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Abstract

Automated monitoring of vegetation health in a landscape is often attributed to calculating

values of various vegetation indexes over a period of time. However, such approaches suf-

fer from an inaccurate estimation of vegetational change due to the over-reliance of index

values on vegetation’s colour attributes and the availability of multi-spectral bands. One

common observation is the sensitivity of colour attributes to seasonal variations and imaging

devices, thus leading to false and inaccurate change detection and monitoring. In addition,

these are very strong assumptions in a citizen science project. In this article, we build upon

our previous work on developing a Semantic Vegetation Index (SVI) and expand it to intro-

duce a semantic vegetation health monitoring platform to monitor vegetation health in a

large landscape. However, unlike our previous work, we use RGB images of the Australian

landscape for a quarterly series of images over six years (2015–2020). This Semantic Vege-

tation Index (SVI) is based on deep semantic segmentation to integrate it with a citizen

science project (Fluker Post) for automated environmental monitoring. It has collected thou-

sands of vegetation images shared by various visitors from around 168 different points

located in Australian regions over six years. This paper first uses a deep learning-based

semantic segmentation model to classify vegetation in repeated photographs. A semantic

vegetation index is then calculated and plotted in a time series to reflect seasonal variations

and environmental impacts. The results show variational trends of vegetation cover for each

year, and the semantic segmentation model performed well in calculating vegetation cover

based on semantic pixels (overall accuracy = 97.7%). This work has solved a number of

problems related to changes in viewpoint, scale, zoom, and seasonal changes in order to

normalise RGB image data collected from different image devices.

1 Introduction

The increasing population of the world and the change in land use by them have significantly

affected vegetation and landscape composition [1, 2]. It has been discovered that changes in
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the kind of land cover (such as building developments) have a substantial relationship with

changes in vegetation. Calculations of various vegetation indexes are frequently used to auto-

mate the identification of vegetation cover and important variations in the environment [3].

Therefore, all of these natural resources require environmental monitoring to be protected

and conserved, and this is especially true for open green areas and public lands. Because vege-

tation plays a vital role in the improvement of an ecosystem, it enables the climate to have the

positive change required for better living. This is being done with the help of land-care agen-

cies, environmental groups, and local governments using drones, UAVs, satellites, and remote

sensing.

Vegetation landscapes, by their very nature, are dynamic and constantly changing in

response to human use. Unfortunately, not all changes to the landscape are positive ones. In

turn, this has negative consequences for farmland and grazing resources, landscape diversity,

cultural values, and biological variety [4, 5]. Vegetative landscape monitoring is a good way to

make sure that changes in the landscape are going in the right direction.

It is recommended to monitor anything throughout time, which means observing and doc-

umenting any changes that occur. Monitoring is all about performing periodic assessments or

surveys, collecting outcomes, and then comparing them to determine the efficacy of activities

or the development of projects. Management actions might be evaluated based on the feedback

they receive via the monitoring team, and it also helps to determine whether natural resources

are improving, stabilising, or decreasing. Understanding how and why the land and its vegeta-

tion behave over time is essential for land managers to do their jobs effectively.

Researchers have developed a number of different algorithms for calculating the vegetation

index from photographs. According to reports, researchers have placed a strong emphasis on

remote sensing [6] images because of their numerous advantages, including large area expo-

sure, reliability, and many others. The green area seen in remote sensing photos is used to

extract the vegetation region available in certain places [7]. Remote sensing data is collected

from above by sensors (aircraft, space) that misses the glimpse of vegetation. Accordingly,

ground-level profile views are inadequate for assessing urban greenery even if green indices

generated from remotely sensed image data could assist in quantifying greenery. There’s a big

difference between what the average person sees on the ground and what remote sensing tech-

nologies see [8].

A simple but extremely important way of monitoring vegetation, whether it is remnant veg-

etation or revegetated sites, is to take a series of images, which is referred to as “photopoint

monitoring” or “repeat photography” [9]. Repeat photography is a method where ground-level

photographs are taken from exactly the same location at different points in time. In the case of

landscapes, the time stamps between the images are usually several years or decades, some-

times even up to a whole century. However, with the technological advances in aerial and satel-

lite remote sensing, ground-based photographs have lost most of their relevance in modern

landscape monitoring. A repeat photograph is a photograph that has been purposefully created

to reproduce certain characteristics of another, previously taken photograph. The new image

often duplicates the location coordinates of the original, presenting the user with the identical

scenario for the second time and encouraging them to compare the two images [10]. In the lit-

erature, many researchers have used repeat photography for many purposes, like estimating

changes in tree lines [11], for analysing plant phenology, vegetation cover estimation [12–15]

and many others.

A number of ecological studies used a combination of repeat photographs as well as field

measurements to obtain quantitative results [16]. Clark et al., [17] performed point sampling

along horizontal transects that were randomly placed through the image to create their results.

They manually categorised each image into cover classes, and they developed the concept of

PLOS ONE A deep semantic vegetation health monitoring platform

PLOS ONE | https://doi.org/10.1371/journal.pone.0270625 July 27, 2022 2 / 21

https://doi.org/10.1371/journal.pone.0270625


image cover as a quantitative metric. Roush et al., [18] calculated the vegetation cover percent-

age by applying a rectangular grid on top of each photo. Fortin et al., [19] used repeat photo-

graphs collected as part of the Mountain Legacy Project to derive class-specific land cover

estimates and compared them to Landsat classifications. There is one thing that all of these

studies have in common: the classification step is completed manually, usually by drawing

polygons around specified landscape objects and then performing a visual interpretation of the

results. Despite the fact that there is a large range of automatic segmentation and classification

algorithms for aerial and satellite images, there is no single best solution, but the fact that

ground-based images have such an angular viewpoint means that these approaches do not

operate in the same manner [20]. Rohde et al., [21] findings are based on a comparison of 100

re-photographed or “matched” historical landscape images. Changes in woody cover at every

photo site were analysed and used as a proxy for climatic change in the area. Toda et al., [22],

used the Bartlett Experimental Forest data to compare the phenological metrics of leaf area

index, plant area index, and their associated transition dates. They gathered digital repeat pho-

tography images using two separate methods: “canopy cover” and “phenocam”. Zier et al., [23]

presented his findings from an investigation of vegetation change in the San Juan Mountains

conducted with repeat photography and Hendrick et al., [24] in the Appalachian Mountains.

In Australia, the practise of repeat photography has been quite rare in recent years. With the

help of repetitive photos, John Pickard [9], demonstrated how the landscape of Australia has

changed throughout time. But most of the methods that were talked about involve a lot of

manual work that takes a lot of time and does not use automation.

Digital image classification has become increasingly automated with the help of machine

learning and deep learning, which has quickly become one of the most popular methodologies

[25, 26]. In particular, deep learning eliminates the requirement for the time-consuming and

complex feature extraction (such as fractal dimension, local binary patterns, texture features,

shape features, colour features, etc.) method that was previously required. Instead, throughout

the CNN training process, the model learns and extracts the necessary information on its own,

without the need for human intervention. Deep learning’s most major drawback is that it

necessitates the use of massive amounts of labelled training data [27]. Convolutional neural

networks (CNN) are one of the deep learning architectures that are particularly well suited for

image analysis because of their capacity to extract spatial characteristics from images. In con-

volutional neural networks, the image is fed into the network in its raw form (pixels). The net-

work transforms the image many times. First, the image goes through many convolutional

layers. In those convolutional layers, the network learns new and increasingly complex features

in its layers. Then the transformed image information goes through the fully connected layers

and turns into a classification or prediction. CNNs have been shown to be quite effective in a

wide range of applications, including object detection [28], plant segmentation [10], classifica-

tion [29–33], plant disease identification and classification [34, 35] and semantic segmentation

[36–38].

Researchers have proposed various algorithms for the calculation of the vegetation index

using images. However, it appears that researchers have placed a high priority on remote sens-

ing images due to benefits such as large area exposure, repeatability, and many others [6].

Remote sensed images are used to extract the green area present in them, which represents the

vegetation region available in some particular region [7]. Images from remote sensing are

taken from above or from the air, which is higher than ground level and captures a larger area.

This makes it hard to estimate how much vegetation there is in a certain place. Pictures taken

from the ground can help a lot with figuring out how the vegetation is changing, which can be

used to help the environment.
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The profile view of the site can provide in-depth analysis, as demonstrated by Yang et al.,

[8]. They compare profile views of two different forests and demonstrate how depth informa-

tion can be extracted using this technique. However, the advancement in computer vision has

enabled researchers to work on the profile view images and carry out comparisons between

two images taken at different times from different angles, which is basically a phenomenon of

repeat photography.

Kendal et al., [39] used colour thresholding for the extraction of vegetation index. The tech-

nique proved to be promising. However, only using colour features for segmentation is not an

efficient method as any clutter information in the image can match the vegetation colour. Har-

baš et al., [40] used a fully convolutional network (FCN) to detect and segment roadside vege-

tation for the navigation of autonomous vehicles. Hung et al., [41] used a learned feature

approach to classify weeds and non-weeds. The images used were acquired by an unmanned

vehicle. Furthermore, in recent years, Bawden et al., [42] proposed an algorithm that classifies

forbs and grass. However, researchers did not focus on the change in vegetation index using

repeat photography. The major focus remained on the classification of different species, as it is

really important to get information about vegetation change so that steps for the improvement

of the environment can be taken.

This paper focuses on the calculation of changes and monitoring in vegetation index for

which registration of images is performed at an initial level. Registration is carried out because

focus of authors is on repeat photography, which carries angle and scale variation. Therefore,

transformation is needed to be done for this problem. This has already been done by the

authors in their previously published work [43]. A novel deep affine invariant network was

proposed for non-rigid image registration of multi-temporal repeated photography. Strong

point matching and affine invariance are included in the suggested framework for reliable

multi-temporal image registration. Furthermore, a novel approach to semantic segmentation

is adopted to efficiently extract the vegetation region from the image. The vegetation region

can then be used for the calculation of the vegetation index in an effective manner. The overall

work flow of this proposed study is presented in Fig 1.

The rest of the paper is organised as follows: Section 2 is about the dataset taken into

account; section 3 is detailed information regarding the proposed algorithm and methodology;

section 4 discusses the results achieved by the proposed methodology; and section 5 is the con-

clusion section of this paper.

Fig 1. The general data flow diagram shows how the proposed system for checking the health of plants would work.

https://doi.org/10.1371/journal.pone.0270625.g001
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2 Materials and methods

2.1 Taking repeat photographs

It has become increasingly vital to be able to work with large numbers of images and annotate

them for specific purposes. The images may come from a variety of sources, including different

users, the media, artists, or even video surveillance. The images used and how they are assem-

bled can distinguish the content and audience relevance of a work [44]. Repeat photography is

more than simply taking a second picture at the same moment in time when conducting scien-

tific research.

In order to avoid perspective shifts, these images must be taken from the same place every

time. This is more important than the physical characteristics [44] shown in Fig 2. It needs

careful planning and preparation, as well as close attention to the physical environment

around it.

Lighting, weather, and seasonal changes should be as similar as possible in order to produce

visually identical image pairs. However, weather and lighting circumstances are difficult to rec-

reate in practise due to the fact that field activities must be planned in advance, finances are

limited, and deadlines are frequently constrained in nature [45].

2.2 Study area / Fluker post project dataset

For the proposed technique, we used the Flukerpost dataset [46]. The Fluker Post dataset is an

initiative taken by the Victorian Government and Victoria University to maintain a record of

the environmental conditions of different sites throughout Australia. The dataset has been put

together and is ready for people to contribute. There are around one hundred and sixty-eight

(168) Fluker post point sites. At a Fluker Post point, there is no camera installed. Instead,

Fig 2. An example of repeat photography, showing images taken of a site at different times.

https://doi.org/10.1371/journal.pone.0270625.g002
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visitors passing by from fixed photo-points use the Fluker Post app on their own phones to

snap a photo of the sight in front of them. This simple method of taking pictures over and over

again is a good way to manage natural resources over the long term.

The Fluker Post has been running effectively so far, collecting useful imagery data about

vegetation, parks, watersheds, rivers, streams, etc. An example of a repeated image collected

from 2015 to 2020 quarterly of one study site is presented in the Fig 3.

This vast amount of photographic data is currently being manually analysed in order to

point out areas where state agencies like Parks Victoria might be able to help. But because of

the large volume of data, this traditional approach is less successful, and more automation is

needed to improve and speed up data processing. Manual image analysis is significantly more

time-consuming and inefficient when dealing with repeat photography data. In total, more

than 4000 photographs have been collected for this project, all of which have been sorted into

albums according to various areas throughout Australia. This project’s website address is

https://www.flukerpost.com/, and its interface is shown in Fig 4. The issue, however, is that the

images were captured using a variety of camera sensors and from various vantage points. Pho-

tographs are taken at random times of the day and seasons. All of these things make it hard to

do, and as a result, comparing and extracting useful information like vegetation change detec-

tion has become very challenging.

Fig 3. Sample images of the Warrnambool region site, one of the Fluker post points of collection, taken quarterly over several years between 2015 and

2020.

https://doi.org/10.1371/journal.pone.0270625.g003
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2.3 Vegetation segmentation

The advancement of convolutional neural networks (CNNs) has achieved many milestones in

the field of computer vision. They have given state of the art results for many research prob-

lems as the algorithm doesn’t require extraction of features separately and machine learning

processes separately. It performs both tasks in the network and provides promising results.

Networks take the image’s complex features and use them to identify any object in the image.

Our major focus is to calculate and then monitor the vegetation index of a location over dif-

ferent time series. For our process to be completed, we need to classify the vegetation region

and non-vegetation region in the input image. We have developed a pixel-wise classification

algorithm so that segmentation of vegetation can be done with the greatest efficiency.

2.4 U-Net

The U-Net model [47], which has an encoder-decoder architecture, as shown in Fig 5. was

used in this research. The fact that U-Net is symmetric means that it does not have to deal with

the connections between the up and down-sampling paths, which is advantageous when used

as a concatenation operator. After they have been trained based on the colour variable in the

dataset, models assign a colour to an object.

Typically, in the U-Net approach, the input image is first processed by an encoder path,

which is composed of convolutional and pooling layers that degrade the spatial resolution of

the input image, according to conventional practice. It is then followed by a decoder path that

restores the original spatial imagery resolution by adopting up-sampling layers followed by

convolutional layers, which is a technique known as “up-convolution”. Apart from that, the

network makes use of so-called skip connections, which connect the output of the relevant lay-

ers in the encoder path to the inputs of the decoder path by adding them to the inputs of the

decoder path.

Fig 4. Fluker Post Project Location and Details: a.) The green circles indicate the locations of posts installed across Australia. b.) Details about each post’s

location, as well as the number of images saved for a specific site.

https://doi.org/10.1371/journal.pone.0270625.g004
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2.5 Vegetation index calculation from RGB images

There are a variety of methods for calculating and monitoring the vegetation index. However,

the majority of them employed either colour, threshold, or green area segmentation, which

could lead to some encouraging outcomes. As a result, we propose a semantic-based approach

for calculating and monitoring a robust vegetation index based on the distinctive colour of cer-

tain classes using a color-based approach. In the proposed work, RGB colour codes (107, 142,

35) were assigned to trees and vegetation terrain. After the trees and vegetation terrain have

been separated, the correct masks are used to calculate the vegetation index.

2.6 The proposed Semantic Vegetation Index (SVI)

For robust calculation and monitoring of the vegetation index of each sample location over

different time stamps, we used the approach of semantic pixels (SP) calculation, based on

the unique colour pixels assigned to a specific class and extracted based on the deep features

through the use of a deep neural network.

For vegetation index calculation and monitoring, we used the Fluker Post project image

dataset, as the data is available with a time series. We observed that one image of a location is

not sufficient for index monitoring. Therefore, for calculating the vegetation index in this

investigation, we used the repeat photography technique. We selected four images, quarterly,

per year between 2015 and 2020 for each site, out of 168 total sites. Some of the sample images

of a specific site (Warrnambool Region, VIC) are shown in Fig 3. In each sample photo, the

number of semantic pixels will be counted, and the area will be equal to the total number of

semantic pixels in one of the three photos of a certain place.

Consequently, for the purpose of this study, a single image was used to precisely compute

the vegetation index based on the semantic pixels in order to cover the whole vegetation area

seen in the image, and the vegetation index was calculated using the semantic pixels approach.

The number of semantic pixels in each sample image will be computed as SPa with respect to

the total pixels (Areat) of an image. The semantic vegetation index (SVI) is calculated with the

Fig 5. The architecture of U-Net shows network processes.

https://doi.org/10.1371/journal.pone.0270625.g005
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following equation:

SV I ¼
Pn

i¼1
SPa� iPn

i¼1
Areat� i

� 100% ð1Þ

Where SVI stands for Semantic Vegetation Index, SPa_i presents semantic pixels area in an

image and Areat_i represents the sum of pixels in an image of a specific location/site.

3 Experiments and results

3.1 Data preprocessing & preparation

The data set consists of around 3500 images taken at different times over several years. There-

fore, it is essential to preprocess and prepare the data for model training in order to achieve

better outcomes. We registered the images, performed data augmentation, labelled the data,

and then separated the data into training, validation, and testing data (80%, 15% and 5%

respectively) throughout the preprocessing and data preparation processes.

3.1.1 Image registration. Image registration is one of the most critical processes in this

process. Image registration allows the system to compare two images that have undergone a

similar alteration to one another. The image that is being transformed is referred to as the

sensed image, and the image that is being altered in relation to it is referred to as the reference

image. Image registration tries to eliminate the geometric position inconsistency between two

photographs, resulting in the same image coordinates reflecting the same objects on both

dates. To properly handle and analyse multiple images, it is necessary to perform image regis-

tration first. The vegetation images must be re-registered in the same dimensions as the images

in the dataset because the images in the dataset were taken at various times, seasons, and loca-

tions, so their dimensions are different. To properly handle and analyse multiple photos, it is

necessary to perform image registration first [48]. It’s a technique for combining photos (two

or more) obtained at various times, from various vantage points, and with various sensors to

create a composite image. The image registration technique is adapted from the authors’ (our)

[43] previously published work. In that paper, the authors proposed a new deep affine invari-

ant network for non-rigid image registration of multi-temporal repeat photography. Robust

point matching and affine invariance are also part of the proposed framework for robust

multi-temporal image registration. An example of image registration in the form of a checker-

board is presented in the Fig 6.

In this study, the images taken quarterly over a year of various site locations were used and

resized to 256 x 256 pixels after the image registration process. Because the images are taken

from different angles and sensors, it was necessary to use an image registration process to nor-

malise the data for the neural network training and get better results.

3.1.2 Data augmentation. A large number of images are used to train a deep neural net-

work model to achieve highly precise prediction and accuracy. In our case, some of the Fluker

post sites had fewer images than others. Because of this, the technique of data augmentation

was used on the sites with fewer images. The process of data augmentation [49] provided us

with new images based on our existing images. Different augmentation techniques like blurri-

ness, rotation, flipping (horizontal and vertical), zooming, translation, and the addition of

noise were applied accordingly. An illustration of different augmentation techniques is shown

in Fig 7. By using this method, the number of images in our dataset grew, which is important

for getting more accurate results after the training stage of a CNN.

3.1.3 Data labelling. The light intensity of the dataset images varies since the images were

taken at different times and with different cameras. Therefore, preprocessing of the dataset
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Fig 6. An example of image registration is applied to an input and sensed image.

https://doi.org/10.1371/journal.pone.0270625.g006

Fig 7. Different data augmentation technique applied include: (a). Original Image, (b). Vertical Flip, (c). Horizontal Flip, (d) Random

Gaussian Noise, (e). 90 degree rotation, (f). 180 degree rotation, (g). Random zoom, (h). Translation, and (i). Blur.

https://doi.org/10.1371/journal.pone.0270625.g007
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images is required before the registration procedure to ensure that the images are usable for

the training and testing process. The training dataset was annotated with a cloud-based pro-

gram called “Apeer” [50], which is available for free as part of a ZEISS initiative. Image annota-

tion generates labels that serve as the basis for machine learning training. The amount of

training data as well as the correctness of annotations are both important factors in determin-

ing machine learning accuracy. Fig 8. presents a high-level overview of the annotation process.

The region of interest (ROI) is the labelled area of an image slice, which is usually only a small

portion of the image. The ROI mask is inserted into the CNN with the image as a binary map,

with pixels belonging to the ROI set to one and pixels belonging to the background set to zero.

3.2 Network model training

The entire dataset was divided into three parts: training, validation, and testing sets, each com-

prising 80%, 15%, and 5% of the total, respectively. Before starting the training, hyperpara-

meters were set to avoid the overfitting and underfitting issues of the model. The hyper-

parameters are set as: batch size kept at 16, learning rate as 0.0001, loss function as categorical

cross-entropy, number of iterations/epochs as 200, NMS threshold as 0.45, and an optimizer

as Stochastic gradient descent (SGD). The loss function ensures that the neural network opti-

mises itself by reducing the amount of error it generates during the training process. The train-

ing loss indicates how well the model optimises the training data, while the validation loss

indicates how well the model fits new data. Non-Maximum Suppression (NMS) is a technique

used in numerous computer vision tasks. It is a class of algorithms to select one entity (e.g.,

bounding boxes) out of many overlapping entities. Most of the time, the criteria are some kind

of probability number and a way to measure overlap, such as “intersection over union”. The

training loss, validation loss, training accuracy, and validation accuracy curve graphs are pre-

sented in Fig 9 a.) Training and Validation Loss; b.) Accuracy of U-Net Model Training and

Validation.

Fig 8. Apeer, an annotation tool’s interface, and a sample annotated image.

https://doi.org/10.1371/journal.pone.0270625.g008
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The Table 1 lists the hardware and software resources used in the experiments and results.

3.3 Model performance evaluation

Both the training and validation sets were used to calculate the accuracy and loss of the model.

The prediction accuracy on individual images was calculated using the 175 images from the test

set (= 5%), which had been separated from the total number of samples before training. The

confusion matrix is made up of pixel numbers representing true positives (tp), true negatives

(tn), false positives (fp), and false negatives (fn). As for accuracy metrics, we use Precision(P),

Recall(R), F1score, and OverallAccuracy(OA). These metrics are calculated as follows:

PrecisionðPÞ ¼
tp

tpþ fp ð2Þ

RecallðRÞ ¼
tp

tpþ fn ð3Þ

F1 � score ¼
2 � Precision � Recall
Precisionþ Recall

ð4Þ

OverallAccuracyðOAÞ ¼
tpþ tn

tpþ tnþ fpþ fn ð5Þ

The learning process stopped after 90 epochs when the learning curve converged and loss

values stopped decreasing. Fig 9. depicts the improvement in loss and accuracy during the

Fig 9. Over 90 epochs, the learning process for loss (on the left) and model accuracy (on the right) are shown. If dropout is

used on the training data, the accuracy of the training data and the validation data will be different.

https://doi.org/10.1371/journal.pone.0270625.g009

Table 1. The details of the configuration of the experimental environment.

Item Name Parameter

Central processing unit (CPU) Intel i7 9700k

Operating system MS Windows 10

Operating volatile memory 32GB RAM

Graphic processing unit (GPU) Nvidia Titan RTX

Development environment

configuration

Python 3.8 + TensorFlow 2.5 + CUDA 11.2 + cuDNN V8.1.0 + Visual

Studio 2019

https://doi.org/10.1371/journal.pone.0270625.t001
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training process. It is a fact, that when dropout and data augmentation are applied exclusively

to training data, the validation accuracy often exceeds the training accuracy. The model

achieved a maximum accuracy of 96.6% (loss = 0.11), based on the validation set. Additionally,

we examined the model’s performance on a second test dataset consisting of n = 175 unique

images that were not utilised in the model selection procedure. The model achieved an accu-

racy of 97.4% (loss = 0.07) on these individual images. After testing the model, overall accuracy

varied significantly amongst images, ranging from 74.1% to 96.6%.

A comparison was also performed through two CNN architectures: Fully convolutional net-

work (FCN) and U-Net, while keeping the same technical environments as mentioned in

Table 1. After conducting experiments, the following results, as mentioned in Table 2, were

achieved. A more comprehensive comparison has already been performed with the current lit-

erature studied in the author’s (our) previous published work [36].

The Fig 10. shows some of the segmentation results from the randomly selected test images.

They are quite promising results.

4 Discussion

While evaluating the trained U-Net model’s performance in classifying vegetation in repeated

landscape photographs, an over-all accuracy (OA) of 97.4% on individual images was achieved.

In contrast, several studies for similar problems, such as Zhang et al., [51] used a spatial con-

textual superpixel model to achieve an accuracy of 79.8% on the class “tree” in real roadside

images. For trees in ground images, Byeon et al., [52] used an LSTM Re-current Neural Net-

work (RNN) to get a class accuracy of 64.2%. In a similar manner, Shuai et al., [53] paired a

CNN with a directed acyclic graphic RNN (DAG-RNN) for scene identification and achieved

an accuracy of 82.5% for the tree-class.

The quality of the image was recognised as a significant influencing element. It is possible

that the wide range of image content, resolution, scale, and illumination used in a specific job

has an impact on the classification and identification accuracy. The advancements in digital

camera technology have resulted in a significant improvement in image quality over time. As a

result, older RGB images are often of poorer quality than current RGB images, which has a

negative impact on the efficacy of the classification and detection methods. Clark et al., [17]

encounter the same image quality issues when attempting to measure vegetation changes

between repeat images using transect point sampling.

When Skovsen et al., [54] attempted to differentiate clover from grasses and weeds using

fuzzy images, they found a greater rate of misclassification because of the quality of the images.

Segmentation and computing the index values were done for all the Fluker Post sites. How-

ever, only a few of them (Youyung Park, the Warrnambool region, Knox, and the Kororoit

Creek site) are shown in the Fig 11. From the results, it is observed that those Fluker post sites

where the visitors frequently go have a large number of images for each month of the year,

while some sites have fewer images. Also, there were only a couple of images for some sites.

The above facts may impact the results in terms of trends. To overcome the above issue, an

average index value was computed to show the trend of a specific site. For example, in Fig 11,

Table 2. Comparative analysis of FCN and U-Net results.

Segmentation Model Precision Recall F1-Score Pixel Accuracy IoU mIoU

FCN 94.2 85.3 91.1 90.4 83.3 81

U-Net 96 91.8 92.3 93.4 87.5 84

https://doi.org/10.1371/journal.pone.0270625.t002
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the semantic vegetation index values computed are the average index values for each quarter

of a year.

4.1 Seasonal variation affecting the vegetation health

According to the Bureau of Meteorology, Australia, there are several environmental factor that

seriously affect the vegetation health [55]. They are:

• Low rainfalls

• Extremely dry season

• Consecutive periods of dry or cold weather

• Early and long-lasting devastating bushfires

Fig 10. Some sample segmentation results for the randomly selected test input images.

https://doi.org/10.1371/journal.pone.0270625.g010
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Low rainfalls: Australia had a very wet winter and spring in 2016. In 2017, things dried up

a lot. Most of the interior of southeastern Australia didn’t get much rain in 2017, 2018, and

2019. In some places, like western Victoria and western Queensland, there was more dry

weather than other parts of the country had in these years. Only a slight recovery followed a

very dry and cool season in October and December 2017 and 2018. For several years, there was

record-low rainfall. This year’s cool season was very dry, and it did not end until the end of the

year. From January 2017 to December 2019, the Murray–Darling Basin and New South Wales

have had the driest three years on record, as shown in Fig 12. Other areas that have not been

getting enough rain for a long time include eastern Victoria, eastern and northern Tasmania,

eastern South Australia, except for the southeast and some parts of the southwest, and Western

Australia.

Extremely dry season: Extremely dry conditions, especially in the northern half of New

South Wales, have had the worst droughts over long periods of time.This is in stark contrast

to what occurred during the Millennium drought, when the southern basin had the worst

droughts and the north had the best. Two other places with a long-term lack of rain, namely

Gippsland in eastern Victoria and eastern Tasmania, were two others. In Gippsland, the most

severe deficits were found. 2019 was marked as the third year in a row that the area did not

receive enough rain. While it wasn’t as dry as in 2017 and 2018, the lack of rain kept building

up over time. This led to multi-year deficits. The east coast of Tasmania also saw a lot less rain

than usual during this time.

Consecutive dry, cool seasons: These three years (2017-2019) didn’t get enough rain, but

they were terrible in the fall and winter. From 2017 to 2019, it was very dry in a lot of New

South Wales from April to September each year. It was the same in Queensland, south of the

Fig 11. Figures depicting the average semantic vegetation index calculated quarterly from 2015 to 2020 for a.) Youyung Park, b.) Warrnambool region, c.)

City of Knox, and d.) Kororoit Creek site.

https://doi.org/10.1371/journal.pone.0270625.g011
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Tropic of Capricorn, where the weather was the same. People in New South Wales and the

Murray–Darling Basin didn’t get much rain in April and September.

Early and long-lasting devastating bushfires: As measured by the Forest Fire Danger

Index (FFDI), which is a common way to measure fire weather conditions, spring 2019 saw

the highest level of fire weather danger across the whole country. Record high FFDI values

were found in all states and territories. The hot weather made things even more dangerous for

fires in December 2019 and early January 2020.

As can be seen from the above trends in Fig 13, during the years 2017–2019, the environ-

mental factors mentioned above significantly affected the vegetation in most of the Australian

regions and territories. Therefore, it can be seen that the average semantic vegetation index

calculated has low values due to environmental factors. However, beginning in 2020, those

areas were given extra care with the help of citizens and the government to help the plants

grow back and save the biodiversity.

5 Conclusion

This research article proposes automatic vegetation health monitoring using repetitive photog-

raphy. This study tried to address challenges related to citizen science data processing. For this

purpose, we normalise data collected from various visitors who visited Fluker post point sites

in Australia and use it to estimate the vegetation cover change from images taken quarterly

Fig 12. Australian rainfall deciles for the combined three-year April–September periods of 2017, 2018, and 2019. (Based on all years since 1900).

https://doi.org/10.1371/journal.pone.0270625.g012
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over six years in various specific locations throughout Australia. In general, using repeat pho-

tography in vegetation monitoring brings significant value to other quantitative data retrieved

from remote sensing and field measurements. Furthermore, visitor-acquired photographs can

raise awareness about landscape and vegetation change among policymakers and the general

public and provide clear feedback on the effects of land management. It is observed that a few

significant factors can impact the performance of the automatic approach, including image

quality, shadow cast, and varying scale. Deep characteristics learned from a deep neural net-

work are used to make sure that the vegetation index for each sample location is accurate. The

proposed method for segmenting vegetative areas has produced encouraging results. Based on

the results achieved from the semantic segmentation model, the trends are plotted. Those plot-

ted trends revealed that some of the Fluker post site vegetation increased gradually at some

locations, the vegetation treads remained almost the same, showing no significant increase or

decrease, while some of the study sites showed a dramatic decline in vegetation due to floods

and harsh weather. Thus, those results present the increase or decrease of vegetation at specific

site locations, which can be beneficial information for agriculture management officials and

the research community on a wide range of research issues. It provides a robust platform to

handle citizen science data for automated community service projects. The images in the Flu-

ker Post Project are the collection of images acquired by visitors and citizens over different

times of the year with their handheld cameras and mobile devices, in other words, through var-

ious sensors. However, there are a few challenges to be kept in mind. If the same pictures were

Fig 13. Trends of vegetation with respect to environmental factors from 2015-2020 quarterly for a.) Panboola (NSW), b.) Derrimut (VIC), c.)

Queensland and d.) Donn2 (Tasmania).

https://doi.org/10.1371/journal.pone.0270625.g013
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taken with the UAV, it would be important to make sure that only authorised people with

licences and basic knowledge of taking pictures were doing it. Secondly, UAV equipment is

expensive, so cost would be allocated for that. The same idea could be used to look at changes

in vegetation in a city using Google Street View (GSV) imagery, as long as there are enough

images for that city.
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