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Abstract 

Optimizing Flow Routing Using Network Performance Analysis 

MUNA AL-SAADI 

The main task of a network is to hold and transfer data between its nodes. To 

achieve this task, the network needs to find the optimal route for data to travel by 

employing a particular routing system. This system has a specific job that examines 

each possible path for data and chooses the suitable one and transmit the data 

packets where it needs to go as fast as possible.  In addition, it contributes to enhance 

the performance of network as optimal routing algorithm helps to run network 

efficiently. The clear performance advantage that provides by routing procedures is 

the faster data access. For example, the routing algorithm take a decision that 

determine the best route based on the location where the data is stored and the 

destination device that is asking for it. On the other hand, a network can handle many 

types of traffic simultaneously, but it cannot exceed the bandwidth allowed as the 

maximum data rate that the network can transmit. However, the overloading 

problem are real and still exist. To avoid this problem, the network chooses the route 

based on the available bandwidth space. One serious problem in the network is 

network link congestion and disparate load caused by elephant flows. Through 

forwarding elephant flows, network links will be congested with data packets causing 

transmission collision, congestion network, and delay in transmission. Consequently, 

there is not enough bandwidth for mice flows, which causes the problem of 

transmission delay.  

Traffic engineering (TE) is a network application that concerns with measuring 

and managing network traffic and designing feasible routing mechanisms to guide 

the traffic of the network for improving the utilization of network resources. The main 

function of traffic engineering is finding an obvious route to achieve the bandwidth 

requirements of the network consequently optimizing the network performance [1]. 



Routing optimization has a key role in traffic engineering by finding efficient routes 

to achieve the desired performance of the network [2]. Furthermore, routing 

optimization can be considered as one of the primary goals in the field of networks. 

In particular, this goal is directly related to traffic engineering, as it is based on one 

particular idea: to achieve that traffic is routed according to accurate traffic 

requirements [3]. Therefore, we can say that traffic engineering is one of the 

applications of multiple improvements to routing; routing can also be optimized 

based on other factors (not just on traffic requirements). In addition, these traffic 

requirements are variable depending on analyzed dataset that considered if it is data 

or traffic control.  In this regard, the logical central view of the Software Defined 

Network (SDN) controller facilitates many aspects compared to traditional routing. 

The main challenge in all network types is performance optimization, but the 

situation is different in SDN because the technique is changed from distributed 

approach to a centralized one. The characteristics of SDN such as centralized control 

and programmability make the possibility of performing not only routing in 

traditional distributed manner but also routing in centralized manner. The first 

advantage of centralized routing using SDN is the existence of a path to exchange 

information between the controller and infrastructure devices. Consequently, the 

controller has the information for the entire network, flexible routing can be 

achieved. The second advantage is related to dynamical control of routing due to the 

capability of each device to change its configuration based on the controller 

commands [4].  

This thesis begins with a wide review of the importance of network 

performance analysis and its role for understanding network behavior, and how it 

contributes to improve the performance of the network. Furthermore, it clarifies the 

existing solutions of network performance optimization using machine learning (ML) 

techniques in traditional networks and SDN environment. In addition, it highlights 

recent and ongoing studies of the problem of unfair use of network resources by a 

particular flow (elephant flow) and the possible solutions to solve this problem. 



Existing solutions are predominantly, flow routing-based and do not consider the 

relationship between network performance analysis and flow characterization and 

how to take advantage of it to optimize flow routing by finding the convenient path 

for each type of flow. Therefore, attention is given to find a method that may describe 

the flow based on network performance analysis and how to utilize this method for 

managing network performance efficiently and find the possible integration for the 

traffic controlling in SDN. To this purpose, characteristics of network flows is 

identified as a mechanism which may give insight into the diversity in flow features 

based on performance metrics and provide the possibility of traffic engineering 

enhancement using SDN environment. Two different feature sets with respect to 

network performance metrics are employed to characterize network traffic. Applying   

unsupervised machine learning techniques including Principal Component Analysis 

(PCA) and k-means cluster analysis to derive a traffic performance-based clustering 

model. Afterward, thresholding-based flow identification paradigm has been built 

using pre-defined parameters and thresholds. Finally, the resulting data clusters are 

integrated within a unified SDN architectural solution, which improves network 

management by finding the best flow routing based on the type of flow, to be 

evaluated against a number of traffic data sources and different performance 

experiments. The validation process of the novel framework performance has been 

done by making a performance comparison between SDN-Ryu controller and the 

proposed SDN-external application based on three factors: throughput, bandwidth, 

and data transfer rate by conducting two experiments. Furthermore, the proposed 

method has been validated by using different Data Centre Network (DCN) topologies 

to demonstrate the effectiveness of the network traffic management solution. The 

overall validation metrics shows real gains, the results show that 70% of the time, it 

has high performance with different flows. The proposed routing SDN traffic-

engineering paradigm for a particular flow therefore, dynamically provisions network 

resources among different flow types.  
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Chapter One: Introduction 

1.1 Introduction 

Network Performance is commonly specified by the speed of the network. It 

controls the quality of the service (QoS) provided to the user. In order to make an 

estimation of the network performance, it is essential to analyze its behavior. In that 

way, the quality of the network link and the data transmission should be determined. 

For this reason, there is a group of mechanisms pertaining to managing and insuring 

that a network works at its best [5]. This is named Network Performance 

Management (NPM). It includes finding a network operations strategy, procedures, 

and policies to prevent, and resolve network performance problems. The 

performance management of the network comprises improving the functions of the 

network by maximizing its capacity, minimizing latency, and raising the reliability of 

the network regardless of bandwidth availability and appearance of failure [6]. Many 

functions of network performance management such as traffic measurement, traffic 

modeling, planning, and network optimization have been used to insure the speed of 

transit traffic, required capacity for transition, and high reliability that is expected by 

the network applications. An efficient NPM needs to study the network traffic and 

choose relevant performance metrics. This can be accomplished by analyzing the 

performance metrics of each network component [7]such as Packet Loss, Latency, 

and Throughput. To guarantee a good performance of any type of network, a detailed 

analysis of the previous parameters is a crucial step.  

In view of this, the analysis of network performance is the use of network data 

to comprehensively understand trends in network performance. A network 

performance analysis has benefits such as baseline establishment and understanding 

the limits of the network performance. Further, By conducting the performance 

analysis, the long-term problems or emerging issues of network performance can be 

exposed [8]–[10]. 
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The common types of network traffic analysis are traffic characterization and 

traffic classification. Traffic characterization is related to identifying the network 

services that are provided to the users such as web browsing, file transfer, sending 

and receiving an email, etc. While application classification is interested in identifying 

a specific application such as browser, a chat application, etc. [11]. 

Two major techniques of traffic characterization have been presented for traffic 

analysis according to network [12]. The first technique is payload-based which needs 

information about the packet or flow and the protocols. The second is a feature-

based technique, which depends on the patterns of network traffic and statistical 

analysis of packets. Numerous of the statistical features related to the packets of flow 

such as the size of the packet, number of packets, inter-arrival time, duration, and so 

on, are gained by statistical analysis of packets. For traffic characterization, machine 

learning (ML) techniques are utilized to make use of these features to classify 

network traffic. Unsupervised machine learning is the common technique that 

creates models to distinguish between patterns in the data without recourse to use 

unlabeled training datasets [13]. 

In datacenter networks (DCNs), which are defined as high-performance 

networks, the data flows can be categorized into elephant flows and mice flows based 

on different features. Elephant flow is defined as a flow with a large volume, long 

duration, and bandwidth-hungry in the network. In contrast,  a flow with a small 

volume, short life, and latency-sensitive is known as mice flow [14]–[16]. Elephant 

flow exhausts the network resources like bandwidth and buffers, which leads to 

throughput degradation and delays mice flow. Therefore, the differentiation 

between elephant and mice flow needs to be taken into consideration to improve the 

performance of the network [17]. 

Software-Defined Networking (SDN) as a recent network innovation has 

contributed to improve the performance significantly. Despite the architecture of 

SDN introducing more facilities into a network through its characteristics such as 
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centralized controlling and programmability, the above problem still exists [16]. 

Additionally, the challenges have increased in terms of network management and 

traffic engineering with the ever increasing in data traffic. Therefore, it is necessary 

to find an intelligent framework that can propose a strategy for identifying and 

forwarding different types of flow [18]. 

Traffic engineering (TE) is the process that is associated with network traffic 

measurement and management. Its main purpose is to design the logical mechanism 

for directing traffic in a network, which can be used for improving the employment 

of network resources and providing network quality of services (QoS) requirements 

[19]. In other terms, the  TE aims to optimize the utilization of resources and improve 

network performance by diminishing congestion, energy consumption, latency or 

delay, and packet loss [20][21]. Multipath routing is a TE approach that deals with 

large flows by dividing the load over the available paths. However, the multipath 

solutions do not distinguish the flow as elephant or mice and do not take into 

consideration the delay of routes [19][22]. Therefore, an efficient TE multipath 

routing solution according to flow types and delay of the route needs to be found.  

The rest of the chapter is organized as follows. Section 1.2 presents the 

motivations behind this project. Section 1.3 highlights the research aims and 

objectives. The summary of this thesis is shown in Section 1.4. 

1.2 Motivations 

Nowadays, the need to find efficient network management has become 

imperative because of the increasing complexity in the structure of the network. One 

of the essential areas of network management is performance management. It 

provides a comprehensive vision and actionable perception and allows proactive 

handling of network performance issues. Consequently, analyzing and evaluating the 

performance metrics of network infrastructure is a requirement of network 

performance management. Moreover, the analysis of network performance is an 
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important aspect to understand the behavior of the network, where network data 

can be used to define the network performance tendency. Traffic modeling has an 

essential role in the network analysis phase and an accurate traffic modeling 

enhances the understanding of complex network behavior and its properties [23]. 

Furthermore, in order to build an optimal model of network performance, 

characterizing network traffic accurately is a critical issue. This is because there is a 

possibility to identify traffic wrongly or the estimation of network performance was 

unsound [24]. On the other hand, the essential portion in the network management, 

which has a real effect on the network performance, is flow routing. The main 

purpose of flow routing is to access required data as fast as possible, which is the 

obvious advantage that the routing process can provide to improve the performance 

of a network [2][3]. In DCN, inefficient routing of flows elephants and mice can cause 

degradation of the performance of the network, where the imbalance in network 

load leads to network congestion [25]–[28]. Therefore a differentiation between 

elephant and mice flow has an important role to improve network performance  [23], 

[29]–[31]. Accordingly, an effective approach that successfully performs 

characterizing, identifying, and routing of the flows need to be designed. This project 

includes building a framework that consists of three models: The network 

performance parameters-based characterization model that will be built leveraging 

unsupervised machine learning (ML) algorithms, thresholding-based elephants and 

mice flow identification model, and the developed Dijkstra algorithms-based routing 

model. To promote the proposed method, SDN environment has been used for the 

implementation of this project[32]–[34]. 

1.3 Research Aim and Objectives 

In this research, the aim is to investigate and evaluate the application of 

unsupervised ML in network traffic management and routing. Furthermore, the 

research aims to develop a unified architectural flow routing solution that integrates 

characterization and identification of flows with SDN to enhance the system of 
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network management by improving bandwidth utilization and reduce congestion 

across the network. To achieve this aim, the research work has the objectives as 

follows:  

1. Undertake a fundamental review of the state-of-the-art in network 

performance management and network performance analysis. 

2. Investigate the procedures of traffic characterization and classification, 

identification and routing of elephants and mice flow. 

3. Propose a method for characterizing network traffic flows based on the 

performance metrics of the network using unsupervised machine learning 

techniques. 

4. Design an automated method for identifying the characterized flows as 

elephants and mice according to pre-decided thresholds using the 

thresholding technique. 

5. Design and develop a unified architectural framework to improve network 

management by integrating unsupervised machine learning with the SDN. 

6. Evaluate the effectiveness of the proposed framework by (i) Different data 

sources of traffic. (ii) A comparison between the performance of the 

proposed application and the SDN-Ryu controller. 

1.4 Thesis Organization 

This thesis is organized as follows. Chapter 2 shows a comprehensive review of 

the state of the art in network performance analysis, TE, and SDN. Chapter 3 presents 

the experimental study of network performance analysis and traffic clustering. While 

Chapter 4 introduces traffic analysis-based flow identification. The proposed traffic 

management framework based on SDN is discussed in Chapter 5. Conclusions, 

achievements, and limitations of the project will be clarified in Chapter 6. A brief 

description of each chapter is summarized below. 
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Chapter 2 gives a background about network performance and all the issues 

that affect the network performance level. In addition, the analysis of network 

performance and approaches of traffic analysis were explained to determine the 

appropriate characterization method for conducting the classification.  Reviewing of 

challenges and solutions for network performance was briefly introduced to find 

useful information that would help to make the analysis process sufficient and to 

avoid the uselessness of data. On the other hand, network traffic classification was 

summarized to identify its general goal and to know how it is essential for QoS 

control. Traffic engineering development was presented to explain the role of this 

application to improve network resources employment and provide the 

requirements of network quality of services (QoS).  A brief background of SDN was 

shown to clarify the impact of SDN deployment on the network architecture's 

development. A literature review of flow Analysis investigation, elephant and Mice 

flow identification, and SDN- based flow routing optimization were placed in this 

chapter.  

In Chapter 3, a scheme of unsupervised machine learning has been proposed 

to investigate into network performance analysis. The k-means clustering algorithm 

has been utilized for two purposes: the selection of features and the clustering 

process. Two feature sets have been used to clarify the impact of the optimal 

selection of feature sets on the clustering process. To improve the set of parameters 

and reduce the dimension of the dataset as well as for handling the outliers and the 

problem of variables correlation, the PCA analysis technique was applied. 

Chapter 4 shows an innovative model design of network performance features-

based flow characterization and then identifies these flows as mice or elephants 

based on these features. The model also proved the possibility of clustering network 

traffic based on their performance attributes. Consequently, each cluster contains 

identical flows regarding throughput, RTT, packet loss, etc. On the other hand, 

identifying the flows as long-lived (elephant) and short-lived (mice), which comprises 
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90% of traffic on the network, is still challenging. As a result, the two identified types 

of flows, which were characterized with respect to performance features, can be 

utilized for optimizing systems of network management in the future and improving 

the performance of networks by finding the best path for each flow. This in turn will 

contribute to improving the QoS too. The scheme of identifying flows will be applied 

as a primary stage in the next part of this project. 

Chapter 5 introduces a novel framework for SDN- based flow routing. The 

framework introduces a developed Dijkstra algorithm that selects the best route 

based on flow type (elephant or mice) and takes advantage of the programmability 

offered by SDN/OpenFlow. A recursive update of route costs is performed, which 

provides more efficiency and enables consistency with real-time constraints. 

Consequently, an efficient and more balanced network will be gained, and higher 

throughput will be obtained. 

Chapter 6 introduces the research conclusions, achievements, and limitations 

of the project. Furthermore, future work is suggested in this chapter. 
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Chapter Two: Network Performance and Traffic Engineering  

2.1 Introduction 

The network performance aims to define the service quality offered by the 

underlying network. One of the significant issues in networking field is network 

performance monitoring. It is both a quantitative and qualitative process, and it 

defines and measures the performance level. This process guides the administrators 

of the network to measure and improve the network services. Furthermore, they 

need to assess the performance of the network regularly to guarantee there are no 

overloaded devices in the network, and they are capable to leverage monitoring 

Measurements prior to congestion[35]. In other terms, the process of evaluating, 

analysing, reporting, and tracking the performance of a network is known as network 

monitoring. Its objective is to enable those concerned to follow the overall 

performance and service quality of the underlying network through the analysis and 

review of collective network statistics.  

The performance of the network is measured by statistics and metrics drawn 

from specific network components, namely:  

▪  Network bandwidth or capacity:  The network applies bandwidth meters to 

limit the maximum Available data transfer to certain flows.  

▪  Throughput: The amount of data that is successfully transmitted over the 

network in a given time.  

▪  Latency: measures the time it takes for data to reach its destination and 

ultimately make a roundtrip. 

▪ Packet loos: happens when one or more transmitted data packets fail to 

reach at their intended destination. 

Network technologies and computer systems have undergone rapid 

development in the last few decades, therefore, the need to monitor, evaluate and 

control network performance precisely has become essential and urgent [36]. 
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Consequently, understanding the performance of the network is vital for those 

concerned with networking because it helps to develop complex operations and 

protocols of a network [37]. Furthermore, it is important to realize that the best 

network performance is achieved through acquiring all the information with respect 

to the behaviour of the network. Also, precise information is necessary for the 

assessment, troubleshooting, and enhancement of the network to attain the 

required performance level[38][39]. Beneficiaries of networks, whether they are 

users or engineers, have tried to understand the metrics related to network 

performance in order to determine the reasons for performance retraction for 

optimization [40]. Because, the metrics of network performance depend on the 

network’s conditions [41]. 

Network traffic is also called data traffic, which can be defined as the amount 

of data moving across devices at a given time. In addition, it is fragmented into data 

packets and sent through a network before being regathered by the receiving device. 

Moreover, the characteristics of network traffic require a deep understanding to 

obtain a comprehensive view of the possibilities for evaluation.  It is important to 

specify the requirements for the enhancement of network functionality and 

infrastructure development [42]. Thus, it is necessary to discover the factors that 

define network performance [36][41]. Network monitoring and management function 

depends on an accurate characterization of network traffic, which is produced by diverse 

applications and network protocols [43].  

Accurate characterization of network traffic is significant for building optimal 

models of network performance, and also for avoiding the possibility of inaccurate 

traffic or wrong estimation of network performance [24]. Moreover, efficient 

management of the network resources can be achieved by precise traffic analysis and 

characterization [44]. Traffic classification is one of the approaches in traffic analysis 

that aims to classify network traffic into predefined groups [25]. It is noteworthy that 

a wide variety of machine learning methods are used to classify network traffic, using 
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statistical analysis. Different statistical features, regarding the flow (packets) like the 

size of the packet, number of packets, inter-arrival time, duration, etc. are used by 

ML [45][46].  

From the aforementioned, it is clear that the use of traffic analysis seems to be 

more efficient for network management. Using performance metrics can provide an 

accurate characterization of flow with perfect identification for flow types providing 

a more effective framework for flow routing. Therefore, as, to introduce an insight 

into network performance management and network management, this chapter 

explains the network performance analysis, flow characterization, identification of 

flow types, traffic engineering, and SDN environment. 

The rest of this chapter is organized as follows: Section 2.2 gives an overview of 

network traffic analysis. Section 2.3 summarizes ML classification techniques and the 

latest developed learning techniques, while the employment of these techniques is 

presented in Section 2.4. Section 2.5 shows the development of TE. The background 

of SDN is clarified in Section 2.6. Section 2.7 highlight a comprehensive literature 

review of flow analysis research, modern studies for elephant and mice identification, 

and the proposed mechanisms for flow routing optimization in the SDN environment. 

Conclusions were drawn in Section 2.8 

2.2 Network Traffic Analysis 

Traffic analysis is the vital procedure that involves monitoring the network 

activities, revealing particular patterns, and gathering useful information from 

network data. One of the factors that has an important role in the stage of analysis is 

traffic modelling; accurate modelling of traffic enhances the understanding of 

sophisticated network behaviour and its features [37].  

There are many types of tools for traffic modelling, such as analytic, testbed, 

simulation, and operational analysis. Measurement and estimation of the real system 
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can also be provided by operational analysis. Analytic modelling tools have the 

capacity to describe a model in terms of mathematical expressions such as using 

Analytic modelling for decomposing the queuing system. Testbed is a platform 

created for analysing the behaviour of the system under different conditions to get a 

comprehensive image of it, for example, a testbed has been used to compare three 

different control models for SDN routing [47]. 

The simulation tool is used to test the system without any effect on the real 

system employing programming language for instance the simulation model was 

developed to evaluate the initial experiments for transmitting messages, and those 

that resulted from the reduction in quality of service [48]. 

Many network performance modelling and estimation tools have been 

provided, but operational analysis can give a comprehensive overview of actual 

performance, as well as a prediction of performance patterns [49]. This kind of tool 

can be used when the monitoring of network performance is enabled by compatible 

hardware and software equipment, which introduces substantial experimental 

outcomes. Consequently, these tools provide the ability to get the information from 

the real system whereas analysis of this information can give good insights into the 

future of network behaviour. In addition, the results of the analysis play a significant 

role in improving network performance [50].  

The solutions to network performance problems require improved, effective 

monitoring techniques and measurement of network performance which will be used 

in operation and communication of network management [37][51][52]. Management 

of the Network depends on network traffic analysis, which consequently depends on 

monitoring and collected information, to take the required action on the network. 

This action is taken according to measurements and metrics of network [53]. 

Measuring the parameters of network performance, which are packet loss, 

delay, and the error rate, can be achieved by using two techniques, active or passive, 
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which provide a possibility to define the distribution of whole end-to-end losses and 

delays between network parts as in Table 2.1. In addition, to packet losses and 

retransmissions, there is an important performance parameter in client-server 

communication, called the server response time. All of these parameters affect 

network services, such as emails, transfer data files, web pages, and requests for 

domain names from their servers [37]. The availability, loss and error, delay, and 

bandwidth are four groups represented by the metrics that have the greatest effect 

on the network performance, and are advantageous for estimating the level of 

service offered for IP flow forwarded through the network [41]. The availability 

metrics are used to estimate the amount of time that the network is operating 

without any failure. Loss and error metrics measure the packet loss fraction, which is 

caused by the overflow of buffer in a network, or other reasons, or bits error fraction, 

or packets. In addition, they indicate the conditions of network congestion and/or 

errors of transmission and/or malfunction of equipment. Delay metrics have been 

used to define the conditions of network congestion or the changed routing 

effectiveness. 

The delay of the packets transferred by a network can be measured in two 

ways: either a one-way delay or a round-trip time delay (RTT). Jitter, which is a 

variation of delay, can be measured by these metrics. Finally, the metrics are used to 

measure the amount of data that can be transferred through the network, in a unit 

of time called bandwidth metrics. In addition to the network performance metrics 

mentioned above, Central Processing Unit (CPU) load, memory depletion, and 

hardware temperature in the network are often useful metrics that can explain the 

reasons for the degradation of network performance. The process of monitoring may 

perceive these metrics and register them as being significant to reveal the 

degradation of service levels by their values or may prevent degradation by the 

improvement of equipment. Furthermore, these metrics can represent the 

monitoring of flow and routing groups [35].  
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In recent years, the growing number of users of the network has increased the 

need to convert large files. The use of real video and the demand for multimedia 

applications has also increased. All these requirements have led to a need for 

increased network productivity, which in turn has increased network congestion. 

Slow response time and slow file transfer are the results of congestion, and as a 

result, the productivity of the network becomes lower for users. This problem can be 

solved by efficient use of the bandwidth that is provided, or by increasing the network 

bandwidth [36]. In general, the characterization of traffic is the first significant step 

towards understanding and solving the problems related to network performance. 

Table 2.1 Comparison between Active and Passive Measurement 

Monitoring 

method 
Description Techniques 

Resources 

Requirements 

Active 

- Used to analyses network 

performance in particular 

aspects. 

- Employed to calculate and 

present a description of 

network such as HTTP response 

time, jitter, packet loss, etc. 

File Transfer 

 Packet Pair 

Packet Train 

CPU - Low 

Memory – small data 

Passive 

- Produce a comprehensive view 

of the performance of the 

network. 

- Employed to determine the 

network component with the 

highest consumption of 

bandwidth. 

Flow level 

Packet level 

 

CPU - high 

Memory- large Data 

2.2.1 Network traffic Characterization  

This section clarifies two distinct methods for the characterization of network 

traffic. 
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2.2.1.1  Packet level Characterization 

In packet-level characterizations, traffic flows can be expressed in terms of 

inter-packet time and packet size. This level of characterization can be used for 

analysing network traffic. The main advantage of applying packet-level traffic 

characterizations is to generate and simulate traffic that allows to measure and study 

the parameters of the network [54]. Some of the problems can take advantage of a 

finer granularity that is provided by packet-level. This method of analysis is 

characterized by flexibility and conciseness. All the packet-level methods for 

modelling and predicting are seeking to provide a mechanism that has the ability to 

fast response to any rapid change in network conditions in a real-time. Indeed, 

packet-level analysis can provide precise traffic characteristics, which might be not 

provided by executing analysis in aggregated coarser-grain [55]. For example, packet-

level characterization can be used in the analysis of prediction to assess the 

peculiarities of network traffic produced by mobile apps [56]. While the traffic 

characteristics of network devices can be analyzed based on packet-level 

characterization in order to give precise insights into the characteristics of the 

operations and behavior of these devices. This can provide efficient security and 

performance mechanisms for the network [57][58]. 

2.2.1.2 Flow level Characterization 

 The evolution of the network is related to a comprehensive knowledge and 

traffic characteristics understanding, which indicate the kind of deployed techniques 

in order to perfectly match the requirements of the user and the constraints of the 

network. Consequently, the development of monitoring-based tools, improvement 

of technologies to collect network traffic information, and analysis of their 

characteristics are currently essential topics for network engineering and research.  

Flow level characterization is the second most popular approach to modelling 

traffic. In this context, traffic flow is "a sequence of packets sent from a particular 

source to a particular unicast, any cast, or multicast destination that the source 
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desires to label as a flow" as defined in RFC 3697. A further definition of a flow is 

given by [59][60] who describes it as “a uni-directional traffic stream with a unique 

<source-IP-address, source port, destination-IP-address, destination port, IP-

protocol> tuple”.  

A flow record contains packet-level characteristics, which are found in the 

header of every packet of the flow, and flow-level characteristics, which are 

calculated depending on the collected values from all the packets in a flow. Average 

packet size, flow data rate, and flow duration are good illustrations of flow-level 

characteristics[61]. In contrast to packet-level data, flow-level data is used for 

different network management functions. The enormous amount of flow data leads 

to defying the scalability problems in the classification models that are used for 

network traffic [62]. In recent years, state-of-the-art techniques use the flow 

statistical features. Therefore, a valid selection of flow-traffic features is substantial 

when applying flow-level analysis, which optimizes the traffic behavior 

representation. On the other hand, the right selection of flow-level features is 

necessary when data reduction is needed [63]. Moreover, by analyzing flow level 

statistics, the classification of network traffic can be conducted [13][29][62]. 

2.2.2 Network Traffic Classification  

The classification of network traffic has a general goal, which is network 

performance improvement. Accurate classification of traffic is becoming increasingly 

essential with many applications in network such as TE, security, and QoS. The 

approaches for traffic classification proposed in both the academic literature and in 

the practical field include: 

2.2.2.1 Port-based methods  

According to this method, the initial criteria to classify traffic were transport 

protocol ports. Applications like P2P, for example, can use the ports of well-known 

protocols to hide themselves dynamically. Similarly, some protocols, such as FTP 
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protocol, can assign ports depending on the load of traffic. This is considered to be 

one of the disadvantages of the port-based method. The method is described as rapid 

and utilizing low consumption of resources. It is supported by numerous network 

devices and does not use the payload of the application layer, so it has no impact on 

the users' privacy [42]. It is used by applications and services that employ fixed port 

numbers. Since the port number in the system can be changed, therefore, it 

facilitates fraud [64]. Moreover, this method has few restrictions. Firstly, applications 

for ports, for example, p2p applications, may not be registered with the Internet 

Assigned Numbers Authority (IANA). An application may use well-known ports to 

avoid access control restrictions of the operating system. In addition, some server 

ports are allocated dynamically, as desirable. For example, a Real Video broadcast 

device allows dynamic negotiation of the server port used to transfer data. This server 

port is negotiated on the initial TCP connection, which was created using the known 

Real Video control port. It has been found that the accuracy of port-based 

classification using the official IANA list was no better than 70% [65], or 30% to 70% 

[66] or only 30% of the total traffic [67]. In some cases, IP layer encryption may cause 

TCP or UDP header confusion, which makes it impossible to know the physical port 

numbers. 

2.2.2.2 Payload Inspection-based Methods  

To evade total dependence on port number indications, many existing industry 

products use formal session reconstruction and application information from the 

content of each packet. At present, the most common methods of traffic 

classification are based on payload inspection, owing to its comparatively high 

precision. Because of the use of deep inspection of packets, violation of the privacy 

of user data and the amount of data that is processed are the main drawbacks of this 

approach. Moreover, the classification based on this method cannot be applied to 

encrypted data [42]. Although it avoids dependency on fixed port numbers, payload 

inspection [40] imposes significant complications and processing load on the traffic-
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identification device. Extensive up to date knowledge of application protocol 

semantics is necessary for the payload-based inspection. In addition, it must have 

sufficient power to perform the analysis of a potentially large number of flows 

concurrently. Encrypted traffic and private protocols have made the aim of this 

method difficult or impossible to achieve. Furthermore, because its inspection 

depends on the content of the application layer, the method may infringe on the 

relevant privacy policies. For example, examining the factual packet payload, using a 

deep packet inspection, detect the services and applications in any case of port 

number. Therefore, this method lacks support for several applications, such as Skype. 

In addition, it is lazy, needs a lot of power for processing, and signatures must be up 

to date. 

2.2.2.3 Flow statistics-based methods  

Current modern methods tend to classify network traffic on the basis of the 

statistical characteristics of the flow. They perform the classification by analyzing the 

level of statistical flow. Statistical classification-based methods depend on analysis of 

characteristics such as frequencies of byte, packet inter-arrival times, and size of the 

packet. An alternative to payload inspection methods, the classification of traffic 

based on flow traces could be used [42]. In these techniques, statistical features of 

network flows are collected from the headers of packets. The underlying assumption 

of such approaches is that in the network layer, the traffic has statistical features 

(e.g., duration of flow, idle time of flow, packet inter-arrival time, and length of 

packet). These features are unique to particular classes of applications and enable 

the use of the diverse source applications to be distinct from each other. In [68] and 

[69], a relation between the traffic classes and their observed statistical 

characteristics was noticed, where the experimental models of connection 

properties, such as duration, bytes, and arrival time for a number of particular TCP 

applications were built and analyzed [68]–[70]. In this work, flow statistics-based 

techniques will be used because the art of states proves that this method 
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manipulates all the problems of previous methods, which are port-based and 

payload-based. 

2.3 ML Classification Techniques   

Machine learning (ML) is known historically as a set of powerful techniques for 

data extraction and the discovery of knowledge. Machine learning is the capability of 

a machine to learn automatically from experiments, to edify, and to perfect its base 

of knowledge [71]. Learning refers to the adaptability of the system to changes, 

whereby it can perform the same tasks more efficiently and effectively the next time 

[70][72]. There is a wide range of ML applications, such as, medical diagnosis, text 

and handwriting recognition, search engines, and image screening. In 1990, the 

control of network traffic using ML techniques was proposed, with the aim of 

maximizing the completion of the call on a communications network with a switch 

circuit [70]. This was one of the highlights of the expansion of ML in its 

communications network applications. In addition, in 1994 ML was first used to 

classify internet flow in the context of intrusion detection [70]. On the other hand, 

the reasons behind the use of ML technologies in this area are imperative to transact 

with the types of traffic, different datasets, and the flow, which is the 

multidimensional spaces and properties of packets. There are two learning 

techniques in machine learning, supervised and unsupervised. The techniques affect 

the data collection, attributes engineering, and creating ground truth. 

 

2.3.1 Supervised ML Classification Technique  

Supervised ML is used to “learn” to identify behavior in the “known” training 

dataset. This method is applied to overcome the problems of classification and 

regression that are related to predicting continuous or discrete outcomes. It ensures 

highly precise results in trained applications [43]. The supervised learning technique 

concentrates on modelling the relationships between input and output. Its objective 



 

19 

 

is to define a mapping from input parameters to output classes. The knowledge learnt 

can be displayed as a decision tree, classification rules, etc., that will be then utilized 

to classify unknown instances. This technique creates models by using labelled data. 

In supervised learning, there are two major stages (steps):  

• Training: It is called the learning stage that examines the input data and 

creates or builds a model for classification.  

• Testing (also known as classifying): It is called the classifying stage that uses 

the model, which has been created in the training stage, to classify new instances. 

2.3.2 Unsupervised ML Classification Techniques  

Unsupervised learning creates models that can distinguish between patterns in 

the data without recourse to use labelled training datasets [13]. Clustering defines an 

unsupervised technique of machines learning which leads to portioning a given 

dataset into meaningful subclasses so that members in a subclass are similar to one 

another and are different from the members in other subclasses. These subclasses 

form clusters. There are two basic clustering methods: the classic Partition clustering 

such as K-means algorithm; and hierarchical clustering that builds the clusters by 

recursively partitioning the instances. K-Means is one of the widespread simplest and 

fast "clustering" approaches that store particular pre-elected k centers. It is utilized 

to create clusters randomly based on the similarity between all input members [73]. 

2.3.3 Deep learning Techniques 

Deep learning (DL) is a group of techniques that merge between machine 

learning (ML) and artificial intelligence (AI)[74]. Due to its capability to learn is 

become a popular topic in the networking context is widely utilized in different 

applications such as intrusion detection, traffic analysis, and classification, etc. 

[10][75][76]. To build a DL model, the same processing strategy of ML will be followed 

such as understanding and preprocessing data, building a model, training, and 
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validating machine learning will be followed. However, designing an efficient model 

of DL is a challenge because of that the problems and data  are  variate and have 

dynamic nature in a real-world [77]. Based on the literature, deep learning is also 

defined as "deep structured learning", "hierarchical learning", "deep feature 

learning", and "deep representation learning" [78]. Accordingly, the deep 

architectures can be categorized based on their use into three types, called, 

"generative", "discriminative", and "hybrid deep architectures". The work concept of 

generative deep structures is high-order correlation properties characterization of 

the input data for compilation, while a discriminative architecture aims to classify 

patterns. Compared with the previous two types, hybrid structures works on carrying 

out discrimination processes by the optimized outcomes obtained from the 

generative structure [79]. 

Recently, the availability of data on traffic flows and their related labels has 

made the classification problem of protocol efficiently solved by deep learning 

models such as deep neural networks [80] and stacked autoencoders [81]. Moreover, 

in [82][83] and [84] that the performance of stacked autoencoders is better 

compared with the deep neural networks for classifying any traffic data to a pre-

identified protocol. In addition, using of deep learning approaches was presented to 

detect anomalous and suspicious flows [85]–[87]. On the other hand, deep learning 

frameworks were proposed by many studies in network flow prediction, for example, 

aggregating multiple attributes to predict the flow of the network [88][89]. 

2.4 ML techniques Employments 

ML approaches introduce a better strategy for network traffic characterization 

and classification by leveraging traffic statistical information that is independent of 

traffic payload. Compared to the aforementioned traditional classification methods, 

ML has solved the known problems of DPI and port classification for flows [90]. They 

have been utilized for traffic classification, as various algorithmic steps can be used 
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to build a classifier that gathers data observations into distinct classes according to 

the network field, such as network management [91]and security [92]. 

2.4.1  Application-based ML Classification Techniques  

Nowadays, classification approaches have an effective role in different fields of 

networks. The efforts of researchers focus on using ML techniques for traffic 

classification according to flow statistics. A powerful classification paradigm is 

constructed by selecting suitable features and the correlated information of TCP 

flows. This paradigm was proposed to enhance the classification performance using 

Correlation (TCC) information [93]. For identifying applications, a system using a 

group of seven different applications has been proposed in order to execute a set of 

tasks to measure the QoS of the network [94]. In addition, to cluster traffic of 

applications based on traffic similarity, two unsupervised ML approaches have been 

presented. In the proposed framework, the appropriate attributes of flow were 

elected using the filter method before applying K-means and Expectation 

Maximization (EM) [73]. On the other hand, for identifying unknown applications 

according to statistical features of the flow, the proposed unsupervised ML 

classification method is integrated with the clustering approach to create clusters of 

traffic[95]. Similarly, a developed semi-supervised clustering technique was 

suggested. A modified K-means that used flow statistics to classify network traffic 

was applied. The statistics of layer four of the network were input to execute the 

classification steps [96].  

2.4.2 User-based ML Classification Techniques  

In the last decade, internet users’ activities have increased, which has had an 

impact on the behavior of the users themselves. For this reason, classification and 

pattern extraction from the data of users is very important for business support and 

decision-making. Many studies have used classification techniques (clustering) to 

minimize the gaps in studying network users’ behavior patterns, They have 
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characterized patterns of individual users’ behavior, and then the clusters of users 

have been used to develop prediction methods of network traffic [94]. 

Data mining with the K-Means technique has also been used as another way to 

analyze users’ behavior. Data mining-based k-means clustering technique was used 

with log activity, which is another means of studying and analyzing the behavior of 

users [97]. On the other hand, lack of knowledge has become a problem for most 

large companies, which have a huge amount of data but suffer from a knowledge 

famine. Therefore, they are in need of a new technique that is intelligent and has the 

capability to overcome this flaw. Accordingly, “data mining technique - customer 

clustering” has been used to characterize “high-profit”, “high-value” and “low-risk” 

customers [98]. One of the recent challenges in online services is understanding user 

behavior because it is increasingly dependent on the participation of users in online 

social networks or crowdsourcing services. Therefore, to identify dominant user 

behavior by using “clickstream” data, an unsupervised technique-based system has 

been built, where the resultant similarity clusters are described through graphs, 

which are partitioned on the basis of similarity [99]. Furthermore, one of the big 

challenges of the present-day internet is the rapid growth of this field, which is 

making it a robust system to spread and restore information. Restoring useful 

information from this huge amount of information is, indeed, difficult [100]. The 

objective is to take advantage of the similarity-based grouping property of the 

clustering method to match the sessions of web users.  

2.4.3  Security-based ML Classification Techniques  

Network security is an area that has received a great deal of attention over the 

years and intrusion detection is a major field for most researchers. A new method to 

detect anomaly intrusion with a high detection rate by using a clustering technique 

with specific modifications has been innovative [101]. For the same purpose, which 

is to modulate the rate of anomaly detection, the clustering technique was used for 

data pre-processing in anomaly detection [102]. On the other hand, in order to 
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reduce time consumption and raise the detection rate, the Artificial Neural Network 

(ANN) method, which has high computational resources, has been combined with a 

fuzzy clustering approach [103]. Analyzing raw data is a key stage in network security 

for identifying the causes of damage or loss; the method used for the attack; and the 

identity of the attacker. Clustering is considered the most powerful technique for this 

purpose: it can help in the detection of intrusion when the training data is unlabeled 

as well to detect unknown types of anomalies. Accordingly, the Simple K-Means, 

clustering method was used to analyze the NSL-KDD dataset, by clustering it into 

normal and the four major types of attack, i.e., DoS, Probe, R2L, and U2R. It is crucial 

to distinguish the process of attack from “benign” traffic because its role in identifying 

the types of attack leads to the specification of the required preventive measures 

[104]. 

2.5 Traffic Engineering Development and SDN 

One of the significant network applications is traffic engineering (TE), which 

interacts with the measurement and management of network traffic. In addition, it 

designs logical mechanisms to direct network traffic to improve network resources 

employment and provide the requirements of network QoS; this is the generic 

definition of TE. The technologies of TE mainly include Internet Protocol (IP)-based 

TE and Multi-Protocol Label Switching (MPLS)-based TE. To solve the load-balancing 

problem in multipath traffic, the IP-based TE has been proposed. The problem has 

been solved by optimizing the algorithm of IP routing to avoid congestion of the 

network [105]. However, this technology has two disadvantages: first, the inability to 

make full use of network resources when Open Short Path First (OSPF) link weights 

are used to control the routing of a network. Second, network congestions, packet 

losses, delays, and even routing loops occur whenever links fail, or link weight 

changes in the topology of the network because OSPF protocol takes time to meet 

the new network topology. The MPLS has been proposed to overcome the drawbacks 

of IP-based TE [106]. Nevertheless, the complexity of the mechanism of MPLS 
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protocol can lead to a high overhead of network performance, therefore, the 

requirements of data center of networks, which need to have high link bandwidth 

utilization, green energy saving, and high reliability, is difficult to meet. In traditional 

networks, control management and data forwarding are tightly coupled, where 

distributed devices control the whole network, and it is hard to improve the flexibility 

and extensibility of it. Therefore, it is imperative to evolve the architecture of the 

network and corresponding TE technology to solve this problem. Software-Defined 

Network (SDN) is an advanced architecture of networks, which was proposed by 

researchers at Stanford University, and it has gained widespread attention in recent 

years. Its main idea is based on the separation of the forwarding and control planes 

of a network system. In addition, it has a programmability attribute that can be used 

to improve the innovation capability of network applications significantly [106][107]. 

Figure 2.1 shows the development of TE from the past to SDN as a future solution to 

the above problems. The definitions of essential parts of SDN and important concepts 

will be discussed in the following section. 

 

Figure 2.1 Traffic Engineering From Past To Future [Modified From[108]] 

2.6 Software-Defined Networking (SDN)  

SDN can be defined in general as a novel paradigm of networking that optimizes 

the traditional network environment through the separation of the forwarding plane 

and control plane [109]–[113]. In other words, SDN is an architectural approach for 

managing networks by providing dynamic and programmatic effective network 

configuring, which makes the network more intelligent and centrally controlled, to 

enhance the performance of networks using software applications [114][115]. 
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The generic SDN architecture consists of two components, which are the 

controller and compatible switches. Additionally, SDN works according to the concept 

of decoupling the network devices’ data plane from the control plane [116]. In 

specific, routers, and switches as infrastructure plane has a responsibility to forward 

a packet whereas the control plane has the rules for forwarding packets by the 

devices in the infrastructure plane. Based on the above, SDN is defined by decoupling 

the controller plane and infrastructure plane programmability [117]. Increased SDN 

employment has led to a significant evolution of today's network architectures by 

offering adaptability, flexibility, and scalability. In addition, SDN has the capabilities 

to control and efficiently transfer the data flows through the network to fulfill 

sufficient flow management and effective usage of network resources. It does so by 

separating the network control logic from the underlying switches and routers, 

providing logical centralization of network control, and allowing the programming of 

the network. In the last years, most studies have suggested integrating the ML and 

SDN for evolving network security, network management, and improving the design 

of a network [118]–[120]. 

2.6.1 SDN Architecture  

Nowadays SDN is being used in numerous fields e.g., IOT, wireless networking, 

cloud computing, security, etc., so architecture varies with the area of usage but the 

basic architecture of SDN remains the same. Figure 2.2 illustrates the standard SDN 

Architecture. The typical structure of SDN divides operations such as configuration, 

allocation of resources, traffic prioritization, and traffic redirection through core 

devices into three layers: application, control, and infrastructure schemes. 
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Figure 2.2 Simplified SDN Architecture [Modified From [121]] 

The bridge that connects the application layer and infrastructure layers is a 

control scheme with two interfaces (i.e. south and north-bound interfaces). Each one 

of these interfaces has a specific function. South-bound interface represents the 

downward interaction with the infrastructure layer, which has limited function that 

gives controllers the ability to access functions that are provided by switching 

devices. For application layer,  it connects with the controllers through the north-

bound interface, which is responsible for providing access points in different forms 

to the services such as an Application Programming Interface (API). Through API, the 

SDN application can get all the status information of the network that is provided by 

switching devices. Moreover, network status information has been used to make 

decisions for setting rules to execute the forwarding of packets (switches devices) by 

application layers using API. Since there are many controllers, therefore, it is 

obligatory to coordinate the process of decision-making between them by using an 

“east-west” communication interface, which lies among the controllers [117]. 

Furthermore, SDN has an option of controlling called OpenFlow (OF) protocol, which 
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is the predominant protocol. The architecture of OF protocol is based on three basic 

ideas [122]: 

1. SDN data plane consists of switches, which are compliant with OF protocol.  

2. One or more OF controllers are composed of the SDN control plane.  

3. Provisioning of a confidential control channel to connect the switches with 

the control panel. 

2.6.2 Why SDN?  

Compared to the architecture of the traditional network, SDN has the following 

distinguishing attributes:  

1. Concentricity of control: the entire network information such as the topology 

of the network, changes in network status, and requirements of application 

such as requirements of security and QoS, are stored by the SDN controller.  

2. Programmability: the devices of the data-forwarding layer can be programmed 

dynamically to optimize the network resources distribution.  

3.  Openness: to communicate with the SDN controller, as the controller does not 

depend on the various supplier’s devices, therefore, a unified interface is used 

by forwarding devices. Furthermore, the SDN controller can gain the status 

information of the network conveniently for network traffic scheduling.  

In addition, SDN has characteristics that are useful to solve the current problems of 

network traffic engineering. These characteristics can be summed up as follows 

[123]: 

1. Traffic measurement: the SDN, which can gather information on real-time 

network status and monitor as well as analyzes traffic centrally in the 

controller, has the flexibility of scalable measurement task deployment.  
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2. Scheduling and management of traffic: Globally, the requirements of traffic 

application can be considered, hence, the possibility of scheduling with 

flexibility and granularity can be achieved.  

3. Multiple stream table pipelines of the OpenFlow switch provide more 

flexibility and efficiency for flow management. 

2.7 Literature Review 

The major task of a network is to hold and transfer data between its nodes. 

To achieve this task, the network needs to find the optimal route for data to travel 

by employing a particular routing system. This system has a specific job that 

examines each possible path for data, chooses the suitable one and transmits the 

data packets where it needs to go as fast as possible.  In addition, it contributes to 

enhance the performance of the network as the optimal routing algorithm helps 

to run the network efficiently. The clear performance advantage provided by 

routing procedures is faster data access. For example, the routing algorithm takes 

a decision that determines the best route based on the location where the data is 

stored and the destination device that asking for it. On the other hand, the network 

can handle much traffic at one time, but it cannot exceed the allowed bandwidth 

as the maximum rate of data that the network is able to transfer. However, the 

overloading problem is real and still exists. To avoid this problem, the network 

chooses the route based on the available bandwidth space.   

The main challenge in all network types is the optimization of network 

performance, but the situation is different in SDN because the technique is changed 

from distributed approach to a centralized one. The characteristics of SDN such as 

centralized control and programmability make the possibility of performing not only 

routing in a traditional distributed manner but also routing in a centralized manner. 

The first advantage of centralized routing using SDN is the existence of a path to 

exchange information between the controller and infrastructure devices and because 

the controller has the information of the entire network, flexible routing can be 
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achieved. The second advantage is related to the dynamical control of routing due to 

the capability of each device to change its configuration based on the controller 

commands [4]. On the other hand, The essential function of TE is finding an obvious 

route to achieve the bandwidth requirements of the network consequently 

optimizing the network performance [1]. Routing optimization has a key role in TE by 

finding efficient routes to achieve the desired performance of the network [2]. In 

particular, it is based on one particular idea: to achieve that traffic is routed according 

to accurate traffic requirements [3]. These traffic requirements are variable 

depending on an analyzed dataset that considered if it is data or traffic control. 

2.7.1  Investigation into Flow Analysis 

Non-redundant and relevant features are the goal of any feature selection 

technique as it is essential for solving the dimensionality problem in machine learning 

[124][125]. The scalability, reliability, and accuracy of machine learning techniques 

facilitate feature selection by selecting valuable attributes. In data analysis, feature 

selection is considered contributory for prediction by selecting related features. 

There are different measures of evaluation that are used for producing a subset of 

good features in feature selection. Dependence measures, uncertainty measures and 

distance measures are the three categories of evaluation measures. Based on many 

studies on feature selection, evaluation function is classified into five types distance, 

consistency, information, classifier error and dependence. [126]–[129] prove that 

most of feature selection techniques have been suggested for classification methods. 

Many feature selection algorithms use the system of statistical measurements such 

as correlation, mutual information and the measurement of gain of information [73]. 

[127] Clarified that Filters, Wrappers and Embedded methods are the general 

approaches of feature selection based on measurements of evaluation. When the 

three methods were compared, it was found that, the filter methods have low 

complexity of computational, but it cannot guarantee the accuracy of the learning 

algorithms. In contrast, the wrapper methods select the best features, so it provides 
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good accuracy with large computational complexity [129]. The one that is more 

efficient than the others is the embedded method because it runs the process of 

feature selection as part of the training procedure. Therefore, it is specifically used 

with learning techniques [127]. However, the increasing of data dimensionality is still 

challenge to many of feature selection techniques. Based on many studies [130]–

[132], feature clustering is considered as another type of feature selection. 

Hierarchical algorithms and K-means are common in clustering methods. 

Machine Learning (ML) is the term given to a set of powerful techniques for 

data extraction and the discovery of knowledge [133], [134]. Furthermore, one of the 

most favorable techniques to carry out network-data analysis and to automate 

configuration and management of networks because of its ability to make network 

elements 'learn' from experience by using the large quantity of data to make 

networks more intelligent and adaptive [31]. k-Means is a clustering algorithm, which 

stores particular pre-chosen k centers which it utilizes to generate clusters randomly, 

according to the similarity (often Euclidean distance) between all input objects [135]. 

There are many clustering techniques known as the best in many situations 

compared to the K-means algorithm[134]. However, K-means is common for many 

reasons. Firstly, the technique is classified as simple in its implementation. Secondly, 

K-means has the capability of fine-setting, therefore it is very effective as it can be 

integrated with better algorithms such as clustering of intensity [136], genetic 

algorithm [36][137], etc. Third, the limitations of K-means are known, and it was 

studied extensively compared to other algorithms that are less studied and have 

unknown limitations, so it is the preferred technique. Clustering is effective in a range 

of fields, including network management and security. In [138], similarity-based 

clustering of application traffic was executed by using two unsupervised clustering 

approaches: k-means and Expectation Maximization (EM). In addition, the 

Correlation-based Feature Selection (CFS) filter method was used to select 

appropriate attributes of a flow. Researchers in [26] concentrate on using ML 

methods for statistical flow-based traffic classification. The authors propose a new 
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framework, which is Traffic Classification using Correlation (TCC) information, to 

handle the problem of very few training samples. The framework has been 

constructed by selecting suitable features and the correlated information of TCP 

flows to enhance the classification performance. In [27] a new unsupervised method 

for traffic classification was suggested to solve the problem of unknown applications 

through identifying traffic classes, based on flow statistical features, where 

automated flow classification and signature-based cluster aggregation were 

executed by finding a similarity between traffic clusters. While in [28], the C5.0 

technique was used for application classification. A new set of features, which are 

burstiness and idle time, have been proposed to determine the type of applications 

that generate the traffic. The proposed features have proved their effectiveness to 

identify the type of applications as compared with previous studies. Another study of 

the use of unsupervised ML algorithms to identify applications was described in [32]   

. In this study, seven different application groups were concentrated. This work 

introduces a system, executed by a set of tasks that measures the network’s QoS. In 

accordance with [33], an amended k-means-based semi-supervised clustering 

method was used. Flow statistics-based traffic classification was applied, where layer 

four statistics were considered as inputs, to manipulate the classification process. 

Recently, relevant deep learning techniques such as "deep neural networks", 

"deep reinforcement learning", "stacked auto-encoders", and Deep Boltzmann 

Machine have been used to solve network problems with respect to traffic analysis, 

security, and management. The study in [116] introduced a classification traffic 

method. This method starts with conducting traffic identification at the SDN switches 

and afterward performs a “global” classification of traffic through the SDN controller, 

which will be responsible for training, constructing, and refining the policies of QoS 

based on the information of learned traffic.  Similarly, the study in [139] proposed a 

deep learning-based framework that unified feature extraction and classification 

process into one architecture. The “Deep Packet,” system can provide a traffic 

characterization scheme, in which the traffic of network is categorized into main 
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classes such as FTP and P2P, and an application identification scheme, in which end-

user applications such as BitTorrent and Skype are identified. In addition, the "Deep 

Packet" system can distinguish between encrypted and unencrypted traffic. 

2.7.2  Elephant and Mice flows identification 

The problem of precise identification of mice and elephant flows still needs to 

be handled [34], [140], [141]. In[142], the authors proposed a method for identifying 

flows as mice or elephants. Unsupervised and semi-supervised ML approaches have 

been used for classification flows in real time. They used three parameters as data 

transfers, flow rates, and durations for clustering. The accuracy of the proposed 

method was 90%. While the authors in [34] proposed a system that detects elephant 

flows in linear time through traffic volume estimation for every flow. The elephant 

flows are identified by counting their total bytes. They used a certain data structure 

(hash tables) to achieve elephant identification. This system applied two algorithms 

for maintaining the data structure, Median SUMming (IM-SUM) and De-amortized 

Iterative Median SUMming (DIM-SUM), where they use two different tables for 

calculation. On the other hand, other studies clarified that identification and 

rerouting of the flows that hold a large amount of data (elephant flows) effectively 

can lead to significant improvement in QoS. Authors in[143] presented a system 

called DARD (Distributed Adaptive Routing architecture for Datacenter networks). 

This system consists of three parts. The first is for detecting an elephant flow if a TCP 

connection has lasted for more than 10s. The second is a tracking monitor to check if 

all the paths connecting the source and destination switches are existing. The third 

part is a flow scheduler that shifts elephant flows from overloaded paths to under 

loaded ones. Another approach is proposed by [144], authors present a flow-

scheduling algorithm, which dynamically adjusts the number of two types of paths 

according to the real-time traffic into low latency paths and high throughput paths 

respectively for the two types of flows to make full utilization of the bandwidth. As 

proposed in [7], a routing algorithm called Distributed Flow Scheduling (DiFS) system, 
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defined the flow, which exceeds a threshold of 100KB as a large flow. After that, this 

flow will be transmitted to the destination by switching to a path with an abundant 

amount of bandwidth.  

Recent works have been applying machine learning in network traffic 

classification. However, the limitations of existing studies are in the number of 

connections used as well as the features identified. The novelty in our work is that 

we have first introduced the investigation of the effect of the number of PCA 

components on the accuracy of the flow clustering process. Further, k-means were 

applied to cluster the traffic based on network performance metrics using a dataset 

that contained 1 million complete connections. Finally, full and precise identification 

of flows as elephant and mice were performed using pre-decided threshold values. 

2.7.3 SDN- based flow routing optimization 

SDN is currently utilized in numerous fields, from Internet of Things (IoT), and 

wireless networking, to cloud computing and datacenters, focusing on both QoS and 

security. In [145] SDN-based framework for the IoT environment has been proposed. 

This framework allows significant achievements of quality level in a heterogeneous 

environment of wireless networking for the task related to IoT. These achievements 

have been done by designing an SDN controller in IoT multi-network for providing 

flexible and efficient management of flows and the accessible network resources. 

According to [96], the authors present an application that used several ML methods 

to classify network traffics. This application started with gathering statistics on 

OpenFlow traffic from the switches in the SDN environment, which was deployed in 

an enterprise network. The work aimed to evaluate the performance of supervised 

classification approaches comparatively. Similarly, in [146] a management design, 

named ATLANTIC, was introduced to perform anomaly detection, classification, or 

mitigation. The ATLANTIC framework uses information theory for deviation 

calculations in the entropy of flow tables integrated with machine learning 
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techniques for traffic classification. Thus, the design has the ability to categorize 

traffic anomalies and block malicious traffics by using the available information. 

An application-aware multi-path flow routing framework, which integrates ML 

and SDN, was proposed in [115]. In this architecture, the controller prioritizes each 

flow using ML and determines a path depending on its priority. In the same context, 

the authors in [116] introduce a QoS-aware traffic classification model for SDN. The 

model uses the requirements of QoS to classify traffic into different classes by using 

deep packet inspection (DPI) and a semi-supervised machine learning algorithm. The 

management of networks is becoming a big challenge due to the growth of network 

size, the volume of traffic, and the diversity of QoS requirements; to consider this 

level of complexity, SDN provides flexibility and scalability of network management. 

Clustering traffic to provide improved network management also proved successful 

to a certain degree in previous studies, where the classification of traffic based on 

user interests [147][148], was then applied to an SDN environment [149]. Moving 

further, configuring a large complex network is also a challenging job. it is becoming 

difficult and increasingly worrisome with the passage of time, as network 

administrator needs to perform sophisticated actions in order to manage network 

tasks, thereby, to address this problem, authors in [104] proposed an event-driven 

network control solution based on the SDN, named Procera, to simplify various 

aspects related to network operation and management. The authors proposed that 

network operators could utilize four control domains, such as traffic flow, data usage, 

time, and authentication. Based on the listed studies, it is increasingly apparent that 

clustering of traffic and SDN are indeed likely to lead to more effective handling of 

traffic. However, studies tend to look at optimizing the quality of individual flows, 

applications, or mixes of applications as employed by end users, without considering 

the characteristics shared by the flows in the first instance from a performance 

perspective. Indeed, flows may encounter similar levels of packet loss or delay, as 

well as share characteristics such as file length or application requirements. 
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The essential reasons for network performance degradation are network 

congestion and imbalance in network load, which may cause by the inefficient routing 

of elephant and mice flows. According to [150] the load-balancing mechanism has 

been proposed using multipath routing of elephant flows in SDN to improve the 

utilization of the network. The applications of software-defined networks have 

attracted a lot of interest to solve the problem of network management in the last 

decades. In [151], the authors have applied a dynamic routing mechanism in SDN to 

solve the problem of inconsistent distribution of network traffic that causes 

congestion in network links. Knob et al. [152] have introduced a system that can give 

the network operator the ability to define templates that can re-route elephant flows 

for the specific objective to address the high impact of elephant flows on the overall 

network traffic. To improve network performance, researchers in [153] have 

proposed to detect the elephant method where the routing algorithm scans the 

network to find all the paths available between source and destination and calculates 

the link bandwidth of different paths available. Likewise, in [154], authors have 

presented a combination of detecting elephant flows and re-routing them to provide 

efficient resource utilization. In contrast, [155] suggests a method that routes mice 

flows efficiently using SDN technology by reducing the routing rules. In the work of 

[156], re-routing elephant flows (EFs) using an ant colony optimization--based 

technique has been presented. Load balancing in SDN links has been taken into 

account. This technique, known as DPLBAnt, is formulated in SDN as a shortest-path 

problem that can alleviate the high controller-switch load. The proposed method first 

detects elephant flow by employing a pair of classifiers on both the SDN controller 

and the switches. The switches sift through the majority of EF candidates, resulting 

in accurate and efficient EF detection. Then, DPLBAnt obtains the SDN's global state, 

from which the most optimal paths for congested links are retrieved and EF are 

redirected appropriately. In [157] a deep Q-learning (DQL)-based routing strategy for 

autonomously generating optimal routing paths for SDN-based data center networks 

has been proposed. Deep Q networks are trained to meet the different demands of 
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mice-flows and elephant-flows in data center networks by achieving low latency and 

low packet loss rate for mice-flows, and high throughput and low packet loss rate for 

elephant-flows. Furthermore, port rate and flow table utilization to describe the 

network state were selected, taking into account traffic distribution and the limited 

resources of data center networks and SDN. A [158] they proposed DeepRoute which 

is a model-free reinforcement learning method that converts the path computation 

problem to a learning problem. DeepRoute learns strategies to manage arriving 

elephant and mice flows from the network environment to improve the network's 

average path utilization. In the study of [159] NNIRSS which is a neural network (NN)-

based intelligent routing scheme was presented for SDN. It uses NN to achieve data 

flow transmission patterns and replaces the flow table with a well-trained NN in the 

form of an NN packet. To meet the QoS requirements of network applications, the 

route of data flow can be predicted based on its application type. In addition, they 

develop an intelligent routing mechanism based on radial basis function neural 

networks.  In addition, an APC-K-means algorithm for determining radial basis 

function centers by combining APC-III and K-means was proposed. In the work of 

[150] a load-balancing-based dynamic multi-controller deployment scheme was 

proposed. They convert the flow requests into a queuing model and consider the 

traffic propagation delay and controller capacity as two major factors influencing the 

multi-controller deployment. For network planning, a modified affinity propagation 

algorithm (PSOAP) based on particle swarm optimization is proposed in the initial 

static network to solve the problem of clustering performance being affected by the 

initial values of the bias parameters and convergence coefficients. To achieve 

controller load balancing, the dynamic traffic network reassigns switches in different 

sub-domains using the breadth-first search (BFS) algorithm. 

Overall, it is found that non-of the existing approaches for flow routing in SDN 

have accomplished an external application for identifying mice and elephant flows, 

enabling flow type and topology-aware routing. The goal of this work is to propose a 

framework that can accomplish this by using two blocks, namely, external 
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applications and traffic analysis. Furthermore, it provides an algorithm for routing by 

using a short route for mice flows and the widest routes for elephant flows. Routes 

cost calculation is done recursively, which provides more efficiency and enables 

consistency with real-time constraints. 

2.8 Conclusion 

Network management is a set of actions, which guarantees the utilization of all 

network resources in the best possible way. Any network management system 

should be capable of monitoring all devices on the network and fulfilling any 

management procedures required by these devices. One of the functions of any 

network management system is to simplify the monitoring of the network 

performance task. The outcome of monitoring is to obtain valuable information 

regarding network performance, by using specific tools, which have been designed 

for this purpose. In addition, there are tools, which are used as analyzers. Their 

function is to collect statistics on the amount and type of traffic on a single network 

portion. Increasing volumes of network traffic, increasing speed of networks, and 

solutions for capturing full-packet traffic require a huge amount of storage every day. 

Unsupervised Machine Learning (clustering) has been used in different areas of 

networking, such as application, security, and classification of user behavior. In 

addition, clustering techniques have been used in the network performance analysis 

area, which will be covered in this thesis.  

 Nowadays, network management has become more complicated and less 

docile to administer manually, because of the increase in dynamicity, heterogeneity, 

and complexity of the network [150][160]. Therefore, the optimization and decision-

making automated approaches by using ML and artificial intelligence (AI) have 

become necessary. The aim of unsupervised ML is to build a structure or pattern 

using the inputs without the need to pre-define the output class. In addition, 

unsupervised ML has the ability to transact with traffic types and a variety of datasets 

based on previous studies. Consequently, the employment of unsupervised ML has 
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been increasing to improve the performance of networks and enhance the services 

such as anomaly detection, Internet traffic classification, and TE. The term TE, which 

includes the measurement, characterization, modeling, and control of traffic, is 

described as evaluating and optimizing the performance of network performance. 

The main aim of TE is to achieve all the requirements of a network through the 

optimal use of the network resources. It is also worth mentioning, that TE is 

responsible for designing a reasonable mechanism of routing to control the traffic of 

the network for improving the utilization of network resources. 
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Chapter Three: Investigation into Network Performance Analysis 

3.1 Introduction 

The analysis of network performance is the use of network data to 

comprehensively understand trends of network performance. With the analysis of 

network data, the network performance variables can be identified and measured to 

assess network performance, diagnose network performance issues, and exposed 

long-term problems. Consequently, the analysis of network performance has benefits 

such as baseline establishment and understanding the limits of network 

performance. Additionally, Analysis of the network traffic can extensively provide 

knowledge as regards the network resources and data infrastructure devices that are 

responsible for routing the packets. 

In traffic analysis, the robust and effective election of features to characterize 

the traffic is still a real challenge. Practically, the characterization of network traffic 

has been categorized as either flow-based using characteristics such as flow bytes, 

flow duration, etc., or/and packet-based using properties like packet size, inter-

arrival time, etc. Unfortunately, there is still a shortcoming of studies on the 

techniques of traffic characterization of network data. In the literature, the 

characterization process can be accomplished according to its purposes such as 

encrypted traffic [161][162], encapsulation of protocol [163], applications [11], or 

type of application like chat, or streaming [164].  

The characteristics of network traffic are still pivotal to most applications due 

to their influence on the QoS features of communications links. Therefore, network 

traffic characterization is considered an integral aspect of network services 

identification and communication flow management between devices. For example, 

in IoT environments, the characterization of network traffic contributes to 

management capabilities promotion, network capacity adjustment, reliability of flow 

packets delivery, improvement of network security, and network QoS ensure [165]. 
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Due to the complexity of the network infrastructure and the mix of traffic, 

designing a network to support QoS is, therefore, not an easy task. The fundamental 

step is to understand the characteristics of different types of network traffic. 

Therefore, the modelling of data traffic becomes a decisive and indispensable step. 

This project will propose a comprehensive characterization of traffic with respect to 

network performance to manage the network efficiently. 

This chapter presents an innovative traffic characterization approach based on 

network performance descriptors to manage the network efficiently. In addition, it 

takes into account the possibility of reducing the number of features for accurate 

characterization of network traffic. Two experiments have been conducted to 

investigate the efficacy of the approach. These experiments follow the methodology 

provided after the description of the proposed approach. 

3.2 A Novel Approach for Network Performance Analysis 

The proposed method seeks to develop a flow-based characterization 

technique to analyze and characterize network traffic. According to [166] the 

procedure of characterization can be carried out based on its objectives such as 

security (e.g. encrypted traffic and VPN or HTTPS), applications (e.g. name or type of 

application), and user behavior. The proposed approach introduced using common 

characteristics between the traffic depending on network performance features for 

the first time to characterize the network flow.  In view of this, Unsupervised ML 

techniques are applied to personify similar flows and isolate them based on their 

features that are related to network performance such as delay, throughput, packet 

loss, etc. By clustering analysis, flows will be summarized, and the central flow of each 

cluster may be selected as the representative of that cluster. This can be performed 

to improve the management of networks by ensuring a fair allocation of network 

resources for the flows and accommodating other flows with different requirements.  

Figure 3.1 shows the innovative proposed unsupervised ML scheme. 
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Figure 3.1 The Proposed Scheme  

3.3 Proposed Methodology 

Network traffic characterization is important in network management, and it is 

used to analyse and find the solutions for the problems of network performance. In 

accordance with this, this experiment tries to evaluate and validate the 

characterization of network traffic based on network performance metrics by 

following the methodology depicted in Figure 3.2. 

 

Figure 3.2 The Proposed Methodology 

 

3.3.1 Data Collection  
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Recently, the activities of network users have increased rapidly, and need to 

keep up with the problems of analyzing huge traffic. Different solutions and 

techniques have been suggested for dealing with data analysis, such as data 

clustering, and data reduction. With a view to construct a set of connections, 

concentration has been placed on the TCP protocol because it provides a wide variety 

of features to characterize flows. The tcpdump [166] tool was used to capture the 

raw data at the Center for Security, Communications, and Network Research (CSCAN) 

at the University of Plymouth. This data is stored as a pcap file containing a collection 

of 19,004 records. The captured and filtered network traffic was analyzed using the 

tcptrace analyzer [167] to yield 11,593 completed bi-directional flows. Each one 

contains classical fields related to a flow such as IP addresses, port numbers, packets 

and byte counters, etc. These bi-directional flows provide full visibility of network 

performance. A total of 146 features, related to network performance, were 

extracted from the header field of each TCP packet to generate a dataset. The 

tcptrace records were afterward subjected to pre-processing before undergoing to 

unsupervised ML techniques as detailed in the following section. 

3.3.2 Pre-processing and Feature Extraction  

Generally, raw data is incomplete (contains missing values), noisy (there are 

duplicates, errors, and outliers), and inconsistent (in different formats). Therefore, it 

needs to be transformed into an understandable format for ML. techniques. Data 

preprocessing can handle these issues by performing the following tasks: 

 (i) Data cleaning entails filling in missing values, smoothing noisy data, identifying 

or removing outliers, resolving inconsistencies, and eliminating duplicates, 

irrelevant observations, errors, and unnecessary columns. 

(ii) Data Transformation requires feature construction and data normalization. 

 

In this step, Principal Component Analysis (PCA) has been employed to handle 

outliers and to reduce data as in Sub-section 3.3.4 while z- Score normalization 
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technique has been utilized to scale features’ values that fall within a specified range 

to ensure that unit of feature doesn’t distort the closeness of cases. In the 

normalization step, a built-in scale() function has been used to achieve z-score 

normalization to convert data into 0-1 range. The resulted dataset contains 129 

features (Appendix -1), and 11593 connections is ready for feature selection. All the 

pre-processing steps are executed using R-based script.  

3.3.3 Feature Selection Model  

High-dimensional data contains thousands of features, but not all of them are 

somewhat relevant or vital to achieve the goal function. Therefore, excluding the 

irrelevant features from the data will dispose of their negative impact on the result 

of the target function [25]. Furthermore, some of these features are redundant, 

which means that many of these features may have the same effect on the goal 

function outcomes. To reduce the computation of workload for high-dimensional 

data; one feature can represent all the redundant features [26]. Finally, it is 

interesting to build an efficient feature selection model, in which the goal is to 

identify the smallest group of independent features with the most influence in the 

clustering process. 

In the current literature [146], feature selection algorithms are mainly 

categorized into three groups, i.e. (i) feature selection algorithms that are used to 

remove irrelevant features, (ii) feature selection algorithms that are used to remove 

redundant features, and (iii) feature selection algorithms that are used to remove 

features both irrelevant and redundant features. 

 The typical clustering algorithm, which is relevant to be used for large number 

of variables is k-means, which is simple and fast. K-means clustering has been applied 

as a technique to select specific features in this work by using unlabeled data (i.e., 

categories or groups of data are not defined). Feature selection process is 

implemented by excluding the control features of each cluster. The main aim of this 
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process is to minimize the dataset and consequently diminish the size of high 

dimensional data and choose the essential features. A vector of 52 features is the 

output of this stage as will contribute to speeding up the clustering process in the 

future. These features illustrated in Table 3.1 as Feature set2. 

Table 3.1 Feature Set 2 

Seq.  Feature  Seq.  Feature  

1.  first_packet  2.  avg_owin_a2b  

3.  total_packets_a2b  4.  wavg_owin_a2b  

5.  total_packets_b2a  6.  wavg_owin_b2a  

7.  ack_pkts_sent_a2b  8.  initial_window_bytes_b2a  

9.  ack_pkts_sent_b2a  10.  ttl_stream_length_a2b  

11.  pure_acks_sent_a2b  12.  ttl_stream_length_b2a  

13.  sack_pkts_sent_a2b  14.  throughput_b2a  

15.  sack_pkts_sent_b2a  16.  RTT_samples_a2b  

17.  dsack_pkts_sent_a2b  18.  RTT_samples_b2a  

19.  unique_bytes_sent_a2b  20.  RTT_min_a2b  

21.  unique_bytes_sent_b2a  22.  RTT_min_b2a  

23.  actual_data_pkts_a2b  24.  RTT_max_a2b  

25.  actual_data_pkts_b2a  26.  RTT_max_b2a  

27.  actual_data_bytes_a2b  28.  RTT_avg_a2b  

29.  actual_data_bytes_b2a  30.  RTT_avg_b2a  

31.  rexmt_data_pkts_a2b  32.  RTT_stdev_a2b  

33.  rexmt_data_pkts_b2a  34.  RTT_stdev_b2a  

35.  rexmt_data_bytes_a2b  36.  post.loss_acks_a2b  

37.  rexmt_data_bytes_b2a  38.  post.loss_acks_b2a  

39.  outoforder_pkts_a2b  40.  ambiguous_acks_a2b  

41.  outoforder_pkts_b2a  42. ambiguous_acks_b2a  

43.  sacks_sent_a2b  44. segs_cum_acked_a2b  

45. sacks_sent_b2a  46. segs_cum_acked_b2a  

47. avg_win_adv_b2a 48. duplicate_acks_a2b  

49. max_owin_a2b 50. duplicate_acks_b2a  

51. max_owin_b2a  52.  triple_dupacks_b2a.  

 

3.3.4 Data reduction Model 

Nowadays, network measurements have hundreds or thousands of data 

available for a single experiment, therefore the statistical approaches are considered 

challenging to deal with such high‐dimensional data [168][169]. Nevertheless, this 
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data might contain highly redundant variables and can be efficiently minimized these 

number of variables without losing any significant information [170][171]. The 

mathematical methods that are designed to achieve this reduction are called 

dimensionality reduction techniques [172]. Data reduction involves the 

transformation of high dimensional space to low dimensional space by eliminating 

dependent or highly correlated variables and feature selection. Furthermore, 

reducing the dataset leads to a group of advantages such as improving the quality of 

data, increasing the efficiency of the algorithm work, better accuracy achievement, 

and clarifying pattern design and examination researchers in  [173]. Additionally, the 

cost of computing will be reduced, dimensions visualization enhanced, and the 

results improved [174][175].  

Several techniques have been utilized to deal with the high-dimensionality 

problem in traffic analysis such as PCA, Isomap, autoencoder, etc. Choosing the 

convenient technique depends on the volume of the dataset, the aim of the analysis, 

the computational resources, and data complexity e.g., image or numerical, linear or 

nonlinear. PCA is one of the top-known dimensional reduction techniques and it is 

still preferable in the classification context [176]–[178]. PCA compared with other 

techniques like autoencoder is faster [179] and accelerate the convergence of the 

model [180]. The core difference between PCA and lies in the way they carry out 

dimensionality reduction. In PCA, the encoder and decoder are linear methods and 

might be extended to work with nonlinear data [181].  

PCA utilizes orthogonal transformation on the data as a statistical procedure to 

transform a specific number of correlated variables into a minimal number of 

uncorrelated variables, which are called principal components. These components 

are arranged based on their variability in descending order. Being an essential 

approach for exploratory analysis of data, PCA takes data in n dimensions and makes 

visible the maximum variability in the data by rotating them. Primarily, PCA has been 

used for dimensional reduction, as input data is reduced without losing the important 
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information in the data. The choice of the number of principal components is a critical 

issue in taking a decision. Many studies conducted on choosing the number of 

components such as cross-validation approximations [182]. Optimally, the reduction 

process is based on the proportion of the average squared projection error to the 

total variation in the data such that must be less than or equal to 1%.  This process 

retains 99% of the variance as principal components. The techniques of feature 

selection are applied as a dimensional reduction [183], [184] in spite of there being a 

difference between them [185]. Feature selection is performed usually as a 

supervised process, which generally can be done well, but is not scalable and apt to 

judgment bias. On the other hand, Dimensionality reduction is an unsupervised task, 

as new features (dimensions) have been created instead of choosing a subset of 

features. 

3.3.5 Clustering traffic Model 

In the last decades, the employment of unsupervised machine learning 

techniques using unlabeled data has become common for network performance 

improvement and providing services, such as TE, optimization of QoS, anomaly 

detection, and Internet traffic classification[134][186][187]. These techniques make 

machine learning general, flexible, and automated as they provide the ability for 

analyzing data without having to formulate useful features manually and label them 

[134]. One of the powerful unsupervised learning methods is the K-means algorithm, 

which is a famous partitioning clustering technique, compared with other algorithms 

such as DBSCAN. The k-means algorithm can be applied efficiently with sparse and 

large datasets whereas DBSCAN fails with such datasets because it depends upon the 

Euclidean definition of density [188]. Furthermore, k-means requires one parameter 

that defines the number of clusters (K) while DBSCAN requires two parameters 

radius(R) and minimum points (M) [189]. Moreover, k-means works better than 

DBSCAN when utilized with real-time dynamic datasets because it consumes less time 

for computation [189]. A brief definition of K-means is an algorithm that aggregates 
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observations with identical characteristics into k clusters. It starts deducing the model 

of clustering based on a statistical vector of points as an input. Then, it distributes 

these points into cluster form. The clustering process is performed based on the 

algorithm [190] illustrated as below:  

K-means Algorithm 

Input: 
P= {P1,P2,P3,……..,Pn}: the set of data points and  
V = {v1,v2,…….,vc} the set of centers. 

Output: 
C={c1,c2,……………ck} the set of clusters 

Start algorithm: 
Step 1: Select ‘c’ cluster centers randomly. 
Step 2: Calculate of the distance between cluster centers and each data point. 
Step 3: Assign data points and a corresponding cluster center based on the 

minimum distance between them. 
 
Step 4: Recalculate of the new cluster center by:  
 

𝑉𝑖 = (
1

𝐶𝑖
) ∑ 𝑃𝑖

𝑐𝑖

𝑗=1

 

Where, ‘ci’ is the number of data points in ith cluster. 
 

Step 5: Recalculate of the distance between new cluster centers and each data 
point. 

Step 6: When there is no data point to be reassigned  
then end,  

Otherwise recall from step 3. 

 

Furthermore, K-means has commonly used with unlabeled data where 

categories or groups of data are not defined. Therefore, to determine the 

optimization of the K-means clustering the accuracy will be calculated using two 

measurements Within Cluster Sum of Squares (WCSS) and Between Clusters Sum of 

Squares (BCSS). 

In this model, K-means has been utilized to cluster network traffic flows based 

on network performance parameters. It started with determining an optimum ‘k’ 
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value. This was carried out using the Elbow method, which limits the number of 

clusters to a value beyond that appending another cluster does not improve the 

modeling of data. The elbow technique chooses the appropriate number of clusters 

by repeating the k-means technique on a dataset for a range of values of k (1-10) and 

computing the sum of squared errors for each value of k. Two sets of features were 

used: Feature set1 contains 129 features as mentioned in Sub-section 3.3.2, while 

Feature set2 includes 52 features as shown in Sub-section 3.3.3. Feature set2 is a 

subset of Feature set1 where 77 features, which represent the control or driven 

features for each cluster, have been removed to minimize the total number of 

features.  Moreover, this model includes the calculation of cluster convergence and 

profiling clusters, which identify the behavior of each cluster. 

3.3.5.1 Cluster Convergence 

Analysis of clusters is an exploratory method. Any clustering algorithm cannot 

achieve a perfect endpoint, but it can reach a point where the error is minimized. 

Convergence is a condition that rules the minimal change in cluster centers. It sets a 

ratio of the minimum value that the distance between initial cluster centers reaches. 

In other terms, true convergence is done when reaching the point that there is no 

possibility of further improvement. Consequently, the analysis of clusters is 

considered good if the condition of cluster convergence is met. The threshold that 

has been used to restrict criteria for convergence was between 5% and 30% for the 

population of all clusters overall dataset. Therefore, in this research with a dataset 

that contains 11593 bidirectional connections; the minimum and the maximum 

number of connections in any cluster should be between 500 and 4000. Whereas the 

cluster with a size that exceeds these limits will be considered an outlier and it needs 

to be handled. Further, a few outliers can be easily incorporated by cluster structure. 

3.3.5.2 Cluster Profiling 

Profiling is defined as generating the description of the clusters based on input 

variables that have been used for the analysis of clusters. The purpose of profiling is 
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to understand the network behavior within a particular situation. Profiling is effective 

when cluster analysis has been conducted on multivariate clusters, so the clusters 

can be described based on multiple aspects, provide an accurate description of the 

network behavior, and get inferences based on the provided information. After 

validating the convergence of clusters, it is essential to recognize the behavior of each 

cluster. In this stage, the aim of cluster profiling is to accomplish an obvious 

description of the type of flows in each cluster, and the behavior of each flow with 

respect to network performance metrics.  This is achieved by mapping a combination 

of variables with respect to network performance such as packet loss, delay, 

connection size, throughput, and congestion window; the output of this stage will be 

a representative connection for each cluster. 

3.4 Experimental Setup and Results 

This experiment is carried out on an Ubuntu 14.0.4 LTS Operating System with 

a Linux kernel (3.14.4 x64). The CPU is Intel Core i7-1165 G7, 2.8 GHz, and 16 GB RAM. 

The experimental procedure has been applied by using a network pcap file. This file 

contains network traffic that was collected utilizing the tcpdump capturing tool in the 

laboratory of Plymouth University. In-depth analysis was accomplished on the 

captured data to debrief network performance features using tcptrace analysis tool. 

Unsupervised Machine Learning techniques (PCA and K-means) are implemented as 

a final stage to reduce the dimensionality of data and find the common features 

between connections. These techniques are applied using two sets of features 

explained in Sub-section 3.3.3. The hypothesis of this work was to clarify the 

possibility of characterizing TCP flows based on network performance metrics. In 

accordance with this, two questions are suggested: 

• What is the reliability of characterizing TCP flows based on network 

performance metrics? 

• What are the factors of clustering that may affect the accuracy of 

characterizing TCP flows? 
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In order to answer these questions, the below steps were implemented. 

3.4.1 Data Reduction Implementation 

The work started with extracting key variables (in form of components) from a 

larger set of variables that are available in both selected datasets. PCA technique was 

applied for the purpose of dimensional reduction to make the clustering algorithm 

more effective and efficient. Furthermore, PCA has been used before the clustering 

algorithm to analyze the correlation between the features of Feature set1 as a second 

purpose. Figure 3.3 Presents the correlation of the first ten variables in Feature set1. 

In this figure, correlation coefficients have been colored according to the value.  

 

In Feature set1, each of the 129 features contained approximately 0.77% 

(1/129) of the total variance in the original space. At least 0.77% of the total variance 

should be explained by the selected principal components. By applying PCA, the 

contribution information that each principal component makes to the total variance 

of the data has been gained. Table 3.2 shows the first 13 principal components and 

their associated eigenvalues, the proportion of variance, and cumulative variance. It 

Figure 3.3 Correlation of First 10 Variables 
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is significant to retain a convenient number of components based on the trade-off 

between simplicity and completeness as a data reduction technique in PCA.  

In this work, the first five PCA components have been chosen based on their 

variance as in Figure 3.5Error! Reference source not found. This number of 

components has been selected based on the results of using the Elbow method. 

These five principal components represent about 40% of the variation in the data as 

illustrated in Figure 3.4. Using the first five components will provide a good 

understanding of the data. Despite that, there is still a need to add more PCA 

components to cover as much as possible of data based on the trade-off between 

simplicity and completeness. This is one of the objectives of the work in Chapter 4. 

Table 3.2 Components and Their Associated Eigenvalues 

Component Eigenvalues Variance% 
Cumulative 

variance % 

Comp1  18.502  14.34  14.34  

Comp2  13.443  10.42  24.77  

Comp3  8.175  6.33 31.10  

Comp4  7.551  5.86 36.96  

Comp5  5.059  3.92 40.88  

Comp6  4.253  3.29  44.18  

Comp7  4.130  3.20  47.38  

Comp8  3.626  2.81  50.19  

Comp9  3.126  2.42  52.62  

Comp10  2.972  2.30  54.92  

Comp11  2.874  2.22  57.15  

Comp12  2.587  2.00  59.15  

Comp13  2.479  1.92  61.08  
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3.4.2 Feature Selection Implementation 

In this part of the work, feature selection has been achieved by applying the K-

means technique using a Feature set1, which contains 129 features. This is 

accomplished by excluding the driven features for each cluster. Driven features are 

the set of features that control the distribution of the observations between clusters. 

These features are extracted from the clusters using the filter approach. The main 
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aim of this step is to diminish the size of high-dimensional data. As a result, the new 

dataset, which only contains the essential features, is a vector of 52 features. This 

feature set (Feature set2) has contributed to accelerating and increasing the accuracy 

of the clustering. Moreover, the PCA technique has been used to reduce the 

dimensions of this data. 

3.4.3 Clustering Implementation 

Clustering, or cluster analysis, is a task of unsupervised machine learning. 

Unlike supervised learning, which is predictive model, cluster analysis includes 

detecting natural grouping in data automatically. This will be achieved by interpreting 

the input data and discovering natural groups or clusters in space of features. On the 

other hand, Clustering is the mechanism that causes the instances with a stronger 

similarity to be gathered to each other than to the remaining instances. In this part, 

two experiments were conducted to use the K-means algorithm as a clustering 

technique with two sets of features with and without PCA. The factor that was used 

to determine the optimization of clustering process is the accuracy.  

Accuracy: Each object is included to the closest cluster and then Euclidean 

distance is used to calculate the distance between the object and the cluster center. 

Each cluster center will be updated as the mean for objects in each cluster.  

The within-sum of squares is: 

 

𝑾𝑺𝑺 = ∑ ( ∑ (𝑿𝒊 − 𝑪𝒌)𝟐

𝑿𝒎

𝑿𝒊𝒊𝒏𝑪𝒌 

)

𝑪𝒏

𝑪𝒊

 3.1 

 
Where X is the data point in each cluster, C is the cluster centroid, k is the 

number of clusters [191]. 
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The process is iteratively repeated until either it reaches the maximum number 

of iterations or the change of within-cluster sum of squares in two successive 

iterations is less than the threshold value. 

3.4.3.1 Analysis of using K-means Clustering Only 

This part of analysis involves employment of K-means clustering algorithm 

individually without using PCA as a dimensional reduction technique. The algorithm 

has implemented using the two different sets of features, which are mentioned in 

Section 3.4.2 to get an optimal clustering. As known, K-means has no ability to 

determine the number of clusters (k). Therefore, it has applied using two values of 

(k) based on elbow method (k=3 and k=100) as a lower and a higher limit, 

respectively.  

As shown in Table 3.3, when the value of k is three, the within-cluster sum of 

the square will be high and the recorded accuracy is considerably low regardless of 

the number of features, and when comparing the accuracy for the two sets, it turns 

out that it is considerably low for Feature set1. As the value of k increases to 100, the 

within-cluster sum of the square value will decrease and the results represent a 

significant improvement in accuracy, yielding 80.7% for the Feature set1 and 92.9% 

for Feature set2 even though it consists of a reduced number of features. One 

interesting finding is when choosing the value of k beyond 100, the accuracy is slightly 

increased reaching 84.9% and 94.8% for Feature set1 and Feature set2 respectively. 

Table 3.3 Accuracy of K-Means with Features Sets 

 Feature set Accuracy of K 

3 100 110 120 130 140 150 

Features set1  15.2% 80.7% 81.8% 82.8% 83% 83.2% 84.9% 

Features set2  43.2% 92.9% 93.6% 94.2% 94.6% 94.7% 94.8% 
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3.4.3.2 Analysis of using K-means clustering with PCA   

PCA is a data reduction method, it is significant to retain a suitable number of 

factors on the basis of keeping a balance between retaining as few as possible factors 

(simplicity) and explaining most of the variation in the data (completeness). Kaiser’s 

rule recommends only factors with eigenvalues exceeding unity should be retained. 

Intuitively, this means that any retained factor should compute at least as much 

variation as any of the original variables [192].  

In this step of work, PCA is used to reduce the dimensions of each dataset to 

five components before applying the clustering algorithm. Using the PCA approach 

drives faster convergence of the K-Means clustering with few iterations compared to 

the basic K-Means method. The findings in Table 3.4 show that when applying K-

means on the Features set1, with three clusters and five components of PCA, the 

accuracy is 36.7%. However, when the number of clusters is 100, the accuracy has 

increased significantly to 97.6% and starts to have a slight increase when the value of 

k is exceeded 100, and the clusters, which have only one connection have been 

eliminated. This keeps all resultant clusters in the safe range, which should contain 

between 5% and 30% of the overall dataset. Whereas, with the Feature set2, the 

result shows an accuracy rate equal to 60.6%. While the result has changed to the 

best level with 100 clusters or more, as the accuracy becomes 99%. 

Table 3.4 Accuracy of K-Means with PCA 

Feature set 
Accuracy of 5 PCs. and K 

3  100  110 120 130 140 150 

Features set1  36.7% 97.6% 97.8% 97.6% 97.7% 97.8% 98% 

Features set2 60.6% 99% 99% 99% 99% 99% 99% 

 

Based on the aforementioned results for both sets of features there is a 

significant improvement in accuracy when k equals three, in contrast, the accuracy 

has a slight increase with k equals 100 or more. 



 

56 

 

According to the findings in the above two experiments (K-means with and 

without PCA) the accuracy has increased significantly in the two feature datasets. This 

means applying PCA before clustering, contributes to improving clustering accuracy 

even though the number of components is few (five PCA components). 

3.5 Conclusion 

The proposed scheme introduces flow-level characterization based on network 

performance metrics utilizing unsupervised machine learning techniques. The main 

idea behind the scheme is finding precise clusters of flows sharing certain 

characteristics that can be leveraged to improve the flow routing mechanism in a 

network as a final part of this project. The idea has been achieved through 

accomplishing experiments based on a group of concepts as follows: (i) trade-off 

between simplicity and completeness in choosing the suitable number of PCA 

components and (ii) the reliability of characterization TCP flows based on the 

accuracy of clustering that basically depends on the choice of (k) values. As a result, 

the accuracy of the clustering varied according to the use of K-means only and K-

means with PCA as clarified in the experimental results section. The experiments 

were executed utilizing different feature sets to investigate the precision and 

flexibility of the innovative scheme.  
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Chapter Four: Traffic Analysis-based Flow Identification 

4.1 Introduction 

In network performance management, congestion, and unbalanced load are 

two main problems, which stem from the unfair use of the network resources by 

specific flows [15]. Some of these flows contain a large amount of data and consume 

many network resources, which hinders the use of these resources by others that 

have a small size. Consequently, the differentiation between these flows has an 

important role to solve network management issues. Characterizing and identifying 

these flows into Long-lived large flows as elephants versus short-lived small flows as 

mice can allow optimization of the network performance[17], [193], [194].  

Recent studies in network engineering propose new strategies to optimize 

network performance by identifying and handling mice and elephant flows differently 

[29], [123], [142], [195]. These studies include the assignment of different flows to 

different queues, flow distribution across the links, and the creation of a policy of 

routing as a rule. These methods are achieved by either applying ML approaches, 

using certain data structures, designing adaptive routing architecture, or proposing a 

flow-scheduling algorithm. A wide variety of ML methods were used to classify 

network traffic, using statistical analysis based on conceptual classification [135][25]. 

The aforementioned studies have used one or two parameters, such as the size 

of flow and the duration, to distinguish between elephant and mice flows. In addition, 

they have assigned different threshold values for the identification process of these 

flows, 100KB to 10MB for total byte count per flow and 10s for duration threshold. 

Moreover, with the ever increasing Internet traffic, improving the network flow 

identification is still a challenge and of considerable interest to network operators, 

and the identification of these types of flows has a significant role in the 

enhancement of network management. However, the influence of the characterizing 

of elephant and mice flows on the identification process has remained unclear. 
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However, no previous research has specifically concentrated on leveraging TCP-

based performance information to characterize and identify the flow. The present 

chapter proposes characterizing flow employing TCP based information and 

identifying flows based on specific thresholds and features. This has been achieved 

using unsupervised ML and thresholding techniques. These techniques have been 

implemented on real data captured and stored in a 2GB pcap file, which will be 

explained in Section 4.4.1. Hence, the main contributions of this chapter are three-

fold: 

1. Investigate the impact of a retained number of PCA components on the 

efficiency and efficacy of clustering. 

2. Characterize flows according to TCP-based performance attributes. 

3. Based on the above, introduce an innovative mechanism to identify mice and 

elephant flows. 

The remainder of this chapter is organized as follows.  Section 4.2 details the 

proposed flow identification methodology. Section 4.3. contains the experimental 

set-up. Section 4.4. Presents the results. Results are discussed in Section 4.5, and 

Section 4.6 concludes the chapter. 

4.2 Flow Identification Methodology 

Flow identification is a very important process that can be used to improve 

network management tasks such as scheduling, load balancing, and routing. Flow 

type determination (elephant or mice) is more challenging because of continual 

changes in traffic patterns [196]. In this work, a method that addresses the 

identification problem of elephant and mice flows and characterizes them by 

leveraging network performance metrics such as packet loss, round trip time (RTT), 

and throughput has been presented. Figure 4.1 displays the major stages of flow 

characterization using unsupervised ML and identifies these flows as elephants and 

mice. The detailed steps of the proposed approach are discussed hereafter. 
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Figure 4.1 Proposed Methodology 

4.2.1 Flow characterization  

The reason behind using traffic characterization is that it is considered the 

typical solution for data analysis for understanding the behavior of network traffic 

patterns. The present work intended to characterize traffic behavior using statistics 

of network performance. After collecting these statistics, flows were grouped into 

unique clusters by employing unsupervised ML due to the similarity between flows. 

This is achieved by discovering hidden patterns or groups of data without the need 

for human intervention.  

To simplify the ML step, data preprocessing is applied primarily. In this step, the 

raw data, which contain missing and non-numeric values, are manipulated to get a 

dataset of TCP parameters that will be used as input for the next stage. A set of 

features including 146 comprehensive attributes associated with the network 

connection provided by the tcptrace analysis tool.  Irrelevant and useless records and 

features are removed as a data-cleaning step. All attributes with character values are 



 

60 

 

converted to numeric values. The normalization step is also applied as a final step of 

data preprocessing to get a consistent dataset. 

Due to the effectiveness of the reduction algorithm PCA with clustering as 

presented previously in Chapter 3, therefore PCA is utilized in this work to cancel the 

redundant features from the used dataset and obtain the optimal feature set to form 

the input of the k-means. To present the impact of the number of PCA components 

on the accuracy of clustering, different numbers of these components have been 

chosen to cover different percentages of data in this experiment.  

To produce tighter clusters of the traffic flows, based on their performance 

features, an unsupervised clustering technique, which works with unlabeled data, 

was used after PCA. The main aim of clustering is to build robust labeling of clusters. 

The k-means algorithm has run to execute the clustering process, which is not 

considered the end step of the lifecycle of the proposed system. Therefore, the new 

data that contain unseen points will be considered as test data that presupposes the 

model has trained on our data, which will then be considered training data. K-means 

technique has been implemented using incremental values of k to show how the 

clustering accuracy changes with the changing of the number of PCA components and 

the value of (k).  

4.2.2 Elephant and Mice Flows Identification 

A flow is considered an elephant subject to its volume [3], [25]–[29], [33], [197] 

or depending upon preconfigured thresholds for size and duration [144][3][26][27]. 

Besides, some approaches were introduced [2], [32]–[34] to differentiate flows 

between elephants and mice based on the number of packets of a flow. Interestingly, 

the aforementioned literature explained that the approaches for identifying flows 

picked one feature (size or the number of packets) or two features (size and duration) 

to differentiate two types of flow as elephants and mice. This can indicate a motive 
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to develop a novel identification mechanism. In this experiment, mice and elephant 

flows were identified for each resultant cluster from the clustering process.  

The innovative mechanism uses pre-defined threshold values for the 

parameters of flow: number of packets, flow size, and flow duration. The mechanism 

identifies the flow as an elephant whenever it surpasses threshold values otherwise 

it is defined as mice. This work has proved that the flows identification process was 

efficient as it doesn’t require long processing time and does enhance the accuracy of 

results. The results show that the type of flow can be identified quickly (less than 

0.4ms) and efficiently by the novel mechanism. 

4.3 Experimental Set Up 

The dataset description, dimensional reduction, and cluster construction will 

be presented in this section. Firstly, the criteria for choosing the connections, the 

features that will be used to describe each connection, and the necessary processes 

of pre-processing that are needed for the used dataset, will be explained. After that, 

unsupervised machine learning techniques that are used to reduce the 

dimensionality of the dataset and clustering the connections with respect to network 

performance metrics will be presented. Finally, flow identification based on pre-

defined parameters will be shown. 

4.3.1 The Description and Preprocessing Dataset 

Real-world data have been traced in a university laboratory and captured by 

tcpdump. Such raw data carries about 2G bytes. The tcptrace tool has been used to 

analyze and convert this raw traffic to a dataset with two million connections. 

Complete connections have been selected as a criterion for the entire image of 

network performance. Therefore, the final figure of the dataset is 1 million complete 

connections, where each connection is formed by a sequence of TCP packets in two 

directions. On the other hand, each connection was represented by a vector of 146 

extracted feature values. All these features are associated with the network 
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performance such as the bytes number, duration, round trip time, the number of 

transferred packets, retransmissions' number, throughput, window advertisements, 

and so on. To handle noisy, incomplete, and inconsistent data, the preprocessing 

treatment is required for the used dataset.  

The main aim of preprocessing is to construct a highly suitable dataset. The 

process started by excluding all inconsistent or missing values. After that, all 

categorical such as control attributes (FIN and SYN values) data have been converted 

to appropriate numerical values. To standardize all the variables of a dataset and to 

keep the closeness of cases, data normalization was performed as a final step. This 

step has been achieved for each variable's value by subtracting the mean value of the 

variable and dividing it by its standard deviation. As a result, the input dataset of the 

unsupervised ML model will contain 129 features with respect to network 

performance and 1 million complete bidirectional connections. These features have 

been elected due to their validity in the previous experiment in Chapter 3. 

4.3.2 Data Reduction and Data Clustering 

In this experiment, each connection in the dataset has been characterized by 

more than one hundred numeric variables; consequently, PCA has been used to 

warrant component representation accurately with a minimal number of variables. 

On the other hand, there are additional two reasons to use this technique. The first 

one is to handle the high correlation among the original variables. Secondly, the used 

dataset contains values that are extremely outside the range of expected and unlike 

the other values. These values are called outliers, which can negatively affect the 

process of clustering. 

Generally, as a rule in PCA, each variable in the dataset will be represented by a 

component in PCA format where the components explain the full variation in data. 

As a result, the number of components will be equal to the number of variables in 

the dataset. Completeness and simplicity are the aims of PCA as a dimensional 
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reduction technique. These aims will be achieved by retaining a suitable number of 

components based on the trade-off between the aims. To choose a suitable number 

of components, the “quick.elbow” function has been used in this experiment. Based 

on the cumulative percentage of components, this function determines the number 

of components that should be retained. To decide the appropriate number of 

components that achieve good clustering (clustering with high accuracy), PCA has run 

with a different number of components. 

In clustering step, the k-means clustering method was run based on two 

criteria, which are the number of clusters (k), and maximum iterations. Using 

incremental values of k from 10 to 100 in steps of 10 and random initialization of 

cluster center, k-means was applied.  This scenario was executed at first with the 

original dataset that contains 129 variables and secondly, it was followed using the 

reduced dataset with a different number of components. Accuracy is the metric that 

was used for measuring the clustering goodness. Therefore, there was no need to 

compare the cluster analysis results to the external information (class labels or 

ground truth). Inter-cluster distance and intra-cluster distance are the factors that 

have been used to calculate the accuracy of clustering. 

4.3.3 Extracting Flow Type (Elephant and Mice) 

A flow is defined as a sequence of packets that can be identified by a group of 

characteristics such as Source IP, Source Port, Destination IP, Destination Port, 

Protocol (TCP, UDP, etc.). Internet traffic is comprised 90% of mice flows, which are 

small volume, short and transmit a small amount of traffic while elephant flows, 

which are large, long-lived flows and transmit a large amount of bytes, represent only 

10% of all flows. Network congestion is a major performance problem. In general, the 

temporary congestion is caused by mice, while the elephant flows induce the 

permanent congestion [198]. Therefore, specifying mice flows and identifying their 

priority automatically over elephant flows can optimize the forwarding mechanism. 

This can be achieved by improving the computing of transactions that depend on a 
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small data block. This mechanism can reduce 30% of the completion time of an 

application [199]. There is flexibility to choose the appropriate threshold for 

identifying mice and elephants [Cisco’s ACI][31][25]. While the aim of the clustering 

technique in this work is to characterize flows based on the performance metrics of 

the network, it does not specifically identify the type of generated flows per cluster 

if it is elephants or mice. Per-type identification consequently requires a separation 

of flows utilizing an independent technique which is the thresholding method. As a 

result, flow identification is performed based on threshold values for extracted 

parameters to retrieve the different flow types contained per cluster. The mechanism 

of flow type identification follows the algorithm below. 

Flow Identification Algorithm 

1. PPR: set of rules for predefined parameters 
2. CID: set of predicted clusters (kmeansModel) 
3. FT: a string indicates mice or elephant flow 
4. CF: set of current flows 

5. FT Ø 

6. for each cid CID do 

7. for each cf CF do 

8. for each ppr PPR do 
9.      if cf.packetCount > 15 and cf.flowDuration > 5 and cf.avgPacketSize >=10 then 

10.              FT  ‘elephant‘ 
11.      else 

12.              FT  ‘mice’ 
13. end if 
14. end for 
15. end for 

16. end for 
 

4.4 Results 

This experiment was conducted using k-means clustering techniques with a 

new dataset where each connection was described by over one hundred variables 

and k has been set from 10 to 100. Additionally, the accuracy, which is the clustering 

internal index, was used for measuring the clustering structure goodness. The 
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calculation of this index depends on two factors. The first is the inter-cluster distance 

between the observation and cluster center and the intra-cluster distance between 

cluster centers is the second factor. In general, the results show that the accuracy of 

clustering is proportional to the increase in k, where it increases substantially from 

24.46% to 62.89%. Based on the aforementioned results and because the accuracy is 

still low. Therefore, the need to reduce the dimension of the dataset is necessary to 

make the process of clustering more efficient and effective. Further, the variables of 

the dataset have had a significant correlation. For these reasons, PCA has been used 

in this experiment to investigate the impact of a number of PCA components on the 

clustering process. Figure 4.2 shows the correlation of the first ten variables in the 

dataset. In this figure, the coefficient of correlation has been colored based on the 

value. Positive correlation has been represented by blue circles, while red circles 

present negative correlations. In addition, the correlation coefficients are 

proportional to the color intensity and the size of the circles. 

  

 

Figure 4.2 Correlation of the First Ten Network Performance Variables 
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The variance proportion explained by each principal component has been 

presented in Figure 4.3. The visualized variance of each component can help in 

determining the number of principal components that are needed to explain the data 

variation. The first three principal components clarify the most of data variation in 

the dataset. Since these components exemplify less than 30% of the data, therefore, 

there is a need to represent more data by increasing the number of components. 

Also, the first ten PCA components containing the features with the most variance 

and they covered 40% of the data, but they did not achieve the trade-off between 

completeness and simplicity, which is the major rule in the PCA technique. Table 4.1 

explains associated eigenvalues, the proportion of variance, and the cumulative 

variance of the first 13 principal components. 

 

Figure 4.3 Percentages of Variance in Each Principal Component 
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Table 4.1 The First 13 PCA Components. 

Component
s  

Eigenvalues  Variance 
(%)  

Cumulative 
(%)  

Comp1  14.22 11.03 11.03 

Comp2  12.84 9.95 20.98 

Comp3  7.18 5.57 26.55 

Comp4  6.03 4.68 31.23 

Comp5  4.57 3.55 34.77 

Comp6  4.10 3.17 37.95 

Comp7  3.77 2.93 40.87 

Comp8  3.41 2.64 43.52 

Comp9  3.28 2.54 46.06 

Comp10  2.97 2.31 48.36 

Comp11  2.94 2.28 50.64 

Comp12  2.87 2.22 52.87 

Comp13  2.65 2.05 54.92 

 

To achieve the essential rule of the PCA technique, the 13 PCA components that 

covered 50% of the data were used as inputs to the k-means clustering paradigm. In 

the clustering process, k has been set from 10 to 100. The findings depicted that the 

accuracy of clustering increased with the incremental k, where it increases 

significantly from 43.83% to 90.39%. 

In order to comparatively investigate the effect of the chosen number of PCA 

components upon the accuracy of clustering, different numbers of PCA components 

(124, 57, 28, 13, 10) were elected taking into account the ratio of data covered by 

each number i.e., 100%, 90%, 70%, 50%, and 40%, respectively. The 124 components 

represent most of the features including the features with low variance, which leads 

to a change in the data distribution among the clusters. Consequently, the accuracy 

of clustering will be affected. The results show that the accuracy of clustering the 

reduced dataset is proportional to the increase in k regardless of the number of 

components. However, at least 10% of the overall accuracy was improved by 

minimizing the number of components. For example, for 100 clusters, the accuracy 

was 60.83% with 124 components, whereas it was 90.39% with 13 components.   
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In this experiment, in general, the results show that the accuracy of clustering 

both datasets is proportional to the increase in k, where it increases substantially 

from 24.07% to 91.4% whenever the value of k is increased from 10 to 100. 

Nevertheless, at least 10% of the overall accuracy was improved with minimizing the 

number of components when clustering the reduced data. In summary, using PCA 

before the clustering process and minimizing the number of principal components 

contributes significantly to increase the accuracy of clustering. In contrast, the 

accuracy of clustering is inversely proportional to the increase in the number of PCA 

components, where the accuracy decreases with 124 components, which represent 

100% of the data as shown in Figure 4.4. 

 

Figure 4.4 Relation between Accuracy and Number of PCA Components with 
Incremental Number of Clusters 

In this part of the work, the aim was to reduce the dimensionality of data and 

the process of clustering based on 129 performance features. The high accuracy of 

the clustering process and the balance between simplicity and completeness while 

retaining the suitable number of PCA components were the criteria that have been 

used in this work. As shown in Figure 4.4, the results explain that using 13 PCA 
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components, which represent 50% of data and 60 clusters (K=60) leads to getting 

high accuracy of 85.39%. Therefore, they represent the best choice. The distribution 

of data points for each cluster is shown in Figure 4.5, where each color is a cluster 

identity for 60 clusters. 

 

 

Figure 4.5 Distribution of Points in Clusters 

In this context, it is essential to understand the behavior of flows inside each 

cluster resulting from the clustering process. In addition to the characterization of 

these flows based on network performance features, their type is needed to be 

recognized to solve the problem of resource allocation. Therefore, the final part of 

this experiment includes identifying these flows as mice or elephants based on 

certain features. The identification mechanism follows the thresholding method in 

setting values for the selected parameters of flow i.e., number of packets, flow size, 

and flow duration. The flow is identified as an elephant whenever its size surpasses 

10KB, its number of packets exceeds 15 packets, and its duration is more than 5 

seconds. In contrast, the flows with values fewer than thresholds for these 
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parameters will be identified as mice. After applying the mechanism to all clusters, 

the percentages of elephants and mice are different from one cluster to another due 

to the clusters' size. For example, the percentages of identified mice and elephant 

flows in one of the 60 clusters were 89.92% and 10.07% respectively as Figure 4.6 

depicts.  

 

 

Figure 4.6 Elephant and Mice Identification 

According to this, to undertake an evaluation of the flow identification process, 

the Naïve Bayes classifier [200] has been used. Here, the same ratio for training and 

testing datasets i.e., 50% of the flows were used to train the classifier and the 

remaining 50% of flows were used to test it. The Naïve Bayes classifier was applied to 

all resulting clusters from the clustering process. The empirical results present that 

elephant and mice flows were identified with an accuracy rate of 92.7% for all 

clusters. Figure 4.7 illustrate the confusion matrix [90] of flow identification of one of 

the resulting clusters that contains 179256 flows. the matrix shows four values, which 
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are used to compute the accuracy (F-score [187]) of the classification process. These 

values will be clarified as follows from top-left to bottom-right: 

• True Positives (TP):  The values (2) refer to elephant flows that were correctly 

predicted by the classifier,  

• True Negatives (TN): These (77454) mice samples are the negative flows that 

were correctly predicted by the classifier.  

• False Positives (FP): These are (5) negative flows of mice that are labeled 

incorrectly as positive. 

• False Negatives (FN): These are (12167) positive elephant flows, which were 

mispredicted as negative. 

 

 

Figure 4.7 The Confusion Matrix 

4.5 Discussion 

Generally, the experiment results confirm that the proposed mechanism can 

be used effectively to differentiate the flows using the parameters related to that 

flow. The clustering conception is leveraged to characterize TCP flows through the 

performance metrics by using Inter-cluster distance and intra-cluster distance factors 

to calculate the accuracy of the clustering. Initially, the accuracy was low because of 

the high dimensionality of the dataset, the correlated features, and the outliers' 
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existence. Hereafter, PCA was employed to get accurate clustering by treating all 

these problems. At the same time, this approach tested different numbers of PCA 

components to get the appropriate accuracy with achieving the trade-off between 

simplicity and completeness. The clustering was applied with numerous numbers of 

components (124, 57, 28, 13, and 10). The result exhibits that 13 components were 

the suitable number that achieve the aforementioned two conditions where it 

covered more than 50% of the data and the accuracy of clustering was 90.39%. The 

clustering process and PCA showed the two algorithms could collaborate and 

characterize more than 85% of flows based on the network performance features. 

These outcomes significantly promote the results of the work in Chapter 3. 

Elephant flow identification models either depend on flow-level features such 

as the total number of packets, count of bytes, duration, etc., or on packet-level 

features such as RTT, size of a packet, inter-arrival time, and direction of the packet. 

Each of these two techniques has pros and cons. Flow-level features-based models 

have proved a high accuracy of elephant flow identification, but they cannot detect 

elephant flows in their premature stage. In contrast, the models that are based on 

packet-level features might determine elephant flow in its early stage; however, it 

needs to define the application type that generates that elephant flow. In addition, 

the detection accuracy is a major concern in this kind of model. 

The empirical results of the innovative flow identification mechanism based on 

flow-level features models were effective in identifying the flows as elephants and 

mice. Flow size, number of packets, and duration of flow features have been used in 

this experiment to distinguish between elephant and mice flows. On the other hand, 

the threshold that can be chosen for the mentioned features can be fixed or dynamic 

based on the traffic, or the top number of flows based on the traffic share,  however, 

there is no common guideline to choose the appropriate threshold in different 

scenarios [201]. Depending upon that the thresholding method revealed that the 
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threshold values (10KB, 15, and 5 seconds respectively) for the parameters that have 

been chosen in this experiment, were efficient in identifying elephant and mice flows.  

To evaluate the flow identification process, the Naïve Bayes classifier has been 

employed, as it is suitable in use in flow-based traffic classification in relation to the 

proposed mechanism. The 50% of the flows were used to train the classifier, and the 

remaining 50% of flows were used to test it. The Naïve Bayes classifier was applied to 

all each cluster resulting from the clustering process. The accuracy rate of identifying 

elephant and mice flows for all clusters was 92.7%.4.6  

4.6 Conclusion 

The introduced platform proposes a working concept to identify a particular 

flow based on its characteristics that in turn depend on the network performance 

metrics. The proposed platform is capable to identify elephant and mice flows 

through pre-decided thresholds. The platform includes differentiation between 

elephant and mice flows according to their characteristics, and calculation of the own 

delay of each flow based on its parameters to provide the best path for each type of 

flow by choosing the least delay path. The objective of the new method is to network 

performance improvement by managing flow traffic and providing equal use of 

network resources dynamically as the next chapter proposed. 
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Chapter Five: SDN routing framework based on flow identification 

5.1 Introduction 

The idea of software-defined networking (SDN) is introduced to provide the 

ability to control the pathing of traffic flow across the network. It has been employed 

to achieve sufficient management of flow and effective utilization of resources in the 

network. This is attained by developing more programmable control and routing 

techniques according to a comprehensive view of the network condition and fine-

grain control of network traffic and resources [202]. An SDN has several advantages 

to support TE due to its distinct properties. These properties include control 

centralization, the separation between forwarding and control planes, and the 

programmability of network behavior [203][204]. 

The essential functionality, which affects the performance of the network, is 

flow routing. An obvious advantage of the routing process is accessing the data as 

fast as needed. This can contribute to improve the performance of a network [2][3]. 

In multipath routing, the SDN controller handles determining the best path and 

substituting the link failure. However, the time consumed for selecting the best path 

by the SDN controller is still high [23]. 

SDN is indeed the optimal vehicle to control and prioritize the respective types 

of traffic according to their needs, as it decouples the network devices in data plane 

from the traffic and its associated needs in the control plane [115][116]. Specifically, 

the data plane devices such as router and switches have a packet-forwarding 

responsibility while the control plane includes rules that are used by the devices of 

data plane to forward packets. Depending on the above, SDN is characterized by 

decoupled control and data planes and control plane programmability [117]. 

On the other hand, the data center is a network of computing and storage 

resources. It provides the delivery of applications and shared data. Routers, switches, 
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servers, storage systems, firewalls, and controllers of application delivery are the key 

components of the data center. Recently, the infrastructure of data centers has 

changed from the traditional structure of physical servers to virtual networks [205], 

which support applications. Traffic in data centers consists of many latency sensitive 

flows "mice", which contain only a several packets, and a few of the bandwidth-

sensitive 'elephant' flows that comprise more than 80% of the total load [17]. In 

general, 'mice' flows induce transient congestion, while 'elephant' flows cause 

constant congestion where the congestion of the network is one of the main 

inhibitors of its performance [15]. As a result, not all flows use the network resources 

equally. There are many methods for providing the good network performance and 

high QoS to flows such as mice flows prioritizing or re-forwarding elephant flows [7], 

[143], [144], [206]–[209]. 

This chapter presents an innovative SDN routing framework based on flow type 

identification to find the best path using a number of developed algorithms. In 

addition, it takes into account leveraging the network performance features in flow 

characterization and flow type identification by employing unsupervised ML 

techniques. The framework has been conducted on different network topologies. The 

effectiveness of the framework has been evaluated through two experiments and by 

comparing its performance with that of the Ryu controller according to different 

factors. The main contributions of this chapter are as follows: 

1. Characterizing traffic flows in the data centers using network 

performance features leveraging Unsupervised ML techniques. 

2. Proposing an identification mechanism for distinguishing flows as mice 

or elephants based on their performance features. 

3. Developing a unified architectural flow routing solution that integrates 

Unsupervised ML with SDN. 
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4. Developing a route updating-based recursive process for enabling a 

more efficient calculation of route cost and providing consistency with 

the real-time constraint. 

The rest of this chapter is organized as follows. Section 5.2 highlights the 

proposed SDN-based flow routing application. The results and analysis of the 

experiment are presented in Section 5.3 and Section 5.4 presents final Conclusions. 

5.2 SDN-based Flow Routing Application 

SDN-based flow routing application that optimizes flow routing based on 

network performance analysis will be presented in this section. This application starts 

with capturing OpenFlow traffic statistics from the SDN switch. Pre-processing and 

feature selection is the next step of the proposed mechanism. Then, for dimensional 

reduction and flow clustering, unsupervised ML techniques were utilized . Particular 

parameters and thresholds have been pre-defined to identify flows as elephant and 

mice. Finally, Two topologies of Data Centre Network (DCN) have been used for SDN 

deployment. The proposed methodology is depicted in Error! Reference source not f

ound. 
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Figure 5.1 Proposed Methodology 

 

5.2.1 The Proposed Framework 

We advocate that selecting the best route based on flow type can take 

advantage of the programmability offered by SDN/OpenFlow. To illustrate this, a 

framework that is competent for identification and routing flows is presented. This 

framework enables the administrator to use the operation of selecting the best route 

based on flow type to improve the performance of the network. The operation 

depends on specifying the appropriate parameters and integrating the unsupervised 

ML and SDN environment. A conceptual graph of the framework is shown in Figure 

5.2. The paradigm contains four intelligible blocks as below:  

1) The Data Center (DC) Network topology. 

2)  SDN controller.  

3) External application. 

4) Traffic analysis. 

To test the proposed application, SDN-based two different DCN topologies have 

been used. Mininet emulator [210]–[212] was used to implement the proposed 
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paradigm. Figure 5.3 and Figure 5.4 present the two DCN topologies that comprise 

two servers for each topology and different numbers of switches. In this study, SDN 

has been deployed utilizing the SDN-Ryu controller [213]. The external application 

was designed for flow routing optimization that depends on a statistical analysis of 

network performance. To achieve this, the application includes three stages:  

A. Characterizing the flows based on network performance metrics by 

employing unsupervised ML. this stage starts with using Principal 

Component Analysis (PCA) as a linear technique to reduce the dimensions of 

the used dataset. By converting correlated features to uncorrelated features, 

the dataset will be reduced from high-dimensional space to low-dimensional 

space. To cluster the flows based on their own features of network 

performance, K-means was used as a second unsupervised ML technique. 

B. Identifying flow type. This stage is the process that is responsible for 

determining the type of flows (elephant or mice) based on pre-defined 

parameters and thresholds. The procedure will be applied to each cluster 

that resulted from the clustering operation. 

 

C. Selecting the best path for each flow according to its type and 

characteristics.  The stage starts with a sampling operation to gain 

representative flows for each cluster. Then using a developed routing 

algorithm, the best path selection will be achieved for each representative 

flow. 

The proposed application employs two algorithms, which are the shortest path 

Dijkstra algorithm [214] and the widest path Dijkstra Algorithm [215] to build the 

developed routing algorithm. It has been built to find the route that fulfills the 

conditions related to the types of flow identified before. The developed algorithm 

was employed to find paths with appropriate bandwidth and latency.  
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The last part of the proposed framework is the traffic analysis. In this part, the 

flows with their paths will be stored and visualized. The output of this block is a log 

file containing the type of flow, cluster-ID, the paths of flow, and the latency for each 

route. The next section covers the implementation of the proposed framework by 

running a group of proposed algorithms. 

 

 

Figure 5.2 The Proposed Framework 

5.2.2 Framework Implementation 



 

80 

 

In this section, the implementation of the innovative framework will be 

clarified. In particular, the main algorithms and their roles in selecting the best path 

are explained. 

5.2.2.1 Routing rule setting 

The details of the flow routing algorithm are illustrated in algorithm 1. This 

algorithm aimed to select the best path to route each flow, which is the major 

procedure of the proposed framework. The procedure starts with extracting 

datapath, inPort, packet, source, and destination. At first, the existence of the source 

in the macTable will be checked. Then it will be added to the macTable if it is not 

there. Thereafter, the algorithm checks whether the destination exists in the 

macTable or not. In case of the destination is in macTable, a topology discovery will 

be executed using a Link Layer Discovery Protocol (LLDP). Next, Algorithm 2 FAS (Find 

all Available paths between two Switches) will be implicitly called by Algorithm 3 

FAPBS (Find all Available Paths Between each pair of Switches) to find all available 

paths between each pair of switches. After that, the bestPath is determined based 

on clusterID, flowType, and acceptable latency, and in a recursive manner, the costs 

of paths will be updated. If a destination does not exist in macTable, a broadcast 

message will be sent. 

Algorithm 1 Flow Routing Algorithm 

1. Every new flow,extract flow information (src, dst, inport, outport, etc.) 

2. adjacency Ø 

3. availableBW  Ø {availableBW:available bandwidth} 

4. paths  Ø 

5. clusterID Ø 

6. flowType Ø 

7. acceptableLatency  Ø 

8. bestpath  Ø 

9. if src not in macTable, then 
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10. add src to macTable 

11. end if 

12. if dst in macTable, then 

13. check topology using LLDP to get adjacency and availableBW 

14. paths FAPBS(adjacency, availableBW) 

15. clusterID, flowType, acceptableLatency  flowIdentification(kmeansModel, 
flow) 

16. bestpath  SelectBestPaths(src, dest, acceptableLatency, flowType, paths) 

17. paths updatedPaths(paths, availableBW) 

18. else 

19. send broadcast message 

20. end if 

 

Algorithm 2: Find all Available paths between two Switches (FAS) 

1. source: source switch 
2. destination: destination switch 
3. adjacency: adjacency matrix represents the network as a graph 
4. paths: set of available paths between source and destination 

5. paths Ø 

6. QueOfPaths  Queue() 

7. QueOfNode  Queue() 
8. QueOfNode.add(source) 
9. for each len(QueOfPaths) > 0 do 

10. currPath QueOfPaths.pop() 

11. lastNode currQue[-1] 
12. if lastNode matches destination then 
13. paths.append(currPath) 
14. end if 
15. for each neighbor in adjacency[lastNode] do 

16. newPath copy(currPath) 
17. newPath.add(neighbor) 
18. if !QueOfPaths.contains(newPaths) then 
19. QueOfPaths.add(newPath) 
20. end if 
21. end for 
22. end for 
23. for each availablePaths in paths do 
24. for each path in availablePaths do 

25. cost Update Cost(path) 
26. path.addLast(cost) 
27. end for 
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28. end for each path in availablePaths do  
 

Algorithm 3: Find all Available Paths Between each pair of Switches (FAPBS) 

1. adjacency: adjacency matrix represents the network as a graph 
2. availableBandwidth:2D array contains available bandwidth between each two switches 
3. Paths: set of available paths between source and destination 

4. Paths Ø 
5. for each node1 in adjacency do 
6. for each node2 in adjacency do 
7. if node1 does not match node2 then 

8. p FAS(node1,node2,adjacency) 

9. paths{'node1TOnode2'} P 
10. end if 
11. end for 
12. end for 

13. Paths Update Cost(paths, availableBandwidth) 

 

5.2.2.2 Cluster vector extraction  

The output of the K-means model will be used as input for the flow identification 

process (Algorithm 4). For each resulted cluster, the flow identification will be 

implemented. Accordingly, three parameters were extracted for each flow in each 

cluster. These parameters are flow duration, packet count, and average packet size. In 

the case of having packet count higher than 15, flow duration higher than 5 seconds, 

and average packet size higher or equal to 10KB, the flow is predicted as an elephant. 

Otherwise, the predicted flow is mice.  At the end of this process, three variables were 

obtained. clusterID, which represents the ID of the predicted cluster, flowType that is 

a string indicating a mice or elephant flow, and the acceptable delay of the flow is 

represented as a float number called acceptableLatency. Based on the above, the 

clusterVector will be assigned. This vector represents the features generated from the 

center of the cluster called representative flow. From each representative flow, the 

value of the acceptable latency is calculated. 

Algorithm 4: Flow Identification 

1. PPR: set of rules for predefined parameters 
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2. CID: set of predicted clusters (kmeansModel) 
3. FT: a string indicates mice or elephant flow 
4. CF: set of current flows 
5. RF: set of representative flows 
6. AL: a float number represents the acceptable delay of cf 2 CF 

7. FT Ø 

8. RF Ø 

9. AL Ø 

10. for each cid CID do 

11. for each cf CF do 

12. for each ppr PPR do 
13. if cf.packetCount > 15 and cf.flowDuration > 5 and cf.avgPacketSize >=10 then 

14. FT  ‘elephant‘ 
15. else 

16. FT  ‘mice’ 

17. AL cf.latency 
18. end if 
19. end for 
20. end for 

21. RF kmeansModel.lefts{cid} 
22. end for 

 

5.2.2.3 Latency and bandwidth measurement 

The source, destination, flow, acceptableLatency, paths, and N will be used as 

the input for algorithm 5 where N determines the number of paths to be selected. This 

algorithm starts with checking the type of flow. If it was mice, the algorithm will sort 

the available paths with respect to length and select the shortest path as the best. 

Otherwise, it was elephant flow and the best N paths will be chosen based on the 

1/bandwidth, as shown in Sub-section 5.3.1.6.  As a result, for each type of flow, we 

have the best path based on acceptable delay and bandwidth for the particular source 

and destination. After all, the particular best path will be installed for each elephant 

and mice flow. This is done by sending a message containing the information of the 

selected path to SDN controller to determine the required switches. Finally, an updated 

version of input paths contains each path associated with the cost of it. The process of 

updating will be based on the paths, which is the output of FAPBS algorithm and 
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availableBandwidth as a 2D array containing available bandwidth between every two 

switches. This is summarized in algorithm 6. 

Algorithm 5: Select best paths 

1. source: source switch 
2. destination: destination switch 
3. acceptableLatency: acceptable delay 
4. FT: a string indicates mice or elephant flow 
5. paths: set of paths between each two switches 
6. N: integer, determine number of paths to be selected 
7. RT: routing table 

8. N Ø 

9. cost Ø 

10. availablePaths paths{'sourceTOdestination'} 
11. if FT matches ’mice’ then 

12. path availablePaths.sort(key = len, ascending = False){0} 
13. Else 

14. path availablePaths.sort(key = cost,ascending = False){0 N} 
15. end if 

16. RT path /*path installing*/  

 

Algorithm 6: Update Cost 

1. Paths: set of output of FAPBS algorithm 
2. key:(src,dst) 
3. availableBandwidth: 2D array contains available bandwidth between each two switches 
4. updatedPaths: updated version of input paths contains each path associated with the cost 

of that path 

5. updatedPaths Ø 
6. for each key in Paths.keys() do 

7. updatedPaths{key}Ø 
8. for each path in Paths{key} do 

9. cost 0 
10. for each node1, node2 in path{:-1}, path{1:} do 

11. cost cost + availableBandwidth{node1}{node2} 
12. end for 
13. updatedPaths{key}.append({path,cost}) 
14. end for 
15. end for 
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5.3 Results and Analysis of Experiment 

The results and analysis of this experiment demonstrate how feasible the 

proposed approach at calculating the cost of links and selecting the best path in the 

SDN environment. The experimental design is provided in Sub-section 5.3.1 and the 

results and evaluation are presented in Sub-section 5.3.2.  

5.3.1 Experimental Design 

The experiments have been conducted using the Mininet emulator. Two DCN 

topologies. The first topology (No.1) consists of two servers, seven switches, and two 

hosts, illustrated in Figure 5.3. Whereas the second topology (No.2) includes two 

servers, 16 switches, which are distributed on five layers, and three hosts as shown 

in Figure 5.4. The work was carried out by a group of phases as below. 
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Figure 5.3 Topology No.1 of Network 

 

Figure 5.4 Topology No.2 of Network 

 

5.3.1.1 Monitoring and Data Collection Phases 

For improving the comprehensive performance of the network and traffic flow 

optimization, which is the aim of this work, traffic monitoring is very vital. SDN 

presented a dynamic monitoring scheme for network traffic by adopting the concepts 

of centralized controllability, the scalability of network infrastructure, usable, and 

programmable. In this experiment, the Mininet emulation paradigm was used for 

setting up and installing an SDN environment with the parameters of simulation as in 

Table 5 1. Two scenarios (two topologies with different settings) for the DCN have 

been emulated for implementing the proposed method. The used topologies are 

configured for handling the TCP and UDP flows. These flows are generated using a 

virtual machine created by the VMware workstation in a Linux environment. 

OpenFlow Wireshark and tcpdump tools have been used with the Mininet simulator 

to understand the behavior of proposed DCN topologies for analyzing the 
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performance of the networks. In order to perform a flow background load on the 

network, the work started with generating UDP packets with different packet sizes 

and rates during 300 seconds of simulation as shown in Table 5.2. Multiple TCP 

connections (parallel flows) were initiated at different times to raise the throughput 

and improve the performance between the two hosts. The value of bandwidth for 

each link was generated randomly between 30 Mbps and 1000 Mbps. Here, for a 

single stream of TCP, the average throughput is calculated as [216]: 

𝒂𝒗𝒆𝒓𝒂𝒈𝒆 𝒕𝒉𝒓𝒐𝒖𝒈𝒉𝒑𝒖𝒕 ≈
𝑴𝑺𝑺

𝑹𝑻𝑻√𝑷𝑳
 𝒃𝒚𝒕𝒆𝒔 𝒑𝒆𝒓 𝒔𝒆𝒄𝒐𝒏𝒅  5.1 

 
The MSS value represents the maximum segment size and PL represents the 

rate of packet loss. For multiple parallel streams(X) and if RTT, PL, and MSS are the 

same in each stream, the aggregate average throughput is the sum of the X average 

throughput [217]. Figure 5.5  illustrates the behavior of topology No.1, which uses 

Ryu controller, according to the throughput parameter with the absence of the 

proposed application. 

 

Table 5.1 the parameters setting for the SDN network simulation 

Parameters Details Descriptions 

Operating System Mininet 2.2 
Default behavior; idle timeout 30s; 
traffic monitor polling 30s 

SDN controller 
Ryu controller v3.3  
(Equal Cost Multipath routing 
algorithm(ECMP)) 

 

OpenFlow software 
OpenFlow: v1.3 
Open vSwitch: v1.3.1 
 

 

 

Table 5.2 UDP packets generated  during 300 seconds 

Duration 
(Seconds) 

Packet 
rate(pps) 

Data rate 
(bps) 

0-30 250 1024 

30-60 500 2097152 
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Figure 5.5 Throughput of the Network during 300 Seconds 

 
Wireshark has been run in the background to capture OpenFlow packets, which 

are TCP packet types. Then the tcpdump tool has been utilized for the loopback 

interface. The collected data was stored as pcap files for the two proposed DCN 

topologies. To undertake a comprehensive analysis, the tcptrace tool was employed 

to produce all complete flows characterized based on performance parameters and 

store them in a CSV files.   

5.3.1.2 Pre-Processing and Feature metric Phase 

This phase is essential to obtain consistent, integrated, and processable data by 

machine learning techniques. The data provided by the monitoring tools is of great 

60-120 1000 12582912 

120-200 1000 14582912 

200-260 1000 20971520 

260-300 1500 20971520 
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benefit not only for direct use, but historical data can help academics in 

understanding the behavior of networks. The tcptrace tool aims to aggregate and 

analysis the required information across the network to introduce data in a 

consistent and understandable form. It stores data in a CSV file format. Here, 146 

parameter values were produced by the tcptrace tool. These parameters are related 

to bi‑directional complete connections and identify the most significant 

discriminators of the traffic to determine which discriminators are suitable for traffic 

classification and how classification accuracy can be improved. In this work, the main 

data preprocessing steps are similar to those that have been applied in the previous 

work in Chapter 4.  Figure 5.6 explains these steps. 129 parameters resulted after 

applying data cleaning and data transformation steps. Data reduction is another step 

of preprocessing. PCA was utilized with 13 components in this experiment. The 

results proved the validity of the findings of the preprocessing in the previous work 

in Chapter 4 by achieving the balance between completeness and the simplicity and 

accuracy of the clustering process. 
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Figure 5.6 The Steps of Preprocessing Phase 

5.3.1.3 Flow statistics-based Clustering Phase 

Recently, ML techniques have overcome some of the heuristic solutions' 

limitations by enabling new classification methods. Flow-statistics-based classifiers 

are a popular group of these methods [25], [29], [34], [37], [38], [40], [218], [219]. 

These classifiers have been adopted because it shows high speed in feature 

computation and classification. Here, unsupervised ML techniques have been 

proposed to develop a flow statistics-based characterizing mechanism using the 

metrics of network performance. One of these techniques is K-means clustering 

algorithm, which can create clusters of flow without the need for predefining classes. 

This algorithm has been utilized to understand the differentiation of flows with 

respect to network performance features. It has been applied to construct three 

clusters, where the minimum number of clusters has been experienced in this work. 

The goodness of clustering has been measured by using the accuracy metric. This 
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metric is determined by two factors: inter-cluster distance and intra-cluster distance 

[197]. As a result, unique samples of flow will be recognized for each cluster. 

5.3.1.4 Flow Type Identification Phase 

One of the serious problems that have affected the quality of service for mice 

flows is a slow-down transfer caused by elephant flows through a network, which 

leads to the degradation of network performance. The solution for this problem 

starts with proposing a novel identification mechanism for distinguishing the flows as 

elephants and mice by leveraging some of the parameters clarified in the previous 

Sub-section 5.3.1.4. Each elephant or mice flow has been defined based on static 

threshold values marked on pre-decided features using the thresholding method. The 

values of a threshold may be static or dynamic. This depends on the traffic or top-N 

of flows, where N refers to the top number of traffic as mentioned in Section 4.5. The 

final step in this phase includes the extraction of a representative flow for each 

elephant and mice flows in each cluster that results from the clustering process.  It is 

interesting in the step that in some clusters one or two representative flows can be 

extracted for each elephant or mice flow. 

5.3.1.5 Flow Type-based Path Selection Phase 

Normally, a large number of servers and switches are included in DCN, and each 

node has multiple flows. Furthermore, the performance of the DCN is a critical 

aspect; hence, high throughput and sensitivity of packet loss are required to gain high 

performance of the network.  And in accordance with the aforementioned problem 

in Sub-section 5.3.1.4, accessing the data with reliability and in a simple way is 

extremely hard in DCN [220][208]. Therefore, the need to manage the traffic in this 

type of network still exists as clarified in the literature review Sub-section 2.7.3.  

Many routing algorithms can provide a management solution for elephants and/or 

mice flow. For example, Equal Cost Multipath Routing (ECMP) [221] can be utilized 

for routing mice but not elephant flows [150]. In this project, the major aim is to 

select the best path for each elephant and mice flows.  The best path for a flow is the 
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path that achieved the requirements of that flow like low latency for mice flows and 

high bandwidth for elephant flows. A developed Dijkstra algorithm is proposed to 

find the route based on the type of flow (elephant or mice flows) by employing 

algorithms 3, 4, 6, and 7 as shown in Section 5.2.2. Using a developed Dijkstra 

algorithm, the links that fulfill the conditions will be determined, and the paths that 

contain appropriate bandwidth and latency will be selected. Dijkstra algorithm was 

applied to find the shortest path for mice flows whereas, for elephant flows, the 

Widest-Dijkstra algorithm was used to find multipath to route them and record all 

the available shortest paths. Because it has an appropriate complexity in real-time 

problems and it gives deterministic results, the Dijkstra algorithm has been chosen. 

The proposed approach introduces a new calculation for the cost of a link as 

compared with the one used in the Dijkstra algorithm. In this part of the work, 

different topologies based on SDN have been used with improved utilization of the 

bandwidth and reduced network congestion. The deployed DCN topologies are 

depicted in Figure 5.3 and Figure 5.4. 

5.3.1.6 Link-Cost Updating phase 

Determining a route for a particular flow through SDN efficiently is still 

challenging. In order to accomplish this, a lot of information must be obtained by the 

SDN controller. the information includes getting a comprehensive vision of the 

network (i.e. network topology discovery and getting link state information), 

computing optimum paths for the flows regarding the information of the flow and 

network, and reconfiguring the routing table based on the new forwarding rules in 

the infrastructure plane. The common routing algorithms depend on three concepts 

to compute the cost of the link. These concepts are static link-cost (Hop-to-Hop 

count, distance, link-capacity), dynamic link-cost (available link-capacity, link 

utilization), and dynamic link-cost with minimizing the interference (available link-

capacity, link-utilization, flows count on a link) [222]. The proposed approach 

presented in this part explains calculating and updating the cost of the link in the SDN 
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framework. The proposed method computes the cost of the link based on the inverse  

proportional relationship between bandwidth and latency of the link, where 

latency=1/bandwidth. The cost of the link will be updated recursively. The calculation 

of the cost of the link based on the Update Cost algorithm in Sub-section 5.2.2 with 

an example and figures are explained in this regard. 

Suppose a host (Host) want to send a set of packets to a server (Server) and 

there are two different routes between Host and Server as in Figure 5.7. For more 

explanation, the flowchart in Figure 5.8 and the steps below will be followed to 

calculate link-cost of both routes: 

1. 1st route R1 goes through switches S1- > S2- > S4- > S6- > Server 
2. 2nd route R2 goes through switches: S1- > S3- > -S5- > S6- > Server 
3. The getAvailablePaths (Host, Server) algorithm will find these two paths (R1, 

R2) between Host and Server 
4. For each link in R1, R2 
5. B1 =Available bandwidth of R1 = availableBW(L12) + availableBW(L24) + 

availableBW(L46) 
6. B2 =Available bandwidth of R2 = availableBW(L13) + availableBW(L35) + 

availableBW(L56) 
7. Latency of R1 = D1 = 1/B1; Latency of R2 = D2 = 1/B2. 
8. If D1–acceptableLatency > D2–acceptableLatency then bestCost = D2 
9. else bestCost = D1 
10. Then we get the nearest value to the acceptable Latency 
11. If bestCost = D1 then best path is R1 else best path is R2 

 
Figure 5.7 Updating Link-Cost 
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Figure 5.8 Flowchart of Updating Cost of Link 

5.3.2 Results and Evaluation 

The empirical results of this experiment determine the impact of the 

differentiation between elephant and mice flows using the innovative routing 

algorithm upon DCN performance.  In general, the results of this experiment 

demonstrate the proposed characterization mechanism can be employed to identify 

the type of flow to facilitate the election of the path that fulfills the requirement of 

each of them. This experiment is performed using a number of python programming 

scripts written and generated on a Linux (Ubuntu 18.04) 64-bit Operating System with 

Intel Core i7-1165 G7, 2.8 GHz, and 16 GB RAM. 

The experiment was conducted using a CSV file for each suggested DCN 

topology. Each file contains 1 million flow records and 129 features. These features 

are chosen based on the work in chapter 3. For dimensionality reduction, PCA has 
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been applied to select the most relevant features (13 components out of 129 

features) from a whole dataset. These 13 PCA components have been input into the 

clustering process. A possible explanation for choosing this number of components 

might be found in Chapter 4. The k-means-based clustering explains that all flows 

were only obtained in three clusters. Each cluster contains a group of flows with 

distinct types and characteristics. Another important finding is in every cluster one or 

two representative flows have been extracted for each elephant and mice type. 

Finally, the best path for each type of flow will be found based on that representative 

feature vector. A developed Dijkstra algorithm was utilized for that purpose. A 

sample of elephant and mice flows with a brief description of the work are provided 

in Table 5.3. 

Table 5.3 Traffic Routing Based On Flow Types 

Number 

of Flows     
Flow Type 

Port    

Number 

Protocol 

Service 

Packet 

Rate 

Method to 

Apply 

60 Elephant 88 HTTP 1M Multipath 

17 Elephant 443 HTTPS 300K Multipath 

40 Elephant 20 FTP 22K Multipath 

26 Elephant 25 SMTP 12K Multipath 

9 Mice 514 Syslog 632K Single path 

14 Mice 88 Kerberos 220K Single path 

6 Mice 119 NNTP 125K Single path 

 

Figure 5.9 depicts how the route was elected for each type of flow in all three 

clusters for network topology No.1. Based on the proposed routing algorithm, the 

best path has been selected from the available paths on this network. As given in the 

top left corner of the figure, multipath route has been selected from Host A to the 

server for elephant-type flows based on their characteristics in cluster 1. The same 

procedure was followed for clusters 2 and 3. In the same way, the shortest path for 

all mice flows in three clusters has been selected as represented in the bottom right 
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corner of the figure. On the other hand, higher priority flows such as real-time traffic 

have been taken into consideration to be saved in this scenario. The figure clarifies 

the used links with a green dotted line, whereas the unused link with a red dashed 

line. 

To achieve the aim of implementing the proposed flow routing optimization 

method and measure its effectiveness in SDN environment, we implement the 

proposed framework as described in Section 5.2.1. According to this, different 

experiments were conducted to evaluate the performance of the proposed approach 

against that of the SDN-Ryu controller. Furthermore, the evaluation will reveal the 

impact of routing-based traffic management, which depends on the type of flow and 

link-cost computation, on the network performance. 
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Figure 5.9 An Example of Flow Path's in the Network Using Proposed Approach 

 

The first experiment that carry out to compare the performance of the 

proposed application with that of Ryu controller using two metrics or parameters 

throughput and bandwidth usage. As is shown below in Figure 5.10, for all flows the 

proposed application has provided higher throughput than the Ryu controller has. 

For example, at flow 10, the throughput of the proposed application was improved 

with a ratio of 61.5% compared with the throughput of the Ryu controller. In addition, 

it has been observed that the number of parallel flows in inversely proportional to 

the throughput of the network. This confirms that increasing the higher the number 

of parallel flows leads to a decline in the throughput for both the proposed 

application and the Ryu controller. However, the performance of the proposed 

method is still better than the Ryu controller. The comparison of throughput was 

done for the two types of flows.  
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Figure 5.10 Comparison between the Proposed Approach and RYU-Controller with 
Respect to Throughput for Two Types of Flows 

For elephant-type flows, the findings show that the throughput provided by the 

proposed application is outperforming that of the Ryu controller as depicted in Figure 

5.11. For instance, it was found that the throughput of the proposed application is 

about 88.2% superior to that of the Ryu controller for flow number 22. The 

measurement of elephant throughput has been executed for intervals of 0-40 

seconds and a bandwidth of 100MB. 
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Figure 5.11 Comparison between the Proposed Approach and RYU-Controller with 

Respect to Throughput for Elephant Flow 

Regarding mice-type flows, Figure 5.12 shows that both the proposed 

application and Ryu controller have provided the same throughput. It is interpreted 

by the fact that both of them use the shortest path for routing the mice flows. The 

measurement of mice throughput was run for intervals of 0-60 seconds with a 

bandwidth of 100 KB. 
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Figure 5.12 Comparison between the Proposed Approach and RYU-Controller with 
Respect to Throughput for Mice Flow 

 

 

Figure 5.13 Comparison between the Bandwidth Used in the Proposed Approach 
and RYU-Controller for Two Types of Flows 

 For bandwidth usage, the experimental findings show that the performance of 

the proposed application is high in most of the flows compared with the Ryu- 

controller as illustrated in Figure 5.13. The reasons behind that are (i) using a 

clustering process and (ii) using a developed Dijkstra algorithm. While the low 
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performance of the proposed method in flows 14 and 22 is because of serving higher 

priority flows. 

For the second topology, the proposed mechanism evaluation was 

accomplished by running two experiments in order to (i) Compare the performance 

of the Ryu controller to that of the proposed method. (ii) Compare the performance 

of the proposed method in both experiments. (ii) Compare the performance of the 

Ryu controller in both experiments. All the comparisons were based on the same 

parameters for the first topology. Figure 5.14 and Figure 5.15 depict the throughput 

and bandwidth usage measurement provided by the proposed mechanism and Ryu 

controller in the two experiments. It is clear from the charts of experiment 1 that the 

performance of the proposed method was better than that of the Ryu controller for 

the majority of flows for both parameters. However, as the number of flows 

increases, the performance of the proposed method is equal to or slightly less than 

that of the controller. In experiment 2 as shown in the charts of the aforementioned 

figures, the throughput, and bandwidth provided by the proposed mechanism were 

improved compared with those by the Ryu controller. Consequently, the 

performance of the proposed mechanism enhanced for 70% of flows. Nevertheless, 

compared to the performance of the Ryu controller, the performance of the 

proposed application has declined for the rest 30% of flows.  

In general, it is observed that the performance of the two methods has 

improved as the number of flows increase in both experiments. 
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Figure 5.14 Comparison of Throughput between the Proposed Approach and RYU- 
Controller for Two Types of Flows in Two Experiments 

 

The data transfer rate, which is the third parameter that has been used in these 

experiments, has been added to support the evaluation of the proposed method. 

Figure 5.16 shows that the proposed method was more effective in transferring data 

than the Ryu controller for most of the flows in both experiments. Based on the 

measurement of the rate of data transfer, the proposed method in the second 

experiment has the same behavior as in the previous parameters for the majority of 

flows, where the performance has become better than it is in the first experiment, 

although it may slightly less than the performance of the controller sometimes. 

As a result, the proposed approach was more efficient than the Ryu controller 

and proved its ability to find the best route according to the type of flow and cost of 

the link despite the degradation of its performance because of serving the higher 

priority flows. 
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Figure 5.15 Comparison of Bandwidth Usage between the Proposed Approach and 
RYU Controller for Two Types of Flows in Two Experiments 

 

 

Figure 5.16 Comparison of Data Transfer Rate between the Proposed Approach 
and RYU- Controller for Two Types of Flows in Two Experiments 

For more clarification, Figure 5.17 illustrates the throughput measurement for 

both the Ryu controller and the proposed method in two experiments. The plot 

presents descriptive statistics that there is obvious variability through the 

experiments that examined the throughput (speed) feature. For our method, there is 

a slight change in the median, first and second quartiles, while there is a significant 

change in the third and fourth quartiles for the two experiments. Similarly, the 

throughput of the Ryu controller significantly changes in the first and third quartiles, 
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while it shows stability in the median and second quartile and a slight change in the 

fourth quartile for two experiments. 

 

Figure 5.17 Throughput Measurement in Experiment1 and Experiment2 

Figure 5.18 presents the measuring of bandwidth usage for the proposed 

mechanism and the Ryu controller in the two experiments. The plot clarifies clear 

variation through the experiments that test the usage of bandwidth. For the two 

methods, there is significant changes in the median, first, second, third, and fourth 

quartiles in the two experiments. As a result, a clear increase in bandwidth usage 

through two experiments for both methods. 
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Figure 5.18 Bandwidth Usage Measurement in Experiment1 and Experiment2 

Figure 5.19 depicts the third feature, which is the data transfer rate for the 

two mechanisms in the two experiments. The plot explains significant variation 

through the experiments for the Ryu controller for the data transfer rate. While our 

method has a similar median and variance in the ratio of data transfer in the first, 

second, third, and fourth quartiles in the two experiments. 
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Figure 5.19 Data Transfer Rate Measurement in Experiment1 and Experiment2 

 

5.4 Conclusion  

The innovative unified architecture has presented an SDN-based flow routing 

framework that leverages the concept of flow-level characterization and flow-type 

identification based on clustering and thresholding techniques that provide a high 

level of accuracy and flexibility. The flow-level characterization has been executed 

based on selected metrics of network performance using clustering ideology; 

consequently, identifying the type of that flow will depend on its own metrics based 

on pre-defined thresholds. As a result, the best path will be selected for each flow 

after determining its type and characteristics such as delay and bandwidth. In 

addition, the Dijkstra algorithm concept-based flow routing technique will be chosen 

according to the type of flow and cluster-ID.  
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The most interesting finding was that the presented solution demonstrates an 

efficient calculation of route cost and consistency with real-time constraints in the 

SDN environment. This can be seen in the experimental results, which show that 70% 

of the flows can be routed precisely. Therefore, the dynamic provisions of network 

resources among different flow types are achieved. For future works, the suggested 

application sets the ground for designing an automated SDN-based application for 

routing different types of flow and network topologies to improve bandwidth 

utilization and reduce congestion across networks. 
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Chapter Six: Conclusions and Future work  

This project presents a novel mechanism to optimize the routing of particular 

flows by taking advantage of network performance analysis. This Chapter discusses 

the main contribution to Knowledge and highlights the novelty, research challenges, 

future work, and the conclusions.  

6.1 Contributions to Knowledge 

Overall, all the aims that are mentioned in Chapter 1 through this research have 

been achieved. The core contribution of this project concentrates on performing 

three experimental studies to investigate the probability of leveraging network 

performance analysis to characterize and identify elephant and mice flows, 

consequently, routing them to accomplish the equal utilization of network resources 

through the design of an application that integrates unsupervised ML and SDN 

environment. The project establishes the following main contributions. 

• For optimizing a network routing mechanism by leveraging its performance 

analysis, a comprehensive investigation has been established on the topics of 

network performance metrics, network Traffic analysis methods such as 

traffic characterization and classification techniques, ML techniques and their 

applications, Traffic engineering development, and SDN environment 

architecture and characteristics. 

• A baseline of experiment has been conducted to investigate the impact of 

excluding the driven or control features on the clustering accuracy by using 

different feature sets. The main aim of this experiment is to gain efficient and 

accurate characterization of network flows based on network performance 

features. 

• A series of experiments has modeled and performed to investigate the 

influence of the number of PCA components on the clustering process. The 

objective of these experiments of gaining a higher accuracy of the clustering 
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as well as taking into consideration the trade-off between completeness and 

simplicity. 

• Designing an innovative flow characterization model based on utilizing 

unsupervised ML. This model offers a comprehensive leveraging of network 

performance metrics to characterize the flows. 

• Proposing and evaluating an innovative flow architecture based on pre-

defined features and fixed thresholds. This model aims to identify elephant 

and mice flows precisely using the thresholding method to solve the problem 

of taking over network resources by elephant flow type in the future.  

• A unified architectural solution that integrates unsupervised machine learning 

techniques and an SDN environment has been proposed. This solution 

introduces a novel routing mechanism that offers a more balanced and 

effective network by selecting the best path to route each of the elephant and 

mice flows based on their requirements   

Several papers associated with the research have introduced and published in 

refereed conferences and journals (Appendix-2). As a result, the project 

introduced positive contributions to the network management and specifically to 

the network routing system. 

6.2 Research challenges 

Although the above research objectives have been achieved, this research work 

includes some limitations, which are explained hereafter. The main limitations of this 

research work are described as follows. 

1. The flow characterization carried out in the first experiment (Chapter 3) 

primarily relied on flow representation through network performance 

metrics. An unsupervised ML technique has been used to characterize each 

flow. An essential aspect of machine learning for training, testing, and 

validation is the size of the dataset. The aforementioned experiment was 
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accomplished using a dataset with a small size. This led that the inference of 

significant relationships among data members being difficult. To solve this 

limitation, use a dataset with a large size in the second experiment (Chapter 

4).  On the other hand, Outliers are one of the clear problems in data analysis; 

therefore, detection and manipulation of the outliers are of great effect on 

Machine Learning because the quality of data is as important as the quality of 

a prediction or classification model. In the two experiments (Chapter 3 & 

Chapter 4), avoiding outliers' existence completely was not possible, which 

causes the subsistence of a cluster or more with a size beyond the limits of 

clusters convergence between 500-4000 connections for each cluster. Using 

the PCA technique has significantly alleviated this limitation. 

2. In PCA, it is significant to retain a suitable number of components based on 

keeping a balance between simplicity and completeness. However, the choice 

of clustering accuracy as an aim for the first experiment (Chapter 3) led to 

being restricted to choosing 5 PCA components despite they covered 40% of 

the data. To avoid this restriction in the second experiment (Chapter 4), a 

different number of PCA components have been experimented with to decide 

the suitable number of components to achieve an effective clustering process 

taking into consideration the balance between simplicity and completeness 

for retaining the appropriate number of principal components as an essential 

objective of PCA technique. 

3. In dynamic networks, one of the essential issues for routing platforms is 

finding the routing scheme that has the capability to overcome a fault 

tolerance problem. This problem can be solved by generating more than one 

path between the source and the destination [223].In addition, the shortest-

path algorithm has a superior performance in a dynamic network 

environment [224]. Our proposed routing mechanism introduces the 

developed Dijkstra algorithm. The developed algorithm has the ability to 
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choose between multipath routing and shortest path routing algorithms 

based on the requirements of the flow type. 

4. With increasing the adoption of network traffic encryption in the last years 

for users' privacy protection. This led to appear of many challenges related to 

traffic analysis techniques and traffic inspection tools. In this project, a 

clustering mechanism has been proposed. This mechanism essentially 

depends on extracting the significant network-related features such as RTT, 

bytes transmitted, percentage of packet loss, and other network features. 

Therefore, the proposed framework has the ability to cluster the encrypted 

traffic [225]. On the other hand, ML classification techniques have the ability 

to better deal with encrypted traffic [226][227][228]. 

5. One of the features that have been used in the proposed identification 

scheme is flow duration. It means all packets should be sent within a certain 

flow, and the transmission should be completed to determine the duration of 

the flow. In this case, the transmission of the flow will be delayed for a long 

period, negatively affecting the performance of the network. For example: If 

the required time to consider the flow to type elephant is 5 seconds, the 

transmission will be delayed 5 seconds for each flow, which doesn’t work in 

real-time. To overcome this problem in real-time, we will assume that all the 

current packets are from type mice and store the beginning time for each 

flow, afterword we test the existing duration for every flow, and if it exceeds 

the specified threshold, it will be elephant type flow. 

6. One of the factors that had a clear impact on the performance of the 

proposed Routing framework is serving higher priority flows such as real-time 

traffic. 

6.3 Future Work Suggestions 

1. The idea behind this research supports the area of network management by 

providing an efficient technique for routing particular flows based on their 
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pre-defined features and thresholds using the characteristics of the SDN 

environment. However, to improve or develop the framework of this project 

further, there are a group of network domains in which future work can be 

performed. The proposed idea of an unsupervised ML model is compatible 

with using different feature sets, different types of traffic, and different 

protocols. For example, the model can be utilized in the network security area 

to characterize network attacks. 

2. In addition, the proposed identification mechanism in this project was based 

on pre-defined features and static thresholds for distinguishing between 

elephant and mice flows. Two of these features can be utilized in real-time, 

so the opportunity to improve this mechanism is required through configuring 

switches by the controller with the estimated value of the threshold to 

identify elephant and mice flows at a real-time in a dynamic environment 

[229] especially since the problem of routing elephant and mice flows is still 

present. 

6.4 Conclusions 

Recently, the design goal of the network is network scalability, which means the 

capability to handle not only immediate demand but also the possibility of traffic 

growth in the future with little upgrades and costs. Today, traffic engineering is the 

optimal solution to optimize networks and provide the best services where traffic 

engineering allows sending traffic over less congested links, regardless of the rule of 

the shortest path. This can help to mitigate the congestion of the network and to 

exploit the infrastructure of the network to use it in a better way. 

The SDN-based techniques are the best solution to overcome all the challenges 

of traffic engineering. It provided the possibility of transforming the networks to be 

flexible and scalable for handling the changes in users' demands. The centralization 

concept in SDN addresses all the above challenges by calculating the path and 

specifying the bandwidth for the entire network. Furthermore, the possibility of 
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traffic engineering being a third-party application allows for the creation of a more 

featured SDN application with a better algorithm. 

  The novelty of this project is utilizing network performance analysis to 

characterize network flows through building a clustering model, identifying elephant 

and mice flows using pre-defined parameters and thresholds to route them based on 

their requirements by a developed routing algorithm. SDN environment was used to 

run the proposed framework by creating a consistent unified architecture. The 

proposed scheme proved to be effective to improve SDN-traffic engineering by 

routing traffic over less or uncongested links by leveraging the characteristics of the 

flow. In the end, mitigating the congestion of the network, exploiting the 

infrastructure of the network to get the most out of it, and achieving the fair use of 

network resources have been achieved. 
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Appendix-1  Table of Features 

1. First _packet 2. last_packet     3. total_packets_a2b     

4. total_packets_b2a     5. resets_sent_a2b     6. resets_sent_b2a     

7. ack_pkts_sent_a2b     8. ack_pkts_sent_b2a     9. pure_acks_sent_a2b     

10. pure_acks_sent_b2a     11. sack_pkts_sent_a2b     12. sack_pkts_sent_b2a     

13. dsack_pkts_sent_a2b     14. dsack_pkts_sent_b2a     15. max_sack_blks.ack_a2b     

16. max_sack_blks.ack_b2a     17. unique_bytes_sent_a2b     18. unique_bytes_sent_b2a     

19. actual_data_pkts_a2b     20. actual_data_pkts_b2a     21. actual_data_bytes_a2b     

22. actual_data_bytes_b2a     23. rexmt_data_pkts_a2b    24. rexmt_data_pkts_b2a    

25. rexmt_data_bytes_a2b    26. rexmt_data_bytes_b2a     27. outoforder_pkts_a2b     

28. outoforder_pkts_b2a     29. pushed_data_pkts_a2b     30. pushed_data_pkts_b2a     

31. adv_wind_scale_a2b     32. adv_wind_scale_b2a     33. sacks_sent_a2b     

34. sacks_sent_b2a     35. mss_requested_a2b     36. mss_requested_b2a     

37. max_segm_size_a2b     38. max_segm_size_b2a     39. min_segm_size_a2b     

40. min_segm_size_b2a     41. avg_segm_size_a2b     42. avg_segm_size_b2a     

43. max_win_adv_a2b     44. max_win_adv_b2a     45. min_win_adv_a2b     

46. min_win_adv_b2a     47. zero_win_adv_a2b     48. zero_win_adv_b2a     

49. avg_win_adv_a2b     50. avg_win_adv_b2a     51. max_owin_a2b     

52. max_owin_b2a    53. min_non.zero_owin_b2a     54. avg_owin_a2b     

55. avg_owin_b2a     56. wavg_owin_a2b     57. wavg_owin_b2a     

58. initial_window_bytes_a2b     59. initial_window_bytes_b2a     60. initial_window_pkts_a2b     

61. initial_window_pkts_b2a    62. ttl_stream_length_a2b     63. ttl_stream_length_b2a     

64. missed_data_a2b     65. missed_data_b2a     66. data_xmit_time_a2b     

67. data_xmit_time_b2a     68. idletime_max_a2b     69. idletime_max_b2a     

70. throughput_a2b     71. throughput_b2a     72. RTT_samples_a2b    

73. RTT_samples_b2a     74. RTT_min_a2b     75. RTT_min_b2a     

76. RTT_max_a2b     77. RTT_max_b2a     78. RTT_avg_a2b     

79. RTT_avg_b2a     80. RTT_stdev_a2b     81. RTT_stdev_b2a    

82. RTT_from_3WHS_a2b     83. RTT_from_3WHS_b2a     84. RTT_full_sz_smpls_a2b     

85. RTT_full_sz_smpls_b2a     86. RTT_full_sz_min_a2b     87. RTT_full_sz_min_b2a     

88. RTT_full_sz_max_a2b     89. RTT_full_sz_max_b2a     90. RTT_full_sz_avg_a2b     

91. RTT_full_sz_avg_b2a     92. RTT.full_sz_stdev_a2b     93. RTT_full_sz_stdev_b2a     

94. post.loss_acks_a2b     95. post.loss_acks_b2a     96. ambiguous_acks_a2b     

97. ambiguous_acks_b2a    98. RTT_min_.last._a2b     99. RTT_min_.last._b2a     

100. RTT_max_.last._a2b     101. RTT_max_.last._b2a     102. RTT_avg_.last._a2b     

103. RTT_avg_.last._b2a    104. RTT_sdv_.last._a2b     105. RTT_sdv_.last._b2a     

106. segs_cum_acked_a2b     107. segs_cum_acked_b2a     108. duplicate_acks_a2b     

109. duplicate_acks_b2a     110. triple_dupacks_a2b     111. triple_dupacks_b2a     

112. max_._retrans_a2b     113. max_._retrans_b2a     114. min_retr_time_a2b     

115. min_retr_time_b2a     116. max_retr_time_a2b     117. max_retr_time_b2a     

118. avg_retr_time_a2b     119. avg_retr_time_b2a     120. sdv_retr_time_a2b     

121. sdv_retr_time_b2a     122. SYN_pkts_sent_a2b     123. FIN_pkts_sent_a2b     

124. SYN_pkts_sent_b2a     125. FIN_pkts_sent_b2a     126. req_1323_ws_a2b     

127. req_1323_ts_a2b     128. req_1323_ws_b2a     129. req_1323_ts_b2a  
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