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Abstract—This document extends the idea of the power method
to polynomial para-Hermitian matrices for the extraction of the
principal analytic eigenpair. The proposed extension repeatedly
multiplies a polynomial vector with a para-Hermitian matrix
followed by an appropriate normalization in each iteration.
To limit the order growth of the product vector, truncation
is performed post-normalization in each iteration. The method
is validated through simulation results over an ensemble of
randomised para-Hermitian matrices and is shown to perform
significantly better than state-of-the-art algorithms.

I. INTRODUCTION

The solution to many broadband array processing problems

can be formulated using the space-time covariance matrix

R[τ ] = E
{

x[n]xH[n− τ ]
}

[1]–[3], which reflects the infor-

mation in the second order statistics of a data vector x[n], with

E{·} the expectation operator. Analogous to the narrowband

covariance matrix R[0], which has Hermitian symmetry, the

z-transform of R[τ ] — also known as the cross-spectral

density (CSD) matrix — possesses para-Hermitian symmetry

i.e. RP(z) = RH(1/z∗) = R(z) where {.}P denotes the para-

conjugate or para-Hermitian operation [4]. To extend the utility

of the eigenvalue decomposition (EVD) which enables optimal

solutions to many narrowband array problems, we require

a polynomial EVD (PEVD) to diagonalise R[τ ] ◦ • R(z),
where ◦ • denotes a transform pair, for the broadband case.

To date, existing PEVD techniques include the second-order

sequential best rotation (SBR2) [4], sequential matrix diago-

nalisation (SMD) [5], DFT based smooth-decomposition [6]

and analytic PEVD [7]–[10] algorithms.

Over recent years, PEVD algorithms have seen use in

MIMO communications design [11], [12], subband coding [3],

blind signal separation [2], speech enhancement [13], beam-

forming [14]–[16], broadband angle of arrival estimation [17],

and many more. In cases such as coding or compaction,

which work by extracting the dominant signal component from

multichannel data [18], a complete PEVD may be unnecessary,

and it often suffices to extract the largest eigenvalue and its

corresponding eigenvector, here termed the principal eigenpair.

For the standard EVD, this can be accomplished e.g. by apply-

ing the power method [19]. Using polynomial matrix notation,

with often modest modifications, narrowband algorithms can

be readily extended to their equivalent broadband cases; an
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example is the generalisation of the multiple signal classi-

fication (MUSIC) algorithm [20] to the polynomial MUSIC

approach [17].

This paper extends the power iterations method [19] to para-

Hermitian matrices in order to extract the principal analytic

eigenpair. The extension multiplies a polynomial vector with

a given para-Hermitian matrix and then in each iteration

performs a normalization to unity everywhere on the unit circle

instead of the normalization of the approximated eigenvector

to unit length as in the ordinary power method. The order

of the product vector, which grows with each iteration due

to repeated multiplication, is limited by truncating it either to

the support estimate reported in [21] or by trimming trailing

values that fall below some threshold. The proposed approach

requires that the dominant eigenvalue spectrally majorises

the remaining eigenvalues; for estimated CSD matrix, this

assumption is satisfied with probability one [22].

Below, Sec. II reviews the power iteration methods, which is

then extended to the polynomial case in Sec. III. We assess the

polynomial power iteration method through simulations over

an ensemble of CSD matrices of moderately large support

in Sec. IV. Sec. V provides a summary and an outlook to

potential applications.

II. NARROWBAND POWER ITERATIONS METHOD

Assume we have an instantaneous covariance matrix R =
R[0] ∈ C

M×M for a narrowband sensors array system

with its eigenvalues λ1, . . . , λm such that |λ1| > |λm| for

m = 2, . . . ,M . If we repeatedly multiply a non-zero vector

v(0) ∈ C
M against R, we obtain a sequence of vectors

v(1),v(2), . . . ,v(k), which can be written as

v(k) = Rv(k−1) = Rkv(0), k = 1, 2, . . . . (1)

As R is Hermitian, its M eigenvectors q1, ...,qM can be

selected to form an orthonormal basis for C
M . Thus we can

represent v(0) as a linear combination of eigenvectors,

v(0) = c1q1 + c2q2 + . . . + cMqM . (2)

Substituting v(0) from (2) into (1), we get

vk = Rk

M
∑

m=1

cmqm =

M
∑

m=1

cmλk
mqm

= λk
1(c1q1 +

M
∑

m=2

cm(λm/λ1)
kqm) . (3)
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Over a sufficient number of iterations k, the direction vk

converges to that of q1 for c1 6= 0. It means that a random

vector repeatedly multiplied with R converges towards a

scaled version of its principal eigenvector provided that the

initial vector has a non-zero component in that direction [19].

This constitutes the power method. In order to avoid overflow

or underflow, vk can be normalised in every iteration step,

which makes its converge towards ejφq1, where φ = ∠c1,

reflecting the phase ambiguity of eigenvectors. The rate of

convergence depends upon the ratio |λ2/λ1|.
III. POLYNOMIAL POWER METHOD (PPM)

In this section, we present the extension of power method

to polynomial para-Hermitian matrices.

A. Para-Hermitian Matrix EVD

For an analytic para-Hermitian R(z) : C → C
M×M , an

analytic PEVD exist in most cases [23]–[25] as

R(z) = Q(z)Λ(z)QP(z) , (4)

where Q(z) is para-unitary such that QP(z)Q(z) =
Q(z)QP(z) = I contains in its columns the analytic eigen-

vectors, and Λ(z) = diag{λ1(z), . . . , λM (z)} is a diagonal

and para-Hermitian matrix that holds the analytic eigenvalues.

If, on the unit circle, the latter satisfy the inequality

|λm(ejΩ)| ≥ |λm+1(e
jΩ)| ∀ Ω for m = 1, . . . ,M − 1 ,

then we call the eigenvalues of R(z) spectrally majorised. If

R(z) is estimated from finite data, then its eigenvalues will be

spectrally majorised with probability one [22]. In addition, the

estimation process leads with probability one to no non-trivial

algberaic mulitplicies such that the eigenvalues satisfy

|λ1(e
jΩ)| > |λ2(e

jΩ)| > . . . > |λM (ejΩ)|, ∀ Ω ∈ R . (5)

While the eigenvalues of a para-Hermitian matrix are unique,

the corresponding eigenvectors can be modified by arbitrary

analytic allpass functions ϕm(z), m = 1, . . . ,M [23]. There-

fore, if qm(z) is a valid analytic eigenvector of R(z), then so

is ϕm(z)qm(z).

B. Power Method Extension to Para-Hermitian Matrices

Let us assume some vector of analytic functions v(0)[n] ¸
v(0)(z) ∈ C

M . Then we can write c(z) = QP(z)v(0)(z),
where Q(z) is the matrix of eigenvectors from (4). Due to the

analyticity of both Q(z) and v(0)(z), c(z) is also analytic.

Further, paraunitarity of Q(z) i.e. Q(z)QP(z) = I permits

v(0)(z) = c(z)Q(z) (6)

= c1(z)q1(z) + · · · + cM (z)qM (z) , (7)

i.e. the vector v(0)(z) can be expressed as superposition of

analytic eigenvectors, weighted by some analytic functions

cm(z), m = 1, . . . ,M .

We now want to utilise v(0)(z) as the initialisation for PPM.

Due to analyticity, we work on the unit circle with z = ejΩ ,

Ω ∈ R, where we have

v(0)(ejΩ) = c1(e
jΩ)q1(e

jΩ) + . . .+ cM (ejΩ)qM (ejΩ) . (8)

Note that qm(ejΩ) can be seen as either the mth analytic

eigenvector evaluated at z = ejΩ or the mth eigenvector

of a Hermitian matrix viz. R(z)|z=ejΩ . This permits us to

replicate the procedure described in Sec. II, where by repeated

multiplications, we create a sequence of vectors such that after

k iterations, we have

v(k)(ejΩ) = R(ejΩ)v(k−1)(ejΩ) = Rk(ejΩ)v(0)(ejΩ) . (9)

Combining (8) and (9), we obtain the frequency-dependent

version of (3) as

v(k)(ejΩ) = (λ1(e
jΩ))k

[

c1(e
jΩ)q1(e

jΩ)

+

M
∑

m=2

cm(ejΩ)

(

λm(ejΩ)

λ1(ejΩ)

)k

qm(ejΩ)

]

. (10)

From the fact that the estimated R(z) is spectrally majorised

with its eigenvalues satisfying (5), the summation term in (10)

will decay to zero for all values of Ω as k → ∞.

What is required that the first term in (10) converges to

an unnormalised version of q1(z) evaluated at z = ejΩ?

Similar to the discussion in Sec. II, we need to ensure that

the initialisation v(0)(z) contains a portion of the principal

eigenvector q1(z), i.e. that c1(z) does not vanish. Since

c1(z) must be analytic, unless c1(z) = 0 ∀z, on the unit

circle c1(e
jΩ) can only possess isolated zero crossings as a

result of the uniqueness theorem of analytic functions [26].

Hence c1(e
jΩ) must in general be non-zero except for a finite

number of zeros-crossings. Such zero-crossings will generate

challenges for PPM; one solution is normalised regularisation

which we will introduce further below.

Thus, for a sufficiently large value of k, v(k)(ejΩ) becomes

v(k)(ejΩ) = (λ1(e
jΩ))kc1(e

jΩ)q1(e
jΩ) . (11)

If we normalise (11) to unit norm ∀ Ω ∈ R, which we will

discuss in Sec. III-C, we get

lim
k→∞

v(k)
norm(e

jΩ) = ϕ1(e
jΩ)q1(e

jΩ) , (12)

where ϕ1(e
jΩ) is an arbitrary allpass filter noting the ambigu-

ity of analytic eigenvectors discussed in Sec. III-A. With an an-

alytic ϕ(z), v(k)(z) will generally be an absolutely convergent

but infinite series. Since we cannot control either c1(e
jΩ) or

ϕ1(z), we are bound to perform truncation after normalization.

Through repeated truncation, we are effectively performing

phase smoothing that helps to minimise the order [6], [9].

C. Normalisation and Principal Eigenvalue

For v(k)(z) to formally take on properties of an eigenvector,

it requires normalisation, such that for the normalised vector

we have v
(k),P
norm(z)v

(k)
norm(z) = 1. This can be accomplished as

v(k)
norm(e

jΩ) =
v(k)(ejΩ)

√

v(k),H(ejΩ)v(k)(ejΩ) + ε
, (13)

where 0 < ε ≪ 1 is the regularisation parameter. This

regularisation serves two purposes: (1) it prevents a division
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by zero, in case the singularity of c1(e
jΩ) causes problems; (2)

at frequencies near a singularity of c1(e
jΩ), it will create a bias

term, that may deflect a poor initialisation v(0)(z). However,

if c(ejΩ) is missing the components of q1(e
jΩ), PPM will not

reinsert them.

To evaluate (13), we employ a DFT domain approach. For

a sufficiently large DFT length K, we compute (13) for a

discrete set of frequencies Ωi = 2πi/K, i = 0, . . . , (K −
1). Since the overall result is potentially infinite but ab-

solutely convergent due to analyticity, we can then obtain

v
(k)
norm[n] ◦ • v

(k)
norm(z) via a K-point inverse DFT in good

approximation. The solution may be non-causal and exceed

the order necessary for a good approximation. Therefore,

after performing normalization, a shift-corrected trimming of

v
(k)
norm[n] may be applied to restore causality and to limit the

order of the normalised product in (13). This will be discussed

in Sec. III-D.

The corresponding principal eigenvalue can be determined

via the Rayleigh quotient

RQ,k(z) =
v(k),P(z)R(z)v(k)(z)

v(k),P(z)v(k)(z)
(14)

= v(k),P
norm(z)R(z)v(k)

norm(z) , (15)

i.e. by a weighted inner product of the eigenvector estimate.

We thus have λ1(z) = limk→∞ RQ,k(z).

D. Order Limitation by Shift-Corrected Truncation

Below, we define two approaches to limit the order of

v
(k)
norm(z).
1) Order Limitation to Eigenvector Support: It is possible

to accurately estimate the support of Q(z) before extracting

any of its columns constituting the eigenvectors [21]. This

estimated support N can be exploited by truncating v
(k)
norm[n]

subject to an optimal shift-correction akin to [27], such that

ṽ(k)
norm[n] = v(k)

norm[n−∆opt]pN [n] , (16)

where pN [n] is a rectangular window of size N , and the shift

∆opt is calculated via

∆opt = argmax
∆

N−1
∑

n=0

‖v[n−∆]‖22 . (17)

The truncation in (16) has to be performed in each iteration

to ease the computational burden of the multiplication and

normalization steps. This repeated truncation of the time do-

main vector is analogous to phase smoothing in the frequency

domain. Its purpose is to find the eigenvector with minimum

time-domain support given its ambiguity w.r.t. an arbitrary

allpass filter φ1(z), as discussed in Sec. III-A.

2) Direct Truncation of Coefficients: This method truncates

the outer lags of v
(k)
norm[n] on either end if its norm |v(k)

norm[n]|2
falls below a low threshold. Since for a low threshold the

resulting order will be high, this method may produce higher-

order approximations compared to the previous method, par-

ticularly if the truncation length N is inappropriate for inter-

mediate solution after insufficient iteration steps. While the

Algorithm 1: PPM Algorithm

Input: R(z), ǫ, kmax

Output: q̂1(z), λ̂1(z)
v(0)(z) ∈ C

M , k ← 0, γ = ∞;

ṽ(0)
norm(z) ← normalise & order limit v(0)(z) ;

while γ > ǫ & k < kmax do

k ← k + 1;

v(k)(z) ← R(z)ṽ(k−1)
norm (z) ;

v
(k)
norm(z) ← normalisation v(k)(z);

ṽ(k)
norm(z) ← order limitation of v

(k)
norm(z);

update γ
end

q̂1(z) = ṽ(k)
norm(z);

λ̂1(z) = ṽ(k),P
norm(z)R(z)ṽ(k)

norm(z);

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-2

-1

0

1

Fig. 1. Eigenvalues for the example matrix R(z).

direct truncation is simple, there currently does not exists any

well-defined criterion to determine the appropriate truncation

threshold.

E. Stopping Criterion

We want to know how closely aligned two polynomial

vectors v(k)(z) and v(k−1)(z) are. Evaluated on the unit circle,

we can check the Hermitian angle ∠{a(z), b(z)} between any

two polynomial vectors a(z), b(z) : C → C
M via

∠{a(ejΩ), b(ejΩ)} = acos

( |aH(ejΩ)b(ejΩ)|
‖a(ejΩ)‖2 · ‖b(ejΩ)‖2

)

. (18)

Exploiting this, we now define a metric as α(Ω) =
∠{v(k)(ejΩ),v(k−1)(ejΩ)}; note that we retain the normal-

isation in (18) in case of errors due to truncation. If two

successive estimates are aligned, we have α(Ω) = 0 ∀Ω. To

measure an overall deviation,

γ =
1

2π

∫ π

−π

|α(Ω)|2dΩ (19)

is a suitable criterion for convergence, while α(Ω) permits to

check on any frequency-dependent differences in convergence.

IV. SIMULATIONS AND RESULTS

A. Order Limitation and Initialisation Effects

We evaluate the impact of the two types of order limitations,

mentioned in Sec-III-D, on convergence and efficiency by
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considering a matrix R(z) : C → C
3×3 with eigenvalues

λ1(z) =
6+j
100 z + 1.01 + 6−j

100 z
−1

λ2(z) =
−1+2j
100 z + 0.86 + −1−2j

100 z−1

λ3(z) =
5+2j
100 z + 0.71 + 5+2j

100 z−1

as illustrated in Fig. 1. The matrix of eigenvectors Q(z) is de-

fined by a sequence of elementary paraunitary operations [28],

Q(z) = [q1(z), . . . , q3(z)] =

4
∏

i=1

(I+ (z−1 − 1)eie
H
i ) ,

with unit norm vectors ei/
√
2, i = 1, . . . 4,

e1 =





1
0

−1



 , e2 =





1
1
0



 , e3 =





1
0
1



 , e4 =





1
−1
0



 .

With 500 random initializations for v(0)[n], Algorithm 1 is

executed over k = 300 iterations, recording both the vector

alignment γ of (19) and the normalised error in the principal

eigenvalue,

ξλ =

∑

τ |λ[τ ]− λ̂[τ ]|2
∑

τ |λ[τ ]|2
. (20)

Both types of limitation strategies are tested. For the second

method, the threshold for the truncation of trailing coefficients

is set to 10−3.

The results, illustrated in Fig. 2, show that the generally

less costly Algorithm 1 with truncation method 1 (in black)

can terminate within shorter time. The execution time for the

truncation method depends on the truncation threshold. If the

coefficient truncation threshold is small, the execution time

will be higher because of more relaxed order limitation and

hence higher cost of each iteration. For the given ensemble

experiment, the order of the resulting v
(k)
norm(z) is 4 and

49 under the order limitation method 1 and the truncation

method 2, respectively. Despite all this, the direct truncation

method employed by Algorithm 1 achieves greater accuracy in

both the principal eigenvector and eigenvalue as evident from

Fig. 2.

To assess the impact of a singularity in c1(e
jΩ), we use

a simple system with λ1(e
jΩ) = 1 and λ2(e

jΩ) = 1
2 .

With eigenvectors q1,2(z) = [1; ±z−1]/
√
2 and initialisation

v(0)(z) = [(1 − z−1)q1(z) + (1 + z−1)q2(z)]/
√
2, we have

c1(e
jΩ) = 1 for Ω = 0. Nonetheless, a regularisation ε = 0.1

leads to the convergence of the Hermitian angle in Fig. 3,

showing that the singularity is overcome, even though the

bias introduced by ε causes a noise floor of around -50dB

to the alignment of the estimated principal eigenvector with

the ground truth.

B. Comparison with State-Of-The-Art

We compare the proposed PPM approach to the state-of-the-

art algorithms SBR2 [4] and SMD [5], through an ensemble of

103 randomised spectrally majorised para-Hermitian matrices

R(z) ∈ C
4×4 based on the source model in [5]. In this

10
-3

10
-2

10
-1

10
-15

10
-10

10
-5

10
0

10
-3

10
-2

10
-1

10
-8

10
-4

10
0

(b)

(a)

Fig. 2. Effects of types of order limitation on algorithm convergence,
measuring (a) angle deviation metric γ, and (b) accuracy of the extracted
eigenvalue, ξλ.

iteration k Ω

2
0
lo
g
1
0
{

2 π
β
(Ω

)}

Fig. 3. Convergence of β(Ω) = ∠{v(k)(ejΩ)q1(e
jΩ)} in case of a

singularity of c1(ejΩ) for Ω = 0.

model, we vary the order of the ground truth eigenvectors

in O{Q(z)} from 20 to 100 in steps of 20. The proposed

method is executed with kmax = 103 and ǫ = 10−10. The

support of ṽ(k)
norm[n] is truncated with a threshold of 10−3 via

the second method and the regularisation term ε is set to zero

to see if we have any issue with random normalization. The

SBR2 and SMD algorithms are allowed a maximum of 103

iterations with truncation parameter µ, meant to limit the order

of any intermediate q̂1(z) by truncating its outer lags with the

same threshold of 10−3 as for PPM, while the maximum off-

diagonal threshold to is chosen as 10−6.

We evaluate these methods based on the order of extracted

eigenvector O{q̂1(z)}, ξλ and the execution time. Note that

we have not excluded any instance of the ensemble that have

possible poor initialisation. The ensemble results are illustrated

in Fig. 4 which shows that PPM performance is better than

both SBR2 and SMD w.r.t. all three metrics. Especially, the

order of the extracted eigenvector is orders of magnitude lower

than that of SBR2 and SMD. Although convergence is yet

to be proven, the ensemble results suggest that the proposed

method converges to an acceptable approximate principal

eigenpair as evident from Fig. 4. Furthermore, the ensemble

results, which look fairly acceptable at least within 10 to 90
percentile, show that there is low probability to encounter a

zero crossings for c1(z) when randomly initialising v(0)(z).
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Fig. 4. Performance metrics comparison (a) ξλ, (b) O{q̂1(z)}, and (c)
execution time of SBR2, SMD and PPM in dependence of the ground truth
order of the principal eigenvector.

V. CONCLUSION

We have proposed a polynomial power method for the

extraction of the principal eigenpair of a para-Hermitian ma-

trix. The proposed method succeeds as long as the principal

eigenvalue does not share non-trivial algebraic multiplicity

with the remaining eigenvalues. Simulation results shows that

the PPM performs significantly better compared to state-of-

the-art algorithms i.e. SBR2 [4] and SMD [5].

The proposed method finds potential applications in areas

such as data compaction [18], single broadband source to

sensors transfer and source spectral density estimation [29],

broadband transient signal detection [30]–[32], and the cal-

culations of an approximate PEVD through deflation via

subsequent extractions and eliminations of the principal eigen-

pairs. The approach can also be generalised to calculating a

polynomial singular value decomposition [33].
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