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Abstract  
 

Ancient human genomes are an extremely powerful tool for exploring human 

demography and local genetic adaptation. Despite the thousands of genomes now 

available, there have been fewer amalgamated datasets focused on consistently 

processing samples created using different methods and filters. Therefore, I collated 

and processed a sample of 299 mostly publicly available ancient genomes sampling 

genetic diversity in Europe and recapitulating known clustering within ancient 

individuals. I made inferences of local genetic adaptation in 30 of the oldest 

Palaeolithic Hunter Gatherers, which were selected as they may reveal novel 

adaptations not detectable in younger individuals and or highlight earlier adaptations 

associated with the colonisation of Eurasia. I found many previously characterised 

candidates and one novel candidate in TCEA3. I also explored the advantage of 

incorporating ancient genomes in a test for Local Genetic Adaptation and observed a 

slight increase in candidates. Finally, I investigated functional annotations for the 

candidates of local genetic adaptation, highlighting some variants that may have 

influenced gene expression and disease risk and some which fall within Neanderthal-

introgressed regions.  
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Impact Statement 
 

Firstly, in my introductions, I have synthesised some of the current knowledge 

surrounding the subjects of ancient genomic datasets, inferring candidates for local 

genetic adaptation with ancient genomes and the exploration of the potential biological 

effect of candidate loci. This could serve other researchers in locating current gaps or 

open questions in these subject areas. Regarding my analysis, in Chapters 1 and 2, I 

first generated six datasets: 299 consistently processed ancient genomes, genotypes, 

genotype likelihoods and allele frequencies, followed by DAnc and FST. These will be 

disseminated to my group and department within UCL. This may allow other 

researchers to perform their own population genetic analyses and or extend the 

dataset I have produced for wider utility. For example, by adding ancient genomes as 

they are published in the coming years. Indeed, some of the data I have processed 

and generated here is already being utilised in another project. That work is currently 

being written into a preprint, “Inferring the Evolutionary History of the Cold Receptor 

Variant rs10166942-T in Modern and Ancient Genomes.”  In Chapter 2, I extended the 

published statistic: DAnc, to additional ancient genomes and highlighted alleles that 

have changed most in frequency between the oldest ancient genomes and modern 

British, which are candidates for local genetic adaptation. I recapitulated known 

candidates and identified one novel candidate in the TCEA3 gene, which, at the time 

of writing and to the best of my knowledge, has not been identified in any scans for 

local genetic adaptation. If this candidate is truly a signature, then it will contribute to 

our understanding of the genes involved in facilitating adaptation to local environments 

in Eurasians. Next, I found that with DAnc, I identified slightly more candidates that 

would not be observed with FST highlighting the potential utility of using ancient 

genomes in a test for local genetic adaptation. Finally, in Chapter 3, I explored the 

functional consequences of SNPs with the strongest evidence of local genetic 

adaptation shedding light on the mechanism by which some beneficial alleles are 

functional, putative selection pressures and the consequences for modern individuals.  
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Glossary of Acronyms 
 

All acronyms used in the text are defined here and ordered alphabetically. Within the 

below acronyms I have also italicised human gene names. 
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EDAR ectodysplasin A receptor 

EEF Early European Farmer 

EHG Eastern Hunter Gatherer 

EHH Extended Haplotype Homozygosity  
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EPAS1 endothelial PAS domain protein 1 

EPO Enredo, Pecan, Ortheus Pipeline 

eQTL Expression Quantitative Trait Locus 

FADS Fatty Acid Desaturase 
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FST Fixation Index 

G Guanine  
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GL Genotype Likelihood 
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PCA Principle Component Analysis 
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Chapter 1: Ancient Genome Selection 
and Processing 
 

Background  
 

General Introduction & Rationale 
 

Herein, I generated a dataset of BAM files, GTs, and GLs for 299 Ancient Modern 

Human Genomes. This was done to provide a homogenised and consistently 

processed dataset from different laboratories created with different methodologies that 

could be used in downstream population genetic analysis (Chapter 2). In addition, I 

wished to enrich publicly available datasets for the oldest HGs, which were poorly 

represented in current datasets but are interesting samples for revealing unknown 

past population structure and LGA to large environmental changes such as the OoA 

migrations and the LGM1–4. Finally, I also aimed to incorporate other ancient 

individuals into the dataset which contributed to modern European ancestry, including 

Farmer and Yamnaya/Steppe groups5. These would facilitate the identification of 

admixed HGs and allow researchers to use the dataset to compare allele frequencies 

across different ancestries. These genetic components were brought into Europe by 

migration and admixture from Anatolian Farmers ~9 KYA and later from individuals 

associated with the Yamnaya culture from the Eurasian Steppe ~5 KYA6,7. Below I 

introduce the methods used to generate the above-described individuals and the 

current attempts to amalgamate large datasets of individuals.  

 

Methods of Processing & Analysing Ancient Genomes 
 

aDNA is genetic material derived from the remains of dead organisms8. Despite the 

large strides in sequencing aDNA from archaic humans: the Neanderthals9–12 and later 

Denisovan13, a nuclear genome of an ancient modern human was not available until 

2010, which, similarly to the Neanderthal and Denisovan genomes, was assisted by 

the advent of NGS14,15. The slower generation of an ancient modern human genome 

is thought to be due to the closer genetic similarity between those processing the 
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sample and the individual being sequenced relative to more divergent archaic 

humans9. This made contamination more difficult to detect14,16. Since then, there has 

been an increase in the number of sequenced ancient modern human genomes16, 

which at the time of writing (November 2022) numbered over 8,000 individuals in the 

AADR dataset17. This large number of genomes has facilitated a detailed 

understanding of the history of population replacement, admixture7,18,19 and 

adaptation, particularly within Eurasia6,20–31. Ancient Human DNA has also assisted in 

understanding the genetic history of more recent groups and empires such as the 

Scythians32,  Anglo-Saxons33, Romans34 and Vikings28. These studies would not have 

been possible without several methodological advancements, including those 

specifically designed for aDNA and datasets of similar characteristics, such as low 

genome-wide coverage7,15,35–37. Therefore, below I introduce the most utilised 

methods for generating ancient genomic datasets, the nature and biases within those 

datasets and the aDNA-specific features each method seeks to account for.  

 

To obtain ancient genomes, DNA must first be extracted generally from a first 

powdered source8. A wide variety of materials have been used to obtain aDNA8. 

However, samples are most often obtained from bones and, if available, the petrous 

bone since this has been found to be a good source of DNA38. Samples are then 

treated with UDG to partially36 or completely remove39, a feature of aDNA known as 

PMD. An advantage of partial UDG treatment is that enough damaged bases are 

retained to distinguish a read as deriving from an ancient source36. PMD occurs due 

to the long timescales in which the DNA is present outside the native and protective 

confines of the nucleus, usually resulting in the breakage of the DNA molecule, and 

as a result, the genome is fragmented into short segments40. PMD predominantly 

occurs in the form of C to T and G to A substitutions, which accumulate after death 

and are more common at the termini of each molecule due to the presence of single-

stranded DNA overhangs, which are themselves caused by a different form of 

PMD8,39. C to T substitutions are formed during the chemical degradation of C to U, 

which when sequenced, results in a T with the complementary pattern observed on 

the opposite strand with double-stranded DNA library preparation8,39. Single-stranded 

DNA library preparation results in the formation of C to T patterns at both ends of the 

molecule35,41. For any given sample, these patterns can be inferred by plotting the 

substitution or base frequencies across the reads or calculating genome-wide Ts/Tv41–
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43. Transitions are defined as C to T or G to A base changes or vice versa, whilst 

transversions are G to T or A to C or vice versa39.  An excess of transitions relative to 

a modern genome assumed to have no DNA damage suggests PMD in the ancient 

genome and can vary between samples43.  

 

After library construction and amplification, aDNA is then either sequenced genome-

wide or captured at genomic regions of interest and then sequenced7,8. Capture 

sequencing can be particularly advantageous for samples with low endogenous DNA 

and high proportions of external contamination18. Designing capture probes that match 

the human genome should also reduce the sequencing of non-human contaminant 

DNA18. Capturing also reduces the amount of sequencing required for any one 

sample, a particular advantage for high throughput processing of many samples7,18. A 

commonly used array of probes in capture sequencing is the 1240K which is a set of 

1,233,013 SNPs ascertained using individuals with known ancestry for studying 

ancient human demography44–46. With sequencing data, adaptors used in sequencing 

are removed and reads can also be filtered by length and per base quality score47–49. 

Reads can then be aligned to a reference genome8. Generally, the reference hg19 is 

used with the alternative hs37d5 containing additional Herpes Virus decoy 

sequences50. The latter is thought to improve the ability to map reads to the reference 

genome51.  In data generation, alignment parameters are selected to allow a greater 

than the conventional for modern genomes mismatch between the reference genome 

and the ancient reads, and this is to account for PMD, which could reduce the ability 

to map reads52,53. Mapped reads are then filtered to retain only those with acceptable 

levels of mapping quality, with a value of 25 or 30 often selected15,48,49,52. Mapping 

qualities are calculated as PHRED-scaled scores (Equation 1), and a value of 25 

suggests the probability that a read is not correctly aligned is ~1/300, whilst, for 30, 

the probability is 1/1,000 (Equation 1)54,55.  

 

Equation 1: The formula used to calculate MAPQ. Pr is the probability a read is not 
correctly mapped. A MAPQ of 25 means the probably any read is not correctly aligned 
is ~1 in 300. 
 

MAPQ = 	−10log10(Pr)	 
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MAPQ	 = 	10!"
#$
%&' 

 

10!"
()
%&' = 0.00316	or	~1/300	 

 

Another important procedure in aDNA data analysis is quantifying contamination, and 

a diverse array of methods to achieve this are discussed elsewhere8. The culmination 

of these stages results in the production of high (>10X) and low coverage (<10X)43 

genomes in BAM files, which can be used, for example, in downstream population 

genetic analysis.  

 

Numerous methods have attempted to mitigate the effect of ancient genome data 

characteristics, such as accounting for PMD on the accuracy of population genetic 

analysis56, such as inferring heterozygosity37,57,58. All of these rely on the production 

of GTs or GLs from ancient data37,59. GLs are particularly useful for aDNA data 

because low coverage and errors mean there is often low confidence in the accuracy 

of a given called GTs. GLs were developed to circumvent this and are the probability 

of all nine possible diploid GTs whilst accounting for error, with the highest probability 

GTs being selected60. GLs consider error with per-base quality scores and have been 

extended to incorporate models of DNA damage from double-stranded, although not 

yet single-stranded libraries37,42,59,61. An alternative method to genotyping or 

calculating GLs is known as pseudo-haploid calling, which is performed by sampling 

a random read for each position7,18,26,62 or selecting the most observed base, known 

as majority rule7. These approaches have been extensively used in demographic 

studies with hundreds of ancient genomes7,18,62,63. However, random sampling or 

majority rule methods may be suited to studies where the accuracy of a single GT is 

of less interest, and genome-wide patterns of variation are under consideration for 

demographic studies7,18,19. With available GT or GL data, downstream analysis, such 

as establishing the genetic relationship between modern and ancient genomes with 

Principal Component Analysis (PCA) can be performed. Generally, with low coverage 

ancient genomic datasets, a PCA is performed first with only high coverage modern 

genomes, such as with GTs inferred from53,64,65. Then low coverage ancient genomes 

are projected within the diversity of modern genomes, which is advantageous for 

ancient genomes due to the risk of low coverage, contamination66 or DNA damage 
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driving patterns of variation25. A disadvantage of this approach is that the oldest 

genomes may possess genetic variation not observed in modern populations. For 

example, Ust_Ishim was found not to cluster in proximity to any modern populations 

and plotted at ~0,0 on PC1 and PC22. Other methods have been developed to mitigate 

the impact of aDNA data characteristics on downstream analysis. One strategy is to 

restrict analyses to transversions or known variants inferred from high-quality modern 

genomes22,25,67, or to trim bases from the ends of reads where DNA damage is most 

common18,40,49.   

 

Ancient Genomic Datasets 
 

With the explosion in available ancient genomes, one can observe several biases 

within collated metadata (Supplementary Data; Figure 1). The AADR is the largest, 

regularly updated repository of ancient and modern genome metadata and GTs from 

across the globe46. This dataset included 5,225 ancient and 3,720 modern genomes. 

After removing archaic, great apes and duplicates, there were 5,214 ancient human 

genomes from 179 studies (Supplementary Data; Figure 1), all published within the 

last decade. These cover a period of human history from the 20th century until the 

Upper Palaeolithic. Here, I describe these all as ancient genomes; however, genomes 

from <1KYA are often described as ‘historical’ or belonging to a specific group or 

empire. A key feature of ancient genomes is that they tend to be relatively low 

coverage in comparison with modern human genomes, many of which reach an 

average coverage of >10X53,65. The low coverage of ancient genomes is exemplified 

in the AADR, with a median coverage of 0.63X and a mean of 1.37X across all samples 

(Supplementary Data). The discrepancy between the median and mean is likely 

reflecting skewing from a few extremely high coverage individuals such as Ust_Ishim 

~42X and sf12 ~65X, which represent rare and exceptional genomes2,25. Another 

pattern observed from the collation of published ancient genomes is the bias towards 

individuals excavated in Eurasia (Figure 1). Indeed, whole continents such as 

Australia and surrounding regions appear to be missing ancient genomes68 (Figure 1). 

However, an inspection of the literature did reveal some published individuals which 

are missing in the AADR v44.346,69. The Eurasian bias could be due to both differing 

preservation conditions and amounts of scientific funding between regions16. In 

addition, age bias is also observed. Within the AADR, there are 32 individuals dated 
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older than 20 KYA but 5,182 individuals dated younger than 20 KYA. Finally, within 

this dataset, the median age of all individuals is 3,675, with a mean of 3,846 years.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, this may reflect reduced preservation of older samples but also the large 

interest in disentangling changes in ancestry and adaptation during major cultural 

shifts in human history, such as after the invention of farming. Published samples in 

the AADR are also enriched in partially UDG treated and 1240K genomes 

(Supplementary Data). The large number of individuals from partial UDG treated and 

1240K methods reflect the extensive work performed by the group of Professor David 

Reich and others using the same methodologies and SNP arrays17,36,46. Datasets 

other than the AADR have also amalgamated ancient genomes. For example, Delser 

and colleagues sought to combine only high coverage ancient genomes, allowing 

users to undertake analysis not possible with low coverage captured genomic 

data25,43. Their dataset includes 19 high coverage ancient and 16 modern genomes 

with a range of coverage for the ancient individuals from 11.3 – 65X (mean: 29.7X) 

and includes GT calls for ancient and modern genomes. But the AADR remains a 

larger and more comprehensive sample set of ancient genome metadata and GTs. 

However, this dataset also reflects current biases in the field with an excess Eurasian 

<20 KYA genomes which have been partially UDG-treated and 1240K captured.       

 

Figure 1: The distribution of excavation locations of 5214 ancient and historical 
human genomes collated from the AADR v44.3. Each point represents one individual 
which is coloured by age in years before present (BP) reported in the AADR. 
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Aims and Objectives  
 

In this chapter, I aimed to generate a dataset of BAM files, GTs, and GLs for 299 

Ancient Modern Human individuals. Specifically, I aim to:  

 

● Compile a sample of the ancient genomes available in the AADR and published 

literature in BAM format, including metadata, while maximising the number of 

HGs.  

 

● Process the selected genomes to generate a dataset of published genomes 

and incorporate newly capture-sequenced data.  

 

● Generate GTs and GLs from the processed genomes.  

 

● Assess the genetic relationship between predefined groups of ancient and 

modern genomes through PCA and admixture analysis.  

 

Methods  
 

Below I detail all methods relevant to this Chapter. In (Programs) I list all the programs 

I have utilised in all Chapters, including their version or commit numbers and locations 

for download and programs are also cited within the text. All the web links in the text 

were functional at the time of writing (November 2022).  

 

Selection of The Ancient Genomes  
 

I aimed to retrieve available ancient genomes from the AADR with a focus on selecting 

all available HGs from across Eurasia. In addition, I also aimed to obtain ancient 

individuals from two other ancestral populations found in modern Europeans: Farmers 

and Steppe Pastoralists or the Yamnaya5,6. Ancestry from these groups is found in 

most European populations except for the Finnish, which possesses additional 
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Siberian-related admixture and Southern Europeans such as Iberian and Toscani, 

which possess ancestry mostly from HGs and Farmers5,6. Many Yamnaya and 

Farming individuals were contemporary with HGs, and admixture between them has 

been described7. These groupings were labelled as HGs, Farmers and the Yamnaya. 

The collected individuals covered a wide range of space and times, and therefore 

these labels do not represent true populations. However, previous studies have shown 

some HGs, Farmers, and Yamnaya/Beaker are genetically divergent from each other, 

and therefore these labels represent the minimum number of true populations or broad 

genetic clusters for which subclusters may exist within5,6. 

 

The majority of HGs, except for recently published individuals from: 49,70–72 were 

obtained from the AADR V44.346. A list of studies contributing these individuals has 

been deposited in (Supplementary Data). I selected all individuals with a GroupID 

containing the tag *HG* and who were excavated in Eurasia. The GroupID is a label 

given in the metadata to genetically clustered individuals by the Reich group and 

others and often includes the historical period an individual originates from, for 

example, BA = Bronze Age46. A total of 19 individuals were excluded due to critical 

warnings of either contamination or relatedness in the AADR. In the case of groups of 

related individuals, I selected the highest coverage individual (Supplementary Data). 

This process generated a dataset of 166 HG genomes from 29 studies, spanning 

~40,000 years BP and including whole genome sequencing of the oldest human 

available Ust_Ishim at ~44,000 years BP2. (Supplementary Data).  

 

To represent other ancestral populations, I selected 26 individuals defined by the 

groupID *Yamnaya* in the AADR metadata and excluded three samples with 

contamination warnings. These covered an age range of 4382 (RISE552) to 5105 

(RK1007) years BP. To maximise the number of samples among this group and better 

represent the Yamnaya, I randomly selected a further 50 published individuals who 

were archaeologically defined as part of the Beaker Complex, which cover an age 

range from 3671 (I6680) to 4516 (I1392) years BP. Beaker individuals possess a high 

proportion of Yamnaya-related ancestry, giving a total of 76 individuals73. Finally, to 

represent Farmers, I selected all 75 EEFs from Mathieson et al.,6 of which were mostly 

840K or 1240K-capture-sequenced. A disadvantage of utilising these samples is the 

likely bias of greater coverage at 840K and 1240K SNPs and reduced coverage 
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elsewhere in the genome. However, the dataset does include at least one high 

coverage shotgun sequenced individual (19X) for Stuttgart5. Four Farmers were 

excluded due to questionable warnings of contamination in the AADR, including the 

high coverage shotgun sequenced Iceman (~10X)74. The final set of 71 farmers 

ranged in age between 8300 (I0736) to 4403 (I1277) years BP. This resulted in a final 

dataset of 313 genomes, of which 299 belong to unique individuals (Supplementary 

Data).  

 

I then downloaded the BAM file of each of the 166 HGs and 147 Farmers and 

Yamnaya/Beaker from the ENA. A minority of the individuals, Ajv52, Ajv70, Ire8, 

StoraForvar11, AfontovaGora2, Malta1, Kostenki14 (shotgun sequenced), hereafter 

referred to as Kosenki14_SG were either unavailable in BAM format or only present 

on the ENA as FASTQ files. Therefore, I contacted the authors of the relevant 

publications75–77, who kindly provided the data in BAM format (Acknowledgements). 

 

Processing and Analysing Ancient Genomes 
 

BAM files in this dataset were processed uniquely by different laboratories. This 

creates some heterogeneity within the dataset. For example, different minimum read 

lengths and mapping quality filters were applied, and sequencing reads were aligned 

to either hg19 or hs37d5. To homogenise these to hg19, I selected reads which 

mapped to autosomal, X and Y but not mitochondrial or decoy regions as the ‘MT’ 

genome differs in length by 1,000 bp between hs37d5 and hg19 or is absent in the 

case of decoy regions78. I acknowledge that the lack of MT and decoy regions means 

I am unable to analyse these in any downstream analyses; however, analysis of these 

regions was not the goal of this work, and MT and decoy regions represent a small 

fraction of the genome. I converted each BAM to a consistent “chr” header structure 

by editing both the read names and the corresponding header. In the generation of 

the Ust_Ishim genome, the authors added non-standard ‘Z’ tags into the BAMs to 

represent features of the sequence alignment and isolation79. These tags were 

removed from the Ust_Ishim genome since they’re not likely to be accepted 

downstream programs (Janet Kelso, personal communication, Acknowledgements). 

For individuals listed in the Supplementary Data Excel Spreadsheet, there were 

multiple BAM files per individual, so I merged reads with samtools. When an individual 
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has multiple BAM files from different publications, these were not merged except for 

our own capture-sequenced data. To minimise the inclusion of poorly mapped reads, 

I filtered the BAM files for a minimum mapping quality equal to or higher than 25 using 

samtools and correct edit distances to the reference genome with samtools calmd. A 

filter value of 25 was selected to match the filtering applied to the unpublished hdSNP-

capture data from our collaborators and is a commonly utilised value15,48,49. BAMs sf12 

and steigen had been deposited in the ENA with no read groups, which was inferred 

with the program ATLAS BAMdiagnostics37. Therefore, I re-added missing read group 

IDs or where no read group was given for individuals: GoyetQ116-1, GoyetQ53-1, 

GoyetQ376-19, GoyetQ56-16, sf12 and stg001 in the BAM header, added a custom 

ID with samtools addreplacerg.  

 

In addition to publicly available genomes, our collaborators (Acknowledgements) 

generated new capture-sequencing data across 487,012 hdSNPs in 13 HGs first 

captured at ~3.9M SNPs18,45. This capture sequencing was performed to enrich these 

datasets for SNPs that are highly differentiated between modern human populations, 

which may be due to LGA80,81. Theoretically, this process would allow the observation 

of highly differentiated allele frequencies through time to determine when modern 

highly differentiated alleles rose in frequency16. The selected 13 HGs represented 

some of the oldest captured sequenced individuals to date, covering an age range of 

~30,000 years BP from 10875 (Continenza) to 38,052 (Kostenki14) years BP 

(Supplementary Data). hdSNPs were selected as having the greatest DAF across all 

modern human populations in the 1KG ph3 by Felix Key (Acknowledgments). Due to 

the exceptionally low coverage of these ancient individuals across hdSNP sites, I 

merged each individual’s genomic data with the existing capture sequencing data from 

the same individuals18 from the ENA project code: PRJEB13123). I merged these BAM 

files with samtools and removed duplicates with rmdup to avoid analysing reads that 

are duplicates across the separate capture and sequence processes.  All 13 samples 

were incorporated into the dataset above, except for Kostenki14. This is because in 

the cases of 14 individuals, including Kostenki14_capture, which are listed in 

(Supplementary Data), a shotgun or larger SNP capture dataset was available 

(Acknowledgments; 76). Where a sample was both captured and shotgun sequenced, 

I always select the shotgun individual in attempting to balance the high proportion 

(~67.9% for 1240K) of capture-sequenced individuals and increase genome-wide 
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coverage (Supplementary Data). This resulted in the exclusion of hdSNP-captured 

Kostenki14. SAMtools was used to determine coverage across all 487,012 hdSNPs 

from the 13 newly capture-sequenced individuals after merging with the Fu et al., 2016 

samples and beforehand.  Together with the genomes mentioned above, this process 

generated a working dataset of 299 individuals. I then determined genome-wide 

coverage using  ATLAS task = BAMdiagnostics. 

 

BAM validation  
 

To generate GTs and GLs from the processed BAMs, the first step was to remove any 

inconsistencies or errors in the input files37. I performed this step for all samples with 

Picard tools ValidateSamFile and observed no concerning errors82. For most samples, 

I observed errors associated with missing or invalid platform (PL) values which I 

anticipated would not influence downstream analyses. In addition, I confirmed that 

header edits, mapping quality filtration, and calmd steps had been done correctly. For 

the Ust_Ishim BAM, I observed an error associated with read lengths appearing longer 

than their insert size, which was caused by the incomplete removal of adaptor 

sequences (Vivian Link, personal communication, Acknowledgements), and given the 

high coverage of this sample, I removed these 37,633 reads with Picard tools 

FilterSamReads. These represent a tiny fraction of the total number of  Ust_Ishim 

reads, so this step is unlikely to influence downstream analysis.  

 

Genotypes and Genotype Likelihoods  
 

Having obtained and processed the ancient genomes, mapped reads could be used 

to calculate genome-wide GTs and GLs. Both can serve as direct input for several 

population genetic analysis tools, with some built to allow the use of GLs such as 

ANGSD and ATLAS and, as discussed above, are advantageous for low coverage 

aDNA37,59. GLs and GTs were generated for all non-triallelic sites with a minimum 

minor allele frequency of 0.05, which were covered in >25% of individuals using the 

SAMtools GL model across 299 ancient individuals61. This resulted in 1,181,383 

polymorphic sites with available data. Particularly relevant to aDNA is the flag trim. 

Here, I applied ‘trim = 3’ in the production of ANGSD GLs, which trims three 

nucleotides off the ends of each read. I acknowledge that this approach may not be 
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suited to all samples where PMD extends beyond three nucleotides or UDG-treated 

samples which display limited PMD2. However, it has been shown that PMD occurs 

most prevalently in the first few nucleotides of each read, and its prevalence declines 

exponentially thereafter39,52. Thus, this approach should remove reads which are most 

likely damaged across samples. Finally, in subsequent chapters, I replicate 

appropriate analyses with transversions only to show my results are robust to the 

influence of unaccounted for PMD25 (Chapters 2, 3).  

 

Unprojected and projected PCAs 
 

To determine the genetic relationship between the sampled ancient genomes and the 

validity of preassigned groups of HG, Farmer, and Yamnaya/Beaker, a PCA was 

performed using the above-described GLs. This was run with PCAngsd without minor 

allele frequency filtration because this was present as an ANGSD flag in the 

generation of GLs. A custom R script was used to estimate the percentage variance 

explained by the first 10 PCs and generate PCA plots from the resulting covariance 

matrix83. Next, to infer genetic clustering between the 299 ancient individuals in the 

context of the genetic variation in modern-day humans, I also performed a projected 

PCA. Firstly, multiple-sample VCFs containing GTs at 1,181,383 polymorphic sites 

were generated from the BCF output of ANGSD with BCFtools61. VCFtoEigenstrat.py 

https://github.com/mathii/gdc/blob/master/vcf2eigenstrat.py was run to convert the 

VCF into eigenstrat file types: *.ind, *.geno and *.snp files84,85. The *ind file lists the 

individuals with GTs in the VCF, the *.geno file gives the coded GTs for those 

individuals, and the *.snp file lists the sites with GTs. GTs from modern-day individuals 

were obtained from the AADR v44.3 for 3,878 modern individuals with a ‘QC = PASS’, 

which were tagged as ‘Modern’ in the ancient sample dating method column of the 

AADR metadata. Three individuals: A_Ju_hoan_North-5.DG, HGDP01029.SDG and 

HGDP00594.SDG were marked as ‘Ignore’, which highlights individuals to be 

excluded because of relatedness or genetic clustering, and so were absent in the 

AADR VCF17,46. This resulted in a final set of GTs for 3875 modern individuals from 

13 studies which were mostly from the 1KG ph3 or the HGDP with called GTs at 

1,233,013 1240K SNPs53,64. These GTs were then converted from VCF into eigenstrat 

file format, as noted above and merged with the eigenstrat files of 299 ancient 

individuals using eigensoft mergeit86. This program combines individuals and outputs 
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SNPs present only in both inputs and generates a set of 4,174 individuals (299 ancient, 

3,875 modern) with available GTs at 682,227 SNPs. Smartpca was then performed 

using lsqproject = TRUE to project 299 ancient individuals onto the diversity of 3,875 

modern individuals87. Smartpca removes outlier individuals which differ by six or more 

standard deviations along the first 10 PCs88. After the removal of 152 individuals and 

146 SNPs as outliers, this left 3,723 modern individuals at 682,081 SNPs for the 

projection. Resulting PCs and eigenvalue files were passed through a custom R script 

to generate PCA plots and calculate the variance explained by each PC.  

 

Broad geographical groups from: 49 were used to label modern populations in each 

PCA plot because this study used similar modern genotypes from the AADR. The 

labels: MiddleEast, Finland, SouthernEurope, NorthCentralEurope, EasternEurope, 

and Sardinian were newly created labels for these PCAs. These labels are subjective 

and may include outliers or admixed individuals from other populations, such as 

European-admixed Native Americans. To highlight finer scale population structure, I 

also projected the ancient individuals onto only the diversity of a subset of 883 

genetically defined West Eurasians with a PC1 <=0 & PC2 >=0.015 in (Figure 4A) 

using the same methods as described above. Here, the mergeit step resulted in a final 

set of 1,182 individuals  (299 ancients, 883 moderns) with available GTs at 682,227 

SNPs. In smartpca, 26 outlier individuals and 1031 SNPs were removed, leaving 857 

modern individuals at 681,196 SNPs for the projection. Projecting onto Eurasians 

circumvents the observed drawback of projecting these ancient individuals onto all 

worldwide modern genomes because their strong clustering towards West Eurasians 

makes clustering within West Eurasia difficult to observe (Figure 4A). 

 

Admixture analysis 
 

I inferred global admixture proportions across the 299 genomes in this dataset using 

NGSadmix89. NGSadmix calculates admixture proportions directly from GLs and has 

been proven to estimate simulated admixture proportions more accurately with GLs 

than GTs compared to two conventional GT callers with variable coverage, which the 

presented samples displayed89. NGSadmix was performed on GLs using K = 2, 3, 4, 

and 5. These are the assumed number of ancestral populations. NGSadmix is 

recommended for sites with data for >20% of individuals, and here SNPs with >25% 
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of data were retained89. A total of 1,181,383 polymorphic sites were available for this 

analysis as in the unprojected PCAs. This is greater than the number of SNPs 

available to the projected PCA because their GTs must be present in ancient and 

modern samples to be utilised. NGSadmix produces a *.qopt file which contains 

admixture proportions as a fraction of the genome for all components with one row per 

individual89. Data in the resulting *.qopt files were plotted with a custom R script 

(Supplementary Code).   

 

Results 
 

The Ancient Genomes 
 

To generate a dataset of available ancient genomes, I identified the relevant 

individuals from the AADR and recent publications: 49,70–72. I first plotted on a map the 

sampling locations for all 299 individuals selected for the dataset (Figure 2). The AADR 

samples were heavily biased both temporally (most <20 KYA) and geographically 

(mostly Eurasian individuals) (Supplementary Data). The 299 individuals ranged in 

age from 3671 (I6680: Beaker/Yamnaya) to 44,366 KYA (Ust_Ishim: HG), with a 

median age of 7,598 and a mean age of 9,684 KYA. Sample coverage, as presented 

in the AADR, had a median value of 1.04X and a mean of 2.51X, both of which are 

higher than the values calculated for the entire dataset, likely because of the sample 

selection process, which resulted in a small number of high coverage genomes (n = 

7) relative to a large number of lower coverage genomes (n = 292) (Supplementary 

Data). Coverage ranges from 0.002X (Paglicci108: HG) to 65.2X (sf12: HG) 

(Supplementary Data). In sum, the selected individuals cover a broad geographical 

spread within Eurasia, despite the preferential sampling of old HGs that tend to be 

younger than 10,000 years and have a median coverage of ~1X. 

 

BAM files were downloaded for these individuals from the ENA or obtained directly 

from the authors (Acknowledgments/Supplementary Data). Ancient genomes were 

first filtered to remove reads with a mapping quality of less than or equal to 25. To 

explore the effect of this on genome-wide coverage, I estimated coverage after 

filtration. The median coverage was found to be 0.082 and 0.936 for the mean (ranging 



 15 

from a mean of 0.000287X (LesCloseaux13:  HG) to 57.8X (sf12: HG)). This is a 

considerable reduction in coverage from the values obtained from the entire AADR 

dataset, reflecting the effect of the necessary mapping quality filter. For the 13 HG 

individuals where the hdSNPs were further captured and both BAM files merged, the 

hdSNP median coverage was 0.0694 and 0.0809 for the mean.  The median hdSNP 

coverage was 0.0316 with the addition of hdSNP capture and 0.0745 when individuals 

only captured at ~3.9 M SNPs in Fu et al., 2016 (Supplementary Table 2). The 

percentage of hdSNPs covered at least once across all 13 individuals was 5.75% for 

the median percentage and 17.5% for the mean percentage. Similarly, the percentage 

median and percentage mean coverage values were reduced at 2.88% and 9.81%, 

respectively, for Fu et al., 2016 individuals proving that the additional capture 

sequencing presented here has increased available data for hdSNPs. However, for 

hdSNPs covered by at least one read, additional hdSNP capture sequencing 

presented here had only a modest influence on median coverage compared with Fu 

et al., 2016 samples (Supplementary Table 1, 2).  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

Figure 2: The distribution of sampling locations of 299 Ancient Human individuals from 
the AADR and published literature (Supplementary References). Each point 
represents one individual which is coloured by age in years BP and shaped by AADR 
or preassigned GroupID. Individuals from new hdSNP-captured sequencing which 
were incorporated into this dataset are labelled. This excludes hdSNP capture of 
Kostenki14 (see methods).  
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Principal Component & Admixture Analysis 
 

To explore the genetic relationships among the individuals, I performed a PCA for all 

299 ancient individuals (Figure 3).  I caution against over-interpreting the results of 

this PCA as it may be affected by several confounding factors25,66,90 (Supplementary 

Figure 1-2). Nevertheless, this provides a first exploration of the dataset. All HGs and 

Farmers were clearly separated along PC1, which explains ~4.5% of the variation. 

Beaker and Yamnaya individuals formed separate clusters, with the Beaker clustering 

closer to Farmers. This was anticipated because the Beaker represent an admixed 

group between Yamnaya and Farmers73. Three Beaker individuals (I5118, I5119 and 

I1392) fell within the variation of Farmers, suggesting that they might have high levels 

of Farmer-related ancestry. Most HGs clustered at extremely positive PC1 and PC2 

values except for some individuals that separated along a cline of PC2 and fell closer 

to the Yamnaya or Beaker. This separation of HGs may be caused by population 

replacement and ancestry change following the LGM because all individuals with PC2 

value <0 are older than 20 KYA.  
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Figure 3: Unprojected PCAs of 299 ancient individuals with points coloured by age in 
years BP as inferred from the AADR or published literature and shaped by preassigned 
group.  
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The positioning of the Yamnaya closer to the oldest Palaeolithic HGs >20 KYA (PHGs) 

and particularly ma1 may represent their shared ANE ancestry7,75. To infer the genetic 

structure for the 299 processed ancient genomes in the context of modern human 

genetic variation, I projected them onto the diversity of 3,875 humans using smartpca 

(Figure 4: A, B). The country of origin for the modern samples is noted in 

Supplementary Figure 3, and the number of individuals per study is in Supplementary 

Table 3. As expected, most of the ancient genomes cluster closely with West 

Eurasians except for the oldest PHGs that fell qualitatively closer to other non-African 

populations relative to other ancient individuals (Figure 4A). This pattern is not new, 

as it has been observed previously and is likely due to the presence of ANE ancestry 

in these individuals49,75. This ancestry component is believed to have contributed to 

the population(s) that crossed the Bering Strait into the Americas75. In addition, this 

cluster of PHGs included individuals such as Ust_Ishim, which have been found to be 

slightly more closely related to East Asians than West Eurasians2. This is thought to 

be because some PHGs do not possess Basal Eurasian ancestry, which was later 

introduced during the expansion of Farmers from the East into Europe. This has 

resulted in PHGs appearing to be more closely related to modern Asians than modern 

Europeans, but not PHGs that predate the contribution of Basal Eurasian Ancestry 

into Europe5,68.       
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Next, to explore the finer scale population structure in the ancient samples, I projected 

the 299 ancient individuals onto the diversity of 883 Eurasians defined by sample PC 

value in (Unprojected and projected PCAs). Alike (Figure 2) and (Figure 4: A), there is 

a clear separation of PHGs and younger HGs, with many of the younger individuals 

clustering to the right of Modern North and Central Europeans. Interestingly, PHGs 

form a cline of clustering between Northern and Central Europeans and Middle 

Eastern and Caucasus individuals (Figure 4B). For individuals, SATP, also known as 

Satsurblia and KK1, also known as Kotias which can be explained by them belonging 

to a highly diverged CHG population, also suggesting some population continuity in 

this region91. The reason for the presence of other PHGs in this PCA space is unclear. 

ZlatyKun and Ust_Ishim are thought to belong to extinct lineages, which did not 

preferentially contribute to any modern populations2,45,68,71. Therefore, it may not be 

possible to perfectly describe these genomes in the context of modern genetic 

variation. Farmers fell in between Modern Southern Europeans and Sardinians, which 

is an extremely well-established pattern, with multiple lines of evidence suggesting a 

greater proportion of Farmer-related ancestry in Southern Europeans compared to 

other European populations5,92,93. Interestingly, seven Beaker/Yamnaya individuals 

clustered closely to Farmers, suggesting that they might possess more Farmer-related 

ancestry than Yamnaya. These individuals covered a range of ages from 4006 (I2478) 

to 5100 (I5118) years BP, but interestingly five out of seven individuals originate from 

~47o latitude and longitude ~20o, which corresponds to Hungary, suggesting greater 

Farmer-related ancestry in this country. Olalde et al., described variable quantities of 

Steppe ancestry in Beaker individuals from Hungary with little or none in Iberian 

Beaker individuals, and I may be observing some of this variation73. Individual I1392 

from France was labelled with ‘*NoSteppe*’ in the AADR metadata explaining its 

position on the PCA46. Other Yamnaya individuals cluster at more positive PC2 values 

and closely to modern-day Russians, which has been noted previously and again 

suggests some population continuity over time in this region7. Finally, I observed some 

association between individual coverage and UDG treatment, with very low coverage 

Figure 4: PCA projections of 299 ancient individuals onto Worldwide and Eurasian 
populations. (A)  A PCA of processed ancient individuals projected onto the diversity 
of 3,875 modern humans. (B) A PCA of ancient individuals projected onto the diversity 
of 883 modern Eurasians defined by PC values in (A) (Genotypes and Projected 
PCA). Ancient individuals were coloured by Age in Years BP from the AADR v44.3 
or published literature and shaped by a preassigned Group from the AADR or 
published literature. The percentage variance explained from each PC is depicted 
beside the axis in parenthesis.  
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individuals tending to fall closer to 0,0 (Supplementary Figures 1,2 A-C). This suggests 

that coverage but not the proportion of PMD left after UDG treatment may influence 

even projected PCAs. 

 

To further corroborate the validity of the predefined groups of ancient genomes, I 

performed global admixture analysis using a GL-based approach from NGSadmix89. 

The results of K=3 are depicted in (Figure 5). K=3 was shown because I anticipated 

there to be at least three genetic clusters, most likely within the Beaker5,73. K=2, K=4 

and K=5 are shown in (Supplementary Figure 4). With K=3, clearly, HGs, Farmers and 

Beaker/Yamnaya-labelled ancient individuals contain different components.  K1 

appeared most often in the oldest HGs, particularly PHGs from 

Siberia AfontovaGora3, Kostenki14 and ma1, including all four Sunghir and Yana 

individuals. K2 is most observed in Farmers and whilst K3 is found most often in 

European HGs <10 KYA, including Scandinavian HGs (SHGs) and >20 

KYA Bacho_Kiro25,49. Across Beaker and Yamnaya individuals, their genomes 

appeared to contain all three components. This agrees with the positioning of 

Beaker/Yamnaya in proximate to some modern Europeans in a projected PCA (Figure 

4B). K1 most likely corresponds to ANE ancestry, whilst K2 is most likely of Farmer 

origin, and K3 is likely derived from Western HGs (WHGs), whilst all are apparent in 

the Beaker/Yamnaya5,73. Farmers appeared relatively homogeneous, mostly 

containing component K2. Whereas HGs appear more heterogeneous, containing 

predominantly K3 or, in some older individuals as noted above, K1. A small number of 

individuals appeared to contain a very small amount of  K2 component. This suggests 

that these individuals may represent HGs with small amounts of Farmer-related 

ancestry, likely due to ancestral admixture. However, individual I6913 possesses 

~47% of its ancestry from K2, the greatest in any HG in this dataset. I6913 has been 

radiocarbon dated to 7,366 years BP90, coinciding with the spread of Farmer-related 

ancestry throughout Europe57. This result suggests that the ancestors of this 

individual, and perhaps of other younger HGs to a lesser degree, received admixture 

from Farmers. The study that initially reported this individual found a similar clustering 

towards Neolithic Farmers relative to other HGs in their dataset; however, they note 

this individual had extremely low coverage (~0.0004) in this analysis, so its admixture 

proportions may not be accurate90. Finally, NGSadmix analysis with K = 2 creates 

three groupings with varying levels of K2 whilst similarly, K = 4 and K = 5 reveal similar 
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patterns to K = 3 with a clear distinction of the type and or proportion of each 

component in each group (Supplementary Figure 4). In sum, NGSadmix analysis 

clearly supports the separation of most HGs, Farmers and Beaker/Yamnaya, with 

some individuals appearing to present evidence of ancestral admixture between these 

groups.  

 

Discussion 
 

Herein, I generated a processed and homogenised dataset of 299 Ancient Human 

Genomes that focuses on the oldest published HGs and includes new, unpublished 

hdSNP-captured individuals. These genomes were used to generate two datasets of 

GTs and GLs for population genetic analyses. I expect that, beyond this work, these 

datasets will be broadly useful for population genetic analyses. An important drawback 

to note is the high likelihood that the datasets becoming quickly outdated as the pace 

 

Figure 5: NGSadmix admixture proportions assuming K = 3 for 299 collected and 
processed ancient human genomes. Predefined groupings of individuals are 
coloured and labelled along the Y-axis. Individuals were ordered by group and within 
each group were ordered by descending age in years BP.  
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of aDNA data generation continues to increase17,46. For example, in preparing this 

work, AADR v52.2 was published reporting 8,755 ancient samples, an increase of 

3,530 samples from the AADR v44.3 utilised at the time of analysis17,46. However, 

compared with AADR v44.3, AADR v52.2 contains only one additional European PHG 

PM1, which was not present in this analysis67. To alleviate this issue in future, focus 

could be placed on designing an automated collation, selection, and processing of 

samples as the AADR dataset is updated and modified with new genomes. Indeed, 

the program PALEOMIX is a pipeline specifically built for aDNA data processing that 

can also perform analysis such as phylogenetic tree construction and assigning the 

non-human DNA in a sample to microbial species15. Another notable limitation of the 

produced dataset is the low and variable genome-wide coverage. This reflects both 

the high proportion of individuals that are capture-sequenced and the large reduction 

in coverage post-filters. However, in calculating genome-wide coverage, I have made 

available to researchers the ability to easily filter genomes and retain only those most 

relevant to their own analyses.  Many ancient genomes are now deposited in the ENA 

for public download. However, some samples are often unavailable and herein were 

provided by publication authors.  

 

In addition, the 299 individuals represent only a small sample of all individuals that 

lived, likely covering only incompletely the genetic diversity of ancient Eurasians and 

possibly leaving populations unsampled94. However, I did attempt to sample the 

known diversity of most Modern Europeans, including Yamnaya/Steppe/Beaker, 

Farmer and HGs5–7. Nonetheless, it would be possible to incorporate additional groups 

or populations. For example, the full complement of 226 Beaker individuals could be 

added, which was not included in the original analysis due to insufficient computing 

space73. In addition, individuals associated with the Corded Ware pottery and burial 

styles are known to possess ~75% Yamnaya-related ancestry and could be included 

to increase the sample size of the Yamnaya/Beaker group7. Also, the preferential 

sampling of Eurasian HGs may be suited to analysis where older individuals from 

Eurasia are the focus but would be less useful for studies focused on younger 

individuals. Despite these limitations, GTs and GLs allowed me to study the genetic 

affinities between ancient individuals and in the context of the genetic variation of 

present-day humans, PCA shows several differentiated PCA clusters of HGs under 

PCA with PHGs separating in the PCA from the < 20 KYA HGs.   
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This is most likely due to population replacements after the LGM and the notion that 

HGs which are younger than ~14 KYA show a genetic closeness to Modern 

Easterners, suggesting a new influx of ancestry or finer-scale population structure18.  

 

To infer the genetic relationship of ancient individuals in the context of modern human 

genetic diversity, I projected the ancient individuals onto the PCs generated with 3875 

modern humans worldwide (Figure 4A). This showed previously observed clustering 

of HGs <20 KYA with West Eurasia modern individuals, whilst older PHGs fall 

qualitatively closer to American and Asian populations49. This was an expected pattern 

given the well-documented presence of ANE ancestry in these individuals49,75 and the 

absence of basal Eurasian ancestry5,68. The positions of PHGs in (Figure 4A) is likely 

also driven by ancestry changes after the glaciers retreated across Eurasia1,68. I also 

generated a projected PCA using only 883 genetically defined West Eurasians to 

highlight finer-scale structure and clusters (Figure 4B). Again, the anticipated 

clustering of Southern Europeans and Sardinians with Farmers and some 

Beaker/Yamanaya was observed. This has been noted before and hypothesised to 

reflect at least one of the migration routes taken by Farming groups along the 

Mediterranean coastline6,7. Another observation from this PCA was the presence of at 

least seven Beaker/Yamnaya individuals qualitatively closer to Modern Southern 

Europeans and Farmers. The Beaker are known to be a mixture of Yamnaya-related 

and Farmer-related groups with a considerable variation in ancestry proportions73. The 

Yamnaya/Beaker themselves group on a cline between Modern Russian and Western 

Europe. However, the majority cluster closely with modern Northern and Central 

Europeans, which is expected given the Beaker is known to possess the three 

ancestral components observed in most Modern Europeans5,73  with most HGs falling 

outside Modern West Eurasians except for several of ~20 KYA and older. These likely 

represent previously defined WHGs and SHGs who were observed to cluster in a 

similar manner5,25. Finally, HGs, Beaker/Yamnaya and Farmers are also 

distinguishable in an admixture analysis89 (Figure 5; Supplementary Figure 4). 

Beginning with the oldest group, HG individuals tend to possess the highest 

proportions of either ANE-like ancestry (K1) or WHG-like ancestry (K3).  K2 is most 

prevalent in Farmers, and a mixture of ANE-like, WHG-like and Farmer-like ancestries 

are observed in the Beaker/Yamnaya. Specifically, ANE-like ancestry is most 

prevalent in PHGs and the Beaker/Yamnaya, which has previously been described in 
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the Maykop group from the Steppe and PHGs such as ma1 and AfontovaGora318,75,95. 

The farmer-like ancestry component was also found to reach ~47% in some HGs. This 

ancestry, and particularly an increase of ~20-30% HG ancestry in Farmers, has been 

previously noted7, and it is due to admixture between the ancestors of these groups. 

Finally, the WHG-like component was most prevalent in individuals which have been 

previously classified as WHGs, such as Loschbour5, which contained >99% K3 in my 

analysis. A limitation of the admixture analysis is the requirement to preassign an 

expected number of Ks, thus potentially biasing conclusions. In addition, the number 

of individuals varies greatly between each group meaning the likelihood of observing 

structure within the HGs is greater than for the other groups.       

 

In conclusion, I generated a dataset of 299 Ancient Human Genomes from across 

Eurasia using publicly available samples, which were deliberately enriched for HGs 

and included new and unpublished hdSNP capture data. Both GTs and GLs were 

generated and utilised to assess the genetic structure in the selected samples through 

unprojected and projected PCA and admixture analyses. These showed the expected 

clustering amongst individuals. I expect that this dataset will serve as a useful resource 

for studies where the focus is on the analysis of HGs. The resource also allows the 

investigation of genetic adaptations in European populations, which is the focus of 

chapters 2 and 3 of this work. 
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Chapter 2: Inferences of Local Genetic 
Adaptation 
 

Background  
 

Introducing Local Genetic Adaptation  
 

Human populations inhabiting different parts of the globe display phenotypic variation. 

This is despite the small genetic diversity in humans compared to some of our Great 

Ape relatives96. One possible genetic explanation for this variation is Local Genetic 

Adaptation (LGA) which is defined as changes in the frequency of genetic variants that 

increase the fitness of an organism within its given environment97–99. LGA is mediated 

by positive selection if an upward increase in the allele100 or haplotype frequency101–

103 is detected. A haplotype is defined as a group of nearby genetic variants in LD with 

each other which are inherited together81. Other genetic processes can mimic LGA in 

the human genome, such as random genetic drift104. The investigation of LGA also 

has the potential to reveal the answers to several questions in human evolutionary 

biology, such as how humans have colonised the globe and how these adaptations 

have contributed to important phenotypic disparities among modern populations, such 

Figure 6:  Examples of genes evidenced to be under LGA in humans with 
bolded genes and populations indicated below. Possible drivers were shown 
by dark blue icons. This figure was adapted from: 80,81. Created with 
BioRender.com  
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as disease risk105,106. At the genomic scale, LGA can occur at the level of single 

genomic sites or genes, so-called monogenic selection or across multiple genes, so-

called polygenic. Most known strong signatures of LGA originate from single genes97–

100. However, allele frequencies change due to LGA can be difficult to disentangle from 

non-selective forces (discussed further in Chapter 3) such as random genetic drift or 

otherwise admixture between populations with a different allele frequency97,98,107. 

Despite these challenges, many examples exist of LGA mediated by positive 

selection97–99 (Figure 6). For most loci, the reason why LGA has taken place, and its 

biological effect is unclear103; however, there are a few well-characterised adaptations, 

such as too extreme environments, including high altitude in Tibetans mediated by 

variants in EPAS1, which reduces haemoglobin levels108–110. LGA may have allowed 

humans to colonise other environments, such as to environments characterised by 

extreme temperatures111–113. 

 

Specifically, non-African populations were exposed to an array of new selective 

pressure when colonising Eurasia following the OoA exodus ~50 KYA114–116 based on 

comparing Mitochondrial, Autosome and Y chromosome haplotypes between Africans 

and non-Africans (reviewed in: 116). A potential signature of LGA to cold climates in 

Eurasia has been inferred in European genomes upstream of the TRPM8 gene at 

SNP: rs10166942, which mediates the detection of cold117,118. Using modern 

genomes, this selection event was estimated to have happened shortly after the OoA 

exodus111. Finally, several later cultural and dietary transitions may have also driven 

LGA, including the later adoption of cultivating crops and rearing livestock for food ~10 

KYA and resulting dietary changes24,26,103,119,120. Loci evidenced to have undergone 

LGA in response to a diet with high levels of PUFAs in Greenland Inuit have been 

inferred at the FADS gene cluster120. In addition, dietary changes associated with milk 

consumption may have driven LGA in Northern Europe, as inferred at the LCT gene121.  
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Methods of Inferring Local Adaptation with Modern Genomes 
 

A possible strategy for inferring LGA at the genome scale is to apply computational 

methods that infer changes in the frequency of individual or multiple loci across 

populations122. Numerous methods exist to do this using genomic datasets, and here 

I will describe allele frequency and LD-based methods. These are two commonly 

utilised methods for inferring LGA in human populations. Allele frequency and LD-

based methods can detect LGA on different timescales, with LD-based methods better 

suited to the detection of selective sweeps recent enough that recombination has not 

broken down the haplotype98. To begin, I will introduce the basic principles behind 

methods that infer selection from allele frequencies or statistics that utilise them.  

 

Allele frequency-based methods are designed to identify genomic positions with a 

greater difference in the frequency of a locus within one population compared to 

another population than expected due to non-neutral processes such as random 

genetic drift. One of the simplest and most utilised tools based on allele frequency is 

FST which is a relative measure of allele frequency differentiation among populations 

against diversity within populations. The most implemented method for calculating FST 

was developed by Weir and Cockerham123. Their method is highly used due to its 

simplicity and because it accounts for the sample variance in allele frequencies being 

a subset drawn from a larger distribution in the whole population123,124.  FST has been 

extended over time with some modern methods aiming to increase its usefulness via 

incorporating three: PBS125 or four: PBSnj126 populations.  

 

In addition to allele frequency-based methods, LGA can be inferred using haplotype-

based methods. Many of these methods determine the decay of LD surrounding a 

SNP127. The constraint on a selected SNP results in a reduction in diversity compared 

with intervening regions not subject to the selective force101,102. This type of signature 

is known to occur in response to strong sweeps on a new mutation. LD-based methods 

such as EHH, LRH, XP-EHH and iHS98 measure the decay of LD surrounding a SNP 

and compare this with the rest of the genome whilst accounting for the variation in 

recombination rates, which could otherwise bias signals towards low recombination 

rate regions103. Sabeti and colleagues predicted their method: EHH could detect 
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selective events in the last ~10 KYA128. However, for inferring LGA, XP-EHH is of 

particular use as it allows the identification of selection in specific populations129.  

 

Insights from Ancient Human Genomes 
 

In addition to the above inferences made with modern genomes, ancient genomes 

represent a powerful tool for disentangling human history and adaptation6,20–23,26,27,29–

31. Many strides have also been made in uncovering the timeline of demographic 

events in modern Europeans (reviewed in: 8,19) and the relationship between ancient, 

archaic, and modern humans. Below, I describe some of these results, beginning with 

the oldest Hunter Gatherers (HGs) and ending with the formation of the ‘three-

component’ ancestry observed in some modern European populations94,130–132.   

 

The oldest whole-genome sequenced human with a confident radiocarbon date is 

Ust_Ishim (mean: 44366 years BP) from Siberia2,46. In addition, Zlaty_Kun from 

Czechia was radiocarbon dated to (mean: 29650 years BP), however because of 

modern glue contamination, the authors propose this is the lowest bound of the real 

age and, therefore, may be older than Ust_Ishim71.  Several other PHGs have been 

sequenced, and many have been found not to preferentially contribute to any modern 

human population, as exemplified in Ust_Ishim and Oas12,133. This could be because 

of the extinction of some PHG groups and or a replacement with other groups as the 

glaciers retreated134. Despite this, the ~36 KYA Kostenki14 does partially contribute 

to Modern Northern and Eastern Europeans, suggesting that some groups survived 

the LGM135,136. In addition, PHGs have been sequenced from Asia with the ~34 KYA 

Salkit and ~40 KYA Tianyuan showing greater allele sharing as measured by F3 

statistics with East compared to West Eurasians relative to an African outgroup 

suggesting the split of East and West Eurasian populations occurred >40 KYA68,137,138. 

F3 statistics are a measure of allele frequency differences amongst three populations 

with values that deviate from 0, suggesting admixture between two populations44. 

Individuals contributing to Modern East Asians and Native Americans have also been 

identified in the Palaeolithic136,139,140. After the LGM, several additional genetic groups 

of HGs began to emerge136. In Central Europe, these were the Vestonice, followed by 

the later El Miron and Villabruna-related groups136. Interestingly, one study found HGs 

younger than ~14 KYA showed a genetic affinity to Modern Easterners represented 
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by Iraqi Jews, suggesting a new influx of ancestry or finer scale population structure136. 

At the Eastern edge of Europe and in the Caucasus, two groups of HGs are observed: 

EHGs and the highly genetically diverged from the former: CHGs141. There is clear 

evidence for admixture between HGs, for example, in SHGs, which appeared to be 

admixed from populations related to Western HGs WHGs and EHGs132 in 

approximately equal proportions142. Moving forward in time, ancient genomes have 

also revealed two major changes in ancestry. In Europe, these are associated with the 

invention of farming and the appearance of a group of EEFs who are clearly genetically 

closer to older Anatolian farmers than HGs131. In the Neolithic, ~9-10 KYA, these 

farmers are thought to have expanded Westward from Anatolia, admixing early143 and 

later144 with pre-existing HG populations7.  

 

Later in the Bronze Age ~5 KYA, populations in Europe begin to display greater allele 

sharing with individuals from the Steppe within today’s Ukraine and Russia132. This is 

thought to have been caused by the Steppe expansion of individuals associated with 

the Yamnaya culture and brought various new genetic contributions to Europe141. In 

some regions, such as the British Isles73 and Denmark145, the Steppe expansion 

eventually almost replaced previous Neolithic Farmers, which was possibly mediated 

by Beaker Complex individuals from Continental Europe with high Yamnaya/Steppe-

related ancestry73. These changes led to most Modern Europeans displaying two or 

three main ancestry components130–132. These are best represented by HGs, Farmers, 

and the Yamnaya. Interestingly their contributions to modern Europeans are unequal 

across the region, with southern Europeans such as Iberians and Sardinians tending 

to display a greater proportion of Farmer-related ancestry and little or no Yamnaya-

related ancestry146,147. This is thought to be due to the Mediterranean coastal route 

taken by some incoming Farmers148. In Northern Europe, Yamnaya-related ancestry 

is higher, and Eastern Europeans have the greatest HG-related ancestry132. Genetic 

changes outside of Eurasia are also evidenced with ancient genomes and are 

reviewed in134.  A vast and complex array of demographic inferences have been made 

from ancient genomes; however, ancient genomes are also informative to studying 

LGA131,142,149–157. Utilising modern genomes, a variety of signatures of LGA have been 

inferred80,81. However, modern genomes can only be used to indirectly decipher when 

selection began and why it may have occurred111. The oldest ancient genome 

possessing a selective SNP can be said to be the upper bound for when the allele first 
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appeared and give a direct observation in time and space111,140. In addition, it has been 

proposed that ancient genomes can reveal adaptations hidden from modern genomes 

by more recent admixture explaining the lack of overlap between signatures of LGA 

inferred with and without ancient genomes in some studies158.  

 

With ever-increasing numbers of ancient samples, selection scans have been 

performed with ancient genomes131,142,149–157. A variety of methods exist to assess the 

evidence of LGA in ancient genomes or have been adapted from methods focused on 

modern genomes22. These include the use of ancient genomes in PBS scans to infer 

allele frequency change along the branch of a population history tree leading from 

ancient to modern individuals22. The PBS approach has been applied to infer LGA 

between ancient and modern Native Americans at immune functioning gene: HLA-

DQA122. In addition, methods that use only allele frequencies, including DAnc, have 

been applied to separate allele frequency change before and after the OoA bottleneck 

using the single Palaeolithic genome of Ust_Ishim2,21. Another method for inferring 

recent LGA with ancient genomes employs ancestry proportions6,24,28. Specifically, 

using the notion that some modern European genomes consist of three ancestral 

components and large numbers of ancient genomes exist, which are proxies for each 

of these components5,6. For each SNP in the genome, the expected allele frequency 

in modern Europeans can be calculated by multiplying the allele frequencies in each 

ancestral population by the ancestry proportion, which they contribute to modern 

Europeans6. Comparing this expectation with the actual allele frequency allows the 

identification of SNPs which strongly deviate from expectation which could be due to 

LGA6. This approach has confirmed a variety of putative adaptations in the analysis of 

modern populations, such as on the variant rs4988235-A upstream of the LCT gene 

that allows adult metabolism of lactose131. Interestingly, other studies have suggested 

rs4988235-A did not reach modern-day frequencies until after the Bronze Age despite 

its earlier first appearance131,149,156. Finally, LGA can be inferred using methods that 

track allele frequency changes over a time transect of ancient genomes20,26,27,29. 

Methods based upon these approaches have been used to infer an upward increase 

in allele frequency at rs4988235 (LCT) in ancient British and Central Europeans but 

not ancient southern Europeans over time29.  
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In addition, ancient genomes can highlight the past populations that may have 

contributed selective alleles, such as for rs12913832-G upstream of OCA2, which is 

near fixed in HGs and Northern Europeans but is at a considerably lower frequency in 

other ancient populations suggesting that HGs have contributed this variant to modern 

populations131. Interestingly, rs12913832 is known to be the strongest predictor of 

either brown or blue eye colour in Europeans159. Despite these many insights, several 

gaps in our knowledge of this subject exist. Selection scans with hundreds, and 

recently ~1,000 ancient genomes31 have primarily focused on adaptive signatures 

identified with individuals who lived in the last 10 KYA6. This is due to the limited 

sampling of individuals >10 KYA (Chapter 1: Figure 1)17,46. For example, a large recent 

selection scan by Le and colleagues used 73 Mesolithic HGs compared to 509 

Anatolian and European Neolithic Farmers31. However, at the time of my analysis, the 

largest sample of HGs utilised in a selection scan was nine6. This excluded several 

newly published HGs, (for example: 139,160) and samples capture sequenced (Chapter 

1), providing an opportunity to incorporate these newly published HGs into a selection 

scan. Additional samples may increase the accuracy in inferences of LGA and reveal 

novel signatures that could not be detected within the relatively small past sample set, 

especially if they originate from a previously unsampled group. Moreover, the 

information provided by the larger sample of HGs, particularly older genomes, could 

also reveal earlier adaptation across time within the period that HGs lived in Europe. 

A crucial rationale to my analysis is that the investigation of these signatures may 

reveal the early adaptations to new conditions HGs encountered outside of Africa or 

during the LGM, such as colder climates111. In summary, the use of newly published 

genomes, including those derived from the oldest and so first inhabitants of Europe, 

may help identify early adaptations to new conditions outside of Africa.  

 

Aims and Objectives  
 

• Using the ancient dataset generated in (Chapter 1) calculate DAFs across 

PHGs from Eurasia.  
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• Combine DAFs calculated from ancient and modern genomes in the statistic 

DAnc to identify SNPs with the greatest change in DAF between PHGs and 

modern Europeans. 

 
• Calculate FST in modern Europeans and Africans and compare this to DAnc to 

determine the usefulness of incorporating ancient genomes for identifying novel 

SNPs with the greatest allele frequency change between PHGs and modern 

Europeans. 

 
• Determine the proportion of highly differentiated SNPs between Europe and 

Africa that underwent a change in frequency across the time transect of PHGs.  

 

Methods  
 

Selection of PHGs 
 

In this work, one of my aims was to identify SNPs with the greatest allele frequency 

change between PHGs and modern Europeans, which represent likely targets of LGA 

after the PHGs. To do this, I first selected only HGs from the collected sample of 299 

ancients (Chapter 1) with a radiocarbon or associated archaeological age older than 

20 KYA BP (Supplementary Table 4). I refer to these collectively as PHGs; however, 

I acknowledge they are unlikely to belong to a single population. However, these 

individuals represent the relatively few >20 KYA genomes sequenced in Eurasia to 

date. Genetic clusters within these PHGs have been described, such as the Vestonice 

group. However, this comprises only six low coverage capture sequenced individuals, 

which are unlikely to give confident genome-wide allele frequencies18. This selection 

criteria resulted in 30 PHGs (Supplementary Table 4). The date of 20 KYA was 

selected for several reasons. Firstly, it represents the approximate date of the LGM, 

after which the extinction of many HG groups and subsequent population 

replacements are thought to have occurred1,2,45,68. In addition, younger HGs have 

been found to be highly structured with the presence of EHGs7, WHGs5 and CHGs91 

and SHGs5,25. However, this could be because younger HGs are more numerous than 

older ones meaning structure is more likely to be detected17,46.  



 32 

Many younger HGs were contemporary with Farmers, and an increase in HG ancestry 

between early and younger Middle Neolithic Farmers has been described suggesting 

admixture7. Although this may represent relatively few individuals, the use of Farmer-

admixed HGs may not give representative allele frequencies for HGs. Overall, the 

appearance of these different clusters may complicate the interpretation of allele 

frequencies. Finally, the genetic separation between pre-glacial PHGs and post-glacial 

HGs was also apparent in both native and projected PCAs (Supplementary Figure 5: 

A-C). Some PHGs do fall more proximal to post-glacial HGs and Yamnaya/Beaker; 

however, these represented extremely low coverage samples which may have 

influenced their positioning in PCA (Supplementary Figure 5).   

 

Selection of Modern Genomes 
 

To compare allele frequency change between PHGs and modern Europeans, I 

selected a sample of modern genomes. For this, I chose three populations from the 

1KG ph364 YRI (n = 186) as the African, GBR (n = 107) as the European and 171 CHS 

as the Asian population. YRI, GBR and CHS were selected specifically because they 

commonly utilised subpopulations in the field21,64. In addition, these selections make 

my analysis more comparable with previously published work using similar 

methodologies21,25. 1KG ph3 metadata was derived from the IGSR64,161. Next 1KG 

VCFs containing the genotypes of 2504 individuals from 26 available populations, 

including YRI, GBR and CHS, were downloaded from: 

http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ Population ID files for 

every subpopulation containing the IDs for all individuals were created with the BASH 

command using a metadata file derived from the FTP directory.  

 

Processing of Modern Genomes and Calculating DAFs 
 

To obtain DAFs for 1KG ph3 subpopulations, VCFs were first filtered to retain only 

biallelic SNPs with BCFtools view. To estimate DAFs, the ancestral state of each SNP 

must be known. These VCFs contained an empty AA field.  Therefore, before adding 

this, blank AA fields were removed with bcftools annotate. AAs were then inserted into 

these VCFs with vcfancestralalleles162 using the EPO version e71 from the Human, 

Chimpanzee, Gorilla, Orangutan, Macaque and Marmoset alignments163.  
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With the filled AA VCFs, all 69,904,739 high-confidence alleles were extracted. These 

were denoted in the AA field by capitalised nucleotide codes and represent sequences 

where the ancestral state agrees with two other 

alignments:http://ftp.ensembl.org/pub/release75/fasta/ancestral_alleles/homo_sapien

s_ancestor_GRCh37_e71.README VCFtools has an option for calculating derived 

and alternative allele frequency. However, despite the presence of AAs, VCFtools did 

not appear to recognise AAs, possibly because the software is no longer maintained. 

Therefore, I first calculated reference and alternative allele frequencies for GBR, YRI 

and CHS for 69,904,873 sites which was all available sites. I then polarised those to 

ancestral and derived with high-confidence AAs defined above. I also removed one 

position: chr12_6608369, which appears to be a MNP and is therefore not biallelic164.  

 

Calculation of DAFs in PHGs 
 

To obtain DAFs for PHGs, I first calculated GLs for 30 PHGs in ANGSD using the 

same or similar flags used in Chapter 1 for all 299 ancients. In the same script, ANGSD 

infers DAFs from these GLs using the EPO e71 ancestral states noted above. 

However, before utilising PHG-inferred DAFs, several filtration steps were performed. 

From an output of 107,219,556 sites, 2,573,401 were removed because they 

contained an unknown ‘N’ AA. Then a further 340,509 sites were removed where 

neither the major nor minor allele matches the ancestral. Finally, because ANGSD 

outputs the minor allele frequency by default, allele frequencies for sites where the 

minor is not the derived allele must be flipped to obtain DAFs using the minor allele 

frequency, which was performed for 2,047,162 sites. Overall, these steps result in a 

final dataset of 104,305,647 sites or a ~2.7% reduction from filtering.  

 

Calculation of the DAnc statistics 
 

To identify SNPs with the greatest allele frequency change between PHGs and 

modern GBR DAnc, statistics were calculated21. First, DAFs for modern YRI, GBR and 

CHS and ancient PHGs were merged and compared to check ancestral and derived 

alleles were non-identical and that AAs matched across all four sets of DAFs. The 

merging stage means no variation outside that which is found in GBR, CHS, and YRI 

will be present in the dataset, and this is advantageous for removing variation caused 
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by unaccounted for Post-mortem DNA Damage (PMD) and sequencing errors25,66. 

This merge resulted in 8,521,474 sites. Those sites which were monomorphic (n = 

4,208,383) in any two of three modern populations are uninformative for DAnc and 

were therefore removed, resulting in a final dataset of 4,313,091 SNPs for the DAnc 

analysis.  A custom script was then written in R165,166 to calculate DAnc scores for the 

populations GBR, YRI, and PHG, hereafter referred to as DAnc[GBR, YRI, HG] using 

the formula in Equation 221. In addition, I ranked each SNPs’ DAnc score to create an 

empirical P value which indicates a SNPs relative position in the genome-wide 

distribution of DAnc scores using code obtained from (Alfie Gleeson, Andrés Group). 

SNPs with the greatest DAF change between PHGs and GBR relative to YRI have an 

extremely negative DAnc score and are given the lowest P value and, thereby, the 

greatest Log P value. The latter is calculated to make numerical values more 

interpretable compared to the ranks, which can contain up to six decimal places. A 

custom R script was also written to plot the genome-wide distributions of DAnc. 

Positive DAnc scores indicate allele frequencies are more different between YRI and 

PHGs than between GBR and PHGs. This could be caused by allele frequency change 

in the ancestors of YRI after they separated from PHGs or allele frequency change in 

the ancestors of PHGs after they separated from YRI or around the time of the OoA 

bottleneck114–116. All DAnc scores are provided in (Supplementary Data). 

 

 

 

DAnc = |	P1 − A		| − |		P2 − 	A	| 
 
 
chr5_33958959 = |	0.166667 − 0.064389	| − |	0.989011	 − 0.064389	|	 

 
 

chr5_33958959	 = −0.822 
 
 
 
 
 

Equation 2: The formula used to calculate DAnc scores adapted from: 21. The absolute 
value from the subtraction of DAFs in A, P1 and P2 is indicated by the ‘|’ symbol. 
Below the formula, an example calculation for a single SNP is shown. A = PHGs, P1 
= YRI and P2 = GBR.  
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Calculation of the FST statistic 
 

BASH scripts to filter VCF files and calculated FST were developed in collaboration 

with (Jasmin Rees, Andrés Group). To calculate Weir and Cockerham’s FST, raw 1KG 

ph3 VCF files were filtered to include only biallelic SNPs, excluding indels and 

retaining only SNPs with a DAF of >0.05 and <0.95 within each subpopulation in 

VCFtools. This filtering was performed because running the FST script was prohibitively 

slow on the Myriad Cluster when considering all sites. Subpopulation pairs from the 

1KG ph3 metadata were combined into tags such as YRI_GBR. A custom BASH script 

was then developed to calculate FST for all 325 subpopulation pairs. Per chromosome 

FST files were then joined. Two sites: chr8_37679934 and chrX_1543279, impeded 

this join step and were excluded. Finally, per chromosome, FST files were joined across 

325 subpopulation pairs. The total number of SNPs with data in at least one 

subpopulation pair was 13,537,587. All FST statistics are provided in (Supplementary 

Data).  

 

Comparison of DAnc and FST statistics 
 

To determine whether DAnc and specifically the incorporation of PHG DAFs could 

reveal novel SNPs with strong allele frequency change, DAnc and FST were compared. 

To do this, the subpopulation pair: YRI_GBR was chosen because the same 

individuals are used to calculate DAFs for DAnc. FST for this subpopulation were 

extracted from the dataset containing FST for 325 subpopulation pairs produced above, 

Human	Ancestor	

YRI	
	

GBR	

PHG	

-	 +	

Figure 7: A diagram depicting a 
simplified population history assumed 
for DAnc. Lines are not scaled. The 
dashed line indicates DAF increase 
between PHGs and GBR relative to 
YRI which can produce a negative 
value for DAnc alike chr5_33958959. 
These SNPs are of primary interest to 
this work as they can be caused by 
European-specific LGAs. 
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and SNPs, where FST could not be calculated, were removed. Finally, genome-wide 

empirical P values were calculated for all 4,620,349 SNPs in the same manner as in: 

(Calculation of the DAnc statistics). Next, SNPs with data for both DAnc and FST were 

merged, yielding 3,107,592 SNPs. SNPs and loci present in the 0.1 to 5% tail of DAnc 

and FST, which were private to that tail or shared between tails, were selected. Genes 

were determined by mapping SNPs with data for DAnc and FST to Ensembl Human 

Gene coordinates with 2kb added at the end of each gene to capture SNPs with 

potential regulatory function on a nearby gene using bedtools intersect21,167,168. 

Ensembl gene coordinates for GRCh37 were obtained from: 

http://grch37.ensembl.org/biomart/martview/b03f83117e6db11d24667bd60fa50ff9169. 

When SNPs map to multiple genes, I collapse the genes into a single locus separated 

by a ‘&’, and, therefore, I refer to these as loci hereafter because they can contain 

many genes. SNPs with data for DAnc and FST mapped to 54,934 loci with this 

approach. Finally, to determine if there is independence in whether a SNP or loci falls 

in the tail of the empirical distribution for DAnc or FST a Fisher’s Exact Test was 

performed with R fisher.test(). The expected number of shared and private SNPs or 

loci was calculated with R chisq.test([Data Frame])$expected170.  

 

DAnc and FST SNP information 
 

dbSNP IDs were extracted for SNPs with extreme DAnc and FST scores using the 

UCSC Genome Browser and dbSNP Release 153110,171. From these, LD between 

SNPs of interest was obtained from Ensembl Linkage Disequilibrium Calculator: 

https://grch37.ensembl.org/Homo_sapiens/Tools/LD167. In addition, I also checked 

whether one specific DAnc peak was introgressed from Neanderthals by obtaining the 

genomic coordinates of Neanderthal introgressed regions from several studies172–175  

and overlapping these with the coordinates of the DAnc peak. Finally, to determine 

whether known candidates of LGA also display extreme DAnc values, I select 34 

genes collated by Rees et al., with evidence of LGA in Europeans81.  For each gene, 

I obtained Ensembl gene coordinates as noted above and extracted the SNP with the 

highest DAnc Log P value. All the gene names presented herein were obtained from: 

https://www.genenames.org176. 
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Highly differentiated SNPs in DAnc  
 

This analysis was performed to determine the proportion of SNPs which are highly 

differentiated between GBR and YRI for which allele frequency change happened after 

the PHGs. The difference in DAF (DDAF) between YRI and GBR was calculated for 

all SNPs with DAnc scores (n = 4,313,091). DDAF was calculated specifically to make 

my analysis comparable with a previous publication first describing DAnc21. Each 

SNPs DDAF was then ranked to produce genome-wide P values and -Log10(P value), 

hereafter referred to simply as DDAF Log P value, using the same approach as for the 

raw DAnc scores. SNPs in the top 0.1, 1.0 and 5.0% of the DDAF distribution were 

extracted and merged with SNPs in the top 0.1, 1.0 and 5.0% of the DAnc distribution. 

The number of SNPs in the tails of the DDAF distribution were divided by the number 

of SNPs in the tails of the DAnc distribution using a custom R script to calculate the 

proportion of highly differentiated SNPs in each tail. This was repeated using DAnc 

scores for 696,584 transversions to check whether the results were robust to the 

influence of PMD.  

 

Results 
 

Summary of PHGs 
 

To explore the age range, genome-wide coverage, and sequencing methods of PHGs, 

their metadata was extracted from all 299 ancients described in Chapter 1 

(Supplementary Table 4; Figure 8). PHGs cover a period of 20 KYA BP (Chapter 1; 

Supplementary Data). The median and mean age were calculated as ~31 KYA. 

Median coverage was calculated as 0.0175X, whilst the mean was highly positively 

skewed to 3.09X by a small number of extremely high coverage samples 

(Supplementary Table 4). The median coverage for these samples is considerably 

lower than the value obtained from all processed genomes: 0.082 (Chapter 1). This is 

likely because of some extremely low coverage capture sequenced individuals in the 

PHGs sample set, such as GoyetQ56-16 (~0.0003X) (Chapter 1: Supplementary 

Data). In addition, a lower percentage of the individuals in this subset were 1240K 

captured (30%) in comparison to the entire dataset ~68%. UDG treatments used to 
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generate PHG genomes varied from untreated ds.minus protocols (n = 12) and partial 

ds.half protocols (n = 9). In sum, the selected PHGs displayed a wide ~20 KYA age 

range and were ~30 KYA old on average. However, their genomes were characterised 

by extremely low and variable genome-wide coverage, which was below 1X when 

considering the median. PHGs were also enriched in shotgun-sequenced samples 

compared to the parent dataset and contained a mix of UDG untreated, partial, and 

full samples.   

 

Summary of DAFs 
 

To assess allele frequency change between PHGs and GBR relative to YRI, DAFs for 

these were calculated (Supplementary Figure 6: A, B). DAFs for CHS were calculated 

to allow the exclusion of sites which were not polymorphic across human populations. 

Overall, DAFs broadly follow the expected distribution for an unfolded SFS177. Both 

CHS and GBR display a slight excess of fixed or nearly fixed alleles, and GBR 

displayed a depletion of low-frequency derived alleles which is not observed in YRI or 

CHS. The reduction in low-frequency derived alleles in Europe has been observed 

before and may be caused by drift during the OoA bottleneck178. The depletion of low-

frequency derived alleles in East Asians was not observed in CHS, which is 

unexpected given previous observations178. This could potentially be influenced by the 

difference in sample size between CHS and GBR, with 64 more individuals in the 

former making low-frequency alleles more likely to be observed. DAFs for PHGs are 

qualitatively more stochastic than those from the 1KG ph3 subpopulations, likely due 

to the larger number of individuals present in the 1KG ph3 dataset compared with the 

PHGs. The 1KG ph3 populations contained between 3.6 and 6.2 times as many 

individuals as the PHGs. In addition, and as discussed above PHGs likely originate 

from many populations with different allele frequencies.  
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Summary of the DAnc & FST statistics 
 

The DAFs mentioned above for GBR, YRI and PHGs were then used to calculate 

DAnc per SNP using the formula in Equation 1. Allele frequencies from the same 1KG 

ph3 subpopulations were used to calculate FST. To gain an insight into the distributions 

of DAnc and FST numerically and across the genome, density and Manhattan plots 

were created from Log P values (Figure 9). DAnc values can only take a value of 

between -1 and 121. Here, I calculated values which cover a range of between -0.822 

and 0.906. DAnc scores were seen to be slightly skewed to positive values with a 

median of 0.036 and a mean of 0.058 (Supplementary Figure 7A). This slight, apparent 

skew is likely because of the OoA bottleneck and evolutionary history, which is shared 

between GBR and PHGs but not with YRI meaning their allele frequencies are likely 

more similar than YRI21. Both DAnc and FST statistics were ranked to produce P values 

and more interpretable Log P values. A dot plot of the Log P values for both statistics 

is depicted in Supplementary Figure 8 and shows few SNPs with extremely positive 

Figure 8: The distribution of sampling locations of 30 PHG used in DAnc calculations 
sampled from the AADR and published literature (see Chapter 1). Each point 
represents one individual (except for squares) with points coloured by age in years BP 
and shaped by AADR or preassigned GroupID (see Chapter 1). This excludes hdSNP-
captured of Kostenki14 (see Chapter 1). Grey squares indicate the locations of 1KG 
phase 3 GBR, and YRI and CHS also incorporated into DAF or DAnc and FST 
calculations.  
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values for both statistics, which I explore in greater detail in subsequent sections. One 

previously noted limitation of DAnc is that the power to identify a SNP is likely 

influenced by DAF in the ancestral population, here: YRI (Upgrade Review: Garrett 

Hellenthal). The power to identify LGA with DAnc declines with the frequency of the 

allele in the African population. To assess this, I plotted the DAF in YRI against the 

Log P value for DAnc and FST. Clearly, very high or low DAnc Log P values can only 

be achieved when the DAF in YRI is very high or low (Supplementary Figure 9). This 

biphasic pattern is qualitatively more pronounced for FST because this statistic only 

uses allele frequencies in YRI and GBR, and therefore its value is more greatly 

influenced by the allele frequency in YRI than DAnc, which also incorporates allele 

frequencies from PHGs.  

 

Genome-wide distributions of DAnc highlight several peaks containing groupings of 

SNPs with high DAnc Log P values. This means these SNPs contain extremely 

negative DAnc scores suggestive of a large allele frequency change on the branch 

from PHGs to GBR relative to YRI (Figure 7). Particularly striking is the region 

chr20:62137463-62178105, which contains 15 SNPs with DAnc scores ranging from -

0.615 to -0.815 Log P value from 4.31 to 6.03. All these SNPs fall within the gene: 

PTK6179,180. This gene encodes a phosphorylating protein (a kinase) involved in cell 

signalling and has been found to be associated with the likelihood of survival in breast 

cancer179. The SNP chr20_62159504 (rs310644) displayed a particularly high value 

in comparison to the genome with the top SNPs: chr5_33958959 (rs28777) 

and chr5_33964210 (rs183671) having a Log P value of 6.46. Both of those SNPs fall 

within the gene: SLC45A2, which has previously been identified as a locus under 

positive selection with ancient and modern genomes6,110,181. Other SNPs with 

particularly high Log P values from loci previously reported to be under LGA include 

OCA2, chr15_28238158 (5.05) and LCT, chr2_136578536 (4.54) (Supplementary 

Table 5).  SNPs identified by previous studies but without extreme DAnc scores here 

could be due to any number of methodological differences. However, it is interesting 

to see the SNP with the highest DAnc Log P value for TRPM8 chr2_234896346 is only 

1.46. The SNP identified to be under LGA at this TRPM8 (chr2_234825093) was found 

to be at high frequency in HGs, and here I calculated the DAF in PHGs to be 0.840. 

This highlights the fact that SNPs which have already increased to present-day allele 

frequencies or LGA happening prior to the PHGs will not yield extreme DAnc scores. 



 41 

Regarding FST, values were in the range of -0.0098 to 0.888, with a median of 0.0502 

and a mean of 0.103 (Supplementary Figure 7B). Qualitatively fewer clear peaks were 

observed in the FST dataset. However, the SNP with the greatest DAF differentiation 

between GBR and YRI with a Log FST P value achieved a value of 6.66 for 

SNP: chr7_131826761. This SNP falls within the gene PLXNA4, which has been found 

to play a role in the activation of immune cells to threats such as bacteria182. In sum, 

both DAnc and FST scores follow the expected and reported distributions. In the 

genome-wide distribution of DAnc, a clearly defined peak was observed at 

chr20:62137463-62178105 encompassing the gene PTK6 representing a locus with 

strong DAF between PHGs and GBR which may be due to LGA in the time between 

the PHGs and GBR. However, this is not explicitly tested here.  

 

 

B

A
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Comparison of DAnc and FST statistics 
 

Next, I aimed to determine whether DAnc can identify SNPs that have undergone 

allele frequency changes between PHGs and GBR, which I would not observe with 

conventional FST alone. I also aimed to determine the proportion and individual SNPs 

which were shared in both statistics, which indicate SNPs with the greatest evidence 

of allele frequency change. Using SNPs with data for both DAnc and FST SNPs in the 

0.1 to 5% tail of each statistic were extracted and overlapped. Counts of the number 

of shared and private SNPs for each tail are shown in (Table 1). Across all tails, a 

slightly greater proportion of SNPs are private to DAnc and so not observed in the 

corresponding tail of FST. However, the number of shared SNPs is low across all tails, 

falling to 19 for the 0.1% shared tails (Supplementary Table 6). In the 0.1% tail, these 

represent SNPs with very strong evidence for allele frequency change with both 

statistics. The SNP: chr19_16791443 (rs901792) had the most negative raw DAnc 

score: -0.772 across the shared 0.1% tail with a raw FST of 0.761.  This SNP was found 

to fall in the gene: TMEM38A, with one other SNP in this group also mapping to this 

locus. A previous study identified the region chr19:16387600-16994000 as having 

been under positive selection in the ancestors of Europeans and Africans after their 

separation from Neanderthals, indicating the possibility of an old selection event(s)183. 

 

 

 

 

 

 

Tail 
(%) 

DAnc FST Shared 
(Actual) 

Shared 
(Expected) 

DAnc 
private 

DAnc 
Private 

(%) 

FST 
private 

FST 
Private 

(%) 

Private 
similarity1 

Private 
similarity1 

(%) 

Fisher’s 
Exact P 
(x10-8) 

0.1 3797 3250 19 4 3778 99.5 3231 99.4 547 0.1 4.335 

1 38912 32472 964 406 37948 97.5 31508 97.0 6440 0.5 * 
2 77052 65821 3281 1629 73771 95.7 62540 95.0 11231 0.7 * 
3 114966 98747 6796 3637 108170 94.1 91951 93.1 16219 1.0 * 
4 152317 131692 10857 6410 141460 92.9 120835 91.8 20625 1.1 * 
5 190235 164380 15364 9964 174871 91.9 149016 90.7 25855 1.2 * 

Table 1: The counts and percentages of SNPs present in both DAnc and FST datasets 
(n = 3,107,592) which are shared or private within the noted tail. 1Private similarity is 
the number of SNPs or percentage private to DAnc subtracted from the number of 
SNPs private to FST. *Fisher’s Exact P value calculated as less than 2.2x10-16. 

Figure 9: (A) Genome-wide distributions of DAnc Log P values [GBR_YRI_HG_log] and 
(B) FST Log P values. Genes with extremely positive DAnc scores, which are discussed 
in the below sections, are labelled in (A). The overlaid text on chr2 corresponds to 
PDE11A, MCM6 near LCT and EDAR genes. 
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A Fisher’s Exact Test was performed to determine whether there is independence 

between the tails of DAnc and FST. The null hypothesis of this analysis was that there 

is significant independence between the tails, and the alternative hypothesis was that 

there is no significant independence between SNPs in the tails. The latter can be 

interpreted as a greater proportion of overlap between the tails than expected. These 

are SNPs with extreme DAnc and FST P values. Across all tested thresholds, my 

calculations allowed the rejection of the null hypothesis (Table 1). Therefore, there is 

significantly more overlap between DAnc and FST than expected. This is also borne 

out by the expected overlap always less than the actual values across all tested 

thresholds (Table 1).  

 

Although DAnc appears to identify slightly more private SNPs across the tails, it could 

be that DAnc is identifying different SNPs to FST, but both ultimately fall within the 

same loci. To test this, loci mapping to the 0.1 to 5% tail of each score were extracted 

and compared. Counts of the number of shared and private loci for each tail are shown 

in (Table 2). In all tails, the private similarity for loci is greater than for SNPs, probably 

because a locus encompasses a larger genomic element than a SNP and therefore, 

concordance is more likely. I also found that the proportion of private loci was still 

slightly greater for DAnc at all tested thresholds, including but less strongly for the 

0.1% tail compared to FST. Therefore, it appears that DAnc is identifying different SNPs 

to FST, which also fall within different loci, especially in the extreme 0.1% tail. Similar 

to the SNP analysis the null hypothesis could also be rejected for loci (Table 2).  

 

 

 

 

 

 

Tail 
(%) 

DAnc FST Shared 
(Actual) 

Shared 
(Expected) 

DAnc 
private 

DAnc 
Private 

(%) 

FST 
private 

FST 
Private 

(%) 

Private 
similarity1 

Private 
similarity1 

(%) 

Fisher’s 
Exact P  

0.1 876 648 85 10 791 90.3 563 86.9 228 3.4 * 
1 5535 4249 1298 409 4237 76.5 2951 69.5 1286 7.0 * 
2 9055 7319 2781 1096 6274 69.3 4538 62.0 1736 7.3 * 
3 11882 9797 4109 1843 7773 65.4 5688 58.1 2085 7.3 * 
4 14355 11965 5435 2610 8920 62.1 6530 54.6 2390 7.5 * 
5 16538 13935 6722 3370 9816 59.4 7213 51.8 2603 7.6 * 

Table 2: The counts and percentages of loci present in both DAnc and FST datasets 
(n = 54,934) which are shared or private within the noted tail. 1Private similarity is the 
number of loci or percentages private to DAnc subtracted from the number of SNPs 
private to FST. *Fisher’s Exact P value calculated as less than 2.2x10-16. 
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So far, I have investigated the proportions of shared and private SNPs across each 

tail. However, missing from the above analysis is an understanding of how the actual 

values of DAnc and FST compare across shared SNPs and how the distribution of FST 

for the different DAnc tails and vice versa differ. For example, do shared extremely 

low P value DAnc scores also have low P values in FST? This would help us 

understand the reasons behind the lack of overlap between DAnc and FST (Table 1, 

2). To achieve this, I placed each SNP with data for DAnc and FST into approximately 

equal-sized bins regarding the number of SNPs to allow cross-comparison and 

prevent results from being confounded by the number of SNPs in each bin. I then 

plotted the distribution of the opposite score (DAnc or FST) P value (Figure 10: A, B). 

Firstly, SNPs with the lowest DAnc or FST P value (top and bottom panels of Figure 

10, respectively) were found to have a relatively broad distribution of the opposite 

statistic. For example, the median FST P value was 0.326 for DAnc P values ranging 

from 1.62x10-6 to 0.106. This is because low DAnc P values include both SNPs, which 

are highly differentiated between GBR and YRI (yielding low FST P values) and SNPs 

which are not (yielding higher FST P values). The latter is likely caused by differences 

in allele frequency between GBR and PHGs, which are incorporated specifically into 

DAnc. In Figure 10A, as I increase the DAnc P value, the FST P value initially increases 

till ~0.5, showing that SNPs with moderate DAnc P values tend to have high Fst P 

values consistent with little allele frequency change between GBR and YRI. Again, the 

influence of the allele frequencies between PHGs against GBR and YRI might be 

driving the moderately low DAnc P value. However, beyond this, the FST P value 

begins to decrease because SNPs with positive DAnc P value can be formed when 

allele frequency change between YRI and GBR is present. This would also produce a 

large allele frequency change by FST, explaining the low FST P value.   

 

In Figure 10B, it is first clear that the pattern of DAnc P values follows a biphasic 

distribution for most of the FST P value bins. The highest FST P value is the exception 

and is explained above. SNPs with low FST P values tended to be enriched for high as 

opposed to low DAnc P values. This is consistent with a greater proportion of allele 

frequency change in YRI or during the OoA bottleneck than between the PHGs and 

GBR and is consistent with previous observations21. To illustrate this further, a simple 

comparison of the heights of each peak in (Figure 10B, top panel) shows that the left-

hand peak is ~25% the height of the right. 
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DAnc and highly differentiated SNPs 
 

Finally, I aimed to better determine the proportion of SNPs which are today highly 

differentiated between YRI and GBR, which are identified in the tails of DAnc.  

BA

Figure 10: Density distributions of DAnc and FST P value across different bins of the 
opposite statistic. (A) The distribution of FST P values for different bins of DAnc P 
values. On the right-hand side of the panels in (A) in brackets are depicted the ranges 
of the DAnc P value bins. For example, the top panel in (A) shows the FST P value 
distribution (orange curve) for SNPs with a DAnc P value between 1.62x10-6 and 0.106. 
Dashed lines indicate the median P value, and the right-hand number indicates the 
number of SNPs in each bin. For example, the top panel in (A) shows the median FST 
P value is 0.326 and the DAnc bin contains 392,449 SNPs. (B) The distribution of DAnc 
P values for different bins of FST P value. On the right-hand side of the panels in (B) in 
brackets are depicted the ranges of the FST P value bins. For example, the top panel 
in (B) shows the DAnc P value distribution (green curve) for SNPs with a FST P value 
between 2.16x10-7 and 0.119. Dashed lines and right-hand numbers have the same 
meaning in (B) as in (A). 
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This will help us understand when most of the allele frequency differentiation between 

YRI and GBR occurred and therefore isolate SNPs that have undergone a large allele 

frequency change between PHGs and GBR, some of which may be due to LGA. 

Figure 10B suggests that a greater proportion of low FST P value SNPs have changed 

in frequency between YRI and GBR than between GBR and PHGs. However, to 

provide additional support for the inferences made above, the tails of the DDAF and 

DAnc were compared. Specifically, I compute the DDAF between GBR and YRI before 

calculating empirical P values from DDAF. I find that 9.85% of all SNPs in the 5% tails 

of the DDAF distribution are also in the 5% tail of the DAnc distribution. This value was 

consistent (10.2%) in the 5% tail even when restricting the analysis to transversion-

only SNPs showing that unaccounted for PMD does not greatly influence this analysis. 

Overall, this suggests that ~10% of the most highly differentiated alleles between GBR 

and YRI changed in frequency between PHGs and the present day. On the reverse 

side, ~90% of the most highly differentiated alleles between GBR and YRI changed in 

frequency within YRI or during the OoA bottleneck21. However, this is only an estimate 

based on allele frequencies from relatively few low-coverage ancient genomes 

(Chapter 1). Using the single Upper Palaeolithic genome Ust_Ishim, Key et al., 2016 

found ~30% of the most highly differentiated alleles between GBR and YRI changed 

in frequency between Ust_Ishim and GBR. It is unsurprising my calculated value is 

lower given the narrower time for allele frequency change between PHGs with the 

youngest genome ~24,000 years BP and GBR compared to ~44,366 years BP with 

Ust_Ishim and GBR2,21,75.  

 

Discussion & Conclusions  
 

In this chapter, I select from 299 ancient BAM files generated in (Chapter 1) retaining 

30 PHGs of >20 KYA to locate SNPs with the greatest allele frequency change 

between PHGs and modern Europeans. I found that the median age in years BP 

across these individuals was ~30 KYA. This reflected the extensive sampling of 

individuals from the Dolni Vestonice burials in the Czech Republic dated to this 

period18. F3 statistics have shown that the Ostuni1 sampled from Italy clustered 

closely with four Vestonice individuals: 43, 15, 16, 13, Pavlov1 and KremsWA318.  
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In addition, individual I2483, also known as Krems1_1, appears to have been sampled 

from a similar location (Figure 3)184. The large representation of Vestonice individuals 

in this dataset could mean that DAFs calculated from PHGs are biased toward this 

group; however, the coverage of these samples is extremely low (Supplementary 

Table 4). Other geographical clusters, including four Sunghir and two Yana individuals, 

are also present and contained higher coverage individuals (Supplementary Table 4). 

This dataset of PHGs was characterised by variable genome-wide coverage 

(Supplementary Table 4). Indeed, the few extremely high coverage (>10X) individuals: 

Ust_Ishim (~33.8X), Yana_old (~25.4X), and SIII (~10.7X) may skew DAFs towards 

the populations those individuals originate from. To test whether this influences DAFs, 

future work could seek to down-sample PHGs to the same or similar genome-wide 

coverage and check whether DAFs and DAnc scores change as a result. Alternatively, 

one unpublished study with >1,000 ancient genomes down-sampled individuals in 

their dataset and then measured the power of their scan as the proportion of the 

signatures of selection recovered relative to the full dataset185. Both approaches could 

be explored in future work. Another observation in PHGs is the bias towards shotgun-

sequenced samples and the paucity of 1240K relative to the AADR (Chapter 1). The 

presence of samples sequenced with different technologies may create biases in the 

representation of different genomic regions, and some authors have sought to remove 

this by, for example, selecting only 1240K samples185. However, the lack of capture-

sequenced individuals should reduce the likelihood of overrepresenting those SNPs 

in the downstream analysis.   

 

Finally, PHGs contain a mixture of UDG treatments. This is likely to mean each 

genome contains different proportions of PMD8,76. Most individuals were partially 

UDG-treated; however, many such as Kostenki14_SG contain a mixture of UDG-

treated and untreated libraries76. UDG untreated reads from Kostenki14_SG showed 

~5% C to T substitutions five bp beyond the start of the read76.  In my approach, I trim 

three nucleotides from each read during GL-calling, but PMD beyond that is likely to 

be unaccounted for. However, as described in (Chapter 1), PMD mostly occurs in the 

first three bp of each read and declines exponentially thereafter, and therefore I do not 

believe unaccounted for PMD biases my conclusions here39,52. In a similar vein to the 

above, future work could seek to test different trimming lengths to determine if these 

change downstream DAFs or DAnc scores occur as a result.  
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Alternatively, different approaches could be tested, such as modifying per base quality 

scores based on PMD probability as implemented in MapDamage2.0186. Finally, only 

transversions could be considered. However, this greatly reduces the number of SNPs 

available for analysis, given that transitions outnumber transversions in human 

genomes by ~2-3 fold25,43,187.  

 

Next, I calculated DAFs in three modern human populations and PHGs. These broadly 

followed the expected patterns in all populations with a higher proportion of fixed or 

nearly fixed derived alleles in CHS and, to a lesser extent GBR and a higher proportion 

of low-frequency derived alleles in YRI and CHS. The former observation is 

encouraging as previous work has shown an increase in high-frequency derived 

alleles can be caused by ancestral misspecification188. However, I would expect to 

observe this in all populations, and the excess in CHS relative to GBR and YRI is likely 

caused by the stronger bottleneck in East Asians compared to Europeans and 

Africans53,64. In addition, I attempted to reduce the likelihood of ancestral 

misspecification by utilising AAs derived from alignments of six primates. The excess 

of low-frequency variants in YRI and CHS relative to GBR is observable in the 1KG 

ph3 dataset64.  

 

I then combine genome-wide DAFs with the DAnc statistic21. Similar to the parent 

DAFs, DAnc scores displayed the expected distribution of values21.  The modest skew 

DAnc scores towards positive values is likely caused by the OoA bottleneck or allele 

frequency change in YRI. It is thought that the ancestors of Eurasians expanded from 

a smaller founding population178. Because all PHGs and GBR lived after this period, 

and so share this event, their allele frequencies are more likely to be similar to each 

other than to YRI. This manifests in a greater difference in DAF between YRI and 

PHGs relative to PHGs and GBR, producing a positive DAnc score. Investigation of 

DAnc across the genome reveals one notable peak in the region 

chr20:62137463-62178105. This location encompasses the gene PTK6 which has 

been previously identified to be under positive selection in East Asians using both 

allele frequency and haplotype-based selection scans without the utility of ancient 

genomes180.  In that study, the authors identified three SNPs with a higher frequency 

derived allele in a dominant haplotype in East Asians: rs66899053, rs4809308, and 

rs113940509. Unfortunately, data for all these SNPs were not available in the DAnc 
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dataset, meaning determination of their DAnc value and comparison against the top 

SNP: rs310644 was not possible110.  However, all the mentioned SNPs both fall in the 

peak region identified by DAnc[GBR, YRI, HG].  

 

 

The observation of the PTK6 peak in this analysis might suggest allele frequency 

change at this same region in the ancestors of GBR. This could be corroborated further 

by computing DAnc[East Asian, YRI, PHGs] and determining if the PTK6 peak is 

retained. Although not tested with DAnc, the striking allele frequencies at the PTK6 

peak and previous work suggests this region may be under positive selection in East 

Asians and possibly Europeans180. If LGA has occurred, the cause and whether this 

allele frequency change has influenced modern human phenotypes is unclear. 

However, the top SNP I identify in this region is only 2494 bp downstream of SNP: 

rs310642, which has been found to be significantly associated with head hair shape 

variation in a large cohort of European and other worldwide populations (n = 

28,964)110,189,190. Both SNPs are in high LD >0.8 in European but not Asian or African 

subpopulations from the 1KG ph3 (Supplementary Data)167. If LGA has occurred at 

this locus, it may have resulted in head hair shape differences between PHGs and 

modern GBR; however, other unknown factors could have influenced head hair shape 

 
Figure 11: The PTK6 peak identified as having extreme DAnc scores overlaps with or 
is proximal to Neanderthal-introgressed regions in the above noted studies. The 
dashed line indicates the DAnc score with the highest DAnc Log P value here: 
rs310644 whilst the solid line indicates the SNP rs310642 identified to be significantly 
associated with head hair shape variation190.  
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in the Palaeolithic. Finally, the PTK6 peak identified by DAnc falls within a region 

identified by several studies except for: 175  to have been adaptively introgressed from 

Neanderthals into the ancestors of modern humans173–175,191 (Figure 11). This could 

mean LGA occurred well after the inferred time of introgression (>45 KYA) between 

Neanderthals and the ancestors of modern humans2,19. Interestingly, regions of the 

human genome with high-frequency Neanderthal SNPs have been found to contain 

more genes involved in keratinization than expected by chance191. Coupled with the 

strong GWAS association to hair shape at this locus, this suggests that this putative 

Neanderthal introgressed region may have influenced head hair shape variation in 

modern humans or some associated factor such as sexual selection drove allele 

frequency change. DAnc adds to this the possibility of LGA after introgression. 

Although the PTK6 peak was a particularly interesting signature, it does not represent 

the most extreme DAnc values genome-wide. SNPs with the most extreme DAnc 

value fall within a previously identified candidate of LGA around SLC45A2181, and 

DAnc highlights many other previously published candidates of LGA, showing that 

these alleles changed in frequency between PHGs and modern GBR (Supplementary 

Table 5).   

 

Next, I compared DAnc and FST statistics to understand the usefulness of 

incorporating ancient genomes into a measure of allele frequency change. I find that 

DAnc identifies overall a slightly higher percentage of SNPs which are private to itself 

and which are not present in the same tail of FST (Table 1). This is true when 

considering either the overlap between SNPs or loci (Table 1, 2). Indeed, for loci, there 

is more concordance for all tested thresholds than for SNPs, likely because the latter 

are smaller genomic elements. The private SNPs to DAnc are those which would not 

be identified in the tail of the FST distribution, and some of these may have undergone 

allele frequency change between PHGs and GBR due to LGA and their presence in 

the tails of the DAnc distribution strengths this possibility. However, there is 

significantly more overlap between the tails of the DAnc and FST tails than expected 

when SNPs or loci are considered (Table 1, 2). This is not unexpected given that both 

statistics are based on allele frequencies from the same populations. Whilst it is 

interesting to see more private SNPs to DAnc, there is only a slight increase in SNPs 

private to DAnc, and these do not necessarily correspond directly to more signatures 

of LGA identified by DAnc compared to FST. Indeed, the incorporation of the PHGs’ 



 51 

allele frequency may give false positive signatures driven by allele frequency changes 

between the PHGs and modern GBR caused by variables other than LGA, such as 

genetic drift and demographic factors such as shifts in ancestry and or population size 

changes such as bottlenecks across the nearly ~30 KYA of history between these 

groups81,192. To conclusively prove LGA, future work would need to seek a neutral 

expectation for the distribution of DAnc and FST and identify regions that deviate from 

this expectation whilst accounting for the mentioned factors. As described in the 

results, the peaks in Figure 10B are asymmetric. This suggests a greater proportion 

of positive DAnc scores, which also have positive P values and are formed by strong 

allele frequency differentiation between GBR and YRI, explaining their low FST P value. 

Alongside results from calculating the percentage of highly differentiated SNPs in the 

5% tail of the DAnc distribution, I estimate that ~10% of the most highly differentiated 

alleles between GBR and YRI changed in frequency after the PHGs but before GBR. 

This more narrowly constrains in time when extreme DAnc score SNPs underwent 

allele frequency changes and extends the results of a previous study where the 

Ust_Ishim genome was used21.   

 

In conclusion, I calculated the DAnc statistic using 30 PHGs who lived prior to or during 

the LGM1. I infer alleles that have changed in frequency between that time and modern 

GBR, separating them from alleles that have changed during the OoA bottleneck or in 

YRI (Figure 7). Next, I calculated FST and compared it with calculated values for DAnc 

for ~3 million SNPs (Tables 1, 2). I observed a slightly greater proportion of SNPs 

private to DAnc. However, this is very small, and greater concordance across 

overlapping loci as opposed to SNPs is observed. On comparing the distributions, I 

find a striking shift towards low Fst P values being enriched for positive DAnc scores 

(Figure 10B). This, alongside my calculation that ~10% of highly differentiated alleles 

changed in frequency in the last ~20 KYA, agrees with previous work suggesting 

European-specific allele frequency change has had a small but significant influence 

on present-day differentiation between Europeans and Africans. In this work, I also 

extend the number of ancient genomes used in DAnc. With the increased publication 

of ancient Palaeolithic genomes and those from outside of Eurasia, future work could 

extend DAnc to identify allele frequency change and LGA in those populations. 

Additional high-coverage genomes may help to further constrain the timing of and 

confidence in the allele frequencies used to make inferences of LGA.  
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Chapter 3: Selecting Candidate Loci 
and Exploring Functional 
Consequences 
 

Background  
 

Selecting Candidates of Local Genetic Adaptation  
 

Due to LD, many signatures of LGA extend over more than a single base6,192. For 

example, the now extremely well characterised LCT locus was initially identified as 

covering ~3 Mb with iHS193. Under the assumption that such a peak contains only one 

selected allele (monogenic selection), individual SNPs can be selected from these 

‘peaks’81. Generally, this is performed by simply choosing the SNP with the strongest 

evidence of LGA by the statistic under consideration in a predefined set of windows6. 

The choice of candidate loci for downstream functional analysis usually involves the 

selection of several SNPs bounded by a set of windows6. Similar approaches have 

been taken previously, which reduce the sampling of single SNPs with an extreme 

statistic which could be due to error31. Such computational assessment of candidates 

of LGA can help prioritise SNPs for in-depth experiments127,194. In the specific case of 

EDAR, Sabeti et al., 2007 inferred the EDAR signature in East Asians, which they 

found occurred in a putative binding site in the EDAR protein127. Using a SNP with the 

strongest evidence of LGA, in-depth analyses have been performed, for example, in 

vivo determination of increased hair thickness in mice with human EDAR variation195.  

 

Inferring the drivers and effects of Local Genetic Adaptation  
 

After SNP selection, biological questions about a candidate of LGA can be answered. 

For example, exploring functional consequences can allow the determination of the 

mechanism by which a beneficial allele is functional, the selection pressure and finally, 

the phenotypic consequences in modern individuals. These questions can be explored 

computationally by assessing a variety of precalculated scores that consider either 

single or many genomic features194,196–198. Scores such as CADD leverage over 60 
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metrics to predict the relative ‘deleteriousness’ of a variant relative to all possible 

variants in the human genome196 and have been used in selection studies to indicate 

SNPs of potential function significance199. Simply, SNPs of interest can first be 

searched using the UCSC or Ensembl Browsers for genomic context to predict their 

regulatory function110,167. In addition, it can be determined whether signatures occur 

within regulatory regions defined by eQTLs200 or Regulome scores151,201. The genes 

which the focal SNPs fall within can also be obtained to determine whether these 

genes are associated with common GO terms103. GO can also be the basis for 

polygenic selection tests202. In addition, adding functional information such as the 

mentioned deleteriousness scores, regulatory and GO annotations may help in 

providing supplementary evidence that a candidate is truly a signature of LGA21,192. 

This is because it is expected that selection will only occur on alleles that affect the 

fitness of an organism, without which there is no reason for selection to occur21,192. 

Another major topic of interest after inferring LGA is understanding how these past 

adaptive events have influenced phenotypes, including disease prevalence and risk 

in modern people203. LGA to a different selection pressure could have indirectly 

influenced disease risk203. An interesting example of the latter is the gene TRPM8, 

where a secondary effect of LGA to temperature in Europe has increased migraine 

susceptibility in Europeans compared to Africans21,204. With the ancient genomes 

collected and processed in (Chapter 1), and the large number of SNPs with calculated 

DAnc scores in (Chapter 2) the next logical step was to isolate a reduced set of SNPs 

with the strongest evidence of LGA and explore the biological function of these SNPs 

including how they might affect human phenotypic diversity.  

 

Aims and Objectives  
 

• Identify a set of focal SNPs from genome-wide DAnc scores which have the 

strongest evidence for allele frequency change between PHGs and GBR.  

 

• Explore functional annotations of the focal SNPs to determine possible drivers 

for allele frequency change between PHGs and GBR.   
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• Explore the possible influence that focal SNPs have had on phenotypic diversity 

in modern Europeans.  

 

Methods  
 

Candidate and Focal SNP selection 
 

Using genome-wide DAnc scores, I wished to select SNPs with the strongest evidence 

for allele frequency change between PHGs and GBR, which thereby have the 

strongest evidence for LGA. To do this, I adopted the following approach. Firstly, I 

choose only SNPs with a DAnc P value in the top 0.1% of the corresponding empirical 

distribution (Log P value >=3). This value was selected as qualitatively the point where 

more clearly defined peaks begin to emerge for both statistics in the genome-wide 

distribution, and this step leaves 4328 SNPs (Chapter 2; Figure 4 A, B). Then to 

discard cases where just one SNP has an extreme statistic which could be due to 

error, I condition that each ‘0.1% SNP’ must be within 5 kb of another SNP also in the 

top 0.1% resulting in 2713 SNPs. Finally, from these SNPs, I wished to define the 

boundaries of candidate loci and, from those loci select a single SNP with the strongest 

evidence of allele frequency change as inferred by the DAnc Log P value. I defined 

the bounds of each candidate by selecting the SNP with the greatest Log P value in 

blocks of 1 Mb, which left 290 SNPs. This value was chosen to reduce the probability 

of including multiple focal SNPs per gene, which with this value is unlikely as the 

average gene length in humans is 27 kb205. In addition, 1 Mb is the largest value used 

in other tests for LGA utilising ancient genomes6,31. I define these as focal SNPs in the 

upcoming text.  

 

Focal SNP Gene Ontology Analysis 
 

To determine whether SNPs identified as candidates of LGA are associated with 

common biological processes, functions, regions of the cell or pathways, GO and 

Reactome enrichment analysis was performed206,207. Firstly, the loci which mapped to 

focal SNPs (defined above) were extracted. Where a SNP maps to multiple genes, I 

assume the SNP is equally likely to contribute to the function of either mapping gene, 
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and therefore I retain both in the gene set. These steps resulted in 190 unique genes 

for DAnc. The genes were uploaded to the Gene Ontology Resource:  

http://geneontology.org and enrichment analysis was performed for molecular 

function, biological process, cellular component (GO release Released 2022-07-01) 

and Reactome pathways (Reactome Version 77 Released 2021-10-01)206,207. I ran 

GO enrichment analysis and tested for significantly enriched or downregulated terms 

using the Fisher’s Exact Test and to correct for multiple testing using FDR. This 

approach was selected as it is the default for the program and has been suggested to 

be more accurate for small gene sets208. The background set of genes used to 

calculate the expectations for each GO or Reactome term was the default human 

reference list of 20,589 genes in the database. The Gene Ontology resource inferred 

that 146/190 genes mapped to unique Ensembl gene IDs. Excluded genes include 

those that cannot be mapped to an Ensembl gene ID by the program or have where 

two identical genes have the same name209. Since most (>70%) of my genes were 

accepted by the program, I decided to proceed with the analysis. I then generated 

plots considering only positively overrepresented categories that contain more than 10 

genes. This was performed to exclude terms where the reference set contains only a 

few genes and, therefore, the expectation is very low. If the input genes have a few 

more genes than this extremely low expectation, then this can yield a high fold 

enrichment.  

 

Focal SNP Neanderthal introgression 
 

To determine whether any of the selected focal SNPs were present in modern humans 

due to introgression from Neanderthals and then subsequently rose in frequency 

between PHGs and modern GBR, I compared my focal SNPs to Neanderthal 

introgressed regions inferred by Vernot et al., 2014175. Their approach uses LD to 

locate Neanderthal-introgressed regions in the human genome and then prunes those 

segments based upon their overlap to the Neanderthal reference genome175. Regions 

inferred as Neanderthal-introgressed (n = 6721) were downloaded from: 

https://akeylab.princeton.edu/downloads.html In this analysis, I used Neanderthal-

introgressed regions from 1KG ph3 European and East Asian subpopulations64,175. 

Focal SNP positions and Neanderthal introgressed regions were intersected with 

bedtools intersect168.   



 56 

Focal SNP Transversions  
 

In (Chapter 1), I attempted to account for the possibility of PMD influencing allele 

frequencies by trimming three nucleotides from the start and end of all ancient reads. 

However, this approach may lead to some PMD being unaccounted for (explained and 

discussed further in Chapters 1 & 2). Consequently, to determine if some of the 

candidate regions (represented by a single focal SNP) could be present due to 

unaccounted for PMD, I determined the proportion of candidate regions which contain 

at least one transversion SNP which were also in the top 0.1% with a custom R script.  

 

Focal SNP Regulome Annotations 
 

As presented in the initial RegulomeDB publication, most SNPs occur outside of 

genes, and therefore exploring Regulome is particularly valuable for those SNPs194. 

To determine whether any of the selected focal SNPs could influence gene regulation, 

RegulomeDB annotations were obtained for 16,357,032 SNPs from: 

https://regulomedb.org/regulome-search/ file: ENCFF297XMQ.tsv194. Where a SNP 

had multiple RegulomeDB probabilities, I selected the score with the highest 

probability. This is a likelihood that the SNP in question perturbs nearby gene 

regulation and is mostly correlated to the RegulomeDB score197. RegulomeDB also 

assigns SNPs a score based upon how much evidence points to that SNP affecting 

gene regulation with a value of 1 only attainable if eQTL data is available194.  eQTLs 

are variants which have been experimentally shown to influence gene expression210. 

 

Focal SNP GWAS hits 
 

To determine whether SNPs with the extreme allele frequency change between GBR 

and PHGs (DAnc focal SNPs) influence any phenotypes in modern individuals, 

458,152 GWAS hits were downloaded from the GWAS Catalog “All associations 

v1.0.2” (2023-01-10) https://www.ebi.ac.uk/gwas/docs/file-downloads189. Please refer 

to the (Supplementary Data) for a list of the 5,414 studies collated by the GWAS 

Catalog. GWAS SNP coordinates were first converted to a bed-like format before 

being lifted from GRCh38 to GRCh37 using the UCSC LiftOver executable110, chain 

file and a custom BASH script110.  



 57 

In total, 434,440 SNP associations were lifted over successfully to GRCh37. Next, 

SNP associations were filtered to include any with a genome-wide significance 

threshold of <5x10-8, resulting in 339,513 SNP associations (Supplementary Data). 

This value is a standard used for significance of common variants in the field of 

European GWAS’ which dominant current datasets189. Finally, DAnc focal SNP 

positions, which overlapped with 339,513 SNP associations, were extracted, and 

tabulated with a custom R script. Where a single SNP was associated with multiple 

traits, I selected the phenotype with the most significantly associated SNP.  

 

Results 
 

Focal SNP distributions and literature comparison 
 

To explore the distribution of DAnc for focal SNPs, I coloured each focal SNP on the 

distribution of Log P values across the genome (Figure 12). Focal SNPs with a Log P 

value of more than five were labelled with their corresponding locus. This very strict 

final filtering did lead to the un-labelling of two well characterised signatures of LGA at 

LCT and EDAR127. It was qualitatively clear that the SNP selection protocol had 

succeeded, with some top peaks clearly visible. Despite this, some smaller peaks, 

such as those surrounding the PDE11A locus, which appear to have been subsumed 

into others and therefore lost to the analysis. Future work could seek to explore the 

effect of a wider range of distances on the number of focal SNPs recovered. Firstly, 

there are two striking examples of focal SNPs which have been previously described 

as candidates of LGA. These are chr15_28238158 in OCA2 and chr5_33964210 in 

SLC45A2. These loci have been found in past tests for LGA using ancient and modern 

genomes6,28,30,31,80. These loci also displayed strong allele frequency change between 

Ust_Ishim and modern GBR in a previous iteration of DAnc21. In addition, the previous 

DAnc publication identifies SNPs in the locus WWOX which I also observed. Several 

other interesting loci were noted to contain a focal SNP. For example, here again, I 

identified chr19_16791443 in TMEM38A, which was also observed to contain an FST 

value within the top 0.1% and as expected, the PTK6 peak identified by eye from 

Chapter 2 contained a focal SNP. As noted in the previous Chapter, these loci have 

been described in two previous selection scans180,183. Amongst other top focal SNPs, 



 58 

the SDK1 locus has also been identified in a selection scan that correlated a different 

SNP to the focal SNP with ‘Summer Precipitation Rate’ in West Eurasians211. In 

addition, the authors found this SNP to be associated with ‘factor VII measurement’ in 

GWAS211,212. The gene DUOX2 has also been previously identified by PBS and 

haplotype-based methods as a candidate of LGA in South American Andeans living 

at high altitudes and 1KG ph3 MXL populations213–216. Some authors have suggested 

that this signature might represent a high-altitude adaptation with accompanying 

information on the function of DUOX2 in responding to high oxygen levels by 

producing ROS, causing lung damage and death in mice217. However, given oxygen 

levels would be lower at high altitudes, DUOX2 could have been selected for in 

response to variation in altitude and, thereby, oxygen levels214. However, the observed 

signatures in MXL and low altitude coastal Andeans may suggest other drivers of 

LGA214,215.  

 

A SNP within the gene TCEA3 was also identified as a focal SNP here, and to my 

knowledge, this has not previously been described as a candidate for LGA. Exploration 

of the literature reveals potential functions for this gene with mouse precursor muscle 

cell lines with TCEA3 expression reduced with a shRNA found to have reduced cell 

growth and differentiation into mature muscle cells218. Finally, two focal SNPs were 

identified that fell within ‘NON_GENIC’ regions: chr8:144864628 and chr18:70196343. 

Since these fall outside of genes, I hypothesised that they may influence the regulation 

of nearby genes. To explore that, I obtained dbSNP IDs for each position from the 

UCSC Browser and then searched Regulome scores194. Both SNPs had a regulome 

rank of 7, suggesting they have no annotated regulatory function21,194. Finally, to 

determine whether any of the focal SNPs identified could be present due to 

unaccounted for PMD, I counted the proportion of candidate regions (n = 290) which 

contained at least one transversion SNP. I found that 182/290 or ~63% of candidate 

regions contained at least one transversion (Supplementary Data). Crucially, across 

the 12 best candidate regions represented by the 12 best focal SNPs described above 

and labelled in (Figure 12), all had at least one transversion. Coupled with the multiple 

SNPs per candidate with a DAnc Log P value in the top 0.1%, this suggests that most 

candidate regions were very unlikely to be present solely due to unaccounted for PMD. 

Because transitions outnumber transversions in the human genome making it more 
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likely to observe transition only candidates, this approach could be considered highly 

conservative25,43,187.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Focal SNP Gene Ontology Analysis 
 

To determine whether the focal SNPs identified for DAnc fell within loci associated 

with any common biological processes, regions of the cell or pathways, GO and 

Reactome enrichment analysis was performed.  I found no GO or Reactome terms 

were significantly enriched at the 5% threshold for significance. However, the group 

which possessed terms closest to significance was ‘GO Biological Process’ (Figure 

13). For this group, the term ‘presynaptic modulation of chemical synaptic 

transmission’ (P value: 0.159) was most significantly enriched however included only 

four genes (Genes: CACNB2, GRIK2, GRIK5, CACNB4). In addition, terms associated 

with detection of temperature (P value: 0.310) (Genes: OPRK1, GRIK2, GRIK5 and 

EPHB1) and abiotic stimuli (P value: 0.279) (Genes: NOX3, PCDH15, GRIK2 GRIK5, 

EPHB1, CACNB4 and PTK2), and calcium ion homeostasis (P value: 0.328) (Genes: 

THRB, GRM5, GRIK2 GRIK5, TMBIM6, PKHD1, MICU1, C19orf12) were also 

enriched. These genes included several cell surface receptors, especially those found 

on neuronal synapses, such as OPRK1, GRIK2, GRIK5, EPHB1, NOX3, PCDH15 and 

 
Figure 12: Manhattan plot displaying focal SNPs after selection which are labelled in 
red, all other SNPs are labelled in blue grey. SNPs with labelled loci represent those 
with a Log P value of more than five which were denoted as best focal SNPs.  
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CACNB4. However, none of these terms reach the significance threshold, and most 

genes overlap, so their enrichment should be carefully interpreted. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Focal SNP Neanderthal Introgression 
 

To determine whether any DAnc focal SNPs might have been present in humans due 

to Neanderthal introgression and then subsequently increased in allele frequency 

between PHGs and GBR, I determine the overlap between Neanderthal introgressed 

regions and focal SNPs. I find 65/290 focal SNPs which overlap with putative 

Neanderthal introgressed regions inferred from either Europeans or East Asians 

(Supplementary Table 7). The top 10 SNPs ordered DAnc log P value are depicted in 

(Table 3). The SNP with the most positive DAnc log P value is: chr2_178503812 and 

falls within the locus: PDE11A. This locus has previously been noted as a candidate 

of LGA and is the 5th most significant region identified by LRH, iHS and XP-EHH tests 

in Europeans and Asians127. The noted PDE11A SNP falls within the putative 

Neanderthal-introgressed region chr2:178142822-178505302, which was located 

Figure 13: Dot plots depicting the top 10 mostly significantly enriched GO terms for 
‘Biological Process’ in DAnc. Beside each term in brackets is the number of genes 
found for to be assigned to that GO term. Beside each point is the Log FDR with points 
sized by the fold enrichment. Finally, a vertical line was drawn and labelled with the 
Log FDR value required for a P = 0.05 for comparison.  
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whether European or East Asian genomes were used to infer the segments175. This 

hints at the possibility of introgression followed by LGA at this locus between PHGs 

and modern GBR. 

 

 

 

Focal SNP Regulome  
 

Finally, to locate focal SNPs with possible regulatory roles and determine the 

proportion of such SNPs across all focal SNPs, I obtained RegulomeDB ranks and 

probabilities (Focal SNP Regulome Annotations). Firstly, across all 290 focal SNPs, I 

found that most SNPs have little support for a regulatory role, with 245/290 SNPs or 

~84% having a RegulomeDB rank of between 4 and 7194. Please refer to 

(Supplementary Data) for all Regulome annotations. One SNP chr11_64632470 had 

an extremely high RegulomeDB rank of 1c (eQTL, TF binding, TF motif and DNase 

peak evidence of regulatory function)194, whilst the SNP chr15_79235446 identified to 

be significantly associated with type 1 diabetes above had the second highest 

RegulomeDB rank of 1f (eQTL, TF binding DNase peak evidence of regulatory 

function)194  which was only found for five other SNPs. I tabulated the RegulomeDB 

scores for the best focal SNPs below (Table 4). These agree with the distribution 

observed across all focal SNPs, with most best SNPs tending to display high ranks 

CHR_POS DAF_GBR DAF_CHS DAF_YRI DAF_HG DAnc_log Locus 

chr2_178503812 0.824176 0.685714 0.125 0.110286 5.16 PDE11A 

chr12_54179028 0.752747 0.471429 0.0787037 0.059176 4.97 NON_GENIC 

chr2_109580638 0.0879121 0.938095 0.759259 0.75871 4.94 EDAR 

chr1_10043142 0.840659 0.561905 0.138889 0.158049 4.86 NMNAT1 

chr17_19295450 0.758242 0 0.013889 0.055317 4.85 NON_GENIC 

chr10_127197223 0.725275 0.533333 0.046296 0.064455 4.67 NON_GENIC 

chr11_61106525 0.972527 0.97619 0.333333 0.307911 4.64 DAK 

chr8_17489315 0.802198 0.642857 0.138889 0.152229 4.54 PDGFRL 

chr15_57073584 0.686813 0.680952 0.064815 0.058428 4.37 ZNF280D 

chr14_57124988 0.928571 0.533333 0.310185 0.30584 4.34 
RP11-

1085N6.3 

Table 3: The top 10 focal SNPs by highest DAnc log P value overlapping with 
Neanderthal-introgressed regions inferred by Vernot and Akey et al., 2014.  
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and low probabilities. However, chr15_45402940 in DUOX2 and chr20_62159504 in 

PTK6 have the greatest support for having a regulatory function.  

 

 

CHR_POS DAF_GBR DAF_YRI DAF_HG DAnc_log Locus Rank Probability 

chr5_33964210 0.989011 0.166667 0.11002 6.46 SLC45A2 5 0.45 

chr16_78446602 0.967033 0.111111 0.128716 6.16 WWOX 5 0.30 

chr20_62159504 0.093407 0.958333 0.933143 6.03 PTK6 2b 0.72 

chr19_16791443 0.835165 0.0601852 0.061703 5.79 TMEM38A 7 0.09 

chr15_45402940 0.0934066 0.847222 0.915741 5.68 DUOX2 4 0.75 

chr8_144864628 0.82967 0.00463 0.052738 5.47 NON_GENIC 7 0.18 

chr1_23747425 0.131868 0.851852 0.861393 5.38 TCEA3 3a 0.62 

chr7_4121845 0.835165 0.12037 0.105576 5.31 SDK1 5 0.23 

chr2_178503812 0.824176 0.125 0.110286 5.16 PDE11A 4 0.43 

chr12_50155400 0.857143 0.175926 0.142251 5.05 TMBIM6 3a 0.51 

chr15_28238158 0.791209 0.078704 0.094306 5.05 OCA2 5 0.27 

chr18_70196343 0.769231 0.092593 0.069395 5.01 NON_GENIC 7 0 
 

Focal SNP GWAS phenotypes 
 

To determine whether any of the focal SNPs I noted have influenced modern human 

phenotypes, I obtained each SNPs’ GWAS associations (Table 5). I observed 

associations to a range of phenotypes for focal SNPs. Firstly, I noted only one 

phenotype was repeated in two SNPs: ‘self reported educational attainment’. This was 

not unexpected since this trait is ranked 12th in a list of the number of associations 

reported per phenotype (n = 1976) (Supplementary Table 8). Interestingly, one of 

these SNPs: chr16_87443734 was also associated with smoking status, behaviour, 

and cognitive ability in five other studies (219–222; Supplementary Table 8). A range of 

other broad phenotypes were also observed repeatedly.  

Table 4: Regulome DB ranks and probabilities for all SNPs with a DAnc Log P value 
of more than five.   
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For example, SNPs associated with autoimmune disease were represented by two 

associations. In addition, BMI, weight, or body size-associated phenotypes were 

represented by three SNPs. However, these phenotypes, including educational 

attainment, contained thousands of other associations suggesting they’re also more 

likely to be sampled than other phenotypes with fewer associations.  

 

The SNP with the most positive DAnc log P value was chr5_33964210 (SLC45A2) 

was found to be significantly associated with ‘hair colour measurement’ in 6,357 Latin 

American individuals223. This highlights the well described association of this locus 

with hair and skin colouration variation159. In addition, this SNP was significantly 

associated with ‘skin pigmentation’ in similarly sized European cohorts224,225. The next 

best focal SNP was chr12_50155400 (TMBIM6), which was significantly associated 

with ‘systolic blood pressure’ in a very large cohort of 422,000 European individuals226. 

Another interesting SNP isolated from this analysis: chr19_19478022 (NON_GENIC) 

was associated with ‘mean reticulocyte volume.’ Interestingly, this SNP was also 

significantly associated with ‘schizophrenia’ in four other studies (227–230; 

Supplementary Table 8). Other associations, such as those for ‘risk taking behaviour’ 

and ‘Abnormal refraction’, were observed; however, these only just exceed genome-

wide significance. These results suggest that alleles that have changed most in 

frequency between PHGs and GBR are associated with a range of phenotypes 

observed in modern Europeans, including hair colour, blood pressure, autoimmune 

diseases, body size or weight and age at menopause.  
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CHR_POS SNP ID* Locus DAnc_log 
GWAS_log

* 

GWAS Effect 
Size* Mapped 

Trait* 

Other 
associations

* 

Study 
Citation* 

chr5_33964210 rs183671 SLC45A2 6.46 58.69897 

NA hair colour 

measurement 

559 
223 

chr12_50155400 rs6580721 TMBIM6 5.05 9 

NA systolic blood 

pressure 

1579 
226 

chr15_79235446 rs3825932 CTSH 4.22 14.5228787 

1.16000000 type 1 

diabetes 

mellitus 

120 

231 

chr1_67814440 rs3790566 IL12RB2 3.92 9.39794001 

1.16000000 systemic 

scleroderma 

40 
232 

chr3_71036994 rs6802472 FOXP1 3.63 8.39794001 

0.01380180 risk-taking 

behaviour 

617 
233 

chr15_84562740 rs4414460 ADAMTSL3 3.5 18.5228787 

0.02962110 BMI-adjusted 

waist 

circumferenc

e 

2442 

234 

chr16_87443734 rs1050847 ZCCHC14 3.4 12 

 
0.00940000 

self reported 

educational 

attainment 

1976 

222 

chr1_39380385 rs4246511 

RP5-864K19.4 

& RHBDL2 3.38 20.30103 

0.22000000 age at 

menopause 

191 
235 

chr19_19478022 rs2905426 NON_GENIC 3.33 18 

0.02069763 mean 

reticulocyte 

volume 

365 

236 

chr5_132070333 rs7732667 KIF3A 3.33 9.52287875 

NA Abnormality 

of refraction 

404 
237 

chr10_119317804 rs4752078 NON_GENIC 3.27 13.30103 

NA waist-hip 

ratio 

476 
226 

chr16_3707747 rs1053874 

TRAP1 & 

DNASE1 3.1 9.30103 

0.01200000 body mass 

index 

4091 
238 

chr11_15910939 rs11023764 NON_GENIC 3.07 10 

0.00880000 self reported 

educational 

attainment 

1976 

222 

Table 5: The most significantly associated traits for DAnc focal SNPs. Columns obtained 
from the GWAS Catalog dataset are indicated by a * symbol. All other columns were 
obtained from the genome-wide DAnc scores file created in (Chapter 2). For each SNP is 
reported the chromosomal position, dbSNP Build 154 ID, locus, log P values for DAnc and 
GWAS and the mapped trait. The studies which reported these loci are cited within the 
table.   
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Discussion & Conclusions 
 

In this work, I first selected 290 focal SNPs to represent those with the strongest 

evidence of LGA. I identified many previously characterised signals of LGA, either in 

Europeans or those identified elsewhere, such as for Andeans and Mexicans at 

DUOX2213–216.  Although there is a large overlap, especially across best focal SNPs to 

previously identified candidates, it is encouraging to see that DAnc can recover these 

signatures especially given the limited overlap between selection scans performed in 

the past192. In addition, DAnc located at least one novel candidate of LGA at TCEA3. 

This SNP had a Log P value of 5.38 which was the 7th most significant P value 

genome-wide. The chosen SNP had a high frequency in YRI and PHGs, ~0.85 and a 

considerably lower frequency in GBR, ~0.13, hinting at the possibility of selection for 

the AA. To prove this as a genuine candidate of LGA, future work would need to 

explore whether this SNPs’ allele frequency change is greater than would be expected 

under neutrality21.  

 

Regarding SNP selection, my candidate and focal SNP selection procedure did have 

several limitations. Firstly, the requirement for two SNPs within 5 kb likely biases 

candidate and focal SNPs to regions of the genome with a higher-than-average 

density of SNPs. In addition, as noted, the 1 Mb threshold may have resulted in some 

peaks being subsumed into others. However, my selection procedure did result in the 

isolation of some previously characterised signatures of LGA.  

 

Next, I explored various functional annotations across the focal SNPs. I performed GO 

and Reactome ontology analysis across the genes each focal SNP fell within (Figure 

13). I observed no significantly enriched categories, possibly because of the small 

number of genes (190) available for this analysis. Despite the presence of nominally 

interesting categories, it is worth noting that genes associated with the nervous system 

and synapses were most enriched. However, a previous study described the longest 

human genes tended to be associated with and highly expressed in the brain and 

nervous system239. Therefore, my SNP selection procedure could have resulted in the 

preferential selection of such longer genes, which are also likely to contain more 

SNPs. To remove this potential bias, future work could seek a null set of focal SNPs 
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chosen randomly. Here, the expectation would be that similar categories of genes 

would be enriched in the null set. Therefore, a comparison with the DAnc focal SNPs 

should reveal processes specific to DAnc and not potential artefacts of the SNP 

selection procedure. In addition, it is possible that allele frequency change between 

PHGs and GBR did occur preferentially at such nervous system-related genes. Given 

the noted issue with gene lengths for nervous system genes, a more plausibly 

overrepresented category might be ‘detection of abiotic stimulus’ and ‘sensory 

perception of temperature stimulus.’ Human populations who lived between PHGs and 

GBR likely encountered various environmental challenges, including temperature 

fluctuations such as the LGM and its ending ~20 KYA, followed by the warmer Bølling-

Allerød ~14.7 KYA, colder Younger Dryas ~11.7 KYA and warmer Early Holocene 

period ~8.0 KYA1,240,241. In addition, past candidates of LGA, which are thought to have 

been driven by cold temperatures, have been described242,243. Also, many of the genes 

in the mentioned categories overlap, suggesting this analysis may simply be 

identifying genes with many different GO annotations. Next, I explored whether any 

focal SNPs might have been present in humans due to Neanderthal introgression and 

noted several SNPs present in Neanderthal-introgressed regions, including 

chr2_178503812 in PDE11A. Exploration of the allele frequencies at this SNP reveals 

low (~0.1) frequencies in YRI and PHGs. This could suggest that previously noted 

purifying selection against Neanderthal DNA reduced the frequency after initial 

interbreeding244. Subsequently, this locus may have been selected for between PHGs 

and GBR. I also explored RegulomeDB annotations for all focal SNPs. Overall, I 

observed relatively few SNPs with likely regulatory functions, with two exceptions. 

Using the UCSC Browser, chr20_62159504 could display a high RegulomeDB 

probability because it is inferred as a putative binding site for TF PBX2110,194,197,245. In 

addition, chr15_45402940 falls within a TF binding region of both ZNF701 and 

PRDM9110,194,197,245. Finally, I explored the GWAS hits for the focal SNPs. Various 

phenotypes were observed, including those associated with diet and metabolism, hair 

and skin, and diseases, including autoimmune disease. Future work could seek to 

extend this analysis by asking whether any GWAS hits are enriched across common 

phenotypes compared to the expected number of SNPs per trait. This would further 

explore evidence for polygenic adaptation in this dataset.  
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Overall Conclusions   
 
 
In this work, I first generated a homogenised sample of ancient human genomic data 

in genotypes and genotype likelihood format suitable for downstream population 

genetic analyses. When obtaining and processing these data, I observed previously 

characterised biases in the spatial and temporal distribution of ancient genomes 

alongside low genome-wide coverage, which are all beginning to be redressed by 

other groups. In addition, I observed the anticipated genetic relationship within ancient 

individuals and between ancient and modern individuals.  

 

With confidence in the quality of these samples after strict processing and filtering, I 

then utilised this dataset to make inferences of LGA between 30 of the oldest ancient 

PHGs and modern GBR. I also calculated additional useful population genetic 

statistics from the ancient genomes. I then utilised the statistic DAnc to infer alleles 

that have changed most in frequency between the PHGs and modern British, which 

are prime candidates to have mediated LGA. Specifically, my work has helped 

separate alleles that have changed in frequency between PHGs and GBR from those 

that have changed in frequency after the OoA bottleneck or in YRI. The former are 

likely candidates of LGA to conditions early Eurasians encountered outside of Africa. 

I identified many previously characterised signatures of LGA (SNPs in the tails of the 

empirical distribution), including a clear series of SNPs within the PTK6 gene, which 

may have been introduced into humans after Neanderthal introgression. From this, I 

concluded some of the previously identified candidates of LGA changed in frequency 

between PHGs and modern GBR, providing additional temporal insight into these 

signatures of LGA. I compared DAnc to a conventional test for LGA in FST, observing 

limited SNPs with a strong signature of LGA for both. I observed a slightly higher 

proportion of SNPs with strong evidence of LGA using DAnc, which did not have strong 

evidence of LGA as assessed by FST. From this result, I concluded that DAnc has the 

potential to recover additional candidates of LGA by incorporating allele frequencies 

from ancient genomes as opposed to conventional tests for LGA. I next observed that 

~10% of the most highly differentiated SNPs between GBR and YRI underwent allele 

frequency change between PHGs and GBR and demonstrated this value was 

consistent when PMD was considered. This value was an estimate, however, 



 68 

indicating that a small proportion of the allele frequency differentiation between GBR 

and YRI was formed by allele frequency change between PHGs and GBR.  

 

Finally, I isolated 290 focal SNPs with the strongest evidence for LGA with DAnc 

exploring their putative functional and phenotypic consequences. I observed few novel 

candidates of LGA, to the exclusion of a SNP in TCEA3. Exploring functional 

annotations of my focal SNPs, I first found no significant enrichment for any tested GO 

or Reactome terms. This might reflect the few genes (190) available to this analysis 

limiting power, or focal SNPs may fall within genes associated with a range of 

biological processes. Lastly, the process of focal SNP selection could have introduced 

a bias for identifying SNPs within longer genes associated with the brain and nervous 

system. I then determined that a SNP within the gene PDE11A may have been 

introduced into humans by Neanderthals, and using DAnc, I show this SNP may have 

undergone allele frequency change after introgression. I also found that few focal 

SNPs have strong regulatory functions, except for SNPs in the DUOX2 and PTK6 

genes. Finally, I observed a range of phenotypic GWAS associations for focal SNPs, 

with the most extreme DAnc value SNP being significantly associated with systolic 

blood pressure. From these results, I concluded that SNPs with the strongest evidence 

of LGA (focal SNPs) were associated with a range of biological processes and GWAS 

traits.  

 

Overall, my work produces a consistently processed and homogenised set of ancient 

genomes, genotypes, genotype likelihoods and allele frequencies, which may be 

suitable for other population genetic research. I applied some of this data to infer allele 

frequency change between PHGs and GBR, identifying new and previously 

characterised signatures of LGA. I observed that DAnc identifies slightly more 

candidates of LGA than FST, highlighting the potential advantage of ancient genomes 

and exploring both the distribution of these statistics and, for individual focal SNPs and 

studying some of their functional and phenotypic effects.  
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4.2.46(2)-release NA 

BCFtools on vic 

Computer Cluster2 

0.1.15 https://samtools.github.io/bcftools/bcftools.html   

bedtools on personal 

Macbook Pro 

v2.29.2 https://bedtools.readthedocs.io/en/latest/  

bedtools* on UCL 

Myriad Computer 
Cluster 

v2.25.0 https://bedtools.readthedocs.io/en/latest/  

NGSadmix Commit 

be549dc4c39e114d6d63e9
9b60b5fa3d6e1f05b5 

(2021-05-02) 

https://github.com/ANGSD/angsd/blob/master/misc

/ngsadmix32.cpp  

Picard 2.24.1 https://github.com/broadinstitute/picard/releases/ta

g/2.24.1  

Python 2* 2.7.0 https://www.python.org/download/releases/2.7/  

R on personal Macbook 
Pro 

R version 3.6.2 (2019-12-
12) 

https://www.r-project.org  

Rstudio on personal 

Macbook Pro 

1.2.5001 https://www.rstudio.com  

samtools3 

 
1.9 (using htslib 1.9) 

 
http://www.htslib.org  

smartpca/mergeit4 13050 https://github.com/DReichLab/EIG  

UCSC liftOver 

Executable  

Unknown but obtained on 

27th August 2020 

https://genome.sph.umich.edu/wiki/LiftOver and 

https://hgdownload.soe.ucsc.edu/goldenPath/hg38
/liftOver/ for chain file 

vcfancestralalleles Commit 74f4d40 (2021-01-

08) 

http://lindenb.github.io/jvarkit/VcfAncestralAllele.ht

ml 
VCFtoEigenstrat.py Commit f3adb68 (2018-02-

28) 

https://github.com/mathii/gdc  

VCFtools5 0.1.15 https://vcftools.github.io/index.html  
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*Precompiled software.  

 
1ATLAS was precompiled by the UCL Myriad Cluster Team and utilised dependencies: 

openblas/0.3.13-native-threads/gnu-10.2.0, arpack-ng/3.8.0-threaded/gnu-10.2.0, 

superlu/5.2.1/gnu-10.2.0 and armadillo/10.4.0/gnu-10.2.0 

 
2bcftools was precompiled by the HPC Cluster Team.  

 
3samtools was precompiled by the UCL Myriad Cluster Team. 

 
4smartpca and mergeit are tools within the EIGENSOFT suite which was compiled by 

the UCL Myriad Cluster Team and utilised dependencies: openblas/0.2.14/gnu-4.9.2, 

gsl/1.16/gnu-4.9.2 and compilers/gnu/4.9.2.  

 
5VCFtools was precompiled by the UCL Myriad Cluster Team and utilised perl 

dependency perl version 22, subversion 0. 
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Supplementary Figures 
 

Chapter 1 
 
 
 
 
 

 

Supplementary Figure 1: Unprojected and projected PCAs of 299 ancient human individuals coloured by log2(Coverage). (A) An 
unprojected PCA generated from GLs with PCAngsd of 299 collected and processed ancient genomes. (B) A PCA of 299 ancient 
genomes projected onto the diversity of 3875 modern humans. (C) A PCA of 299 ancient genomes projected onto the diversity of 
883 Eurasians defined by PC values in (B).  
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Supplementary Figure 2: Unprojected and projected PCAs of 299 ancient human individuals coloured by AADR or literature 
assigned UDG treatment. (A) An unprojected PCA generated from GLs with PCAngsd of 299 collected and processed ancient 
genomes. (B) A PCA of 299 ancient genomes projected onto the diversity of 3875 modern humans. (C) A PCA of 299 ancient 
genomes projected onto the diversity of 883 Eurasians defined by PC values in (B).  
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Supplementary Figure 3: A world map with countries coloured dark grey if they 
possess at least one modern individual used in the PCA projections. This plot 
highlighted several countries without any individuals in this dataset including parts 
of Africa, South America, and Eastern Europe.  
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Supplementary Figure 4: NGSadmix admixture proportions assuming K = 2, 4 or 5 for 299 collected and processed ancient human 
individuals. Predefined groupings of individuals are coloured and labelled along the Y-axis. 
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Supplementary Figure 5: PCAs with labelled PHGs. (A) A unprojected PCA of 299 collected and processed ancient genomes with 
labelled PHGs. (B) A PCA of 299 collected and processed ancient human genomes projected onto the diversity of 3,875 modern 
humans with labelled PHGs. (C) A PCA of 299 ancient genomes projected onto the diversity of 883 Eurasians defined by PC 
values in (B) (methods) with labelled PHGs. 
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Supplementary Figure 6: Density distributions of DAF for 1KG ph3: YRI, GBR, CHS 
and across 30 PHGs. (A) DAF distributions after the removal of SNPs which were 
monomorphic in any two modern populations. (B) DAF distributions prior to the 
mentioned step. 
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B
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A

B

Supplementary Figure 7: Density distributions raw DAnc[GBR, YRI, HG] (n = 
4,313,091) and FST [GBR, YRI] (n = 4,620,349). The FST values are plotted on the 
same X-axis scale as DAnc values to make comparisons easier.  
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Supplementary Figure 8: A dot plot depicting the values of DAnc 
[GBR_YRI_HG_DAnc_log] and FST [YRI_GBR_FST_log] Log P values for 
3,107,592 SNPs with available data for both statistics. The SNP with the most 
extreme positive DAnc and FST Log P value is labelled as chr19_16791443. 



 91 

 
  

A B

 
Supplementary Figure 9: A dot plot depicting the correlation between the DAF in 
YRI and the Log P value for both DAnc and FST using 3,107,592 SNPs with 
available data for both statistics. The black line shows a trendline. 
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Chapter 3 
 

There are no Supplementary Figures for Chapter 3.  
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Supplementary Tables 
 

Chapter 1 
 
 
Supplementary Table 1: A table of the coverage at hdSNPs of 13 individuals where 
new hdSNP capture was merged with pre-existing data from Fu et al., 2016. Shown is 
the percentage of all hdSNPs covered, coverage of SNPs with at least one overlapping 
read and the maximum covered SNP. Mean coverage differs here from the values 
presented in Supplementary Data because there is reported the genome-wide 
coverage after merging.  
 
 

Individuals 
hdSNPs covered 

(%) 
Mean 

coverage 
Mean 

coverage >1 
Maximum 

covered hdSNP 
Kostenki14 59.5 6.35 10.7 119 
Villabruna 42.6 1.71 4.02 63 
ElMiron 39.2 0.947 2.42 42 

Vestonice16 30.6 0.747 2.44 31 
Ostuni1 26.2 0.409 1.56 14 

Vestonice13 7.67 0.0974 1.27 8 
Vestonice43 5.75 0.0667 1.16 7 

Muierii2 5.72 0.0694 1.21 7 
Pavlov1 4.04 0.0462 1.15 5 

Vestonice15 2.18 0.0247 1.13 4 
Kostenki12 2.03 0.0222 1.09 9 

Ostuni2 1.55 0.017 1.1 5 
Continenza 0.953 0.0107 1.13 4 
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Supplementary Table 2: A table of the coverage at hdSNPs in 13 individuals from Fu 
et al., 2016.  Shown is the percentage of all hdSNPs covered, coverage of SNPs with 
at least one overlapping read and the maximum covered SNP. Mean coverage differs 
here from the values presented in Supplementary Data because there is reported the 
genome-wide coverage after merging.  
 
 

Individuals 
hdSNPs covered 

(%) 
Mean 

coverage 
Mean 

coverage >1 
Maximum 

covered hdSNP 
Kostenki14 47.2 7.17 15.2 239 
Villabruna 24.1 1.27 5.29 71 

Vestonice16 20 0.576 2.87 40 
ElMiron 16.5 0.427 2.59 42 
Ostuni1 7.59 0.107 1.41 9 

Vestonice43 3.23 0.0367 1.14 7 
Vestonice13 2.88 0.0316 1.1 4 

Muierii2 1.99 0.0212 1.07 3 
Kostenki12 1.57 0.0177 1.12 13 

Pavlov1 1.22 0.0129 1.06 3 
Vestonice15 0.671 0.00694 1.03 3 

Ostuni2 0.373 0.00382 1.02 3 
Continenza 0.248 0.00252 1.02 3 
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Supplementary Table 3: A table of the 3875 individuals used in PCA projection 
separated by study.  
 

AADR publication label Population description 
Number of 
individuals 

AutonNature2015 1KGPhase3 2535 
BergstromScience2020 HGDP 927 

MallickNature2016 SGDP 243 
MondalNatureGenetics2016 Mondal_Indian_Andamanese 70 

DamgaardScience2018 Damgaard_CentAsia 41 
SkoglundNature2015 Skoglund_Wordwide 20 
PrueferNature2013 Prufer_WorldwidePanelB 12 
MeyerScience2012 Meyer_Worldwide 10 

RaghavanScience2015 Raghavan_AmericasSiberiaOceania 8 
RaghavanNature2014 Raghavan_AvarMariIndianTajik 4 
McCollScience2018 McColl_Jehai 2 

RasmussenNature2014 Rasmussen_KaritianaMayan 2 
LamnidisNatureCommunications2018 Lamnidis_Saami 1 

 



 96 

Chapter 2 
 

Supplementary Table 4: A summary of the metadata for 30 selected PHGs used in DAnc calculations. This was abstracted from 
Supplementary Data which was derived from the AADR or for selected samples from published literature. The AADR v44.3 
summarises how samples were generated either with Single-Stranded (ss) or Double-Stranded (ds) libraries and what form of UDG 
treatment was applied either none (minus), partial method (half) or full treatment (plus).  

Name Publication Label Genome-wide Coverage Mean Age (years) UDG treatment 

Ust_Ishim FuNature2014 33.8832 44366 half 

Kostenki14_SG Seguin-OrlandoScience2014 1.93773 38052 ds.minus 

GoyetQ116-1 FuNature2016 0.0823461 35208 ds.half 

Bacho_Kiro HajdinjakNature2021 0.56633 34950 ss.minus 

SII SikoraScience2017 4.06929 34629 ds.minus 

SIII SikoraScience2017 10.7296 34517 ds.minus 

SIV SikoraScience2017 3.86485 34323 ds.minus 

Muierii2 FuNature2016 0.00532234 33646 ds.half 

SI SikoraScience2017 1.11134 33209 ds.minus 

Paglicci133 FuNature2016 0.00558593 33150 ds.minus 

Cioclovina1 FuNature2016 0.00044434 32669 ds.minus 

Kostenki12 FuNature2016 0.00407828 32650 ds.half 

Yana_old SikoraNature2019 25.4192 31850 ds.minus 

Yana_old2 SikoraNature2019 6.52137 31850 ds.minus 

KremsWA3 FuNature2016 0.00235461 30950 ds.half,ds.half 

I2483 TeschlerNicolaCommunicationsBiology2020 0.0814712 30850 ds.minus,ds.minus 
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Vestonice13 FuNature2016 0.00803129 30800 ds.half 

Vestonice15 FuNature2016 0.000855884 30800 ds.half 

Vestonice14 FuNature2016 0.00242175 30800 half 

Pavlov1 FuNature2016 0.00462822 30350 ds.half,ds.half 

Vestonice16 FuNature2016 0.16109 29800 ds.half 

Vestonice43 FuNature2016 0.0088801 29800 ds.half 

Zlaty_Kun PrüferNatureEcologyEvolution2021 3.0231 29,650 ds.half 

Ostuni2 FuNature2016 0.00148143 29116 ds.half 

GoyetQ53-1 FuNature2016 0.000547038 28051 ds.minus,ds.minus 

Paglicci108 FuNature2016 0.000522784 27900 ds.minus 

Ostuni1 FuNature2016 0.0261615 27614 half 

GoyetQ376-19 FuNature2016 0.00165892 27505 ds.minus,ds.minus 

GoyetQ56-16 FuNature2016 0.000345048 26300 ds.minus 

ma1 RaghavanNature2013 1.04739 24320 ds.minus 
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Supplementary Table 5: SNPs with the most positive value of DAnc Log P value for a 
sample of loci previously identified to be under LGA. The table of loci was adapted 
from Table 1 of 81. Loci identified near DHCR7 and NADSYN16 both yield SNP 
chr11_71164047 as the highest Log P value hence its duplication.  
 
 

CHR_POS GBR_YRI_HG_DAnc GBR_YRI_HG_log Locus 
Citation (from 

Rees et al., 2020) 
chr5_33958959 -0.822 6.46 SLC45A2 211,246–251 
chr15_28238158 -0.681 5.05 OCA2 211,246–251 
chr2_136578536 -0.637 4.54 LCT 127,193,252,253 
chr11_71164047 -0.629 4.46 DHCR7 6 
chr11_71164047 -0.629 4.46 NADSYN1 6 
chr9_12708910 -0.539 3.54 TYRP1 211,246–251 
chr11_88926481 -0.463 2.94 TYR 211,246–251 
chr10_53711005 -0.451 2.86 PRKG1 254 
chr11_61624181 -0.434 2.74 FADS2 120 
chr16_30482494 -0.374 2.35 ITGAL 6,255–259 
chr2_9671810 -0.348 2.19 ADAM17 6,255–259 
chr9_26991407 -0.300 1.9 LRRC19 6,255–259 
chr11_68162959 -0.299 1.89 LRP5 254 
chr7_22768124 -0.29 1.84 IL6 6,255–259 
chr11_68594136 -0.281 1.79 CPT1A 254 
chr2_43413114 -0.26 1.67 THADA 254 

chr12_113359132 -0.254 1.64 OAS1 6,255–259 
chr5_131727033 -0.253 1.63 SLC22A5 6,260 
chr2_234896346 -0.22 1.46 TRPM8 243 
chr7_142575383 -0.216 1.44 TRPV6 261,262 
chr5_131652529 -0.201 1.36 SLC22A4 6,260 
chr12_6885076 -0.178 1.25 LAG3 211,246–251 
chr1_119437639 -0.173 1.22 TBX15 120 
chr13_95101789 -0.171 1.21 DCT 211,246–251 
chr6_26099278 -0.166 1.19 HFE 263,264 
chr7_95038449 -0.145 1.09 PON2 211,246–251 
chr19_39740675 -0.033 0.583 IFNL4 265–267 
chr11_61596633 0.005 0.415 FADS1 120 
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Supplementary Table 6:  Loci which fall in the top 0.1% of P values for both DAnc and FST statistics (n = 19). All numerical values are 
given to three significant figures and raw empirical P values are omitted to allow fitting the table onto the page.  The tag ‘NON_GENIC’ 
is given to SNPs which do not map to any Ensembl gene coordinates +/- 2kb.    
 

 
 
 

CHR_POS DAF_GBR DAF_CHS DAF_YRI DAF_HG GBR_YRI_HG_DAnc GBR_YRI_HG_log YRI_GBR_FST YRI_GBR_FST_log Locus 

chr19_16791443 0.835 0.667 0.060 0.062 -0.772 5.790 0.761 3.293 TMEM38A 

chr4_178751757 0.874 0.605 0.111 0.122 -0.741 5.560 0.735 3.037 
snoU13 & LINC01098 & 

LINC01099 

chr15_72667215 0.923 0.738 0.130 0.176 -0.700 5.200 0.769 3.373 
HEXA-AS1 & HEXA & RP11-

106M3.2 

chr4_43380133 0.868 0.171 0.106 0.149 -0.676 4.990 0.735 3.028 NON_GENIC 

chr6_3264526 0.830 0.567 0.065 0.120 -0.654 4.810 0.749 3.171 PSMG4 

chr19_16793702 0.835 0.667 0.060 0.136 -0.623 4.390 0.761 3.293 TMEM38A 

chr4_158613911 0.170 0.200 0.935 0.857 -0.609 4.210 0.749 3.174 NON_GENIC 

chr4_158613022 0.170 0.200 0.935 0.839 -0.572 3.860 0.749 3.174 NON_GENIC 

chr4_158613913 0.830 0.800 0.065 0.171 -0.552 3.670 0.749 3.174 NON_GENIC 

chr15_45409271 0.874 0.871 0.102 0.214 -0.547 3.620 0.747 3.132 DUOXA2 & DUOXA1 

chr8_144800004 0.841 0.400 0.065 0.186 -0.532 3.480 0.761 3.290 MAPK15 & RP11-429J17.5 

chr11_67108240 0.929 0.690 0.120 0.262 -0.525 3.420 0.787 3.584 NON_GENIC 

chr1_10057670 0.841 0.557 0.065 0.204 -0.497 3.200 0.760 3.289 RBP7 

chr8_144799465 0.841 0.400 0.065 0.204 -0.498 3.200 0.761 3.290 MAPK15 & RP11-429J17.5 

chr15_45397566 0.901 0.948 0.097 0.258 -0.483 3.100 0.784 3.538 DUOX2 

chr15_45408699 0.874 0.871 0.097 0.244 -0.482 3.090 0.753 3.208 DUOXA2 & DUOXA1 

chr11_78762525 0.819 0.400 0.051 0.195 -0.480 3.070 0.757 3.248 TENM4 

chr11_78762524 0.819 0.400 0.051 0.195 -0.479 3.060 0.757 3.248 TENM4 

chr11_78762526 0.819 0.400 0.051 0.197 -0.476 3.040 0.757 3.248 TENM4 
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Supplementary Table 7: All 65 focal SNPs which overlapped with Neanderthal-introgressed regions inferred by Vernot and Akey et 
al., 2014.  
 
 

CHR_POS DAF_GBR DAF_CHS DAF_YRI DAF_HG DAnc_log GENE Neanderthal Segment Boundaries 

chr2_178503812 0.824176 0.685714 0.125 0.110286 5.16 PDE11A chr2:178142822-178505302 

chr12_54179028 0.752747 0.471429 0.0787037 0.059176 4.97 NON_GENIC chr12:54023456-54179825 

chr2_109580638 0.0879121 0.938095 0.759259 0.75871 4.94 EDAR chr2:109504028-109737370 

chr1_10043142 0.840659 0.561905 0.138889 0.158049 4.86 NMNAT1 chr1:9971095-10048490 

chr17_19295450 0.758242 0 0.013889 0.055317 4.85 NON_GENIC chr17:19260786-19343691 

chr10_127197223 0.725275 0.533333 0.046296 0.064455 4.67 NON_GENIC chr10:127070944-127328942 

chr11_61106525 0.972527 0.97619 0.333333 0.307911 4.64 DAK chr11:61101450-61189611 

chr8_17489315 0.802198 0.642857 0.138889 0.152229 4.54 PDGFRL chr8:17463274-17546201 

chr15_57073584 0.686813 0.680952 0.064815 0.058428 4.37 ZNF280D chr15:57066918-57148007 

chr14_57124988 0.928571 0.533333 0.310185 0.30584 4.34 RP11-1085N6.3 chr14:57044121-57183494 

chr1_236801184 0.692308 0.514286 0.069444 0.074829 4.25 NON_GENIC chr1:236684117-236809913 

chr12_71023006 0.879121 0.485714 0.268519 0.24098 4.24 PTPRB chr12:70966823-71089908 

chr6_7083218 0.675824 0.004762 0.050926 0.061894 4.14 NON_GENIC chr6:6933162-7305420 

chr6_16223268 0.708791 0.119048 0.106481 0.0704 4.12 NON_GENIC chr6:16205820-16233531 

chr3_30908838 0.697802 0.290476 0.0509259 0.076517 4.07 GADL1 chr3:30827725-30928571 

chr4_61838475 0.67033 0.690476 0.083333 0.063692 3.97 NON_GENIC chr4:61780692-61849734 

chr1_166230797 0.763736 0.495238 0.185185 0.11978 3.91 NON_GENIC chr1:166201513-166240676 

chr13_20897955 0.236264 0.333333 0.814815 0.877504 3.91 NON_GENIC chr13:20760155-20958871 

chr5_145204026 0.71978 0.319048 0.143519 0.074292 3.89 PRELID2 chr5:145135996-145239142 

chr2_13767732 0.758242 0.271429 0.185185 0.133366 3.87 NON_GENIC chr2:13717866-13768107 
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chr3_67608268 0.906593 0.552381 0.342593 0.245023 3.78 SUCLG2 chr3:67510899-67669126 

chr12_25826391 0.67033 0.052381 0.106481 0.075201 3.78 NON_GENIC chr12:25681579-25847961 

chr6_51941459 0.730769 0.52381 0.171296 0.143843 3.74 PKHD1 chr6:51828760-51989181 

chr10_44999021 0.208791 0.504762 0.777778 0.771549 3.72 NON_GENIC chr10:44895259-45048369 

chr10_18517019 0.697802 0.338095 0.12037 0.131188 3.71 CACNB2 chr10:18422443-18526707 

chr3_117192949 0.626374 0.214286 0.060185 0.067464 3.67 LSAMP chr3:117182404-117237442 

chr15_92923947 0.857143 0.485714 0.305556 0.13006 3.67 NON_GENIC chr15:92885352-92985021 

chr15_74529130 0.67033 0.37619 0.083333 0.101963 3.65 CCDC33 chr15:74520114-74628851 

chr15_53368543 0.648352 0.352381 0.101852 0.057981 3.62 NON_GENIC chr15:53220181-53374379 

chr20_40152483 0.17033 0.504762 0.717593 0.720722 3.62 CHD6 chr20:40130140-40287700 

chr7_6462646 0.214286 0.561905 0.759259 0.807031 3.6 DAGLB chr7:6446991-6599592 

chr14_68205235 0.631868 0.342857 0.055556 0.072365 3.58 ZFYVE26 chr14:68161005-68259229 

chr9_28760728 0.598901 0.17619 0.050926 0.054852 3.55 NON_GENIC chr9:28701255-28805518 

chr11_22611255 0.604396 0.328571 0.064815 0.06141 3.55 NON_GENIC chr11:22501786-22629007 

chr19_30192475 0.626374 0.004762 0.050926 0.068529 3.55 C19orf12 chr19:30154954-30367392 

chr1_218928554 0.82967 0.219048 0.291667 0.223956 3.53 NON_GENIC chr1:218816858-218989722 

chr9_87180554 0.730769 0.433333 0.143519 0.168471 3.52 NON_GENIC chr9:87065048-87268325 

chr12_3371230 0.598901 0.4 0.037037 0.051666 3.49 TSPAN9 chr12:3364536-3447301 

chr17_39101073 0.17033 0.261905 0.703704 0.877267 3.49 AC004231.2 chr17:39061408-39107376 

chr9_110848847 0.197802 0.242857 0.75463 0.742265 3.48 NON_GENIC chr9:110744320-110946964 

chr15_88428260 0.692308 0.585714 0.162037 0.113269 3.46 NTRK3 chr15:88243009-88496141 

chr5_55799184 0.747253 0.261905 0.171296 0.197698 3.4 AC022431.1 chr5:55781786-55825811 

chr9_85808730 0.89011 0.471429 0.365741 0.363791 3.4 NON_GENIC chr9:85802928-85847931 

chr16_87443734 0.615385 0 0.041667 0.066831 3.4 ZCCHC14 chr16:87243411-87469876 

chr2_221332244 0.131868 0.147619 0.652778 0.671004 3.38 AC067956.1 chr2:221323683-221388129 

chr6_124737336 0.587912 0.514286 0.037037 0.052414 3.37 NKAIN2 chr6:124659473-124769233 

chr10_68157820 0.802198 0.452381 0.282407 0.146799 3.37 CTNNA3 
 

chr10:68140108-68201946 
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chr3_131991020 0.730769 0.819048 0.212963 0.064336 3.35 CPNE4 chr3:131765609-132008545 

chr3_53209500 0.675824 0.742857 0.162037 0.085029 3.32 PRKCD chr3:53194116-53269471 

chr10_119317804 0.664835 0.657143 0.157407 0.082724 3.27 NON_GENIC chr10:119220651-119343207 

chr2_104904132 0.78022 0.185714 0.185185 0.230727 3.25 NON_GENIC chr2:104832103-104989756 

chr4_12629987 0.642857 0.295238 0.138889 0.13057 3.25 NON_GENIC chr4:12541330-12669185 

chr5_142388225 0.67033 0.080952 0.166667 0.158093 3.25 ARHGAP26 chr5:142361656-142399722 

chr10_35993394 0.769231 0.566667 0.263889 0.062542 3.25 NON_GENIC chr10:35962511-36046464 

chr12_121096987 0.730769 0.466667 0.226852 0.186535 3.25 CABP1 chr12:120986181-121109557 

chr3_126185855 0.730769 0.552381 0.231481 0.069143 3.21 ZXDC chr3:126181520-126213241 

chr11_95716539 0.659341 0.585714 0.166667 0.143074 3.17 MAML2 chr11:95642362-95727942 

chr16_55156104 0.906593 0.780952 0.416667 0.347675 3.15 NON_GENIC chr16:55124745-55258083 

chr10_90068576 0.131868 0.442857 0.62037 0.779019 3.14 RNLS chr10:90021267-90187486 

chr2_34115251 0.131868 0.471429 0.648148 0.633559 3.13 AC009499.1 chr2:34002429-34128383 

chr6_23946559 0.697802 0.2 0.212963 0.185877 3.11 NON_GENIC chr6:23761544-23961402 

chr8_13260040 0.543956 0.195238 0.050926 0.055231 3.1 DLC1 chr8:13240145-13309737 

chr16_3707747 0.626374 0.552381 0.134259 0.139005 3.1 TRAP1 chr16:3465820-3923980 

chr10_64221290 0.576923 0.438095 0.018519 0.061811 3.01 ZNF365 chr10:64164905-64289250 
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Supplementary Table 8: All most significantly associated GWAS traits for DAnc focal SNPs. Columns obtained from the GWAS 
Catalog dataset are indicated by a * symbol. All other columns were obtained from the genome-wide DAnc scores file created in 
(Chapter 2). For each SNP is reported the chromosomal position, dbSNP Build 154 ID, locus, log P values for DAnc and GWAS and 
the mapped trait. The studies which reported these loci are cited within the table.  
 

CHR_POS SNP ID* Locus DAnc_log GWAS_log* Mapped Trait* 
Study Citation* 

chr5_33964210 rs183671 SLC45A2 6.46 9 skin pigmentation 
225 

chr5_33964210 rs183671 SLC45A2 6.46 58.69897 hair colour measurement 
223 

chr5_33964210 rs183671 SLC45A2 6.46 8.09691001 freckles, skin pigmentation 
224 

chr12_50155400 rs6580721 TMBIM6 5.05 9 systolic blood pressure 
226 

chr15_79235446 rs3825932 CTSH 4.22 14.5228787 type 1 diabetes mellitus 
231 

chr1_67814440 rs3790566 IL12RB2 3.92 9.39794001 systemic scleroderma 
232 

chr3_71036994 rs6802472 FOXP1 3.63 8.39794001 risk-taking behaviour 
233 

chr15_84562740 rs4414460 ADAMTSL3 3.5 18.5228787 BMI-adjusted waist circumference 
234 

chr15_84562740 rs4414460 ADAMTSL3 3.5 9.09691001 BMI-adjusted waist circumference 
234 

chr16_87443734 rs1050847 ZCCHC14 3.4 8 smoking behaviour measurement 
219 

chr16_87443734 rs1050847 ZCCHC14 3.4 8.39794001 self reported educational attainment 
226 

chr16_87443734 rs1050847 ZCCHC14 3.4 11.0457575 smoking status measurement 
220 

chr16_87443734 rs1050847 ZCCHC14 3.4 9.39794001 coffee consumption measurement, neuroticism measurement 
221 

chr16_87443734 rs1050847 ZCCHC14 3.4 12 self reported educational attainment 
222 

chr16_87443734 rs1050847 ZCCHC14 3.4 8.15490196 smoking status measurement 
220 

chr16_87443734 rs1050847 ZCCHC14 3.4 10.0457575 self reported educational attainment 
222 

chr16_87443734 rs1050847 ZCCHC14 3.4 10 cognitive function measurement 
222 

chr1_39380385 rs4246511 RP5-864K19.4 & RHBDL2 3.38 16.0457575 age at menopause 
268 

chr1_39380385 rs4246511 RP5-864K19.4 & RHBDL2 3.38 20.30103 age at menopause 
235 

chr19_19478022 rs2905426 NON_GENIC 3.33 8.30103 schizophrenia 
227 

chr19_19478022 rs2905426 NON_GENIC 3.33 9.39794001 schizophrenia 
228 
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chr15_84562740 is repeated twice because of its association with waist circumference and body measurement which were collapsed 

into the trait BMI-adjusted waist circumference. chr11_15910939 is repeated twice because of its association with education 

attainment and education attainment years of education which were collapsed into the trait self reported educational attainment189. 

 

chr19_19478022 rs2905426 NON_GENIC 3.33 9.04575749 schizophrenia 
229 

chr19_19478022 rs2905426 NON_GENIC 3.33 18 mean reticulocyte volume 
236 

chr19_19478022 rs2905426 NON_GENIC 3.33 8.39794001 schizophrenia 
230 

chr5_132070333 rs7732667 KIF3A 3.33 9.52287875 Abnormality of refraction 
237 

chr10_119317804 rs4752078 NON_GENIC 3.27 13.30103 waist-hip ratio 
226 

chr16_3707747 rs1053874 TRAP1 & DNASE1 3.1 9.30103 body mass index 
238 

chr11_15910939 rs11023764 NON_GENIC 3.07 9.30103 self reported educational attainment 
222 

chr11_15910939 rs11023764 NON_GENIC 3.07 10 self reported educational attainment 
222 


