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Abstract

Wireless security is becoming a critical concern in the era of the Internet of Things

(IoT). Radio frequency fingerprint identification (RFFI) is an authentication tech-

nique that identifies wireless devices by analyzing their physical attributes. The

wireless signals are generated by the transmitter chain, which is composed of nu-

merous analog components such as the oscillator, mixer, power amplifier, antenna,

etc. The specifications of the hardware components will deviate slightly from their

nominal values due to the manufacturing variation. Therefore, each wireless trans-

mitter has unique hardware characteristics, termed the radio frequency fingerprint

(RFF). The emitted wireless signals are distorted by the transmitter impairments,

which can be captured and analyzed by the receiver for device identification. RFF

is difficult to modify because it is the physical attribute of a wireless transmitter.

RFFI can be deployed with a customized receiver without changing the transmitter

hardware, making it suited for both legacy and future wireless networks. It becomes

a potential authentication technique for low-cost IoT applications.

In recent years, RFFI has been significantly enhanced by deep learning. The

specially designed neural networks (NNs) can predict the device identity by ana-

lyzing the received signal. Although deep learning leads to a huge performance

improvement, there are still remaining challenges. Firstly, the distortion caused by
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the transmitter impairments is minute and difficult to detect in the time domain.

The received signals need to be converted into suitable signal representations as in-

puts to the NN to facilitate feature extraction. Secondly, the RFFI performance is

severely affected by the wireless channel variations. However, many IoT devices are

mobile and channel changes are unavoidable. It is necessary to explore how to mit-

igate the impact of the wireless channel on RFFI performance. Thirdly, the analog

receiver chain can distort the received signal as well. Using a new receiver for signal

reception can affect the characteristics of the received signal and thus degrade the

RFFI performance. However, it is common for a wireless device to be served by

different access points/gateways, and training an NN for each receiver is impractical

and time-consuming.

This thesis addresses the challenges discussed above and takes LoRa communi-

cation technology as a case study. Firstly, it is proposed to convert the received

LoRa IQ samples to a spectrogram before feeding them into the NN because the

characteristics of LoRa chirp signals are more evident in the time-frequency domain.

Convolutional neural networks (CNNs) are then found to be more efficient in pro-

cessing time-frequency domain spectrograms than multilayer perception (MLP) and

long short-term memory (LSTM) models. Secondly, a channel-independent spec-

trogram was created as the signal representation in order to minimize the impact

of wireless channels and make the system location-independent. Moreover, it is

also proposed to use data augmentation during training to combat channel effects.

More specifically, the training data is fed into a channel simulator to emulate sig-

nals under various channel conditions. Finally, a receiver-agnostic and collaborative

RFFI protocol is designed, in which the adversarial training is leveraged to train a

receiver-agnostic classification NN that is deployed on multiple receivers to make a

collaborative inference. As the trained NN may not perform satisfactorily on some

ii



Radio Frequency Fingerprint Identification for LoRa Guanxiong Shen

receivers, a fine-tuning technique is further proposed to improve its performance.

The proposed fine-tuning scheme only requires a few labeled packets to reach a sat-

isfactory performance. All the proposed LoRa-RFFI protocols are experimentally

evaluated using commercial-off-the-shelf (COTS) LoRa devices and software-defined

radio (SDR) boards in real communication scenarios.
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Chapter 1

Introduction

In the era of Internet of Things (IoT), wireless devices are becoming ubiquitous in

our daily lives [1]. For example, more and more household appliances are equipped

with wireless connectivity, which enables the homeowner to control and access them

remotely. In addition, wireless sensors installed in factories can exchange collected

data or transfer it to a central controller for analysis, thereby enhancing manufac-

turing efficiency. It is estimated that there will be more than 30 billion IoT devices

collecting and exchanging data around the world by 2025 [2]. Although the fast-

developing wireless technologies greatly facilitate our life and manufacturing pro-

cess, security is becoming a pressing concern. The attacker can compromise a user’s

privacy if an IoT device is not properly secured because some IoT devices contain

private information. Moreover, IoT devices are widely used in medical applications.

A compromised medical IoT device can be used to interfere with a patient’s health-

care and even cause physical harm [3]. Another well-known example is the Mirai

botnet in 2016, which launched a distributed denial-of-service attack to interrupt

Internet services using insecure IoT devices like cameras [4]. Therefore, security is

crucial for IoT applications in order to help prevent cybercrime.

Device authentication is the first defense for any wireless network, which pre-

vents unauthorized devices from gaining access to the network and confidential re-

sources. Current authentication solutions rely on symmetric or public key-based

cryptographic algorithms and challenge-response protocols. Nevertheless, they are

1
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Figure 1.1: Typical authentication schemes based on cryptographic algorithms and
challenge-response protocols. (a) Symmetric key-based approach. (b) Public key-
based approach.

still vulnerable to a variety of risks. Examples of current authentication schemes are

shown in Fig. 1.1. In the symmetric key-based approach, transmitter (Alice) and

receiver (Bob)1 have a shared key that can be used for encryption and decryption.

Bob sends a challenge to Alice after receiving the authentication request. Then Alice

encrypts the challenge with the shared key and responds to Bob. If Bob can use his

key to decrypt the response correctly, this means Alice has the same key as Bob and

the authentication succeeds. The symmetric key-based authentication is fast and

easy to implement. However, it requires a shared key agreed upon between Alice

and Bob, while the key distribution process can be insecure.

The public key-based authentication method addresses certain limitations that

are present in the symmetric key-based approach. In the public key-based authenti-

cation process as illustrated in Fig. 1.1(b), Alice creates a pair of keys, one of which

is made public and shared on a server while the other remains private. Bob sends a

challenge to Alice, which Alice then encrypts using her private key. Bob then uses

the public key, which was previously published by Alice, to decrypt the message.

If the challenge is not properly decrypted, it indicates that the private key held by

Alice does not match the public key held by Bob and the authentication process fails.

1In cryptographic systems and protocols, the two parties that exchange messages are named
Alice and Bob, respectively.
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Figure 1.2: The analog front-end of a typical wireless transmitter.

In contrast to the symmetric key-based approach, Alice does not need to exchange

the private key and therefore the key leakage is prevented. However, the public

key-based approach requires complicated mathematical operations that can heavily

increase the power consumption of IoT devices. Moreover, some IoT devices even

cannot operate public key-based algorithms because of limited computing resources.

In summary, it is difficult for a symmetric key-based authentication system to ensure

the security of the key distribution and management process, while the public key-

based method is not suitable for IoT applications due to its complexity. The strength

of cryptographic authentication approaches is highly related to the security of keys,

but it is difficult to distribute keys securely in a large IoT network due to the huge

population of devices. Therefore, a lightweight, low-cost and reliable authentication

mechanism is needed to enhance wireless security.

Radio frequency fingerprint identification (RFFI), also known as specific emit-

ter identification (SEI) or radiometric identification, is a potential physical layer

authentication method suitable for low-cost wireless devices. In contrast to the

cryptographic authentication solutions that verify what the transmitters have, i.e.,

keys, RFFI systems perform identification by validating the physical attributes of the

transmitters. As shown in Fig. 1.2, the radio frequency (RF) signals are generated

by the analog front-end of wireless transmitters, which consists of mixers, oscillators,

power amplifiers, antennas, etc. These components inevitably deviate from nomi-
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nal specifications due to variations in the manufacturing process. Therefore, each

wireless transmitter contains device-specific RF hardware impairments, termed radio

frequency fingerprint (RFF). Similar to a biometric fingerprint, RFF is unique and

hard to tamper with since it is the physical attribute of the transmitter hardware.

The RF impairments cause unique distortion to the emitted RF signals, which allows

us to extract RFF by analyzing the physical layer signal captured at the receiver.

Then the RFFI system can uniquely identify from which device the signal is sent.

All the RFFI operations are implemented at the receiver side and no modification

is required at the transmitters. This unique feature makes RFFI extremely suitable

for legacy and future wireless networks, as RFFI can be deployed with a specialized

receiver without upgrading the transmitter hardware. In addition, RFFI does not

require a dedicated packet and can piggyback on existing packets, which will not

drain transmitter energy and can achieve a per-packet authentication.

The existing RFFI work can be roughly categorized into traditional handcrafted

RFF-based and deep learning (DL)-based approaches. The former relies on a manu-

ally designed RFF extraction algorithm to obtain hardware features such as in-phase

and quadrature (IQ) imbalance [5, 6], carrier frequency offset (CFO) [6–11], power

amplifier non-linearity [12,13], beam pattern [14,15], etc. However, such schemes are

highly dependent on the quality of the designed feature extraction algorithms and re-

quire a deep understanding of the adopted communication protocol. Apart from this,

the hardware characteristics are interrelated with each other, making it challenging

to extract each feature individually. In recent years, RFFI has benefited greatly

from the fast development of deep learning techniques. DL-based RFFI systems

leverage a neural network (NN) to process physical layer signals and directly infer

device identity without the need for feature engineering, which has attracted wide

attention. A variety of advanced NNs are employed to enhance RFFI performance,

including convolutional neural network (CNN) [16–37], long short-term memory

(LSTM) [19,23,30,38,39], and multiple layer perceptron (MLP) [16,19,23], gated re-

current unit (GRU) models [23,40], generative adversarial network (GAN) [23,41–43],

transformer [40, 44, 45], etc. DL is progressively becoming the dominant technology

in RFFI because of its excellent performance. However, there are still a number of
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challenges to overcome in DL-RFFI, which will be discussed in detail in the following

section.

Recent studies have demonstrated that RFFI has the capability to secure a

variety of daily-life communication systems such as WiFi [5, 18, 24, 46–49], Zig-

bee [11,35,50–56], LoRa [19,21,22,38,40,57], long-term evolution (LTE) [58], radio

frequency identification (RFID) [31,59], near-field communication (NFC) [60], Blue-

tooth [61], etc. Among them, LoRa is particularly suitable for investigating RFFI

design methodologies and is therefore used as a case study in this thesis. The deci-

sion to use LoRa as a primary example is based on two factors. Firstly, LoRa devices

are manufactured with low-cost components and therefore have abundant hardware

impairments, which are suitable for RFFI. Moreover, the commercial LoRaWAN

specification defines cryptography-based device authentication schemes. The root

keys are assigned to the end nodes during fabrication and secure storage of them is

a huge challenge. The proposed RFFI can provide an alternative method to authen-

ticate LoRa devices.

1.1 Problem Statement and Existing Challenges

A closed-set2 RFFI system aims to classify K IoT end nodes, i.e. device under test

(DUT), in a wireless network. As shown in Fig. 1.3, the input to the RFFI system

is the received physical layer baseband signal y(t), which is mathematically given as

y(t) = G
(
h(τ, t) ∗ Fk(x(t))

)
+ n(t) for k = 1, 2, · · · , K, (1.1)

where x(t) is the ideal modulated signal without distortion. G(·) denotes the hard-

ware effects of the receiver, h(τ, t) is the time-varying wireless channel impulse re-

sponse, i.e., the delay spread function with respect to delay τ and time t. Fk(·)
represents the transmitter chain effect of DUT k, n(t) is the additive white Gaus-

sian noise (AWGN) and ∗ denotes the convolution operation. The goal of an RFFI

2The closed-set RFFI is first introduced because recent RFFI studies are often in a closed-set
setting. The discussion about closed-set and openset RFFI is detailed in Chapter 4.
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Figure 1.3: A typical DL-based closed-set RFFI system.

system is to predict the transmitter label k by analyzing the collected signal, y(t).

The DL-based RFFI system first trains the NN to approximate a mapping function

between the received signal y(t) and device label k, namely the training stage. Then

the trained NN can act as a classifier to classify the newly received signals, thus

achieving identification functionality.

There are currently obstacles to the development of DL-based RFFI. First, the

distortion caused by the transmitter chain Fk(·) is extremely minor; otherwise, the

quality of the communication will be compromised. It is hard for the NN to ex-

tract discriminative RFFs directly from the time-domain signal y(t). Second, as

demonstrated in (1.1), y(t) is affected by the channel impulse response h(τ, t). The

NN will likely make inaccurate predictions when h(τ, t) deviates from that in the

training data since the fundamental independent and identically distributed (i.i.d.)

assumption of deep learning is violated. In fact, h(τ, t) can frequently change since

many wireless devices are designed to be mobile. The RFFI system can not be used

to identify mobile wireless devices without applying appropriate channel mitigation

solutions. Finally, using a new receiver for signal reception can change G(·) and
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further affect the characteristics of y(t), which breaks the i.i.d. assumption as well.

However, wireless devices are likely to be served by different gateways/access points

because of their mobility, thus assuming the same receiver is used during training

and inference is unreasonable. Therefore, designing an RFFI protocol that can ac-

curately identify wireless devices and is robust to location and receiver changes is

still challenging.

Additionally, the RFFI system is also required to be capable of identifying devices

that are not present during training, namely openset identification. This is crucial

since the rogue devices that the RFFI system aims to defend are never accessible in

the training stage. In the closed-set setting depicted in Fig. 1.3, the signal from a

rogue device will always be labeled as legitimate since the NN can only give predic-

tions from DUT 1-K, i.e., legitimate DUTs used in the training stage, and cannot

detect the presence of a rogue device. It is, therefore, necessary to upgrade the RFFI

protocol from closed-set to openset.

1.2 Contributions and Thesis Outline

This thesis takes LoRa as a case study to address the above-discussed research chal-

lenges. The main reason for choosing LoRa is that LoRa end nodes are low-cost and

cannot run complicated cryptographic-based authentication algorithms. In contrast,

RFFI is completely deployed at the gateway and does not require any modifica-

tions to the end node, which is suitable for LoRa end nodes with limited comput-

ing power. The LoRa-RFFI testbed is constructed using commercial off-the-shelf

(COTS) LoRa development boards as DUTs to be identified and software defined

radio (SDR) boards as LoRa receivers to capture the physical layer signal. Note that

the conclusions and designed RFFI protocols in this thesis are applicable to other

communication techniques and are not specific to LoRa. Chapter 2 presents a liter-

ature review and some background knowledge, including the LoRa and LoRaWAN,

the LoRa signal collection program running at the receiver, and the procedure of a

conventional DL-based RFFI system.

Chapters 3, 4, 5 are the research contributions of this thesis. The three chap-
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Figure 1.4: Summary of technical chapters.

ters are on the basis of equation (1.1). A summary of technical chapters is shown

in Fig. 1.4. Chapter 3 investigates the stability of the hardware distortion Fk(·)
and the characteristics of the modulated signal x(t) in (1.1). The content in this

chapter is based on the work published in IEEE International Conference on Com-

puter Communications (INFOCOM) [21] and IEEE Journal on Selected Areas in

Communications (JSAC) [19]. The contributions are listed as follows.

• The distortion Fk(·) is often not evident in the captured time-domain signal.

Therefore, we study how to transform y(t) into appropriate signal represen-

tations to make the distortion Fk(·) easier to extract. The design of signal

representation should consider the characteristics of x(t). For instance, the

captured LoRa signal y(t) is converted to the time-frequency domain represen-

tation, i.e., spectrogram, since its frequency changes linearly over time.

• Different varieties of NNs are suited for processing different signal representa-

tions due to the diversity of their architectures and fundamental components.

We present examples demonstrating how to select and construct NNs in con-

sideration of the characteristics of signal representation, e.g., CNN is efficient

to process image-like spectrograms.
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• The experimental results demonstrate that Fk(·) is not stable over time. That

is, the hardware characteristics may deviate from those during training and

thus degrades inference accuracy. It is experimentally found that the oscillator

frequency of low-cost IoT devices is not consistent with time, which is the main

reason for the drift of Fk(·). We show that integrating CFO compensation into

the RFFI system can effectively mitigate performance degradation and thus

improve system robustness.

• Although the CFO should be compensated for RFFI stability, it is also a hard-

ware attribute that can be used to distinguish across wireless devices. Integrat-

ing this into the RFFI system can potentially increase identification accuracy.

For this reason, we propose a hybrid identification method that calibrates the

output of NN using a pre-built CFO database. The hybrid method can signif-

icantly enhance identification performance while maintaining system stability.

Chapter 4 mainly focuses on mitigating the impact of channel variations in RFFI,

i.e., the channel impulse response h(τ, t) in (1.1), as well as the design of openset

RFFI systems. The work has been published in IEEE Transactions on Information

Forensics and Security (TIFS) [22]. The contributions are detailed as follows:

• An openset RFFI protocol is proposed in this chapter. We leverage deep metric

learning to train an NN-based feature extractor, also known as an RFF extrac-

tor, instead of a classification NN. Then an RFF database containing RFFs of

legitimate devices is created. In this approach, the RFFI system can identify

signals sent by devices that do not exist during training, thus achieving rogue

device detection functionality and system scalability.

• We design a signal representation for LoRa signal named channel independent

spectrogram. It is less susceptible to the variations of wireless channel h(τ, t)

and the transmitter distortion Fk(·) is still detectable. This is achieved by

signal processing in the time-frequency domain.

• Data augmentation is shown to be effective in improving the channel robustness

of the RFFI system. The well-designed wireless channel simulator can emulate
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numerous channel impulse responses h(τ, t). Feeding the received signal y(t)

into the channel simulator can assist generate more training data influenced by

various channel conditions h(τ, t). The NN trained with the augmented data

generalizes well to the unseen environments because similar channel conditions

are likely already present in the training dataset.

Chapter 5 focuses on reducing the impact of receiver distortion G(·) on RFFI

performance. On this basis, we also propose a collaborative RFFI protocol that

employs multiple receivers to enhance identification performance. This chapter is

based on a journal paper that is still under review [62]. The detailed contributions

are as follows.

• It is experimentally confirmed that the variation of the receiver effect G(·) can
degrade RFFI performance. First, using a new receiver that is different from

the training one can greatly change G(·). In addition, the drift in hardware

characteristics of some low-cost receivers can also cause changes in G(·), which
reduces RFFI performance. Therefore, mitigating the receiver effect is neces-

sary.

• We propose a training strategy to obtain a receiver-agnostic NN. In the train-

ing procedure, the NN is guided to learn receiver-independent features, i.e.,

features not related to G(·). The trained receiver-agnostic NN can be deployed

on any receiver without significantly reducing identification performance.

• The broadcast nature of wireless signals enables us to design a collaborative

RFFI protocol. The receivers in the communication network are equipped with

the receiver-agnostic NN to perform independent inference on the captured

signal. The predictions are then fused in a central server to achieve higher

identification accuracy.

Chapter 6 finally concludes the thesis and discusses future work.

Note that the RFFI solutions/protocols proposed in the thesis can be directly ap-

plied to other wireless technologies except for the signal representation of spectrogram/channel-

independent spectrogram. For example, the openset RFFI protocol discussed in
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Chapter 4 is applicable to any wireless technology. Although the spectrogram/channel-

independent spectrogram is designed specifically for LoRa modulation, we believe the

design concept can be transferred to other wireless protocols.



Chapter 2

Literature Review and Background

2.1 Literature Review

RFFI is historically used for military purposes to identify radar signals [63–68], and it

has recently demonstrated the ability to secure a variety of daily-life communication

technologies, including WiFi [5,18,24,46–49], Zigbee [11,35,50–56], LoRa [19,21,22,

38,40,57,69], LTE [58], RFID [31,59], NFC [60], Bluetooth [61], etc. Moreover, some

studies also utilize RFFI to identify aircraft [70–73], satellites [74, 75], unmanned

aerial vehicle (UAV) [28] and ships [29]. Although DL-RFFI shows great potential

for enhancing wireless security, it is still in a rapid development stage and there are

many obstacles that need to be addressed.

2.1.1 Stability of RFFI Systems

As a device identification system, stability is fundamentally required for RFFI.

Robyns et al. indicate that the accuracy of the designed DL-RFFI system drops

over time and inferred that this is probably due to the frequency drift of the oscil-

lator [16]. However, they do not provide in-depth analysis or a mitigation method.

Andrews et al. experimentally examined the effect of temperature variation on dif-

ferent analog components, e.g., oscillator, power amplifier, phase-locked loop, mixer,

etc., and concluded that the oscillator is particularly sensitive to temperature fluc-

12
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tuations [76]. Even within 15 minutes, it is observed that low-cost ZigBee devices

experienced considerable CFO variations [11, 25]. Nonetheless, there are currently

no comprehensive studies on the effect of CFO drift on the performance of DL-RFFI

systems.

2.1.2 Signal Representation in RFFI Systems

The signal distortion caused by the transmitter impairments is minor and difficult

to observe in the time domain. Therefore, the received IQ samples are often con-

verted to more discriminative signal representations to enhance RFFI performance.

There are numerous signal representations designed in previous studies. Merchant et

al. calculated the error signal by subtracting the ideal signal from the received

one [32]. He et al. leveraged signal processing techniques to decompose the received

signals [39]. Gong et al. extracted the grey histogram of bispectrum to enhance

individual discriminability [77]. Other signal representations include power spec-

tral density [78–80], Hilbert-Huang spectrum [81,82], differential constellation trace

figure (DCTF), etc. Specific to LoRa-RFFI, Robyns et al. performed fast Fourier

transform (FFT) on the received signal to make the CFO more evident [16]. Das et

al. directly used IQ samples as the system input [38]. Jiang et al. converted the re-

ceived LoRa signals to specially-designed differential constellation trace figures [83].

However, none of them have considered the unique characteristics of LoRa modula-

tion, which may limit the identification performance. Therefore, a signal presentation

specially designed for LoRa signals is required.

2.1.3 Openset RFFI Systems

Many previous DL-RFFI schemes are designed as close-set, making them lack system

scalability and rogue device detection capability [19, 20, 25, 84]. More specifically, a

close-set RFFI system neither supports efficient device joining and leaving nor can

it distinguish rogue devices from legitimate ones. This is because previous methods

usually rely on the softmax layer for classification, whereby once the training is

completed, the number of neurons in this output layer cannot be changed [45]. When
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a new device joins or an old device leaves, the NN should be updated by retraining,

which is not practical and time-consuming. Chen et al. used transfer learning to

speed up the retraining process, but it still requires the RFFI system to have a

GPU [85]. Furthermore, the softmax layer-based systems can only output the label

presented in the training set, but rogue devices are never available during training.

In this case, the rogue devices will always be classified as legitimate devices which

is unacceptable. To overcome these limitations, researchers have started to consider

RFFI as an open-set problem rather than a close-set one. Xie et al. proposed a

similarity-based RFFI system, which is the most relevant work to ours [35]. They

trained an RFF extractor using the softmax-based loss. Then the cosine similarity

and a threshold are leveraged for the back-end authentication task. The similarity-

based open-set solution supports efficient device joining without high complexity.

Hanna et al. evaluated a number of open-set classifiers, including autoencoder,

OpenMax, One Vs All (OvA), etc [86]. They concluded that the OvA classifier

can reach the best performance. Gritsenko et al. proposed a novel device detection

scheme that leveraged the probabilistic characteristics of classification NNs [87]. The

device is labeled as a new one when the confidence level during classification is low.

Soltani et al. further extended this scheme to the case of multiple classifiers [28].

The GAN is also used for open-set RFFI problem [23]. Before feeding the signal to

a typical classification NN, a GAN is additionally introduced to determine whether

the device is a rogue or not.

2.1.4 Channel Effects in RFFI Systems

Previous work demonstrates that DL-based RFFI is not robust to wireless channels

if no specific solution is applied [18]. Sankhe et al. proposed the ORACLE system

to combat channel effects [84, 88]. However, it needs to intentionally introduce im-

pairments to the transmitter, which is costly and not suitable for IoT applications.

Morin et al. indicated that the training dataset should contain as many channel con-

ditions as possible to make the NN automatically learn how to mitigate it [89, 90].

However, this may dramatically increase the cost of collecting the training set. Data
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augmentation is an effective alternative to this approach, in which we can collect the

training set in a static scenario and pass it into a well-designed channel simulator

to generate signals under various channel conditions [24, 27, 30, 31, 52]. However,

designing an accurate channel simulator that matches the real application scenarios

is challenging.

2.1.5 Receiver Effects in RFFI Systems

A major challenge for RFFI is that the received signal not only contains the charac-

teristics of the transmit chain but is also affected by the receiver chain. The changes

in receiver hardware characteristics can seriously affect RFFI performance, but their

impacts have been usually overlooked in previous studies. Most existing RFFI works

assume that the same receiver is used during training and inference and that the

receiver characteristics do not change over time [16, 18, 19, 21, 30, 38]. However, this

assumption does not always hold in practical IoT applications. For instance, mobile

IoT devices will be served by different access points/gateways, depending on their

coverage. Furthermore, even if the same receiver is used, the hardware characteristics

of low-cost receivers may vary over time. To the best knowledge of the author, there

have been few studies investigating the receiver effects. Zhang et al. [20] demon-

strated how the change of receiver characteristics affects the RFFI performance, but

the work is mostly simulation-based and does not present a countermeasure. Mer-

chant et al. [51] undertook experiments using high-end receivers and observed the

performance degradation caused by the receiver effect. However, the low-end re-

ceivers were not investigated. Elmaghbub et al. [33] experimentally revealed that

using different receivers during training and inference degrades system performance,

but no solutions were designed. As will be experimentally demonstrated in Sec-

tion 5.4, both changing a new receiver for inference and the drift of receiver features

over time can seriously degrade RFFI performance. There is an urgent need for a

receiver-agnostic RFFI system that can be deployed in a highly practical manner.
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2.1.6 Collaborative RFFI Protocols

As wireless transmissions are broadcast and can be captured by any receivers within

range, it is, therefore, possible to design a collaborative RFFI protocol that can en-

hance system performance. In IoT applications, multiple receivers can be present

with numerous gateways in LoRaWAN and multiple access points in WiFi enterprise

networks, but critically, to the best of our knowledge, there are only two papers that

have explored using multiple receivers in RFFI systems [39,91]. Andrews et al. [91]

have investigated how to combine the observations from multiple antennas and com-

pared three combination methods, but it is based on traditional frequency features

and is not available in deep learning-based RFFI systems. He et al. [39] employed a

support vector machine (SVM), MLP, and LSTM to fuse the extracted decomposed

features and compared the fusion performance. However, it was mainly based on

simulation with limited experimental results. A collaborative RFFI scheme for deep

learning-based approaches needs to be designed and experimentally evaluated.

2.2 LoRa and LoRaWAN Background

LoRa is a physical layer modulation technique patented by Semtech in 2014 [92],

which has been widely used for long-range IoT applications. LoRaWAN defines

the upper networking layer protocol and is managed by the open association LoRa

Alliance. This section presents the background knowledge of LoRa and LoRaWAN.

2.2.1 LoRaWAN

LoRaWAN defines a star-of-stars network topology, which is shown in Fig. 2.1. It

allows one LoRa end node to establish wireless communication links (dashed lines)

with multiple gateways at the same time. The LoRa gateways are connected to a

server by using, e.g., WiFi, cellular communications or Ethernet (solid lines). They

relay the captured messages to the network server for collaborative decoding. The

server runs network and application layer protocols.
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Figure 2.1: LoRaWAN network topology.

2.2.2 LoRa Signal Modelling

LoRa is developed from chirp spread spectrum (CSS) modulation, which uses frequency-

varying chirp signals for communication. A baseband linear chirp, i.e. an unmodu-

lated LoRa symbol, is denoted as c(t) and mathematically given as

c(t) = Λe
j(−πBWt+π BW

Tsym
t2)
, (2.1)

where Λ, BW , and Tsym are amplitude, bandwidth, and symbol time duration,

respectively. In LoRa modulation, the symbol time Tsym is adjustable by modifying

the spreading factor SF and bandwidth BW , given as

Tsym =
2SF

BW
. (2.2)

The LoRa standard usually specifies several repeated baseband chirps at the

beginning of a packet as the preamble part [93], denoted as x(t).1 Note that x(t) is

the same for all the LoRa packets. The signal x(t) is affected by the wireless channel

before it reaches the receiver. The received baseband signal is denoted as y(t). Then

1Note that x(t) only refers to the packet preamble part since the payload information is not
leveraged in this thesis.
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an analog-to-digital converter (ADC) is applied for sampling and converts y(t) to

the discrete form, given as

y(t)
ADC−→ y[nTs], (2.3)

where Ts is the ADC sampling interval.2 Similarly, x[nTs] refers to the discrete form

of the transmitted baseband signal x(t). For convenience, x[n] and y[n] are used

for denotation, or x and y in vector form. Note that y[n] is a vector composed of

complex numbers, i.e., IQ samples. Its real and imaginary parts are named the I

and Q branches, respectively. The length of y[n], Lpre, is given as

Lpre = 8 · Lsym = 8 · Tsym

Ts

, (2.4)

where Lsym is the symbol length. Lpre is eight times Lsym because the packet pream-

ble part contains eight3 unmodulated LoRa symbols. Fig. 2.2(a) shows the I-branch

of y[n] and Fig. 2.2(b) is the zoom of the first preamble.

2.2.3 Short-time Fourier Transform

The LoRa signal is usually analyzed in the time-frequency domain because of its

non-stationary property. Short-time Fourier transform (STFT) is an efficient time-

frequency analysis algorithm that can reveal the time-frequency features of the signal.

The discrete STFT is mathematically written as

Sa,b =
A−1∑
a=0

y[n]w[n− bLhop]e
−j2π a

A
n

for a = 1, 2, ..., A and b = 1, 2, ..., B,

(2.5)

2Although the sampling offset can affect the received waveform, the signals of various offsets
have been collected into the training dataset and the NN can learn how to deal with it.

3The number of symbols in the preamble is changeable. We use the default setting of eight in
this thesis.
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Figure 2.2: Preamble part of a LoRa packet. (a) Time domain signal of all the
preambles (I branch). (b) Time domain signal of the first preamble (I branch). (c)
Spectrogram of all the preambles. (d) Spectrogram of the first preamble.

where Sa,b is the element of the STFT complex matrix S. B is number of columns

of S, given as

B =
8 · 2SF

BW
· 1
Ts
− A

Lhop

+ 1. (2.6)

A is the number of rows of S, which is also the length of window function w[n]. Lhop

is the hop size. Note that BW and SF are parameters in LoRa and can only be
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selected from several integers, i.e., BW can be 125 kHz, 250 kHz, 500 kHz, and SF

is from seven to 12. The sampling frequency, i.e., 1
Ts
, is set to an integer multiple of

BW . Lhop should be carefully selected to make B an integer. The spectrogram is

then represented in dB scale, S̃, with each element being

S̃a,b = 10 log10(|Sa,b|2),∀a, b, (2.7)

where |·| returns the amplitude of the input element. The spectrogram of the LoRa

preamble part y is shown in Fig. 2.2(c) and Fig. 2.2(d) is the zoom of the first one.

Note that the phase of the channel frequency response is not as stable as the

amplitude. It is susceptible to phase noise and carrier frequency offset, therefore it

is noisy and sensitive to temperature variations. In addition, the phase can also be

affected by the sampling time offset at the receiver side, making it more difficult to

be leveraged. Therefore, we did not use phase information in the thesis.

2.3 LoRa Signal Collection

The LoRa signal collection program is detailed in this section, which consists of

synchronization, CFO compensation and normalization.

2.3.1 Synchronization

Packet Detection

The packet detection algorithm is first performed to roughly detect the presence of

LoRa packets and coarsely locate the packet start point. The well-known Schmidl-

Cox algorithm is exploited, which is based on the repeating property of the pream-

bles [94]. A detection metric M [n] is calculated from the received signal yrcv[n],

which is expressed as

M [n] =

∣∣∣∑Lsym−1
i=0 yrcv[n+ i] · y∗rcv[n+ i+ Lsym]

∣∣∣∑Lsym−1
i=0 yrcv[n+ i+ Lsym] · y∗rcv[n+ i+ Lsym]

, (2.8)
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where y∗rcv[n] denotes the conjugate of yrcv[n]. M [n] changes from low to high when

the LoRa packet arrives. We compare it with a predefined threshold λdet, the packet

is detected when M [n] > λdet. λdet is often a fixed number between 0.5 and 0.8 in a

practical wireless system and is set to 0.7 in our signal collection program.

Fine Synchronization

The method described in the previous subsection can only detect the arrival of a

LoRa packet but not the accurate starting point [95]. A more precise synchronization

algorithm is essential to locate the exact starting point of the packet. Robyns et al.

[95] proposed an effective fine synchronization algorithm according to the unique

characteristics of LoRa signals. First, an ideal baseband preamble xlo[n] is locally

generated and its instantaneous frequency flo[n] is calculated as

flo[n] =
1

2πTs

(∠xlo[n+ 1]− ∠xlo[n]) (2.9)

where ∠(·) returns the angle. Then we calculate the instantaneous frequency frcv[n]

of the received synchronized signal yrcv[n], given as

frcv[n] =
1

2πTs

(∠yrcv[n+ 1]− ∠yrcv[n]). (2.10)

Finally, a sliding-window cross-correlation is performed between frcv[n] and flo[n].

The index of the maximum value is chosen as the index of the accurate starting

point, Ψ, which is given as

Ψ = argmax
i

( Lpre−1∑
n=0

frcv[n] · flo[n+ i]
)
. (2.11)

The segment before Ψ is discarded to obtain the synchronized signal y′rcv[n].
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2.3.2 CFO Compensation

Coarse Compensation

We first calculate the instantaneous frequency f ′
rcv[n] of the synchronized signal

y′rcv[n], given as

f ′
rcv[n] =

1

2πTs

(∠y′rcv[n+ 1]− ∠y′rcv[n]). (2.12)

As y′rcv[n] is composed of eight unmodulated linear chirps, the graph of f ′
rcv[n] is

eight repeated straight lines, with each expressing as

fsym[n] = −
BW

2
+

BW

Tsym

+∆f, (2.13)

where ∆f is the CFO to compensate. Thanks to the linearity of fsym[n] and repeata-

bility of f ′
rcv[n], the CFO can be coarsely estimated by calculating the mean value

of f ′
rcv[n]. The estimated CFO f̂coarse is given as

∆f̂coarse =
1

Lpre

Lpre−1∑
n=0

f ′
rcv[n]. (2.14)

Then y′rcv[n] can be compensated using the estimated f̂coarse, given as

y′′rcv[n] = y′rcv[n] · e−j2π∆f̂coarsenTs , (2.15)

where y′′rcv[n] is the coarsely compensated signal.

Fine Compensation

We further employ a fine CFO estimation algorithm since the coarse compensation

is not accurate enough. The residual CFO, f̂fine, can be estimated based on the

repeating property of preambles, given as

∆f̂fine = −
1

2πTsLsym

∠
( L−1∑

n=0

y′′rcv[n] · y′′∗rcv[n+ Lsym]
)
. (2.16)
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The received signal can be further finely compensated as

y′′′rcv[n] = y′′rcv[n] · e−j2π∆f̂finenTs .l (2.17)

As the phase can only be resolved in [−π, π], the range of CFO that can be estimated

by (2.16) is

|∆f̂fine| <
π

2πTsLsym

=
BW

2SF+1
. (2.18)

When the LoRa transmission is configured with SF=7 and BW=125 kHz, the es-

timation capability is within ±488.3 Hz. Commonly, the oscillator drift of LoRa

devices is ±10 ppm [96], approximately 8.68 kHz for the 868 MHz carrier frequency,

which is much higher than 488.3 Hz. Hence, the coarse CFO estimation should be

employed first to limit the residual offset before the fine CFO estimation. After the

coarse and fine CFO estimation, the overall estimated CFO, ∆f̂ , can be represented

as

∆f̂ = ∆f̂coarse +∆f̂fine. (2.19)

Simulation is carried out to evaluate the performance of CFO compensation us-

ing MATLAB. Numerous baseband LoRa preambles xsim[n] with CFO ∆fsim are

generated. Then the coarse CFO estimation is performed and the residual CFO can

be calculated by ∆fsim − ∆f̂coarse. Similarly, the fine estimated CFO, ∆f̂fine, can

be obtained by (2.16) and the residual CFO after fine compensation can be calcu-

lated by ∆fsim −∆f̂coarse −∆f̂fine. We ran the simulation 10,000 times with ∆fsim

uniformly distributed between -10,000 Hz and +10,000 Hz. The signal-to-noise ratio

(SNR) was 20 dB.4 As the histograms shown in Fig. 2.3, the residual CFO after

coarse and fine compensation is between 5 Hz to 20 Hz and between -1 Hz to +1 Hz,

respectively. This is accurate enough for RFFI applications.

4In the simulation, the signal amplitude is set to one and the noise level is accordingly computed
to reach an SNR of 20 dB.
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(a) (b)

Figure 2.3: Histograms of residual CFO. (a) Residual CFO after coarse compensa-
tion. (b) Residual CFO after fine compensation.

2.3.3 Normalization

Normalization is a technique used in RFFI to prevent the system from using received

signal strength to identify devices. The compensated signal y′′′rcv[n] is normalized by

dividing its root mean square (RMS) value, which is mathematically given as

y[n] =
y′′′rcv[n]√

1
Lpre

∑Lpre−1
n=0 |y′′′rcv[n]|

, (2.20)

where y[n] is the collected signal as the input to the RFFI system.

2.4 Conventional Deep Learning RFFI System

As shown in Fig. 1.3, a conventional DL-based RFFI system5 comprises two stages,

namely training and inference. In the training stage, the receiver first collects signals

from the K end nodes operating in the IoT network. The signal collection procedure

5In this thesis, a conventional RFFI refers to a typical closed-set DL-RFFI system.
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is elaborated in Section 2.3. The collected signals are stored as a training dataset,

Dtrain, given as

Dtrain = {(ym,pm)}Mtrain

m=1 , (2.21)

where ym is the mth training sample and pm is the corresponding one-hot encoded

DUT label, given as

pm = O(ℓm), (2.22)

where O(·) denotes one-hot encoding operation, ℓm is the ground truth DUT label

of the mth training sample, and Mtrain is the number of training samples. After

building the training dataset, we define a neural network f(·; Θ) and optimize its

parameters Θ using Dtrain as defined below

Θ = argmin
Θ

1

Mtrain

∑
(y,p)∈Dtrain

Lce(f(y; Θ),p), (2.23)

where Lce(·) is the cross-entropy loss. In the inference stage, the receiver captures a

signal y′ and feeds it into the well-trained neural network f(·; Θ) for prediction. A

probability vector p̂ is obtained via inference and is mathematically defined as

p̂ = f(y′; Θ), (2.24)

where p̂ = {p̂1, ..., p̂k, ..., p̂K} is a probability vector over all the K DUTs, and p̂k

is the estimated probability for the kth DUT. The predicted transmitter label, ℓ̂, is

derived by simply selecting the index of the element with the highest probability as

defined below

ℓ̂ = argmax
k

(p̂). (2.25)



Chapter 3

Towards Stable and Efficient RFFI

3.1 Introduction

This chapter aims to explore the stability of the DL-driven LoRa-RFFI system and

enhance the identification performance by designing appropriate signal representa-

tions and deep learning models. First, stability is critical for any authentication

system but the DL-RFFI is experimentally shown to be unstable over time. Pre-

vious studies demonstrate that the oscillator frequency is sensitive to temperature

variations [76], but its effect on DL-RFFI systems has not been comprehensively

investigated. Second, LoRa modulation employs the linear chirp signal to encode

information. Considering the unique frequency-varying property of chirp signals,

appropriate signal representations can be designed to enhance LoRa-RFFI perfor-

mance. Additionally, the most suitable NN type for the designed signal representa-

tion should be investigated for future design reference.

This chapter is motivated to address the above research challenges by designing

a DL-based RFFI system to classify LoRa devices. We carry out an in-depth investi-

gation and extensive experiments involving 25 LoRa DUTs and a universal software

radio peripheral (USRP) N210 SDR platform. The technical contributions of this

chapter are summarized as follows.

• We carry out extensive experiments over seven months to measure the CFO

26
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variation and demonstrate that CFO drifts over time and degrades the RFFI

stability. A bespoke setup is established by connecting each LoRa DUT and

the USRP platform with an attenuator to eliminate the multipath and Doppler

effects. CFO compensation is demonstrated to be effective mitigation for RFFI

stability, which can improve the classification accuracy from 83.53% to 95.35%

for the spectrogram-CNN1 model.

• We investigate three signal representations for LoRa signals, namely IQ sam-

ples, FFT results and spectrograms, corresponding to the time domain, fre-

quency domain and time-frequency domain analysis, respectively. Then we

build MLP, CNN and LSTM models to evaluate each signal representation.

Experimental results show that the spectrogram-CNN can reach the highest

accuracy of 95.35% with the least system complexity and the shortest training

time.

• A hybrid classifier is designed, which uses a pre-built CFO database to calibrate

the output of NNs. This enables the CFO to contribute to the device identi-

fication without compromising system stability. It is experimentally validated

that the designed hybrid classifier can significantly improve the classification

accuracy, namely from 58.26% to 82.81% in the best case for the FFT-LSTM

model.

The rest of the chapter is organized as follows. Section 3.2 gives an overview of the

designed RFFI system, and Section 3.3 further details it. Section 3.4 experimentally

demonstrates CFO drift and its effect on the RFFI system and Section 3.5 evalu-

ates the performance of the proposed RFFI systems in a real wireless environment.

Section 3.6 concludes the chapter.

1Spectrogram-CNN means using the spectrogram as signal representation and CNN as the DL
model. Similar descriptions are used throughout the chapter.
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3.2 System Overview

The architecture of the proposed RFFI system is shown in Fig. 3.1. In the training

stage, numerous packets are collected from legitimate DUTs with each packet cor-

rectly labeled. The preamble parts of these packets are then pre-processed, including

synchronization, CFO compensation, normalization, and conversion to the selected

signal representation, i.e., IQ samples, FFT results, and spectrogram. In the pre-

processing stage, a CFO database is created, which records the CFO of legitimate

DUTs. After the pre-processing, the training data is used to train the NN. Once

the training is completed, the newly received packet preamble can be converted to

the designed signal representation and fed into a hybrid classifier. The deep learning

model first makes a prediction, and then the CFO database is used for calibration.

The output of the hybrid classifier is the predicted device label.

3.3 System Design

3.3.1 Signal Collection

The LoRa signal collection program is detailed in Section 2.3, which consists of syn-

chronization, CFO compensation, and normalization. The synchronization detects

the signal arrival and locates the packet start point. Then the CFO is estimated and

compensated to improve system stability. Normalization is finally applied to prevent

the system from learning the received signal strength.

3.3.2 CFO Database Creation

A CFO database is created during training for use in the subsequent hybrid classifi-

cation. The database records the maximum and minimum CFO for each DUT in the

training dataset denoted as ∆f̂k
max and ∆f̂k

min, respectively. In the hybrid classifier,

the CFO database {(∆f̂k
max,∆f̂k

min)}Kk=1 is used to calibrate the softmax output of

DL models. The calibration algorithm is detailed in Section 3.3.5.
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Figure 3.1: A DL-based RFFI system. CFO compensation is implemented to prevent
the system performance from declining over time.

3.3.3 Signal Representation

The received IQ samples can be directly fed into the DL model. They can also be

converted to other signal representations such as spectrograms, FFT results, etc.

This helps reveal the underlying signal characteristics, making it easier for the NN

to learn.

IQ Samples: IQ samples, consisting of complex numbers from the I and Q

branches, represent the time-domain signals which are captured from the receiver

chain directly. Some previous studies directly employ IQ samples as system in-

puts [18, 25, 32, 84, 88]. However, this possibly makes the training of DL models

difficult and time-consuming because some signal characteristics are not obvious in

the time domain.

FFT Results: FFT transforms the signal into the frequency domain, making

some features easier to observe. For example, the CFO causes a phase difference in

the time domain, which manifests as a more easily observed spectrum shift in the

frequency domain [16].

Spectrogram: The spectrogram is generated by STFT, which is detailed in

Section 2.2. It converts the signal into the time-frequency domain, which not only
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provides information about frequency components but also demonstrates how they

change over time. It is useful for analyzing non-stationary wireless signals, including

the chirps employed by LoRa.

3.3.4 Deep Learning Models

DL models can automatically extract features from signal representations without

the need for feature engineering. Considering the characteristics of IQ samples,

FFT results, and spectrogram, three well-known DL models are investigated, namely

MLP, CNN, and LSTM. The preamble part of LoRa packets used in our experiments

contains 8,192 IQ samples. The FFT result also consists of 8,192 complex numbers.

As the DL model cannot process complex numbers, we split the I and Q branches of

IQ data, and the amplitude and phase of FFT result as two independent dimensions.

Therefore, the input dimension of DL models designed for IQ/FFT data is 2× 8192.

Unlike IQ and FFT data, the spectrogram can be considered a 2D image, resulting in

different input dimensions. We generate the spectrogram with a rectangular window

of length 256 and hop size 128, which leads to a 256× 63 spectrogram. We further

crop it to a smaller size of 102 × 63 as the top and bottom parts contain nearly no

useful information.

Fig. 3.2 demonstrates the proposed NNs, which are developed from well-known

DL models. For instance, the CNN for spectrogram is developed from LeNet but its

structure is further experimentally optimized to adapt to our applications [97].

Convolutional Neural Network: CNN was popular in recent years thanks to

its excellent performance in image recognition and computer vision [98]. CNN is

usually composed of convolutional layers, fully connected layers, and some pooling

layers. CNN is designed for image-like inputs. Among the three signal representa-

tions introduced in Section 3.3.3, the spectrogram can be considered as a 2D image

and thus can be processed by CNN.

The architecture of CNN for spectrogram is illustrated in Fig. 3.2(a). It consists

of three 2D convolutional layers with 8, 16, and 32 3 × 3 filters, respectively. Each

convolutional layer is followed by a batch normalization (BN) layer and activated
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Figure 3.2: Architectures of DL models. (a) CNN for spectrograms. (b) CNN for
IQ/FFT data. (c) MLP for IQ/FFT data and spectrograms. (d) LSTM for IQ/FFT
data and spectrograms.

by the rectified linear unit (ReLU) function. There are two maxpooling layers of

size 2× 2 following the first and second convolutional layers. The last convolutional

layer is connected to a fully connected layer activated by leaky ReLU, which is

mathematically given as

f(x) =

x, x ≥ 0

scale · x, x < 0
, (3.1)
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where the scale is set to 0.01 in this chapter. Dropout is adopted before fully con-

nected layers and padding is used in each convolutional layer.

The architecture of CNN for IQ/FFT is illustrated in Fig. 3.2(b), which consists of

three 2D convolutional layers and one fully connected layer. The three convolutional

layers are composed of 8, 16, and 32 filters with filter sizes of 1× 128, 2× 128, and

2 × 128, respectively. There are two 1 × 4 max pooling layers following the first

and second convolutional layers. Other settings are the same as the CNN designed

for spectrogram. Note that deeper CNNs with residual connections can enhance the

performance, which will be discussed in Chapter 4.

Multilayer Perceptron: MLP is the forerunner of CNN and LSTM, which

entirely consists of fully connected layers. The number of learnable parameters is

huge since all the neurons are fully connected in MLP, which can result in redundancy

and increased complexity. MLP has no preferred input data type.

The MLPs for spectrogram and IQ/FFT have the same network architecture

except for the input dimension. The architecture is shown in Fig. 3.2(c). It is im-

plemented with four fully connected layers. The first three layers have 1024 neurons

with ReLU activation and the last one has 128 neurons with leaky ReLU activation.

Dropout is adopted after the third fully connected layer.

Long Short-Term Memory Network: LSTM is a kind of recurrent neural

network that is designed for temporal sequences such as speech and acoustic sig-

nals [99]. It is efficient in capturing the temporal correlation in the input sequences.

In the three signal representations, the IQ samples and the spectrogram are time-

dependent, therefore LSTM can be used for processing.

Similar to the MLP, the LSTMs designed for spectrogram and IQ/FFT have the

same network architecture except for the input dimension. We use two LSTM layers

with 512 units, tanh is adopted as the activation function. Then we add one fully

connected layer with leaky ReLU activation after the second LSTM layer. Dropout

is used after the second LSTM layer.

Softmax Output: In classification problems, the softmax function is usually

employed in the last layer of a DL model to map the outputs to a list of probabilities
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p̂ = {p̂1, · · · , p̂k, · · · , p̂K} over all the classes, which is mathematically given as

p̂k =
ezk∑K
k=1 e

zk
, (3.2)

where zk is the output of the kth neuron before the softmax activation. K is the

number of DUTs. The straightforward strategy to make predictions is to select the

class with the highest probability as the final predicted label, which is used by most

of the DL-based RFFI systems.

Training Settings: The DL models are trained with the same parameters. We

select adaptive moment estimation (Adam) as the optimizer and the initial learning

rate is set to 0.0003. The learning rate drops every ten epochs with a drop factor of

0.3. The mini-batch size is set to 32 and the L2 regularization factor is 0.0001. The

training stops when the maximum epochs are reached, i.e., 60 epochs. The training

and validation loss plateaus when they reached the maximum epochs so that all the

DL models can be considered fully trained. All the networks are implemented with

the MATLAB DL Toolbox2 and trained on the same PC with a graphics processing

unit (GPU) of NVIDIA GeForce GTX 1660.

3.3.5 Hybrid Classifier

Although the CFO of the received IQ samples should be compensated before feeding

into the NN due to system stability, it is still a discriminative feature that can aid in

device identification. Therefore, we integrate the CFO-based identification into the

RFFI system, which is achieved by calibrating the NN output using CFO informa-

tion. In the inference stage, we first estimate the CFO of the received signal, ∆f̂ .

Then we can calibrate each element of the DL model output, p̂ = {p̂1, p̂2, · · · , p̂K},
using ∆f̂ and the CFO database {(∆f̂k

max,∆f̂k
min)}Kk=1. The calibration process is

formulated as {
p̂k = 0, when ∆f̂ > ∆f̂k

max or ∆f̂ < ∆f̂k
min,

p̂k = p̂k, when ∆f̂k
min < ∆f̂ < ∆f̂k

max.
(3.3)

2https://mathworks.com/products/deep-learning.html
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Table 3.1: LoRa DUTs.

DUT Index Model Chipset

1 - 5 SX1272MB2xAS mbed shield3 SX1272

6 - 10 SX1261MB2xAS mbed shield4 SX1261

11 - 15 Pycom FiPy5 SX1272

16 - 20 Pycom LoPy6 SX1276

21 - 25 Dragino SX1276 shield7 SX1276

The above calibration is carried out for each element of the NN output p. After

the calibration, the DUT with the highest probability in p is selected as the final

predicted label. The CFO database {(∆f̂k
max,∆f̂k

min)}Kk=1 should be updated period-

ically to achieve adequate identification performance.

3.4 Experimental Results of CFO Drift

Stability is one of the most crucial attributes of an RFFI system. The RFFs are

required to be time-invariant in the presence of environmental and time changes. In

this section, we experimentally demonstrate that CFO drifts over time and should

be compensated to prevent system performance from deteriorating.

3.4.1 Experimental Setup

Ten LoRa DUT of two models were employed, namely five SX1272MB2xAS and

five SX126xMB2xAS mbed shields, as listed in Table 3.1 and shown in Fig. 3.3(a).

The LoRa DUTs were configured with SF = 7, bandwidth BW = 125 kHz, and

the carrier frequency was 868.1 MHz. The receiver was a USRP N210 SDR with a

3https://os.mbed.com/components/SX1272MB2xAS/
4https://os.mbed.com/components/SX126xMB2xAS/
5https://pycom.io/product/fipy/
6https://pycom.io/product/lopy4/
7https://www.dragino.com/products/lora/item/102-lora-shield
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Figure 3.3: Experimental devices and setup. (a) LoRa DUTs. (b) The LoRa DUT
and the USRP receiver are connected by a 40 dB attenuator.

sampling rate of 1 MS/s. We used the Communications Toolbox Support Package

for USRP Radio of MATLAB to configure the USRP N210 SDR and access the

received data8. To eliminate channel effects and focus on CFO variations, we created

a bespoke setup connecting the LoRa DUT to the USRP N210 receiver through a

40 dB attenuator, which is shown in Fig. 3.3(b).

3.4.2 CFO Drift Observation

To evaluate the long-term drift of CFO, we carried out extensive experiments span-

ning seven months, namely April and September, October, and November 2020. The

five SX1272MB2xAS LoRa DUTs were tested as a case study. We collected 3,000

LoRa packets per day from each DUT, and each collection lasted about one hour.

The CFO of each packet is estimated and presented in Fig. 3.4. The CFO de-

creased over the first 20 minutes and then remained relatively constant. This is

reasonable because the temperature gradually increases after the DUT is powered

on, i.e., self-heating, and the oscillator is sensitive to temperature variations [76].

It is also observed in Fig. 3.4 that there is a non-negligible and unpredictable CFO

8https://mathworks.com/help/supportpkg/usrpradio/
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Figure 3.4: CFO drift over seven months. The experiments were carried out in
April, September, October, and November 2020. The data collection in April for
each device is not completed on a single day and thus cannot be labelled with a
specific date.

change over seven months. The drift is probably caused by uncontrollable environ-

mental conditions such as room temperature. However, the CFO remained relatively

consistent over several days, likely due to the receiver and DUTs being in a stable

environment with stable room temperature.

In DL studies, the training and test data are often required to have the same

data distributions, i.e., the i.i.d. assumption. Otherwise, the trained NN performs

poorly on the test data. The data distribution of the received IQ samples cannot be

visualized directly because it contains thousands of dimensions. The t-distributed

stochastic neighbor embedding (t-SNE) is a well-known dimensionality reduction

technique to visualize high-dimensional data, which has been used for data visual-

ization in a wide range of applications including RFFI [16]. Hence, we can use t-SNE

to visualize the IQ data collected on different days and observe the performance of

CFO compensation. The results are given in Fig. 3.5. We use the data of DUT 1

as an example. Each point represents one LoRa packet after dimension reduction,

and the colors of the points denote the day on which the packet was collected. From

Fig. 3.5(a), the IQ data collected on different days gather as several clusters when

CFO was not compensated. After CFO compensation, the IQ data collected on
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Figure 3.5: t-SNE visualization of IQ samples collected from DUT 1. (a) Without
CFO compensation. (b) With CFO compensation.

different days were mixed and cannot be separated, as shown in Fig. 3.5(b). This

is required for RFFI since the distribution of data collected from the same device

should be time-invariant. Therefore, CFO compensation is a necessary process in

RFFI systems for stability.

3.4.3 The Effect of CFO Drift on RFFI

In addition to the five SX1272MB2xAS LoRa DUTs used in the previous subsection,

we also collected data from five SX1261MB2xAS LoRa DUTs. The data collected

from these ten DUTs on four days were used to evaluate the effect of CFO drift on

RFFI. The spectrogram was selected as the signal representation and the CNN model

in Fig. 3.2(a) was employed. The CNN was trained with the first 1,000 packets of

each DUT (1, 000× 10 packets in total) from the Day 1 dataset, among which 90%

was randomly selected for training and the rest 10% was for validation. Then we

used another 1,000 packets of each DUT from the Day 1 dataset to test the trained

CNN. For Day 2-4 datasets, the first 1,000 packets of each device were used as the

test data. This allows us to evaluate the trained CNN with signals collected on four

different days.
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Figure 3.6: Experimental results of the spectrogram-CNN model without CFO com-
pensation. (a) Day 1 train, Day 1 test, overall accuracy: 99.57%. (b) Day 1 train,
Day 2 test, overall accuracy: 78.84%. (c) Day 1 train, Day 3 test, overall accuracy:
85.32%. (d) Day 1 train, Day 4 test, overall accuracy: 77.83%.

Fig. 3.6 shows the confusion matrices obtained by the spectrogram-CNN model

when the CFO compensation was not applied. Figs. 3.6(a), (b), (c) and (d) represent

the classification results when the test data was collected on Day 1, Day 2, Day 3,

and Day 4, respectively. When the training and test data were collected on the same

day, i.e., Fig. 3.6(a), the classification accuracy reached 99.57% which was almost no

classification error. In contrast, when the training and test data were collected on
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Figure 3.7: The comparison of CFO between the Day 1 training data and Day 4 test
data. (a) Comparison between DUT 2 and DUT 3. (b) Comparison between DUT 4
and DUT 5.

different days, i.e., Figs. 3.6(b), (c), (d), the classification results were unacceptable

as several DUTs were almost completely misclassified, e.g., DUT 3 and DUT 5 in

Fig. 3.6(d). As shown in Fig. 3.7(a), it can be observed that the CFO of DUT 3

drifted by hundreds of hertz from Day 1 to Day 4. The CFO of DUT 3 test data

was closer to DUT 2 training data rather than DUT 3 training data. Similarly, as

shown in Fig. 3.7(b), the CFO of DUT 5 test data was closer to DUT 4 training data

rather than DUT 5 training data. It is inferred that CFO drift is the main reason

for performance degradation and a slight drift of CFO would cause the NN to make

an incorrect prediction.

Fig. 3.8 shows the classification results after CFO compensation was applied.

The accuracy was always maintained above 96% on the four days. These results

revealed that CNN can classify DUTs with high accuracy after CFO compensation

and performance degradation is significantly mitigated.
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Figure 3.8: Experimental results of the spectrogram-CNN model with CFO com-
pensation. (a) Day 1 train, Day 1 test, overall accuracy: 98.89%. (b) Day 1 train,
Day 2 test, overall accuracy: 98.05%. (c) Day 1 train, Day 3 test, overall accuracy:
96.73%. (d) Day 1 train, Day 4 test, overall accuracy: 96.93%.

3.5 Experimental Evaluations in a Real Wireless

Environment

To focus on the CFO effect, the LoRa DUT and USRP were connected using an

attenuator in Section 3.4. However, this is not a practical application scenario. The

proposed RFFI system was evaluated in a real wireless environment in this section.
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Table 3.2: Classification accuracy of different models, number of parameters and
required training time.

Signal Representation DL Model
Accuracy

# of Parameters Training Timew/o CFO
Comp.

w/ CFO
Comp.

Hybrid

IQ samples

MLP 54.08% 55.73% 78.26% 19,018,009 25 min

CNN 64.10% 92.26% 98.11% 4,361,545 75 min

LSTM 61.16% 89.54% 95.14% 4,267,289 70 min

FFT results

MLP 55.44% 94.48% 96.17% 19,018,009 25 min

CNN 61.14% 82.10% 85.58% 4,361,545 75 min

LSTM 49.20% 58.26% 82.81% 4,267,289 69 min

Spectrogram

MLP 88.60% 91.82% 95.95% 8,821,017 22 min

CNN 83.53% 95.35% 96.40% 1,545,193 20 min

LSTM 68.16% 89.50% 98.04% 3,427,609 80 min

3.5.1 Experimental Setup

The number of LoRa DUTs is increased to 25 in this section. As shown in Table 3.1

and Fig. 3.3(a), these LoRa DUTs were from five manufacturers. The same USRP

N210 SDR was used as the receiver. The LoRa DUTs and USRP were configured

with the same parameters as described in Section 3.4.1.

The experiments were carried out in a typical indoor environment, with chairs

and tables distributed in the room. The distance between the LoRa DUT and USRP

was about three meters and there was a line-of-sight (LOS) between them. The SNR

of the received signals is estimated to be over 30 dB. We collected 2,000 packets

continuously from each DUT, which lasted about 15 minutes. All the DUTs were

placed at the same location and the environment was kept unchanged. Therefore,

the same channel condition can be assumed for all the signal transmissions.

We evaluated different signal representations and DL models. We used the first

1,000 packets of each DUT as the training data, 90% of which were randomly selected

for training and the rest 10% were for validation. The second 1,000 packets of each

DUT were used as the test data to evaluate the RFFI system. The experimental

results are presented in Table 3.2. We analyze the results from three aspects: the

impact of CFO in a wireless environment, the selection of signal representation and
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Figure 3.9: CFO of each packet in the dataset of DUT 1.

DL models, and the performance of the proposed hybrid classifier.

3.5.2 Impact of CFO Drift

We take DUT 1 as an example to illustrate the CFO variation of the collected data.

Fig. 3.9 shows the CFO of each packet collected from DUT 1 and presents a similar

pattern with Fig. 3.4 that the CFO decreased after the device was powered on. In

the wireless experiments, we used packets 1-1,000 to train the DL model and packets

1,001-2,000 to evaluate its performance. The packets in the test set have different

CFOs from those in the training set.

Similar to Section 3.4.2, we use t-SNE to visualize the training and test data

and the results are shown in Fig. 3.10. There are 2,000 points and the blue points

represent packets 1-1,000 used for training and the red points represent packets

1,001-2,000 used for the test. It can be observed from Fig. 3.10(a) that there are

distinct clusters when there is no CFO compensation, which indicates the training

and test data have different distributions. In contrast, as shown in Fig. 3.10(b), the

blue and red points are mixed after CFO compensation and cannot be separated.

This is expected because the RFFs of each DUT should be time-invariant after CFO
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Figure 3.10: t-SNE visualization of the training and test sets of DUT 1. (a) Without
CFO compensation. (b) With CFO compensation.

compensation.

The classification results are shown in Table 3.2. The accuracy was not sat-

isfying for all the signal representations and DL models when CFO compensation

was not applied. Taking spectrogram-CNN as an example, the overall accuracy was

only 83.53%. In contrast, the accuracy significantly increased to 95.35% after CFO

compensation was applied. The confusion matrices were given in Fig. 3.11(a) and

Fig. 3.11(b) which provide more detailed information.

3.5.3 Selection of Signal Representation and Deep Learning

Model

A crucial step to build a DL-based RFFI system is to design an appropriate signal

representation and construct a suitable DL model for it. System performance can be

evaluated by three metrics: classification accuracy, system complexity, and training

time.

Classification Accuracy: As shown in Table 3.2, the spectrogram-CNN model

achieved the highest classification accuracy, i.e., 95.35%. The accuracy of the FFT-
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MLP model reached 94.48% while the IQ-CNN model was 92.26%. In addition

to this, we observed two under-performing combinations: IQ-MLP and FFT-LSTM,

whose accuracy was only 55.73% and 58.26%, respectively. For IQ-MLP, the designed

MLP lacks the ability to extract distinctive features from LoRa IQ samples. For

FFT-LSTM, FFT data does not have time dependence and is not suitable for input

to the LSTM network.

System Complexity and Training Time: System complexity and training

time should also be considered. The RFFI systems are desired to have low com-

plexity, i.e., few parameters, so that the demand on the authenticator hardware

such as memory, and computing power can be reduced. Table 3.2 shows that the

spectrogram-based CNN has the least amount of parameters, namely 1,545,193, and

the trained CNN only takes up 5,679 kb of storage space.

The training time is another evaluation metric. As demonstrated in Table 3.2,

the spectrogram-based CNN requires 20 mins for training, which is only a quarter of

the spectrogram-based LSTM. When there are many DUTs running in a communi-

cation network, the training dataset can be very large, and the short training time

is especially important.

Comprehensive Comparison: The spectrogram-CNN model reached the high-

est classification accuracy with the least complexity and training time. Although

the accuracy of the FFT-MLP model reached 94.48%, only 0.87% lower than the

spectrogram-CNN model, the MLP has 19,018,009 learnable parameters, almost 12

times as many as the parameters of the spectrogram-CNN model. For LoRa signals,

the spectrogram-CNN model is highly recommended. The LoRa hardware imper-

fections can be revealed in the time-frequency domain spectrogram, and CNN is

particularly efficient at extracting the features hidden in 2D spectrograms.

3.5.4 Performance of the Hybrid Classifier

The hybrid classifier introduced in Section 3.3.5 improves the identification accuracy

by calibrating the softmax output of the DL model , and the results are given in

Table 3.2. It can be observed that the hybrid classifier can increase the accuracy for
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all the signal representations and DL models. The most significant improvement is

the FFT-LSTM; the accuracy with the hybrid classifier is increased from 58.26% to

82.81%, which is a 24.55% improvement. The cost-effective enhancement of hybrid

classification is accomplished by K more comparison steps, which consumes limited

computing resources.

3.6 Conclusion

In this chapter, we proposed a DL-based RFFI scheme to classify LoRa DUTs and

carry out extensive experimental evaluations involving 25 LoRa DUTs from five man-

ufacturers and a USRP N210 SDR as the receiver. First, the CFO of LoRa DUTs

was experimentally found to vary over time and compromise the system stability.

The CFO compensation was demonstrated to be effective in mitigating performance

degradation. Second, we investigated three signal representations, i.e., IQ samples,

FFT results, and spectrograms, and built three DL models to process them, i.e.,

MLP, LSTM, and CNN. The spectrogram-CNN model achieved the highest classifi-

cation accuracy with the least complexity and the shortest training time. Finally, a

hybrid classifier was proposed to calibrate the softmax output of DL models using the

estimated CFO. The range of CFO variations was found to stay relatively stable over

several continuous days so it is helpful to rule out predictions when the estimated

CFO deviates greatly from the reference CFO. The proposed RFFI system achieved

an accuracy of 96.40% in classifying 25 LoRa DUTs in real wireless environments.

In this chapter, the experiments were carried out with all the DUTs and receivers

fixed at the same location so that the wireless channel can be assumed to be static.

However, this setting does not well match the actual communication scenario. In

the next chapter, the impact of a changing wireless channel will be experimentally

evaluated and corresponding solutions will be proposed.
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Figure 3.11: Classification results of the spectrogram-based CNN. (a) Without CFO
compensation, overall accuracy: 83.53%. (b) With CFO compensation, overall ac-
curacy: 95.35%. (c) With CFO compensation, hybrid classifier, overall accuracy:
96.40%.



Chapter 4

Towards Scalable and

Channel-Robust RFFI

4.1 Introduction

This chapter aims to design an openset RFFI protocol that is robust to the vari-

ations of wireless channels. Previous studies often define DL-RFFI as a closed-set

problem [17,18,100], which is however unsuitable for an authentication system. The

closed-set RFFI systems typically use NNs with softmax layers for classification,

which can only output labels that are present in the training stage. However, the

rogue devices are never accessible during training. This implies that a rogue device

is always labeled as one of the legitimate devices. In other words, the closed-set

RFFI system lacks rogue device detection ability. Moreover, the classification NN

needs to be retrained when a new device requests to join the communication net-

work because the softmax layer consists of a fixed number of neurons. The retrain-

ing is time-consuming and significantly increases the deployment cost. Additionally,

the wireless signal is affected by the multipath and Doppler effects. Previous work

demonstrates that the RFFI system is severely affected by channel variations [18,24].

However, most IoT devices are mobile by design, and the wireless channel changes

frequently. It is therefore necessary to design an RFFI protocol that is robust to

47
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channel variations.

The RFFI system proposed in this chapter introduces an enrollment stage and

uses k-nearest neighbor (kNN) to replace the classification NN, making it scalable

and able to detect rogue devices. Moreover, the channel-independent spectrogram is

proposed to mitigate channel effects. Extensive experiments were carried out with 60

COTS LoRa devices of four models with various channel conditions to demonstrate

the excellent performance of the proposed RFFI system. The contributions are

highlighted as follows.

• A scalable RFFI framework is developed, based on a deep metric learning-

powered RFF extractor, which enables device joining and leaving without the

need for retraining. It maintains an RFF database by enrolling a new device

using the pre-trained RFF extractor or deleting the record of a leaving device.

• A channel-robust RFFI protocol is proposed by constructing the channel-

independent spectrogram and exploiting data augmentation. The channel-

independent spectrogram can mitigate the channel effect in the time-frequency

domain while reserving the RFF of the LoRa signal. The data augmentation

is carefully designed to represent real channel conditions with both multipath

and Doppler shift.

• Extensive experiments are conducted involving different LoRa devices, various

channel conditions, and antenna polarization. We experimentally demonstrate

that the RFF extractor can extract features from devices that are not present

during training, even if they are produced by other manufacturers. The pro-

posed channel-independent spectrogram is shown to be effective in mitigating

the channel effect and data augmentation can further increase the system’s

robustness. Antenna polarization is found to affect classification performance.

The codes1 and datasets2 created in this chapter are openly available online.

1https://github.com/gxhen/LoRa RFFI
2https://ieee-dataport.org/open-access/lorarffidataset
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Figure 4.1: System diagram of the proposed RFFI system.

The rest of this chapter is organized as follows. Section 4.2 shows the system

overview. Section 4.3 presents the designed scalable and channel-robust RFFI sys-

tem. Section 4.4 provides extensive evaluation results to show the system’s perfor-

mance. Section 4.5 finally concludes the chapter.

4.2 System Overview

The proposed system is based on the DL-powered RFF extractor. As shown in

Fig. 4.1, it involves training, enrollment, and authentication stages.

Training: The training stage produces a DL-powered RFF extractor rather than

a classification NN. Specifically, a large number of labeled packets are collected from

numerous training DUTs. Data augmentation is then used to increase channel diver-

sity. After augmentation, the training signals are converted to channel-independent

spectrograms to mitigate channel effects. Finally, the triplet loss in deep metric

learning is used to train the RFF extractor. The input of the extractor is a 2D
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channel-independent spectrogram, and the output is a vector consisting of 512 fea-

ture elements, which is the unique RFF of that device.

The training only needs to be done once as the trained RFF extractor is able

to extract unique RFFs from out-of-library (unseen) DUTs. The training DUTs are

not necessarily the same as the ones for enrollment and authentication. The training

can be done by a third party that owns massive data collected from a huge number

of devices to train an RFF extractor with excellent generalization capability.

Enrollment: The enrollment will obtain the RFFs of legitimate DUTs using the

RFF extractor. These are the actual working devices in an IoT network, which are

probably different from the training DUTs. These legitimate devices are required

to send several packets to the RFFI system. Then RFFs can be extracted from the

received packets using the trained RFF extractor and stored in a database. The

RFFs of the newly joined devices will be added to the database and the RFFs of

devices that leave the system will be deleted, which allows the system to be updated

efficiently. The enrollment should be carried out in a controlled environment to

ensure the RFFs of rogue devices are not enrolled.

Authentication: A complete authentication system should consist of two parts,

namely rogue device detection3 and device classification. Rogue device detection

first determines whether the transmitter belongs to the legitimate group, i.e., pre-

viously enrolled DUTs, and device classification further infers its label. Both are

implemented by the kNN algorithm.

4.3 System Design

4.3.1 Signal Preprocesssing

The LoRa signal collection and preprocessing algorithms are detailed in Section 2.3.

It consists of synchronization, CFO compensation, and normalization. The collected

signals are discrete IQ samples.

3Some work uses the term ‘identification’ to refer to detecting rogue devices.
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4.3.2 Channel Independent Spectrogram

The received signal, i.e., IQ samples, is not only distorted by the hardware impair-

ments but also by the wireless channel. While many IoT devices are mobile and

the wireless channel frequently changes. In this subsection, the channel-independent

spectrogram is proposed to mitigate the channel effect in the time-frequency domain

while preserving the device-specific characteristics.

Observation of Channel Effect

LoRa supports three bandwidth options, namely 125 kHz, 250 kHz, and 500 kHz.

LoRa transmissions are sometimes assumed to experience flat fading where the wire-

less channel causes the same magnitude and phase changes to all the frequency

components.

However, it was experimentally found that the wireless channel significantly dis-

torts the LoRa signal, and the effect can be easily observed from the received wave-

form. We collected LoRa packets in LOS stationary and non-line-of-sight (NLOS)

stationary scenarios as well as LOS mobile and NLOS mobile scenarios. Detailed ex-

perimental settings can be found in Section 4.4. The I-branch of the packet preamble

is shown in Fig. 4.2. It can be observed that the waveforms collected under different

scenarios are distinct. Section 4.3.3 demonstrates that the time dispersion causes

the sawtooth shapes, i.e., the multipath effect, and the amplitude variation is due to

channel changes, i.e., the Doppler effect.

Constructing Channel Independent Spectrogram

In Chapter 3, the STFT-generated spectrogram is used as the input to the NN

because it suits the frequency-changing property of LoRa signals. However, the

spectrogram is affected by the wireless channel. To mitigate channel effects, we

convert the spectrogram to a specially designed channel-independent spectrogram,

which is achieved by dividing the adjacent columns.

As introduced in Section 2.2, STFT can be considered as splitting y[n] into B

segments of A samples, then performing FFT on each segment. According to the
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Figure 4.2: Normalized received LoRa waveform. (a) LOS stationary scenario. (b)
NLOS stationary scenario. (c) LOS mobile scenario. (d) NLOS mobile scenario.

STFT implementation in this chapter, B = 63 and A = 256. The overall effect of

hardware distortion on the transmitted signal in the frequency domain is denoted as

F̃k(·). Therefore, the STFT complex matrix S can be arranged as

S =


H1,1F̃k(X1,1) H1,2F̃k(X1,2) · · · H1,BF̃k(X1,B)

H2,1F̃k(X2,1) H2,2F̃k(X2,2) · · · H2,B F̃k(X2,B)
...

... · · · ...

HA,1F̃k(XA,1) HA,2F̃k(XA,2) · · · HA,BF̃k(XA,B)


= [H1 ⊙ F̃k(X1) H2 ⊙ F̃k(X2) · · · HB ⊙ F̃k(XB)], (4.1)
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(a) (b)

Figure 4.3: (a) Spectrogram of LoRa preambles. (b) Channel independent spectro-
gram of LoRa preambles.

where Xb= [X1,b, X2,b · · ·XA,b]
T denotes the ideal frequency spectrum of the bth sig-

nal segment, the column vector Hb= [H1,b, H2,b · · ·HA,b]
T represents the channel fre-

quency response experienced by the bth signal segment and ⊙ denotes element-wise

product.

The phase information of S is noisy and can be affected by several issues such as

phase noise, CFO, and sampling time offset. Therefore, only the amplitude of each

element in S is used, expressed as |S|. The result is rearranged as

|S| = [|H1| ⊙
∣∣∣F̃k(X1)

∣∣∣ |H2| ⊙
∣∣∣F̃k(X2)

∣∣∣ · · · |HB| ⊙
∣∣∣F̃k(XB)

∣∣∣]. (4.2)

where |·| computes the amplitude of each element in the input matrix S. In our

experimental settings, the time gap between two adjacent signal segments is only

128 µs. It is reasonable to assume |Hb| ≈ |Hb+1|, i.e., the corresponding element

in Hb and Hb+1 are almost the same since the wireless channel will not change

dramatically in such a short period. Based on this assumption, we can divide the bth

column by the (b+1)th one so that the channel-related information can be eliminated.
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The matrix after division is given as

C =
[∣∣∣F̃k(X2)

∣∣∣∣∣∣F̃k(X1)
∣∣∣

∣∣∣F̃k(X3)
∣∣∣∣∣∣F̃k(X2)
∣∣∣ · · ·

∣∣∣F̃k(XB)
∣∣∣∣∣∣F̃(XB−1)
∣∣∣
]
. (4.3)

Compared to (4.2), the channel information is largely eliminated but the device-

specific hardware distortions F̃k(·) are preserved. Similar to (2.7), the amplitude of

C is expressed in dB scale

C̃ = 10 log10(|C|
2). (4.4)

C̃ is the proposed channel-independent spectrogram which is used as the input of the

RFF extractor. It is also worth noting that the top and bottom of C̃ are cropped by

30% since these parts are far from the central frequency and therefore contain nearly

no useful information but noise. The size of the cropped channel independent spec-

trogram is 102×62 according to our experimental settings. The channel-independent

spectrogram of the LoRa preamble part is shown in Fig. 4.3b.

4.3.3 RFF Extractor Training

The RFF extractor is the core module in the proposed RFFI system. It should

extract channel-independent and discriminative RFFs from the received signal and

generalize well on previously unseen devices. In the proposed system, the training

data can be collected in a controlled environment, and correctly labeling each LoRa

packet is not difficult. This enables us to use supervised learning approaches rather

than unsupervised ones such as autoencoders to better learn identity-related features.

Data Augmentation

Data augmentation is an efficient approach in deep learning to improve performance

and has been recently applied in the area of RFFI to increase its robustness to

the wireless channel [24, 27, 52]. Data augmentation can generate more training

data to increase the performance of the RFF extractor and reduce the overhead for
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Table 4.1: Parameter of the Channel Simulator

Paramter Range

RMS delay spread τd (ns) [5,300]

Maximum Doppler frequency fd (Hz) [0,10]

Rician K-factor [0,10]

SNR (dB) [20,80]

data collection. It can also mitigate the channel effect by injecting various channel

distortions into the training data so that the RFF extractor automatically learns

how to deal with them.

1) Channel Effects: In this chapter, the channel effect for data augmenta-

tion includes both multipath and Doppler shift. The multipath is described by the

power delay profile (PDP). The exponential PDP is selected with each path P [d]

mathematically given as

P [d] =
1

τd
e−dTs/τd , d = 0, 1, · · · , dmax, (4.5)

where τd is the RMS delay spread and dmax is the index of the last path. The PDP

is normalized by dividing the sum of all values in P [d].

This chapter also considers the Doppler shift, which is overlooked in previous

work as the channel is assumed to be constant in a packet time [24,27,52]. However,

this assumption might not hold for some LoRa transmissions. Each LoRa preamble

typically lasts about 1 ms and the channel effect may not remain constant in mobile

scenarios. Actually, the Doppler effect is observed from the received waveform such

as Fig. 4.2c and Fig. 4.2d. The Doppler effect can be characterized by the Doppler

spectrum. This chapter adopts the popular Jakes model whose spectrum Ω(f) is

defined as

Ω(f) =
1

πfd
√

1− (f/fd)2
, (4.6)

where fd is the maximum Doppler shift.
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2) Procedure: The data augmentation is carried out as follows.

1. The training data should be collected in a short-distance LOS stationary sce-

nario so that it can be assumed as experiencing frequency-flat slow fading.

2. The number of training samples is increased by replication. In our implemen-

tation, the training set is doubled. Note that more replications may improve

system performance but will significantly increase the requirements on disk and

memory storage.

3. The channel effect with multipath and Doppler effect is generated with the

parameters randomly selected within specific ranges given in Table 4.1.

4. The packet generated in step 2 passes through the channel from step 3. The

AWGN is added to the signal to emulate different SNR levels.

The augmentation is completed by repeating the above process for all the training

packets.

We show the waveform of three cases, namely strong multipath4 no Doppler

effect, strong Doppler effect with weak multipath and both strong multipath and

Doppler effects in Fig. 4.4b, Fig. 4.4c and Fig. 4.4d, respectively. It can be observed

that the augmented waveforms match well with the real collected ones shown in

Fig. 4.2. We can also conclude that the wireless channel distorts the received LoRa

signal significantly. The sawtooth shapes are caused by multipath and the amplitude

variation is caused by the Doppler effect.

Model Architecture

The channel-independent spectrogram can be regarded as a 2D image thus CNN is

used to extract RFFs from it. The CNN in this chapter is designed with reference

to the well-known ResNet [98]. It is further optimized to be more lightweight and

suitable for the size of channel-independent spectrograms.

4The level of multipath relies on both the symbol period and the RMS delay spread. As LoRa
has a long symbol period, it does not suffer from multipath much. ‘Strong multipath’ in this chapter
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Figure 4.4: Augmented LoRa preambles. (a) Original waveform. (b) Strong mul-
tipath no Doppler effect (τd = 300 ns, fd = 0 Hz). (c) Strong Doppler effect with
weak multipath (τd = 5 ns, fd = 10 Hz). (d) Both multipath and Doppler effects are
strong (τd = 300 ns, fd = 10 Hz).

The architecture of the RFF extractor is shown in Fig. 4.5, where /2 denotes

strides in convolution operation is two. It consists of nine convolutional layers, one

average pooling layer, and one dense layer of 512 neurons, residual structure is also

adopted. The first convolution layer uses 32 7×7 filters with stride 2, the second

to the fifth layers use 32 3×3 filters, and the sixth to the ninth layers employ 64

3×3 filters. All the convolutional layers are activated by ReLU and padding is

is just a contrast to the ‘weak multipath’ scenario of 5 ns RMS delay. Similarly, the ‘strong Doppler
effect’ is a contrast to the ‘no Doppler’ scenario.
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Figure 4.5: Architecture of the RFF extractor, revised from ResNet.

used. We leverage an L2 normalization layer to make the RFF extractor learns

better features [101]. The output of the RFF extractor is a vector consisting of 512

elements which can be considered as the RFF extracted from the received packet.

Note that the model hyper-parameters such as the dimension of feature vectors are

adjusted based on LoRa-RFFI, and can be optimized on a third-party dataset. The

designed feature extractor has 12,458,496 learnable parameters, which is affordable

for many embedded systems.
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Figure 4.6: Triplet loss.

Deep Metric Learning

Deep metric learning aims to train an NN that maps the input to a 1D vector/embedding.

There are many loss functions available in deep metric learning such as contrastive

loss, L2-softmax loss, etc. Interested readers, please refer to [102, 103] for detailed

information.

Triplet loss is a well-known ranking loss used in deep metric learning and has been

successfully adopted in face recognition tasks [104]. It projects the input data into a

space where similar samples are close to each other and dissimilar ones are far away.

During the training process, a triplet consisting of anchor, positive and negative

samples is selected from the training dataset at each step. Specific to RFFI, anchor

and positive samples are packets from the same device and the negative sample

is from a different one. As shown in Fig. 4.6, the RFFs of anchor, positive and

negative samples are extracted, and then the triplet loss is calculated. The goal of

triplet loss is to minimize the Euclidean distance between the anchor and positive

samples while maximizing the distance between the anchor and negative samples,

which is expressed as

Ltriplet = max(E(Anc, Pos)− E(Anc,Neg) + α, 0) (4.7)

where Anc, Pos, Neg denote features extracted from anchor, positive and negative
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samples, respectively. E(·, ·) denotes the Euclidean distance between two vectors. α

denotes the margin between positive and negative pairs, which is a hyper-parameter

and is set to 0.1 in our implementation.

4.3.4 Enrollment and Authentication

Enrollment

The legitimate devices are required to send several packets for enrollment before

joining the system. These enrollment packets are first preprocessed and transformed

to channel independent spectrograms. Then the RFF extractor is used to extract the

RFF templates and store them in a database. The enrollment is actually the training

phase of a kNN classifier, which simply memorizes all the training samples. Unlike

deep learning, kNN is not a data-hungry model. This is very desirable as it can

significantly decrease the overhead of data collection. For example, 100 packets from

each legitimate DUT are sufficient for enrollment, which is experimentally presented

in Section 4.4.

Authentication

A complete authentication system should include two parts, namely rogue device

detection and device classification. In the proposed implementation, they are both

based on the kNN algorithm with simple distance measures. The RFF extractor is

trained with Euclidean distance-defined triplet loss. The kNN algorithm also relies

on Euclidean distance measures thus their principles match well.

1) Rogue Device Detection: Rogue device detection is to determine whether

the received packet is from an enrolled legitimate device. It is necessary before device

classification, otherwise, the RFFI system will assign legitimate labels even to rogue

devices. The rogue device detection is implemented by the distance-based kNN

anomaly detection algorithm. After receiving a packet, its RFF is extracted and the

average distance to its Kknn
5 nearest neighbors in the RFF database is calculated as

5Kknn is a hyperparameter that needs to be experimentally determined. It is advised to test
various values of Kknn in a small dataset to find the optimal option.
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the detection score, which can be mathematically expressed as

Eavg =
1

Kknn

Kknn∑
k=1

Ek, (4.8)

where Ek is the Euclidean distance to the kth neighbor. Then a predefined threshold

λrd is used to determine whether the received packet is from an enrolled device.

When the detection score Eavg is above λrd, the packet is considered to be sent from

a rogue device and the authentication fails. In contrast, the packet is considered

to come from an enrolled device when Eavg is below the threshold λrd and will be

further classified. This can be formulated as

Decision =

{
enrolled device, when Eavg ≤ λrd

rogue device, when Eavg > λrd

(4.9)

The detection threshold λrd can be determined based on the application requirement.

A higher λrd leads to higher security, while a lower λrd makes the RFFI system more

user-friendly, i.e., access will not be denied frequently. When there is no special

requirement, the method to find the optimal λrd will be introduced in Section 4.4.2.

2) Device Classification: Device classification is to infer the specific label of a

transmitter from which the received packet is sent, which is a classification problem.

It outputs a previously enrolled label according to the templates stored in the RFF

database.

The proposed device classification system is implemented with the majority vot-

ing kNN algorithm. The RFF of the received packet is first extracted and its Kknn

nearest neighbors are selected from the database according to the Euclidean dis-

tance. This packet is then assigned to the label that is most frequent among the

Kknn neighbors.
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(a) (b) (c)

Figure 4.7: Experimental devices. (a) DUTs 1-45: LoPy4. (b) DUTs 46-60: mbed
SX1261 shields, FiPy and Dragino SX1276 shields. (c) Receiver: USRP N210 SDR.

Table 4.2: LoRa DUTs.

DUT index Model Chipset

1 - 45 Pycom LoPy4 SX1276

46 - 50 mbed SX1261 shield SX1261

51 - 55 Pycom FiPy SX1272

56 - 60 Dragino SX1276 shield SX1276

4.4 Experimental Evaluation

4.4.1 Experimental Settings

DUT and Receiver

We employed 60 COTS LoRa devices as DUTs, and a USRP N210 SDR platform

as the receiver, as shown in Fig. 4.7. Detailed DUTs information can be found in

Table 4.2. The carrier frequency is 868.1 MHz and the transmission interval is set

to 0.3 s. The receiver sampling rate is 1 MHz.

Training RFF Extractor

We first collect 500 packets from each of DUTs 1-30 in a residential room with LOS

between the DUT and the receiver. The distance is about half a meter and DUT
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Table 4.3: Extractor Information.

Extractor Input Training DUTs Data Augmentation

Extractor 1 Channel ind.
spectrogram

DUT 1-30 Yes, multipath and Doppler

Extractor 2 Channel ind.
spectrogram

DUT 1-20 Yes, multipath and Doppler

Extractor 3 Channel ind.
spectrogram

DUT 1-10 Yes, multipath and Doppler

Extractor 4 Channel ind.
spectrogram

DUT 1-30 No

Extractor 5 Spectrogram DUT 1-30 No

Extractor 6 Channel ind.
spectrogram

DUT 1-30 Yes, multipath only

antennas are vertical to the ground.

We trained six RFF extractors with their detailed configuration given in Table 4.3.

Extractor 1 is trained as a baseline model involving channel independent spectrogram

and data augmentation. Extractors 2-6 are trained for comparison to show the

effects of different procedures during training. Extractor 1-3 are trained with the

dataset augmented by both multipath and Doppler effects, while during the training

of Extractor 6 only the multipath effect is emulated.

All the RFF extractors are trained with the same settings, including validation

set ratio, optimizer, learning rate schedule, batch size and stop condition. 10% of

the training data are randomly separated for validation. The model is optimized

using root mean squared propagation (RMSprop) with an initial learning rate of

0.001. The learning rate drops every time the validation loss does not decrease for

10 epochs and the drop factor is 0.2. The batch size is set to 32. The training stops

when validation loss does not decrease for 30 epochs. The model is implemented

using Keras and trained with NVIDIA GeForce GTX 1660.
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Table 4.4: Summary of Experimental Evaluation.

Section Extractor Enrollment Set Identification/Classification Set Purpose

Section 4.4.4 1,2,3 Legitimate DUTs (residential
room)

Legitimate and rogue DUTs
(residential room)

Generalization ability of rogue device de-
tection versus the number of training
DUTs

Section 4.4.5 1,2,3 Seen, unseen, and different model
DUTs (residential room)

Seen, unseen, and differ-
ent model DUTs (residential
room)

Generalization ability of device classifica-
tion versus the number of training DUTs

Section 4.4.6 1,4,5 Data collected in stationary sce-
narios (residential room)

Ten datasets with different
channel conditions (office
building)

Evaluate data augmentation and channel
independent spectrogram

Section 4.4.7 1,6 Data collected in stationary sce-
narios (residential room)

Emulated datasets with vari-
ous moving speeds

Evaluate data augmentation (Doppler

effect)

Section 4.4.8 1 Datasets with different antenna di-
rections (office)

Datasets with different an-
tenna directions (office)

Effect of antenna polarization

Enrollment and Authentication

100 packets are collected from each DUT for enrollment. Unless otherwise specified

(Section 4.4.8), the enrollment sets are collected in a residential room with LOS and

vertical antenna placement.

We collect another 100 packets from each DUT for authentication. The exper-

imental setup varies according to the tests. We use identification and classification

sets to represent datasets for rogue device detection and device classification, respec-

tively. The number of neighbors Kknn is set to 15 for both rogue device detection

and device classification.

The RFF extractors training only needs to be done once. Enrollment and au-

thentication are carried out multiple times for evaluating system performance in

various configurations. Table 4.4 summarizes the experimental studies and their

configurations.

4.4.2 Evaluation Metrics

Rogue Device Detection

Rogue device detection can be evaluated using the receiver operating characteristic

(ROC) curve. As shown in (4.9), the result of rogue device detection is related to the

value of the threshold λrd. This makes it unfair to compare rogue device detection
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performance since RFFI systems may set different threshold λrd. The ROC curve can

be leveraged to overcome this, which reveals the trade-off between a false-positive rate

(FPR) and true-positive rate (TPR) at various threshold settings. More specifically,

a pair of FPR and TPR are calculated at each threshold setting, and then we plot

these pairs in the same figure to obtain the ROC curve. Two important metrics can

be further calculated from the ROC curve, namely the area under the curve (AUC)

and the equal error rate (EER). AUC refers to the area under the ROC curve, and

the larger it is, the better the system performance. EER refers to the point on the

ROC curve where FPR equals (1-TPR), and the smaller the better. EER can also

help find the optimal threshold. The threshold λrd that makes the system meet the

EER point can be selected as the optimal value.

Classification

The metrics for device classification are the confusion matrix and overall accuracy

which is defined as the correctly classified samples divided by the total number of

test samples.

4.4.3 System Scalability

RFFI system should be scalable to allow device joining and leaving. Previous deep

learning-based RFFI systems use a single classification NN therefore the model out-

put can only be device labels that are present during training. For example, if we

train with the packets collected from DUTs 1-10, the model can only output a label

between 1-10. Therefore, the deep learning model must be retrained when a new

DUT joins the system, which is time-consuming and not practical.

In this chapter, we train the deep learning model as an RFF extractor rather

than for classification. The training of the RFF extractor only needs to be done

once. We then introduce an enrollment stage to obtain the RFFs of any devices

in the IoT network via the pre-trained RFF extractor. In the enrollment stage, we

only need to train a kNN classifier (store template RFFs), which can be done very

quickly when new devices join. The RFF database can also be managed efficiently by
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Figure 4.8: ROC curve of rogue device detection.

only recording the RFF of devices that are active and present in the IoT network. In

summary, our protocol has excellent scalability in terms of maintaining an up-to-date

device list.

4.4.4 Generalization Ability for Rogue Device Detection

Rogue devices are out-of-library devices that are inaccessible during training. Whether

the number of training DUTs affects the performance of rogue device detection should

be evaluated. The hardest case for rogue device detection is whenever the rogue

device has similar hardware characteristics to the legitimate ones. Therefore, we

specifically select DUT 31-40 as legitimate devices and DUT 41-45 as rogue ones,

which are all LoPy4 devices. The identification dataset consists of 100 packets from

each DUT 31-45, collected from the same residential room using the same setup.

The ROC curves are shown in Fig. 4.8. It can be observed that the AUC of

Extractor 1 is 0.9905, indicating excellent detection performance. The AUC of Ex-

tractor 3 is the worst, which is 0.9479. This demonstrates that the more DUTs

involved in the training stage, the better the rogue device detection capability is.
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4.4.5 Generalization Ability for Device Classification

To achieve good scalability, the RFF extractor must be able to extract RFFs from

newly added devices that are out-of-library during the training stage. In other words,

the RFF extractor should have an excellent generalization ability on previously un-

seen devices. The rule of thumb in deep metric learning is that the more training

data, the better the generalization ability. We select Extractors 1, 2, and 3 for

comparison since they are trained with different numbers of DUTs.

We specifically select three groups of DUTs for evaluation, namely DUTs 1-10,

DUTs 31-40, and DUTs 46-60.

• Seen DUTs: DUTs 1-10 are present during the training of Extractors 1, 2,

and 3 therefore they are used to evaluate the extractor performance on seen

devices.

• Unseen DUTs, same manufacturer: DUTs 31-40 are disjoint with the

training devices but with the same model (LoPy4). They can be used to

validate the extractor performance on unseen devices.

• Unseen DUTs, different manufacturers: DUTs 46-60 are produced by

other manufacturers, whose hardware characteristics are likely to be differ-

ent from the training LoPy4 devices. This is the most challenging case as it

requires a much higher generalization ability of the RFF extractor. This is

also unavoidable in practice since involving devices from all the manufacturers

during training is impossible.

The classification datasets are collected from the same residential room with the

same setup as the enrollment set.

The classification results on these three groups are shown in Fig. 4.9. It can be

observed that Extractor 1, 2, 3 perform excellently on DUTs 1-10 and DUTs 31-

40. The overall accuracies are always above 95%. The highest accuracy is reached

by Extractor 1 with 98.50% on DUTs 1-10. The accuracy is 98.40% on classifying

DUTs 31-40 which demonstrates the trained RFF extractor can efficiently extract

RFFs from the devices that are not present during training. We can see that there is
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Figure 4.9: Performance of RFF extractors.

a significant performance gap between Extractor 1, 2, 3 on DUT 46-60. Extractor 3,

trained with only 10 DUTs, has the worst classification result, i.e., 75.80%. Training

with 30 devices (Extractor 1) can increase it to 88.67% and the confusion matrix is

shown in Fig. 4.10. It is found that the DUTs of the same type have similar hardware

characteristics as almost all the misclassified packets fall into the three red boxes.

The classification performance on DUT 46-50 is excellent but that for DUT 56-60

is not satisfying. This may be because the hardware characteristics of DUT 56-60

(Dragino SX1276) are more different from the training DUTs (LoPy4). In summary,

it is advised to include as many DUTs of various models as possible to improve the

generalization ability on out-of-library devices.

4.4.6 Effect of Data Augmentation and Channel Indepen-

dent Spectrogram

The RFFI system should be robust to locations and channel variations. We mitigate

the channel effect in the time-frequency domain and propose the channel-independent

spectrogram as the model input. Then we use data augmentation to further increase

its robustness to the wireless channel.

To verify that they are effective, classification datasets are collected in an office

building whose environment is completely different from the enrollment residential
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Figure 4.10: Classification result on other LoRa types, overall accuracy 88.67%.

Table 4.5: Summary of Classification Datasets Collected in an Office Room and a
Meeting Room.

Evaluation Purpose Data Augmentation and Channel Independent Spectrogram Antenna Polarization

Dataset D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Location A B C D E F B F B F

Channel Effect LOS LOS LOS NLOS NLOS NLOS LOS NLOS LOS NLOS LOS NLOS

Movement Stationary Objective moving Mobile Stationary

Antenna Vertical Horizontal

room. The experiments are conducted in an office and a meeting room. The pho-

tos and floor plan of them can be found in Fig. 4.11. We collect 10 classification

datasets, D1-D10, and they can be categorized into three scenarios, namely station-

ary, the object moving, and mobile scenarios. A summary of these datasets is given

in Table 4.5.
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Figure 4.11: Experimental environments. (a) Meeting room. (b) Office. (c) Floor
plan.

Stationary Scenario

Six datasets, D1-D6, are collected at Location A-F, respectively. During the data

collection, DUTs and USRP N210 are stationary and there is no object moving

around.

Locations A-F lead to multipath effects of varying severity. For instance, the

waveform of DUT 6 at Location F (D6) is similar to that shown in Fig. 4.2b, showing

a distinct sawtooth shape. While the waveform at Location A is almost the same as
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Figure 4.12: Classification results in various channel conditions.

Fig. 4.2a, which is nearly flat. As discussed in Section 4.3.3, the sawtooth is caused

by the multipath effect therefore the channels at Locations A and F are different.

Object Moving Scenario

Two datasets, D7 & D8, are collected at locations B and F, respectively. The DUTs

and USRP are kept stationary while a person randomly walks around the room at a

speed of 2 m/s.

In this scenario, the collected LoRa packets show different waveforms since the

channel changes as a result of people walking. However, the Doppler effect is not

quite serious due to the low walking speed.

Mobile Scenario

Two datasets, D9 & D10, are collected in the office and meeting room, respectively.

The USRP is kept stationary and a person takes the DUTs walking around at a

speed of 2 m/s. There is always a clear LOS between the transmitter and receiver

because the body does not obstruct it.

Both multipath and Doppler effects are serious in this scenario since the sawtooth

shapes and amplitude variations can be frequently observed. Many packets show

waveforms similar to those shown in Fig. 4.2c and Fig. 4.2d.
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Discussion

Extractors 1, 4, and 5 are selected for comparison to demonstrate the effectiveness

of channel independent spectrogram and data augmentation. Their training details

can be found in Table 4.3 and the classification results are summarized in Fig. 4.12.

It can be observed that Extractor 1 performs well on all datasets, which indicates

the proposed RFFI system is robust to locations and channel variations. It performs

slightly worse on D9 and D10 that are collected in mobile scenarios (lower than

90%). This is possibly due to the inevitable shaking of the DUT antenna during

moving, which will result in the change of antenna polarization. The effect of antenna

polarization is discussed in Section 4.4.8.

Compared with Extractor 1, the training of Extractor 4 does not employ data

augmentation. As can be seen, its performance on D5 is significantly worse with

only 78.80% accuracy. D5 is collected at Location E which is the farthest from

the receiver. This indicates the channel independent spectrogram is affected by the

noise in lower SNR scenarios. Data augmentation must be used to further improve

its robustness.

As for Extractor 5, it employs neither channel-independent spectrogram nor data

augmentation. It can be observed that Extractor 5 only performs well on D1 which

is a short-distance LOS stationary scenario. It is presumed that the channel condi-

tion at Location A is similar to the enrollment residential room. Once the channel

is changed, the classification performance will degrade significantly. The worst re-

sults occur on D9 and D10 (mobile scenario) whose accuracy is 55.90% and 49.40%,

respectively, which are 30% lower than Extractor 1.

Whether data augmentation can solve the channel problem without the use of the

channel-independent spectrogram was also investigated. However, it was found that

the training loss does not decrease during the training process. We presume this is

due to the RFF extractor is not capable of extracting discriminative RFFs from the

spectrogram when the training data is distorted by various wireless channels. In con-

trast, when we use the channel-independent spectrogram instead of the spectrogram

as model input (Extractor 1), the channel effects are mitigated and device-specific
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Figure 4.13: Classification results under various Doppler frequencies of the identifi-
cation sets.

features can be learned so that the model is trained successfully.

4.4.7 Effect of Doppler Shift in Data Augmentation

Data augmentation must be considered to improve the classification performance in

high-speed scenarios (serious Doppler effects). Due to the experimental constraints,

we emulate the communication scenarios at various moving speeds by filtering the

real collected D1 to a channel simulator to generate classification sets. The process is

almost the same with data augmentation introduced in Section 4.3.3. The maximum

Doppler frequency, fd, is fixed to 0, 10, 30, 50, 100 Hz, respectively. These Doppler

frequencies are equivalent to moving speeds of 0, 12.46, 37.33, 62.21 and 124.4 km/h

for a LoRa system operating at 868 MHz. We select Extractor 1 and Extractor 6

for comparison to demonstrate the Doppler effect must be considered during data

augmentation.

The results are summarized in Fig. 4.13. Compared with Extractor 1, Extrac-

tor 6 does not consider the Doppler effect during data augmentation. Its maximum

Doppler frequency fd is fixed to 0 Hz. It can be seen that both these two extractors

achieved a good accuracy, i.e., around 97.50%, in stationary scenarios (fd = 0 Hz).

However, when the Doppler frequency fd increases, the performance gap between
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Extractors 1 and 6 becomes larger. In the scenario of fd = 100 Hz, the accuracy of

Extractor 6 is only 68.60%, probably because the channel-independent spectrogram

cannot perfectly eliminate channel effects in high-speed scenarios. As given in (4.2),

|Hb| ≈ |Hb+1| holds when the Doppler effect is not severe. Involving the Doppler

effect during data augmentation can mitigate this. As shown in Fig. 4.13, Extractor

1 can boost the accuracy to 80% in the fd = 100 Hz scenario. However, there is still a

20% accuracy drop compared to low-mobility scenarios (e.g., fd = 10 Hz), indicating

that the channel effect is not fully eliminated. Therefore, algorithm enhancement is

required for high-speed scenarios. One possible approach is to employ more precise

channel models, which can be used to simulate high-speed scenarios and augment

the training data.

4.4.8 Effect of Antenna Polarization

Antenna polarization refers to the direction of the electric field produced by an

antenna. It was found to affect the transient-based RFFI system [105]. To the best

knowledge of the author, there is no study on antenna polarization in deep learning-

based approaches that use the non-transient signal for classification. To explore this,

we additionally collected two datasets, D11 & D12, at Location B and Location F,

respectively. The DUT antenna is horizontal to the ground and points toward the

USRP. Omnidirectional antennas are used in the experiments. More specifically, the

antenna radiation pattern is doughnut-shaped and omnidirectional in the horizontal

plane. Both DUTs and USRP are kept stationary. Extractor 1 is used to extract

RFFs.

Mismatched polarization refers to the antennas of the transmitter and receiver

having orthogonal polarization directions. We use D2 and D11 for enrollment and

classification sets, respectively, which are collected at Location B and the only dif-

ference is the antenna direction. The classification result is shown in Fig. 4.14a. It

can be seen that nearly all the packets from DUT 36 are misclassified as DUT 33. A

similar result is obtained when D6 is used for enrollment and D12 for classification,

both of which are collected at Location F.
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Figure 4.14: Classification results of antenna polarization. (a) Enrollment set D2,
classification set D11, overall accuracy 85.50%. (b) Enrollment set D6, classification
set D12, overall accuracy 71.10%. (c) Enrollment set D11, classification set D12,
overall accuracy 93.40%. (d) Enrollment set D12, classification set D11, overall
accuracy 96.40%.

Matched polarization refers to the antennas of the transmitter and receiver having

the same polarization direction. We use D11 and D12 for enrollment and classifica-

tion, respectively, which are collected at different locations but with the same antenna

direction. The results are given in Fig. 4.14c and Fig. 4.14d. Their accuracies are

both above 90% and there are no seriously misclassified DUTs.

The above results show the classification is severely by the transmitter antenna
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direction. We infer that the reason for this is that a change in antenna orientation can

significantly affect the propagation path of the RF signal, resulting in a severe change

in the channel impulse response. The proposed channel-independent spectrogram

may be under-effective in such cases.

4.5 Conclusion

In this chapter, a scalable and channel-robust RFFI framework that exploits the

device-intrinsic hardware impairments for device authentication is proposed. Specif-

ically, deep metric learning is leveraged to train an RFF extractor that has excellent

generalization ability. When a new device joins the system, it only needs to send

several packets for enrollment and the RFF extractor does not need to be retrained.

The kNN algorithm is used for rogue device detection and device classification. To

overcome the channel effect, we design the channel-independent spectrogram and fur-

ther use data augmentation to improve the system’s robustness to channel variations.

We conduct extensive experiments using 60 COTS LoRa devices. We demonstrate

our framework has an excellent generalization performance for both device classifi-

cation and rogue device detection. The channel-independent spectrogram and data

augmentation are shown to be effective under extensive tests with various channel

conditions. We also find that antenna polarization affects classification performance.

This chapter only uses the amplitude of the channel-independent spectrogram, and

leveraging phase information can be a promising future work.

The RFFI protocols proposed in Chapter 3 and Chapter 4 assume the same re-

ceiver is used during training and inference, which is however not reasonable in real

communication scenarios as the mobile devices are possibly served by different gate-

ways. The next chapter aims to examine how variations in receiver characteristics

affect RFFI performance.



Chapter 5

Towards Receiver-Agnostic and

Collaborative RFFI

5.1 Introduction

This chapter aims to design a receiver-agnostic and collaborative RFFI protocol that

is robust to receiver characteristic variations. First, the received signal is not only

distorted by the transmitter chain but also by the receiver chain. It is experimen-

tally found that using a new receiver for signal reception can severely degrade the

NN classification accuracy. However, an IoT device is possibly served by different

gateways/access points because of location changes. It is therefore necessary to train

an NN that can be deployed for different receivers without sacrificing performance.

Second, wireless signals can be captured by any receiver within range because of their

broadcast nature. This motivates us to leverage multiple receivers to collaboratively

perform RFFI to enhance identification performance.

In the RFFI protocol presented in this chapter, multiple receivers were used

to collect sufficient packets from DUTs in order to train a receiver-agnostic NN.

During the inference, receivers are equipped with the trained receiver-agnostic NN

model. Once a packet is captured, the receivers initially make independent infer-

ences which are then fused to permit better classification performance. For our

77
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experimental evaluation, we used LoRa/LoRaWAN as a case study as it is a suitable

technique to demonstrate the ideas. Specifically, we employed ten COTS LoRa nodes

as DUTs and 20 SDR platforms as the LoRa gateways. Whilst the work focuses on

LoRa/LoRaWAN as a case study, our receiver-agnostic approach is applicable to

any RFFI system and the collaborative protocol is suitable for any wireless tech-

nique with multiple receivers operating simultaneously. The detailed contributions

of this work include:

• The receiver effects on RFFI are experimentally investigated. The RFFI system

implemented on low-end SDR receivers, e.g., RTL-SDR, shows an accuracy

drop of 40% over four continuous days, which is probably due to the unstable

hardware characteristics. Moreover, we show that changing the receiver in an

RFFI system can result in serious performance degradation. For example, the

NN trained with an RTL-SDR only achieves less than 20% accuracy when the

test was using a USRP B200 SDR.

• A receiver-agnostic NN for RFFI is proposed. We guide the NN to learn

receiver-independent features so that it is robust to performance degradation

caused by receiver drift and change. We propose two training strategies for

receiver-agnostic RFFI, namely homogeneous and heterogeneous training, de-

pending on the diversity of the training receivers. The results show that the

NN trained with heterogeneous training achieves better performance than the

homogeneous one. Its classification accuracy is over 75% for all of the 20 SDRs

and even exceeds 95% on receivers other than RTL-SDRs. Compared to the

conventional approach, receiver-agnostic training effectively prevents drastic

performance degradation on previously unseen receivers.

• A collaborative RFFI system with soft or adaptive soft fusion schemes is pro-

posed and experimentally evaluated in both residential and office building en-

vironments. All the receivers are equipped with the same receiver-agnostic

NN. They make independent inferences at the edge and upload them to a net-

work server. The inferences are then fused by soft fusion or adaptive soft fusion



Chapter 5. Towards Receiver-Agnostic and Collaborative RFFI 79

schemes to achieve higher accuracy. The experimental results show that collab-

orative RFFI can improve the classification accuracy by up to 20% compared

to the single-receiver RFFI system.

• A further fine-tuning technique is proposed to mitigate receiver effects as even

after receiver-agnostic training, the NN still may not reach satisfactory ac-

curacy on some unseen receivers. To address this, we propose a fine-tuning

approach that can collect a few packets with the new receiver to slightly adjust

the NN parameters. The NN achieves higher performance after fine-tuning be-

cause it better adapts to the new receiver by re-learning the characteristics of

the received signal. Experimental results show a further accuracy improvement

of up to 40% on receiver-agnostic NNs.

The rest of the paper is organized as follows. Section 5.2 presents the system

overview and Section 5.3 elaborates on each of the system modules. A controlled

experimental evaluation of the receiver-agnostic training and collaborative RFFI

system carried out in a residential room, is given in Section 5.4. Section 5.5 provides

the experimental results in an office building in which the collaborative RFFI is

further evaluated. Section 5.6 concludes this chapter.

5.2 System Overview

This chapter presents a receiver-agnostic and collaborative RFFI system. It in-

volves two essential stages, as shown in Figs. 5.1(a) and (b), namely training a

receiver-agnostic NN and collaborative inference of multiple receivers. There is also

an optional fine-tuning stage shown in Fig. 5.1(c). These stages are summarized

below.

Train a Receiver-Agnostic Neural Network

As discussed in Section 5.1, NNs trained with a conventional approach are compro-

mised by the changes in receiver characteristics. Therefore, it is proposed to train a

receiver-agnostic NN.
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Figure 5.1: Overview of the proposed receiver-agnostic and collaborative RFFI sys-
tem. (a) Training of a receiver-agnostic NN. (b) Collaborative inference using mul-
tiple receivers. The receivers send their predictions to a central server for decision
fusion. (c) Fine-tuning on the underperforming receiver. Only a few labeled packets
are required and the fine-tuning time is short.

During the training stage, there are K DUTs and I training receivers. Each re-

ceiver carries out the signal collection (Section 5.3.1) separately to capture wireless

transmissions from the DUTs within range. The captured signals, i.e. IQ sam-

ples, along with the transmitter and receiver labels, form the training dataset. The

dataset is then augmented with a wireless channel simulator to improve the channel

robustness of the NN (Section 5.3.2). The augmented time-domain IQ samples can

be converted to appropriate signal representations to be used as the input to the

NN (Section 5.3.3). We can then obtain a receiver-agnostic NN by using a gradient

reversal layer (Section 5.3.4).

Collaborative Inference of Multiple Receivers

During the inference, K end nodes and J receivers are involved. Note that the

J inference receivers can be different from the I training ones. Take the kth end
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node as an example, where its transmission will be captured by all receivers in

the range thanks to the broadcast nature of wireless transmissions. Each receiver

will be equipped with a receiver-agnostic NN. They will first carry out inferences

independently, and then the results will be fused to obtain a more reliable prediction

of the transmitter label. This part will be explained in Section 5.3.5.

Fine-Tuning

Fine-tuning can be performed at the receiver to further improve classification ac-

curacy when the receiver-agnostic NN does not perform well. A few packets can

be collected by the under-performing receiver to slightly update the parameters of

the trained NN, which will be elaborated in Section 5.3.6. Note that fine-tuning is

optional, which can be adopted when further improvement is required.

5.3 System Design

5.3.1 Signal Collection

The LoRa signal collection algorithms are described in detail in Section 2.3. The

processed signals along with the transmitter and receiver labels are stored in the

training dataset, given as

X train = {(ym,pm,qm)}Mtrain

m=1 , (5.1)

where ym is the mth training signal, i.e. IQ samples, and Mtrain is the total num-

ber of captured transmissions. pm = {p1, ..., pk, ..., pK} and qm= {q1, ..., qi, ..., qI}
are the corresponding one-hot encoded transmitter and receiver labels, respectively.

Note that X train for receiver-agnostic training additionally includes receiver labels,

q, compared to the training dataset Dtrain for conventional RFFI systems given in

(2.21).
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5.3.2 Data Augmentation

Data augmentation is leveraged to improve the system’s robustness to channel vari-

ation. The implementation details used in this chapter are exactly the same as that

introduced in Section 4.3.3. The exponential PDP is employed to characterize the

multipath effect and the Jakes model is used to describe the Doppler spectrum.

The training signals are replicated and passed through a channel simulator to

emulate multipath and Doppler effects. With data augmentation, the training pro-

cess can cover as many channel distributions as possible that may be present during

inference, thus improving the system’s robustness to channel variations. The dataset

X train after data augmentation is given as

X train = {(ym,pm,qm)}R·Mtrain

m=1 , (5.2)

where R is the replication factor that indicates how many times the training set is

enlarged during data augmentation.

5.3.3 Signal Representation

After data augmentation, the time domain signals can be converted to suitable signal

representations as NN inputs. There have been many types of signal representations

in previous studies, such as error signal [32], channel independent spectrogram [22],

frequency spectrum [16], and differential constellation trace figure [17], to name but

a few. Note that the unprocessed IQ samples can also serve as NN inputs after

separating the I and Q components as two independent dimensions.

The channel-independent spectrogram proposed in Section 4.3.2 is used as the

signal representation. The reason is twofold. Firstly, it is an effective approach

to mitigate channel effects, which has been experimentally verified in Chapter 4.

Secondly, it is a time-frequency representation that is suitable for CSS modulation.

Time-frequency representation has been widely used as NN inputs in LoRa-related

deep learning systems [22,106]. In this chapter, it is calculated with a window length

of 128 and a hop size of 64. The training dataset X train after signal representation
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is given as

X train =
{
(C̃m,pm,qm)

}R·Mtrain

m=1
, (5.3)

where C̃m is the channel independent spectrogram converted from ym.

5.3.4 Receiver-Agnostic Training

Domain adaptation is an effective method to solve the problem of data distribution

shift in deep learning [107]. Specific to RFFI, we leverage it to guide the NN to learn

receiver-independent features. As shown in Fig. 5.2, there are three components in

receiver-agnostic training, namely the feature extractor, transmitter classifier, and

receiver classifier.

Feature Extractor

The feature extractor, g(·), converts the input signal representation, C̃, to a feature

vector, given as

feature = g(C̃; θ), (5.4)

where θ denotes the learnable parameters1 in the feature extractor which will be

continuously updated during training. As shown in Fig. 5.2, the designed feature

extractor has nine convolutional layers with skip connections and each is activated

by a ReLU function. We perform L2 normalization on the extracted feature vector,

which can increase system performance [35].

Transmitter Classifier

The transmitter classifier accepts the extracted feature and makes predictions on the

transmitter label. The output of the transmitter classifier, p̂, is a list of probabilities.

1θ is different from the Θ in (2.23). θ only denotes the parameters of the feature extractor while
Θ represents that of the entire NN.
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Figure 5.2: Model architecture during receiver-agnostic training.

The kth element, p̂k, is mathematically given as

p̂k =
ezk∑K
k=1 e

zk
, (5.5)
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where zk is the output of the k
th neuron before the softmax activation. We use cross-

entropy for the transmitter classifier loss Ltx, which is widely adopted in classification

problems and is mathematically given as

Ltx = −
K∑
k=1

pk log(p̂k), (5.6)

where pk is the corresponding ground truth in p. Our goal during training is to find

feature extractor parameters θ that minimize Ltx to guarantee the performance of

the transmitter classifier. The designed transmitter classifier consists of a 128-neuron

dense layer activated by the ReLU function and a softmax layer for classification.

Receiver Classifier

The receiver classifier predicts the receiver label from the extracted feature vector.

Its loss Lrx is defined as cross-entropy as well, given as

Lrx = −
I∑

i=1

qi log(q̂i), (5.7)

where q̂i is the estimated probability of the packet being captured by the ith receiver

and qi is the ground truth. Our goal during training is to find feature extractor

parameters, θ, that restrict the performance of the receiver classifier. Similar to

the transmitter classifier, the designed receiver classifier consists of a 128-neuron

ReLU-activated dense layer and a softmax layer as well.

Gradient Reversal Layer

The gradient reversal layer was first proposed in [107] to address the distribution

shift problem. It does not affect forward propagation and only takes effect during

backpropagation. We leverage it to guide the feature extractor to learn receiver-

independent features.

As discussed in Section 2.4, the objective of an RFFI system is to predict from
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which DUT the signal is sent, which is identical to the goal of the transmitter clas-

sifier. Therefore, the performance of the transmitter classifier should be maximized

during training, which can be achieved by minimizing the transmitter classifier loss,

Ltx. In contrast, the goal of the receiver classifier is to predict the receiver label

from the extracted feature vector. However, this conflicts with the objective of the

proposed receiver-agnostic RFFI protocol since we expect the feature vector to not

contain any receiver-related information. This is equivalent to ensuring that the

receiver classifier cannot predict the correct receiver label from the feature extrac-

tor. Therefore, the performance of the receiver classifier should be restricted during

training, which can be achieved by limiting the minimization process of Lrx.

The gradient reversal layer can be used to limit the performance of the receiver

classifier. In a standard gradient descent process, the θ in the feature extractor is

updated by

θ ← θ − µ(
∂Ltx

∂θ
+

∂Lrx

∂θ
), (5.8)

where µ is the learning rate. The role of the gradient reversal layer is to multiply ∂Lrx

∂θ

by a negative factor −α during backpropagation, modifying the updating process to

θ ← θ − µ(
∂Ltx

∂θ
− α

∂Lrx

∂θ
). (5.9)

In other words, the parameters θ of the feature extractor are updated in the opposite

direction as instructed by the receiver classifier. Therefore, the receiver classifier

cannot be improved as its feedback is not correctly followed. With this approach, we

can train a feature extractor to extract transmitter-specific but receiver-independent

information.

Once the training is completed, the receiver classifier is removed since we do not

need to predict the receiver label in an RFFI system. In the inference stage, the

transmitter classifier is directly connected to the feature extractor to predict the

transmitter identity.
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5.3.5 Collaborative Inference

The LoRaWAN adopts a star-of-stars network topology, which is briefly introduced

in Section 2.2.1. As shown in Fig. 2.1, this special topology is suitable for im-

plementing and exploring our proposed receiver-agnostic and collaborative RFFI

protocol. Firstly, there are multiple gateways in a LoRaWAN network, and we de-

sire a receiver-agnostic NN that can be directly equipped on all LoRa gateways.

Secondly, LoRaWAN already allows one LoRa transmission to be captured by mul-

tiple gateways. Applying collaborative RFFI to LoRa/LoRaWAN does not require

any changes to the existing communication protocol. Moreover, the LoRa network

server has vast computing resources thus the computing-expensive, receiver-agnostic

training can be done efficiently.

As illustrated in Fig. 5.1(b), each receiver uses the signal collection module ex-

plained in Section 5.3.1 to capture wireless transmissions. The captured signal is

then converted to signal representation and fed into the receiver-agnostic NN. The

output of the NN at receiver j is a list of probabilities p̂j. After this, the predicted

probability vector p̂j and the estimated SNR of the received packet, γj, are gathered

for collaborative identification. This can be performed on a cloud server or a central

node.

The predictions from all the J receivers are then fused. Two fusion schemes are

proposed, namely soft fusion and adaptive soft fusion. In the soft fusion scheme, the

predictions p̂j are directly summed, which is given as

p̂fused =
1

J

J∑
j=1

p̂j, (5.10)

where p̂fused= {p̂fused1 , ..., p̂fusedk , ..., p̂fusedK } is the fusion result. While in the adaptive

soft fusion scheme, inferences from gateways with higher SNRs are assigned higher

weights in the fusion process, which is mathematically expressed as

p̂fused =
1

J

J∑
j=1

γj∑J
j=1 γ

j
p̂j. (5.11)
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After fusion, the label corresponding to the highest value in p̂fused is returned as

the final prediction, formulated as

ℓ̂fused = argmax
k

(p̂fused), (5.12)

where ℓ̂fused is the final predicted label.

5.3.6 Fine-Tuning

The trained receiver-agnostic NN performs well on most receivers. However, some-

times its performance is still not satisfactory. This issue can be alleviated by fine-

tuning, which refers to slightly adjusting the parameters of the NN to make it better

suited to a new task. We need to first identify the underperforming receiver j as the

fine-tuning target, which can be accomplished by comparing the decoded transmit-

ter software address, e.g., MAC address, with the predicted device identity. If there

are a significant number of packets where the software addresses do not match the

predicted labels, then receiver j is deemed underperforming and requires fine-tuning.

As shown in Fig. 5.1(c), we need to first collect very few labelled signals yj using

the under-performing receiver j and store them in a fine-tuning dataset X tune, given

as

X tune =
{
(yj

m,pm)
}Mtune

m=1
, (5.13)

whereMtune is the number of fine-tuning packets. Note that compared to the training

dataset X train in (5.1), X tune does not contain receiver labels because no receiver-

agnostic training is used during fine-tuning. These packets are too few to train a NN

from scratch, but sufficient for fine-tuning. Then we convert yj to the selected signal

representation C̃j, and the data served for fine-tuning becomes
{
(C̃j

m,pm)
}Mtune

m=1
.

With these data, the parameters of the receiver-agnostic NN can be adjusted with a

low learning rate. The cross-entropy loss given in (5.6) is used during fine-tuning.

Once fine-tuning is completed, the fine-tuned NN is updated at the under-performing

receiver to obtain higher classification performance. Fine-tuning is feasible on edge

LoRa gateways because the fine-tuning data set is small and it can stop within a few
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training epochs. Nevertheless, we must recall that this is an optional process.

5.4 Experimental Evaluation in Controlled Envi-

ronments

In this section, we experimentally evaluate the performance of the proposed receiver-

agnostic and collaborative RFFI system in controlled environments, using the LoRa-

based case study implementation.

5.4.1 Experimental Setup

Device Information

Ten LoRa devices are used as the DUTs to be identified and 20 SDR platforms to

emulate the LoRa receivers/gateways.

• LoRa DUT: As shown in Fig. 5.3(a), ten LoRa devices of two models, i.e., five

of LoPy42 and five of mbed SX12613 are used. All LoRa DUTs are configured

with a spreading factor of seven and a bandwidth of 125 kHz. The carrier

frequency was set to 868.1 MHz.

• SDR Receiver: As shown in Fig. 5.3(b), 20 SDR platforms of six models were

used to investigate the receiver effect. The detailed SDR information is given in

Table 5.1. These SDR platforms are made of different RF chipsets and ADCs

of different resolutions so that their hardware characteristics can be considered

distinct. MATLAB Hardware Support for SDR4 was used to access the SDR

receivers. Though the MATLAB drivers for SDR receivers are different, all the

SDRs run the same code to perform the signal collection procedure introduced

in Section 5.3.1. Their receiver sampling rates were all set to 1 MHz.

2https://pycom.io/product/lopy4/
3https://os.mbed.com/components/SX126xMB2xAS/
4https://www.mathworks.com/discovery/sdr.html
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Figure 5.3: Experimental devices. (a) Ten LoRa DUTs. (b) 20 SDR receivers.

Table 5.1: Software-Defined Radios Receivers.

SDR name Model ADC RF Chipset

RTL-1 ∼
RTL-9

RTL-SDR 8 bit RTL2832U

PLUTO-1,
PLUTO-2

ADALM-
PLUTO

12 bit AD9363

B200-1,
B200-2

USRP
B200

12 bit AD9364

B200 mini-1,
B200 mini-2

USRP
B200 mini

12 bit AD9364

B210-1,
B210-2

USRP
B210

12 bit AD9361

N210-1 ∼
N210-3

USRP
N210

14 bit
UBX RF
Daughterboard

Note that we collect packets from ten DUTs with each of the 20 SDR receivers.

Therefore, there are 200 DUT-SDR pairs in total in the dataset.

Dataset Description

Datasets from various SDRs were collected to evaluate the receiver effect. In this

section, all the datasets were collected in a typical residential room with LOS be-



Chapter 5. Towards Receiver-Agnostic and Collaborative RFFI 91

tween the DUT and SDR receiver. The distance between the DUT (transmitter) and

SDR (receiver) was one meter, hence the received signal had a quite high SNR. In

such controlled environments, the wireless channel remained constant. This allowed

investigation of the algorithm performance with minimal influence from channel ef-

fects. 800 packets were captured from each LoRa DUT-SDR pair, which were then

pre-processed and augmented to construct the training dataset. Every test dataset

contained 100 packets from each DUT-SDR pair. The detailed descriptions are given

in the following subsections.

CNN Training Configuration

We trained various CNN models with different configurations, which differ in two as-

pects, namely the number of training receivers I, and the types of training receivers.

Since each subsection serves a specific evaluation purpose, we trained different CNN

models with specially collected training datasets and evaluated them with corre-

sponding test datasets. It is worth noting that all the trained CNN models have the

same structure, as introduced in Section 5.3.4.

The number of training receivers, I, is increased from one to five. When I = 1,

the training can be simplified to the conventional approach introduced in Section 2.4.

In this case, the deep learning model is constructed by directly connecting the feature

extractor and transmitter classifier shown in Fig. 5.2.

When there are multiple receivers in the training dataset, we further divide the

receiver-agnostic training into two categories, namely homogeneous and heteroge-

neous schemes, based on the diversity of the I training receivers.

• Homogeneous training: a low diversity of the I training receivers, i.e., the

hardware characteristics of the I receivers are similar to each other.

• Heterogeneous training: high diversity of the I training receivers, the hardware

characteristics of the I receivers are significantly different from each other.

For example, when I = 5, homogeneous training receivers are all RTL-SDRs while

heterogeneous training receivers are deliberately selected from different SDR models,

namely RTL-1, PLUTO-1, B200-1, B200 mini-1, and B210-1.
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Training Settings

All the CNN models in this chapter were trained with the same settings. 10% of

the training data was split out for validation. The CNN parameters were optimized

by the stochastic gradient descent (SGD) optimizer (momentum 0.9) with an initial

learning rate of 0.001 and a batch size of 64. The validation loss was monitored during

training, and the learning rate was reduced by a factor of 0.2 when the validation

loss did not drop within 10 epochs. Training stopped when the validation loss did

not change within 20 epochs. The deep learning model was implemented using the

TensorFlow library.

When fine-tuning was adopted, a lower learning rate of 0.00001 and a smaller

batch size of 32 were used. The fine-tuning process stopped after 20 epochs and no

learning rate scheduler was employed.

5.4.2 Evaluation of Conventional Training

In this section, the impact of the receiver on RFFI systems is experimentally ex-

amined. It is found that the hardware characteristics of low-cost SDRs drift over

time, making the conventional RFFI system unstable. Moreover, changing another

receiver for signal acquisition also results in serious performance degradation. As

only one receiver is involved during training and inference, all the CNN models used

in this subsection are trained with the conventional scheme.

Receiver Drift

We select RTL-6 and N210-1 to represent low-end and high-end SDR platforms,

respectively, to study the receiver drift problem. We specifically train two CNNs

and test them with the datasets collected on four continuous days:

• Training dataset from RTL-6 Day 1. Test datasets from RTL-6 Day 1, Day 2,

Day 3, and Day 4.

• Training dataset from N210-1 Day 1. Test datasets from N210-1 Day 1, Day 2,

Day 3, and Day 4.
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Figure 5.4: Evaluation of the receiver drift problem. (a) Conventional training. (b)
Receiver-agnostic training.

The classification results are given in Fig. 5.4(a). It can be observed that the

CNN trained with N210-1 is relatively stable over time. The accuracy was nearly

unchanged during the four days. However, the performance of RTL-6 degrades seri-

ously by more than 40% on Day 2, 3, and 4. The experimental settings are exactly

the same except for the receiver, therefore we reckon the performance difference is

due to the unstable hardware characteristics of RTL-SDR. The features of RTL-6 on

Day 2, 3, and 4 may be different from Day 1.



Chapter 5. Towards Receiver-Agnostic and Collaborative RFFI 94

Receiver Change

As discussed in Section 2.4, using different receivers for training and inference can

lead to a sharp performance decline. To study the receiver change problem, we made

the following evaluation:

• Training dataset from RTL-1. Test datasets from the 20 different SDR re-

ceivers.

• Training dataset from N210-1. Test datasets from the 20 different SDR re-

ceivers.

As illustrated in Fig. 5.5(a), the accuracy is high only when the same receiver

is used for training and testing. The CNN trained with RTL-1 performs poorly on

other receivers, especially on USRP B-series, i.e., B200, B200 mini, and B210. The

B200-1 leads to the worst result, with only 20% accuracy. It drops 70% compared

to the result with RTL-1. In comparison, the CNN trained with N210-1 performs

slightly better. Its performance does not degrade on N210-2, which is likely because

N210-2 has similar hardware characteristics to the training receiver N210-1. Beyond

that, we can still observe a significant accuracy decline in other SDR receivers.

5.4.3 Evaluation of Receiver-Agnostic Training

As discussed in Section 5.4.2, the drift of hardware characteristics of low-cost re-

ceivers can compromise RFFI stability. In addition, changing another receiver for

RFFI also reduces system performance. The receiver-agnostic training can mitigate

the performance reduction effectively. We train two CNN models using homoge-

neous and heterogeneous training strategies, respectively. Five training receivers are

involved unless otherwise stated. The training and test configuration is emphasized

in each individual subsection.

Effect on Receiver Drift

First, we evaluate the performance of receiver-agnostic training on the receiver drift

problem. The following evaluation schemes were designed:
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Figure 5.5: Evaluation of the receiver change problem, the effect of receiver-agnostic
training, and fine-tuning. Test on 20 different receivers. (a) Conventional training.
(b) Receiver-agnostic training. (c) Receiver-agnostic training with fine-tuning.
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• Train with the homogeneous scheme (RTL-1 to RTL-5). Test on RTL-6 and

N210-1 for four consecutive days.

• Train with the heterogeneous scheme (RTL-1, PLUTO-1, B200-1, B200 mini-1,

B210-1). Test on RTL-6 and N210-1 for four consecutive days.

The results are given in Fig. 5.4(b). It can be observed that the CNN trained

with the heterogeneous scheme (blue bars) performs well on all the test datasets.

Moreover, we do not observe any significant performance variation on the RTL-6

datasets collected over four continuous days, indicating that the system is relatively

stable after employing the receiver-agnostic training. In contrast, the CNN trained

with a homogeneous scheme is still unsatisfactory. In particular, it only achieves

around 50% accuracy on the RTL-6 Day 1 dataset. This suggests that the CNN

trained with the homogeneous scheme has a poor generalization ability, possibly due

to the low diversity of training receivers.

Effect on Receiver Change

The proposed receiver-agnostic training can mitigate the performance degradation

caused by receiver changes. In other words, the CNN trained with receiver-agnostic

training can be directly applied to new receivers that are not included in the training

process. The following evaluations were conducted:

• Train with the homogeneous scheme (RTL-1 to RTL-5). Test on the 20 different

SDR receivers.

• Train with the heterogeneous scheme (RTL-1, PLUTO-1, B200-1, B200 mini-1,

and B210-1). Test on the 20 different SDR receivers.

The results of receiver-agnostic training are presented in Fig. 5.5(b). The accu-

racy of all test datasets is greatly improved compared to the results of conventionally

trained CNNs in Fig. 5.5(a). The accuracy is always above 75% for the CNN trained

with the heterogeneous scheme. We can also find that the heterogeneous training

scheme performs better than the homogeneous one, except on RTL-2 to RTL-5. The
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Figure 5.6: The effect of the number of training receivers I on RFFI performance.
Test on N210-1, not included in the I training receivers. Both homogeneous and
heterogeneous strategies are evaluated.

reason for the exception is that RTL-2 to RTL-5 are included during homogeneous

training but not in heterogeneous training. The CNN trained with a homogeneous

scheme does not generalize well to USRP B series SDRs, i.e., B200, B200 mini, and

B210, which is likely because the hardware difference is huge among the training

RTL-SDRs and the testing USRP B-series SDRs.

Impact of the Number of Training Receivers

We train CNNs with different numbers of receivers both for homogeneous and hetero-

geneous schemes. These CNNs are then tested on N210-1 that is not included in the

I training receivers. As the result given in Fig. 5.6, in both homogeneous and het-

erogeneous training, the accuracy gradually increases with the number of receivers.

However, the improvement is marginal after I reaches three. The heterogeneous

scheme finally achieves higher accuracy than the homogeneous one.

Effect of Fine-Tuning

As revealed in Fig. 5.5(b), although the CNNs trained with a receiver-agnostic scheme

can be directly deployed on a new receiver, they still cannot achieve satisfactory

performance in some cases. For instance, the CNN trained with the homogeneous

scheme performs extremely poorly on USRP B-series SDRs, i.e., B200, B200 mini,

and B210.
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Figure 5.7: The effect of the number of fine-tuning packets. Both homogeneous and
heterogeneous schemes are evaluated. Fine-tuning is not employed when the number
of packets is zero. (a) Test on B200-2. (b) Test on N210-1.

Fine-tuning the trained CNN model can further improve the performance of new

receivers. We use 20 packets from each DUT-SDR pair for fine-tuning and the results

are shown in Fig. 5.5(c). It is clear that fine-tuning leads to significant improvements

of up to 40% compared to the results in Fig. 5.5(b). It was also found that the

homogeneous scheme still underperforms the heterogeneous counterpart even after

fine-tuning.
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We further investigate the effect of the number of packets used for fine-tuning.

We collect different amounts of packets with B200-2 and N210-1 to fine-tune the

CNNs and then evaluate the performance after fine-tuning. Note that both B200-2

and N210-1 are not included during any training process, thus we are evaluating the

RFFI performance on new receivers. As shown in Fig. 5.7, the classification accuracy

increases with the number of fine-tuning packets for both receivers. The CNN trained

with a homogeneous scheme improves more significantly because the heterogeneous

training has already achieved high accuracy. It can also be observed that after the

number of fine-tuning packets reaches 50, the improvement is less noticeable.

The results show that RFFI performance can be significantly improved with less

than 50 packets from each DUT-SDR pair, which is affordable for an IoT network.

However, this requires the gateway to be able to retrain the NN, i.e. to be capable

of forward/backward propagation, parameter updating, etc. Therefore, fine-tuning

is not an appropriate solution for low-cost and energy-constrained gateways.

Summary

In conclusion, receiver-agnostic training can effectively mitigate the performance

degradation caused by receiver drift and change. It is recommended to use a hetero-

geneous scheme since better generalization ability can be achieved. Fine-tuning can

further improve the system performance even with only 20 packets from each DUT.

5.4.4 Evaluation of Collaborative RFFI

In this subsection, the proposed collaborative RFFI scheme is evaluated. Artificial

AWGN is added to the test data to emulate signals collected at various SNRs.

Balanced SNR Scenario

We first consider a simple case where the signals collected by different receivers have

the same SNR. In this case, the adaptive fusion in (5.11) can be simplified as the

simple fusion in (5.10) since all receivers are assigned the same weights. Seven SDRs

that are not included during the receiver-agnostic training are selected for evaluation,
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Figure 5.8: Collaborative RFFI in a balanced SNR scenario. In this case, soft fusion
is equivalent to adaptive soft fusion. The CNN is trained with a heterogeneous
strategy without fine-tuning. Test on seven SDR receivers that are not included
during training.

namely PLUTO-2, B200-2, B200 mini-2, B210-2, N210-1, N210-2, and N210-3. Then

the CNN trained with the heterogeneous scheme is directly applied without fine-

tuning. The classification results are shown in Fig. 5.8. It can be observed that

the improvement becomes more significant as more receivers get involved in the

collaborative inference. When SNR is between 15-20 dB, the collaborative inference

using seven SDR receivers performs 20% better than using an individual receiver.

Imbalanced SNR Scenario

A more common scenario in practice is that the SNRs of packets collected by different

LoRa receivers are different. In this case, soft fusion and adaptive soft fusion may

lead to different results.

We employ N210-1 to N210-3 for evaluation. The SNR of N210-3 was adjusted

from 0 dB to 40 dB, while SNRs of N210-1 and N210-2 are fixed to 10 dB and 20 dB,

respectively. The results are shown in Fig. 5.9. The accuracy of N210-3 gradually

increases with SNR. It reaches close to 100% when the SNR of N210-3 is over 35 dB.

We also show the average accuracy of N210-1 and N210-2 in the figure, which is
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around 40% and 60%, respectively.

In this imbalanced SNR scenario, both soft fusion and adaptive soft fusion schemes

are effective when the SNR of N210-3 is below 25 dB. Their accuracy is always higher

than any individual receiver. However, we can also see that adaptive soft fusion is

less effective when the SNR of N210-3 is over 25 dB. The reason is the SNR of N210-3

is high and the inferences from N210-1 and N210-2 are assigned very low weights.

Compared to the adaptive soft fusion, when the SNR of N210-3 is over 25 dB, the

soft fusion scheme without weighting leads to even lower accuracy than N210-3 itself.

This indicates assigning weights according to SNR is necessary for the collaborative

RFFI, thus the adaptive soft fusion scheme is recommended.

5.5 Experimental Evaluation in an Office Environ-

ment

In this section, the proposed receiver-agnostic and collaborative RFFI scheme is

further investigated and experiments that are closer to practical applications are

conducted. Although a preliminary evaluation has been made in Section 5.4, it
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is achieved by adding artificial noise to emulate different SNRs, which still cannot

perfectly match the real applications. To further evaluate the collaborative RFFI

scheme, we emulate a LoRaWAN network by deploying three SDRs in an office

building.

5.5.1 Experimental Setup

The experimental settings are basically the same as in Section 5.4. We collected the

test datasets in a typical office building using N210-1, N210-2, and N210-3. The floor

plan is given in Fig. 5.10. N210-1 is placed in an office while N210-2 and N210-3

are placed in another meeting room. The LoRa DUTs are in turn located at six

locations A-F. Specifically, we run the three SDR receivers simultaneously to collect

300 packets from each DUT-SDR pair in one place and then repeat the collection

after moving the DUTs to the following location. The average estimated SNRs of

the collected packets at locations A-F are shown in Fig. 5.11. The SNR is estimated

by calculating the ratio between the received signal power and the noise floor.

We directly use the CNN trained with the heterogeneous scheme to classify the

signals collected at location A-F to evaluate the collaborative RFFI scheme. It is

also worth noting that the training data is collected in a residential room in a LOS

scenario, which is different from the test environments.
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5.5.2 Experimental Results

The classification results are illustrated in Fig. 5.12. At locations A-B, our system

performs well on each individual receiver with an accuracy of over 85%, thanks to the

high SNR, which demonstrates the receiver-agnostic NN is effective. As the ⃝ and
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▽ markers shown in Fig. 5.11, the signals collected at locations A and B are always

above 30 dB. However, the performance of the individual receiver gradually decreases

at locations C-F as the SNR decreases with the increasing distance. Specifically, as

the ∗ and ▷ markers shown in Fig. 5.11, the SNRs of signals collected at locations C

and D are between 15 dB and 30 dB, leading to an accuracy of around 60% for each

individual receiver. At locations E and F, represented by □ and ♢, respectively, the

distance between the DUT and all the receivers is above 20 meters, which makes

the SNRs of the received signals low to 10 dB and reduces the accuracy for each

individual receiver to about 40%.

The collaborative inference is an effective approach to improve performance with

higher accuracy than any individual receiver. As shown in Fig. 5.12, the improvement

is relatively limited at locations A and B, because the accuracy of each individual

receiver is already high. In contrast, the enhancement of collaborative inference

is particularly significant when the SNR is lower. Specifically, the classification

accuracy can be improved by over 10% at locations C and D. This is consistent with

the controlled experiments shown in Fig. 5.8, when the SNR is between 15 dB and

30 dB the improvement of collaborative inference is most significant. As depicted

in Fig. 5.11, the signal SNRs at N210-1, N210-2, and N210-3 are not much different

when DUTs are placed at the same location. In other words, there is no extremely

imbalanced SNR scenario described in Section 5.4.4. Therefore, the soft fusion and

adaptive soft fusion schemes achieve nearly the same accuracy.

5.6 Conclusion

In this chapter, a receiver-agnostic and collaborative RFFI scheme is proposed, and

LoRa/LoRaWAN is used as a case study for experimental evaluation. Experiments

were conducted with 10 COTS LoRa DUTs and 20 SDR receivers in both resi-

dential and office building environments. The results show that conventional deep

learning-based RFFI systems are seriously affected by the changes in receiver hard-

ware characteristics. We experimentally found that the performance of an RFFI

system implemented with low-cost SDR receivers (RTL-SDR) drops by up to 40%
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over four continuous days. This may be due to the unstable characteristics of the

hardware components in the RTL-SDR. We also found that changing a new SDR

for signal collection results in a sharp decline in identification accuracy, up to 70%

in some cases. We leverage a receiver-agnostic training approach. More specifically,

a gradient reversal layer is employed to guide the NN to learn receiver-independent

features. We evaluate the receiver-agnostic NN with 20 different SDR receivers and

the identification performance is always maintained above 75%. Fine-tuning can be

done by slightly adjusting the parameters of the NN using a few collected packets,

which can further improve the performance of the receiver-agnostic NN. The exper-

imental results show that fine-tuning can lead to up to 40% accuracy improvement.

Collaborative RFFI with multiple receivers can enhance identification performance.

The predictions made by individual receivers can be fused by weighted averaging.

The results show that the collaborative RFFI can increase the identification accuracy

by up to 20%. Finally, a more realistic experiment is conducted by deploying three

USRP N210 SDRs in an office building. The receiver-agnostic NN performs well on

these SDRs and the collaborative inference can improve the identification accuracy

by 10%.
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Conclusion and Future Work

6.1 Conclusion

This thesis focuses on solving the key challenges in DL-driven RFFI systems. We

take LoRa as a case study and build a LoRa-RFFI experimental platform using

COTS LoRa and SDR devices. The detailed contributions are summarized below:

• Chapter 3 proposes a stable and efficient LoRa-RFFI system. We experimen-

tally found that the CFO of the received signal is not constant over time and

can seriously compromise the identification accuracy. Incorporating CFO com-

pensation as a pre-processing step in the RFFI system can reduce performance

degradation.

The distortion caused by transmitter impairments is often hard to observe

in the time-domain waveform, i.e., IQ samples, and designing suitable signal

representations as NN inputs can significantly improve identification perfor-

mance. Three signal representations are investigated in this chapter, namely

IQ samples, FFT results, and spectrograms. Various deep learning models,

i.e., MLP, CNN, and LSTM, are used to process the designed signal repre-

sentations. The experimental results demonstrate that the spectrogram-CNN

combination achieves the highest accuracy of 95.35% with the least complexity.

The CFO is a discriminative hardware attribute, however, it must be com-

106
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pensated from the received signals otherwise the system stability will be com-

promised. In response to this, a hybrid classifier is designed to calibrate the

NN outputs using a pre-built CFO database, which can effectively improve

identification accuracy by over 20% while maintaining system stability.

• Chapter 4 designs a scalable/openset and channel-robust LoRa-RFFI system.

The DL-RFFI is typically defined as a closed-set classification problem. How-

ever, this eliminates the RFFI system’s scalability and capability to detect

rogue devices. This is mainly because the number of neurons at the last soft-

max layer is fixed in classification NNs. Alternately, a three-stage RFFI frame-

work comprising training, enrolment, and authentication is proposed, which

uses triplet loss to train the NN as a feature extractor rather than a classifier.

Then the well-known kNN algorithm is employed for rogue device detection

and classification.

A huge challenge in RFFI is that the characteristics of the received signals

are affected by the wireless channel, resulting in incorrect identification when

the test signals are collected in a channel condition different from that during

training. Firstly, a wireless channel simulator was used to emulate more channel

conditions and apply them to the training signals, namely data augmentation.

Experimental results indicate both multipath and Doppler effects should be

considered for optimal performance. Secondly, a signal representation called

channel independent spectrogram as the input to the NN is developed, which is

based on the fact that the wireless channel does not undergo rapid changes in

low-speed scenarios. Extensive experiments are done to evaluate the channel

robustness of the RFFI system, and the proposed mitigation strategies are

shown to be effective.

• Chapter 5 presents a receiver-agnostic and collaborative RFFI protocol. The

received signal is not only affected by the transmitter’s impairments but also by

the receiver’s. The changes in the receiver hardware characteristics can severely

degrade the identification accuracy. An approach is proposed for training a

receiver-agnostic NN, which is experimentally demonstrated to perform well on
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receivers not present during training. Additionally, a fine-tuning technique is

also proposed to further increase NN performance by up to 40% while requiring

only a few labeled packets.

The broadcast nature of wireless communication enables a signal to be cap-

tured by all the receivers within range. It is therefore possible to design a

collaborative RFFI protocol to enhance the RFFI performance, particularly in

cases with low SNR. The experimental results indicate that the collaborative

RFFI can improve identification precision by up to 20%.

6.2 Future Work

The DL-driven RFFI is undergoing rapid development, and there are still problems

to be resolved. The suggestions for future work are summarized below:

• Channel Effects Mitigation for Wide-Band RFFI Systems:

The impact of the wireless channel is a huge challenge in RFFI development,

which has been discussed in Chapter 4. In this thesis, we propose data aug-

mentation and a channel-independent spectrogram to combat channel effects,

which are experimentally shown to be effective. However, the LoRa case study

is a narrow-band system and the channel effects are not strong due to the lim-

ited bandwidth. How to mitigate channel effects, i.e., severe frequency-selective

fading, in wide-band RFFI systems requires further investigation.

• RFFI in Low SNR Scenarios: The distortions caused by transmitter im-

pairments are weak and it is still challenging to extract RFFs when the SNR

of the received signal is extremely low. Although Chapter 5 proposes a collab-

orative RFFI that can effectively improve identification accuracy in low SNR

scenarios, its performance still cannot be compared with that in high SNR sce-

narios. The RFFI systems are currently often evaluated in high SNR scenarios

where the transceivers are placed close, while the experiments conducted over

long distances are still lacking, e.g., LoRa operates in the sub-GHz frequency
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band in Europe and can transmit over several kilometers. It is essentially nec-

essary to create and evaluate an RFFI protocol that can operate well in low

SNR conditions.

• RFFI Stability under Large Temperature Variations

The RFFI technique relies on the uniqueness of the transmitter hardware im-

pairments. However, it is inevitable that the hardware characteristics can

change with temperature and thus compromising system performance. Al-

though Chapter 3 experimentally finds that the oscillator is the primary source

of performance degradation and CFO compensation is effective, the experi-

ments are conducted in controlled indoor environments where the room tem-

perature does not change dramatically. It is necessary to design a bespoke

testbed to evaluate the RFFI performance in large temperature variations.

• High-Speed and Energy-Efficient RFFI System

The RFFI systems are desired to perform high-speed and energy-efficient iden-

tification. Latency is a crucial evaluation metric in a communication system.

The identification time must not be much longer than the decoding time to

prevent an increase in network latency. Meanwhile, the RFFI systems should

not be power-consuming otherwise the cost of receivers will increase. Current

experimental testbeds often use a PC to run the RFFI system in an offline

manner, and real-time RFFI evaluation is rarely studied. Future work could

attempt to apply RFFI to real RF chips, which would greatly accelerate the

possible commercialization of RFFI technology.

In summary, the DL-driven RFFI system is still in the laboratory testing stage.

Its further development requires contributions from both wireless communication

and artificial intelligence experts, both in academia and industry.
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