 

• Infect macrophages with Mtb aggregates in the presence of an 

acidification reporter dye and quantify using confocal fluorescence 

microscopy 

• Infect macrophages with live or heat-killed Mtb aggregates and quantify 

macrophage death using membrane permeability dye during time-lapse 

confocal fluorescence micrsocopy 

 

3.2 Results 

3.2.1 Phagocytosis of fluorescent H37Rv by macrophages 

enables FACS of infected macrophages by MOI 

I sorted infected MDMs using the fluorescence of internalized mCherry 

fluorescent H37Rv Mtb bacilli. I infected each of 5 donor MDMs (3 repeats per 

infection condition, n = 60) with mCherry fluorescent expressing Mtb prepared 

as either single or aggregated bacteria (Materials and methods, section 2.2, 

2.3 and 2.4). Infected MDMs were incubated for three hours, lifted from culture 

vessels, single cell sorted into the required populations and subsequently 

snap-frozen prior to transport and RNAseq (Materials and methods, section 

2.4 and 2.5). MDMs were sorted into populations based on fluorescence of 

internalized Mtb (Figure 3.1). Sorted populations were labelled “Uninfected” 

for MDMs with no internal Mtb, “Single Mtb” for MDMs infected with 

disaggregated Mtb and a low amount of bacterial fluorescence (Low MOI gate, 
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middle panel Figure 3.1), “Multiple Mtb” for MDMs infected with disaggregated 

Mtb and high Mtb fluorescence (High MOI gate, middle panel Figure 3.1) and 

“Aggregated Mtb” for MDMs infected with aggregated Mtb and high Mtb 

fluorescence (equal to fluorescence of the “Multiple Mtb” group, Left panel 

Figure 3.1). For each donor, I sorted 120 000 cells across 3 repeats and 4 

treatments, for a total of 600 000 cells (10 000 cells per repeat). Frozen MDM 

populations were then sent for library prep and transcript sequencing to 

collaborators at the Shalek lab at MIT in Boston (Materials and methods, 

section 2.5). I analysed the resultant read count data. 

 

3.2.2 Transcriptional profiles of Mtb aggregate-infected 

macrophages cluster when using most variable genes 

I used a PCA to cluster read counts and check for trends in expression 

between infection conditions. Before performing PCA analyses I applied the 

Figure 3.1: Macrophages were infected with aggregated or singlet Mtb and sorted by 
number of infecting bacilli 

Aggregate infected MDMs Multiple single infected MDMs Uninfected MDMs 

Figure 3.1: Macrophages were infected with aggregated or singlet Mtb and 
sorted by number of infecting bacilli 

MDMs were infected with aggregated Mtb (left panel), disaggregated Mtb 
(middle panel) or uninfected (right panel) and sorted into populations based on 
quantity of infecting bacteria (bacterial fluorescence – y axis, mCherry). MDMs 
in the High MOI gate of aggregate infection were labelled “Aggregated Mtb”, 
MDMs in the High MOI gate of multiple single Mtb infection, and matching the 
MOI of aggregate infection, were labelled “Multiple single Mtb”, MDMs in the 
Low MOI gate of multiple single infection were labelled “Single Mtb”, and 
uninfected MDMs were labelled “Uninfected”. Dead MDMs were excluded using 
the cell permeability dye Draq 7 (x axis). 
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DESeq2 RLog normalization function on the data to minimize disproportionate 

effect of genes with very low or very high read counts [122]. I also corrected 

for batch effects using the SVA ComBat package for R. I initially included all 

genes in the PCA analysis to see if samples clustered by infectious condition. 

I then reduced the number of genes included in the PCA by removing those 

genes which had the lowest variance between infection conditions. Low 

variance genes were removed in log10 orders of magnitude. I first used 100% 

of all genes (23686 genes) to construct the PCA, then the top 10% of most 

variable genes (2369 genes), then the top 1% of most variable genes (237 

genes) and finally, the top 0.1% of most variable genes (24 genes) (Figure 

3.2).  

Figure 3.2: Transcription profiles clustered in a PCA using the most variable genes 
Figure 3.2 Transcription profiles clustered in a PCA using the most 
variable genes. Adapted w/o permission from Rodel et al. 2021 [162] 

Samples clustered by infection condition for PCA utilising the top 0.1% of 
most variable genes. Clustering on this limited gene set showed aggregate 
infected MDMs (salmon) farthest removed from uninfected MDMs (purple), 
followed by multiple Mtb (green) and single Mtb (blue) respectively. PCAs 
using 1%, 10% or all genes did not show any obvious clustering. 
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This allowed us to visualize clustering and identify genes that contributed the 

most to separation in the PCA space. There was no obvious clustering along 

the first two principal component axes when using all genes, the top 10% most 

variable genes or the top 1% of most variable genes (Figure 3.2). However, 

when using most variable 0.1% to construct the PCA, the clusters separated 

by infection condition along the first principal component (Figure 3.2, Adapted 

from Rodel et al. [162]). Aggregated Mtb infection separated farthest away 

from the uninfected condition, followed by multiple single Mtb and then single 

Mtb infection respectively (Figure 3.2). I plotted the percentage contribution of 

each principal component for the PCA constructed using the most variable 

0.1% of genes. Principal component 1 comprised 22% of the variation relative 

to all other principal components, followed by 9% variance contributed by 

principal component 2 (Figure 3.3). I finally plotted the percentage contribution 

of each gene to the principal component space. Genes that had the highest 

percentage contribution to separation along the first principal component were 

involved in the inflammatory response. Such genes included TNF, IL8, CCL4, 

IL1β, CXCL2 and CXCL3 (Figure 3.4, Adapted from Rodel et al. [162]).  

Figure 3.3: Individual percentage gene contributions to PCA constructed using 
0.1% most variable genes 

Figure 3.3 Principal component percentage contributions to variance of 
PCA using 0.1% of most variable genes PCA 

Principal component 1 contributed 22% variability to the PCA in which there 
was clustering of infection conditions. Principal component 2 contributed 9% 
variability to the same PCA. 
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Genes that contributed the most to separation on the second principal 

component were involved in functions such as TNF-α upregulation and 

lymphocyte activation. These included IL32, CD69 and LCK. 

 

 

 

3.2.3 Aggregated Mtb elicits a widespread transcriptional 

response in infected macrophages 

DE analysis showed that aggregated Mtb elicited the significant differential 

expression of a higher number of genes in MDMs compared to multiple single 

or single Mtb infected MDMs, relative to uninfected macrophages. I tested for 

differential expression between infection conditions using the DESeq2 

package for the R programming platform. I compared each infection condition 

to every other infection condition to generate comprehensive lists of 

significantly differentially expressed genes (Supplementary material table 

Figure 3.4: Principal component percentage contributions to variance of PCA 
using 0.1% of most variable genes PCA 

Figure 3.4 Individual percentage gene contributions to PCA constructed 
using 0.1% most variable genes. Adapted w/o permission from Rodel et 
al. 2021 [162] 

Genes contributing to PC1 were primarily involved in the inflammatory 
response. Scale bar and colour gradient indicates percentage contribution to 
variation of the PCA. 
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8.1). I used the gene lists for each infection condition, compared to uninfected 

macrophages, to generate a Venn diagram showing the number of 

differentially regulated genes in each condition (Figure 3.5, Adapted from 

Rodel et al. [162]). Aggregate infected MDMs had the highest number of 

differentially regulated genes relative to uninfected MDMs at 160. 65 of these 

genes were shared with multiple Mtb infected MDMs, 37 were shared with 

single infected MDMs, and 34 were common to all infection types. Multiple Mtb 

infected MDMs had the second highest number of differentially regulated 

genes at 85, followed by single infected MDMs with 52 genes. However, 

aggregate infected MDMs had the highest number of uniquely regulated genes 

at 92 as compared to only 16 unique genes in multiple single Mtb infection and 

11 genes in single Mtb infection.  

 

Figure 3.5: Mtb aggregate infection differentially regulated the highest number 
of unique genes in MDMs 

Figure 3.5 Mtb aggregate infection differentially regulated the highest 
number of unique genes in MDMs. Adapted w/o permission from Rodel 
et al. 2021 [162] 

Venn diagram showing the number of differentially regulated genes in single 
(blue), multiple (green) and aggregate Mtb (salmon) infected macrophages 
relative to uninfected macrophages as identified by DESeq2 differential 
expression analysis (adjusted p value < 0.1). 
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3.2.4 Infected macrophages show a transcriptional response 

that is dependent on Mtb aggregation state and MOI 

Next, I visualised single gene expression patterns between infection 

conditions. I used DE gene lists resulting from comparisons between infection 

conditions and plotted log2 fold change in gene expression against gene read 

count. I also highlighted those genes with highly significantly differences and 

labelled the top 10 differentially expressed genes in each comparison (Figure 

3.5). Amongst the top 10 significantly regulated genes that were commonly 

regulated between all MDM infection states, relative to uninfected MDMs, were 

SERPINB2, TNFAIP6, IL1β, IL8, CCL4L1, CCL4L2 and SOD2 (Figure 3.6, 

top 3 panels). The majority of differential expression in these 3 comparisons 

was due to upregulation, relative to uninfected MDMs. Aggregate Mtb infection 

had the highest number of highly significantly regulated genes, at 48 genes 

(adjusted p-value < 0.0001). 10 of these genes had a log2 fold change greater 

than 5. This was followed by multiple Mtb infection with 26 genes (adjusted p-

value < 0.0001), and 2 genes with log2 fold change greater than 5 and finally 

single Mtb infection with 16 genes (adjusted p-value < 0.0001) and a single 

gene with log2 fold change greater than 5 (Figure 3.6 top row of panels). 

Aggregate infection had more significantly differentially regulated genes, 

relative to single infection, than multiple Mtb infection compared to single Mtb 

infection (Figure 3.6 bottom left and middle panel). Only TNF-α was 

significantly upregulated in multiple infection relative to single Mtb infection 

(Figure 3.6 bottom left panel). However aggregate infection had a total of 54 

significantly differentially regulated genes when compared directly to single 

Mtb infection, 7 of which had an adjusted p-value < 0.0001, and included the 

genes TNF, CCL4, IER3 and HSPA1A (Figure 3.6 bottom middle panel). 

Aggregate infection did not show highly significant (p < 0.0001) differences in 

gene expression when compared directly to multiple Mtb infection (Figure 3.6 

bottom right panel). But genes that were significantly differentially regulated 

in this comparison included HSPA1A and IER3. 
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3.2.5 Single gene expression most often peaks in aggregated 

Mtb infection of MDMs 

I generated an expression heatmap across infection conditions using a refined 

set of genes (Figure 3.7, Adapted from Rodel et al. [162]). I cross referenced 

the DE gene lists generated by DESeq2 analysis with each other and with the 

top 1% of most variable genes identified in the PCA analysis (Section 3.2.2). 

This resulted in a list of 21 genes including: IL1β, TNF, IL8, IL6, CCL4, CXCL2, 

CXCL3, IER3, SERPINB2, and TNFAIP6. Functions associated with these 

genes include TNF-α response, inflammation, neutrophil chemotaxis, and 

Figure 3.6: Single gene level expression patterns in MDMs were dependent on 
MOI and aggregation state 

Figure 3.6 Single gene level expression patterns in MDMs were 
dependent on MOI and aggregation state 

Aggregate infected MDMs had the highest number of significantly regulated 
genes relative to uninfected MDMs (light blue circles = p-value <0.1, dark 
blue circles = p-value <0.01, yellow circles = p-value <0.001, red circles = p-
value <0.0001 and small grey circles = not significant). The top 10 genes 
differentially regulated in each comparison are labelled. Y axis is log2 fold 
change and X axis is log2 mean normalized read count. Values above 
perforated black line indicate upregulation and below indicates 
downregulation. 
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regulation of apoptosis [163-167] (Figure 3.7). Infection conditions and genes 

were hierarchically clustered by Euclidean distance. Data arranged so that 

there was a trend showing an increase in gene expression levels from 

uninfected, to singly infected, to multiply infected to aggregate infected (Figure 

3.7). An exception to this trend was found in IL7R, which increased in 

expression from uninfected to singly infected, to multiply infected and then 

decreased again in the aggregate infection condition. UHRF1 also did not 

follow the predominant data trend and had the lowest expression in aggregate 

infection, with similar levels of expression in all other conditions. 

 

3.2.6 TNF-α expression is dependent on Mtb aggregation 

state and MOI in infected MDMs 

I next assessed whether the refined list of individual genes were significantly 

differentially regulated between the infection conditions using multiple 

comparisons. I tested for differences between uninfected and single infected, 

single infected and multiple infected and multiple infected and aggregate 

infected for each gene, using a non-parametric pairwise comparison corrected 

for multiple comparisons (Materials and methods, section 2.6). Of the 

original 21 genes identified, 14 were significantly different in at least one 

pairwise comparison (Figure 3.8, Adapted from Rodel et al. [162]). Two 

main patterns were evident in these comparisons. The first pattern showed 

significant differences in expression regardless of number of infecting bacteria. 

IL8, IL6, CCL4, TNFAIP6, IL1β, CCL4L1, SERPINB2, CCL20, CCL4L2, 

CXCL3, ADORA2A and UHRF1 followed this trend. The other expression 

pattern was dependent on bacterial number or aggregation state. TNF and 

IER3 followed this trend. 
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Figure 3.7: Gene expression for a refined list of genes most often peaked in aggregate 
infection of MDMs 

Figure 3.7 Gene expression for a refined list of genes most often 

peaked in aggregate infection of MDMs. Adapted w/o permission from 

Rodel et al. 2021 [162] 

When using a refined set of 21 genes the infection conditions clustered, by 

Euclidean distance, so that aggregate infection of MDMs had the most 

upregulated gene expression levels, followed by multiple single Mtb 

infection, single Mtb infection and uninfected Mtb respectively. Log2 

normalized read counts are indicated by colour key.  
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Figure 3.8: Aggregation state alters macrophage transcriptional response at 
the single gene level 

Figure 3.8: Aggregation state alters macrophage transcriptional 
response at the single gene level. Adapted w/o permission from Rodel 
et al. 2021 [162] 

Box plots of median and interquartile range for read counts from 15 
independent infections of MDM from 5 blood donors. Shown are expression 
levels as log transformed read counts in uninfected, single infected, multiple 
infected and aggregate infected macrophages. p-values are ns = not 
significant; * < 0.01; ** < 0.001; *** < 0.0001; **** < 0.00001; as determined 
by Mann-Whitney U non-parametric test with Hochberg multiple comparison 
correction. 
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I validated transcriptional results using cytokine panels. I infected MDMs with 

either aggregated or single Mtb, incubated the cells for 3 hours, and harvested 

culture supernatants for cytokine profiling (Materials and methods, section 

2.7). I then compared the cytokine levels to read counts obtained for RNAseq 

(Figure 3.9, Adapted from Rodel et al. [162]). TNF-α showed a graded 

cytokine response to infection, increasing in the single Mtb infection condition 

(relative to uninfected MDMs) and upregulated further in the aggregate 

infection condition (Figure 3.9 A). Similar trends were observed in the RNAseq 

results for TNF-α (Figure 3.9 B). IL8 and IL6, key mediators of inflammation, 

Figure 3.9: Transcriptional regulation and secretion of TNFα and downstream 
genes in aggregated and single Mtb infection conditions 

Figure 3.9: Transcriptional regulation and secretion of TNFα and 
downstream genes in aggregated and single Mtb infection conditions. 
Adapted w/o permission from Rodel et al. 2021 [162]  

Cytokine secretion, normalized to maximum per target cytokine (A), or Log2 
normalized transcripts 3 hours post-Mtb infection (B). MDM were either 
uninfected (UI), infected with single Mtb culture (SCI) or with aggregated Mtb 
culture (ACI). Shown are median and IQR of the transcriptional or cytokine. 
p-values are * < 0.01; ** < 0.001; *** < 0.0001; **** < 0.00001 as determined 
by Mann-Whitney U test with Bonferroni multiple comparison correction. 

B 

A 
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showed indiscriminate upregulation in the presence of Mtb for cytokine 

profiles, regardless of whether the inoculum was single or aggregated bacteria 

(Figure 3.9 A). The same was true for the corresponding RNAseq read count 

data for the (Figure 3.9 B).  

 

3.2.7 TNF-α signalling and inflammation are key functional 

pathways regulated in response to Mtb aggregation 

state and MOI 

I used Gene Set Enrichment Analysis (GSEA) to identify the primary biological 

functions of differentially expressed genes. Ranked gene lists that were 

generated by differential expression analysis in DESeq2 were used to 

generate Normalized Enrichment Scores (NES) for functional groups of genes 

in GSEA using the Hallmark molecular signatures database (Materials and 

methods, section 2.6). I set the cut-off for significant functional regulation at 

nominal p-value < 0.001 and false discovery rate (FDR) < 0.005. The 

aggregate versus uninfected comparison had the highest number of 

differentially regulated functional categories at 10 (Table 3.1), followed by 

multiple versus uninfected with 7, single versus uninfected with 5, multiple 

versus single with 4, aggregate versus single with 2 and finally aggregate 

versus multiple with 1 functional category “tnfα signalling via NF-κB”. The “tnfα 

signalling via NF-κB” category was found within the top 2 differentially 

regulated categories in each of the comparisons, along with “inflammatory 

response” and had the highest NES in each comparison except the multiple 

vs. single condition in which “inflammatory response” had the highest NES 

(Table 3.1, Adapted from Rodel et al. [162]). The NES score for “tnfα 

signalling via NF-κB”, peaked in the aggregate versus uninfected comparison 

at 2.81 followed, in descending order, by multiple versus uninfected, single 

versus uninfected, aggregate versus single, aggregate versus multiple and 

multiple versus single at, 2.59, 2.42, 2.24, 2.07 and 1.68 respectively. (Figure 

3.10 A, Table 3.1, Adapted from Rodel et al. [162]). Similarly, the 

descending order of NES score for infection comparisons in the “inflammatory 

response” category was aggregate vs. uninfected, multiple vs. uninfected, 



80 
 

aggregate versus single, single vs. uninfected, and finally multiple versus 

single at 2.46, 2.24, 1.87 ,1.83 and 1.73 respectively (Figure 3.10 B, Table 

3.1). 

 

Table 3.1: GSEA differentially regulated gene sets between infection conditions 
at Nominal p-value and FDR<0.05FDR<0.05 

Table 3.1: GSEA differentially regulated gene sets between infection 
conditions at Nominal p-value and FDR<0.05. Adapted w/o permission 
from Rodel et al. 2021 [162] 
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3.2.8 Large Mtb aggregates elicit lower macrophage 

acidification per bacillus 

I measured macrophage acidification in response to infection with Mtb 

aggregates. I infected MDMs from 3 donors with mCherry expressing 

fluorescent Mtb aggregates and incubated with Lysotracker, a fluorescent 

acidification reporter. I then imaged infection using confocal fluorescence 

microscopy (Figure 3.11 A, Adapted from Rodel et al. [162]), at a single 

early time point 3h after infection, and quantified the Mtb and MDM 

acidification fluorescent signal within individual MDMs using custom 

MATLAB® image analysis scripts (Materials and methods, section 2.9). I 

did the same for MDMs infected with heat-killed fluorescent Mtb. A total of 

3357 individual cells were analysed this way. I plotted lysotracker fluorescence 

against Mtb area (in pixels) and found that acidification increased with 

increasing Mtb aggregate area, with a general linear model fit of R2 = 0.63 

(Figure 3.11 B, left panel), I then took the ratio of Lysotracker signal to Mtb 

fluorescent signal and plotted it against Mtb area. I found that, as the area of 

Figure 3.10: TNF-α signalling and inflammation are differentially regulated 
between infection conditions and peak in Mtb aggregate infection 

Figure 3.10: TNF-α signalling and inflammation are differentially 
regulated between infection conditions and peak in Mtb aggregate 
infection. Adapted w/o permission from Rodel et al. 2021 [162] 

Normalised enrichment score (NES), expressed as percentage of maximum 
enrichment for the gene sets defined as ”tnfα signalling via NF-κB” (A), and 
”Inflammatory response” (B).  Enrichment scores were calculated for all 
treatment comparisons and were significantly different at Nominal p<0.001 
and FDR<0.005, with the exception of the aggregate to multiple comparison 
for the ”inflammatory response” gene set (where p<0.05 and FDR = 0.24).   

A B 
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an aggregate increases, the ratio of Lysotracker signal to Mtb signal 

decreases. I also fitted a SA/V model (spherical) to the data and attained a fit 

of R2 = 0.25 (Figure 3.11 B, right panel). 

 

Figure 3.11: Macrophage acidification is dependent on Mtb aggregate size and 
is related to number of bacteria within an aggregate 

Figure 3.11 Macrophage acidification is dependent on Mtb aggregate 
size and is related to number of bacteria within an aggregate. Adapted 
w/o permission from Rodel et al. 2021 [162] 

Image of lysotracker (green) colocalization with phagocytosed mCherry 
expressing Mtb (red) (A).  Scale bar is 20μm. Lysotracker fluorescence as a 
function of total aggregate area (B). Blue points represent individual Mtb 
infected macrophages.  Linear regression line is shown in black (R2= 0.63, 
p<0.0001).  Ratio of Lysotracker fluorescence to Mtb fluorescence as a 
function of Mtb area (C).  Black line shows a model based on a spherical 
surface area to volume ratio (R2= 0.25, p<0.0001, black line). 
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I also measured mean MDM acidification in response to infection with heat-

killed Mtb aggregates. For cells infected with either heat-killed Mtb or live Mtb 

aggregates, I measured the ratio of total lysotracker signal intensity to the Mtb 

fluorescence intensity, across donors (Figure 3.12). Mean acidification in 

MDMs infected with live Mtb aggregates (8.0 ± std 2.7) did not differ 

significantly from acidification in MDMs infected with heat-killed Mtb 

aggregates (11.4 ± std 6.9) (Figure 3.12). Although standard deviation was 

notably lower in MDMs infected with live Mtb aggregates, which suggested a 

more regulated phagosomal acidification in macrophages containing live Mtb. 

 

Figure 3.12: Macrophages became acidified when infected with both live and 
heat-killed Mtb aggregates 

Figure 3.12 Macrophages became acidified when infected with both live 

and heat-killed Mtb aggregates 

The ratio of lysotracker to Mtb fluorescence in MDMs infected with live Mtb 

(red bar), heat-killed Mtb (orange bar), or uninfected (blue bar) after 24h. 

Error bars indicate mean ±std and p-values were non-significant (ns) by 

Mann-Whitney U non-parametric test. 
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3.2.9 Mtb aggregates must be live to elicit death in 

macrophages 

I investigated whether Mtb aggregates had to be alive to elicit macrophage 

death and whether the physical size of the internalized particles mediated the 

increased macrophage death rate seen when phagocytosing Mtb aggregates. 

I infected MDMs from 4 donors with mCherry expressing fluorescent Mtb 

aggregates that were either live or had been heat-killed and tracked MDM 

death rate (measured with membrane permeability dye) over time using time-

lapse confocal fluorescence microscopy (Figure 3.13 A - Materials and 

methods, section 2.3 and 2.8, Adapted from Rodel et al. [162]). I saw 

Figure 3.13: Aggregate mediated macrophage death requires live Mtb 

Figure 3.13: Aggregate mediated macrophage death requires live Mtb 

Time-lapse microscopy showing mCherry labelled Mtb (red) induced MDM 
death as detected by DRAQ7 (green) (A). The number of dead cells in MDM 
infected with live Mtb (red bar), heat-killed Mtb (orange bar), or uninfected 
(blue bar) after 24h (B). Shown are mean ±std of DRAQ7 positive cells after 
24h. p-value was * < 0.01 by Mann-Whitney U non-parametric test. 
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extensive death of MDMs infected with live Mtb aggregates. Only MDMs 

infected with live Mtb aggregates showed statistically significantly increased 

cell death after 24 hours (Figure 12B). Cell death in MDMs infected with heat-

killed aggregates was markedly below that seen for cells infected with live Mtb 

and did not significantly differ from cell death levels seen for uninfected MDMs.  
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3.3 Chapter discussion 

With this work, I aimed to identify early transcriptional signatures in 

macrophages that were associated with infection by Mtb aggregates. I wanted 

to ascertain whether transcriptional events, at early time points after infection, 

could characterize the enhanced macrophage death response, as 

demonstrated by Mahamed et al. in MDMs infected with Mtb aggregates and 

multiple single Mtb [30]. To compare between MDMs infected with multiple 

single Mtb bacteria and MDMs infected with Mtb aggregates that contained 

the same number of bacteria, I sorted infected MDMs by the fluorescence of 

internalized Mtb. mCherry fluorescence in this strain of H37Rv has been 

shown to have a tight correlation with the number of Mtb bacilli [30]. I defined 

a sorting gate for macrophages infected with multiple single Mtb and applied 

it to aggregate infected MDMs (Figure 3.1, middle and left panel, High MOI 

gate). Uninfected macrophages appeared to have a denser group of Draq7 

positive cells after sorting, but this was likely due to the dispersal of Draq7 

positive cell populations along the mCherry axis in Mtb infected conditions. 

When sorting the aggregate infected macrophages, I saw a tail of heavily 

infected cells extending above the sorting gate boundary that was defined in 

the multiple single Mtb infection (Figure 3.1, left panel, High MOI gate). This 

tail was absent in multiple single infected macrophages (Figure 3.1, middle 

panel, High MOI gate). This suggests the existence of a numerical limit to 

macrophage phagocytosis, which has been seen in previous studies using 

autologous MDMs [168]. While other studies have also identified an upper limit 

in terms of particle size for macrophages [169], this observation in the current 

study suggest that aggregated Mtb might circumvent a numerical phagocytic 

limit while still remaining within the phagocytic size limit. This can be visualized 

by considering spherical approximations of volume and surface area where 

volume increases faster than surface area as spherical radius increases.  

Higher volume, relative to physical aggregate size, translates to more space 

for Mtb bacilli at a relatively low cost in terms of aggregate radius. This 

bacterial numerical advantage could alter the macrophage response to favour 

the pathogen, as higher MOIs have been shown to affect the macrophage 

response [170, 171]. 
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Clustering analysis had modest results when constructed using all genes in 

the analysis but separated along the first principal component when limiting 

the analysis to the most variable genes. Aggregate infected macrophages 

clustered farthest away from transcription profiles of uninfected macrophages, 

followed by multiple Mtb infected and single Mtb infected macrophages 

respectively (Figure 3.2). Genes contributing to this separation encompassed 

functions such as neutrophil chemotaxis and inflammation. IL-1β is one such 

inflammatory cytokine. Studies monitoring IL-1β levels in Mtb infected alveolar 

macrophages indicated that a metabolic shift to aerobic glycolysis in 

macrophages downregulated IL-1β and resulted in enhanced Mtb survival 

[172]. This suggests that IL-1β mediated inflammation is an important bacterial 

control mechanism. However, IL-1β has also been implicated in NLRP3 

inflammasome activation and pyroptosis, a necrotic mechanism of cell death 

that could potentially favour the pathogen [172-174]. In the context of Mtb 

aggregate infection, upregulation of this cytokine could mean an increased 

probability of eliciting inflammatory cell death, as seen in Mahamed et al [30]. 

IL8 is a known neutrophil chemotactic factor and a potent inducer of 

angiogenesis [175-177]. Our transcriptional results agree with previous 

studies showing upregulation of IL8 in Mtb infected monocytes and in 

macrophages from patients with pulmonary tuberculosis [178, 179]. Mtb is also 

known to infect neutrophils and generating an influx of these innate responder 

cells could provide a niche for bacterial replication [180]. Neutrophil 

accumulation during Mtb infection can be detrimental to host outcomes [181, 

182], and aggregated Mtb infection has been shown to lead to neutrophil 

accumulation in a mouse model [28]. Interestingly, angiogenesis has also 

been shown to be a mechanism which Mtb uses to colonize other host niches, 

and alongside bacterial angiogenic factors, IL8 has also been implicated in this 

response [183].  

I used a differential expression analysis to compare transcriptional expression 

patterns of macrophages infected with Mtb aggregates to other infection 

conditions. MDMs infected with Mtb aggregates had the highest number of 

unique differentially regulated genes between infection conditions, relative to 

uninfected cells (Figure 3.5 and 3.6). This suggests that, even at a similar 
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MOI, aggregated Mtb bacilli elicit a more profound initial response to infection 

than Mtb phagocytosed as multiple single bacilli. This supports the idea that 

the enhanced death response seen in MDMs infected with aggregates is 

regulated by early transcriptional events [30]. I next used MAplots to visualize 

broad patterns of single gene expression between infection conditions (Figure 

3.6 top 3 panels).  Among highly significant differentially regulated genes (with 

adjusted p-value < 0.0001), aggregate infection had the highest number of 

upregulated genes relative to uninfected MDMs, as well as the highest number 

of genes with the greatest log2 fold change in expression (Figure 3.6 top 3 

panels). Aggregate infection also had more genes upregulated, when 

compared directly to single Mtb infection, than multiple single Mtb compared 

to single Mtb. This suggests that aggregate infection elicits a unique response 

in infected macrophages even compared to macrophage infection with single 

Mtb at a similar MOI (Figure 3.6 bottom left and middle panels). There is 

also a visible cluster of genes that are highly significantly upregulated 

(adjusted p-value < 0.0001) with high fold change in expression, separating 

out above other differentially regulated genes in the aggregate versus 

uninfected MDM comparison (Figure 3.6 top right panel). This further 

suggests the development of a unique transcription signature that is not 

evident when comparing multiple single and single Mtb infection to uninfected 

MDMs at this early infection time point. A number of genes, including IL-1β 

and IL8, were commonly differentially regulated when comparing all infection 

conditions to uninfected macrophages. 

Among the genes upregulated in all infection conditions was SERPINB2, or 

Plasminogen Activator Inhibitor Type 2 (PAI-2), which is involved in the 

regulation of the adaptive immune response [184]. It has also been found to 

participate in protection from TNF-α mediated cellular apoptosis [185, 186]. 

This suggests a mechanism by which Mtb aggregates might elicit a response 

that steers host cells away from apoptotic cell death and agrees with Mahamed 

et al’s observation that Mtb aggregates elicit a type of cell death that is unlike 

apoptosis [30]. CCL4 (Also known as the macrophage inflammatory protein 

MIP-1β), CCL4L1 and CCL4L2 are also commonly upregulated in infection 

conditions. These chemokines have been shown to have redundant function 
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and differ primary at a single residue in the mature protein [187]. CCL4 is an 

inflammatory chemokine, whose secretion is partially dependent on TNF-α, 

and is important in the recruitment of T-helper cells during granuloma 

formation and the suppression intracellular growth of Mtb in alveolar 

macrophages [188, 189]. Superoxide dismutase 2 (SOD2) was also 

upregulated in all infection conditions relative to uninfected MDMs. While this 

gene was not present in the final refined list of differentially regulated genes 

(discussed below), it is interesting to note that SOD2 expression was similarly 

upregulated, in terms of fold change in expression, in all infection conditions 

(Figure 3.6, Supplementary material table 8.1). SOD2 alleviates cellular 

stress and prevents superoxide mediated apoptotic cell death in mouse retinal 

pigment epithelium [190]. However, SOD2 has also been linked to the 

increased apoptosis in pulmonary arterial smooth muscle cells under hypoxic 

conditions [191]. Interestingly, I also saw that TNFAIP6, an anti-inflammatory 

protein, was significantly upregulated in all infection conditions and held at a 

similar fold change in expression (Figure 3.6, Supplementary material table 

8.1) [192, 193]. TNFAIP6 has also been found to promote autophagy in mouse 

liver cells [194]. SOD2 and TNFAIP6 therefore represent potential 

mechanisms through which Mtb might interact with host cell death or 

inflammatory pathways.  

TNF and IER3 were among the genes identified when comparing aggregate 

to single Mtb infected MDMs (Figure 3.6 bottom middle panels). TNF is 

known to have pluripotent effects during infection, and interestingly, this was 

the only gene that was significantly upregulated in the direct comparison 

between Multiple single and single Mtb infection of MDMs (Figure 3.6 bottom 

left panel). This suggests a role for TNF in the proportional regulation of host 

responses as a function of Mtb MOI. IER3, which was also identified in the 

direct comparison of aggregate to multiple single Mtb infection, is an inhibitor 

of apoptosis and may therefore be another candidate through which Mtb 

influences the macrophage death response [195]. HSPA1A, a heat stress 

protein, was also upregulated in macrophages infected with Mtb aggregates 

relative to multiple Mtb singles. This protein, as part of an integrated cellular 

stress response, has recently been found to be upregulated during necrotic 
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murine granuloma formation in response to TNF-α stimulation, and inhibition 

of this response abrogates the development of necrotic granuloma and 

reduces Mtb bacterial burden [196]. To further characterise and define the 

transcriptional response of Mtb aggregates, and test for significant differences 

between the infection conditions, I refined the list of candidate genes by cross 

referencing the differential expression analysis results with the top 1% of most 

variable genes in the PCA analysis. 

I refined our candidate gene list to a set of 21 genes that were common to both 

the PCA and differential expression analysis. The major trend in fold change 

across infection conditions was an increase in expression from uninfected to 

single Mtb infected, from single to multiple Mtb infected and finally peaking in 

aggregate infection, although this was not the case for every gene (Figure 

3.6). IL-7R expression peaked in multiple Mtb infection and then decreased 

again in aggregate infection. Increased IL-7R has been associated with 

inflammatory disease conditions, but interestingly, a recent study has shown 

that the depletion of IL-7R in monocytes from patients with active tuberculosis 

impairs the antimycobacterial response [197]. This is especially intriguing 

given the IL-7R-blockade mediated upregulation of apoptosis during foetal 

macrophage development [198]. While the transcriptional differences for IL-

7R in the current study did not test as significant, the trend suggests an 

additional means by which Mtb aggregates may be manipulating the host cell 

death response. Likewise, UHRF1 did not follow the predominant trend of 

upregulation during Mtb aggregate infection, and conversely had the lowest 

expression in macrophages infected with Mtb aggregates (Figure 3.7). The 

depletion of UHRF1 has been shown to induce cell cycle arrest and apoptosis, 

this suggests further manipulation of cell death pathways by Mtb in infected 

macrophages [199]. However, despite this trend, manipulation of this pathway 

was largely independent of MOI or aggregation state as UHRF1 expression 

was only significant, by nearest neighbour test for significance between 

infection conditions, between uninfected macrophages and single Mtb infected 

macrophages (Figure 3.8). 

14 of the 21 genes in the refined list had significant differences between 

infection conditions. TNFα and IER3 were significantly upregulated in 
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aggregate infection, although the most significant differences were between 

uninfected and Mtb infected macrophages (of any infection type) for the set of 

14 most differentially regulated genes (Figure 3.8). However, most genes also 

exhibited a trend that peaked in the aggregate infection condition (except for 

SERPINB2 and UHRF1). This includes TNFα and CCL4 which, along with IL-

1β, have been previously identified in bronchoalveolar lavage fluid of patients 

with active tuberculosis [200, 201]. TNFα is well-established as playing a 

pivotal role in Mtb infection [202, 203]. In the absence of TNFα, mice infected 

with Mtb show increased bacillary load, granulomatous necrosis, susceptibility 

to infection and disease reactivation [202, 204, 205]. Clay et. al (2008) showed 

that an increase in mycobacterial load is connected to higher macrophage 

death when inhibiting TNF-α during infection and granuloma formation [206]. 

This highlights the active role of TNF-α in pathogen control at all stages of 

infection. 

I investigated the collective biological functions of genes upregulated in 

macrophages infected with Mtb aggregates using GSEA. I found increased 

upregulation of genes involved in TNFα signalling and inflammation (Figure 

3.10, Table 3.1). A study using microarrays showed a similar pattern of gene 

upregulation to the one identified here. Both analyses found the upregulation 

of pro-inflammatory mediators and TNF-α [92]. This agrees with the function 

of genes identified in the PCA analysis (Section 3.2.2). The GSEA normalized 

enrichment score (NES) for TNFα signalling is highest in the aggregate 

infection, followed by multiple single and single Mtb infection (relative to 

uninfected). This indicates a response by host cells to Mtb infection that is 

dependent on Mtb MOI and aggregation status. In addition to TNFα, 

inflammation was the next most highly regulated category in infection 

comparisons. IL-1β, also identified during PCA analysis, is an important 

regulator of the inflammatory response to infection [207]. Pro-IL-1β is cleaved 

to the mature form by caspase-1 through the inflammasome pathway, a 

pathway that is shared with the induction of pyroptosis [173, 208, 209]. 

Mahamed et al. noted that MDM cell death, in Mtb aggregate infected 

macrophages, most closely resembled a necrotic cell death induced by 

nigericin, a compound known for the induction of pyroptotic cell death [30, 210, 



92 
 

211]. This agrees with the transcriptional results seen in the current study 

where IER3, an inhibitor of apoptosis [195], was significantly upregulated only 

in aggregate infected macrophages (Figure 3.7). Taken together, the above 

suggests that TNF-α signalling, inflammation and potentially cell death 

manipulation are important cell level transcriptional responses of MDMs to 

infection with Mtb aggregates. 

I also showed that acidification of macrophages infected with Mtb aggregates 

was related to the number of bacilli within an Mtb aggregate. The ratio of 

acidification to the number of Mtb bacilli decreased as the size of the 

aggregate increased. That is to say, the larger the Mtb aggregate, the lower 

the level of acidification within the macrophage per bacillus. This relationship 

could reasonably be described by a spherical model that approximates the 

SA/V ratio of an Mtb aggregate based on aggregate radius (Figure 3.11). This 

suggests that acidification may be dependent on receptor engagement during 

uptake within the nascent phagosome. This agrees with a large body of 

evidence showing that Mtb inhibits intracellular acidification to gain an 

advantage, even from as early as one hour post infection, and suggests that 

larger Mtb aggregates have an enhanced capacity to inhibit phagosome 

maturation relative to smaller aggregates or single Mtb [212-214]. There was 

no significant difference in mean acidification ratio between macrophages 

infected with live Mtb aggregates and heat-killed Mtb aggregates. However, 

acidification in heat-killed aggregate infection had notably higher variability 

than infection with Live Mtb aggregates (Figure 3.12). The absence of 

significant differences in acidification between heat-killed aggregates and live 

Mtb aggregates may be due to the heterogeneity of Mtb aggregate infections 

in our experiments. Mtb aggregate infection is not size controlled and contains 

a range of aggregates sizes, including single bacteria, that makes 

comparisons between acidification means challenging. 

I also showed that host cell death is dependent on infection with live Mtb 

aggregates (Figure 3.13). This demonstrates that the macrophage death 

elicited by Mtb aggregates, shown here and by Mahamed et al., is not solely 

dependent on the physical size of the particle being phagocytosed and agrees 

with previous studies showing that live Mtb bacilli are required for successful 
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pathogenesis [30, 215]. However, there is evidence showing that cellular 

responses are dependent on receptor engagement during phagocytosis. Such 

responses can be affected by the physical size, or number, of particles being 

phagocytosed. BC Van Der Ven et. al (2009) showed that macrophages 

primed with LPS had a higher oxidative burst when picking up reporter coated 

beads, relative to unstimulated macrophages, indicating that macrophage 

response magnitude is dependent on receptor mediated activation [216]. M. 

Podinovskaia et al. showed an effect of MOI on the macrophage response. 

Intensity of superoxide burst increased proportionally with the number of 

infecting single Mtb bacteria while proteolysis and lipolysis decreased with 

increasing bacterial number [171]. Using a spherical SA/V ratio, larger Mtb 

aggregates will contain more bacilli with proportionately lower surface area 

available for binding to host cell receptors, such as TLRs. An infected cell 

could therefore be exposed to a large amount of secreted bacterial factors that 

affect host cell function, such as ESAT6 or PtpA, relative to the magnitude of 

an antimicrobial macrophage response generated by surface receptor 

engagement [85, 217-219]. Said differently, the host cell may need to be 

“aware” of the absolute number of Mtb in an aggregate, as opposed to the 

number of bacteria detectable on the surface of the aggregate to mount an 

effective response to invading Mtb. Tying in with our anecdotal observation of 

a numeric phagocytic limit (Section 3.3), a macrophage may have a higher 

chance of survival if it can limit the number of bacteria it internalizes within a 

single phagosome. In the context of an in vivo infection, aggregates may 

therefore have an enhanced ability to overcome host cellular immune 

responses.  

It is interesting to note that the acidification response, seen here described by 

a SA/V relationship related to Mtb aggregate size, inversely correlates with 

enhanced cell death seen in previous investigations. larger Mtb aggregates, 

which have previously been demonstrated to elicit increased cell death in 

infected MDMs, here exhibit lower acidification per bacillus in MDMs at early 

time points [30]. This suggests that acidification may be an important signalling 

event when determining macrophage cell fate at the early stages of Mtb 

aggregate infection. 
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Summarily, I found that Mtb aggregates can generate a unique transcriptional 

signature in infected macrophages. When compared to uninfected MDMs, 

aggregates significantly upregulate a higher number of genes compared to 

macrophages infected with multiple Mtb singles or single Mtb. In genes that 

were commonly regulated between these infection conditions, the trend was a 

peak in upregulation for aggregate infected macrophages. Genes upregulated 

by Mtb aggregates include those with functions in TNFα signalling and the 

inflammatory response. We also identified genes involved in neutrophil 

recruitment and regulation of the cell death response, such as IL8 and IER3 

respectively. Transcriptional patterns such as these represent good 

candidates for further investigation of early host/pathogen interactions and 

thereby potentially represent novel targets for therapeutic intervention. I also 

found that Mtb aggregates must be alive to elicit macrophage death, and that 

aggregate size has an effect on MDM acidification. Interestingly, while larger 

Mtb aggregates generally elicit higher acidification than smaller aggregates or 

Mtb singles, acidification per bacillus decreases as aggregate size increases. 

This is important because it might indicate the mechanistic underpinnings of 

the Mtb aggregate manipulation of host responses. 
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4 Chapter 4. Development of a convolutional neural 

network to automate Mtb detection in tissue slides 
 

4.1 Background 

Mtb aggregates have been shown to negatively impact host response in vitro 

and in animal models [30, 148]. In order to gain an appreciation of the 

relevance of Mtb aggregates during a human infection, I wanted to quantify 

Mtb aggregates in human lung tissue. To do this, I needed to develop assistive 

software pipelines that would facilitate this process, now and in future 

investigations. Manual curation of human lung slides is a time intensive 

process and quantification of Mtb in a purely manual fashion would be 

logistically unattainable. I first developed a semi-automated digital slide 

analysis tool (feature extractor) that reduced the time required to analyse a 

stained tissue slide. I used the feature extractor, in conjunction with manual 

curation, to generate high quality datasets of quantified Mtb in resected human 

lung tissue. However, in order to expand the analysis to more tissue slides, I 

had to further refine the data extraction and analysis pipeline to reduce the 

time required for future analyses. To this end, I developed a CNN to train using 

our existing curated data.  

Aim:  

Develop a custom image analysis pipeline to automate the quantification of 

Ziehl-Neelson stained Mtb bacilli in histological tissue sections 

Objectives: 

• Identify Ziehl Neelson stained Mtb bacilli in human lung tissue sections 

using a custom written MATLAB® script (Feature extractor). 

• Generate a training dataset by manually validating data generated by 

the Feature extractor script. 

• Use the newly generated training dataset to write and train a custom 

CNN to automate quantification of Mtb bacilli in human lung tissue 

sections 
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4.2 Results 

4.2.1 ZN-stained objects can automatically be identified in 

tissue slides using object colour profiles 

I generated datasets to train the CNN from ZN-stained resected human lung 

tissue. These datasets were derived from 10 scanned tissue slides from 3 Mtb 

positive donors who were clinically indicated for lung resection due to severe 

disease. The slides were randomly selected from a larger database of scanned 

tissue slides, with the only criterion for selection being the visible presence of 

ZN-Mtb. The remaining slide images in the database formed our target dataset 

(Chapter 5). I scanned the tissue slides into digital format prior to processing 

with MATLAB® image analysis scripts. Scanned slide files were too large and 

memory intensive to be loaded directly into MATLAB® as a single image and 

had to be split into smaller images (tiles) prior to processing (Figure 4.1 – 

panel 1, materials and methods section 2.11.1, Code appendix section 

8.2.1). I identified pixels that matched the colour of ZN stained Mtb in image 

tiles. Each tile was imported as a full RGB image and split into individual 

grayscale image matrices containing red (R), green (G) or blue (B) pixel 

intensity information (Figure 4.1 – panels 2 and 3). The cyan (C), magenta 

(M) and yellow (Y), grayscale matrices were constructed by addition and 

subtraction of the R, G and B colour matrices (Figure 4.1 - RGB Legend, 

materials and methods section 2.11.2). I identified the R, G and B intensity 

values associated with ZN colour profile after manually identifying ZN stained 

Mtb in tissue sections (section 4.2.2, Figure 4.3). I then generated additional 

matrices that each uniquely biased pixel intensities towards the ZN colour 

profile (Figure 4.1 – panel 4, materials and methods section 2.11.3). These 

biased matrices each had higher pixel intensities (relative to surrounding 

tissue) in pixels that matched the ZN colour profile but were each uniquely 

derived. I then applied thresholds to the biased matrices to remove 

background signal (Figure 4.1 – panel 5, materials and methods section 

2.11.3). I then performed a Boolean intersection operation between these 

three matrices. This final operation resulted in a binary mask that selected only 

those pixels with high intensity values in all three images (Figure 4.1 – panel 

5 and 6). This mask was then overlaid on the original RGB input image and 
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used to select pixels that were positive for ZN stain. The selected pixels were 

then grouped together by proximity so that all immediately adjacent pixels 

were considered part of a single object. Each of these objects was then 

allocated a unique identification number (Figure 4.1 – panel 6 and 7, 

materials and methods section 2.11.4, Code appendix section 8.2.1). For 

each of these unique objects, I then extracted 27 descriptive features. These 

features included object colour information, such as mean pixel intensity for 

each of the R, G, and B channels, or morphological features such as 

eccentricity or circularity (Materials and methods section 2.11.4 for full 

Figure 4.1: Schematic representation of image analysis feature extraction 
pipeline 

Figure 4.1: Schematic representation of image analysis feature 

extraction pipeline 

Tissue slides were scanned (1-2), split into image tiles (2) and further split 

into separate image matrices containing R, G and B pixel intensity values 

(3). Bias matrices (derived by subtracting one colour matrix from another) 

were constructed with high intensity pixel values at positions stained with ZN 

(4) and thresholded to remove background signal (5). Matrices were then 

Boolean intersected (only positive pixels appearing in all 3 bias matrices are 

retained) to generate a mask (6) that was used to extract full RGB colour 

information (7) and generate an object database (8). 
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feature list). This resulted in the generation of large unvalidated datasets of 

ZN-stained objects (Figure 4.1 – panel 8). A total of 2,99 x 106 objects were 

generated this way. 

 

4.2.2 ZN-stained Mtb bacilli must be manually identified and 

labelled in the datasets 

I removed objects that were incorrectly identified as Ziehl Neelsen stained Mtb 

bacilli (ZN-Mtb) from our datasets. I did this by manually removing objects with 

mean RGB profiles that did not match the ZN colour profile. I plotted the mean 

R, G and B pixel intensities for each object on a 3-dimensional axis where the 

X axis was R pixel intensity, the Y axis was B pixel intensity, and the Z axis 

was G pixel intensity (Figure 4.2). I then selected those objects that fell outside 

Figure 4.2: Training data for the neural network was generated by manual 
curation of the data 

Figure 4.2: Training data for the neural network was generated by 
manual curation of the data 

False positives (Not ZN-Mtb - red circles) were manually removed from 
training databases using guided manual curation. Remaining objects (ZN-
Mtb) were then individually validated and assigned a true positive label if they 
were visually confirmed to be ZN stained Mtb bacteria (green circles). 
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of the ZN colour spectrum and labelled them “Not ZN-Mtb” (Figure4.2). This 

selection process was guided by plotting a separate database of objects, with 

colour profiles opposite to ZN-Mtb, on the same axes. This allowed us to trim 

the data and remove a large number of objects that were not ZN-Mtb (Figure 

4.2, materials and methods 2.11.5, Code appendix section 8.2.3). I further 

refined the database by individually validating each of the remaining ZN-Mtb 

objects. I plotted the positions of ZN-Mtb objects back onto the original slide 

image, evaluated each object in the context of the immediate surrounding 

tissue, and labelled it as a true positive ZN stained Mtb object (Validated ZN-

Mtb), if it was an Mtb bacillus or a group of Mtb bacilli (Figure 4.2, materials 

and methods 2.11.6, Code appendix section 8.2.4). This process consumed 

the most time as I validated all 2,99 x 106 objects, generated from each of the 

10 training slides during feature extraction, in this way. Using this validated 

data, I also refined our estimates for the target ZN RGB colour profile I used 

for initial thresholding during feature extraction (Figure 4.3, 4.1, section 

4.2.1). 

Figure 4.3: Validated Mtb objects helped define the ZN colour profile of Mtb 
bacilli 

Figure 4.3: Validated Mtb objects helped define the ZN colour profile of 
Mtb bacilli 

We used the data from manually validated Mtb objects in training datasets 
(A) to refine estimates for the colour profile of ZN stained Mtb used during 
feature extraction (B). 
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The feature extractor script drastically reduced the image area (measured in 

pixels) in images that needed to be checked for the presence of ZN-Mtb. In 

total, across all training set tissue slides, there was a reduction in interrogable 

area by a factor of 3 log10 orders of magnitude from 100% of the image area, 

down 0.37% of image area (Figure 4.4). The pixel area occupied by true 

positive ZN-Mtb however was only a fraction of this subset, at 0.004% of total 

pixel area (Figure 4.4). The resultant CNN training dataset was asymmetrical. 

98.74% of the observations were labelled as “Not Mtb bacilli”. A total of 37560 

(1.26%) objects were labelled as ZN-Mtb. After estimating the number of bacilli 

(see below), I used this refined dataset as the training matrix for the CNN. 

 

 

Figure 4.4: The feature extraction image analysis pipeline drastically reduces 
the amount of data in need of manual validation 

Figure 4.4: The feature extraction image analysis pipeline drastically 
reduces the amount of data in need of manual validation 

The feature extractor eliminates greater than 99% of the image area (pixels) 
which need to be checked for the presence of Mtb bacilli. Given a dataset of 
all training images (100% left bar), the image extraction narrowed down the 
area where Mtb bacilli reside to 0.37% of the images (middle bar). Actual Mtb 
occupied 0.004% of the image (right bar), and were contained within the 
0.37% of the image data identified by the feature extractor.  
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4.2.3 Aggregated Mtb bacilli form part of the training dataset 

I estimated the total number of Mtb bacilli in our training dataset. I calculated 

the size of a single Mtb bacillus, in µm, after manually categorizing validated 

Mtb objects as either a single Mtb bacillus or multiple aggregated Mtb bacilli. I 

then took the average size of an Mtb bacillus and used it to estimate the 

number of bacteria in Mtb database objects. I used the maximum size of single 

bacillus as a threshold for labelling objects as ZN-Mtb aggregates (Figure 4.5). 

I extracted a total of 37560 validated ZN-Mtb objects from 10 ZN-stained lung 

tissue slides (Figure 4.5). I estimated that these 37650 objects contained 

approximately 66188 individual Mtb bacilli. 28017 of these bacilli were found 

in objects classified as ZN-Mtb aggregates (Figure 4.5). 42.3% of all bacilli 

detected in the training dataset were found as part of an Mtb aggregate. 

 

Figure 4.5: The number of Mtb objects and estimated Mtb bacilli in all training 
images 

Figure 4.5: The number of Mtb objects and estimated Mtb bacilli in all 

training images 

There were an estimated 661822 individual Mtb bacilli contained within a 

total of 37560 objects in the training database. 42.3% of the total estimated 

Mtb bacilli in the training dataset were found within Mtb aggregate objects. 
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4.2.4 The HyRoNet CNN classifier identifies Mtb bacilli in 

lung tissue sections 

I wrote and trained a CNN to find ZN-Mtb in human lung tissue slides. I used 

the CNN to reduce the manual curation during quantification of Mtb and Mtb 

aggregates in large image datasets. I used a manually labelled database, 

(Section 4.2.1 – 4.2.3) as ground truths for CNN training. The first 2 neurons 

in the HyRoNet CNN were used to trim the dataset prior to final classification 

(Figure 4.6). A symmetrical subset of the training data (where the number of 

positive training examples was equal to the number of negative examples) was 

used to train the first neuron of the network (Figure 4.6 Symmetrical data 

Figure 4.6: Schematic of HyRoNet training architecture 

Figure 4.6: Schematic of HyRoNet training architecture 

Neuron 1 of HyRoNet was used to trim asymmetrical data generated during 
feature extraction. Neuron 2 was used to further reduce the number of non-
target observations in the dataset and facilitate model customization at 
neuron 3 of the network. Neuron 3 was used to calibrate final sensitivity, 
specificity, positive predictive (PPV) value and negative predictive value 
(NPV) of HyRoNet. 
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subset, Neuron 1, materials and methods 2.12, Code appendix section 

8.2.5, 8.2.7). The resultant model classifications were then applied to the 

original full training dataset to generate a second data subset which was used 

to train neuron 2 (Figure 4.6 Model 1 data subset, Neuron 2). Neuron 2 

generated refined classifications which were applied back to the original full 

training dataset to generate a third, further refined data subset (Figure 4.6 

Model 2, Model 2 data subset). This final data subset was then used to train 

neuron 3, which completed the final classification model (Figure 4.6 Neuron 

3, Final classification model). Together, these three models, and their 

trained parameters, constitute the HyRoNet classification algorithm. 

 

4.2.5 Splitting of training data enables model optimization 

Each neuron in HyRoNet required individual optimization to ensure reliable 

model training and performance. To optimise and test the performance of each 

neuron I performed a train, validate and test split on the training data. I 

randomly split the data into training and test subsets (80% training, 20% test) 

(Code appendix section 8.2.6). The test subset was used exclusively to 

evaluate the performance of the complete HyRoNet architecture and ensure 

that it generalized to unseen data. To individually optimize each neuron in the 

network, I further split the training dataset into a training and cross validation 

set (80% training, 20% cross validation). This data split technique allowed us 

to optimize regularization parameters and set thresholds for each neuron in 

the network and ensure the overall network performed well on the test data 

subset. 

 

4.2.6 Individual HyRoNet neurons minimize model error 

I ensured each neuron of HyRoNet achieved minimal model cost. I used 

forward propagation, backpropagation and gradient descent to achieve neuron 

convergence and the corresponding parameter matrices (Materials and 

methods 2.12.2 – 2.12.4, Code appendix section 8.2.15, 8.2.16, 8.2.17). I 

manually calibrated hyper parameter values by inspecting gradient descent 

curves, plotted as model cost per iteration of gradient descent (Figure 4.7). 
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Model convergence was indicated by a predictable reduction in model cost at 

each iteration of gradient descent up to horizontal asymptote (Figure 4.7). 

Unsuitable values for α, number of hidden layers and number of nodes per 

layer were eliminated when unpredictable gradient descent was demonstrated 

(Supplementary material Figure 8.2, materials and methods 2.12.1 – 

2.12.3, Code appendix section 8.2.5, 8.2.9). Large values of α generated 

irregular cost descent curves (Supplementary material Figure 8.2). Adding 

unnecessary hidden layers to neuron architecture resulted in a delayed 

convergence. Layer number was therefore determined by finding values that 

resulted in the most rapid and predictable cost descent. Additionally, I found 

that feature normalization was a critical component to achieving predictable 

gradient descent. Training the network without normalization resulted in an 

erratic cost descent curve (Supplementary material Figure 8.2, Code 

appendix section 8.2.8). Neurons 1, 2 and 3 of HyRoNet achieved 

convergence by 5.0 x 104, 1.5x 105 and 2.0x 105 iterations of gradient descent 

respectively using a single hidden layer, each with 28 nodes (Figure 4.7). 

Values for α were 0.5 for neuron 1 and 2 and 0.4 for neuron 3. 

 

 

Figure 4.7: HyRoNet minimized identification errors with iterative training 

Figure 4.7: HyRoNet minimized identification errors with iterative training 

Model cost (Y axis) per iteration of gradient descent (X axis) described model 
performance in the training dataset. Neuron 1, 2 and 3 of HyRoNet each 
achieved model convergence (indicated by horizontal asymptote). 
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4.2.7 Regularization prevents overfitting and is essential for 

real-world application 

I prevented overfitting of the training data by automatically optimizing the 

regularization parameter (λ) for HyRoNet neurons. For each neuron I found 

the value for λ by training multiple models with different values for λ applied in 

each iteration (Code appendix section 8.2.10). I then calculated the cost for 

each model when applied to the training data and when applied to the cross-

validation dataset and plotted these costs on the same axis as a function of λ 

value (Figure 4.8). I then found the value of λ for which the cost of the cross-

validation dataset and the training dataset was lowest. I noted that only the 

first neuron required a regularization, as neurons 2 and 3 returned 

unregularized models with the lowest cost for both the training and cross 

validation dataset at a λ value of 0. The ideal value for λ in neuron 1 was 51.1. 

 

 

 

Figure 4.8: We automated regularization parameter calculation to avoid 
overfitting 

Figure 4.8: We automated regularization parameter calculation to avoid 
overfitting 

Model cost (Y axis) when applied to a training dataset (blue line) and cross 
validation dataset (orange line) as a function of regularization parameter (λ). 
Optimal λ is indicated by the lowest attainable model cost on the cross-
validation dataset. This is important as overfitting will make the CNN too 
specific to the training data and unsuitable for generalization to other 
datasets 
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4.2.8 HyRoNet is optimized for the removal of false positives 

I customized model performance by optimizing for sensitivity in the first 2 

neurons of HyRoNet and for positive predictive value (PPV) in the final neuron 

of the CNN (Code appendix section 8.2.11). I measured the area under curve 

(AUC) for receiver operating characteristic (ROC) curves generated by neuron 

1 and 2 and found good performance at 0.9844 and 0.9931 respectively 

(Figure 4.9 A, Neuron 1 and 2). These neurons together drastically reduced 

the number of negatives in the training dataset by 2 log10 orders of magnitude 

from 2.7x106 observations in the input data to 4.2x104 observations in the 

output dataset of neuron 2. (Figure 4.9 B, Neurons 1 and 2 output). This 

allowed us to optimize neuron 3 of the network for precision and recall 

(sensitivity and PPV). I measured the performance of neuron 3 by PR-AUC 

(precision recall area under curve) and found good performance for the final 

neuron at 0.9735. Neuron 3 output a dataset that was composed almost 

entirely of ZN-Mtb observations. Note also, that the input data for neuron 3 is 

composed of 75% ZN-Mtb observations (Figure 4.9 C, Neuron 2 output), 

concordant with the end of the precision recall curve for neuron 3 at 75% 

(Figure 4.9 A, Neuron 3). Once data had been classified by the full HyRoNet 

architecture, I measured the performance of the network when I applied the 

model to the full training set (Figure 4.10). I also measured performance on 

the data subset for neuron 3 only (Supplementary material Figure 8.3). I 

applied the trained network to the final test dataset and used the same metrics 

to measure performance. The results agreed well with those seen in the 

training set at an AUC for neuron 1 and 2 of 0.9853 and 0.9923 respectively 

and a PR-AUC 0.9735 for neuron 3. I also saw similar fold change reductions 

in dataset size and ratios of ZN-Mtb and similar overall model performance 

metrics with a final sensitivity of 80.75%, specificity of 99.96%, PPV of 96.87% 

and NPV of 99.7%. (Figure 4.11 and 4.12).   
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Figure 4.9: Performance estimates for training dataset 

Figure 4.10: Optimizing CNN sensitivity and specificity by using multiple 
neurons performing different functions 

Figure 4.10: Performance estimates for training dataset 

Percentage sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV, number true negatives/ number true 
negatives + false negatives) for HyRoNet when applied to training data. 
Colour key indicates percentage. 

Figure 4.9: Optimizing CNN sensitivity and specificity by using multiple 
neurons performing different functions 

Area under the curve (AUC) for Neurons 1,2 and 3 of the HyRoNet CNN 
applied to training data (A). Neurons 1 and 2 are optimized for sensitivity and 
neuron 3 is optimized for positive predictive value (PPV: number true 
positives/ number true positives + false positives). FPR: false positive rate. 
Object number decreases at each neuron (B). Progressive distillation of true 
Mtb objects with data flow through the neural network (C). 

A 

B C 
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Figure 4.11: Performance estimates for test dataset 

Figure 4.12: HyRoNet CNN performance on test dataset is similar to 
performance on training dataset 

Figure 4.12: Performance estimates for test dataset 

Percentage sensitivity, specificity, positive predictive value (PPV) and 
negative predictive value (NPV, number true negatives/ number true 
negatives + false negatives) for HyRoNet when applied to test data. Colour 
key indicates percentage. 

Figure 4.11: HyRoNet CNN performance on test dataset is similar to 

performance on training dataset 

Area under the curve (AUC) for Neurons 1,2 and 3 of the HyRoNet CNN 
applied to test dataset (A). Neurons 1 and 2 are optimized for sensitivity and 
neuron 3 is optimized for positive predictive value (PPV: number true 
positives/ number true positives + false positives). FPR: false positive rate. 
Object number decreases at each neuron (B). Progressive distillation of true 
Mtb objects with data flow through the neural network (C). 

A 

B C 
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4.3 Chapter discussion 

I wrote a MATLAB® script to extract pixels containing ZN stained Mtb from 

resected human lung tissue slide images (Section 4.2.1). I used thresholds to 

remove background signals from each of the channels in the RGB tissue slide 

image. I found that, in terms of percentage area, feature extraction eliminated 

the largest proportion of negative pixels (pixels that were not ZN stained Mtb), 

leaving only 0.37% of all the pixels in our training set to be manually validated 

(Figure 4.4). However, conversion of these pixels to database objects resulted 

in a large database of 2,99 x 106 observations. Each of these objects required 

manual validation to ensure that they were Mtb bacilli. This was a time-

consuming process and only 37560 (1.26%) of all objects were validated Mtb 

bacilli. The extensive manual curation required to validate these datasets 

highlights the need to develop tools for further automation of image analysis. 

Given the nature of the training dataset, containing many data points each with 

27 unique descriptor variables/features, and the recent prevalence of deep 

learning models in similar image classification applications, a CNN was the 

logical model choice to create a supervised classifier [220, 221]. 

Manual validation of Mtb objects was an essential step in generating a reliable 

CNN training database. I plotted extracted Mtb objects on a 3D scatter plot 

and overlaid a database of objects, extracted from the same slide, composed 

of objects with colour profiles opposite to that of ZN-Mtb. This allowed us to 

select for objects that were likely to be Mtb bacilli whilst minimising subjectivity 

and accidental exclusion of ZN-Mtb objects. This step also allowed for the 

time-efficient removal of many non-target observations (objects that were Not 

ZN-Mtb) and thereby enabled the subsequent validation of individual ZN-Mtb 

objects to further refine training datasets. I manually validated each database 

object by visual inspection of the objects in the context of the surrounding 

tissue. Data validation pipelines, such as those described above, are critical 

steps for generating reliable training data for supervised learning models [139]. 

Performance of CNNs has been demonstrated to be dependent on the size 

and variety of a training database, but if labels are inaccurate, real world model 

performance will suffer regardless of database size [222]. Manual curation 

leverages the discrimination capacity of human-labelled data into an 
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automated system that reduces the need for intervention during data 

classification [139]. In the current study, manual validation reduced 

interrogable pixel area percentage by two log10 orders of magnitude (Figure 

4.4). This indicated that our CNN training data, while highly curated, was also 

asymmetrical. This would need to be accounted for when measuring CNN 

performance. 

I wrote a custom, multi-neuron CNN to aid in automated detection of Mtb in 

tissue slides. I used multiple neurons because single neuron classification on 

asymmetrical data resulted in poor performance (Supplementary material 

Figure 8.4). The first neuron of the CNN was trained on a symmetrical subset 

of the data, where the number of true positives was equal to the number of 

true negatives, to increase overall model sensitivity [223]. Neuron 2 of the CNN 

was used to refine data resulting from neuron 1. This secondary data trimming 

step facilitated better customization of model performance, in terms of 

sensitivity, specificity, PPV and NPV on data fed to the final neuron of the 

CNN. It is noteworthy that some of the hyperparameters for the neurons in the 

CNN, such as number of iterations and step size of gradient descent (α), were 

optimized manually by monitoring cost descent curves (Figure 4.8). This was 

possible because inappropriate values generated obvious visual aberrations 

in cost decent curves during model training (Supplementary material Figure 

8.2). While automated calibration of these hyperparameters is possible, the 

training times of CNN models on our large datasets was prohibitive to 

automation [224]. However, for the regularization hyperparameter λ, where 

calibration directly affects model performance on unseen data, I developed an 

automated calculation pipeline.  

I used AUC and PR-AUC to measure the performance of each neuron in the 

CNN. Neurons 1 and 2 of the CNN were used to trim input data and remove 

excess negative observations (objects that were Not ZN-Mtb) for classification 

by subsequent neurons. I calculated the standard AUC for ROC curves in 

these neurons. This allowed us to evaluate performance in terms of sensitivity 

and specificity so that I could calibrate these neurons to eliminate the 

maximum number of true negatives (FPR = 1/specificity) whilst retaining the 

maximum number of true positives (Figure 4.9-4.12). For the final neuron 
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however, I used a PR-AUC to evaluate model performance. This was because 

manual validation would still have to be conducted after applying the full CNN 

model to real world data and using the PR-AUC as a metric allowed calibration 

of the model to maximize PPV. This greatly facilitated subsequent data 

analysis and has also been shown to be an appropriate metric to evaluate 

asymmetrical data [225]. Finally, it is noteworthy that accurately measuring 

CNN model sensitivity on real world data is challenging because it is difficult 

to estimate any loss (of ZN-Mtb) during feature extraction. However, I 

mitigated this loss by setting low background thresholds and using Boolean 

intersection during feature extraction.  

In conclusion, I developed a semi-automated script to isolate ZN-Mtb bacilli in 

lung tissue sections. I manually validated data generated using this script to 

create a large, highly curated database to train a custom-written CNN. CNN 

model performance was good when evaluated on both test and training data. 

Together, these two programs constitute a fully automated image analysis 

pipeline for the quantification of Ziehl-Neelson stained Mtb bacilli in tissue 

sections. This can be an important tool to efficiently answer research questions 

surrounding Mtb pathological sites in vivo. 
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5 Chapter 5. Identifying Mtb aggregates in human 

lung tissue  
 

5.1 Background 

I developed image analysis pipelines to extract and quantify ZN stained Mtb, 

and Mtb aggregates, in human lung tissue. I first developed a feature extractor 

(Section 4.2.1) to extract data from ZN-stained tissue slides. Data resulting 

from feature extraction was then manually validated to ensure only ZN stained 

Mtb bacilli were quantified. I applied this technique to a single slide image 

derived from Mtb positive resected human lung tissue and analysed the 

resulting data (Section 5.2.1). I next applied the feature extractor to an 

additional 10 slides of Mtb positive resected human lung, that were stained for 

Mtb with ZN, to generate a large database of labelled observations on which 

to train a custom written CNN (Section 4.2.1-4.2.4). I trained the HyRoNet 

CNN using this data (Section 4.2.5-4.2.9). I finally wanted to apply this 

automated CNN to an expanded image database of 33 tissue slide images of 

resected human lung tissue, taken from 3 Mtb positive individuals, to quantify 

Mtb aggregates in in vivo infections.  

Research questions:  

• Can Mtb aggregates be automatically detected and quantified at sites 

of pathology in the human lung? 

• Is there an association between Mtb aggregation and pathological 

features? 

• Is there a relationship between Mtb aggregation and study participant? 

Hypothesis:  

Mtb aggregates can be automatically quantified at sites of pathology in the 

human lung 

Objectives: 

• Apply the newly developed HyRoNet CNN to automatically quantify Mtb 

bacilli in a dataset of resected human lung tissue slides 



113 
 

• Describe Mtb aggregate distribution at sites of pathology in resected 

human lung tissue slides 

 

5.2 Results 

5.2.1 Mtb aggregates are dispersed around the periphery of a 

granuloma cavity 

I quantified Mtb in a human lung tissue slide using a custom, semi-automated 

image analysis pipeline. As proof of concept, I analysed a single tissue slide, 

from resected lung tissue of an Mtb positive donor, that had been stained for 

the presence of Mtb and host cell nuclei. I used our feature extractor algorithm 

(Section 4.2.1) to generate uncurated databases of ZN-Mtb and host cell 

nuclei objects. I validated each detected object in the context of the 

surrounding tissue by comparing them to a target RGB profile and classifying 

the object as either target or non-target observation (Section 4.2.2-4.2.3). I 

further validated whether ZN-Mtb objects were an Mtb aggregate or an Mtb 

single and assigned labels accordingly. I then used this data to estimate the 

average size of a single Mtb bacillus and used this estimate to calculate the 

number of Mtb bacilli per ZN-Mtb object (Materials and methods section 

2.11.6). I classified ZN-Mtb objects as cell associated based on whether they 

fell within the mean alveolar macrophage radius of host cell nuclei objects 

[226]. I also mapped the ZN-Mtb detections back onto the original input slide 

to visualize the distribution of Mtb in the tissue (Figure 5.1, Adapted from 

Rodel et al. [162]) 

Mtb was found at the periphery of a granulomatous cavity in a tissue slide from 

donor PID 11302 (Figure 5.1 A). ZN-Mtb aggregate objects were found 

interspersed with ZN-Mtb objects wherever Mtb was detected. The total 

number of Mtb bacilli present in all objects detected in the tissue slide was 

estimated at 2086. 151 objects were classified as ZN-Mtb aggregates and 

corresponded to a minimum of 2.4 Mtb bacilli each. While the majority of ZN-

Mtb objects had fewer than 2.4 bacilli (Figure 5.1 B and C), aggregated ZN-

Mtb accounted for 28% of all detected Mtb bacilli (Figure 5.1 C). 993 ZN-Mtb 

objects, 68% of all bacilli, detected were within close proximity of host cell 
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nuclei and were classified as cell associated. 61% of the aggregated and 70% 

of the single Mtb bacilli were cell associated (Figure 5.1). 

 

 

 

 

 

Figure 5.1: Dispersed Mtb aggregates are found near the periphery of a 
granuloma cavity 

Figure 5.1: Dispersed Mtb aggregates are found near the periphery of a 
granuloma cavity. Adapted w/o permission from Rodel et al. 2021 [162] 

Ziehl–Neelsen stained lung section(A). Aggregated bacilli are highlighted 
with a magenta circle and single bacilli with a blue circle.  Scale bar is 3mm.  
A black perforated circle is overlaid if the Mtb are in close proximity to a cell 
nucleus (blue stain). Areas 1-9 are magnified in separate panels, where 
scale bars are 20μm (1-9). Stacked histogram of the number of cell free 
(blue) or cell-associated (red) Mtb objects (B). Stacked histogram of 
percentage of total Mtb bacilli that are single or aggregated (C). 
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5.2.2 HyRoNet reduces the need for manual curation, but 

requires a greater variety of training data 

I used a trained, custom written CNN, HyRoNet, to automatically detect ZN-

Mtb in human lung tissue slides. I trained HyRoNet (Section 4.2.8) using 10 

tissue slides of resected human lung from Mtb positive individuals. Training 

slides had different background staining properties but were all stained for the 

presence of Mtb bacilli with ZN reagents. Each training slide was manually 

curated to generate high quality training data to facilitate the construction of a 

reliable CNN model (Section 4.2.2). I applied the resultant trained CNN on a 

dataset of 33 tissue slides of resected human lung, from a total of 3 Mtb 

positive individuals. 

I measured the overall performance of the network by calculating the 

percentage reduction in pixel area. Lower pixel area meant less area to 

manually scrutinize for the presence of ZN-Mtb. I processed each slide using 

the full image analysis pipeline described in Section 4. At each stage of the 

analysis pipeline I quantified the number of pixels that may contain ZN-Mtb 

(Figure 5.2). Unprocessed images contained a total of 3.1x1011 pixels. After 

feature extraction, where only those pixels that matched the ZN-Mtb RGB 

colour profile were retained, the total number of pixels remaining was 1.3x109. 

This reduction represented the greatest automated decrease in percentage 

pixel area and reduced the number of target pixels by 99.55%, or roughly 2 

log10 orders of magnitude (Figure 5.2). The feature extractor generated a 

database of objects/observations that was then used as input for the HyRoNet 

CNN for classification. Observations that were classified as “Not ZN-Mtb” were 

removed from the database and the total pixel area remaining was 

approximately 1.1x108 pixels. This represented a further full log10 magnitude 

reduction in percentage pixel area (Figure 5.2). However, manual validation 

was still necessary and resulted in a further reduction of 2 log10 orders of 

magnitude, although this was only a small percentage of the full pixel area. 

This final area contained a total of 3.2x105 pixels, or 0.1x10-4 % of the total 

pixel area in all input tissue slide images. I also measured the performance of 

HyRoNet classifications on the target dataset. Because I could only manually 

validate the positive predictions made by HyRoNet, I could not accurately 
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estimate model sensitivity as I did during CNN training, where the full training 

dataset was manually validated. On average, HyRoNet correctly classified and 

removed 96.7% of true negative observations generated during feature 

extraction per slide (specificity of 96.7±3.8sd). However, depending on the 

slide being processed, there was between a 0 and 52.9% chance of an object 

being correctly classified as a ZN-Mtb object (PPV range 0-52.9±10.3sd).  

 

 

 

Figure 5.2: HyRoNet reduces image area in need of curation to less than 
0.05% but still requires manual validation 

Figure 5.2: HyRoNet reduces image area in need of curation to less than 
0.05% but still requires manual validation 

Shown is the sum and standard deviation of pixels, that may contain Mtb, for 
all images at all stages of the image processing pipeline. Percentage of total 
dataset size indicated in white text. 
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5.2.3 Mtb aggregates can be found near a cavity periphery, 

but not exclusively 

I quantified the number of Mtb aggregates, Mtb singles and the total number 

of Mtb bacilli in objects that were classified as ZN-Mtb by HyRoNet. Only those 

objects that were manually validated as ZN-Mtb were quantified (Figure 5.3). 

I calculated the number of Mtb bacilli per object, by calculating the average 

area for a single Mtb bacillus and using this value to estimate the number of 

bacilli in each object (Materials and methods 2.11.6). Of the 33 slides that 

were analysed, only 17 had detectable ZN-Mtb, and 11 slides had detectable 

Mtb aggregates. There were a total of 2305 single Mtb objects across all 

analysed slides (Figure 5.4). Similarly, the estimated number of single Mtb 

across all slides was 2650 bacilli (Figure 5.4). There were a total of 412 

aggregate Mtb objects across all target slides. There were 3340 total 

estimated Mtb bacilli contained within these aggregate objects (Figure 5.4). 

The total number of Mtb bacilli contained within Mtb aggregates exceeded the 

number of single Mtb bacilli in the analysed tissue slides. However, the 

majority of these aggregated bacilli were found in a single slide (Figure 5.6 – 

PID 20314/09 slide 16). This slide contained 2851 Mtb bacilli within 283 Mtb 

aggregate objects. Aggregates were also found in slides 1, 3, 4 and 5 from 

PID 13462/09, slides 13, 14, 7, 8 and 9 from PID 21114/07 and slide 15 from 

PID 20314/09 (Figure 5.5-5.6, Table 5.1 and supplementary material figure 

8.5). The remaining slides contained only single Mtb bacilli.  
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Figure 5.3: Mtb aggregates and singles can be detected in the target image 
database using the HyRoNet CNN 

Figure 5.3: Mtb aggregates and singles can be detected in the target 

image database using the HyRoNet CNN  

Mtb single bacteria (blue circles) and Mtb aggregates (magenta circles) are 

detectable in the target human lung tissue slide image database by the 

HyRoNet CNN. Scale bar = 25µm. 
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Figure 5.4: Mtb aggregate objects contain more Mtb bacilli than Mtb single 
objects 

Figure 5.4: Mtb aggregate objects contain more Mtb bacilli than Mtb 

single objects 

Objects that are classified as Mtb singles (Single objects) contain a similar 

number of bacilli (Single Mtb bacilli). Mtb aggregate objects (Aggregate 

objects) contain more individual Mtb bacilli per object (Aggregated Mtb 

Bacilli). 
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Table 5.1: Quantification of Mtb bacilli and 
aggregates in human lung tissue slides 
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I superimposed the Mtb single and Mtb aggregate objects that I detected back 

onto the full scanned tissue slides. I divided the slide results into two groups. 

Slides in which there were fewer than 10 total Mtb bacilli detected were 

grouped together (Figure 5.5). 7 slides were included in this paucibacillary 

infection group. 7 slides that had more than a total of 10 detected Mtb bacilli 

were likewise grouped together (Figure 5.6). The remaining 3 re-scanned 

slides were included in the final bacillary count (Supplementary material 

Figure 8.5). Slides in which there were few Mtb bacilli tended to have fewer 

bacteria in aggregated form, although aggregates were not absent from this 

group. 2 of the 7 total paucibacillary slides had bacteria that were grouped into 

an aggregate, containing a single Mtb aggregate each (Figure 5.5 slides 3 

and 9). In 4 of the 7 of the paucibacillary tissue slides, bacteria were found 

within intact granulomatous structures (Figure 5.5 slides 3, 17, 9 and 12). 6 

of the 7 slides that contained a high number of Mtb bacilli contained Mtb 

aggregates (Figure 5.6 all slides except slide 2). In the slide in which only 

Mtb singles were found, bacteria were found within an intact granuloma or 

within a structure that resembled a lung bronchiole that was filled with acellular 

material (Figure 5.6 slide 2). For all slides in which a high number of Mtb 

singles were found, except for slide 7, bacteria were found within 

granulomatous structures (Figure 5.6). Slides 7 and 16 (Figure 5.6) contained 

the highest number of Mtb aggregates. Slide 7 was similar to the slide 

analysed using only the feature extractor (Section 5.2.1) where numerous 

aggregates were found surrounding a granulomatous cavity. This was not the 

case for slide 16, which had the highest number of Mtb aggregates, in which 

aggregates were found within an intact granuloma. Mtb singles and 

aggregates in this slide were found in a seam across the section (Figure 5.6). 

Mtb were also found associated with RBCs in slides 15, 16 and 2. 
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Figure 5.5: Quantification of Mtb in slides containing fewer than 10 bacilli 
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Figure 5.6:  Quantification of Mtb in slides containing more than 10 bacilli 
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I next tested for relationships in the proportions of Mtb aggregates in tissue 

slides. For each slide, I plotted the number of Mtb aggregates versus the total 

number of Mtb objects detected per slide and fit a linear model to the data 

(Figure 5.7 left panel). I found that the number of Mtb objects had a moderate 

to strong positive correlation to the number of total Mtb objects per slide, and 

the model accounted for 38% of the variability in the data (R = 0.62, R2 = 0.38, 

p < 0.015). I calculated the percentage of Mtb objects that were Mtb 

aggregates per slide and plotted as a function of the total objects (Figure 5.7 

Right panel). The linear model I fit to the data showed a weak negative 

correlation that did not significantly explain the variability seen in the data (R 

= -0.2, R2 = 0.041, p < 0.47). The overall trend in this data was a constant 

relationship between the proportion of Mtb aggregates and the number of Mtb 

objects in a slide. I split the data into groups of less than or greater than 10 

Mtb bacilli per slide and tested for significant differences in the proportions of 

Mtb aggregates, using a non-parametric U-test, and found no significant 

differences between these groups (p < 0.435). I used data for participants who 

had at least 3 tissue sections to check for any donor dependent effects (Figure 

5.8). PID 13462 showed a moderate negative correlation between the 

proportion of Mtb aggregates and the total number of Mtb objects, although 

this fit to the data had a 25% probability of occurring by chance (R = -0.55, R2 

= 0.31, p < 0.25). The model for PID 21114 showed a mostly constant 

relationship in the proportion of Mtb aggregates to total Mtb objects and did 

not significantly explain the variability seen in the data (R = -0.038, R2 = 

0.0014, p < 0.94).  



125 
 

 

 

 

 

 

Figure 5.8: Variability in proportion of Mtb aggregates between donors 

Figure 5.7: The number of Mtb aggregates per slide increases with the number 
of Mtb object detections per slide 

Figure 5.7: The number of Mtb aggregates per slide increases with the 
number of Mtb object detections per slide 

Linear fit (blue line) of number (left panel) and percentage (right panel) of 
Mtb aggregates plotted against the total number of Mtb objects detected per 
slide (black circles). 95% confidence intervals shown in grey 

Figure 5.8: Variability in proportion of Mtb aggregates between donors 

Linear fit (solid line) of percentage of Mtb aggregates plotted against the total 
number of Mtb objects detected per slide (coloured circles). Colour indicates 
participant, 95% confidence intervals shown. 
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5.3 Chapter discussion 

I used a custom written image processing script (Section 4.2.1), followed by 

manual curation, to quantify Mtb aggregates, and cellular association, in 

resected human lung tissue (Figure 5.1). I found Mtb and Mtb aggregates at 

the periphery of a necrotic granuloma surrounding a cavity region. The degree 

of cell association between host and pathogen seen in this analysis suggests 

an environment where serial killing mechanics, as identified in MDMs by 

Mahamed et al., could be pertinent to host infection outcomes [30]. 

Additionally, transmission of Mtb aggregates has been demonstrated in rabbit 

aerosolized infection models and bio-aerosols [31, 148]. The physical position 

of Mtb aggregates surrounding a cavity, as seen in this and other studies, 

suggests relevance for aggregate transmission in vivo [147].  

I used HyRoNet, a custom written CNN, trained using data generated by our 

feature extractor, to expand the analysis of Mtb aggregates in human lung 

tissue. The full HyRoNet pipeline eliminated 99.96% of pixel area from input 

tissue slide images. This drastically reduced the amount of data that needed 

to be manually curated. However, manual curation was necessary to remove 

false positives generated by HyRoNet predictions. It is challenging to 

accurately represent model performance when applied to unseen data. This is 

due to the heterogenous nature of stained tissue sections, which includes 

factors such as the actual presence of ZN-Mtb, precise tissue of origin and the 

chromatic variability associated with manual tissue staining. Additionally, I 

cannot measure the sensitivity of our model on real world data without 

manually validating all observations extracted by the feature extractor, at 

which point the analysis becomes indistinguishable from the generation of 

CNN training data. After manually validating HyRoNet predictions on unseen 

data, I found that the PPV varied more than indicated by training estimates, 

depending on the particular slide (Section 5.2.2). This was not unexpected as 

our training dataset was comparatively homogeneous, relative to the target 

dataset, and consisted of 4 tissue slides with images taken at various focal 

lengths (for a total of 10 training slides). While training slides provided ample 

individual observations for CNN training (~3.0x106 objects Section 4.2.2-

4.2.4), they likely did not encompass the full range of variability associated 
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with histological tissue sections. This was reciprocated during manual 

validation of CNN predictions where I found that most incorrect classifications 

by HyRoNet were false positive objects that resembled RBCs 

(Supplementary material Figure 8.6). This type of observation was notably 

absent from our training data and likely caused a drastic underestimation of 

PPV values in the current analysis. Therefore, by increasing the number and 

variety of training slides used to train HyRoNet, model performance can be 

further greatly improved [222]. However, HyRoNet still greatly reduced the 

amount of manual curation required to complete the analysis and facilitated 

quantification of Mtb bacilli, and Mtb aggregates, in resected human lung 

tissue slides. 

I found Mtb aggregates in association with granuloma cavitation. Similar to 

findings using only the feature extractor analysis pipeline (Figure 5.1), 

HyRoNet identified a large number of Mtb aggregates surrounding a 

granuloma cavity (Figure 5.6 slide 7). Mtb aggregates have previously been 

identified in association with the cavity surface [147]. In tissue slides where I 

found fewer Mtb aggregates, but still many single Mtb bacilli, the bacteria were 

found in association with closed necrotic granuloma in which there was little to 

no evidence of cavitation (Figure 5.6 slides 1, 4, 2 and 14). This trend 

suggests that local host immunity could be better equipped to contain 

infections by singlet Mtb bacilli. It is however noteworthy that the slide that 

contained the most Mtb aggregates showed little evidence of cavitation, and 

instead had a dense seam of bacteria within a necrotic granuloma core 

(Figure 5.6 slide 16). These Mtb aggregates were found in close association 

with one another and may be the remnants of primary infection events wherein 

bacteria multiply within a granuloma core until the development of an adaptive 

response that slows infection progression [42, 43]. Conversely, slides where 

Mtb aggregates were found in association with cavitation appeared more 

disperse around the cavity surface. It may be that these dispersed Mtb 

aggregates develop because of exposure to a more aerobic environment that 

results from cavitation, and not as part of granuloma development and rupture 

[44]. Furthermore, the 3-dimensional structure of the granuloma was not 

accounted for in this analysis and would likely be informative to Mtb aggregate 
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biology and development, as indicated by G. Wells et al. [124]. This is 

highlighted by the varying results of slides 16 and 15, which are different 

sections from the same block of tissue. Finally, I noted cavitation and the 

associated disperse Mtb aggregates, in 2 donors (PID 21114 and PID 11302), 

and unruptured necrotic granuloma that contained Mtb and/or Mtb aggregates, 

in the remaining 2 donors (PID 13462 and PID 20314). This suggests that 

pathogen control may be mediated by host dependent factors.  

In summary, my CNN-automated image analysis pipeline was able to isolate 

a greatly reduced area in tissue slide images that potentially contained ZN-

Mtb, and thereby greatly reduced the manual curation required to quantify Mtb 

bacilli. However, the CNN requires a greater training dataset to improve 

performance metrics. I found lung tissue slides in which Mtb aggregates were 

dispersed around granuloma cavities, potentially implicating Mtb aggregates 

in transmission-level events. I also saw a data trend that could indicate a link 

between participant and Mtb aggregation, but this requires a greater target 

dataset to validate. The current, and future further investigations on similar 

datasets could provide insight into the role of aggregation during the infectious 

lifecycle of Mtb and developing this image analysis pipeline will reduce the 

manual effort required for quantification of Mtb bacilli in human lung tissue. 
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6 Conclusions 

I aimed to investigate the host transcriptional response to infection with Mtb 

aggregates. I showed that upregulated TNF-α expression and inflammation 

was a key transcriptional feature in macrophages infected with Mtb 

aggregates, relative to infection by multiple single Mtb at a similar MOI, or by 

infection with single Mtb. TNF-α is known to have pluripotent effects during 

cellular responses to infection and plays a role in maintaining granuloma 

integrity during longer term infections and in the induction of cell death [105, 

106, 108]. TNF-α interacts with the NFκB signalling cascade, and increased 

inflammation can form part of this response [104, 227]. Counter to this, a study 

in 2016 showed that infection with Mtb activated STAT3 expression in 

macrophages, which in turn downregulated TNF and other inflammatory 

genes [228]. Inflammation is a key response in the recruitment of other innate 

and adaptive cellular effectors during Mtb infection, but this response can be 

co-opted to favour pathogen growth [40]. I saw that IL8, a known neutrophil 

chemotactic factor, was upregulated during Mtb infection. IL-1β, an 

inflammatory cytokine found to be upregulated in the current study, also 

interacts with the NFκB signalling cascade to alter cellular death responses 

[229]. The above highlights the complex relationship between Mtb infection, 

host inflammatory pathways, their effect on the cell death response, and what 

cell death might mean for infection trajectory. In the context of an in vitro Mtb 

aggregate infection, and the Mtb aggregate-mediated enhanced cell death 

seen in MDMs, the upregulated TNF-α and inflammatory response seen here 

appears to favour the induction of necrotic cell death that favours pathogen 

growth [30]. The differential regulation of other genes involved in apoptotic cell 

death, such as the upregulation of the apoptosis inhibitor IER3 during 

aggregate infection at the early time point assayed in our study, corroborates 

this interpretation. However, In the absence of a direct in vivo system of 

observation, I cannot directly conclude whether this sort of cell death is 

detrimental or beneficial for Mtb in the context of granulomatous infection 

trajectory. 

I investigated macrophage acidification response to Mtb aggregates and found 

that intracellular acidification levels vary according to aggregate size, and that 
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Mtb aggregates need to be viable to elicit cell death in infected macrophages. 

Larger Mtb aggregates elicited a higher acidification response than smaller 

Mtb aggregates or singles in infected macrophages. However, MDMs that 

internalized large Mtb aggregates had lower acidification, per bacillus, than 

smaller Mtb aggregates or Mtb singles. The relationship between Mtb 

aggregates and MDM acidification, per bacillus, could be predicted by a model 

describing the relationship between the surface area and volume of a sphere. 

This suggests that acidification magnitude is dependent on receptor 

engagement in the nascent phagosome. This is corroborated by the fact that 

the cellular response to infection has previously been demonstrated to be 

dependent on particle size and number [171, 216]. I speculate that if signalling 

potential was based on this relationship, it could afford larger Mtb aggregates 

an advantage. A cellular response that depends on particle surface area may 

be lower than what might be required to control the number (volume) of 

bacteria in an Mtb aggregate. An infected cell could also be exposed to a 

higher quantity of bacterial effectors targeting the host response. Mtb 

aggregates may therefore circumvent the host response through a numerical 

advantage that is hidden from host perception. 

I quantified Mtb, and Mtb aggregates, in human lung tissue sections using a 

custom digital image analysis pipeline that included the development of a 

CNN. The CNN had good performance results when evaluated using a 

manually validated test dataset (Section 4.2.8). Test dataset results reflect 

model performance when applied to unseen data that is similar to training data. 

Similar real-world performance can be achieved by using a training dataset 

that is more representative of the heterogeneity found in real world data to 

which it will be applied [230]. This was highlighted by the frequency of a 

specific type of false positive, resembling RBCs, found during manual 

validation of the CNN when applied to unseen data. This type of false positive 

was notably absent in the training dataset. Therefore, I can conclude that 

model performance will improve and better generalize to real world data 

through inclusion of a broader set of training examples [230]. Mtb aggregates 

have previously been found in association with the cavity surface [147]. Here, 

I found that aggregates in association with cavitous granuloma had a 
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dispersed distribution around the cavity. I cannot say whether aggregates 

associated with a cavity developed before or after cavitation, perhaps as a 

result of a metabolic change mediated by exposure to an aerobic environment 

[21]. But, this does suggest a role for Mtb aggregates during transmission via 

their proximity to the exposed cavity surface, especially in the light of a recent 

studies showing aggregate transmission in patient bio-aerosols [31]. In a rabbit 

model of aerosolized Mtb aggregate infection, Mtb aggregates have also been 

shown to result in extensive necrotic foci, larger lesion size and higher bacillary 

load [148].  Conversely, I also found a large, closely associated group of Mtb 

aggregates in a necrotic granuloma that had not ruptured. Interestingly, the 

presence of low numbers of Mtb aggregates, even in non-cavitous granuloma, 

may indicate relevance for Mtb aggregates as a mechanism of pathogenicity 

at earlier stages of infection. I also noted that the proportion of Mtb aggregates 

may vary by donor PID, although more tissue sections are needed to confirm 

whether this trend is statistically significant. I cannot conclusively determine 

the relevance of aggregates during human Mtb infection through bacterial 

quantification alone, but their association with a failed host attempt to contain 

Mtb infection signals their importance.  

Limitations I encountered in this study include the time taken to manually 

validate ZN-Mtb detected by the feature extractor to establish a training 

dataset. CNN model performance would benefit from a broader training 

dataset. However, generating reliable manually validated observations is still 

labour intensive. Therefore, as it stands, the current CNN model is limited in 

its capacity to completely automate the detection of Mtb bacilli in tissue slides 

without any validation. The static nature (single time-point tissue sections), and 

size, of the target database also limits the investigation of any dynamic roles 

of Mtb aggregates during the full course of an infection and current 

interpretations are therefore largely descriptive. Additionally, transcriptomics 

analysis could benefit from the inclusion of additional infection conditions, but 

thresholds for RNAseq cell population numbers limited further investigation. 

Future work to understand the pathological significance of Mtb aggregates 

could include deeper investigation into the bacterial contribution during the 

interaction with host phagocytes. Such approaches might include a dual 
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host/pathogen transcriptomics analysis to investigate any differences in 

aggregated Mtb transcription relative to singlet Mtb transcription patterns in 

infected macrophages. Further expansion of the automated image analysis 

pipeline, via the inclusion of a greater number of tissue sections, could reveal 

informative patterns in Mtb aggregate distributions, as well as clarify any donor 

dependant effects on the proportion of Mtb aggregates in infected participants. 

Additionally, further development of the CNN to automatically correlate any 

pathological tissue features with the presence of Mtb mycobacteria could 

provide deeper insight into tuberculous disease progression. 
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8 Chapter 8. Appendices 
 

8.1 Supplementary Material 
 

 

 

 

Gene Mean reads 

log2 Fold 

Change 

 Adjusted 

p 

 Aggregate relative to Uninfected 

CCL4L1 117 6,29  <0,0001 

CCL4L2 117 6,29  <0,0001 

IL1B 923 5,06  <0,0001 

IL8 1886 6,16  <0,0001 

CCL4 374 5,96  <0,0001 

SOD2 847 2,58  <0,0001 

SERPINB2 53 6,39  <0,0001 

TNFAIP6 232 5,40  <0,0001 

CCL3 1098 2,82  <0,0001 

ICAM1 702 2,04  <0,0001 

HSPA1A 64 2,32  <0,0001 

EHD1 206 2,03  <0,0001 

CCL20 43 6,62  <0,0001 

ZC3H12A 73 2,58  <0,0001 

CXCL3 175 5,30  <0,0001 

MFSD2A 140 1,67  <0,0001 

PIM1 346 1,28  <0,0001 

SLC2A6 170 1,93  <0,0001 

INHBA 42 3,14  <0,0001 

BTG2 316 1,10  <0,0001 

OSGIN1 85 1,41  <0,0001 

AMPD3 126 1,60  <0,0001 

Table 8.1: DESeq2 differentially regulated genes between infection 
conditions at adjusted p-value < 0.01 

Supplementary table 8.1.1: DESeq2 differentially regulated genes 

between infection conditions at adjusted p-value < 0.01. Adapted w/o 

permission from Rodel et al. 2021 [162] 
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TNF 172 4,60  <0,0001 

C15orf48 557 1,28  <0,0001 

CXCL2 219 4,97  <0,0001 

NFE2L2 300 0,81  <0,0001 

CCL3L1 276 8,59  <0,0001 

CXCL1 85 5,35  <0,0001 

CD274 125 1,51  <0,0001 

IER3 65 2,77  <0,0001 

PTGS2 21 3,78  <0,0001 

NCK2 16 2,40  <0,0001 

NAMPT 154 1,64  <0,0001 

TRAF1 80 1,69  <0,0001 

LIF 31 2,06  <0,0001 

HLA-DQA1 345 1,48  <0,0001 

SQSTM1 2922 0,88  <0,0001 

IRAK2 41 2,19  <0,0001 

BID 205 0,98  <0,0001 

IL7R 70 2,79  <0,0001 

ADORA2A 14 4,73  <0,0001 

IL6 29 5,63  <0,0001 

KYNU 455 1,17  <0,0001 

PDE4DIP 315 0,72  <0,0001 

KDM6B 9 2,89  <0,0001 

MAP3K8 26 1,50  <0,0001 

RNF144B 37 1,70  <0,0001 

DRAM1 166 1,04  <0,0001 

CSF1 437 1,13  <0,001 

MSANTD3 30 1,49  <0,001 

MSC 305 0,93  <0,001 

AMZ1 68 1,61  <0,001 

G0S2 30 2,75  <0,001 

GPR35 18 2,60  <0,001 
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TNFAIP3 151 1,84  <0,001 

TRAF3 69 1,17  <0,001 

MTHFD2 446 0,65  <0,001 

HCK 309 0,64  <0,001 

RILPL2 94 0,91  <0,001 

HSPA1B 19 2,26  <0,001 

SLC2A3 231 1,14  <0,001 

ATP2B1 55 1,24  <0,001 

GEM 70 1,08  <0,001 

HMOX1 573 0,63  <0,01 

B4GALT1 391 1,05  <0,01 

PPP1R15A 444 0,96  <0,01 

IFIT2 27 1,72  <0,01 

STX11 114 0,79  <0,01 

MAP2K3 525 0,71  <0,01 

CD80 4 3,03  <0,01 

CES1 237 1,54  <0,01 

RIN2 30 -1,39  <0,01 

TREM1 37 1,94  <0,01 

IL1A 26 2,66  <0,01 

CCRL2 122 0,87  <0,01 

CD180 41 -1,27  <0,01 

PDK4 126 -1,15  <0,01 

CYP27B1 63 1,01  <0,01 

TNFSF15 45 1,96  <0,01 

EDN1 6 3,27  <0,01 

SDC4 239 0,71  <0,01 

HIVEP2 21 1,85  <0,01 

NFKBIA 397 1,26  <0,01 

CD83 972 0,72  <0,01 

LINC00674 35 -0,99  <0,01 

DENND5A 43 1,23  <0,01 
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USF1 19 1,15  <0,01 

MORC3 62 0,96  <0,01 

 Multiple relative to Uninfected 

IL1B 923 4,33  <0,0001 

SERPINB2 53 6,27  <0,0001 

SOD2 847 2,40  <0,0001 

CCL4L1 117 4,81  <0,0001 

CCL4L2 117 4,81  <0,0001 

IL8 1886 5,06  <0,0001 

TNFAIP6 232 5,01  <0,0001 

SLC2A6 170 2,16  <0,0001 

CCL4 374 4,26  <0,0001 

C15orf48 557 1,49  <0,0001 

PIM1 346 1,28  <0,0001 

BTG2 316 1,11  <0,0001 

EHD1 206 1,73  <0,0001 

AMPD3 126 1,54  <0,0001 

HCK 309 0,87  <0,0001 

BID 205 1,08  <0,0001 

IL7R 70 3,08  <0,0001 

CCL3 1098 1,87  <0,0001 

ICAM1 702 1,44  <0,0001 

OSGIN1 85 1,22  <0,0001 

SQSTM1 2922 0,85  <0,0001 

CXCL1 85 4,42  <0,0001 

TNF 172 3,73  <0,0001 

CD274 125 1,30  <0,0001 

CXCL3 175 3,54  <0,0001 

KYNU 455 1,13  <0,0001 

GPR35 18 2,68  <0,001 

CCL20 43 4,16  <0,001 

NCK2 16 1,90  <0,001 
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PDE4DIP 315 0,63  <0,001 

NAMPT 154 1,25  <0,001 

ACSL1 2158 1,30  <0,01 

TRAF1 80 1,29  <0,01 

NCF1 30 1,74  <0,01 

MSC 305 0,83  <0,01 

CCL3L1 276 5,57  <0,01 

INHBA 42 1,90  <0,01 

HLA-DQA1 345 1,09  <0,01 

DENND5A 43 1,31  <0,01 

NCAPH 192 -0,81  <0,01 

SLC7A11 398 1,11  <0,01 

NFE2L2 300 0,50  <0,01 

DRAM1 166 0,85  <0,01 

IFNGR2 275 0,93  <0,01 

RILPL2 94 0,78  <0,01 

CES1 237 1,43  <0,01 

MTHFD2 446 0,55  <0,01 

GPR68 53 1,09  <0,01 

AMZ1 68 1,35  <0,01 

MFSD2A 140 0,91  <0,01 

IVNS1ABP 435 -0,52  <0,01 

 Single relative to Uninfected 

SERPINB2 53 5,63  <0,0001 

TNFAIP6 232 4,83  <0,0001 

SOD2 847 1,94  <0,0001 

IL1B 923 3,27  <0,0001 

CCL4L1 117 3,75  <0,0001 

CCL4L2 117 3,75  <0,0001 

IL8 1886 3,85  <0,0001 

SLC2A6 170 1,71  <0,0001 

PIM1 346 1,09  <0,0001 
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AMPD3 126 1,39  <0,0001 

EHD1 206 1,47  <0,0001 

C15orf48 557 1,05  <0,0001 

CCL4 374 2,94  <0,0001 

KYNU 455 1,23  <0,0001 

BTG2 316 0,82  <0,0001 

ICAM1 702 1,24  <0,0001 

BID 205 0,87  <0,001 

HCK 309 0,67  <0,001 

SQSTM1 2922 0,74  <0,001 

OSGIN1 85 1,01  <0,001 

TNIP1 38 1,40  <0,001 

MSC 305 0,86  <0,01 

CCL3 1098 1,28  <0,01 

PDE4DIP 315 0,57  <0,01 

TRAF1 80 1,20  <0,01 

HMOX1 573 0,58  <0,01 

 Aggregate relative to Single 

CXCL2 219 4,77  <0,0001 

CCL4 374 3,03  <0,0001 

CCL4L1 117 2,54  <0,0001 

CCL4L2 117 2,54  <0,0001 

TNF 172 3,97  <0,0001 

HSPA1A 64 1,67  <0,0001 

CXCL3 175 3,63  <0,0001 

ZC3H12A 73 1,68  <0,001 

CCL3 1098 1,54  <0,001 

IER3 65 2,20  <0,001 

MAP3K8 26 1,43  <0,001 

CCL2 103 1,40  <0,01 

CXCL1 85 3,55  <0,01 

IRAK2 41 1,76  <0,01 
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INHBA 42 1,86  <0,01 

IL8 1886 2,31  <0,01 

 Aggregate relative to Multiple 

HSPA1A 64 1,51  <0,001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1: Mtb fluorescence measures bacterial numbers 

Figure 8.1: Mtb fluorescence measures bacterial numbers. Adapted w/o 
permission from Mahamed et al. 2017 [30] 

Mtb colony forming units (CFU – red circles) versus Mtb fluorescence (blue 
squares) tracked over 3 days of growth in culture (mean ±sd). 
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Figure 8.2: Neuron 3 of HyRoNet is optimized for positive predictive value 

Figure 8.3: Hyperparameter calibration and data normalization is important for 
predictable CNN training 

Figure 8.2: Hyperparameter calibration and data normalization is 
important for predictable CNN training 

Large values of alpha (left panel) and training data that has not been 
normalized (right panel) can result in unpredictable CNN training and result 
in poor model performance. Y axis is cost (model error), X axis is training 
iteration number 

 

Figure 8.3: Neuron 3 of HyRoNet is optimized for positive predictive value 

Performance of CNN neuron 3 when applied directly to data resulting from 
classification by neuron 2 of HyRoNet for training (left panel) and cross validation 
(right panel) datasets. Colour in scale bar indicates percentage. 

Training data Test data 
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Figure 8.4: Quantification of Mtb in duplicated slides 

Figure 8.5: Single neuron CNN architecture has low precision recall 

Figure 8.5: Quantification of Mtb in duplicated slides  

Tissue slides indicate locations of Mtb singles (orange crosses) and Mtb 
aggregates (magenta circles) within areas circled in black. Bar graphs show 
quantification data for Mtb singlet and aggregate objects and the estimated 
number of bacilli in the corresponding tissue slide. Bar colour indicates slide 
PID.  

 

Figure 8.4: Single neuron CNN architecture has low precision recall 

A CNN architecture using only a single neuron for classification has low 
sensitivity and positive predictive value (measured using precision recall area 
under curve: PR-AUC). 
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Figure 8.6: RBC false positives found during validation of HyRoNet 
classifications 

Figure 8.6: RBC false positives found during validation of HyRoNet 

classifications 

Many false positives detected by the HyRoNet CNN were identified as red 

blood cells during manual validation. 
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8.2 Code appendix 
 

All executable code segments are contained in beige text blocks. Code 

comments are written in green text and preceded by one or more percentage 

symbols (%Example comment). String variables are written in red text and 

surrounded by single or double apostrophe symbols (‘Example string’). Loop 

or function operators are defined by blue text (Example loop). All other code 

is in plain black text.  

 

8.2.1 Feature Extractor 
 

Mandatory user input parameters are defined in this block of code. 

%Enter file name of high magnification image (40x) 

File_name = ‘Slide name string.tif'; 

 

%Enter file name of low magnifications image (0.625x). 

File_name_small = ‘low mag file.tif'; 

 

%Define minimum pixel size for small object removal 

bckG_pxl_sz = 20; 

 

%Define minimum pixel size for small object removal in non-target database 

bckG_pxl_sz_2 = 5; 

 

%Define minimum area (in microns)  

Micron_limit = 1.5; 

 

%Define background threshold in standard deviations from the mean, for 

%Magenta-biased BW mask.  

Std_DevThresh_Multiplier = 2; 

 

%Define background threshold, in standard deviations from the mean, for 

%Full RGB spectrum  
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Std_DevThresh_MultiplierV2 = 0.75; 

 

%Define background threshold, in standard deviations from the mean, for 

%Red-biased BW mask. 

Std_DevThresh_MultiplierV3 = 0.75; 

 

% Define background threshold, in standard deviations from the mean, for 

%Blue-biased BW mask. 

Std_DevThresh_MultiplierV4 = 0.75; 

 

%Set background thresholds, in standard deviation from the mean, for non-

%target database 

BrightThresh = 1.5; 

DarkThresh = 4.5; 

BYelThresh = 3; 

RGThresh = 1.5; 

 

%Define Mtb aggregate area in microns 

Mtb_sz_val = 6.8; 

 

%Size of circles indicating Mtb positions in tissue slide 

circSize = 150; 

 

%Define name of output training dataset file after feature extraction and 

validation 

DataSetName = ‘Dataset name’; 

 

Large image file in .tiff file format are split into smaller tiles and loaded into 

the MATLAB® workspace for processing 

%%This section of code identifies the dimensions of the large scanned 

%%image and subdivides it into manageable tiles for analysis. It also creates 

%%a tile number system so that specific tiles can be located later in the 
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%%%script 

 

%Initialize variables 

Total_Objects = []; 

Total_Not_Objects = []; 

 

%Get image metadata 

FullInfo = imfinfo(File_name); 

FullRows = FullInfo.Height; 

FullColumns = FullInfo.Width; 

 

%Define range of divisors for image split 

DivisorS = 15:35; 

 

%Find image divisor (in pixels) without remainder for image length and width 

RowMat = ones(size(DivisorS)) * FullRows; 

RowModuluS = RowMat./DivisorS; 

RowDivisorsPxlSz = 

cat(1,DivisorS(~logical(mod(RowModuluS,1))),RowModuluS(~logical(mod(R

owModuluS,1)))); 

[~, mIndex] = min(abs((5000 - RowDivisorsPxlSz(2,:))));  

RowDivisorsPxlSz = RowDivisorsPxlSz(:,mIndex); 

ColMat = ones(size(DivisorS)) * FullColumns; 

ColModuluS = ColMat./DivisorS; 

ColDivisorsPxlSz = 

cat(1,DivisorS(~logical(mod(ColModuluS,1))),ColModuluS(~logical(mod(Col

ModuluS,1)))); 

[~, mIndex] = min(abs((5000 - ColDivisorsPxlSz(2,:))));  

ColDivisorsPxlSz = ColDivisorsPxlSz(:,mIndex); 

Mosaic_Dim = [RowDivisorsPxlSz(1) ColDivisorsPxlSz(1)]; 

Tile_Dim = [RowDivisorsPxlSz(2) ColDivisorsPxlSz(2)]; 

 

%Create image matrix indexing vectors 
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RowInd1 = 0:Tile_Dim(1):FullRows; 

RowInd1 = RowInd1(2:end); 

RowInd2 = 1:Tile_Dim(1):FullRows; 

RowIndX = [RowInd2; RowInd1]'; 

ColInd1 = 0:Tile_Dim(2):FullColumns; 

ColInd1 = ColInd1(2:end); 

ColInd2 = 1:Tile_Dim(2):FullColumns; 

ColIndX = [ColInd2; ColInd1]'; 

 

%Initialize empty tiling index variable 

TileIndex = []; 

 

Image tiles are individually loaded for processing and feature extraction 

 

%Begin feature extraction loop 

for vv = 1:size(RowIndX,1) 

    for ww = 1:size(ColIndX,1)  

%Select image region (tile) for processing 

        Tileflag = ((vv-1) * size(ColIndX,1) + (ww-1))+1;  

        TileIndex = 

[TileIndex;RowIndX(vv,1),RowIndX(vv,2),ColIndX(ww,1),ColIndX(ww,2),Tilefl

ag];  

        ['Analysis ' 

num2str(round((Tileflag/(Mosaic_Dim(1)*Mosaic_Dim(2))*100))) '% 

complete'] 

        one_res_level = 

double(imread(File_name,'PixelRegion',{[RowIndX(vv,1),RowIndX(vv,2)],[Col

IndX(ww,1),ColIndX(ww,2)]})); 

%Extract Hue, Saturation and Value matrices 

        HSV = rgb2hsv(one_res_level); 

                    H = HSV(:,:,1); 
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                    S = HSV(:,:,2); 

                    V = HSV(:,:,3); 

%Split Whole RGB image into individual grayscale intensity matrices 

        redLayer = (one_res_level(:,:,1)); 

        greenLayer = (one_res_level(:,:,2)); 

        blueLayer = (one_res_level(:,:,3)); 

        blank = double(zeros(size(redLayer))); 

%Construct additional grayscale intensity matrices 

        MagentaMap = ((redLayer+blueLayer) - greenLayer); 

        CyanMap = ((blueLayer+greenLayer) - redLayer); 

        YellowMap = ((redLayer + greenLayer) - blueLayer);  

        lightmap = ((redLayer+blueLayer+greenLayer)./3)+1; 

        Darkmap = imcomplement(lightmap); 

        Darkmap = Darkmap + abs(min(min(Darkmap)));  

%Construct bias matrices for target (Ziehl Neelson) and non-target RGB 

%profiles 

        Mask1 = MagentaMap - greenLayer; 

        Mask1 = Mask1+(abs(min(min(Mask1)))); 

        Mask1V2 = ((MagentaMap - greenLayer)./lightmap).*255; 

        Mask1V2 = Mask1V2+(abs(min(min(Mask1V2)))); 

        Mask1V3 = redLayer-CyanMap-CyanMap; 

        Mask1V3 = Mask1V3+(abs(min(min(Mask1V3)))); 

        MeanMaskV3 = mean(mean(Mask1V3)); 

        stdMaskV3 = std(Mask1V3(Mask1V3>0),0,[1 2]); 

        Mask1V3B = Mask1V3 - 

(MeanMaskV3+(Std_DevThresh_MultiplierV3*stdMaskV3)); 

        Mask3V3 = Mask1V3B>0; 

        Mask1V4 = blueLayer-YellowMap-YellowMap; 

        Mask1V4 = Mask1V4+(abs(min(min(Mask1V4)))); 

        MeanMaskV4 = mean(mean(Mask1V4)); 

        stdMaskV4 = std(Mask1V4(Mask1V4>0),0,[1 2]); 

        Mask1V4B = Mask1V4 - 

(MeanMaskV4+(Std_DevThresh_MultiplierV4*stdMaskV4)); 
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        Mask3V4 = Mask1V3B>0; 

        BY = blueLayer - (redLayer+greenLayer); 

        BY = BY + abs(min(min(BY))); 

        RG = imcomplement(redLayer-greenLayer); 

        RG = RG + abs(min(min(RG))); 

%Apply low, user defined,, thresholds to bias matrices 

        MeanMask = mean(mean(Mask1)); 

        stdMask = std(Mask1(Mask1>0),0,[1 2]); 

        Mask1B = Mask1 - (MeanMask+(Std_DevThresh_Multiplier*stdMask));  

        Mask3 = Mask1B>0; 

        MeanMaskV2 = mean(mean(Mask1V2)); 

        stdMaskV2 = std(Mask1V2(Mask1V2>0),0,[1 2]); 

        Mask1V2B = Mask1V2 - 

(MeanMaskV2+(Std_DevThresh_MultiplierV2*stdMaskV2)); 

        Mask3V2 = Mask1V2B>0;  

%Apply Boolean intersection on target bias matrices 

       Mask3 = bwareaopen(Mask3 & Mask3V2 & Mask3V3 & 

Mask3V4,bckG_pxl_sz);  

%Apply Boolean intersection on non-target matrices 

        lightmap(~Mask3) = 0; 

        Darkmap(~Mask3) = 0; 

        BY(~Mask3) = 0; 

        RG(~Mask3) = 0; 

        MeanB = range(range(lightmap))/2; 

        stdB = abs(std(lightmap(lightmap>0),0,[1 2])); 

        lightmap(lightmap<(MeanB+(BrightThresh*stdB))) = 0; 

        lightmap = lightmap>0; 

        MeanD = range(range(Darkmap))/2; 

        stdD = abs(std(Darkmap(Darkmap>0),0,[1 2])); 

        Darkmap(Darkmap<(MeanD+(DarkThresh*stdD))) = 0; 

        Darkmap = Darkmap>0; 

        MeanBY = range(range(BY))/2; 

        stdBY = abs(std(BY(BY>0),0,[1 2])); 
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        BY(BY<(MeanBY+(BYelThresh*stdBY))) = 0; 

        BY = BY>0; 

        MeanRG = range(range(RG))/2; 

        stdRG = abs(std(RG(RG>0),0,[1 2])); 

        RG(RG<(MeanRG+(RGThresh*stdRG))) = 0; 

        RG = RG>0; 

        NotTargetMask = lightmap + Darkmap + BY + RG; 

        NotTargetMask = NotTargetMask>0; 

        RGB_NotMtb_Mask = bwareaopen(NotTargetMask ,bckG_pxl_sz_2); 

        RGB_Mtb_Mask = Mask3; 

        RGB_Mtb_Mask2 = imclearborder(RGB_Mtb_Mask,4); 

%Convert seprate pixels into objects (target and non-target) 

        CC_NotMtb = bwconncomp(NOTMtb_Mask,4); 

        CC = bwconncomp(RGB_Mtb_Mask2,4); 

        centroids_Mtb = regionprops(CC, 

'Centroid','PixelIdxList','Area','Circularity','Eccentricity','Solidity','BoundingBox'

); 

        centroids_Not_Mtb = regionprops(CC_NotMtb, 

'Centroid','PixelIdxList','Area','Circularity','Eccentricity','Solidity'); 

 

        if numel(centroids_Mtb)<1 == 1 

            continue 

        else 

 

Extract features for Mtb objects, add tile Index field and calculate size in 

square microns 

            resUnit = FullInfo.ResolutionUnit; 

 

                if strncmp(resUnit,'Cen',3) == 1 

                    cnvFact = 10000; 

                elseif strncmp(resUnit,'Mil',3) == 1 
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                        cnvFact = 1000; 

                else 

                    error('conversion units do not match') 

                end 

%Calculate individual object size in square microns using image metadata 

            XMicron_perPixel = 1/(FullInfo.XResolution/cnvFact); 

            YMicron_perPixel = 1/(FullInfo.YResolution/cnvFact); 

            Square_microns_per_pixel = XMicron_perPixel*YMicron_perPixel; 

                for gg = 1:numel(centroids_Mtb) 

                    centroids_Mtb(gg).Sqr_microns = 

centroids_Mtb(gg).Area*Square_microns_per_pixel; 

                end 

            centroids_Mtb([centroids_Mtb.Sqr_microns] < Micron_limit ) = []; 

 

                if numel(centroids_Mtb)<1 == 1 

                    continue 

                else 

%Extract individual object RGB means 

                    for jj = 1:numel(centroids_Mtb) 

                    centroids_Mtb(jj).Tile_number = Tileflag; 

                    centroids_Mtb(jj).Object_ID = 

str2double([num2str(floor(log10(Tileflag))) num2str(Tileflag) num2str(jj)]); 

                    centroids_Mtb(jj).RGB_RedMean = 

mean(redLayer(centroids_Mtb(jj).PixelIdxList)); 

                    centroids_Mtb(jj).RGB_GreenMean = 

mean(greenLayer(centroids_Mtb(jj).PixelIdxList)); 

                    centroids_Mtb(jj).RGB_BlueMean = 

mean(blueLayer(centroids_Mtb(jj).PixelIdxList)); 

                    centroids_Mtb(jj).RGB_RedSum = 

sum(sum(redLayer(centroids_Mtb(jj).PixelIdxList))); 

                    centroids_Mtb(jj).RGB_GreenSum = 

sum(sum(greenLayer(centroids_Mtb(jj).PixelIdxList))); 

                    centroids_Mtb(jj).RGB_BlueSum = 
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sum(sum(blueLayer(centroids_Mtb(jj).PixelIdxList))); 

%Extract individual object RGB max values 

                    centroids_Mtb(jj).RGB_RedMax = 

max(max(redLayer(centroids_Mtb(jj).PixelIdxList))); 

                    centroids_Mtb(jj).RGB_GreenMax = 

max(max(greenLayer(centroids_Mtb(jj).PixelIdxList))); 

                    centroids_Mtb(jj).RGB_BlueMax = 

max(max(blueLayer(centroids_Mtb(jj).PixelIdxList))); 

%Extract individual object RGB standard deviations 

                    centroids_Mtb(jj).RGB_RedStd = 

std((redLayer(centroids_Mtb(jj).PixelIdxList)),0,"all"); 

                    centroids_Mtb(jj).RGB_GreenStd = 

std((greenLayer(centroids_Mtb(jj).PixelIdxList)),0,"all"); 

                    centroids_Mtb(jj).RGB_BlueStd = 

std((blueLayer(centroids_Mtb(jj).PixelIdxList)),0,"all"); 

%Extract individual object RGB modes 

                    centroids_Mtb(jj).RGB_RedMode = 

mode(floor((redLayer(centroids_Mtb(jj).PixelIdxList))),"all"); 

                    centroids_Mtb(jj).RGB_GreenMode = 

mode(floor((greenLayer(centroids_Mtb(jj).PixelIdxList))),"all"); 

                    centroids_Mtb(jj).RGB_BlueMode = 

mode(floor((blueLayer(centroids_Mtb(jj).PixelIdxList))),"all"); 

%Extract individual object HSV means 

                    centroids_Mtb(jj).HSV_H = 

mean(H(centroids_Mtb(jj).PixelIdxList)); 

                    centroids_Mtb(jj).HSV_S = 

mean(S(centroids_Mtb(jj).PixelIdxList)); 

                    centroids_Mtb(jj).HSV_V = 

mean(V(centroids_Mtb(jj).PixelIdxList)); 

%Extract individual object SIFT and MSER features from bounding box 

                    blank(centroids_Mtb(jj).PixelIdxList) = 

redLayer(centroids_Mtb(jj).PixelIdxList); 

                    HOGidx = floor(centroids_Mtb(jj).BoundingBox); 
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                    HOGimg = 

blank([HOGidx(2):(HOGidx(2)+HOGidx(4))],[HOGidx(1):(HOGidx(1)+HOGidx

(3))]); 

                    if size(HOGimg,1)>3 && size(HOGimg,2)>3 

                        centroids_Mtb(jj).MSER = detectMSERFeatures(HOGimg); 

                        centroids_Mtb(jj).MSER = size(centroids_Mtb(jj).MSER,1); 

                    else 

                        centroids_Mtb(jj).MSER = 0; 

                    end 

                    centroids_Mtb(jj).SIFT = detectSIFTFeatures(HOGimg); 

                    if isempty(centroids_Mtb(jj).SIFT) == 0 

                        centroids_Mtb(jj).SIFTMet = 

sum(centroids_Mtb(jj).SIFT.Metric); 

                    else 

                        centroids_Mtb(jj).SIFTMet = 0; 

                    end 

                    centroids_Mtb(jj).SIFT = size(centroids_Mtb(jj).SIFT,1); 

                    end 

%Concatenate all object data with data from other image tiles 

                Total_Objects = [Total_Objects;centroids_Mtb]; 

 

                end 

        end 

    end 

end 

 

Find mean whole slide RGB values from reduced magnification image 

%Calculate whole tissue slide mean RGB values 

bckGrnd_Cal = double(imread(File_name_small)); 

BckRGBVals = Background_Finder(bckGrnd_Cal); 

%Add mean whole slide RGB values to each object in dataset 



174 
 

for tt = 1:numel(Total_Objects) 

    Total_Objects(tt).BckRGBMeansR = BckRGBVals(1); 

    Total_Objects(tt).BckRGBMeansG = BckRGBVals(2); 

    Total_Objects(tt).BckRGBMeansB = BckRGBVals(3); 

 

end 

 

Export data to tab delimited file 

%Remove extraneous fields and save extracted object data 

Total_Objects = rmfield(Total_Objects,{'PixelIdxList'}); 

PreExport1 = struct2table(Total_Objects); 

writetable(PreExport1,[DataSetName '_Full']) 

PreExport = 

struct2table(rmfield(Total_Objects,{'Centroid','Tile_number','Object_ID','Boun

dingBox'})); 

Export = table2array(PreExport); 

writematrix(Export,DataSetName,'Delimiter','\t') 

 

8.2.2 Slide RGB calculator 
 

Finds the mean RGB profile of a whole tissue sections 

function BckVect = Background_Finder(ImgX) 

%Select tissue area from slide and calculate mean RGB values 

A = ImgX; 

redLayer = A(:,:,1); 

blueLayer = A(:,:,2); 

greenLayer = A(:,:,3); 

 

B = imcomplement((redLayer + blueLayer + greenLayer)./3); 
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C = B + abs(min(min(B))); 

MeanC = 255/5; 

C(C<MeanC) = 0; 

C(C>0) = 1; 

redLayer(~C) = 0; 

greenLayer(~C) = 0; 

blueLayer(~C) = 0; 

MeanR = mean(redLayer(redLayer>0)); 

MeanG = mean(greenLayer(redLayer>0)); 

MeanB = mean(blueLayer(redLayer>0)); 

BckVect = [MeanR MeanG MeanB]; 

 

end 

 

8.2.3 Slide dataset refiner 
 

Guided removal of large numbers of false positive objects in object 

databases extracted from whole slides 

%Must be run directly after feature extraction with all variables still loaded in 

%the MATLAB workspace after processing a full tissue slide. 

 

%Add row number tag for objects in Total_Objects data structure 

for ii = 1:numel(Total_Objects) 

    Total_Objects(ii).Tag = ii; 

end 

 

%Extract RGB means for all objects in the Total_Objects data structure 

RM = [Total_Objects.RGB_RedMean]'; 

GM = [Total_Objects.RGB_GreenMean]'; 

BM = [Total_Objects.RGB_BlueMean]'; 

ID = [Total_Objects.Tag]'; 
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%Extract RGB means for all non-target objects extracted from the slide 

RMNot = [Total_Not_Objects.RGB_RedMean]'; 

GMNot = [Total_Not_Objects.RGB_GreenMean]'; 

BMNot = [Total_Not_Objects.RGB_BlueMean]'; 

 

%Plot RGB means for target objects and non target objects on the same 

%axes (in different colours). Use the MATLAB figure brush tool to select and 

%delete target objects that overlap with non-target objects. Export the 

%remaining datapoints to the “Mtb_index” variable. 

scatter3(RM,GM,BM,0.5,'filled','b') 

xlabel('Red') 

ylabel('Green') 

zlabel('Blue') 

hold on 

scatter3(RMNot,GMNot,BMNot,0.5,'filled','r') 

hold off 

 

%Extract objects identified in the “Mtb_index” variable from the whole slide 

dataset to create new variable 

catRGB_ID = [RM, GM, BM, ID]; 

KeepVect = []; 

for ii = 1: size(catRGB_ID,1) 

    ii/size(catRGB_ID,1)*100 

        for jj = 1:(size(Mtb_index,1)) 

            if isequal(catRGB_ID(ii,1), Mtb_index(jj,1)) && 

isequal(catRGB_ID(ii,2), Mtb_index(jj,2)) && isequal(catRGB_ID(ii,3), 

Mtb_index(jj,3)) 

                KeepVect = [KeepVect; catRGB_ID(ii,4)]; 

            else 

            end 

        end 

end 

KeepVect = unique(KeepVect); 
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Total_Ziel_Objects = Total_Objects(KeepVect); 

 

%%Assign aggregate classification based on square micron area 

for mm = 1:numel(Total_Ziel_Objects) 

    if Total_Ziel_Objects(mm).Sqr_microns <= Mtb_sz_val 

        Total_Ziel_Objects(mm).Size_class = [0 0.5 1]; 

    else 

        Total_Ziel_Objects(mm).Size_class = [1 0 0.5]; 

    end 

end 

 

%Remove extraneous fields from data structures before saving 

Total_Objects = rmfield(Total_Objects,{'PixelIdxList','BoundingBox'}); 

Total_Not_Objects = rmfield(Total_Not_Objects,{'PixelIdxList'}); 

 

%Save data structures 

save([cd '\' DataSetName '\Total_objects_' DataSetName '.mat'], 

'Total_Objects') 

save([cd '\' DataSetName '\Ziel_objects_pre-curated' DataSetName '.mat'], 

'Total_Ziel_Objects','TileIndex','Tileflag' ) 

save([cd '\' DataSetName '\Mtb_index_' DataSetName '.mat'], 'Mtb_index') 

save([cd '\' DataSetName '\Total_Not_objects_' DataSetName '.mat'], 

'Total_Not_Objects' ) 

 

Create MATLAB figures for each image tile containing at least one Mtb 

object. Used later for individual object validation in the context of surrounding 

tissue 

%Create matlab figures of tiles containing objects with a high likelihood 

%of being Ziel Neelson stained Mtb. Also creates a low resolution image of 

%all image tiles stitched together with Ziel Nielson objects locations added 

 

ObjTiles = unique([Total_Ziel_Objects.Tile_number]); 



178 
 

 

%Identify locations of Mtb singles and aggregates and plot on whole slide 

image 

for ii = 1:size(TileIndex,1) 

    A = 

imread(File_name,'PixelRegion',{[TileIndex(ii,1),TileIndex(ii,2)],[TileIndex(ii,3)

,TileIndex(ii,4)]}); 

 

        if (sum(ii == ObjTiles)) == 1 

            SinBin = zeros(size(one_res_level,1),size(one_res_level,2)); 

            AggBin = zeros(size(one_res_level,1),size(one_res_level,2)); 

            one_res_level = A; 

            redLayer = one_res_level(:,:,1); 

            greenLayer = one_res_level(:,:,2); 

            blueLayer = one_res_level(:,:,3); 

 

%Find Mtb singles locations 

            SubStruct = Total_Ziel_Objects([Total_Ziel_Objects.Tile_number] == 

ii); 

            SubS = SubStruct([SubStruct.Sqr_microns] < Mtb_sz_val); 

            a = [SubS.Centroid]; 

            b = a(1:2:end); 

            c = a(2:2:end); 

            d = [b',c']; 

                for jj = 1:size(d,1) 

                    SinBin(round(d(jj,2)),round(d(jj,1))) = 1; 

                end 

 

            SinBin = bwdist(SinBin); 

            SinBin(SinBin <= circSize) = 1; 

            SinBin(SinBin > circSize) = 0; 

            SinBin = logical(SinBin); 
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%Find Mtb aggregates locations 

            SubA = SubStruct([SubStruct.Sqr_microns] >= Mtb_sz_val); 

            e = [SubA.Centroid]; 

            f = e(1:2:end); 

            g = e(2:2:end); 

            h = [f',g']; 

 

                for jj = 1:size(h,1) 

                    AggBin(round(h(jj,2)),round(h(jj,1))) = 1; 

                end 

%Plot Mtb locations and save MATLAB figures 

            AggBin = bwdist(AggBin); 

            AggBin(AggBin <= circSize) = 1; 

            AggBin(AggBin > circSize) = 0; 

            AggBin = logical(AggBin); 

            redLayer(SinBin) = 255; 

            greenLayer(SinBin) = 127; 

            blueLayer(SinBin) = 0; 

            redLayer(AggBin) = 255; 

            greenLayer(AggBin) = 0; 

            blueLayer(AggBin) = 127; 

            RGB_4Array = cat(3,redLayer,greenLayer,blueLayer); 

            Tile_Rsz = imresize(RGB_4Array,0.2); 

            Tile_RszBCK = imresize(one_res_level,0.2); 

            Tile_Rsz = 

insertText(Tile_Rsz,[100,100],ii,'Fontsize',100,'BoxOpacity',0,'TextColor','blac

k'); 

            Cat_img_array{ii} = Tile_Rsz; 

            Cat_img_arrayBCK{ii} = Tile_RszBCK; 

 

            bshow = imshow(A); 

            hold on 

                for kk = 1:numel(SubStruct) 
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                 h = drawcircle('Center',SubStruct(kk).Centroid,... 

                    

'Radius',30,'Label',num2str(SubStruct(kk).Object_ID),'LabelVisible','hover',... 

                    'color', SubStruct(kk).Size_class, 'FaceAlpha', 0,... 

                    'InteractionsAllowed','reshape', 'LineWidth', 4,... 

                    'Deletable',true); 

                end 

            save([cd '\' DataSetName '\Centroids_Mtb_' File_name(1:end-4) 

'_Tile_' num2str(TileIndex(ii,5)) '.mat'], 'SubStruct'); 

            savefig([cd '\' DataSetName '\Figure_' File_name(1:end-4) '_Tile_' 

num2str(TileIndex(ii,5)) '.fig' ]); 

            close(gcf) 

 

        else 

            A = 

imread(File_name,'PixelRegion',{[TileIndex(ii,1),TileIndex(ii,2)],[TileIndex(ii,3)

,TileIndex(ii,4)]}); 

            one_res_level = A; 

            Tile_Rsz = imresize(one_res_level,0.2); 

            Tile_RszBCK = imresize(one_res_level,0.2); 

            Tile_Rsz = 

insertText(Tile_Rsz,[100,100],ii,'Fontsize',100,'BoxOpacity',0,'TextColor','blac

k'); 

            Cat_img_array{ii} = Tile_Rsz; 

            Cat_img_arrayBCK{ii} = Tile_RszBCK; 

        end 

end 

 

%%%Create overview image of entire slide, extract mean RGB and add to 

%%%Total_Objects data structure 

bckGrnd_calibrateImg = montage(Cat_img_arrayBCK, 'Size', Mosaic_Dim); 

bckGrnd_Cal = double(get(bckGrnd_calibrateImg, 'CData')); 

close(gcf) 
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BckRGBVals = Background_Finder(bckGrnd_Cal); 

 

for tt = 1:numel(Total_Objects) 

 

    Total_Objects(tt).BckRGBMeansR = BckRGBVals(1); 

    Total_Objects(tt).BckRGBMeansG = BckRGBVals(2); 

    Total_Objects(tt).BckRGBMeansB = BckRGBVals(3); 

 

end 

 

for tt = 1:numel(Total_Ziel_Objects) 

 

    Total_Ziel_Objects(tt).BckRGBMeansR = BckRGBVals(1); 

    Total_Ziel_Objects(tt).BckRGBMeansG = BckRGBVals(2); 

    Total_Ziel_Objects(tt).BckRGBMeansB = BckRGBVals(3); 

 

end 

 

%Plot low resolution image of entire tissue slide with object locations and 

%save 

montage(Cat_img_array, 'Size', Mosaic_Dim, 'BackgroundColor', 

'black','BorderSize',1); 

savefig([cd '\' DataSetName '\Grid_Overview.fig' ]);  

save([cd '\' DataSetName '\Total_objects_' DataSetName '.mat'], 

'Total_Objects') 

save([cd '\' DataSetName '\Ziel_objects_pre-curated' DataSetName '.mat'], 

'Total_Ziel_Objects','TileIndex','Tileflag' ) 

 

 

8.2.4 Mtb object validator 
 

Mandatory user inputs 
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%Validate individual objects in the context of the image tile in which they 

%were found. This script should be run directly after refining object 

%distribution with all variables still loaded in the MATLAB workspace after 

%processing a full tissue slide 

 

%Add file name of target slide 

File_name = 'Slide name string.tif'; 

 

%Name of dataset to be saved after curation 

DataSetName = 'Dataset name_refined'; 

mkdir(DataSetName); 

 

%Change size of circles indicating Mtb positions, if necessary. 

circSize = 300; 

 

Loads MATLAB images and matching datasets containing Mtb objects for 

user inspection and individual validation 

%Add whole tile numbers that contain no Mtb bacilli to the “Tile_list” variable 

Tile_list = []; 

RM3 = []; 

GM3 = []; 

BM3 = []; 

 

%Plot all objects found in image tiles identified in “Tile_List” , select using 

MATLAB brush tool and then export to new variable “Mtb_index2” 

for kk = 1:numel(Tile_list) 

    SubStruct2 = Total_Ziel_Objects([Total_Ziel_Objects.Tile_number] == 

Tile_list(kk)); 

    RM3 = [RM3;[SubStruct2.RGB_RedMean]']; 

    GM3 = [GM3;[SubStruct2.RGB_GreenMean]']; 

    BM3 = [BM3;[SubStruct2.RGB_BlueMean]']; 
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end 

scatter3(RM3,GM3,BM3,2,'filled','r') 

xlabel('Red') 

ylabel('Green') 

zlabel('Blue') 

 

 

%%Remove objects matching those selected in Mtb_index2 above from 

%%Total_Ziel_Objects structure. Only run this code with a complete 

%%Tile_list vector 

catRGB_ID2 = [RM2, GM2, BM2, ID2]; 

RemoveVect = []; 

for ii = 1: size(catRGB_ID2,1) 

    ii/size(catRGB_ID2,1)*100 

        for jj = 1:(size(Mtb_index2,1)) 

            if isequal(catRGB_ID2(ii,1), Mtb_index2(jj,1)) && 

isequal(catRGB_ID2(ii,2), Mtb_index2(jj,2)) && isequal(catRGB_ID2(ii,3), 

Mtb_index2(jj,3)) 

                RemoveVect = [RemoveVect; catRGB_ID2(ii,4)]; 

            else 

            end 

        end 

end 

 

Total_Ziel_Objects(RemoveVect) = []; 

 

Identify and remove individual objects from Mtb image tiles 

%Open a figure for an image tile and generate a list of objects to be 

%excluded from the Total_Ziel_Objects dataset.  
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SelectROIVect = []; 

 

 

%If there are fewer ZN-Mtb objects than objects that are Not ZN-Mtb in the 

%figure for a tile, use the code below. 

 

%Delete all objects that are ZN-Mtb in the active figure and then run the 

%code below to add those remaining to a list of objects to exclude 

h = gcf; 

i = h.CurrentAxes; 

j = i.Children; 

 

    for ii = 1:(numel(j)-1); 

    SelectROIVect = [SelectROIVect;str2num(j(ii).Label)]; 

    end 

 

Object_exclusion_list = [SelectROIVect]; 

 

%If there are more ZN-Mtb objects than objects that are not ZN-Mtb in the 

%figure for a tile, use the code below 

 

%Run this code before deleting any objects from the the figure for a tile 

h = gcf; 

i = h.CurrentAxes; 

j = i.Children; 

TileVect = []; 

for ii = 1:(numel(j)-1); 

TileVect = [TileVect;str2num(j(ii).Label)]; 

end 

 

%Delete all objects that are not ZN-Mtb from the figure and then run the 

%code below 

h = gcf; 
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i = h.CurrentAxes; 

j = i.Children; 

PosVect = []; 

for ii = 1:(numel(j)-1); 

PosVect = [PosVect;str2num(j(ii).Label)]; 

end 

 

[idxlog idxElement] = ismember(PosVect,TileVect); 

TileVect(idxElement) = []; 

negVect = TileVect; 

SelectROIVect = [SelectROIVect;negVect]; 

Object_exclusion_list = [SelectROIVect]; 

 

 

%Remove individual objects that have been identified as "Not ZN-Mtb" from 

%the Total_Ziel_Objects dataset. Note: Only run this command once you 

%have identified all the individual objects to remove from the whole 

%database. 

RM4 = [Total_Ziel_Objects.RGB_RedMean]'; 

GM4 = [Total_Ziel_Objects.RGB_GreenMean]'; 

BM4 = [Total_Ziel_Objects.RGB_BlueMean]'; 

ID4 = (1:numel(Total_Ziel_Objects))'; 

IDN4 = [Total_Ziel_Objects.Object_ID]'; 

 

catRGB_ID4 = [RM4, GM4, BM4, ID4, IDN4]; 

Obj_Rmv_Vect = []; 

 

for ii = 1: size(catRGB_ID4,1) 

    ii/size(catRGB_ID4,1)*100 

        for jj = 1:(size(Object_exclusion_list,1)) 

            if isequal(catRGB_ID4(ii,5), Object_exclusion_list(jj,1)) 

                Obj_Rmv_Vect = [Obj_Rmv_Vect; catRGB_ID4(ii,4)]; 

            else 
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            end 

        end 

end 

 

Total_Ziel_Objects(Obj_Rmv_Vect) = []; 

 

Label validated Ziehl Neelsen stained Mtb bacilli in the whole slide database 

ID5 = [Total_Ziel_Objects.Tag]; 

 

%%Clear existing labels 

for ii = 1:numel(Total_Objects) 

Total_Objects(ii).Ziel = 0; 

end 

 

%%Add manually curated labels 

for ii = 1:numel(ID5) 

Total_Objects(ID5(ii)).Ziel = 1; 

end 

 

%%%Export final data for convolutional neural network training 

save([cd '\' DataSetName '\Ziel_objects_only_' DataSetName '.mat'], 

'Total_Ziel_Objects') 

save([cd '\' DataSetName '\Final_objects_Labelled' DataSetName '.mat'], 

'Total_Objects') 

save([cd '\' DataSetName '\FinalExcluded_Tiles.mat'], 'Tile_list') 

save([cd '\' DataSetName '\FinalExcluded_IDs.mat'], 'Object_exclusion_list') 

 

PreExport = 

struct2table(rmfield(Total_Objects,{'Centroid','Tile_number','Object_ID','Boun

dingBox'})); 
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Export = table2array(PreExport); 

writematrix(Export,[cd '\' DataSetName '\' DataSetName],'Delimiter','\t') 

 

Plot final fully curated figures 

%%find unique tile numbers with ziel+ objects in them 

ObjTiles = unique([Total_Ziel_Objects.Tile_number]); 

 

%Identify locations of Mtb singles and aggregates and plot on whole slide 

image 

for ii = 1:size(TileIndex,1) 

 

    A = 

imread(File_name,'PixelRegion',{[TileIndex(ii,1),TileIndex(ii,2)],[TileIndex(ii,3)

,TileIndex(ii,4)]}); 

 

        if (sum(ii == ObjTiles)) == 1 

 

            SinBin = zeros(size(A,1),size(A,2)); 

            AggBin = zeros(size(A,1),size(A,2)); 

            one_res_level = A; 

            redLayer = one_res_level(:,:,1); 

            greenLayer = one_res_level(:,:,2); 

            blueLayer = one_res_level(:,:,3); 

 

%Find single Mtb locations 

            SubStruct = Total_Ziel_Objects([Total_Ziel_Objects.Tile_number] == 

ii); 

            SubS = SubStruct([SubStruct.Sqr_microns] < Mtb_sz_val); 

            a = [SubS.Centroid]; 

            b = a(1:2:end); 

            c = a(2:2:end); 
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            d = [b',c']; 

 

                for jj = 1:size(d,1) 

                    SinBin(round(d(jj,2)),round(d(jj,1))) = 1; 

                end 

 

            SinBin = bwdist(SinBin); 

            SinBin(SinBin <= circSize) = 1; 

            SinBin(SinBin > circSize) = 0; 

            SinBin = logical(SinBin); 

 

%Find Mtb aggregates locations 

            SubA = SubStruct([SubStruct.Sqr_microns] >= Mtb_sz_val); 

            e = [SubA.Centroid]; 

            f = e(1:2:end); 

            g = e(2:2:end); 

            h = [f',g']; 

 

                for jj = 1:size(h,1) 

                    AggBin(round(h(jj,2)),round(h(jj,1))) = 1; 

                end 

 

            AggBin = bwdist(AggBin); 

            AggBin(AggBin <= circSize) = 1; 

            AggBin(AggBin > circSize) = 0; 

            AggBin = logical(AggBin); 

 

%Add images of Mtb positions to montage array 

            redLayer(SinBin) = 255; 

            greenLayer(SinBin) = 127; 

            blueLayer(SinBin) = 0; 

 

            redLayer(AggBin) = 255; 
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            greenLayer(AggBin) = 0; 

            blueLayer(AggBin) = 127; 

 

            RGB_4Array = cat(3,redLayer,greenLayer,blueLayer); 

            Tile_Rsz = imresize(RGB_4Array,0.2); 

            Tile_RszBCK = imresize(one_res_level,0.2); 

            Tile_Rsz = 

insertText(Tile_Rsz,[100,100],ii,'Fontsize',100,'BoxOpacity',0,'TextColor','blac

k'); 

            Cat_img_array{ii} = Tile_Rsz; 

            Cat_img_arrayBCK{ii} = Tile_RszBCK; 

 

            bshow = imshow(A); 

            hold on 

                for kk = 1:numel(SubStruct) 

                 h = drawcircle('Center',SubStruct(kk).Centroid,... 

                    

'Radius',30,'Label',num2str(SubStruct(kk).Object_ID),'LabelVisible','hover',... 

                    'color', SubStruct(kk).Size_class, 'FaceAlpha', 0,... 

                    'InteractionsAllowed','reshape', 'LineWidth', 4,... 

                    'Deletable',true); 

                end 

            save([cd '\' DataSetName '\FinalCentroids_Mtb_' File_name(1:end-4) 

'_Tile_' num2str(TileIndex(ii,5)) '.mat'], 'SubStruct'); 

            savefig([cd '\' DataSetName '\FinalFigure_' File_name(1:end-4) 

'_Tile_' num2str(TileIndex(ii,5)) '.fig' ]); 

            close(gcf) 

 

        else 

            A = 

imread(File_name,'PixelRegion',{[TileIndex(ii,1),TileIndex(ii,2)],[TileIndex(ii,3)

,TileIndex(ii,4)]}); 

            one_res_level = A; 
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            Tile_Rsz = imresize(one_res_level,0.2); 

            Tile_RszBCK = imresize(one_res_level,0.2); 

            Tile_Rsz = 

insertText(Tile_Rsz,[100,100],ii,'Fontsize',100,'BoxOpacity',0,'TextColor','blac

k'); 

            Cat_img_array{ii} = Tile_Rsz; 

            Cat_img_arrayBCK{ii} = Tile_RszBCK; 

        end 

end 

%Create whole slide image and save 

montage(Cat_img_array, 'Size', Mosaic_Dim, 'BackgroundColor', 

'black','BorderSize',1); 

savefig([cd '\' DataSetName '\Grid_OverviewFINAL.fig' ]); 

toc 

 

 

8.2.5 HyRoNet trainer 
 

Mandatory user inputs 

%Use data extracted and manually labelled to train a HyRoNet model to 

%detect Ziel Neelson stained Mtb in tissue slides 

 

%Add filename of training matrix file, or load separate matrices and 

%concatenate to a single training dataset 

Data_filename = ['Curated_training_data_matrix.txt']; 

 

%Specify the train/validate/test split percentages 

Data_split_vector = [80,20,0]; 

 

%Identify labelling column in training data matrix 

Label_Column_Number = 27; 
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%Identify training feature columns in training data matrix 

Feature_Train_Range = [2:26,28:30]; 

 

%Base number of iterations for gradient descent in network neurons 

IterL1 = 50000; 

 

%Number of hidden layers per neuron of hyronet 

NLay = 1; 

 

%Number of nodes per hidden layer of the network 

NNod = numel(Feature_Train_Range)+1; 

 

%Size of steps during gradient descent for neurons 1,2,3 and 4 

alphaN1 = 0.5; 

alphaN2 = 0.5; 

alphaN3 = 0.5; 

 

%Define the range of values over which to test values for lambda and the 

%size of the increments between these values 

Lambda_Range = [40,90]; 

Lambda_Resolution = 10; 

 

%Target sensitivity for each neuron 

Se1 = 98; 

Se2 = 99; 

Se3 = 95; 

 

Load and split training data into train/validate/test subsets 

Data = readmatrix(Data_filename); 

ParamsMatrix = {}; 
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ThreshVect = []; 

 

%Add row number indices to end of matrix 

Data = [Data,[1:size(Data,1)]']; 

 

%split data 

TVT = TVTDataSplitter(Data,Data_split_vector); 

 

%label new variables of split data 

Train = TVT{1}; 

Validate = TVT{2}; 

 

%Create symmetrical training dataset (where number of positive training 

%examples = number of negative training examples) 

Xtr = SymDataPN(Train,Label_Column_Number); 

Ytr = Xtr(:,Label_Column_Number); 

 

%Remove label column prior to training and normalize features 

Xtr = Xtr(:,Feature_Train_Range); 

Xtr = NormFeat(Xtr); 

 

%Create cross validation set, remove label column and normalize features 

as 

%with training set 

Xcv = Validate(:,Feature_Train_Range); 

Xcv = NormFeat(Xcv); 

Ycv = Validate(:,Label_Column_Number); 

 

%Create full dataset with row labels to generate predictions using neuron 1 

XAll = NormFeat(Data(:,Feature_Train_Range)); 

YAll = Data(:,Label_Column_Number); 
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Plot Learning curves 

PlotLearningCurves(Xtr, Xcv, Ytr, Ycv, 0, YlogicArray(Ytr), 0.5) 

 

Train first Neuron and get optimal regularization parameter 

%Get parameter unregularized parameter matrix 

[TParams] = Train_GradDescNN(Xtr, Ytr, IterL1, NLay, NNod, alphaN1); 

 

%Find optimal regularization parameter to ensure good model generalization 

%to cross validation dataset 

optimlambda = GetLambda(Xtr, Xcv, Ytr, Ycv, Lambda_Range, 

Lambda_Resolution, 0.5, IterL1, NLay, NNod, alphaN1); 

 

%Train new CNN model with optimal regularization parameter applied 

[TParams] = Train_GradDescNN(Xtr, Ytr, IterL1, NLay, NNod, alphaN1, 

optimlambda);  

SSPNVect = []; 

for ii = 0:0.01:1 

 

    [Se, Sp, PPV, NPV] = SSPN_NN(TParams,Xcv,Ycv,ii,0); 

    SSPNVect = [SSPNVect;Se, Sp, PPV, NPV, ii]; 

 

end 

 

%%Find prediction threshold that ensures a sensitivity closest to Se1% 

[val,idx] = min(abs(SSPNVect(:,1)-Se1)); 

Thresh = SSPNVect(idx,5); 

[Se, Sp, PPV, NPV, Predictions] = SSPN_NN(TParams,XAll,YAll,Thresh,1); 

 

%Save model parameters and prediction threshold 
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ParamsMatrix{1} = {TParams}; 

ThreshVect = [ThreshVect;Thresh]; 

 

Train Neuron 2 

[Params1, Thresh1, SubsetIDs1] = TrainHyRoParams(Data, Predictions, 

IterL1*3, NLay, NNod, alphaN2, Se2); 

 

ParamsMatrix{2} = {Params1}; 

ThreshVect = [ThreshVect,Thresh1]; 

 

Predictions1  = PredictionLabels(SubsetIDs1,Data); 

 

Train Neuron 3 

[Params2, Thresh2, SubsetIDs2] = TrainHyRoParamsUnSym(Data, 

Predictions1, IterL1*4, NLay, NNod, alphaN3, Se3); 

 

ParamsMatrix{3} = {Params2}; 

ThreshVect = [ThreshVect,Thresh2]; 

 

Predictions2  = PredictionLabels(SubsetIDs2,Data); 

 

Save model parameters, predictions and thresholds 

AllPredictions = [Predictions,Predictions1,Predictions2]; 

 

save([cd '\Model_Parameter_matrices'],'ParamsMatrix') 

save([cd '\All_predictions'],'AllPredictions') 

save([cd '\ThreshVect'],'ThreshVect') 
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8.2.6 TVT Data splitter 
 

function [TVT] = TVTDataSplitter(X,SplitVect) 

 

%Note: X must be a m x n matrix, where m is the number of observations 

%and n is the number of features. Splitvect is a vector describing the desired 

%data split. e.g [60 20 20] would return 60% of the data in the training 

%set, 20% in the validation set and the final 20% in the test set (note, 

%the data split must add up to 100%) 

 

if ~exist('SplitVect', 'var') || isempty(SplitVect) 

    SplitVect = [60,20,20]; 

end 

 

Rando = randperm(size(X,1)); 

SplitCell = cell(1,size(SplitVect,2)); 

 

for ii = 1:numel(SplitVect) 

 

    split = floor((SplitVect(ii)/100)*size(X,1)); 

    SplitCell{ii} = X(Rando(1:split),:); 

    Rando(:,(1:split)) = []; 

 

    if ii == numel(SplitVect) 

        SplitCell{1} = [SplitCell{1}; X(Rando(:),:)]; 

    end 

 

end 

 

TVT = SplitCell; 

 

end 
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8.2.7 Dataset symmetrizer 
 

function [SymMat] = SymDataPN(DataMatrix,LabelColumnNumber) 

%%Takes a training set with many fewer positive examples than negatives 

%and creates a new symmetrical matrix containing as many positive 

%examples as negatives in a randomized order 

 

    Pos = DataMatrix(DataMatrix(:,LabelColumnNumber)==1,:); 

    Neg = DataMatrix(DataMatrix(:,LabelColumnNumber)==0,:); 

    k = randperm(size(Neg,1)); 

    NewNeg = Neg(k(1:size(Pos,1)),:); 

    NRSymMat = [Pos;NewNeg]; 

    SymMat = NRSymMat(randperm(size(NRSymMat, 1)),:); 

 

end 

 

8.2.8 Feature Normalizer 
 

function [NormFeat] = NormFeat(X) 

%Normalize all features to be within a similar scale. 

 

%Concatenate rows to add range of background RGB values derived from 

%training data. Accounts for between slide variability 

NormLimsMin = [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 

nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 63, 

104, 105 ]; 

NormLimsMax = [ nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 

nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, nan, 149, 

180, 133]; 
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    X = [X;NormLimsMin;NormLimsMax]; 

 

        for ii = 1:size(X,2) 

            X(1:(end-2),ii) = (X(1:(end-2),ii) - mean(X(1:(end-2),ii)))./(max(X(:,ii))-

min(X(:,ii))); 

        end 

        X = X(1:(end-2),:); 

 

NormFeat = X; 

 

 

8.2.9 CNN gradient descent 
 

function [TParams, Cost_History] = Train_GradDescNN(X, Y, num_iters, 

HiddenLayers, HiddenlayerNodes, alpha, lambda, PredThresh, Klabels) 

%%Note: X must be an m x n vector. Where m is the number of training 

%%examples and n is the number of features. 

 

%%Set lambda to zero if not provided 

if ~exist('PredThresh', 'var') || isempty(PredThresh) 

    PredThresh = 0.5; 

end 

 

%%Set lambda to zero if not provided 

if ~exist('lambda', 'var') || isempty(lambda) 

    lambda = 0; 

end 

 

%%Get number of unique labels (output classes) 

if ~exist('Klabels', 'var') || isempty(Klabels) 

    [~, Klabels] = YlogicArray(Y); 

else 
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    [~, Klabels] = YlogicArray(Y,Klabels); 

end 

 

%%Randomly initialize weights 

rng(1); 

InitWeights = 

Initialize_NNweights(size(X,2),HiddenLayers,HiddenlayerNodes,Klabels); 

Params = InitWeights; 

cost = zeros(1,num_iters); 

%%Get model gradients, cost and predictions 

for iter = 1:num_iters 

    [~, Activations]= Forwardprop(Params,X); 

    Grad = Backprop(Activations,Params,X,Y, lambda,Klabels); 

 

    for ii = 1:numel(Params) 

    Params{ii} = Params{ii} - alpha*Grad{ii}'; 

    end 

 

    cost(iter) = CostFunctionNN(Params,X,Y,lambda,Klabels); 

end 

 

%%Plot cost and percentage correct classification for newly trained 

%%parameters 

Cost_History = cost; 

TParams = Params; 

[H_O, ~]= Forwardprop(TParams,X); 

 

if size(H_O,1) > 1 

    [~,Predictions] = max(H_O,[],1); 

    PercPred = mean(double(Predictions' == Y))*100; 

else 

    Predictions = H_O; 

    Predictions(Predictions >= PredThresh) = 1; 
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    Predictions(Predictions < PredThresh) = 0; 

    PercPred = mean(double(Predictions' == Y))*100; 

end 

figure; 

plot(Cost_History, 'Color','#0072BD', 'LineWidth',4) 

title(['Training set accuracy : ' num2str(PercPred) '%'],'FontSize', 20) 

xlabel('Iteration','FontSize', 20) 

ylabel('Cost (J(theta))','FontSize', 20) 

set(gcf,'position',[500,300,1000,600]) 

set(gca,'FontSize', 20) 

end 

 

 

8.2.10 CNN Lambda calculator 
 

function optimlambda = GetLambda(Xtrain, Xcv, Ytrain, Ycv, range, 

resolution, PredThresh, num_iters, HiddenLayers, HiddenLayerNodes, 

alpha) 

%Iteratively runs a full CNN training pipeline for different values of Lambda, 

applies the resultant model to training and cross validation datsets and plots 

the cost results. 

if ~exist('PredThresh', 'var') || isempty(PredThresh) 

    PredThresh = 0.5; 

end 

 

if ~exist('range', 'var') || isempty(range) 

    range = [0 , 10000]; 

end 

 

if ~exist('resolution', 'var') || isempty(resolution) 

    resolution = 10; 

end 
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lambda = linspace(range(1),range(2),resolution); 

CostT = zeros(size(lambda)); 

CostCV = zeros(size(lambda)); 

SSPNvect = zeros(4,size(lambda,2)); 

 

for ii = 1:numel(lambda) 

 

    TParams = Train_GradDescNN(Xtrain, Ytrain, num_iters, HiddenLayers, 

HiddenLayerNodes, alpha, lambda(ii)); 

    CostT(ii) = (CostFunctionNN(TParams,Xtrain,Ytrain)); 

    CostCV(ii) = (CostFunctionNN(TParams,Xcv,Ycv)); 

    [Se, Sp, PPV, NPV] = SSPN_NN(TParams,Xcv,Ycv,PredThresh,0); 

    SSPNvect(:,ii) = [Se; Sp; PPV; NPV]; 

 

end 

optimlambdaind = CostCV == min(CostCV); 

optimlambda = lambda(find(optimlambdaind,1)); 

 

figure; 

plot(lambda,CostT,'Color','#0072BD', 'LineWidth',4) 

hold on 

plot (lambda,CostCV,'Color','#D95319', 'LineWidth',4) 

title(['Optimal lambda: ' num2str(optimlambda)],'FontSize', 20) 

legend('Training set','Cross validation set','FontSize', 

20,'Location','southeast') 

xlabel('Lambda') 

ylabel('Cost') 

set(gca,'FontSize',20) 

 

figure 

plot(lambda,SSPNvect(1,:), 'LineWidth',2) 

hold on 
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plot(lambda,SSPNvect(2,:), 'LineWidth',2) 

hold on 

plot(lambda,SSPNvect(3,:), 'LineWidth',2) 

hold on 

plot(lambda,SSPNvect(4,:), 'LineWidth',2) 

legend('Sensitivity','Specificity','+ Predictive val', '- Predictive val','FontSize', 

20,'Location','southeast') 

xlabel('Lambda','FontSize', 20) 

ylabel('Percent','FontSize', 20) 

title('SSPN vs lambda','FontSize', 20) 

set(gca,'FontSize',20) 

end 

 

 

8.2.11 CNN performance calculator 
 

function [Se, Sp, PPV, NPV,Predictions] = 

SSPN_NN(TrainedParams,X,Y,PredThresh,plotting) 

%Calculates sensitivity, specificity, positive predive value, negative predictive 

values and generates predictions using trained model 

%parameters 

 

if ~exist('plotting', 'var') || isempty(plotting) 

    plotting = 1; 

end 

 

if ~exist('PredThresh', 'var') || isempty(PredThresh) 

    PredThresh = 0.5; 

end 

 

 

H_O = Forwardprop(TrainedParams,X); 
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    if size(H_O,1) > 1 

        [~,Predictions] = max(H_O,[],1); 

        PercPred = mean(double(Predictions' == Y))*100; 

    else 

        Predictions = H_O; 

        Predictions(Predictions >= PredThresh) = 1; 

        Predictions(Predictions < PredThresh) = 0; 

        PercPred = mean(double(Predictions' == Y))*100; 

    end 

 

Predictions = Predictions'; 

SSPN = [Y,Predictions]; 

 

Se = sum(SSPN(:,1)) / (sum(SSPN(:,1)) + (sum(SSPN(:,1) == 1 & SSPN(:,2) 

== 0))) *100; 

Sp = sum(SSPN(:,1)==0) / (sum(SSPN(:,1)==0) + (sum(SSPN(:,1) == 0 & 

SSPN(:,2) == 1)))*100; 

PPV = sum(SSPN(:,1)) / (sum(SSPN(:,1)) + (sum(SSPN(:,1) == 0 & 

SSPN(:,2) == 1)))*100; 

NPV = sum(SSPN(:,1)==0) / ((sum(SSPN(:,1) == 1 & SSPN(:,2) == 0)) + 

sum(SSPN(:,1)==0))*100; 

%Plot performance metrics 

if plotting == 1 

    figure; 

    xvalues = {'Sensitivity','Specificity','+ Predictive val', '- Predictive val'}; 

    yvalues = {'Percent'}; 

    g = heatmap(xvalues,yvalues,[Se, Sp, PPV, NPV]) 

    colormap(winter) 

    title('SSPN') 

    xlabel('') 

    ylabel('') 

    caxis([0, 100]); 
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    g.FontSize = 20; 

 

    figure; 

    xvalues = {'True','False'}; 

    yvalues = {'Predict True', 'Predict False'}; 

    h = heatmap(xvalues,yvalues,[(sum(SSPN(:,1) == 1 & SSPN(:,2) == 

1))/size(SSPN,1)*100, (sum(SSPN(:,1) == 0 & SSPN(:,2) == 

1))/size(SSPN,1)*100; (sum(SSPN(:,1) == 1 & SSPN(:,2) == 

0))/size(SSPN,1)*100, (sum(SSPN(:,1) == 0 & SSPN(:,2) == 

0))/size(SSPN,1)*100]) 

    colormap(winter) 

    title('Percentage data composition') 

    h.FontSize = 20; 

 

    PredThreshVect = 0:0.01:1; 

    SSPNvect = zeros(4,size(PredThreshVect,2)); 

 

    for ii = 1:numel(PredThreshVect) 

 

        Predictions2 = H_O; 

        Predictions2(Predictions2 >= PredThreshVect(ii)) = 1; 

        Predictions2(Predictions2 < PredThreshVect(ii)) = 0; 

        Predictions2 = Predictions2'; 

        SSPN2 = [Y,Predictions2]; 

 

        Se2 = sum(SSPN2(:,1)) / (sum(SSPN2(:,1)) + (sum(SSPN2(:,1) == 1 & 

SSPN2(:,2) == 0))) *100; 

        Sp2 = sum(SSPN2(:,1)==0) / (sum(SSPN2(:,1)==0) + (sum(SSPN2(:,1) 

== 0 & SSPN2(:,2) == 1)))*100; 

        PPV2 = sum(SSPN2(:,1)) / (sum(SSPN2(:,1)) + (sum(SSPN2(:,1) == 0 

& SSPN2(:,2) == 1)))*100; 

        NPV2 = sum(SSPN2(:,1)==0) / ((sum(SSPN2(:,1) == 1 & SSPN2(:,2) == 

0)) + sum(SSPN2(:,1)==0))*100; 
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        SSPNvect(:,ii) = [Se2; Sp2; PPV2; NPV2]; 

 

    end 

 

    figure 

    plot(PredThreshVect,SSPNvect(1,:), 'LineWidth',4) 

    hold on 

    plot(PredThreshVect,SSPNvect(2,:), 'LineWidth',4) 

    hold on 

    plot(PredThreshVect,SSPNvect(3,:), 'LineWidth',4) 

    hold on 

    plot(PredThreshVect,SSPNvect(4,:), 'LineWidth',4) 

    legend('Sensitivity','Specificity','+ Predictive val', '- Predictive val', 

'FontSize', 20, 'Location','southeast') 

    xlabel('Prediction Threshold', 'FontSize', 20) 

    ylabel('Percent', 'FontSize', 20) 

    title('SSPN vs Prediction Threshold', 'FontSize', 20) 

    set(gca,'FontSize',20) 

 

else 

 

end 

 

end 

 

 

8.2.12 HyRoNet neuron trainer 
 

function [Params, Thresh, SubsetIDs] = 

TrainHyRoParams(Training_Set_with_RowIDs, Predictions, num_iters, 

HiddenLayers, HiddenLayerNodes, alpha, sensitivity,TrainCols,LabelCol) 
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%Trains HyRoNet neuron, as called in the TrainGradDesc_CNN function, 

%and returns predictions to apply to original input data with corresponding 

%thresholds to achive specified sensitivity 

 

TrainCols = TrainCols-1; 

LabelCol = LabelCol-1; 

Training_Set_with_RowIDs = Training_Set_with_RowIDs(:,2:end); 

Training_Set_with_RowIDs(:,TrainCols) = 

NormFeat(Training_Set_with_RowIDs(:,TrainCols)); 

Training_Set2 = [Training_Set_with_RowIDs,Predictions]; 

Training_Set2B = Training_Set2([Training_Set2(:,end) == 1],(1:(end-1))); 

 

%Split data into train and validate set 

TVT = TVTDataSplitter(Training_Set2B,[80,20,0]); 

 

Xtr = TVT{1}; 

Xtr = SymDataPN(Xtr,LabelCol); 

Xcv = TVT{2}; 

Ytr = Xtr(:,LabelCol); 

Ycv = Xcv(:,LabelCol); 

Xtr = Xtr(:,TrainCols); 

Xcv = Xcv(:,TrainCols); 

 

%Create data matrix to apply predictions 

XAll = [TVT{1};TVT{2}]; 

YAll = XAll(:,LabelCol); 

XAll = XAll(:,[TrainCols,(TrainCols(end)+1)]); 

 

%Train network neuron 

[TParams, Cost_History] = Train_GradDescNN(Xtr, Ytr, num_iters, 

HiddenLayers, HiddenLayerNodes, alpha); 

 

TParams1 = TParams; 
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SSPNVect = []; 

 

for ii = 0:0.01:1 

 

    [Se, Sp, PPV, NPV] = SSPN_NN(TParams1,Xcv,Ycv,ii,0); 

    SSPNVect = [SSPNVect;Se, Sp, PPV, NPV, ii]; 

 

end 

 

%%Find prediction threshold that matches target sensitivity 

[val,idx] = min(abs(SSPNVect(:,1)-sensitivity)); 

Thresh = SSPNVect(idx,5); 

[Se_, Sp_, PPV_, NPV_, NewPred] = SSPN_NN(TParams1,XAll(:,[1:(end-

1)]),YAll,Thresh,1); 

 

XAllLabelled = [XAll,NewPred]; 

SubsetIDs = XAllLabelled(XAllLabelled(:,end)==1,end-1); 

 

Params = TParams1; 

end 

 

8.2.13 HyRoNet Mtb classifier 
 

function [predictions, full_predictions] = HyroNetGetMtb(Extracted_Data)  

%Generate predictions for data using parameters generated during HyRoNet 

%training 

 

load([cd 'Model_Parameter_matrices.mat']); 

load([cd 'ThreshVect.mat']); 

 

Params1 = ParamsMatrix{1,1}; 
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Params1 = Params1{1,1}; 

 

Params2 = ParamsMatrix{1,2}; 

Params2 = Params2{1,1}; 

 

Params3 = ParamsMatrix{1,3}; 

Params3 = Params3{1,1}; 

 

Thresh1 = ThreshVect(1); 

Thresh2 = ThreshVect(2); 

Thresh3 = ThreshVect(3); 

 

Extracted_Data = [Extracted_Data,[1:size(Extracted_Data,1)]']; 

Extracted_Data = Extracted_Data(:,2:end); 

Extracted_Data(:,[1:(end-1)]) = NormFeat(Extracted_Data(:,[1:(end-1)])); 

Generate predictions for neuron 1 

H_O1 = Forwardprop(Params1,Extracted_Data(:,[1:(end-1)])); 

    if size(H_O1,1) > 1 

        [~,Predictions] = max(H_O1,[],1); 

    else 

        Predictions = H_O1; 

        Predictions(Predictions >= Thresh1) = 1; 

        Predictions(Predictions < Thresh1) = 0; 

    end 

H_O1 = Predictions; 

 

Extracted_Data2 = [Extracted_Data,H_O1']; 

SubsetIDs1 = Extracted_Data2(Extracted_Data2(:,end)==1,end-1); 

Predictions1  = PredictionLabels(SubsetIDs1,Extracted_Data); 

Extracted_Data2 = [Extracted_Data,Predictions1]; 
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Extracted_Data2 = Extracted_Data2([Extracted_Data2(:,end) == 1],(1:(end-

1))); 

Generate predictions for neuron 2 

H_O2 = Forwardprop(Params2,Extracted_Data2(:,[1:(end-1)])); 

    if size(H_O2,1) > 1 

        [~,Predictions] = max(H_O2,[],1); 

    else 

        Predictions = H_O2; 

        Predictions(Predictions >= Thresh2) = 1; 

        Predictions(Predictions < Thresh2) = 0; 

    end 

H_O2 = Predictions; 

 

 

Extracted_Data3 = [Extracted_Data2,H_O2']; 

SubsetIDs2 = Extracted_Data3(Extracted_Data3(:,end)==1,end-1); 

Predictions2  = PredictionLabels(SubsetIDs2,Extracted_Data); 

Extracted_Data3 = [Extracted_Data,Predictions2]; 

Extracted_Data3 = Extracted_Data3([Extracted_Data3(:,end) == 1],(1:(end-

1))); 

Generate predictions for neuron 3 

H_O3 = Forwardprop(Params3,Extracted_Data3(:,[1:(end-1)])); 

    if size(H_O3,1) > 1 

        [~,Predictions] = max(H_O3,[],1); 

    else 

        Predictions = H_O3; 

        Predictions(Predictions >= Thresh3) = 1; 

        Predictions(Predictions < Thresh3) = 0; 

    end 

H_O3 = Predictions; 
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Extracted_Data4 = [Extracted_Data3,H_O3']; 

SubsetIDs3 = Extracted_Data4(Extracted_Data4(:,end)==1,end-1); 

Predictions3  = PredictionLabels(SubsetIDs3,Extracted_Data); 

Extracted_Data4 = [Extracted_Data,Predictions3]; 

Extracted_Data4 = Extracted_Data4([Extracted_Data4(:,end) == 1],(1:(end-

1))); 

 

full_predictions = [Predictions1,Predictions2,Predictions3]; 

predictions = Predictions3;  

end 

 

8.2.14 CNN Weight initializer 
 

function Params = 

Initialize_NNweights(InputLNodes,NHiddenL,HiddenLNodes,OutputLNodes) 

%Note that this function assumes all hidden layers have the same number of 

%nodes in each layer. And adds weights for the bias unit. X must be an m x 

%n matrix, where m is the number of training examples and n is the number 

%of features 

 

TLayers = NHiddenL + 2; 

 

Params = cell(1,TLayers-1); 

 

for ii = 1:TLayers-1 

 

    if ii == 1 

 

        epsilon_init = (sqrt(6))/(sqrt(InputLNodes + HiddenLNodes)); 

        Params{ii} = rand(InputLNodes+1, HiddenLNodes) * 2 * epsilon_init - 
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epsilon_init; 

 

    elseif ii == (TLayers-1) 

 

        epsilon_init = (sqrt(6))/(sqrt(HiddenLNodes + OutputLNodes)); 

        Params{ii} = rand(HiddenLNodes+1, OutputLNodes) * 2 * epsilon_init - 

epsilon_init; 

 

    else 

 

        epsilon_init = (sqrt(6))/(sqrt(HiddenLNodes + HiddenLNodes)); 

        Params{ii} = rand(HiddenLNodes+1, HiddenLNodes) * 2 * epsilon_init - 

epsilon_init; 

 

    end 

 

end 

 

end 

 

8.2.15 CNN Forward propagator 
 

function [H_O, Activations]= Forwardprop(Params,Features) 

%Notes: Features should be an m x n matrix, where m is the number of 

%training examples and n is the number of features. 

 

%%calculate number of layers 

NumLayers = size(Params,2)+1; 

 

%%Add bias unit to features 

X = [ones(size(Features,1),1),Features]'; 
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%%Create cell array for node activations 

Z = cell(1,NumLayers-1); 

%%Calculate activations 

for ii = 1: NumLayers-1 

 

    if ii == 1 

        Z{ii} = Params{ii}'*X;  

        Z{ii} = sigmoid(Z{ii});  

        Z{ii} = [ones(1,size(Z{ii},2));Z{ii}];  

 

    elseif ii == NumLayers-1 

        Z{ii} = Params{ii}'*Z{ii-1}; 

        Z{ii} = sigmoid(Z{ii});  

        H_O = Z{ii};  

 

    else 

        Z{ii} = Params{ii}'*Z{ii-1}; 

        Z{ii} = sigmoid(Z{ii});  

        Z{ii} = [ones(1,size(Z{ii},2));Z{ii}];  

 

    end 

 

end 

 

Activations = Z; 

 

end 

 

8.2.16 CNN Backpropagator 
 

function Grad = Backprop(Activations,Params,Features,Y,lambda,Klabels) 

%%If lambda is not supplied, sets lambda to zero such that the gradients 



212 
 

%%returned will be unregularized 

if ~exist('lambda', 'var') || isempty(lambda) 

    lambda = 0; 

end 

 

%%add bias term to feature set 

X = [ones(size(Features,1),1),Features]; 

 

%%convert y ground truths vector to multiple hypothesis binary matrix if 

%%necessary 

if ~exist('Klabels', 'var') || isempty(Klabels) 

    [y_logical, ~] = YlogicArray(Y); 

    Y = y_logical'; 

else 

    [y_logical, ~] = YlogicArray(Y,Klabels); 

    Y = y_logical'; 

end 

 

%%create cell arrays for delta values 

Delta = cell(1,size(Activations,2)); 

Delta_ijl = cell(1,size(Params,2)); 

 

%%backpropagation to calculate final deltas used to calculate gradient term 

for ii = numel(Activations):-1:1 

 

    if ii == numel(Activations) 

        Delta{ii} = Activations{ii} - Y; 

        Delta_ijl{ii} =  Delta{ii}*Activations{ii-1}'; 

    else 

 

        Delta{ii} = ((Params{ii+1}(2:end,:))*Delta{ii+1}) .* 

(Activations{ii}(2:end,:).*(1-Activations{ii}(2:end,:))); %% 
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            if ii == 1 

                Delta_ijl{ii} =  Delta{ii}*X; 

            else 

                Delta_ijl{ii} =  Delta{ii}*Activations{ii-1}'; 

            end 

    end 

end 

 

%%preallocate and assign useful variables 

Grad = cell(1,size(Delta_ijl,2)); 

m = size(X,1); 

 

%%calculate gradients(regularized implimentation) 

for jj = 1:numel(Delta_ijl) 

 

    Grad{jj} = (1/m)*Delta_ijl{jj}; 

    Grad{jj}(:,2:end) = Grad{jj}(:,2:end) + (lambda/m)*(Params{jj}(2:end,:)'); 

%%Regularized gradient 

 

end 

 

 

end 

 

8.2.17 CNN Cost calculator 
 

function cost = CostFunctionNN(Params,Features,Y,lambda,Klabels) 

%%note: Y input must be in the form of numeric classes, the lowest class 

%%being 1 (zero indexing not possible in matlab). Params must be 

parameter randomly initialized parameters from the "Initialize_NNweights" 

function 
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%%If lambda is not supplied, sets lambda to zero such that the cost 

%%returned will be unregularized 

if ~exist('lambda', 'var') || isempty(lambda) 

    lambda = 0; 

end 

 

%%Convert label vector to logical label matrix, if necessary 

if ~exist('Klabels', 'var') || isempty(Klabels) 

    [y_logical, Klabels] = YlogicArray(Y); 

else 

    [y_logical, Klabels] = YlogicArray(Y,Klabels); 

end 

 

%%Generate preictions and useful variables 

H_O = Forwardprop(Params, Features)'; 

 

%%Separate traning examples into each of their label classes and calculate 

%%cost for each of the k classes 

Yk = cell(1,Klabels); 

H_Ok = cell(1,Klabels); 

Jk = zeros(1,Klabels); 

 

for jj = 1:Klabels 

 

    if Klabels == 1 

        Yk{jj} = y_logical; 

        H_Ok{jj} = H_O; 

        Jk(jj) = sum(sum((-Yk{jj}.*log(H_Ok{jj}) - ((1 - Yk{jj}).*log(1 - 

H_Ok{jj}))))); 

 

    else 

 

        Yk{jj} = y_logical((Y(:,1)==jj),:); 
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        H_Ok{jj} = H_O((Y(:,1)==jj),:); 

        Jk(jj) = sum(sum((-Yk{jj}.*log(H_Ok{jj}) - ((1 - Yk{jj}).*log(1 - 

H_Ok{jj}))))); 

 

    end 

 

end 

 

%%calculate total unregularized cost 

m = size(Features,1); 

URcost = ((1/m)*(sum(Jk))); 

%%calculate regularization terms 

RegVect = zeros(1,numel(Params)); 

 

for kk = 1:numel(Params) 

 

    RegVect(kk) = sum(sum(Params{kk}(2:end,:).^2)); 

 

end 

 

%%Calculate final regularized cost 

cost = URcost + (lambda/(2*m))*sum(RegVect); 

 

end 

 

 


