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Abstract

This thesis is concerned with two specific cost measurement issues commonly raised within the context of
economic evaluation of health care interventions. Both these issues arise due to limited availability of cost
information from medical studies. The first relates to the process of cost data collection while the second
relates to the statistical analysis of cost data. Investigation of'this subject matter is undertaken with reference
to clinical trials although this setting does not restrict the generality of the findings. The typical pattern of
cost collection records volumes ofresource use at the patient level but not resource unit cost in the treatment
centre where the resource was utilised. The calculation of treatment cost then is normally based on some
average unit cost estimate obtained from a variety of sources as opposed to centre specific unit cost
information. The question arises as to whether the source ofunit cost information has an impact on the
calculated total treatment costs. This is addressed using a simulation setting and assuming specific
underlying production and cost relations which determine the behaviour of treatment centres in delivering a
health outcome. The results show that assuming the treatment centres operate in a manner consistent with
economic theory, using average instead of centre specific unit cost information will lead to biased estimates
of the total cost of treatment. The issue of primary concern in the thesis relates to the incompleteness of cost
infonnation for analysis due to censoring. Censoring occurs whenever patients are not observed for the full
time to event and affects both effectiveness and cost data. Any analysis of such data that fails to account for
the presence of censoring will result in biased estimates ofthe statistics of interest. This issue has only
recently been addressed in the literature within the context of cost analysis and a well established
methodology for dealing with this problem is lacking. There are a limited number of parametric and non-
parametric estimators which have been proposed in an attempt to adjust cost estimates for censoring all of
which are considered here. A subset of those lack theoretical justification and as such lead to erroneous
inferences, while those whose use isjustified on theoretical grounds have not been empirically assessed
under conditions of heavy censoring using real medical data. This is undertaken in the present analysis using
a clinical trial dataset which displays extreme levels of censoring. Although the theoretical investigation
shows that under specific assumptions the approaches provide consistent estimators of mean cost while
accounting for the loss of information due to censoring, the analysis reveals various performance patterns
ranging from generally stable estimators under the conditions considered to estimators which become
increasingly unstable with increasing levels of censoring.
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Chapter 1

Introduction

The necessity of adopting economic evaluation in the health care sector arises because the market
fails to fulfil the conditions required to ensure efficient allocation ofresources. Economic
evaluation then provides a method for determining the point of efficiency, that is the point at which
the allocation ofresources leads to maximisation of social welfare. In the process of achieving the
optimal resource allocation, alternative states have to be evaluated each one associated with
different individual welfare levels. Given that any alternative state ofresource allocation will
normally result in an improvement in welfare for some individuals and a deterioration for others,
interpersonal comparisons of utility have to be made in order to determine whether there is a net
gain in social welfare. The choice becomes then either to consider situations in which unambiguous
welfare improvements are possible or to consider a wider range of situations by making
interpersonal comparisons. In the former case, evaluation of alternative states is undertaken based
on the Pareto principle according to which welfare improvement occurs if resource allocation is
such that an individual is made better off without making another individual worse off. In the latter
case, value judgements must be made to determine whether there are net gains in welfare. Given
that evaluations based on the Pareto optimality criterion do not encompass value judgements and
interpersonal comparisons of utility levels, the Pareto principle has to be accompanied by the
implementation ofthe Hicksian compensation test which leads to efficiency being defined in terms

of potential Pareto improvement.

In this context cost-benefit analysis is implemented specifically as a means of achieving Pareto
welfare. The method itselfis consistent with the Pareto principle and does not encompass
interpersonal comparisons in determining the optimal resource allocation state. It can however be
accompanied by information on individual welfare changes resulting from implementation ofthe
alternative under consideration determined based on the Hicksian compensation criterion. As such
cost benefit analysis in conjunction with the compensation criterion can in theory provide a
mechanism for determining optimal resource allocation patterns consistent with the maximisation of
social welfare. In the health care sector where the monetary valuation of outcomes is complex cost-
effectiveness commonly replaces cost-benefit analysis as a method of identifying patterns of health
care resource allocation. If relative valuations can be attached to health states then cost-
effectiveness may encompass cost-utility analysis. All these methods, cost-benefit, cost-
effectiveness and cost-utility analysis, have specific problems of implementation which have long
been discussed in the welfare economics literature. Most recently three particular themes have come

to dominate the literature in health economics.



First there has been increasing consideration ofthe specific technical conditions under which cost-
effectiveness and cost-utility analyses relate to cost-benefit analysis whose objective is to identify
Pareto optimal states consistent with the maximisation ofsocial welfare. Under the assumption that
consumers and producers are utility maximisers and the health care sector is budget constrained, a
range of models have been developed each specifying a utility function based on specific
underlying assumptions. These are then used to reveal the specific conditions under which patient
preferences, normally represented in the model by some quality adjusted life year concept, can be
related to cost-benefit analysis and traditional notions of welfare economics (Garber, 2000).
Weinstein and Stason (1976) and Weinstein and Zeckhauser (1973) discuss the relationship of cost-

effectiveness to cost-benefit analysis through the use of linear programming techniques.

Secondly there has been growing criticism of the traditional definition of welfare as based on Pareto
optimality and utility maximisation (Williams and Cookson, 2000; Tsuchiya and Williams, 2001). It
has been suggested that the definition of welfare ought to take account of concepts that are not
solely utility based. The justification for this approach derives from Sen’s argument that welfare is
not only defined by means of utility but is also related to fundamental attributes, which he refers to
as basic capabilities (Sen, 1982). On this basis, proponents of the notion of extra-welfarism have
suggested that efficiency may be defined with regards to the maximisation of health and not utility
per se. As such these capabilities may be related to cardinal measurements of health benefit
allowing the problems imposed by interpersonal comparisons to be overcome. Within this context
the role of economic evaluation is not to determine the optimal allocation of health care resources
that will maximise utility-based welfare, but rather to supply the relevant decision makers with
information that assists their assessment of the appropriate allocation of health care resources. That
is, interpersonal comparisons are considered through the explicit cardinal measurement ofhealth
benefit, using for example QALYSs, but ultimately it is the decision maker who defines the trade-
offs across individuals in specifying the social welfare function. Under this interpretation cost-
effectiveness and cost-utility analyses are not necessarily related to cost-benefit analysis as there is
no attempt to follow Paretian notions of efficiency. Cost-effectiveness and cost-utility analyses

become appropriate allocative tools in their own right.

The third theme that has dominated the literature has dealt with measurement issues given that any
economic evaluation involves measurement of'the costs incurred by and the benefits derived from a
health care intervention. Particular emphasis has been given to the measurement of'the benefits
derived from a given health outcome partly reflecting the fact that the various types of economic
evaluation adopt different definitions ofthe health outcome. Cost-benefit values health outcomes by
a monetary metric, cost-utility by a measure ofrelative value of health states and cost-effectiveness
more generally by some appropriate physical quantity. A considerable literature has addressed the
issue of how monetary measurements of health states may be obtained more recently concentrating
on the techniques of conjoint analysis (Deiner et al, 1998). At the same time there is a sizeable

literature that considers the measurement ofthe relative valuations of health states using non-



monetary values (Dolan, 2000, 2001). Here the topics analysed include the mathematical properties
required to elicit relative valuations using a variety of instruments including the visual analogue
score, the time trade-off method and the standard gamble. A directly related literature considers the
relative strengths and weaknesses ofthe various measures. A different component of the literature
has concentrated on the issue of data uncertainty with the largest part of this literature addressing
the question of how the uncertainty surrounding the incremental cost-effectiveness ratio statistic
should be handled (Briggs, 2001). Consideration of the appropriate methodology for calculating
confidence intervals for this ratio statistic constitutes another substantial part ofthis literature
followed by investigation of alternative ways in which the ratio may be presented as for instance in
the case of the net benefit approach which essentially results in a transformation ofthe incremental
cost-effectiveness ratio. Other measurement related issues that have received some attention in the
literature include adjustments for missing data, the measurement of indirect costs and the

transferability of findings across different regulatory environments.

This thesis relates to the general aspect of measurement issues. Having focussed on measurement
problems raised within the context of analysing health outcome data, the literature has generally
given less attention to the issues that arise in the analysis of cost data. With respect to cost the
matter most commonly addressed is the definition and measurement of indirect costs (Sculpher,
2001). The measurement of direct costs has received less attention. There is a relatively small
literature which considers the appropriate definition of direct costs and their relationship to
opportunity costs and charges (Brouwer et al, 2001; Dranove, 1996). There is limited consideration
however of the impact that different data collection methods and different methodological

approaches employed in analysing cost data have on the estimates of cost statistics.

The limited information available with regards to direct cost measurement in general and the lack of
a well-established methodology in dealing with particular statistical issues arising in the analysis of
treatment costs are themselves ajustification for the subject matter that follows. However the
emphasis placed on the analysis of treatment cost is also due to another growing tendency within
the cost-effectiveness literature. This is the increasing adoption of economic analysis alongside
clinical trials. Undertaking an economic evaluation alongside a clinical trial presents specific
analytical problems due to the experimental design itself. A clinical trial is designed to test a
hypothesis of a clinically important difference between two alternative treatments. As a result data
collection is primarily concentrated on accumulating the necessary clinical information possibly at
the expense of economic data requirements. In addition to being of secondary importance, recording
cost information on every cost generating event may also be a relatively demanding process.
Consequently, it is commonly the case that only the minimum amount of cost data is available from
the trial itself. A further consequence ofthe nature ofthe experimental design is that the study will
end once the difference in the clinical endpoint between the trial arms is attained. This means that
the study will terminate prior to every patient reaching the prespecified endpoint, a condition

referred to as censoring, resulting in information on some patients not being available for the whole



duration of interest. Any statistical analysis should account for this information loss, an issue well
recognised within the context of time to event data analysis. The same concerns arise in the analysis

of cost data where the censoring mechanism results in similar loss of information.

As an extension to this literature, two specific cost measurement issues are addressed in this thesis.
The first relates to the collection of cost data and the second to the treatment of censoring in the
statistical analysis of costs. Both issues are considered within a clinical trial setting although this
setting does not restrict the generality ofthe findings. The issue relating to cost collection is
investigated using a simulated dataset whereas investigation ofthe condition of censoring, which
constitutes the major objective of the thesis, is undertaken using a dataset drawn from a prospective

randomised clinical trial briefly described below.

The data were drawn from the UK Prospective Diabetes Study (UKPDS 33, 1998). A total of 5102
newly diagnosed type 2 diabetic patients defined as having fasting plasma glucose (fpg) greater than
6mmol/l on two occasions, aged 25-65 years (mean age 53) were recruited to 23 UK study centres.
After initial diet treatment a total 0f4209 had fasting plasma glucose between 6.1 mmol/1 and 15
mmol/1 without symptoms of hyperglycaemia and were followed-up. Ofthese, 342 overweight
patients were randomised to metformin leaving 3867 individuals who entered the main
randomisation and were allocated either to conventional policy (1138 patients) achieved primarily
through diet or to intensive policy (2729 patients) based on either insulin (1156) or sulphonylurea
(1573). The aim ofthe conventional policy was to maintain patients free of diabetic symptoms and
with a fasting plasma glucose of less than 15 mmol/1, whereas the aim ofthe intensive policy was to
achieve a fasting plasma glucose concentration of less than 6mmol/l. Figure 1.1 shows the main

randomisation process.

5102

newly-diagnosed diabetic patients (fpg >6 mmol/1)
diet for 3 months

Main Randomisation («<=3867)

symptom-free and
6 mmol/lI<fpg<15 mmol/1

Sulphonylurea
Insulin

Primarily diet )
Metformin (obese)

«=1138 «=2729
aim: to maintain patients aim: to achieve basal
free of diabetic symptoms normal normoglycaemia
and with fpg<15 mmol/l (fpg<6 mmol/1)

Figure 1.1. The UKPDS main randomisation



The major clinical endpoints analysed were death or the development of diabetic complications
including coronary heart disease, cerebrovascular disease, amputations, laser treatment for
retinopathy, cataract extraction and renal failure. All analyses and comparisons were performed on
an intention-to-treat basis. The trial started in 1978 and ended in 1998 with a median follow-up to

death, the last date at which clinical status was known or to the trial end of 10 years.

For each patient in the study data were collected at 3 monthly clinic visits on the doses of all agents
used for the treatment of diabetes as well as all other co-medications and the number of home blood
glucose tests. Data on the date and duration of each hospital admission were collected at every
clinic visit. These were coded using ICD-9 and ICD-10 classifications for prime cause of admission
and OPCS-4 codes for all procedures undertaken. In addition a separate record was maintained of
all angiograms, angioplasties and bypass grafts for coronary or peripheral vascular disease. Data on
non-inpatient health care resource use were collected from all patients in the trial using a
questionnaire distributed at routine clinic visits between January 1996 and September 1997 and by
post to those who had not attended a clinic during that period. This questionnaire collected
information on all home, clinic and telephone contacts with general practitioners, nurses,
chiropodists, opticians, dieticians, eye and other specialists over the preceding four months. These
cross-sectional data were analysed using multiple regression techniques to estimate for each patient
the annual non-hospital resource use adjusted for significant variables including age, gender, body
mass index, duration of diabetes and time from a non-fatal diabetes-related endpoint. Unit costs for
all resources used by the trial patients were obtained from national statistics and from centres
participating in the trial. These unit costs were then combined with the resource volumes to obtain a

cost per patient over their time in the trial.

The data on non-inpatient costs were not included in the analysis undertaken in the thesis as the
underlying resource use data were not collected during the trial for all patients but were estimated
from a regression model. In addition all costs used and reported in subsequent chapters are in 1997
UK £s and are not discounted as the analysis is concerned with assessing the differences among
alternative methods in accounting for censoring and not the difference in the costs between the trial
arms. For these reasons the cost estimates reported in subsequent chapters are not directly

comparable to those reported in the UKPDS economic paper (UKPDS 41, 2000).

The clinical trial reported that the intensive blood glucose control policy significantly reduced the
risk of any diabetes related endpoint by 12% (P=0.029), but did not significantly reduce diabetes
related deaths or all-cause mortality. The diabetes related endpoints were myocardial infarction,
congestive heart failure, stroke, renal replacement therapy, amputation, cataract extraction, vitreous
haemorrhage and death from any cause. With respect to the analysis undertaken in the thesis the
failure event was death by any cause. Figure 1.2 presents the Kaplan-Meier estimates for the

survival probabilities by randomisation group and shows graphically the lack of clear difference in



mortality between the conventional and intensive policy populations as reported by the trial
(UKPDS 33, 1998).
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Figure 1.2. Kaplan-Meier estimates for the survival probability by randomisation group

The thesis is structured as follows. Chapter 2 presents an overview of the literature that addresses
the methodological issues concerned with the collection and analysis of cost data alongside clinical
trials. This review is not systematic, indeed it is not intended to be given the existence of a number
ofrecent reviews in this area, but is meant to provide the necessary background information as a
means ofintroduction to the analysis presented in the subsequent chapters and in particular to the
analysis of censored cost data. Emphasis therefore is given to the various statistical issues that arise
in the analysis of cost data and the respective methodologies that have been proposed to address
these issues. The main findings suggest that in general in medical studies and in particular in
clinical trials cost data will typically present analytical problems due to a number ofreasons relating
both to the specific application under consideration but more importantly to the complexity ofthe
cost distributions in general. Censoring appears to be the most commonly encountered feature of
cost data drawn from a clinical trial and given the experimental design of such studies it is likely
that it will continue to be so. The importance of successfully handling the presence of censoring in
deriving estimators for the statistics of interest has been long established in the context of'time to
event data but only recently in the context of cost data. Consequently the number of the proposed
approaches that attempt to deal with the bias induced by censoring in the cost estimates is limited.
Moreover some of these approaches lack theoretical justification and have been erroneously

recommended in the literature. Finally the recently developed methodologies whose use is justified



in the context of censored cost data analysis on theoretical grounds have not been empirically

assessed under conditions of heavy censoring using real clinical data.

An appendix to chapter 2 (Appendix A.2.1) presents a systematic review of the economic literature
relating to type 2 diabetes. The motivation for undertaking this review was that as stated above the
dataset used in analysis in the later chapters was drawn from a clinical trial in type 2 diabetes.
Although this review was undertaken primarily for completeness, as the methodology studied in the
subsequent chapters is not dependent on the disease area, it served to indicate that although type 2
diabetes is a major disease area the number ofrelevant economic analyses is limited. Most of the
studies are either cost-of-illness studies or pure modelling studies. The most important cost-
effectiveness analyses undertaken to date appear to be the ones accompanying the UKPDS.1
Moreover, while these studies provide essential information to the understanding ofthe costs
associated with type 2 diabetes and its complications and to the assessment of the cost-effectiveness
of the proposed treatment interventions, it is revealed that no individual study in this disease area

has addressed the issue of censoring in the cost data.

Chapter 3 considers an issue raised within the UKPDS economic analysis and liable to arise in any
multi-centre study relating to the collection of costs rather than their statistical analysis. The typical
pattern of cost data collection within a multi-centre study involves recording volumes of resource
use at the patient level but not the recording of unit cost information from the individual
participating centres. As such the available cost information reflects centre-specific resource
utilisation but not centre-specific unit costs. In these circumstances, the unit cost attached to the
resource volumes is some average unit cost obtained either from a sample of the participating
centres or from a number of published sources. The question then arises as to whether using such an
average unit cost in the calculation oftotal treatment cost instead ofthe unit cost in the centre where
the resource was utilised has an impact on the cost estimates. This question is addressed using a
simulation setting where an underlying production function is assumed which determines the
behaviour of treatment centres in delivering a health outcome. Under a formal specification of'the
production and cost relations the simulation exercise considers a number of specific interactions
between unit cost and resource volumes and compares the estimates of treatment costs resulting
from the various assumptions employed within the simulation setting. The results show that under
the assumption that treatment centres operate in a manner consistent with economic theory as
assumed by economic evaluation, ignoring the underlying production-cost relations will lead to

biased estimates of treatment costs.

Chapters 4 and 5 concentrate on the impact of censoring on the estimates of cost statistics. Chapter
4 investigates the theoretical properties, underlying assumptions and empirical performance ofa

number of non-parametric estimators of average cost which attempt to account for the loss of

1The author of'this thesis was a member ofthe UKPDS economic group and was involved in a number of the
individual economic analyses associated with the UKPDS.



information imparted by censoring. The estimators are studied within the counting process and
martingale framework given that their asymptotic properties have been established using this theory
as applied to survival analysis. The development ofthe theory of counting processes, stochastic
integration and martingales is therefore presented but only to the extent required for the applications
of interest. The proposed estimators are then assessed under extreme censoring conditions using the
UKPDS data which exhibits 82% censoring by the trial end. The analysis shows that of the
estimators expected from the theory to provide consistent estimates of average cost in the presence
of censoring, only two appear to do so under heavy censoring conditions. Furthermore, both these
adequately performing estimators require information on individuals’ cost history recorded at

intermediate points in time over the study period.

Chapter 5 addresses the same issue as chapter 4 but with reference to semiparametric and
parametric approaches. Being of a semiparametric or parametric nature, the set of estimators
considered in this chapter involve additional assumptions with regard to the distribution of costs
relative to the non-parametric estimators of the preceding chapter. On the other hand such
estimators, if they perform adequately, will allow extrapolation of within study estimates to
different populations or to points in time beyond the end ofthe study. The estimators’ asymptotic
properties are again investigated using the counting process and martingale theory when required
and when the idea underlying their development originates from the study oftime to event data, the
approach is first considered within this context and the extension to the analysis of cost to event
data follows. The proposed estimators are empirically assessed under the same censoring conditions
as the non-parametric alternatives using the UKPDS data and the resultant estimates are compared
to the best performing estimators identified in the preceding analysis. This comparison shows that
ofthe parametric methodologies whose use in the analysis of censored cost data is theoretically
justified, only one appears to perform adequately under the circumstances considered in this
analysis. Moreover this estimator shares the two most important features ofthe best performing
non-parametric estimator, namely both these approaches use intermediate cost information on each
individual in the study and in both cases censoring is accounted for using the same type of

adjustment in the estimating equations.

A final chapter considers the central themes investigated in the thesis concentrating on the main
results of'the analysis and concluding on the implications ofthe findings for the study of medical

costs under conditions of censoring.



Chapter 2

Review of methodological issues in the collection and analysis of cost data

2.1. Introduction

The objective ofthis chapter is to present some of the fundamental methodological issues arising in
the collection and analysis of cost data generated from a clinical trial and to highlight specific
statistical issues of concern. The purpose of addressing these methodological issues is to set the
context for the subsequent chapters which are concerned with various aspects of cost collection and
analysis both from a theoretical viewpoint as well as from an empirical one, the latter being
undertaken using clinical trial data. This chapter therefore provides the general background to the
substantive contents ofthe thesis and while reviewing the relevant literature is not a systematic
review. More specifically, chapter 3 investigates the impact of different levels of cost data
collection on estimates of total treatment costs. Accordingly, while the introduction to chapter 3
makes specific reference to the literature that addresses data collection issues, this chapter provides
an overview of the arguments various investigators have forwarded on which costs ought to be
collected and how specific these should be. Chapters 4 and 5 consider a number ofnon-parametric
and parametric estimators of mean treatment cost under conditions of censoring and assess the
estimators’ performance using data collected alongside a clinical trial. This condition occurs
frequently in medical studies and affects both measures of cost and effectiveness. The importance
ofignoring the presence of censoring when deriving estimates of medical costs is increasingly
acknowledged. This issue is addressed in great detail in the subsequent chapters and is therefore
only briefly discussed in this review chapter. In addition, censoring was the most prominent feature
ofthe trial data used for the analysis in this thesis whereas the remaining ofthe potentially

problematic issues presented below were either almost absent or completely absent from these data.

An appendix to this chapter (Appendix A.2.1.) presents a systematic review ofthe economic
literature relating to type 2 diabetes. The review of this disease specific literature was undertaken
for the sake of completeness as the empirical analysis in later chapters uses data from a prospective
randomised controlled clinical trial in type 2 diabetes. This review was deemed of secondary
importance on the grounds that at no point was it expected that the results ofthe analysis presented
in the subsequent chapters would be disease-specific. On the contrary, the explored analytical
methods are completely independent ofthe disease area considered and consequently their
applicability is in no way restricted by the nature of the clinical area the data analysed are drawn

from.



The chapter therefore is structured as follows. As a means of introduction a short discussion ofthe
role of economic analysis alongside clinical trials is given highlighting points of concern raised in
the literature. This is followed by a discussion ofthe problems commonly encountered in collecting
and analysing cost data together with the methodology employed in an attempt to overcome these

difficulties.

2.2. Economic analysis alongside clinical trials

A number of studies have considered cost data issues in the context of economic evaluation
alongside clinical trials. Johnston et al (1999) give an overview ofthe issues. Given the existence of
this review the findings are not replicated here. Instead a summary of the aspects which are of
relevance to the issues addressed in the thesis is presented. There is a related literature which
assesses the relative advantage of economic evaluation undertaken alongside a clinical trial over
evaluation based solely on modelling techniques (Buxton et al, 1997; Morris, 1997; Kuntz and
Weinstein, 2001). Again only the main points are stated here. In the recent collection edited by
Drummond and McGuire (2001) costing issues are also considered in a number of chapters and the

main relevant points are included in the exposition below.

Data for the purposes of economic evaluation can be obtained from a number of sources including
clinical trials and a variety of models or a combination ofthe two instruments. There are a number
of advantages and disadvantages associated with each data source, though generally clinical trials
are preferred to modelling approaches largely because they are believed to give a better indication
of cost-effectiveness given their reliance on real albeit experimental data. Under certain
circumstances however modelling is unavoidable either because economic data have not been
collected alongside the trial or more commonly because there is an interest in generalising the trial
results to different population settings or to points in time that exceed the duration of the clinical
study. Modelling therefore can be useful in situations where the trial data present limitations with
respect to a number of factors such as the length ofthe study duration, the range of assessed
outcomes or the experimental design itself. In these situations modelling allows for example
extrapolation from intermediate clinical endpoints to final outcomes, the linking of disease-specific
measures of health state preference values to a standard utility value and generalisation ofthe
findings to standard clinical practice settings. Moreover there are situations where use of a
statistical model provides the only means for analysis due to specific data problems as is the case
for instance when some data are missing or the variable of interest is censored. Clinical trial based
economic evaluations and economic evaluations based on modelling approaches are therefore not

necessarily mutually exclusive analytical techniques.

In comparisons between the two instruments however the established view is that clinical trials

provide the most powerful means of assessing the efficacy of health care interventions. Assessment
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of an intervention’s efficacy requires that all confounding factors be controlled for to the largest
possible extent through the experimental design and patient entry criteria. From the perspective of
an economic evaluation however the outcome of interest is not efficacy but effectiveness. Assessing
an intervention in terms of effectiveness requires that the health outcome derived from the
intervention represent a relative gain compared to an alternative under conditions of a standard
clinical practice setting. By contrast, an intervention is deemed efficacious if there is a relative
clinical benefit attributed to the intervention under the controlled ideal conditions defined by the
experimental study design. It is important therefore that efficacy information derived from clinical
trial data be adjusted to reflect standard clinical practice conditions for the purposes of economic
evaluation. Otherwise, given the ideal conditions specified by the trial design, efficacy will

normally represent the upper bound of effectiveness.

Aside from the efficacy issue, the randomised controlled trial is ofrelatively limited use to
economic evaluation for the following related reasons. Randomisation, while it tends to balance
prognostic factors across the study groups is at the same time linked to a number of exclusion
criteria on the basis of which the groups are defined. As a result the generalisability of the findings
to different population settings is limited. In addition clinical trials are typically undertaken in
specialist settings and use the most recent medical equipment. A strict protocol is often followed
and treatment as well as disease progression are carefully monitored with every effort being made
to ensure that both patients and clinicians comply with the trial requirements. Consequently the
treatment pattern observed within a trial setting is likely to be substantially different from the
pattern corresponding to a standard practice setting. This discrepancy will lead to difficulties in
assessing not only the effectiveness ofthe intervention but also its cost. In an attempt to reflect real
clinical practice more closely, some clinical trials follow a naturalistic protocol in the sense that the
study patients are relatively typical ofthe normal caseload, the intervention being assessed is
compared with current standard practice, the setting used and the physicians involved are fairly
representative of the population and the trial protocol is flexible. Such pragmatic studies are
normally based on a cohort study design and attempt to provide information both on the incidence
of disease and the impact ofthe intervention under consideration. Naturalistic studies however are
normally time-consuming, often require large sample sizes, incur significant loss of follow-up, are
costly to undertake and consequently relatively uncommon. Moreover, while naturalistic studies
attempt to reflect real conditions and are by definition less tightly controlled than randomised
controlled trials, they are still restricted by the settings in which they are conducted and the

population involved and therefore they are not entirely generalisable.

The concerns raised above though important should not be interpreted as undermining the
usefulness of'the experimental design for the purposes of economic evaluation. Furthermore
modelling approaches can be employed to overcome some ofthese difficulties. Given that the
objective of a clinical trial is different from the objective of the economic analysis conducted

alongside it, that is the trial will normally be set up to test a hypothesis of clinical importance as
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opposed to one of economic importance, it is important that this discrepancy be accounted for. This

is another reason why modelling techniques are increasingly used within such an analytical setting.

2.3. Cost collection

Concentrating on resource use and cost issues it appears that the number of studies that have used
patient level resource and cost data alongside a clinical trial is limited although increasing. Briggs
and Gray (1998) identified a number of such studies as part of a wider systematic review concerned
with the handling ofuncertainty in the cost-effectiveness literature. They reported on 368 published
studies up to the end of calendar year 1995 which were identified as cost-effectiveness or cost-
utility studies. Ofthese, only 22 studies had used patient specific data collected alongside a
randomised controlled trial and a further 19 studies had used such data collected within another
form of clinical study. That is, only 11% of the identified studies in their review had analysed
patient specific resource/cost data drawn directly from the clinical study. Of'this total, only 3.3%
reported some conventional measure of variance. In other words the vast majority of economic
evaluations appear not to be utilising the information required to perform statistical analysis of cost
data drawn from a clinical study, and even where such information was reported only a subset
derived measures of variation associated with the estimates of the average cost of treatments. This
finding is consistent with the conclusion reached by Barber and Thompson (1998). They identified
45 randomised clinical trials published in the year 1995. They reported that while each ofthese
trials was believed to have recorded cost data at the individual patient level, less than 20% reported
standard measures of variability although 56% performed statistical tests to compare resource costs

across the treatment groups.

Issues generated by the cost data collection process alongside a clinical trial have been addressed in
a number of publications (Drummond, 1994; Drummond and Davies, 1991; Drummond and
Stoddart, 1984; Buxton et al, 1997; Glick et al, 2001). Aside from addressing the question of how to
integrate cost collection into the trial design, these studies also consider whether power calculations
ought to be undertaken on the economic endpoints, whether clinical trials which generally measure
efficacy can appropriately define effectiveness, whether the population selected for inclusion into
the trial through controlled entry and design is appropriate for consideration by an economic
evaluation as the population in a trial is normally more homogeneous than the heterogeneous
population faced by decision makers, whether the selection ofthe control arm forms an appropriate
comparator for the purposes of an economic evaluation and what forms the most appropriate

methodology for the analysis ofthe collected data.

A small number of studies have addressed the specific question of which particular cost components
are relevant to the estimation oftreatment cost within an economic evaluation (Brouwer et al, 2001;

Gold et al, 1996). Glick et al (2001) outline a general strategy for designing an economic evaluation

12



to be undertaken alongside a clinical trial. With regards to the question of what proportion oftotal
costs ought to be collected as part of the trial they offer the rather simplistic answer that as many
components of cost as possible should be measured. Their rationale is that minimising the loss of
information reduces the likelihood that cost differences among the competing treatments will be due
to study artefacts although they also note that there are no a priori guidelines. There have been a
limited number of studies which have addressed this question empirically. Whynes and Walker
(1995) analysed costs collected alongside a trial for colorectal cancer on 360 patients over a 3-year
period during which individuals could have up to 14 individual cost generating events. The authors
undertook a detailed costing exercise on an individual patient basis incorporating all 14 cost
generating events and compared the resultant cost estimates with costs derived by using the same
information at a more aggregate level. Their results indicated that estimating costs based on 4
specific cost categories rather than 14 accounted for approximately 92% oftotal costs on average
but this finding held for only 44% of individual patients. On this basis the authors recommend
collecting cost data at a patient level as this information reveals differences in cost patterns among
individual patients which would not have been identified if an aggregate costing exercise had been
undertaken. A similar study in the area of mental health (Knapp and Beecham, 1993) concluded that
of'the 21 identified cost categories, 5 accounted for approximately 95% oftotal cost while 10
categories accounted for 98% of total cost. The findings from these studies suggest that while
aggregation of cost elements into categories is possible with direct implications for the process of
cost data collection, it would be difficult to identify important cost categories at the outset of the
study both due to the variation in the distribution of cost across individual patients and due to the

variation in the distribution of cost across disease areas.

Graves et al (2002) assess the quality of the methods used to derive patient level cost in economic
evaluations conducted alongside clinical trials. They review the same 45 studies reported by Barber
and Thompson (1998) referred to above. The quality ofthe methods employed by the studies was
assessed using twelve criteria that covered general costing issues, the methods used to identify and
quantify the resource elements and the reporting of data. The results indicated that the vast majority
ofthe reviewed studies failed to attain acceptable levels of quality as specified by the authors’
criteria. The authors therefore concluded that although the statistical analysis of cost data collected
alongside a clinical trial is fundamental to the evaluation ofhealth care technologies, the process of
cost collection and collation is equally important and as the title of their article states “No amount

of statistical analysis can compensate for poor quality cost data” (op. cite).

Once the relevant data have been collected the issue becomes to determine the most appropriate
method for analysis. In situations where information on resource use is not available from the trial
economic analysis is based on some modelling approach and the necessary information is typically
obtained from published sources. In these circumstances statistical analysis of the distribution of
treatment cost based on the observed trial population sample is not possible. Uncertainty

surrounding the cost estimates may then be assessed by univariate or multivariate sensitivity
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analysis techniques in which model parameters vary over a specified range of values and the effect
on the cost estimates is considered. [f however the collection ofpatient level resource use data is
incorporated within the trial design, statistical analysis of'the trial data allows estimates ofthe
parameters of the distribution of cost to be derived based on the observed population sample. Issues
of concern then relate to whether tests of statistical significance should be performed at all or
whether ranges should be presented instead given that although the clinical trial is considered a
means of hypothesis testing, an economic evaluation undertaken alongside it will generally not be.
That is, the trial is designed and powered to test a null hypothesis of no difference in effect but not
an analogous hypothesis ofno difference in cost between the alternative treatments even though the
study design might incorporate cost data collection. Another concern relates to whether statistical
tests, if performed, should be undertaken on the individual resource quantities, unit costs or both as
each of'these elements may be responsible for different degrees of variation in cost. Finally, a large
literature has considered the methodology employed in calculating confidence intervals for the cost-

effectiveness ratio statistic (see Briggs, 2001 for an overview of'this literature).

The main finding which emerges from the preceding discussion is that although economic
evaluation is increasingly undertaken alongside clinical trials, the proportion of economic studies
that analyse data collected alongside a clinical trial in a manner that allows statistical inferences to
be made regarding the distribution of cost is low. The primary reason why this is the case appears to
be the lack of available cost data collected alongside a trial. Nevertheless, there are indications of an
increasing tendency towards an incorporation of requirements for the collection of data on
economic variables into the trial design. In these circumstances the issue becomes one of data

analysis rather than data collection.

2.4. Cost analysis

Within the context of cost analysis a number of statistical problems arise, some of which require
treatment by a specific statistical methodology while others stem from more general concerns.
Before discussing the specific methodological problems most commonly encountered in the
analysis of cost data drawn from a clinical trial, an important issue of a more general nature relates
to the representativeness of a typical clinical trial population. Mullahy and Manning (1996) state for
instance that even with randomisation there may still be selection bias arising from the individual’s
decision to participate, that eligibility criteria may lead to inappropriate exclusion of subsets of
patients and that there may be selective compliance oftreatments. For all these reasons the patient
sample studied by the trial may not be representative of the true underlying treatment population.
This is undoubtedly an important potential problem in any experimental design. A related issue
raised by the same investigators is concerned with the omitted variables problem which imparts bias
in the estimates. Viewed within a linear regression setting, the authors argue that the randomisation

process must appropriately account for confounding variables. In other words, for the bias due to
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omitted variables to be avoided, randomisation must ensure orthogonality between the regressors

(i.e. the trial variables) and the unobservables (the confounding variables).

The statistical methodology employed in the analysis of cost and effectiveness trial data assumes in
general that the process of randomisation both controls for confounding factors and ensures the
representativeness ofthe trial population. Under this assumption the objective ofthe statistical
analysis is to derive estimates of cost and effectiveness for the alternative interventions which are

typically combined to form a ratio statistic defined as

R=ita Md,
(Me\ ~ Me2)

where /u@ and pic2 are the average total costs of the two competing interventions (interventions 1
and 2) respectively, /uH and juF2 denote the respective average total effects, and the ratio R

referred to as the incremental cost effectiveness ratio (ICER) represents the incremental cost per
unit of additional health outcome and is derived as the difference in the average total cost between
the two alternative interventions relative to the difference in the average total effectiveness. As
O’Brien et al (1994) state in circumstances where the sample is randomly drawn from the true
underlying patient population, the ICER statistic can be estimated by replacing the unknown

population parameters by their sample estimators and is given by

fc_:(Act -Ma)
(Aei -M, n)

The issue then becomes to obtain appropriate estimators for the mean values appearing in the
expression above. The most obvious estimator would be the one based on the assumption of
normality of the distribution of costs (and similarly of effects). However the assumption of
normality for the distribution of costs is rarely valid. As a result such estimators of cost statistics
will typically result in biased estimates. As the following sections show cost distributions tend to be
particularly complex and their pattern depends to a substantial extent on the specific application.
Consequently deriving estimators for the parameters of interest may be more appropriately achieved
using an approach that does not impose specific distributional assumptions on cost. The choice of
the estimator depends on a number of issues of a statistical nature the most common of which are

presented below.

A regression framework is adopted as this provides a useful analytical device that allows
elaboration of the problems and their proposed solutions. Thus considering a typical dataset which
includes measurements on a set of covariates X the classical regression model relates cost to these

covariates as follows
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C=j3X +£

where C is the random variable denoting cost, /? is a p x 1 vector of unknown regression

parameters and e is a zero-mean error term assumed normally distributed with constant variance

cr2. Letting i identify individuals the model for individual i is

C, =P'Xi+si,i=\..n

The estimator for mean cost is then

C=fi'X

where ;3 is the vector of the estimated regression parameters resulting from the least squares

normal equation and X denotes the covariates vector evaluated at the mean values of'the
covariates. Being parametric, a regression approach may be preferred to a non-parametric estimator
if for example there is interest in the extrapolation of costs beyond the end of the trial period or if
interest is in assessing covariate effects on cost or in deriving cost predictions for different patient
populations. On the other hand, a parametric approach typically imposes a particular distributional
form on cost, in this case a normal distribution, which may not be justified. Additional concerns
which influence the choice ofthe analytical methodology relate to the pattern ofthe observed cost
data and include positive skewness in the cost observations, a substantial proportion of zero costs,
censoring, missing data and lack of independence in the cost observations in situations where each
individual in the sample contributes multiple data points over time. Each ofthese problems is
considered in turn below. Heyse et al (2001) and Lipscomb et al (1998) cover similar ground. In
what follows interest lies in deriving estimates of mean cost over the duration ofthe study as this

forms the objective ofthe analysis in subsequent chapters.

2.4.1. Skewness in the cost data

The distribution of costs is typically positively skewed with a small number of patients incurring
very high costs which implies that methods that assume a normal distribution and constant
variances, such as the classical linear regression model may not be appropriate. In addressing this
issue Briggs and Gray (1998) investigated the distributional properties of five datasets in detail.
They found that all exhibited non-normality. To account for non-normality the authors considered a
number of transformations, namely the log transform, the square root transform and the reciprocal
transform. They state that although the data allow such transformations to be performed
interpretation problems arise, an issue also raised by Manning (1998). The reason why such
difficulties arise is that with transformed dependent variables, the mean response is not equal to the

response of an individual with mean covariate values, but it equals the mean of the retransformed
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estimate of the dependent variable which depends on the distribution ofthe covariates and notjust
their mean. Hence the property ofthe ordinary least squares regression estimates where the mean
response equals the mean covariate values multiplied by the estimated regression parameters thus
implying a straightforward interpretation for the coefficients disappears when the dependent
variable is transformed. Despite these general problems, transformations are useful in regression
problems and under conditions ofpositively skewed cost data the most commonly employed

transformation is the logarithmic. This model is defined by

In(C,+1) =

where si is normally distributed with mean 0 and constant variance a 1, so that the unexplained part
of C, is now assumed to be lognormally distributed and the value of 1 (or any small positive value)
is added to the observed costs to ensure that the logarithmic function is defined when there are zero

cost observations in the data. The corresponding mean cost is

C,.=exp(M.)-1

If however the errors si in the above model are not normally distributed the above expression will
lead to biased estimates of mean cost (Duan, 1983; Manning, 1998). To correct for this bias, Duan
(1983) proposed a nonparametric alternative referred to as the smearing estimator, considered in
detail in chapter 5, which provides consistent mean estimates even when the error distribution in the
above model is normal. In addition the smearing estimator can also be used to account for this bias
in the mean estimates for transformations other than the logarithmic.1 The mean cost with smearing

is then given by

C, =[exp("X,.)]5-1

9

where § =—V ee'is the smearing estimator, £ is the ordinary least squares residual for the cost
n A

observation Ci and 7 is the total sample size.

2.4.2. Zero costs

Another issue arising in studies oftreatment cost is that it is possible that a substantial number of
patients have zero costs recorded as a result ofthe treatment lowering the probability ofa cost

generating event occurring. An estimator of average cost not taking account of this issue such as the

1The smearing estimator does not account for heteroscedasticity. If the error terms in the model
In(C, + 1) =/?"Xi+.5j do not exhibit constant variance cr2 a heteroscedastic smearing estimator is recommended
(Manning, 1998).
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simple arithmetic average would result in an underestimate of the mean cost. Similarly, a regression
model including the zero cost observations would result in biased estimates. Duan et al (1983) and
Lipscomb et al (1998) consider two-part models to address the problem generated by zero cost
observations. The first part fits a logistic or probit model to the dichotomous variable defined by
whether the patient incurred costs or not and thus predicts the probability that the patient has any
cost generating events. The second part fits standard linear models to the cost data (possibly
transformed) for those patients whose costs are positive. Expected values for individual patients are

then derived by multiplying the two components together. The two-part model is given by

[ 0 with probability p {
{P'Xi+ei with probability (1- /2,.)

1
where pt =
1+ exp[-(7'X,.)]
with 7 being a vector of logistic regression coefficients and X being the same explanatory

variables used in the cost regressions. The corresponding estimator for the individual’s mean cost is

"1+ exp(77°X;)

where the error terms in the regression model using the positive costs are zero-mean with constant
variance a 1. Applying the logarithmic transformation to the positive cost observations, the two-

part model results in the following estimator for mean cost

£ exp(fi'X,)
" I+exptf'*))

and with smearing, the two-part estimator of mean cost is

£ [exp(0'X,)]S
1+exp(/Po )

where the smearing factor S is defined above. With or without smearing, the logistic model
component of the two-part model remains the same. Two-part models therefore allow consideration
of factors which might affect both the probability of an individual having a cost generating event
and the level of cost incurred given that there was a cost generating event. The importance ofnot
accounting for a high proportion of zero costs in the data when estimating average cost can be seen

by the following example. If a treatment lowers the probability that a patient has a cost generating
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event but does not lower the level of incurred cost, ignoring the first issue might result in the

treatment appearing to reduce the costs on average.

2.4.3. Censoring

There has been a long history of concern with censored data in analysing the effectiveness of
treatment interventions within a clinical trial setting. More recently censoring has also been
considered within the context of cost analysis. This section merely gives an introduction to the issue
as the problem of censoring and the relevant literature are investigated in detail in chapters 4 and 5.
Censoring arises because a number of observations fail to reach some pre-specified clinical
endpoint, for instance death, before the end ofthe study period.2 Until recently the problem of
censored cost data had not received much attention and the analysis was based on the following two
“naive” estimators. The first, referred to as the uncensored cases estimator, only uses the
uncensored cases in the estimation of mean cost while the second, referred to as the full-sample
estimator, uses all cases but does not differentiate between censored and uncensored observations.
Both these estimators will always be biased. The full-sample estimator is always biased downward
because the costs incurred after censoring times are not accounted for whereas the uncensored-cases
estimator is biased toward the costs ofthe patients with shorter survival times because larger

survival times are more likely to be censored (Lin et al, 1997).

Censoring within the context of time-to-event data analysis has been dealt with using survival
analysis techniques some of which make specific assumptions about the distribution oftime-to-
event while others are completely free of distributional assumptions. Initial attempts to account for
censoring in the estimation of censored cost statistics applied parametric and non-parametric
survival analysis methodology to cost (Dudley et al, 1993; Fenn et al, 1995, 1996). Underlying all
the standard survival analysis approaches within the context oftime to event data analysis is the

assumption of independence between time to event and time to censoring. This implies that

2 Although interest in this thesis is restricted to consideration of censoring in the analysis of cost data a more general
point arises from the relationship between censoring and the alternative definitions of treatment effect. Within the
context of an economic analysis conducted alongside a clinical trial the treatment effect is normally based on efficacy
data drawn from the randomised controlled experiment. For the purposes of an economic analysis however the
treatment effect should reflect the health gain attributable to the intervention under consideration as based on the
general population likely to receive the treatment. In the treatment effects literature there are three basic parameters of
interest. The local average treatment effect which is the average effect of treatment in the compliers, the global average
treatment effect estimated based on the entire study population -i.e. including compliers and non-compliers- and the
intent-to-treat parameter which is the average effect of treatment assignment (e.g. Angrist, Imbcns and Rubin, 1996;
Robins and Greenland, 1996). These alternative definitions of treatment effect could lead to differing levels of
generalisability ofthe results of the economic analysis as well as differing levels of censoring and/or different censoring
mechanisms. For example if the treatment is responsible for non-compliance and non-compliers are withdrawn from the
study this will imply a non-random censoring mechanism requiring different estimation strategies for the parameters of
interest from the ones employed under random censoring. In this case the mechanism that causes censoring might need
to be explicitly modelled. As stated later in the thesis in most medical studies censoring is assumed to arise completely
at random and consequently all estimators examined in chapters 4 and 5 have been developed based on the assumption
ofrandom censoring.
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censored individuals do not constitute a particularly high or low risk subgroup so that removal of
certain observations from the sample due to censoring leaves the remaining event times ofthe
individuals who are still under observation having the same joint distribution as if there had been no
censoring. A case of dependent censoring will arise for example if high-risk individuals tend to be
censored because then the remaining individuals in the sample will represent a low risk population
and the estimated hazard will underestimate the true hazard. In the context of cost analysis the
independence assumption is translated into independence between the cost at event and the cost at
censoring. Such an assumption would only be valid if all individuals accumulate cost at the same
rate over time which implies a one-to-one mapping between time ¢ and cost accumulated by time &
Typically however the rate of cost accrual varies amongst individuals with those in poorer health
states using more resources and therefore incurring higher costs per unit of time. This means that
individuals with a higher rate of cost accumulation will incur higher costs both at failure time and at
the censoring time inducing positive correlation between cost at failure and cost at censoring. The
assumption of independence between the variable of interest and its censoring variable is therefore
violated and on this basis all traditional survival analysis techniques are inappropriate for estimating

censored cost statistics (Lin et al, 1997; Etzioni et al, 1999).

Lipscomb et al (1998) applied the stratified variant ofthe Cox proportional hazards model with
time being the stratification variable in deriving estimates of patient cost within each stratum and
although censoring was not present in their data, they suggested use of this model under censoring
conditions on the basis that stratification by time circumvents the problem of dependent censoring
as this specification imposes no constraint as to how cost varies over time within a given time
period. Etzioni et al (1999), as presented in detail in chapter 5, criticise this approach on the basis
that the accrual of costs at different rates across individuals will result in dependent censoring
within the subgroups defined by the covariate levels even when the stratified variant of the
proportional hazards model is adopted. An additional criticism relates to the proportionality
assumption underlying the validity of'the Cox regression model and as Etzioni et al (1999) show
this assumption will not generally hold in circumstances when individuals accumulate costs at

different rates.

As aresult of the inappropriateness of the standard survival analysis techniques for censored cost
data analysis, a number of alternative methods have been introduced all of which are considered in
detail in chapters 4 and 5. Their main difference lies in that some are completely non-parametric

whereas some make distributional assumptions about how cost varies with time or given a set 0of3

3 The non-stratified Cox proportional hazards model was used to analyse censored cost data by Dudley et al (1993) who
also used the Weibull regression approach in the context of assessing the effect of clinical factors on the cost of
coronary artery bypass graft surgery using alternative models. However their primary concern was not to address the
issue of censoring as this was present in only 2.6% of the total number of observations in their data. Nevertheless they
commented that these models could be used to account for higher levels of censoring although they expressed their
concern with regards to the potential bias imparted by dependent censoring. Hay (1989) introduced the notion of using
the non-stratified Cox proportional hazards model, as well as the Kaplan-Meier estimator, in estimating censored
medical costs but did not proceed to estimation.
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covariates. Lin et al (1997) proposed two non-parametric approaches in estimating censored cost
statistics. The first uses only the individuals’ total costs at the last contact dates while the second
requires information on individual cost histories.4 Both methods partition the study period into
subintervals and derive an estimate of mean cost over the study period by weighting an estimate of
interval-specific mean cost with an interval-specific Kaplan-Meier probability of survival or death
depending on the method. Both estimators are shown to be consistent under the assumption that the
censoring distribution is discrete. An alternative methodology was proposed by Bang and Tsiatis
(2000) who introduced a class ofnon-parametric estimators that do not depend on the pattern ofthe
censoring distribution. Ofthe two main estimators presented by these authors, like the Lin et al
estimators, the first uses information on total costs whereas the second requires information on
individual cost histories. These are supplemented by a further two estimators that attempt to
improve efficiency by recapturing information lost due to censoring. Aside from the non-parametric
methods mentioned above, a number of parametric regression models for estimating cost statistics
under conditions of censoring have been introduced. Carides et al (2000) proposed a two-stage
estimator which involves explicit parameterisation ofthe relationship between cost and failure time.
Lin (2000) introduced a regression technique which directly assesses the effect ofa set of covariates
on cost whilst adjusting for censoring in the cost observations through use of a probability weight in
the estimating equations. This approach can be used both when only total costs are available and
when individual cost histories are recorded. In the latter case the technique addresses the issue of
censoring while at the same time accounting for the correlation amongst repeated observations for

the same subject. Furthermore the approach can accommodate covariate dependent censoring.

2.4.4. Missing data

In many applications data could be missing for a number ofreasons. With specific reference to
medical studies, measurements on some important prognostic factors could be missing for a subset
of patients either for reasons unknown to the analyst and unrelated to the other observations in the
sample being complete or for a reason relating to the nature ofthe factor, e.g. when obtaining the
measurement requires some invasive and costly medical procedure as in the case ofbiopsy
compared to a blood sample, or for a reason relating to the design of the study, e.g. when
measurement on the variable requires visits to clinics at fixed points in time and therefore the
availability ofthe data is determined by the timing ofthe visits specified in turn by the design ofthe
study. If data are missing for reasons unrelated to the completeness of the remaining observations in
the sample, the problem is referred to as the ignorable case because if efficiency is not the primary
concern the estimation can be undertaken by ignoring the problem, that is by analysing the complete

cases only (Griliches, 1986). If however the missing data are related to the phenomenon being

4 Etzioni et al (1996), who was also one ofthe co-authors on the paper by Lin et al (1997), introduced one of'these
estimators, which was referred to as the Kaplan-Meier sample average (KMSA) estimator, but the authors did not study
the estimator’s statistical properties.
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studied then analysing the information ofthe complete cases alone will result in estimators both

biased and inefficient.

Rubin (1976) considered various mechanisms that may cause missing data and identified the
weakest conditions under which it is appropriate to ignore the process that causes missing data. In
situations where this process cannot be ignored modelling of the process is required. Assuming that
interest lies in making statistical inferences about the parameter () ofthe data with @ being the
parameter of the missing data process, Rubin (1976) defines the weakest conditions under which it
is appropriate to ignore the process that causes the missing data as follows. If statistical inference
means sampling distribution inference,5then the process causing missing data can be ignored if the
missing data are missing at random and the observed data are observed at random. “The missing
data are missing at random if for each possible value ofthe parameter (p, the conditional probability
ofthe observed pattern of missing data given the missing data and the value of the observed data is
the same for all possible values ofthe missing data. The observed data are observed at random if for
each possible value ofthe missing data and the parameter ¢p, the conditional probability of the
observed pattern of missing data, given the missing data and the observed data, is the same for all
possible values of'the observed data. If statistical inference means direct-likelihood or Bayesian
inference,6then the process responsible for the missing data can be ignored if the missing data are
missing at random and the parameter @ is distinct from 6 . The parameter (p is distinct from 0 if
there are no a priori ties between (p and 6 either via parameter space restrictions or prior

distributions.” (Rubin, 1976, p.582).

Methods for handling missing data are related to the mechanism that causes the missing values. For
example, this mechanism could be independent of the data, could depend on the value ofthe
corresponding covariate for the case with the missing value or could depend on the value of more
than one covariates. In most cases missing data are analysed based on the assumption that the
missing data are missing at random in the sense of Rubin (1976) as stated above or on the stronger
assumption that the missing data are missing completely at random, that is the process that causes
the missing data does not depend on the values of the variables of interest in the data. A test statistic
for testing whether the data are missing completely at random has been proposed by Little (1988).
Under either of'the above assumptions the mechanism causing the missing data can be ignored. If
this is the case, which implies that the missing data mechanism is not modelled, the main

approaches to analysing such data are briefly presented below.

5A sampling distribution inference is inference resulting solely from comparing the observed value of a statistic with
the sampling distribution of that statistic under various hypothesised underlying distributions. Within the sampling

distribution inference context, the parameters ) and (p have fixed hypothesised values.

6 A direct-likelihood inference is inference resulting solely from ratios of the likelihood function for various values of
the parameter. Within the context of direct-likelihood inference, the parameters 6 and (ptake values in ajoint
parameter space. A Bayesian inference is inference resulting solely from posterior distributions corresponding to
specified prior distributions. Within the Bayesian inference context, the parameters 6 and (p are random variables

whose marginal distribution is specified by the product ofthe prior densities p(0) p{(p\9) .
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Assuming the classic linear regression model given by

E{Y\X) =/?20+ /7 X , where var(F|A) =a [

the problem is to derive estimates of the parameters and their associated variance when some ofthe
data are missing. Although missing data could be present both in the outcome variable Y as well as
the regressors X , the methods discussed below concentrate on the case of missing X ’s but this
does not restrict the outcome variable which could have some missing values as well. The main

approaches for handling the problem of missing data for some ofthe regressors now follow.

The complete case analysis is a least squares method that results from minimising the sum of
squared residuals with respect both to the parameters and the missing values. This is performed by
assigning a zero residual to any incomplete case with missing values which effectively results in the
removal ofthat case from the estimation of the regression parameters. Completely discarding the
cases with missing values in this manner leads to loss of information which could be a substantial
problem if the proportion of cases with missing values is high. On this basis the approach has been
deemed useful only for providing a baseline method for comparisons. Another method is first to
impute the missing X values and then to perform the regression of ¥ on X using the imputed X
values either by ordinary least squares or by a weighted least squares regression that attaches lower
weights to the incomplete cases. A simple approach for imputing the missing X values is to replace
the missing X ’s by their unconditional sample means. This method will result in poor estimates if
there is substantial correlation in the data. Assuming for example a positive correlation between Y
and X such that high values of X are associated with high values of Y, ifevery missing X
observation is replaced with its unconditional sample mean, then high values ofthe imputed X do
not imply higher values of Y. An improvement is to use information on the observed X ’s in a case
to impute the missing X ’s. This can be achieved by imputing for a missing X value for a
particular case by linear regression on the observed X ’s in that case estimated from the complete
cases. Another method is to impute the missing X by using both Y and the observed X ’s for
imputation. Another approach is to assume ajoint distribution for Y and X , a typical choice being
a multivariate normal distribution, and to estimate the parameters ofthis distribution by maximum
likelihood (Beale and Little, 1975). The estimates of the distribution parameters are then substituted

into the regression model yielding maximum likelihood estimates ofthe regression parameters.7

The imputation methods stated above could result in low standard error estimates because errors in
the imputations are not taken into account. A solution to this problem was proposed by Rubin

(1978, 1978a) and is referred to as multiple imputation. According to this approach instead of

7For small sample inference a Bayesian approach could be preferable, according to which a prior is added to the
likelihood and inference is based on the posterior distribution. Some applications of the Bayesian approach to
multivariate problems with incomplete dependent variables are referenced by Little (1992) but application of the

approach to regression problems with missing X ’s is limited.

23



imputing a single mean for each missing value, N >2 values are drawn from the predictive
distribution ofthe missing values given the remaining covariates and Y and then complete data
analysis are repeated N times once with each imputation substituted. The final estimate of the
parameter is then the sum ofthe parameter values obtained for each imputation divided by the
number of imputations. Multiple imputation has the advantage that once the imputations are
constructed analysis proceeds by complete-data methods. Multiple imputations could be predictions
based on an explicit model or they could be based on an implicit model for the missing values. An
example of the latter case is the hot deck imputations which match incomplete cases to complete
cases using information on covariates and then impute values from the complete cases. All the
above approaches assume data missing at random in the sense defined above and therefore do not
model the missing data mechanism. Little (1992) covers similar ground as discussed above but in

greater detail.

Robins, Rotnizky and Zhao (1994) proposed a class of estimators to account for a subset of
regressors having missing values either by design or happenstance. Their estimating equations make
use of'the inverse ofthe probability of non-missingness and the estimators for the regression
parameters of the conditional mean model are consistent under the following conditions. The data
are missing at random in the sense of Rubin (1976) as defined above which implies that the
probability of an observation being missing for individual i may depend on subject /’s observed data
including the outcome variable Y{ but not on the missing data, the probabilities of missingness are
bounded away from zero and the probabilities of missingness are known or can be estimated
parametrically. Comparisons between estimators belonging to their general class and estimators
previously proposed to account for missingness, of which the main ones are given above, showed
asymptotic equivalence between the estimators being compared each time but their respective
estimators were always more efficient. Efficiency was improved by retrieving information lost due
to missingness from subjects with incomplete data, an approach also adopted by Dagenais (1973),
Gourieroux and Montfort (1981), Beale and Little (1975), Pepe and Fleming (1991), and Carroll
and Wand (1991). Compared with the latter set of estimators, the estimators proposed by Robins et

al (1994) are again more efficient.

Censoring and missing data are of the same nature as both these issues imply incomplete
information. Consequently a large part of the statistical theory developed for handling missing data
can also be applied to the problem of censoring. There are obviously circumstances in which the
problem of missing data on some ofthe covariates can arise alongside the problem of censoring of
the dependent variable. For example, Lin and Ying (1993) have considered this issue within the
context of the Cox proportional hazards regression model where time to failure forming the
outcome variable is subject to censoring. Under conditions where some of the regressors have
missing values and although the model adjusts for censoring of'the dependent variable, the authors
state that not appropriately accounting for the missing covariate values will result in biased and

inefficient parameter estimates. More specifically, they argue that discarding cases with missing
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covariate values could result in considerable reduction in efficiency especially if the discarded cases
correspond to uncensored failure times, including in the model only the covariates with complete
measurements on every subject could distort the partial likelihood based inference, and imputing the
missing values can impart considerable bias into the parameter estimators. They propose an
estimator for the regression parameters which is consistent and asymptotically normal under the
assumption of the data missing at random which is shown to be more efficient than the complete
case analysis estimator especially when failures are infrequent. This illustrates the point that there
may be situations in which missingness affects both the outcome variable, in this case through the
censoring mechanism, and the covariates. Given that censoring is a missing data process the
statistical theory for analysing missing covariate values can be applied to censored outcome
variables. For example, the idea ofusing the inverse ofthe probability of non-missingness
mentioned above has been used in applications where the outcome variable is censored (Koul et al,
1981; Robins & Rotnitzky, 1992; Robins, Rotnitzky & Zhao, 1994). In this context the weight is the
inverse of the probability of an observation not being censored which is used in the estimating
equations to derive consistent parameter estimates adjusted for censoring. Moreover, as will be
shown in detail in chapters 4 and 5, the same idea underlies a number of approaches which attempt

to provide unbiased and consistent estimators of cost statistics in the presence of censoring.

2.4.5. Dependency among multiple measurements on the same subject

An issue inherent in longitudinal data, that is data consisting ofrepeated measurements of the
variables of interest on each individual usually obtained at various points in time, is the dependency
among the repeated measurements for any subject. In such circumstances ordinary least squares
regression is not an appropriate estimation procedure as the assumptions concerning the error terms
are no longer valid.8 The general procedure to analysing such data in the econometric and statistical
literature is to adopt an alternative model to ordinary least squares, referred to as the generalised
linear regression model, which accommodates more general patterns for the distribution of'the

disturbances.

In this context a class of generalised estimating equations for the regression parameters has been
proposed by Liang and Zeger (1986) which result in consistent estimates of the regression

parameters and their variances without requiring specification of'the joint distribution of a subject’s

8 Partly in an attempt to resolve the problem of dependency among the multiple observations for each subject,
Lipscomb et al (1998) used the stratified variant of the Cox proportional hazards model, as stated above, with time
being the stratification variable in deriving estimates of patient cost within each stratum. They argue that a great
advantage of this model is that it does not make any assumptions about the distributional form of the error terms, and as
such it is likely to be amongst the best alternatives when interest lies in modelling complex distributions such as
distributions of cost. In addition, they suggest that this model overcomes the problem of dependency between multiple
observations on the same individual, as it assumes different baseline hazards for cost across different strata. Given
however the criticism of'this approach mentioned above and presented in detail in chapter 5, it seems unlikely that such
a methodology would be useful.
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observations. This approach has wide application if interest is in modelling the dependence ofthe
outcome variable on the covariates and not in the pattern of change ofthe outcome variable over
time. Ifthis is the case, the approach models the marginal expectation of the outcome variable as a
function ofthe covariates at each point in time whilst accounting for the correlation among the
repeated measurements for a given subject by treating the time dependence among repeated
measurements for an individual as a nuisance. When the time dependence is of primary importance
then, as stated by the authors, models for the conditional distribution of the outcome variable given
its past values would be more appropriate. The authors argue that if observations gained from
different subjects are independent, the estimates of the regression parameters will be consistent even
if the correlation structure is misspecified provided that the model for the marginal means ofthe

outcome variable at each point in time is correctly specified.

More importantly, this approach can also be adopted in the event of some observations being
missing, in which case the same results hold provided that data are missing completely at random in
the sense of Rubin (1976). Within this framework of generalised linear regression Lin (2000)
derived estimators for the regression parameters when repeated measurements on the outcome
variable were obtained within the context of censored cost analysis. The approach is considered in

detail in chapter 5.

2.5. Concluding remarks

The emphasis in this overview ofthe literature has been on the problems most commonly
encountered in the collection and analysis of cost data generated from a clinical trial. These
difficulties are partly due to the trial design and partly due to the general nature of cost data. The
specific issues arising in any given analysis will also depend on the cost pattern observed in the
particular application considered. In the case ofthe UKPDS data described in chapter 1 for instance,
of'the problems discussed above, censoring was the prominent feature of the data. Although this
clinical dataset exhibits extreme levels of censoring reaching 82% by the trial end, it is likely that
censoring will be a common if not the most common characteristic of cost data drawn from any
clinical trial. The loss of information due to censoring leads to biased estimates ofthe statistics of
interest. In the context of'time to event data analysis a number of alternative estimators provide
consistent estimates of failure time statistics under censoring conditions. In the context of cost to
event data development of estimators attempting to adjust the estimates for censoring has been
much more limited and very recent. Recently proposed estimators are investigated in detail in
chapters 4 and 5 and their performance is empirically assessed under extreme censoring conditions
using the UKPDS data. Prior to addressing the impact of censoring, the next chapter considers an

issue relating to the collection rather than the statistical analysis of cost data.
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Chapter 3

Cost collection: Centre specific versus average unit costs in multi-centre studies

3.1. Introduction

The analysis of cost data has received little attention compared to the discussion of'the various
applications of different forms of economic evaluation or the analysis of effectiveness data. As
emphasised earlier the estimation of treatment costs is a crucial element in the calculation of an
incremental cost-effectiveness ratio and yet there has been relatively limited examination of the
concepts underlying the estimation procedure, measurement problems or the impact that reliance on
different cost data has on the estimated level of cost. As noted in the review chapter a small number
of studies have recently started to address these issues. This chapter considers some specific aspects
of'the collection of cost data and uses a simulation model to assess the impact that different levels

of aggregation in the collection of unit cost data have on the estimation of treatment costs.

Dranove (1996) argues that identification ofthe relevant cost components to be included in a given
study and their measurement will be determined by the perspective adopted for the analysis. In the
vast majority of clinical trials the cost elements are confined to costs directly related to the
treatment but as Dranove states these may also include social care or non-medical patient related
costs. For a societal based analysis he points out that all cost elements must be identified. The
analysis in this thesis is based on data collected alongside a clinical trial which only recorded cost
information on the components directly related to the treatment being assessed. As such discussion
is focussed on direct treatment costs from a health care providers perspective. This is not to
diminish the other categories of cost that may be included in the incremental cost-effectiveness
estimation, for example productivity costs, but rather reflects the general pattern of cost collection
alongside a clinical trial according to which treatment cost is the major cost component. Assuming a
multi-centre trial setting in which information on resource use is collected on a patient level, the
question arises as to what would constitute the optimal unit cost measurement to be subsequently
attached to the resource volumes in order to derive an estimate ofthe cost of treatment. More
specifically the question addressed in this chapter is whether unit cost data should be collected on
an individual trial centre basis or whether an average unit cost provides an adequate measure in the

estimation of treatment cost.

Treatment costs are normally estimated in two stages (Johannesson, 1996). First the volumes of
resource use attributable to the intervention under study are quantified and then the unit costs ofthe
resources are attached to the resource volumes to derive estimates of treatment cost. Although in

general the data could be obtained from a number of sources, within a trial design it is common that
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resource use information is collected prospectively on a per patient basis. It is then necessary to
identify the source ofthe unit cost data for the various resources utilised (Drummond, 1994). In
theory unit costs could also be collected prospectively but in practice data restrictions lead to
limited capture of economic data alongside a trial. This partly reflects the priorities set by the
clinical investigators with respect to the data being collected within a trial design where recording
of clinical information is the primary objective. Ofthe economic data required to enable economic
assessment of the treatment under consideration unit costs are usually deemed of secondary
importance and as such this data is normally obtained from alternative sources. In support of
concentrating on volumes ofresource use as opposed to resource unit costs in the prospective
collection of data, it has been argued that for the purposes of making statistical inference on
economic variables variation in total costs will be generally due to variation in resource volumes
across treatment centres reflecting variation in clinical practice while unit costs are not expected to
vary substantially across centres (Spiegelhalter et al, 1996). This however appears to represent an
extreme view. Hospital charges such as Extra Contractual tariffs or Health Resource Groups (HRG)
costs are known to vary across treatment centres and assuming that such charges to an extent reflect

costs this information provides contrary evidence to the point stated above.

From a theoretical perspective the distinct consideration ofresource volumes and unit costs may be
seen as a useful analytical device in relating the concepts of production and cost functions. The
production function represents the transformation of volumes of input into outcomes, while the cost
function provides the relationship between total costs (input volumes multiplied by unit costs) and
outcomes. A clinical trial may be characterised as an evaluation of the transformation of inputs (that
is the bundle ofresource volumes that make up the individual treatments) into outcomes (that is the
health outcome) in an attempt to assess efficacy. In practice however if unit costs are subsequently
attached to resource volumes in abstraction from consideration ofthe production relations this may
lead to a miscalculation oftotal costs. Different types of production units may have different unit
costs, for example teaching hospitals generally have higher unit costs than non-teaching hospitals.
The scale of production may also give rise to different unit costs. Ignoring the relationship between

resource volumes and unit costs may thus introduce bias into the total treatment cost calculations.

Moreover in theory cost ought to represent the true opportunity cost of the resource. Under perfectly
operating markets this opportunity cost would be the minimum price required to keep the resource
in its current use rather than some alternative usage. Such perfectly constructed prices are not
available in the health care sector and a number of proxies are used. Dranove (1996) gives a useful
discussion of'the problems which arise in using such proxies covering such issues as the use of
charges, the allocation of fixed costs and the difficulties imposed by the existence ofjoint products.
Johannesson (1996) covers similar ground but also discusses the distortion introduced due to the

existence of monopoly.
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Such theoretical considerations complicate the process of collecting cost information. In identifying
which costs ought to be included in an economic evaluation Gold et al (1996) argue that ease of
measurement is not a justifiable criterion. Glick et al (2001) suggest, as noted in chapter 2, that
pragmatism should dictate which costs ought to be collected within a trial. As they state “The best
approach is to measure as many services as possible, because minimising the services that go
unmeasured reduces the likelihood that differences among them will lead to study artefacts.
However there are no apriori guidelines about how much data are enough, nor are there data on the
incremental value of specific items in the economic case report form” (op. cite., p. 121). Johnston et
al (1999) on the other hand suggest that it is enough to identify the key cost generating events with
the aim of minimising data collection while maximising the ability to measure the difference in
cost. This would imply concentrating the costing exercise on the major components oftotal cost by
studying the expected frequency of occurrence of different events and identifying resources
associated with a high unit cost. Johnston et al (1999) also suggest that it may be possible to rely on
a sub-sample of patients if it can be assumed that this will be truly representative ofthe full sample

population.

Having identified the cost generating events to be included in the analysis the issue then becomes to
specify the unit costs ofthe resource elements entering the cost estimation process particularly if the
data under consideration are obtained from a number of individual settings possibly reflecting
variations in clinical practice and consequently variations in resource use and unit costs. A major
benefit of conducting a multi-centre study is that sample size requirements can be met more quickly
as the number of centres increases. On the other hand it is recognised that multi-centre studies give
rise to issues of heterogeneity and selection ofthe participating centres will have an impact on the
transferability and generalisability of any accompanying economic analysis results. A small but
growing literature addresses such general concerns (see for example Drummond et al, 1992; Coyle,
1996; Jonsson and Weinstein, 1997; O’Brien, 1996; Schulman et al, 1998; Wilke et al, 1998;
Drummond and Pang, 2001). On the more specific issue of which are the appropriate data to collect
within a multi-centre trial setting consideration has been more limited and opinions are divergent.
For example, Johnston et al (1999) note that differences in resource use, unit costs and outcomes
may occur and introduce economic bias and refer to Ellwein and Drummond (1996) who discuss
the difficulty in rectifying such bias. Johnston et al (1999) also note that “In examining centre
differences, a recognition of the potential relationship between resource use and unit cost is required
because if unit costs are a function ofresource use at individual centres, this implies that centre
specific unit costs should be used” (op. cite., p. 18) thus highlighting the importance of the centre
specific production and cost function relations in determining how costs ought to be collected.
Coyle and Drummond (1996) and the Australian guidelines on economic evaluation of
pharmaceuticals (Commonwealth of Australia, 1995) both recommend that a single set ofunit cost
data, applied to centre specific resource volumes, may suffice. Glick et al (2001) give a simple

illustrative example in which using an average of unit costs gives rise to different results compared
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to using individual centre specific costs.] Drummond et al (1998) have argued that the costing
process should be context specific and that there is little to discuss in terms ofa general

methodological approach.

Given the lack of consensus on the appropriate costing methodology to be adopted within a multi-
centre trial setting, the analysis in this chapter attempts to address the issue of cost data collection
within such a setting by assessing the performance of two alternative approaches in estimating
average treatment costs which differ on the basis of the unit cost information entering the estimation
process. Aside from the general interest in identifying a methodological approach in these
circumstances, in the present study consideration ofthe appropriate unit costs to be attached to the
resource volumes in deriving cost estimates was also motivated by the fact that the empirical dataset
used for the analysis in the following chapters was drawn from a prospective multi-centre
randomised controlled trial which collected patient level data on resource use but not centre specific
unit costs. Consequently estimation oftreatment costs was based on the resource volumes as
recorded within the trial while unit costs were obtained from national statistics and from a number
of centres participating in the trial. To assess the validity of such an approach in estimating
treatment cost the approach together with its competing alternative are theoretically considered
within the context of economic theory assuming an underlying production function and their

performance is empirically gauged using a simulation experiment.

3.2. General setting and method

The pattern of cost data collection most commonly encountered in multi-centre clinical trial settings
records information on resource use for all individuals in the trial but not information on the centre
specific unit cost ofthe resource element. The patient cost is then calculated by attaching a standard
unit cost to each resource item. The mean cost per patient is subsequently estimated by averaging
across all patients in the trial without differentiating among the participating centres. This standard
unit cost is normally some estimate of an average unit cost based for example on a sample ofthe
centres participating in the trial or on published national data. As such, the estimated average cost
reflects the variation in volumes ofresource use across the participating centres but not the potential
variation in the unit costs. An alternative approach is to combine centre specific unit cost data with
resource volume data for each patient to calculate a treatment cost per patient before averaging

across patients.

Although seldom explicitly considered in this context, economic theory suggests that there should
be some defined predictable relationship between the mix ofresource volumes used in producing
treatments and the relative costs ofthese resources. Theory would suggest that if operating

efficiently, each treatment centre would define technical efficiency with regard to a production

1This example post-dates the published paper (Raikou et al, 2000) which was based on this chapter.
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function which related factor mix to maximum output. Moreover if the treatment centre were
operating as a cost minimising firm, it would choose the least cost input combination to produce the
desired level of output. In other words it would operate at the point of both technical and productive
efficiency, i.e. the point on the isoquant where the slopes ofthe isoquant and the isocost curves are
equal. Ifthere were a change in the relative input prices, economic theory would predict that there
would be a substitution away from the relatively more expensive input which would result in a
change in the mix of resource volumes. If such conditions were to hold across all treatment centres
in a multi-centre trial, the centres would display different mixes ofresource volumes in producing
the same level of output (such as one successfully treated case) as a response to the differing

relative factor input costs that they might face.

If this occurred, the estimate of average cost per treated case across different treatment centres
based on some average unit cost applied to centre specific resource volumes would differ from the
estimate of average cost per treated case based on centre specific unit costs applied to the
corresponding centre specific resource volumes. The first method would lead to biased estimates of
the cost per treated case since by using the average unit cost of inputs it fails to take into account the
substitution ofrelatively less expensive inputs for more expensive ones. [f however resource use at
individual treatment centres is not responsive to unit cost changes, such that there is no relationship
between the variation in costs and variation in resource use, no difference in the estimates of

average cost per treated case between the methods would be expected.

The present analysis attempts to consider more closely the implications ofthese two different
methods of calculating treatment costs in multi-centre studies by exploring the theoretical reasons
which might lead to systematic differences in the estimates derived using these two alternatives and
by addressing the question of whether any such differences are affected by specific assumptions
concerning the change in the relative input prices. The alternative costing methodologies are
considered within the framework of economic theory and are empirically assessed by a simulation
experiment designed to identify potential differences in the resultant estimates of treatment cost.
The alternative approaches to cost estimation are initially explored under general circumstances
where concern is with whether or not individual treatment centres respond to changes in the unit
cost of resources in a manner that is consistent with economic theory. Subsequently, consideration
is given to the response to changes in unit costs of factors when a specific change, an increase in the
input price of one ofthe factors of production arising for instance from the introduction of a new

health technology, is introduced.

With interest lying in the total costs of producing a specific level of output (say, a successfully
treated case) across a number (1) of treatment centres the following assumptions are made. Each
centre has only two inputs available to produce a successfully treated case, for example outpatient
visits (denoted by Vg and inpatient days (denoted by V). Each centre faces local unit costs for the

two inputs of Caand Q, respectively. Hence the total costs of generating a single unit of output
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could be formulated in two ways consistent with the description above. First, by calculating an
average unit cost to attach to each centre specific resource item resulting in the following

expression for the cost of producing a treated case (averaged across centres):

(3.1)

Alternatively total costs could be calculated by using centre specific unit costs and volumes

resulting to a treatment cost (averaged across centres) given by

(3.2)

This algebraic formulation ofthe two methods of cost estimation highlights the potential problem.
In general the expectation of a function (equation 3.2) does not equal the function ofthe
expectations (equation 3.1). The two expressions are equal only if the individual costs and volumes
of each resource component are independent. This implies that if there is no predictable economic
relationship between unit factor costs and volumes, no difference would be expected in the
estimates gained from (3.1) and (3.2) above and it would be of little concern which ofthe two
methods was employed. If however an underlying predictable relationship between the factor input
volumes and their corresponding unit costs as dictated by economic theory and upheld by economic
evaluation exists, then the two methods (3.1) and (3.2) would be expected to yield different
estimates ofthe total cost per successfully treated case. Two distinct scenarios are therefore
considered: (a) Treatment centres are assumed to operate according to the principles of economic
theory and therefore respond to changes in the relative input prices through a predictable
substitution of one input for the other, and (b) treatment centres operate on their production function
but they do not respond to changes in relative input prices. These two situations are illustrated in
terms of a typical economic model of production in Figure 3.1. The number of outpatient visits are

plotted on the horizontal axis and the number of inpatient days on the vertical axis.

Va

Figure 3.1. Different responses to price changes
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Assuming initially that all centres operate at the point ofboth technical and productive efficiency,
the optimal combination ofinpatient days and outpatient visits is at point A in the figure, where the
isocost line (with slope equal to the ratio of initial factor prices) is tangential to the isoquant.
Introducing a change in relative input prices, for example due to the cost of an inpatient day
becoming more expensive, with output being held constant so that focus is concentrated purely on
the substitution effect gives rise to the following situation. A cost minimising centre in a manner
consistent with economic theory would substitute away from inpatient days toward outpatient visits
to a new optimal point B where the new ratio of input unit costs is tangential to the isoquant. By
contrast, a centre which does not respond to the change in input unit costs would continue to
employ the same combination ofresources at point A. Hence the total costs ofproduction for a
centre which responds to changes in the input unit cost ratio will be lower than the total costs of
production for a centre which does not respond to unit cost changes and that the magnitude ofthis

difference in total cost will be determined by the extent of input substitution.

The elasticity of substitution provides a measure ofthe responsiveness of the factor input ratio
(Vb/Va) to changes in the unit costs of'the factors (Ca/ Cb) and is defined (in terms ofthe present

example) as

relative change in (Vb/ Va) gt

<7 —

relative change in (Ca/ Cb)

where (Vb/Va)q denotes the optimal factor volume ratio at the point ofboth technical and
productive efficiency and a e [0, 00). The limiting case of a = 0 is where the two inputs must be
used in a fixed proportion as complements to each other. The other limiting case, with a infinite, is
where the two inputs are perfect substitutes for each other. If a > 1 the elasticity of substitution is

said to be elastic while if cr < 1 the elasticity of substitution is inelastic.

The predictions ofthe above theory are that where centres are assumed to respond to unit cost
changes (scenario a) there will be a systematic difference between the two methods of calculating
costs per treated case and the magnitude ofthe difference will be related to the elasticity of
substitution. By contrast, where centres are assumed to be unresponsive to changes in the input cost
ratio (scenario b) there will be no systematic difference between the two methods of cost

calculation.

A simulation experiment was designed to test these predictions and to address the question of what
degree of substitutability would generate a statistically significant difference between the two
methods. It was assumed that the unit costs ofthe two inputs (Cfland (b) varied randomly across
individual treatment centres. In order to determine production responses to unit cost changes in a
manner that is consistent with economic theory a specific production function was defined across

the treatment centres. The constant elasticity of substitution (CES) production function was chosen
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as it allows concentration on the substitution effect of'the relative price change by keeping output
constant and at the same time enables the role ofthe elasticity of substitution to be studied (see for
example Heathfield, 1971). The CES production function is defined (in terms ofthe particular

example) as
0=4 $vr+ 1-s)vNYP

where A is the efficiency parameter (4 >0) and serves as an indicator of the state of technology, S
is the distribution parameter (0 <5 <1) and relates to the relative factor shares in the product, and

p is the substitution parameter (-1 <p * 0) and determines the value of the elasticity of

substitution such that a = i By definition therefore the elasticity of substitution remains
4

constant along the same isoquant and by choosing appropriate values for p the degree of

substitutability is varied. It should be noted that the CES production function does not allow the

elasticity of substitution to attain a value of 1 given that the function is undefined for p =0 .

Nevertheless it can be demonstrated that as p —» 0 the CES function approaches the Cobb-Douglas

production function which is characterised by a unitary elasticity of substitution (see for example
Chiang, 1984) and is defined as

limQ=AVfVa®

In the simulation experiment the CES production function (and the Cobb-Douglas production
function in the special case of a =1) were employed to calculate the initial factor volumes for the
centres given their initial ratio ofunit costs. This guaranteed that the production process is well
behaved with regards to satisfying the least cost input combination condition according to which the

marginal product ratio (i.e. the slope of the isoquant) is equal to the factor price ratio.

A given percentage change was subsequently initiated in relative unit costs. In scenario a where
centres respond to unit cost changes the new optimal position on the isoquant was calculated with
regards to the new ratio of unit costs. Total costs were then calculated using the two methods
described above and the difference between the two methods was recorded. In order to examine the
influence of different distributions of factor input unit costs on the results various distributions were
prespecified. The simulation experiment was therefore undertaken assuming that input factor unit
costs were drawn from uniform, normal and logistic distributions. The same simulations were
undertaken for scenario b where the treatment centres are assumed not to respond to the change in
unit costs, i.e. centres remained on the initial point on the isoquant although facing the new relative

input prices. Again total costs were calculated by both methods and the difference was recorded.
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For both scenarios these simulations ofthe difference between the two total cost estimates were
repeated 1000 times. In this way an empirical estimate of the sampling distribution of the difference
between the two methods was generated. Where no systematic difference between the two methods
is expected, the distribution should be centred around zero with approximately 50% of observations
above and below zero. By contrast, where a systematic difference is expected, the strength of that
difference can be judged by the proportion ofresults that lie either side of zero. This is akin to the
traditional p-value in hypothesis testing, such that if less than 25 observations out of 1000 (2.5%) lie
above zero (or alternatively if less than 25 observations out of 1000 lie below zero), a 95%
confidence interval would not include zero and the null hypothesis ofno difference between the
methods would be rejected at the 5% level. In the case under consideration here, a one-sided
hypothesis test is more appropriate such that the null hypothesis ofno difference would be rejected

if less than 50 observations out of 1000 (5%) lie below zero.

In addition for scenario a the simulation experiment was repeated for a number of different values
ofthe elasticity of substitution ranging between a - 0.1 and a = 10 relating to nearly perfect
complements or highly substitutable inputs. This allowed consideration ofthe effect that the degree
of input substitutability has on the significance of the difference between the two methods of
estimating the cost per treated case. Finally, it was assumed that the centres varied in their response
to unit cost changes in a stochastic rather than deterministic manner. A normal distribution was thus
imposed on the centre factor volumes after they had responded to changes in relative unit costs. The
mean ofthis normal distribution was the mix ofthe factor input volumes which would have
emerged given the deterministic response, that is assuming no uncertainty in the response. The
variance of the distribution was set at increasingly high levels to mimic greater degrees of

uncertainty in the response to changes in relative unit costs.

3.3. Results

Considering first the case of independence between the ratio of the input volumes and the ratio of
the factor costs, that is scenario b, the results of'the simulation experiment showed the differences in
the estimates being normally distributed around zero indicating that, as predicted, there is no
systematic difference between the two methods of cost calculation. Turning to scenario a where
factor volumes respond to changes in relative unit costs as dictated by the production function and
the elasticity of substitution different findings are reached. Figure 3.2 outlines the results where the
three distributions relate to those from which the unit costs are drawn and the individual centres
factor input responses to the change in relative unit costs are at this stage deterministic. That is,
there is no uncertainty surrounding the new optimal mix ofthe factor inputs. As can be seen even at
relatively low values ofthe elasticity of substitution and irrespective of the assumed underlying
distribution for unit costs there is a significant difference between the average treatment costs

calculated by the two methods as indicated by the p-values. These p-values are based on testing the
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mean differences in the calculated costs. In other words once it is assumed that treatment centres
respond to changes in the unit costs of inputs in the manner dictated by economic theory, as is
implicit in economic evaluation, the two methods of calculating treatment costs give rise to

statistically different estimates.

elasticity of substitution

Figure 3.2. Deterministic relationship between unit costs and volumes

Concentrating on the case where the centres respond to the relative change in unit costs in a
stochastic manner, the results are consistent with the previous findings. As shown in Figure 3.3,
where the increasing degree of uncertainty is represented by an increasing coefficient of variation
(cv), it can be seen that when the level ofuncertainty in the response is relatively low the method of
cost calculation appears to matter. Thus when the coefficient of variation is below 0.2 the mean
values ofthe total cost are statistically different at the 10% level for all values of the elasticity of
substitution. However as the uncertainty in the response increases, as measured by the coefficient of
variation, there is a tendency towards a situation that replicates independence between input
volumes and unit costs, as in scenario b, with the two methods giving similar estimates. It should be
noted that even a coefficient of variation with a relatively small value (e.g. 0.2) expresses a wide

dispersion around a mean response.
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Figure 3.3. Statistical significance for different values of elasticity of substitution and stochastic
response to changes in unit costs (input unit costs drawn from a normal distribution)

3.4. Discussion

To date limited attention has been given to the identification and collection of cost data drawn from
clinical trials for the purposes of economic evaluation. The analysis in this chapter has attempted to
assess the impact of different methods of cost collection on the estimated treatment costs within a
multi-centre trial setting by exploring potential differences in the resultant estimates between two
alternative methods of cost calculation. The first alternative and the most commonly adopted in
practice attaches an average unit cost to the individual resource volumes whereas the second
attaches individual centre specific unit costs to resource elements. The conceptual exposition above
shows that under the assumption that treatment centres behave in a manner consistent with
production theory as is implicitly required by economic evaluation, attaching an average unit cost to
the resource volumes would lead to biased cost estimates. This prediction was confirmed by the
results of'the simulation experiment for different statistical distributions ofunit costs and for a
range of degrees of input substitutability representing nearly perfect substitutes to nearly perfect
complements. Moreover the same results were reached when the response to relative changes of
unit costs was assumed to have a stochastic component. Only under conditions ofabsence of
response to changes in relative input prices does the choice of costing methodology appear not to
have an impact. The present analysis has not taken the output effect of a relative input price change
into account. In reality relative price changes would give rise to both a substitution and an output

effect. Consideration here was restricted to the former in order to isolate the impact of input
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substitutability on production responses to changes in relative unit costs and subsequently on the
two methods of cost calculation. Focussing on the substitution effect however does not affect the

generality ofthe findings.

These findings emphasise a need for more detailed information on the production process in the
health care sector. The results reached in this chapter indicate that the method of calculating
treatment costs that ignores the substitution effect will result in biased estimates on the assumption
that treatment centres operate in a rational economic manner. In reality however little is known
about the degree of factor substitution in this sector. What is known is that there is considerable
variation in treatment patterns across centres but the sources and mechanisms of this variation are
not well understood. A starting point in gaining better understanding of the health care production
process could be achieved by placing greater importance on the measurement and reporting ofthe

unit costs ofthe resources used to produce a given health outcome.
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Chapter 4

Cost analysis: Non-parametric estimators of treatment cost under conditions of censoring

4.1. Introduction

Increasingly cost information is collected alongside clinical trials as the basis for cost-effectiveness
analysis. As discussed in chapter 2 a number of problems arise in the analysis of such data including
issues concerning missing observations, skewed data and censoring. Discussion here concentrates
on the last issue. There are various types of censoring, such as right censoring or left censoring. Left
censoring, which is not as common in clinical trials, involves a loss of information due to individual
observations entering the study at different points ofprogression to end-point. This chapter does not
address this issue. Right censoring occurs whenever some individuals are not observed for the full
duration of interest which results in information being incomplete for these patients. Consequently,
estimators of statistics of interest are biased if no account is taken of censoring with the bias
increasing as the degree of censoring increases. Parametric or non-parametric modelling approaches
may be used to adjust the estimators for this loss of information which is observed both in
effectiveness and cost data. Both parametric and non-parametric approaches have been applied to
the analysis of effectiveness data when effectiveness is assessed in terms oftime to event yielding
estimators that appropriately adjust the estimates for censoring. It is only recently however that
attention has turned to the issue of censored cost data. Given that parametric approaches involve
explicit assumptions regarding the distribution of costs which may not be justified by the data,
initial attempts to adjust estimators of cost statistics for censoring involved application of non-
parametric survival analysis techniques to cost data. The Kaplan-Meier estimator was the first
approach used in this context (Fenn et al, 1995), but this was shown to result in biased estimates of
cost due to the violation of independence between the cost at event and the cost at censoring times
(Lin et al, 1997; Etzioni et al, 1999). Another two estimators have also been used to provide
estimates of mean cost in the presence of censoring which are referred to as “naive” estimators in
the literature because the first, referred to as the uncensored cases estimator, only uses the
uncensored cases in the estimation of mean cost, while the second, referred to as the full-sample
estimator, uses all cases but does not differentiate between censored and uncensored observations.
Both these estimators will always be biased. The full-sample estimator is always biased downward
because the costs incurred after censoring times are not accounted for whereas the uncensored-cases
estimator is biased toward the costs ofthe patients with shorter survival times because larger

survival times are more likely to be censored (Lin et al, 1997).
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Lin et al (1997) acknowledge these difficulties and propose a method which attempts to resolve
these issues. They introduce two estimators of mean cost under conditions of censoring which rely
on the study period being partitioned into a number of subintervals such that censored observations
occur at the boundaries of these intervals. Under such circumstances, the approach is shown to give
consistent estimators of average cost and the associated variances are analytically derived. Hence
the validity of'the approach depends to an extent on the pattern ofthe censoring distribution being
of such a form to allow censoring times to correspond to the boundaries of the intervals of the
partition. There is no a priori reason however to expect censoring to conform to any such pattern
and therefore in most applications consistency will be violated to some degree. This limitation has
led to a further set of estimators proposed by Bang and Tsiatis (2000). Their estimators are shown to

be consistent regardless of the censoring pattern and their variances are analytically derived.

All the above non-parametric estimators of cost together with their properties and underlying
assumptions are presented in this chapter using a common analytical framework. Their performance
is empirically assessed under extreme censoring conditions using the UKPDS data introduced in
chapter 1. While the theoretical properties of these recently proposed estimators have been studied
by Lin et al (1997) and by Bang and Tsiatis (2000), their performance has not been assessed under
conditions of extreme censoring using real data. In this chapter the estimators are investigated using

a real clinical dataset which exhibits levels of censoring of 82 per cent.

The estimators’ theoretical properties have been investigated using the theory of stochastic
processes as applied to the study oftime-to-event data. Stochastic processes are often used to model
clinical data collected over a period oftime and in particular data counting the number of events
over time. The standard application ofthe counting process approach to survival analysis is a
powerful tool in deriving statistics of interest as well as in studying their properties in the presence
of censoring (Gill, 1980; Fleming and Harrington, 1991; Andersen et al, 1993). As will be shown
later in the chapter, the same approach is equally powerful when applied to the study of cost-to-
event data under conditions of censoring as it provides the analytical framework in which the
asymptotic properties ofthe estimators of cost statistics are being established. More specifically,
use of this particular analytical approach allows the notion of'the time element in the cost
observations to be captured, censoring to be incorporated, variance estimators to be derived and
convergence and asymptotic normality of the statistics of interest to be proven by invoking
martingale convergence theorems. It is important therefore to present the general setting for the
analysis viewed within the counting process framework as applied to the study oftime-to-event data
as the same concepts underlie the study of cost-to-event data as undertaken by the approaches of
interest. Thus the following section provides a general introduction to stochastic processes, their
relationship to counting processes and stochastic integration, as well as the general application of
martingales to counting processes with specific reference to martingale theorems used in the study
ofthe statistics of interest. This section draws on the work by Gill (1980), Fleming and Harrington
(1991) and Andersen et al (1993). Having established the conceptual context, the set of non-
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parametric estimators of cost together with the assumptions underlying their validity are then
presented. The main analysis, whose aim is to assess the estimators’ performance under extreme
conditions, is presented in the following section which reports the results derived from the
application ofthe cost estimators to the UKPDS dataset. A number of problems are identified
within this part of the analysis which are subsequently investigated using subsets of'the original
data as well as an artificially generated dataset with varying degrees of censoring. The final part of
the analysis derives variance estimates using the bootstrap approach as an alternative to the
theoretically derived formulae for the asymptotic variance estimators in an attempt to determine the
validity of'the underlying assumption of asymptotic normality when the estimators are applied to

the smaller sample sizes observed in real medical data.

4.2. Analytical framework

4.2.1. General setting

The aim ofthe approaches to be presented later in the chapter is to derive an estimate of the mean
total cost ju= E(M) and its variance over a specified period when the data is right censored, where
the random variable M denotes the total cost for a patient during some specified time 7 and £
denotes expectation. The distribution ofthe random variable 7'is assumed continuous over (0, L/
where L denotes the upper bound of 7, i.e. the maximum time for which each patient is evaluated.
In that case M is the total cost incurred by a patient up to a maximum of L units oftime. If all
patients were observed for a minimum of L units of time then complete information on M would be
available and the mean cost would be estimated by the average ofthe costs for each patient. In most
cases however cost information is incomplete due to censoring. Defining therefore a potential time
to censoring denoted by Uand letting 7 denote the time to death, the observables from a study in
the presence of censoring are X = min(7, U), i.e. the last contact date; 5 =1(T <U), where /(*) is
the indicator function taking the value of 1 when the argument is true (i.e. if the observation is
uncensored) and zero otherwise; the cost accrued up to time X and other intermediate cost history
for each subject, i.e. M H(t) = {M(u), u<t), where M H(t) denotes the cost history up to time ¢,

M =M(T), with M(u) being the known accumulated cost up to time u and u denoting points in
time at which cost information becomes available. The observable data for 7 individuals are then

the independent and identically distributed random vectors

where i identifies an individual.

Regardless of whether censoring is present or not, when studying time to event data interest lies in

the distribution ofthe non-negative continuous random variable 7'denoting the time to event with
cumulative distribution function F(?) given as
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Ft) =pr(T <t) = \f(u)du
0
prit <T <t +At)

where f(t) is the associated probability density function /(t)= Ik/nlo p
t

In the absence of censoring, a non-parametric estimator for F(¢) would be based on the empirical
cumulative distribution function. The associated survival function, that is the probability that the

individual will survive at least until time ¢, is given as
Sit) =\-F(t) =pr(T>t)

and the related hazard rate, that is the probability that the individual will die in the next short

interval At given that he has survived until time ¢ is given as

=hm pr(t<T<t +At\T>t) =iim 1 pr[(t<T<t +At)n{T>1t)\

ai»o At At pr(T >1)
1 pr(t<T <t +At) 1 F{t+ At)- F(t)
A At pr(T>t) A+° At S(t)

1 dF(1)_f(1)
St dt S

or

1 dF(@) 1 41-S(t)]  rillnA(®)]
TS ot Sy dt dt

which shows the relationship between the conditional probability of death and the unconditional

probability of survival. An alternative expression for the above relationship is then derived as

InS{t) =- \k(u)du <= S(t) =e “ < A(t) = e'A)
0
1
where A(t) = j/I(w)du is the integrated or cumulative hazard function for the failure time.
0

4.2.1.1. Stochastic processes and filtration

Adopting the counting process analytical framework allows the properties of failure time statistics
to be established both in the absence of censoring and when censoring is present. Having stated the
importance of considering this analytical framework more formally for the purpose ofthe study of

cost estimators to be defined subsequently, exposition starts with the case of censored time-to-event
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data. Viewed within the counting process framework, such time to event data in the presence of
censoring can be modelled by the counting processes Ni(?) =1{Xi <t,Sj =1) with N{t)= %;1> ,W
counting the number of individuals dying over time, N. (1) =1(Xi <t, St =0) with

Nc(t) = A"‘ N- (¢) counting the number of individuals censored over time, and the accumulated

A

information over time these processes generate referred to as filtration given by

3= ctin (u), Ne(u), 0 <u <t,i =1,..,«} and representing the increasing information over time on

the individuals’ survival or censoring up to and including time %

To consider formally the processes and the associated filtration defined above, a convenient starting
point is the concept of a stochastic process given that a counting process is itself a stochastic
process. Following Fleming and Harrington (1991), a stochastic process is a family ofrandom
variables X ~{X(t)\t e r} indexed by a set 7, all defined on the same probability space

(Q, P).' The set T indexes time and is usually either {0,1,2,...} defining discrete time
processes or [0, 00) defining continuous time processes. Given that a random variable is a function
defined on a sample space of outcomes, Q, it follows that a random process {I(i):ieT} isa
function oftwo arguments {X(?,co),t efffleQ} .Fora fixed ¢ =tk, X(tk,co) =Xk(co) is a
random variable with c varying over the sample space Q while for a fixed sample point

i e Q, X(t, coi) - Xt(t) is a single function of time ¢, called a sample path or a realisation of the
process. Rather than study the properties of the random variable X(?) for fixed ¢ the modem
approach to the general theory ofprocesses relies on properties of the sample path 6T
for fixed co. The processes studied later in the chapter are limited to the index set 7' - fR+=[0,00)

and are denoted as {X():t> 0} for fixed co. When a process is said to have a particular property

1 A probability space (Q, J?~, P) consists ofa space of outcomes Q with each outcome denoted generically by ({Qa
selected a-algebra ofevents ,3"° in £2, and a measure P defined on JX*“ such that P(£2) = 1 where the measure P

is called the probability. An event A is said to occur almost surely (a.s.) whenever P(A) = 1. As noted by Gihman

and Skorohod (1974) the first fundamental assumption when formalising the notions of probability theory is that the
results of a collection of experiments under investigation in a given situation can be described by means of a certain set

Q . Furthermore, an experiment is completely characterised by the class ofthose events, subsets of Q , such that each
time one can assert whether a particular outcome occurred or not during the given experiment. Although any arbitrary

subset of Q forms an event, the class of events which characterises any experiment in the sense mentioned above is
always assumed to form a a-algebra of events. A class of events is called an algebra of events if it contains the certain

event, i.e. the space Q , the impossible event, i.e. the empty set 0, and together with each pair of events A and B
belonging to the class, i.e. A and B subsets of Q , their sum, i.e. their union, and the contrary event of A , i.e. the
complement of set A . An algebra of events which contains a sequence of events together with their sum is called a a-

algebra. The space Q along with the a-algebra of sets defined on it is called the measurable space {Q, and
the subsets of Q belonging to are called -measurable sets (("-measurable events). With respect to the

measurable space {i2, any given stochastic experiment is completely characterised by the class of events
observed during this experiment and as such any stochastic experiment is determined by a certain a-algebra 3 ** of

-measurable events where 3 " represents the history of the experiment.
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such as being continuous, or left- or right-continuous, or of bounded variation, or increasing, it
means that the set of sample paths with the corresponding property has probability one. In other

words, almost all of its sample paths have the particular property.

As already implied central to the theory of stochastic processes is the notion of filtration or history.
Letting (Q, ,3*", P) be a probability space, a filtration {,3":f e r} is an increasing right-continuous

family of a-algebras of ,3”, that is:

3%e ,3%e 37 foralls <t ((?“is increasing)

m*¥7=|>T forall s (J"1is right-continuous)

t>s

Ac Bg3*~PB)=0=>A¢ ,3" (,i*is complete)

Thus the c-algebra ,3” contains all events whose occurrence or not is fixed by time # In other
words, it denotes the history ofthe experiment under investigation, in this case the clinical study, up
to and including time # The first condition expresses the fact that as time evolves, new events may
occur, whereas the other two conditions are technical ones and hold for all filtrations considered in
the applications of interest with the second condition implying that 3 contains all ,3” fors <t
and the third condition extending the filtration to time zero. There is also a pre-t a-algebra 3", the
smallest <7-algebra containing all .3~ s <, which contains events fixed strictly before £ A
filtration therefore models information that is increasing with time. A stochastic process X is said to
be adapted to the filtration 3~ if X(#) is 3* measurable for each ¢, that is the realised

value X{t,co) of X{t) for a given @ can be determined based on the accumulated information up to
time ¢ contained in 37 . A filtration can also be described as being generated by a stochastic
process X. This means that 3" is the a-algebra generated by X(s), 5 <¢ and this in turn implies
that 3 is generated by X(s), s <t. In particular, processes all of whose paths are left-continuous
or right-continuous as the processes studied in the applications of interest are measurable for each ¢
which ensures that they are adapted to a filtration 3. In particular, a filtration generated by a
right-continuous jump process, as is for instance the process {N(%):t> 0} defined above, is right-

continuous.

A counting process {AN0 > 0} is a stochastic process adapted to a filtration {3”:¢ >0} with
jV(0) = 0 and N(t) <00 almost surely and whose paths are right-continuous with probability one,
piecewise constant, and have only jump discontinuities with jumps of size +1. By its definition,
N(t) represents the total number of events that have occurred in the interval (0, ¢], N(z) >0, N(t)
is integer valued, N(s) < AN(/) if s <t,and N{t) - N(s) equals the number of events that have
occurred in the interval (5,¢]. As such, the counting processes [N(?) :t >0} and |a c(?):/> o}
defined in the example above count the number of deaths and the number of censored individuals in

the interval (0, ¢/ respectively and being right-continuous they are adapted to the filtration
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ctf (w), Nc(u),0 <u <t/ which contains the increasing information over time on failure and

censoring up to and including time ¢ generated by the processes.

4.2.1.2. Stochastic integration

Having presented the statistical model used to express time to event data, the following sections
address specific aspects of the theory of stochastic processes which are essential to the study of the
properties of the statistics ofinterest. Counting processes as applied to survival analysis involve
stochastic integration, that is the forming of'the integral of one stochastic process with respect to
another. Within the context ofthis approach, the stochastic processes X and Y entering the integrals

for a given @>e Q satisfy such properties that the integral jXdY, which is a stochastic process

itself, is an ordinary Lebesgue-Stieltjes integral over a given time interval. More specifically, to
1

ensure that JX(-,co)dY(-,co) is well defined as a Lebesgue-Stieltjes integral for each @ the

processes X and Y must satisfy the following measurability and sample path properties. The sample
path of X for each @ must be a measurable function on interval (,s,t]. The sample paths of Y for

almost all @ must be right-continuous with left-hand limits and oflocally bounded variation on

t

(s,t],i.e. \\dY(u)\ must be finite for all e T, for almost all co. Such a process Yis called a finite

variation process and the process "dY\ is its (total) variation process. Any bounded variation

process can be written as the difference ¥{- Y2 oftwo non-decreasing processes and consequently,
1
all sample path properties of'the integral JXdY (considered as a function of#) follow from

properties of integrals with respect to non-decreasing functions. Most processes encountered within

@

the context of survival analysis are of bounded variation on finite intervals. Any integral Ja <Y

over an infinite interval is also well defined as Lebesgue-Stieltjes integral as it is a limit of integrals

over finite intervals (Fleming and Harrington, 1991).

t @

In the applications of interest, the stochastic integrals are ofthe form jf(u)dN(u) or \f{u)dN{u)

where A is a counting process, /(*) is some function oftime and 0 <s <¢ <co, with A(-) and /(*)

satisfying the properties stated above so that the stochastic integrals are well defined as Lebesgue-
Stieltjes. By the definition ofthe Lebesgue-Stieltjes integral and given that A as a step function will
have countably many jumps at {ul,u2,...} with AN(uk) = N(uk)~ N(uk-) > 0, it then follows that

/ t
|/ (u)dN{u) = X /K )AN(uk). Thus the integral J/ (u)dN(u) represents the sum ofthe values

k\s<uk<t s
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of /(*) atthe jump times of N in the interval (s,f]. If NV has a discontinuity at either s or 4, it is the

convention to take J/UDEWWI =1  f(uk)ANuI)= ~f{u k)AN(uk).

k\s<uk <it

4.2.1.3. Martingale and predictable processes

A further analytical aspect is the decomposition of the counting processes defined above into two
specific types of stochastic processes referred to as martingales and predictable processes both of
which play a particularly important role in establishing the estimators’ asymptotic properties as will
be shown below. A martingale can be viewed as a form of random noise process whereas a
predictable process exhibits some kind of regular behaviour. In general, many stochastic processes
can be decomposed as the sum of a martingale (random part) and a finite variation predictable
process (systematic part). The latter is called the compensator of the process because when

subtracted from the process, a martingale, i.e. non-systematic noise, is left.

Defined formally, a process «i”is a martingale with respect to a filtration ,3” if it is right-
continuous with left-hand limits,2 adapted to «*7. integrable, i.e. <% forallte T, and
satisfies the martingale property =£%T(s) forall 5<¢, i.e. the expected value of the
process at ¢ conditional on its history up to a previous point s will on average be same as its value at
s. The martingale property then implies that for a right-continuous martingale E{d3"(t)\3" } =0,
i.e. given prior history strictly before # represented by the filtration # 7 »the increments ofthe
process have an expected value of zero. A stochastic process H is said to be predictable with respect
to {J":t >0} if when His adapted to {#7:/ > 0} then H{t) is ~ 7 -measurable, i.e. its behaviour
at ¢ is determined by the information on [0, #) for all « Predictable processes are essentially left-
continuous processes adapted to a history .3” and thus determined at time ¢ by the past strictly
prior to ¢ i.e. by ,3” . Predictable processes arise as compensators in martingales and as integrands
in stochastic integrals. A martingale is therefore a process without any systematic behaviour in the
mean: the process £%1(1) - £%1{s) has zero mean given everything that has happened up to time 5.
In contrast, a predictable process is one whose value at time ¢ is fixed given everything that has

happened up to, but not including, ¢

The martingale approach to statistical models for counting processes is useful in situations where

the compensator is known or can be computed. This is the case in the applications of interest in this

2 An example of a right-continuous process with left hand limits is the indicator process /(7T <t) where T denotes
the time of some random event. This process is equal to zero at time zero, then jumps to one at time 7" when the event
occurs and then stays at that value. That is, the process approaches zero as ¢ approaches T  from the left, i.e. has a left

hand limit zero, and its limit equals the value of the process at 1" as ¢ approaches 1" from the right. The point T is
thus a point of discontinuity.
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chapter and then the martingale approach forms the basis for studying the statistical properties of
the estimators and deriving explicit expressions for their variance estimators for large sample sizes

with the use ofthe martingale version of the central limit theorem. In deriving such variance
estimators the second moment of the martingale process appears in the stochastic

integrals. In general as considered in detail below, these stochastic integrals are of the form

A j7/,d ", where TV is some counting process and //, is predictable with respect to the

filtration making the processes martingales. When the compensator for ;%72 has a simple
form the decomposition of V* 2 leads to computationally appealing expressions for E { *r2(t)}.

The second moment ofthe martingale process is then calculated based on the following theorems.

If is a right-continuous martingale with respect to a right-continuous filtration :1 >0} and

E{<%r2(t)} <oo for any ¢ >0, then there exists a unique increasing right-continuous predictable

process called the predictable variation process of such that (3™M0) =0
almost surely, < co for each ¢, and /2% T2(?) - :/ > o} is aright-
continuous martingale. Thus the predictable variation process is the predictable
compensator for £%72 and it satisfies = E{d\E%E2(t) = \ar{dEM<I(t)\" }. The

predictable variation process can be viewed as the “sum” ofthe conditional variance of d&T'(t) as
time increases given information up to time ¢ and can be used to calculate the variance e \e%72(/)]

as follows: since .W 2{t) - is a martingale, when f~ (0) =0 almost surely, it

follows that /:{. ~ 2(]) \ = E(£%"£%T)(?).

The covariance between martingales can be calculated based on the following theorem. If and

are two right-continuous martingales with respect to a right-continuous filtration >0}

and E{%r{t)}2<oo for t>0 with i =1,2, then there exists a unique right-continuous predictable

process called the predictable covariation process, with (") (0)=0 and
E@d%", <co, such that is the difference oftwo increasing right-continuous
predictable processes which implies that has paths of bounded variation and therefore if

it appears as the integrator in a stochastic integral the integral is well defined as a Lebesgue-Stieltjes

integral with respect to this process, is a martingale, and

d{£", . [WN®) = E{d{EMNt)EM\t)"JE" }= cov{dd%\(t), d6"(t)\™ }. The predictable covariation
process can be used to calculate the covariance E{d"{t)E"{t)} as follows: since
.wmd/l - -~t) >samartingale, when = 0 almost surely, it follows that

E\y/, {iy://2D) = I tir, ."//2){d .

The predictable variation and covariation processes therefore allow calculation ofthe second
moments of the martingale process appearing in the stochastic integrals involved in the statistics of
interest. Existence and uniqueness of these processes is ensured by implication ofthe following

theorem which primarily stipulates the conditions for the decomposition of a stochastic process into
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a compensator and a martingale. The decomposition theorem (Doob-Meyer decomposition, Meyer
1966) states that a process /1 is the compensator of X if H is predictable right-continuous with
left-hand limits and finite variation process such that the process X - H is a martingale zero at time

zero. Moreover, if a compensator exists, it is unique. Expressed with reference to a counting
process, the theorem states that given a counting process {N(?) :/ > 0} adapted to right-continuous

filtration £ ~1¢ >0} with £{yV(t)} <°° for all ¢ then there exists a unique increasing right-

continuous -predictable process 4 such that

T(0) =0 almost surely,
E{A(/)} < oo for all ¢, and
= N(t) - A(t):t > O} is aright-continuous -martingale.

The compensator A of N is therefore a process that carries the predictable component of N
determined at time ¢ by the strict past, i.e. by . The above theorem implies that an arbitrary

adapted process N always allows a decomposition =N - A with £%I being a martingale.

Moreover, the theorem implies that unique predictable variation and covariation processes exist so
that £%12 and are martingales.

4.2.1.4. The "Hdf% T martingale

As noted above, in the analysis of counting process data martingales often appear when studying the

statistical properties of the estimators of interest. In general, many censored data statistics are of the

form ~ j where Ni- Ai for some counting process Ni and Hi is predictable with
/
respect to the filtration making the processes martingales. In addition if /i is a bounded
predictable process and < oo for all ¢, the processes |//,c/c”T are themselves
/

martingales. That the process “Hid, : " has the martingale property is shown as

(since Ht is predictable)

=0 (since is a martingale)
If there is a common filtration .t >0} with respect to which each H. is predictable and each
is a martingale then the process » "Htd £ will be a martingale with respect to 1t >0}.
When is a martingale, £ "jdEME'=0 and when = Ni- Ai it follows that

E [h idNi = E [HidAi thus enabling calculation of first moments for counting process statistics.
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Second moments as stated previously require the predictable variation and covariation processes.
For arbitrary counting processes3 and locally bounded predictable//,, with =Ni- At i- 1,2 ,

\HtdAMpr is a martingale over [0, ¢/ if E << This in turn implies that
0

[ [ I 1
E\Hid."Jir=0 and for i,j e{1,2} Ef\Hid,Ar\lljd.jr =E\n . Jid> )

It then becomes clear that formulae for ,f] are required. These are derived both for the case
of continuous compensators and when the compensators may have discontinuities. In the
applications to be considered later in the chapter the counting processes {/V.,..., Nn} have

continuous compensators {A/,...,An} due to the continuity ofthe distribution of failure time. In this

case with the counting process determining whether failure has occurred and the failure time having
an absolutely continuous distribution F(7) = 1- expj - JA(u)du >, the compensator is absolutely

continuous and is given by A(t) =17(X >u)dA(u) = j7(X > u)A(u)du, where X is the minimum
0 0

of failure and censoring time, A is the cumulative hazard for failure and A4 is the hazard rate for

failure as defined on page 42. Then for statistics of the form

Ut) =1 \Hid(Ni-A, ) =X )fI,(u)d,Jr(U

1=1 o =1 o

with Hi being -predictable and bounded on [0, oo) the following conditions hold:

1. The process Uis a martingale over [0, co)

2. E{U)} =0,0 <t <o
nl \'%
3. var E{U20)} =Y, \E{Hf(u)I(Xi >u)]A(wdu, 0<t<oo.4

=1 0
In other words, when the compensator 4 ofthe counting process N is continuous and E{A(?)} < oo

or equivalently /s{/V(7)} <°o for all # then

3For the counting process martingales = N[ —At and = N 2—A2 under stricter conditions requiring that

Nj is bounded as opposed to arbitrary, with //, and H 2 being bounded and < 00, the following
relationships hold:

(;H'dcZir, \Htd ,"j = \Hfd(EMT,A%r) and 1\H,d.jx;, \H2A&r" = \H{H2 (~, ")

41n general, var{i7(/)} = E{U2(t)} = JHi(w)Hj (u)d (M, M 0 < t < oo . Condition 3 follows

i=1 ;=10

when the martingales are orthogonal for 7 * j , i.e. M) =0 fori”j .
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e {"T2\N}=E(&r, &r) =E{A(t)\ t >0, thatis (&r, &r)(t) =A(t), and (& ?, &r]){t) =0 for

i *j ,that is the component processes are pairwise uncorrelated i.e. orthogonal.5

Orthogonality of'the corresponding martingales allows use ofthe martingale central limit theorem

in establishing asymptotic distribution results for linear combinations of stochastic integrals with
nt

respect to orthogonal martingales, i.e. for statistics ofthe form U(?) =" i{wd E"F{u).
Ao

4.2.1.5. A martingale central limit theorem

The martingale version of the central limit theorem gives the asymptotic distribution of statistics of

the form Um)(t) =~ JH j(Wd-FMF{u) as the sample size n-> <tand uses the notion ofweak
Ao

convergence or convergence in distribution of stochastic processes.6 The process U is a sum ofn
orthogonal martingale transforms and the notation indicates the dependence ofthe process on the

sample size n. Under certain conditions the process U converges weakly to a time-transformed

Wiener or Brownian motion process W*(t) as the number of summand martingales increases,

where the stochastic process satisfies the following conditions:

5In the case of a compensator 4{ with discontinuities, = j(1 —AAt)dAt . If for each t > 0 given
, the increments of the counting processes {AjV, (1),...,ANn(/)} are independent 0,1 random variables, as is the

case in most applications, then = 0 almost surely for Z” j , i.e. the component processes are

orthogonal.

Then for statistics of the form Uj{t) = S R j(wdE%C(u), / = 1,2 ,such that H (¢ is -predictable and
A o
i
bounded on [0,00) and Ai = |f(A ;> u)dA(u),and for I,l'e {1,2}, the following conditions hold:
0

1. U is a martingale over [0,co0)

2. MU} =0,0 </ < co

3. Qv{U, (1), Urt)} =S ie th j(uHil(u)l(Xi>m)}{l- AA(zz)]t/A(u), 0 <t <co.
Ho

6 Weak convergence of stochastic processes generalises the notion of convergence in distribution ofreal-valued random
variables. For arbitrary distribution functions on the real line F' and Fn, Fn with n converges weakly to F'
as n —> oo ifand only if Fn(x) —F(x) at all continuity points of F' . This definition is extended to weak
convergence for a sequence of random variables X, Xn,n = 1,..,n!| as follows. Assuming that the random variables
all take values on the real line and letting Fn(t) = pr{Xn </} and F(t) = pr{X < f},then X n is said to

converge in distribution to X , written as X n——>X , ifand only if F7 converges weakly to F' .
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l. IT(0)=0 and E~V\t))= 0 for all?

2. W\t) has independent increments, i.e. W*(t)~ Wlu) is independent of W*(u) for any
0<u <t
W*(t) has continuous sample paths

4, WH*(t) is a Gaussian process, i.e. for any positive integer 7 and time points x...,tn the joint
distribution of ),...,W*(tn)} is multivariate normal

5. The standard Wiener or Brownian motion W(t) has variance var{W(/)} =t¢. A time-

transformed Brownian motion W*(t) has variance varjlf *(t)}=a(t), where a{t)- If 2(s)ds
0

with / being a measurable non-negative function.

The process U(® satisfies condition 1 for all ». By the martingale property, U # has uncorrelated
increments so that condition 2 is plausible for large n Ifthe jumps of UM become negligible as
n —» oo then the sample paths of U# become continuous for large #n and then conditions 3 and 4
also hold. Also as stated above, var{f/(n)(/)} = E (u (n),f/ () (t) and if (u @), UN)(t)— >a(i) for
some integrand f 2, where the notation ——> denotes convergence in probability,7then Uin

should satisfy var\u {)(t)}!=a(t) as n—>oo0.

Assuming that conditions 1 through 5 are true with / being a measurable non-negative function

t

and a(t)=1J /2(s)ds for all £ >0, assuming further that for all # >0 as n—>co,
0

(U@, Um){t— a { t that is
HO 0

and that the jumps of U(® become negligible as n —>co, then the process U# converges weakly to
a time-transformed Brownian motion W*(?). This means that the process U (# converges in

distribution to a multivariate normal distribution with zero mean and variance matrix given by the

appropriate values of cc(?) ,8 In studying the statistical properties of the cost estimators presented

later in the chapter, the martingale version ofthe central limit theorem given above is used to prove

7Let X n be a sequence of random variables indexed by the size of the sample # . Then the sequence ofrandom
variables X converges in probability to a limit process X , written as X n——>X or plimYn —X if

’11‘1_%191’( &Xn —X\| > f@) = 0, Vf > 0. This means that the values that the sequence X 7 may take that are not close

to the values of X become increasingly unlikely as # increases.

For example, forany ¢ >0, U@>-  -»N(0, cc(t)), while because of independent increments for any two points
intime #v £2>0 the vector [/(n)(f2)} converges in distribution to a bivariate normal with mean {0,0}
, ) var Um){tx) cov{t/ifl)(/,),i/n)(/2)} a(tx a(tx/\t2)
and variance matrix where
Qv var U(m){t2) a(txa t2) «(£2)

txAt2 = min(i,,t2) (Therneau and Grambsch, 2000, p.26)
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asymptotic convergence ofthe cost statistics to a normal distribution and to derive asymptotic

variance estimators as # —>00.

4.2.1.6. The independent censoring assumption

As the exposition above shows, one ofthe great advantages in modelling time-to-event data using
the counting process and martingale framework is that censoring can be easily accommodated. The
theory described above assumes that the underlying censoring mechanism is random, that is time to
failure and time to censoring are independent random variables. Gill (1980) gives other examples of
right-censoring mechanisms which may arise in medical studies and shows that for all these
mechanisms the assumption of independence between 7Tand U'is justified. Moreover, the
assumption of independence between 7and Uunderlies all the proposed estimators of cost to be
considered in this chapter. It is important therefore to investigate more closely the random

censoring mechanism before presenting the estimators of cost. Investigation is undertaken using the

theory presented above.

The same observed data are assumed as described earlier in section 4.2.1 and the same notation is
adopted. Thus assuming a continuous non-negative failure time denoted by the random variable T
and a censoring time variable with an arbitrary distribution denoted by U where 7T and U are
independent and A is the hazard function for 7 the observable data for n individuals are the

independent and identically distributed random vectors

{X; = min(71],£.,.), S =1(T; <U;)\i = 1,...,«, where i identifies an individual.

The following stochastic processes are defined. Nj(t) =I(X; <tS; =1) with N(t) =  N;(t)
counting the number of individuals dying over time, N;(t) =1(X; <t S; = 0) with

Nc(t)=" N.(t) counting the number of individuals censored over time, and Y (t) = I(X; > 1)
i=1

with Y(?) - '] Y, (0 counting the number of individuals at risk over time. The associated filtration
=

{LJN >0} is given by 37= ctfn (u), Nc(u) :0<u <t i=1,..,«} and provides information on the

individuals who have died or have been censored up to and including time ¢ Due to the

independence between T and Uthe hazard rate in the presence of censoring is

pr(t <T <t +A/lr > 1) prit <T <t +AIT >t,U >t)
A(t) = lim 1 = lim !
ai=>o At A->0 At

Hence pr(t <T <t +ANT >t,U>t)& A(t)At.
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Because NV(-) is right-continuous, i.e. N(7~) =lim N(s),

A At « priN[(t +At)-]- N(t~) =1|T>t,U> t}
and since N/(t + At)-] - N(t~) is a0, 1-valued random variable,9

A{t)At « E{{N[(t +At)-]- W({)}r >, U >t}.

The hazard rate therefore under conditions of independence between 7T'and U gives the average rate
of change in N over [t, t + At) conditional on both the survival and censoring time exceeding or

being equal to t and thus specifies the conditional rate at which Atjumps in small intervals. Then the

process A given by

At) = 37(X >u)A(u)du

(o)

is a random variable at each fixed t and approximates the number ofjumps of N over (0, t].

Furthermore A is the compensator of N since A4 is predictable (it is continuous and adapted to a
history and thus determined at time ¢ by the past strictly prior to ¢ i.e. by ) which implies

that the process defined by

= N(t) - A@t) =I(X <t,S = 1)- \I[{X >uwA(w)du

(o)

is a martingale. To show that is indeed a martingale, following Fleming and Harrington

(1991), the following filtration is assumed
ct{Nu),[(X <u, 8 =0): 0<u <j}.

Then the filtration 3" = ct{N(u),I[(X <u, 5 =0): 0 <u <5} represents the accumulated

information on N(u) up to, but not including, time s.

As shown above, when Tand Uare independent, dN(5) denotes the change in the process N(s)
over an infinitesimal interval (s - ds, 5] and is one if a failure occurred at's and zero otherwise, that
is, dN(s) is a 0, 1-valued random variable with conditional probability /{X >s)A(s)ds ofbeing 1

given implying

'For a 0, 1-valued random variable X ,

E{X) =X Xpr(X =x) ={(X=0)pr(X =0)} + {(X=VYpr(X =D} =pr{X =1
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E{dN(s)|*1 Y= pr{dN(s) = = /(A" > s)/I(s)iA = dA(s).

Also
E{dA(s) = £{/(X >s)t(s)ifr|J 7 -}= /(A >5s)A(s)ds =dA(s).

The change in the process -N - A over an infinitesimal interval (s- ds, s/ is

d.AM\(s) = dN(s) - dA(s). If then follows from the above that £ { d  }=0, that is, a

martingale with respect to *7 -

The exposition above implies that when T'is a continuous failure time random variable and Ua
censoring time variable with an arbitrary distribution, with X = min(T,U), 5 =I(T <U), A being

the hazard function for 7 and

Nt) =1(X <t,§=1),
Ne() =/(X <t,8 = 0),
ctfn fu),Ncefu) \0 <u <t]

1
then the process given by =N(t)- jlI(X >u)X{u)du is a martingale ifXand Uare
0

independent.10 Consequently there is always an increasing process A(t) = jf(X >u)A(u)du such
0

that N - A is a martingale with respect to the filtration . *a \N (u ), N “(u)-.0<u<t}"

10Counting process and martingale theory can accommodate dependency between the variable of interest and its
censoring variable as shown in Fleming and Harrington (1991). If 7and Uare dependent, given the counting processes
and filtration as defined in the random censorship model above, the associated martingale process is given as

i

&T(t) =N(t) - | I(X >u)A\u)du .
0

t

Thus, there is still a compensator A(?) = j7(X > u)/%#(u)du which makes the previous process a martingale with
(0)

respect to the above mentioned filtration, but the hazard rate for failure time is now X’ which can be very different

from the hazard rate for failure A which holds when Tand Uare independent. Specification of A#requires knowledge

of the joint distribution between Tand U
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4.3. Non-parametric estimators of cost under censoring

The preceding sections presented the counting process approach to the analysis of time-to-event
data. As shown the approach allows such data to be modelled and analysed while accommodating
the presence of censoring. The following sections will concentrate on the analysis of cost-to-event
data under conditions of censoring using the same analytical framework. All non-parametric
estimators referred to in the introduction to the chapter together with the assumptions underlying
their validity will be presented and their statistical properties will be studied using the counting
processes and martingale theory given above. The same general setting is assumed as given in

section 4.2.1.

To reiterate, the aim ofthe approaches presented below is to derive an estimate of the mean total
cost /u =FE(M) and its variance over a specified period when the data is right censored, where the
random variable M denotes the total cost for a patient during some specified time 7 and £ denotes
expectation. The distribution of the random variable 7 is assumed continuous over (0, L] where L
denotes the upper bound of 7, i.e. the maximum time for which each patient is evaluated in which
case Mis the total cost incurred by a patient up to a maximum of L units oftime. To accommodate
censoring, a potential time to censoring denoted by U'is defined and letting 7 denote the time to
death, the observables from a study in the presence of censoring are X =m\n(7T,U), i.e. the last
contact date; 8§ =1(T <U), where /(¢) is the indicator function taking the value of 1 when the
observation is uncensored and zero otherwise; the cost accrued up to time X and other intermediate
cost history for each subject, i.e. M H(t) = {M(u), u<t], where M H(t) denotes the cost history up
to time t, M = M(T), with M(u) being the known accumulated cost up to time u and u denoting
points in time at which cost information becomes available. The observable data for » individuals

are then the independent and identically distributed random vectors

\x; =min(7),01), 8i=HLT;<Ui), M" (X})},i=1,..,n,where i identifies an individual.

4.3.1. Kaplan-Meier and “naive” estimators

The first attempt to account for censoring in cost estimates used the Kaplan-Meier estimator (Fenn
et al, 1995). Before outlining how this estimator has been applied in the estimation ofthe
distribution of costs, it is useful to present the method as applied in the estimation ofthe distribution
of failure times and study the statistical properties of the estimator within the framework ofthe
theory of stochastic processes. The Kaplan-Meier estimator (Kaplan and Meier, 1958) plays a role

for censored data similar to that ofthe empirical distribution function for uncensored data, that is, it
is an estimator of'the cumulative distribution function for failure F(?) based on the observations

(Xi,8i)i =1,...,«, which reduces to the usual distribution function based on 7j,...,Tn if 8i = 1for

each i, where the 7j's are independent and identically distributed with distribution function F .
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Under the assumption of independent censoring, the Kaplan-Meier estimator for the probability of

survival to time ¢ is given by

where the process N(t) =1(X <t,S- 1) counts the number of failures and Y(?) = I(X >1t) counts

the number at risk. It should be noted that different versions ofthe Kaplan-Meier estimator have

been proposed to define the estimator when the largest observed time corresponds to censoring. All
versions ofthe Kaplan-Meier estimator equal r L ((1- AN(s))/Y(s) for t <X nM, where X nax

denotes the largest observed time, and they are all equal to zero for # > X nax if the event at A na is
a failure. In the original paper by Kaplan and Meier, the estimator was left undefined for # > X mm if

A nax is a censored observation. Efron (1967) set the estimator equal to zero for ¢ > X mm even if the

last observation was censored. The version adopted here was proposed by Gill (1980) and sets the

estimator equal to S(XmM), that is equal to its value at the largest observed time, for ¢ > A nax even

when the last observation is censored.

The mean survival time is the area under the Kaplan-Meier curve
@

/= "S{u)du
0

and the mean survival time over (0, ¢/ is estimated as

/) = r]S{u)du (4.2)

0

This estimator is shown to be consistent with asymptotic variance estimated as

var(),) = ij ISwdu d\ ¥ dN{w)

: (4.3)
"Y(u)[Y(u)-AN(u)]

(see, Andersen, Borgan, Gill et al, 1993, p.279). For calculation purposes, the mean survival time

can be written as

A =£s(f
E
where #m is the largest observed point in time, and the asymptotic variance can be expressed as

(m-1

varAy- X J—mm———
H

where dj denotes deaths and ni denotes individuals at risk.
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As noted above the Kaplan-Meier estimator was the first non-parametric estimator to be applied to

cost-to-event data in an attempt to account for censoring in the cost estimates. Table 4.1 outlines the

main concepts underlying the approach when this is applied to time-to-event data and contrasts

these with the analogous concepts underlying the application ofthe same approach to cost-to-event

data.

Table 4.1. Kaplan-Meier estimator applied to cost versus survival

In time to event analysis

The random variable of interest 7" is time to event

The hazard associated with a particular moment in
time is the conditional probability of death at that
moment, given survival until that moment

The survival function when evaluated at time # gives
the probability that the patient will survive at least

until & S(t) = pr(T >1)

An observation is right-censored at a moment in time
if it is known only that the patient survived past that
moment (was alive at that moment), i.e. time of
death or even whether death has occurred is not
observable

The Kaplan-Meier estimator for the probability of

survival to time #is S(7) = J~J11- j
where N{t) =£ /(* ,s <,£,=1),
H
Y() =f jI(Xi>t)
M

The mean survival time is estimated by

juL= jS(u)du where L is the maximum observed
0
duration in the study

The variance estimator for the mean survival over
(0, L] is given as
L (L V fV
VarJL) =i IS@du dvy N
(%Y J  10y(M[ly(M-AAf(M)]j

where u and v denote points in time

In cost analysis

The random variable of interest M is the level of
cost incurred to the event, where the event is the
termination of the study period

The hazard associated with a particular level of cost
is the conditional probability that cost will not
exceed that level, given that it has reached that level

The analogous cost function implied by the equation
S(c) = pr(M >c) gives the probability that the
cost will be at least ¢

Right-censoring at a particular cost level within the
study period occurs if it were known only that the
patient's cost within that period was at least that
great, i.e. the patient's cost behaviour across the
complete period is not available for analysis

The Kaplan-Meier estimator for the probability of

. [P T-I' f: ANIC)}
cost being at least cis S(c) =j | §1— y(k)"’j

k<c

where N(¢) =)g:f (M1 <c,Sl=1).
T

Y(c) = f jI(Mi>c)

o

The mean cost over the study period is estimated by

C

Mem ~ jS{c)dc where Cis the maximum observed
0
cost in the study

The variance estimator for the mean cost over
(0, C] is given as

Wsrede’ ai. WO
var(A xA/)={ c)dc -
R L Y©OIT(@E) - AN)]

where ¢ and % denote levels of cost
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In the application ofthe Kaplan-Meier approach to cost-to-event data, the hazard rate associated
with a given cost level specifies the conditional probability of having “completed” that cost level,
that is, it gives the probability of an individual dying having attained c units of cost given that the

individual was alive after having attained c- 1 units of cost. The probability that the cost will be at
least ¢, S(c)=pr{M > c),is then given by the Kaplan-Meier estimator as

«m O 1"'"-w1

where ¢ and k denote levels of cost, N{c) =" 7(M,. <c, S, =1), that is the counting process counts

i=l1

the number of complete cost observations, or stated differently, the number of individuals who die

having reached a cost level of less or equal to ¢, Y(c)=  I(Mj>c) is the number of individuals
1

who have attained a cost level of at least ¢, M ; denotes the observed cost for individual i and

St =1(T; <Ui). The estimator of the mean cost over the cost interval (0, C] is given by the area

under the Kaplan-Meier cost curve as

Mcm = \S(c)dc (4.5)
0

which is computed as

m
Mim - c«i)
M

where cm is the maximum observed cost in the study. The asymptotic variance of the mean cost

over (0, C] is estimated as

cle dN(c) 1
varC£/a/y=1 jS(c)dc dU Y(OIT() - AN(O)] T (4.6)

0\ h

where ¢ and & denote levels of cost and is computed as

fml
ml Z/ 5(c;Xevll ~¢j %
+
A A _ .
var(/*m ) 21:1 n,(ni-dt)

where di denotes the number of individuals who die having reached a cost level ofless or equal to

a given value and ni denotes the number of individuals who have attained a cost level of at least
that value.
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Another two estimators have also been used to estimate the mean cost in the presence of censoring
which are referred to as “naive” estimators in the literature because the first only uses the
uncensored cases in the estimation of mean cost and is referred to as the uncensored cases
estimator, while the second uses all cases but does not differentiate between censored and
uncensored observations and is referred to as the full-sample estimator. To show explicitly how
these estimators are computed, it is convenient to present first the Kaplan-Meier estimator for cost

as

-] +c,)j

where n is the total number of subjects entering in the study, nk is the number of complete cost

observations at k as defined above, 7j and c . are uncensored and censored observations

respectively andj, 4, and k denote units of cost.1l

The uncensored cases estimator , where the mean cost is calculated with reference to the

uncensored data alone is given as

el o
- I Py 2 (4.7)
e i~ Zam

where nn is the total number of uncensored cases.

The full sample estimator julS, where the mean is estimated by reference to the full sample but

without distinction between censored and uncensored observations is given as

"q@\* ck (4.8)

UL~ d jJ nd i

Fenn et al (1995) show that the latter two estimators impart bias with both the full-sample estimator

and the uncensored estimator resulting in smaller estimates of mean cost than the ‘true’ Kaplan-

In a similar manner, the Kaplan-Meier estimator of the mean survival time can be given as
' n.
m-x v
= n-Y Il (nj+cj)
where 71 is the total number of subjects entering in the study, 7k is the number of deaths atk 7ij and § are

uncensored and censored observations respectively andj, & and ¢ denote units of time. Thus juL represents the area
under the Kaplan-Meier survival curve up to L units of time, which is the maximum observed duration in the study.
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Meier estimator. They conclude that the Kaplan-Meier is to be preferred when analysing censored
cost data. Lin et al (1997), Etzioni et al (1999), and Bang and Tsiatis (2000) argue however that
such a conclusion is misplaced. Their argument is based on the fact that the validity of the Kaplan-
Meier approach relies on the assumption of independence between the variable of interest and its
censoring variable which is satisfied with respect to time-to-event but it fails with respect to cost-to-

event.

In the analysis of failure time data, this assumption requires independence between time to failure
(7) and time to censoring (U) which as stated above is satisfied when the censoring mechanism is
random. Independence between 7 and Ucan be interpreted in the following manner. Considering
the 7)'s as lifetimes starting at time # = 0, X f> ¢ means that individual i is still under observation
just after time £ Independence means that for every ¢ given what has happened up to and including
time £, the remaining lifetimes ofthe individuals who are still under observation just after time ¢
have the same joint distribution as if there had been no censoring. In particular, the fact that
individual i has not been censored in (0, #/ gives no information about his remaining lifetime
distribution. In other words, the removal of certain observations due to censoring does not affect the
joint distribution of failure time for the remaining observations. Stated differently, independent
censoring implies that the probability of an individual being censored at any point in time £ is not
related to the individual’s risk of failure. As a result, the expected survival time is the same for
censored patients as for uncensored patients. Independence between the variable of interest and its
censoring variable within the context of cost-to-event analysis requires independence between cost
at failure time and cost at censoring time. If this was the case, patients censored at the same time
with the same accumulated costs would be expected to have the same total costs if they were
followed to death and then the Kaplan-Meier estimator would provide unbiased cost estimates. In
other words, the Kaplan-Meier estimator is inappropriate unless all patients accumulate costs at a
common rate over time yielding a one-to-one correspondence between the survival time and total
cost. Commonly, however, the rate of cost accumulation varies among individuals, with those in
worse health utilising higher levels of resource and costing more per unit of time. Independence is
therefore violated as patients who accrue costs at higher rates tend to generate larger total costs at
both the survival time and the censoring time, which implies positive correlation between the total
cost at failure time and the total cost at censoring time. Consequently, the removal of certain
observations due to censoring affects the joint distribution of cost for the remaining observations,
that is, at any point in time future cost expectation is statistically altered (from what it would have
been without censoring) by censoring. The condition of independent censoring required for the
validity of'the Kaplan-Meier method is thus violated and this estimator is therefore inappropriate in

the analysis of censored cost data.

Furthermore, the “naive” estimators defined above will always be biased. The full-sample estimator

is always biased downward because the costs incurred after censoring times are not accounted for
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whereas the uncensored-cases estimator is biased toward the costs of'the patients with shorter

survival times because larger survival times are more likely to be censored.

Lin et al (1997) acknowledge these difficulties and propose an alternative which attempts to deal
with this bias. Their estimators are derived by partitioning the study time period into a number of
subintervals and consistency is ensured if censoring occurs solely at the interval boundaries. Under
such censoring conditions, the estimators are shown to be asymptotically normal and asymptotic
variances are analytically derived using the martingale theory presented above. This censoring
pattern essentially requires discreetness ofthe censoring time distribution so that censoring times
can be confined to the boundaries of the subintervals of the partition. Failure to meet this
requirement will result in some bias in the estimates. This limitation led to a further set of
estimators introduced by Bang and Tsiatis (2000) which are shown to be consistent regardless ofthe
censoring pattern. Asymptotic normality and consistent variance estimators are also derived using
the counting process and martingale theory given above. These estimators together with the

assumptions underlying their validity are considered in turn below.

4.3.2. Lin et al estimators

Lin et al (1997) present two approaches in estimating the mean total cost over the period (0,L/. The
first requires information on a patient’s intermediate cost history whereas the second only uses the
observed total costs at the last contact dates. In both approaches, the entire study period (0,Z] is
divided into X intervals [ak,akty), (k=1 ,where ax=0 and a Kt =L . The assumptions
underlying both approaches are as follows. Independence between time to failure and censoring
time, an extension of the independent censoring assumption to ensure that at no point in time ¢ are
patients censored because they accrue unusually high or low costs, continuous distribution of failure
time and continuous or discrete distribution of censoring time. However, as stated above,
consistency ofthe estimators requires that the pattern ofthe censoring distribution is such that the
censoring times can be made to coincide with specific points in time corresponding to the interval
boundaries ofthe partition ofthe study period (0,Z]. This essentially imposes a discrete pattern for

the distribution of censoring times.

4.3.2.1. Estimator of mean cost when cost histories are recorded

The authors’ first approach (referred to as Linl below) can be used to estimate ju= E(M) when the
cost histories are recorded in which case M may be decomposed as (M K) , where Mk is the

observed cost over [ak, a k+]). That is, M = M k which implies that

"=z E(M,)=£ c¢fe(m \T>ak)}=£ pr(T>at)e (m,|r£ak)=

k=1 k=1 *=1 k=1
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where Sk =pr(T >ak) and Ek= E[Mk\T > ak\ Replacing the unknown quantities Sk and Ek by
their consistent sample estimators will result in a consistent estimator for p . The mean total cost p

is thus estimated by

where Sk =Pr(T > ak) is the probability of surviving to akand it is consistently estimated by the

Kaplan-Meier method as

dN(u)
" (4.10)

W by

where the counting processes N(u) and Y(u) have been defined above, and

I 'wYubu
Ek = k =\.. K (4.11)

where M/ is the observed cost of individual i incurred in interval k and in this case

Yi = 1(Xi >ak). Thatis, Ek is an estimator for mean cost £k in interval k and is derived from
those individuals who are under observation at the start of the interval. 2 In other words, Ek is the
sample average ofthe observed costs over the interval [ak,aM ) conditional on survival to the start
of'the interval. Thus, Ek is an unbiased estimator of the true average cost Ek in interval k if
censoring occurs at the end of the interval, since in that case Mk represents the cost of individual i
over the whole interval k for all for all { s with Y& = 1, that is for all individuals who were under
observation at the start of the interval. If censoring occurs before the end of the interval, Ek will
underestimate Ek since it does not take into account the costs of the censored observations from the
point of censoring to the end ofthe interval. The authors also suggest an alternative way of
estimating Ek based on the exclusion ofthose who are censored during [ak, akH) from the
calculation of'the sample average Ek. The resulting estimator will be unbiased if all the patients
who are under observation at time ak have the same probability of being censored during

lak, akH). This condition, which implies that the uncensored MKki's are representative of all the
MKki's in the Ath interval so that exclusion ofthose censored in the interior of the interval would not
impart bias in the estimates, essentially requires that censoring occur at the start of the interval on

the basis that larger survival times are associated with higher probabilities of being censored.

D Assuming that extended independent censoring as defined above holds, ie. E/Mk\T >ak)- E(M,\x>ak),

implies that £k can be estimated from those who are under observation at the start of the interval.
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Clearly, the bias diminishes as the intervals ofthe partition shrink and as the authors note both

estimators of Ek are nearly consistent for narrow time intervals regardless of the censoring pattem.

For large samples, jully is shown to be asymptotically normal and its variance estimator is derived

, v n YaMk
as follows. By the law ofthe large numbers, the estimators Fk=— — - (k=1

converge in probability to E\ = E(MkJ\¥X= 1). It then follows from Slutsky’s theorem and the

consistency ofthe Kaplan-Meier estimator that filN =2"SkEk converges in probability to

k=1
Eun\~y SkEk wLet Z =n [fium - Hum)> Then
k=1
Z=n'"?
Wk =1 =1
(K \ (x \
=52 +n'"* 7 s x
k= y Vi=\ k=1 )
=\ k=1
=7, +72, say.

Due to the consistency ofthe Sk’s,

z, (A -£,")+<>,(0
e

%

- L sk -1 -E)) +0,®
-1 « z;.,4
% n 1/2

=Y sk +0p(1)
k 2 « L=.y*

B The choice of the particular expression 7 {2 (jU- /1) in studying the estimator’s asymptotic properties is due to the a
frequently observed result in asymptotic statistics, namely that in general many statistics allow approximation by an
average of the form

nl2(E-M) =n~"12Y] y/{xi) +op(1)
A

where )/{xi) is some random variable and the notation 0p(1) denotes a term that converges to zero in probability. In
these circumstances, if ) has zero mean and finite second moments then by the central limit theorem
[iU2(/y —jll) is asymptotically zero mean normally distributed.
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where op(1) denotes an asymptotically negligible term which converges in probability to zero. By
the central limit theorem and the law of large numbers, the random variable «“1/2 Yi(MFk - E\)

is asymptotically zero-mean normal and the random variable n~' ~ Yk converges in probability to

the constant E(Ykl) . It then follows from Slutsky’s theorem that

trn f EXU)

which is a sum of# independent and identically distributed (i.i.d.) zero-mean random variables.

To derive an i.i.d. representation for Z2 it is convenient to use the counting process and martingale

theory presented above. The counting processes are defined as shown in sections 4.2.1.1 and
4.2.1.6, that is,

N,(t) =I(X, <t,Si =1)=SI(XI<t) with Nft) =X Ni(?),

1

N ‘() =1(Xi<tS. =0) with Nc(?) =£ n £(0

i=1

and the filtration these processes generate is cjr (u),Nc(u) \Q<u<t] .

Due to the independence between failure and censoring time, as shown in section 4.2.1.6, the

processes given by h= - >u)dA(u) are the associated subject specific
0

martingales, where A(-) is the integrated hazard function for the failure time 7. The Kaplan-Meier

; A .1 4
estimator fk is asymptotically equivalent to € * where Ak is the Nelson-Aalen estimator for

A, =A(ak),4

KU Assuming the random censoring model and the associated counting processes, filtration and underlying distributions
1

given above, then as stated previously the process given by = Af(t) —J1j (5)dA(s) is a martingale for each
(6}
i
i with respect to . An estimator of the integrated hazard function A (¢2) = JA(u)du , first proposed by Nelson
(0)
(1969), is A(t) = j~ - — ~dMu) , where the stochastic integrand is taken to be 0 when both the numerator and

the denominator vanish. Following Fleming and Harrington (1991), when no statistical model is assumed, information
1

is available only for {## Y(«) > 0} and A(?) estimates the random quantity A*(2) —j I {y(w) > 0}A(u)du . Then
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A, dN.(1) (4.13)

since i(l) ='"Z,m ='ZnX,it)
H A

Furthermore as shown in Fleming and Harrington (1991),

»m"(A .- JAr(t) +op()
HO 70
( (4.14)
=« 1 +0,(1)
=0n Y]J W j *()

given that

————— if 7(0 >0
SRR B

7(0

0 if7(0 - 0

By the martingale central limit theorem (section 4.2.1.5) the denominator on the right side of (4.14)

can be replaced by its expectation, yielding

«/LAT -A") _ﬂ"/D(J' (4.15)

A 0 + o P/\
which is a sum of 7 i.i.d. zero-mean random variables. By the Taylor series expansion >

A0 - A*(0 = f/{r(» >0W 00- f1{7(h)>0}A(w)du
o Y(u 0

= 7~ ) > ®\[dN(u)- Y(u)Mu)du]
o Y

15 In general, the Taylor series expansion can be used to study the weak convergence of a function ofan estimator when
the estimator is known to weakly converge to a limit distribution. In particular, if 7 UMA —A) = Q + op(1)
for some variable () then for some known differentiable function (pfA) the following approximation holds
nl,2(<p(4)-(p(4))*(p'(4)Q +op(l).
In the present application, *(A) = e A= and <p'(4) =—e A= —S .1t follows therefore that
Y
um (St -St)«- St»-IZZ Q>
Pr(X -0
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w=l
K d'j)

=2V i A — Y :" / (4.16)
5 SRR 0

« Ao

— A "

7 otA T - A +0.0
=g opr(x LT 0.0

Combination of (4.12) and (4.16) yields

« k

z= ,r',2% %i« +oi(])

where

SKY(MKi-E'R) - ddMjo)

(4.17)
E(Xkl) pr(X >t)

4

Since for every i the random elements involved in % (k =\,...,K) pertain to the zth individual
only, the random variable Z is a sum of 7 i.i.d. zero-mean random variables and applying the central
limit theorem it follows that Z converges in distribution to a zero-mean normal random variable

. . 16
with variance <12 = )

A natural estimator for a 2 is givenby 4 =4 E mZ L L=,4 4 >where the 4's are obtained

from the ;jkl's by replacing the unknown quantities in (4.17) with their respective sample estimators

as follows

¢ SKYA(MKi-Ek) £ *adNj(t)- 1(Xj >t)dA(t)

s ki Kok ]

nZ n, »
=1 A

where

16Expressing (4.17) as Eli ~ & + 4kj }>where an4 denote the two terms on the right side of (4.17), then

which is a representation for var(Z) = var(Z,) + var(Z2) + 2 COv(Z,,Z2), that is the first two terms on the right

side of (**) are the variances due to the variations ofthe Ek's and the Sk's respectively and the third term is the

covariance. Each of'the three terms accounts for the variations within the intervals and for the covariances among the
intervals (Lin et al, 1997).
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dNt{t) - I(Xl >t)dk(t) — dN(O [(X’ = t) dN(t) (because 0 4.13)

l L]
>)) "L V. ~ .V 'L V « E '.,7« Si>

A
(W, (o _E"j I(X,>t)<INj(1)
Yy Jix. > 1) £»V {£.(*><)

(T, <a, )8 4 (%, " x)I(Xj <a,)sS,
ZIAX X))

Thus the variance estimator for /}iWl is a //n and is given as

n KK
var(jiuN) =1 1T W (4.18)
H AlA
where
A x-n A Al n =) (4.19)
.. / JiXjrmm(ak,X1)
r., ii
and
R,=Y.i(x,>x,) (4.20)

1=\

4.3.2.2. Estimator of mean cost when cost histories are not recorded

The approach for estimating mean cost when individual cost histories are not recorded (referred to
as Lin2 below) again entails partitioning the duration of the study into subintervals [ak, a ki), but
now only observed total costs are being used in the estimation process. In this case the mean total

cost n can be given as

u=YdE(M\ak <T <akH)pr(ak <T <ak+t)+E(M\T >L)pr(T >L)

x|

=YjE(M\ak <T <akx)pr(ak <T <akt])
]

=2 A (5,-Si.,)
k=1

with a K2 =co and Ak = E{M\ak <T <ak+]). This leads to the following estimator for s
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K+
Muni ZT_,IA/\ Sk~ SkH) With « K+2 = ©° (4.21)

=
where the survival probabilities S* are consistently estimated by the Kaplan-Meier method, with
Sk - Skii being the estimated Kaplan-Meier probability of death over the interval [ak,a ki),

and

k=\..K (4.22)

where now Y& =1(ak <Xt <akt,8i= 1) and M ( is the observed total cost of individual i. That is,
Akis an estimator for mean cost for interval k and is derived from those individuals who are
observed to die in the interval [ak,akH). Ifcensoring occurs at the end ofthe interval, Ak is a
consistent estimator ofthe mean cost Ak for interval k since Y& = 1 implies that M : represents the
cost of individual 7 until the point of his death. If censoring occurs at the start of the interval then,
given {Xj >ak], the failure times have the same probability of being censored in the interval

[iak, ak+l), and the observed deaths in [ak,ak+l) are thus a random subset of all deaths in the same
interval which implies that Ak is still a consistent estimator of the mean cost for interval k If
censoring occurs in the interior of the interval, Ak is going to be biased towards the costs of those
who die early in the interval because given the same censoring distribution larger survival times are

associated with a higher probability of being censored.

With respect to the estimator of mean cost for the last interval of the partition [aKH, aK+2), this is
defined as AKH = E(M\T >L) and involves the observed total costs ofthe patients who are

censored at L. The assumption of extended independent censoring implies AK# =E(M\X >L) and

hence AKli is estimated as

Ak D TA T Gere YRRU=1(X, >L) (4.23)

Y ,Jku

As it can be seen from the above expressions estimation of the interval cost Ak (k =1,..,K +1)

does not require cost information on those individuals who are censored before the largest observed

time L.

For large n, the estimator for the variance of jullN is derived using the same theoretical framework

as for the previous estimator as follows. By the law of the large numbers, the estimatorsT

7 Again assuming the condition of extended independent censoring, as this implies that

Ak =E(M\ak <T <akH,U>ak)=E(M\X>ak, T <akt).
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A = (k - +1) converge in probability to 4| =E(M\ak <X <akH S =1),
E .L
(k = 1,..., AT). It then follows from Slutsky’s theorem and the consistency ofthe Kaplan-Meier

A+l A A+l
estimator that jkUN2 =" 4 k(Sk-Ski#l) converges in probability to pifl\N2 ="A4 *k(Sk- SkH) where

k=1 k=1

A¥+H = Akt{ . Letting Z = n U2{fiUN2 - piUN2), it follows that

A / \ AH t
Z=n TA L -L ,)-14"'"(v -0
k=1 k=\ J
K +1 / \ K+1 / \ K+1 / \ K+1
=n
k=1 <H i=1 *
K+1/ \/ \ K +1 / \ K+1 / \
=«"2Z (» -L ,P O
k:\( ’ ’ k=1 *= )

=7, +722-73, say.

Due to the consistency ofthe Sk’s,

KA ! \
z, =»""'E (s,-s,,,x4,-A ¢)+o0,(i)
=1

BRI My

=Z (S ,-\1- +0,(9
(’:1 VN&TI/BI/L-N}"Z’: k
KH 1/2
+0p{1)

H B n=ki

By the central limit theorem and the law of large numbers, the random variable

n~\n Y (M. - Ak) is asymptotically zero-mean normal and the random variable n~/ | Yk

converges in probability to the constant E{Ykx) . It then follows from Slutsky’s theorem that

n K+l
z,=«-,2£ 1 Fe X m — +0,0) (4.24)
i=\ k=1 £(n,)

which is a sum of z independent and identically distributed (i.i.d.) zero-mean random variables.
By the same arguments as given in the study ofthe large-sample properties of £ium , an i.i.d.

representation for Z2 is given as

n K +1 ;
2 dcis

4.2
i=1 k=) pr(X >t +0,(9 (4.25)

69



and for Z3

SRR B RS 11| (4.26)
A H 0

where -;*7(0 (/ = 1,...,«) are the martingale processes introduced above. Combination of (4.24),

(4.25) and (4.26) yields

Z=n " i " kitop())

H *=1
where
! N
, Ask-s M)W -4) o, d4%jt) d&XQ } 4.27)
E(YJ prixX>t) priX>t)\
Since for every i the random elements involved in (k=1 pertain to the Zth individual

only, the random variable Z is a sum of# i.i.d. zero-mean random variables and applying the central

limit theorem it follows that Z converges in distribution to a zero-mean normal random variable

with variance 0’2 = )

As stated previously, a natural estimator for a 2 is given by a 2= m-1" " £hitn , where
the %i's are obtained from the %i's by replacing the unknown quantities in (4.27) with their

respective sample estimators as follows

L A )44 (C ,a .u-"-dn)
» "1 1»
771
where
T(A; <ak)5i A ~T
* AD. j\lemm(ak,X,)ﬁ-%
and

Hence for large n, p U\ is approximately normal with variance estimator given as a 2/n, i.e.

(4.28)
H * A
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where

(4.29)
(4.30)
n
R,"H X r>X,) (4.31)
A

Due to the consistency of the Kaplan-Meier estimator, the estimators p Lm and p U\are consistent
as long as the Ek's and AAk's are consistent. Their consistency as shown above is dependent on the
censoring pattern and is ensured if censoring occurs at the boundaries of the intervals of the
partition. If the censoring distribution is discrete, the boundaries <xk's can in theory be chosen to
correspond to the possible censoring times and therefore the estimators are still going to be
consistent. Ifthe censoring distribution is continuous, the shorter the interval length, that is the finer
the partition of the study period, the more unbiased the estimators. There is however a constraint
associated with this point with reference to Lin et al’s second approach (Lin2), which requires that
the length ofthe intervals of'the partition is such that allows a reasonable number of deaths to be
observed in each subinterval. It may not be possible however to meet this requirement while
simultaneously ensuring that the censoring times are confined to the boundaries of the intervals of

the partition as required for consistency.

4.3.3. Bang and Tsiatis estimators

The set of estimators proposed by Bang and Tsiatis (2000) do not impose any restrictions on the
distribution of censoring times. The idea underlying this class of estimators is the use of'an inverse
probability weight in the estimating equations through which censoring is appropriately accounted
for. The first estimator uses cost information from only the uncensored cases while the second uses
intermediate cost history from all study subjects. The last two estimators build on the work of
Robins & Rotnitzky (1992) and Robins, Rotnitzky & Zhao (1994) and attempt to improve

efficiency by recovering information lost due to censoring.

The same notation as above is adopted here and the assumptions underlying the Bang and Tsiatis
estimators are as follows. The distribution of failure time 7 is assumed continuous from 0 to L, the
censoring distribution is assumed continuous with the random variable U denoting time to

censoring having survivor function K(u) = pr{U >u), i.e. the survivor function K{u) evaluated at

a point in time u gives the probability of an individual not being censored at u, and censoring is
assumed to arise completely at random. A further assumption is that pr{Ui >L)> 0 which ensures
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that K(u) is bounded away from zero and that a number of patients are still under observation at L

to enable calculation ofthe cost over the defined period (0, L].

4.3.3.1. Simple weighted estimator

All the proposed estimators originate from the weighted complete-case estimator. If complete costs

were available for each patient, then an obvious estimator for the mean costp would be —V m , .
n

Under conditions of independent censoring, an estimator accounting for censoring using cost

The idea underlying the use ofthis specific probability weight to adjust for censoring is that under
conditions of independent censoring, at time 7), K{7i) =pr(U > 7)) is the probability that

individual i has survived to 7i without being censored. Therefore, if individual i is observed to die
at 7j, then he represents 1/A(7j) individuals who might have been observed if there was no

censoring. This is an unbiased estimator of /u as is shown below.

The unknown survivor function A(-) is estimated by the Kaplan-Meier estimator based on the data
{A, =min(7j, U oni=\..,nlas

(4.32)

where Nc(u)=" /(A <u (f =0) and Y(u) - ~ /(A,. >«).

The simple weighted complete-case estimator is then defined as

(4.33)
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and its consistency is shown in Appendix A.4.1. Proof of asymptotic normality for this estimator
and derivation ofits variance for large samples are based on the theory of counting processes and

the associated martingale framework. The filtration adopted here is given by

and represents the increasing information over time on the censoring times up to time u and survival

times and cost histories over all non-negative times. The counting process N c(u) counts the
number of individuals censored over time, and given that censoring is independent (see section

4.2.1.6) the associated martingale is given as

(W) =a;(u)- 1'e®)Y] (t)dt

where N. () =1(X; <u, 5, =0), Yj(u) =1(X; >u) and X (u) is the hazard function for the
censoring distribution. In addition, (u) = («). Ne(«)=X Ni(«) and Y(u) ="£ Y;(u) .

To study the large sample properties ofthe simple weighted estimator, the authors show that it can

be expanded as follows
n 8/'M

SM " SM " 8M

Using the following identity from Robins & Rotnitzky (1992, p. 313)

the above expression becomes

Using the martingale integral representation
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m - m ‘ch(u-)d, %rc{u
m 0o K(U) Y(uw

(Gill, 1980, p. 37), where K(u~) is the left-continuous version of the Kaplan-Meier estimator for
censoring and n~'Y(u) =K(u~)S(u~), with S(u) being the Kaplan-Meier estimator for
S(u) =pr(T >u), it follows that

2 , -2V 1+t -VIST/ -l2ve 1dMNKQu 2r SiMiV\\k{u-) d<$rQu
= "7 « -- AR . +" ~"TT 17 't .
%« “ %1 H o %i(@?j)[og *(«} I%V(O}%’(@«>,

j-i/jaT» 11 ~ SIMi
-i-«~]/231
H o Kw *(k) «5(0 M£(7))
« ZW 0 N O 1 nn «j_ym/ u)~
1= -/U- -nli=[K 0 ’\(\gl A é
:»_”!%:l(«’ - 21:10 -cw >
i2y (d,"Cc(n) i
1=1 wo K (Mi-GM,u)} +oH(D
(4.34)
where
G(M,
(M,u) St
and

11 A SiMyTi >
G(M,u) MAU{TE > ) (4.35)

«5(«)w (7))

The above expression is the sum ofn elements, each one pertaining to individual i and hence they
are identically and independently (i.i.d.) distributed. Using the martingale theorem presented on

page 49 used in deriving the second moments for statistics of the form

n/ n 1
U) =1T j//,.d(Af - Ai) =" 1// j{ii)d. Y u) for the case of continuous compensators, the
Ho S

variance of the expression (4.34) is derived as

= var(M,. -ju) +E j{M,.-G (M ,M}2/(7;. >u) ‘Iic((‘?
u

(0]

du

For large samples, the martingale version ofthe central limit theorem can be used to show that jull’

is asymptotically normal with consistent variance estimator given by
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] _ b > M Ay -G oM 436
yar{fiwr) = nit K (T) ﬂJk(iﬁl?)(g( ) (M, u)} (4.36)

2

where G(Mn,u) and G"(M,w) are defined according to (4.35).

4.3.3.2. Partitioned estimator

The authors also propose a partitioned version ofthe simple weighted complete-case estimator
which makes use of'the cost history for the censored observations that are not used by the simple
weighted estimator. The idea underlying the partitioned estimator is similar to that proposed by Lin
et al (1997) but the advantage of their method is that the consistency and asymptotic normality of
the proposed estimator, unlike Lin et al, does not depend on the choice of the partition or the

discreteness of the censoring times. 18

The duration of analysis (0, L] is partitioned into K subintervals (¢j,¢j4], (j =0,...,K - 1), the

simple weighted estimator is then used to derive the estimated cost incurred in each ofthese K
subintervals and the final estimate of mean cost is derived by summing across these intervals. The

partitioned estimator is therefore given as

i f (4.37)
W MA K, (V)

where for individual i: S/ =/{min(7),r) < £/,.}, M;(tj) is the cumulative cost up to time ¢,
kj (7)) is the Kaplan-Meier estimator for the probability ofnot being censored based on the
dataset \xj,Sf,i=1,..,/?} where Xj - min(7)<,U{) and 7/J = min(7],iy).

The advantage of this method over the simple weighted estimator is that individual i is considered
uncensored in theyth interval whenever Ul >min(7’,ty) . Consequently, there is an increase in the

cost information being used by this estimator, as individuals who were treated as censored in the
simple weighted estimator having (7, < 7i and whose cost information was thus not used in the

I8Recently in an unpublished paper O’Hagan and Stevens (2002) purport to show formally the link between the Lin et
al (1997) estimator not using cost histories and the Bang and Tsiatis (2000) simple weighted estimator as well as the
link between the Lin et al (1997) using cost histories estimator and the Bang and Tsiatis (2000) partitioned estimator.
The authors’ aim is to “make these methods more accessible by clarifying the relationships between them and to
facilitate the take-up of more sophisticated techniques”. However their paper has a number of weaknesses. First, in
establishing the links between the two methodologies the authors essentially remove the assumption of a discrete
censoring pattern which underlies the Lin et al estimators. Secondly, in deriving an alternative form for the Bang and
Tsiatis partitioned estimator the authors express uncertainty over the equivalence of their estimator with regards to the
original. Finally, their conclusion that “parametric modelling is more appropriate for cost-effectiveness decision
making” does not follow from the content oftheir paper.
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estimation process will be now uncensored in some ofthe intervals of the partition in which their

costs will contribute to the estimates.

Consistency follows by an argument similar to that used for the simple weighted estimator and
proofofasymptotic normality for this estimator and derivation ofits variance for large samples are
again based on the theory of counting processes and the associated martingale framework. For

asymptotic normality, the partitioned estimator is expanded as

n' 2(/JP~A)=7Z wm " 1k - oM)
v A Ho ~(w

1 Ho Ku) v
where pij is the true mean cost in interval j, My =M .(tj)- M;(ty_,),
GJ(MLu) = >m)} and Sjfu) =/?r{min(7;,iy) > wj .
Sj(ii)

Martingale theory then gives the variance of n'/2(jup - /u) as

L 12
varM, - W+ EJ ; iMjj~GIMj,u)}l{fu<ti) .
i *(«)
For large is approximately normal with variance estimator given by (also see Appendix
A42)
var(//P) =—
n &S K (7)) oy /4 F(u)K(u)
(4.38)
where
1 1 * dr'MJiTrl>u
GjAl(M,,u) =- 2/ ) (4.39)
“w (V V)
x . N , N
J1#1, i i sr'M . Mjirr~u) (4.40)

j v/=max(y,/),ja/=min(y,/), tlj =T/ and (w) is the Kaplan-Meier estimator of
pr{min(7] ,ty) > w}.
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4.3J.3. Simple Improved estimator

In an attempt to improve the efficiency ofthe simple weighted and partitioned estimators, the
authors use the theory for missing data processes given by Robins and Rotnizky (1992), and Robins
et al. (1994). The idea is that efficiency will be improved through use of some functional of the cost

history which will allow recovery of information lost due to censoring.

Estimation and the study of efficiency of the proposed estimators are based on the general theory
for semiparametric models when data are missing at random. The development of such models,
which consist of both parametric and non parametric components, has been motivated mainly to
address the problem of misspecification of econometric and statistical models in a number of
applications. In addressing this issue, the semiparametric approach allows the functional form of
some components ofthe model to be unknown and therefore unrestricted. Given that part of the
model is completely unspecified, estimation ofthe parameters of interest requires that some
assumptions be made or restrictions be imposed on the statistical relationship between what is
observed and what is not observed. Assessment of the asymptotic efficiency of any given
semiparametric estimator is performed by comparing the estimator’s asymptotic variance with a
standard variance measure referred to as the asymptotic variance bound or the semiparametric
efficiency bound. Efficiency bounds therefore provide a standard against which the semiparametric
estimator’s asymptotic efficiency can be assessed and thus provide a means for measuring the loss
of efficiency resulting from adopting a semiparametric rather than a parametric model. To ensure
the existence of a semiparametric efficiency bound the estimators must be regular.19 The class of
regular estimators excludes both superefficient2) estimators and estimators that make use of more
information that is contained in the semiparametric model. Regularity conditions lead to the
following definition of efficiency. An estimator for the parameters ofinterest of a semiparametric
model is said to be efficient if it is regular and its limiting distribution is zero mean normal with the
asymptotic variance attaining the semiparametric efficiency bound. Regularity conditions can be
easily derived for a particular class of estimators referred to as asymptotically linear estimators.

Furthermore establishing regularity conditions for asymptotically linear estimators not only ensures

P An estimator @ is said to be regular if'it is regular in every parametric submodel and its limiting distribution does not
depend on the parametric submodel. Assuming that the data are generated by a parametric model that satisfies the
semiparametric assumptions and contains the truth, such a model is referred to as a parametric submodel where the
“sub” prefix indicates that the model is a subset of the model consisting of all distributions satisfying the assumptions of
the semiparametric model. Assuming further that the data generating process is one where for each sample size 7 the

data are distributed according to a parameter 97 with -Jn{9n—+#0) bounded, an estimator @ is regular in a

parametric submodel if V 90 the limiting distribution of "fr(a —(O({%1)) does not depend on the data generating
process (Newey 1990).

A This condition is required to ensure that convergence of the estimator in distribution is uniform in the true parameter
values which in turn implies that the limiting distribution is continuous in the parameters. Typically the limiting
distribution of superefficient estimators is discontinuous in the parameters (Newey 1990).
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the existence of a semiparametric efficiency bound but also allows calculation ofthe bound (Newey

1990). An estimator a of a( is asymptotically linear with influence function D if

with E(D) =0 and E(D'D) <co.If a is asymptotically linear, then by the central limit theorem
and Slutsky’s theorem, n'l2(a - a () is asymptotically normal with mean zero and variance

E(D'D) . Furthermore, asymptotically linear estimators a (¥ and a (J with the same influence
function are asymptotically equivalent in the sense that nl2(a () - cc{2)) = op(1). Conversely, two
asymptotically linear estimators that are asymptotically equivalent must have the same influence
function. Hence, the asymptotic properties of such asymptotical linear estimators are directly related

to their influence function (Newey 1990).

On the basis ofthe above exposition and on the premise that most estimators are asymptotically
linear, the issue in the application of interest becomes to identify the class of influence functions for
regular asymptotically linear estimators when the data may be censored. When there is no
censoring, i.e. when complete cost information is available for each individual, given that the
parameter ju= E(M) is an explicit function of the distribution ofthe random variable M, and that
the distribution of M is left unrestricted, there exists only one such influence function for regular
asymptotically linear estimators of //, namely M,. - /; (Newey 1990). This corresponds to the
influence function ofthe sample average, introduction of random censoring with unspecified
distribution makes the class of influence functions infinite. Following Robins and Rotnitzky (1992),

Bang and Tsiatis show that the entire class of influence functions in the presence of censoring is

where e{M" («)} is an arbitrary functional of the cost history and

The estimator of mean cost whose influence function is given by (4.41) is then of'the form

where

G*(e{MH(u)},u) = (4.42)

78



Hence all consistent asymptotically normal regular estimators for mean cost are asymptotically
equivalent to some estimator of this form. Determining therefore the optimal set of functionals of

cost history e {M" (w)! will result in deriving the most efficient estimator within this class. The
y g

optimal vector of'these functionals has been shown to be eqt {M,w(u)} = M " (u)] (Robins et

al, 1994; Laan and Hubbard, 1998). Bang and Tsiatis argue that as it is practically impossible to
estimate this conditional expectation without imposing specific assumptions on the cost histories, an

alternative approach to improve efficiency is to specify a fixed number of functionals
[ex{Mh (n)},...,ej {Mh (m)}] thus restricting the class of influence functions to

df£%Ge(u)
_ . 6« —~ n n "y
M 0 K(lj) + 2 r ft 0\ %(Zu) G(e>W " <")>")!
and determine the set of constants , j =1 which minimise the variance ofthe above

expression. Provided that the vector of prespecified functionals makes the restricted class of
influence functions a good approximation to the entire class, the constants [y, ,...,yy] which

minimise the variance above will result in the identification of estimators close to efficient. As

M(- /w) is independent ofthe other terms, the set of optimal constants y°#,...,y°d are the solution
p Yy Yy

to minimising the variance of (y. - yxa -... ~YjZu) for individual i, where
d"rcu
LT - sy,
Yo7 K
xJ%rec(u)

2=y gy @M O0) OCYMHWL] 7=,

The optimal set of constants are then derived by formalising the above as a multiple regression
problem as y @ = cov(y(,Z,.) var(Z()_l, where Z. is a Ixjvector and zy and y. are scalars. The

simple improved estimator is then given by

1 3.Mi 1,71 ¢dNj (U [TjHr A*/ (1///]
A ' (u) (ef ( >hU)]

(4.43)

where y =c6v(y,.,Zi)var(Z,.) ’, e{M" (1)} is the/x 1 vector of the prespecified functionals
e.{M@W(u)} which the authors suggest taking as ey{M" (w)} = M thu)if u> ¢j and zero otherwise,
where AT (u) is the cost incurred in subinterval (ty ,, min(t;.,w)] and G *(e{MH(u)},w) isthe/x1

vector of G *(ey{MH(u)},u) where G*(-) is defined by (4.42).

For large samples the variance is estimated by
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var(A-np) =

1£ o,(M, Mnp +] B Nu) 2(MM)I cov(>, Yz )var(Z;)>cov(z ., Z,.)
ntt kﬂﬂ y’n‘éKl(u) M
(4.44)
Theyth element in the 1x7 vector ofthe estimator of cov(y,.,Z,.) is
) n\
LN L (M- GMw)} (M. () - G(Mj (1,1} 1{Ti >u) (4.45)
nb]J\u) >>J5(m)tr iy

and a consistent estimator of var(Z,.) has its (/, /)th element as

fNe(w) 1 1

M - GM .(m),w M, (u - G(M, , A 4.46
nd & (w nS(u){I’ M (W)- GM .(m),w)} {M, (u) - G(M, (<), u)} >u). (4.46)

Jy

for j, /=1

4.3.3.4. Improved partitioned estimator

When the same methodology is applied to improve the efficiency ofthe partitioned estimator the

resultant improved partitioned estimator is given by

1-~7/ {M@G)-Mo0)} 17 f7W,(m) "
My i s Fo g e MWW - G (e{M" (O}.m)]  (447)
PR A (1)) =0 £(m)

where y = cov(Z1,Z() var(Z;) 1, the vector var(Z() and the set of functionals are as defined for the

improved simple estimator and theyth element ofthe 1x7 vector of cov(y,.,Z() is

1"rdNc(w) K1 1 - s Ni

y w/Ma-G I(MLu)} {My(u)-G (Mj ()} I(T] >u) (4.48)
RIK ) YSns)m KUT? D)

The asymptotic variance is estimated by

var(pAnp =
1 -p Anp2
n H K(T:) 8A A Y{u)K(u)
-n  cov(y,.Z,)var(Z,) cov(y,.,Zf)’
(4.49)
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4.4. Methods and results

The previous sections have presented a number of approaches to estimating mean cost from
censored data. All these estimators were applied to the UKPDS data described in chapter 1 and a
subset were also applied to a simulated data set, described below, to test various aspects oftheir
performance. The most important feature ofthe UKPDS data for the purposes ofthis analysis is the
presence of heavy censoring in both trial arms. As a consequence, the results of the present analysis
reflect an assessment of the various estimators under extreme censoring conditions which is the
issue they all attempt to address. A number of secondary analyses are subsequently performed,
some of which attempt to assess the impact of'the level of censoring on the performance ofthe

various estimators.

4.4.1. The UKPDS data

As stated in chapter 1, the UKPDS was a randomised controlled clinical trial whose main
randomisation involved a type 2 diabetic population of 3867 individuals allocated either to
conventional policy (1138) or intensive policy (2729) with the aim of assessing the effectiveness of
improved blood glucose control. The trial started in 1978 and ended in 1998 with a median follow-
up period to death, the last date at which clinical status was known, or to the end of the trial period
of 10 years. For each individual in the study the trial collected information on both clinical
effectiveness and resource use. The unit costs of hospitalisation and treatment medication were
attached to the volume ofresources to calculate the total cost per patient per year directly from the
trial data and these were then aggregated to give a total cost per patient for the whole trial period.
As noted in chapter 1 costs associated with the non-hospital resource use were excluded from the
analysis undertaken here as these were not available from the trial on a patient level basis but had
been estimated based on a regression approach. The analysis here aims at deriving an estimate of
average total cost over the trial period adjusting for censoring where an observation was defined as

censored if the patient was not observed for the full time to death.

A briefdescription of'the data is given in Table 4.2. As can be seen there is no difference in the
average duration of follow-up between the conventional and intensive policy population. There is
no significant difference in the average cost when the estimates are not adjusted for censoring
between the conventional and intensive arms but when only the uncensored cases are considered the
conventional group incurs higher costs on average compared to the intensive population. The failure
event was all-cause mortality, resulting in 925 censored patients [81.3% censoring] and 213 failures
in the conventional group and 2240 censored patients [82% censoring] and 489 failures in the

intensive group by the end ofthe trial. Average follow-up time was equal to 9.9 years reaching a2

21 As such, the cost estimates reported in the thesis are not directly comparable to the reported UKPDS economic
evaluation results.
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maximum of 18.934 years for the conventional group and 10.01 years reaching a maximum of

19.463 years for the intensive group. The assumption of independent censoring is valid in this data

as censoring was not related to any cost or medical reasons.

Table 4.2. Descriptive statistics of the UKPDS data

Sample size («)
Censored

Time duration of analysis

(years): mean [range]

Time duration of analysis for failures
(years): mean [range]

Time duration of analysis for censored
(years): mean [range]

Total cost of all individuals:

Conventional
1138

925 (81.3%)

9.9 [0.01 to 18.934]
7.66 [0.12 to 16.73]
1041 [0.01 to 18.934]

8348 [119 to 189242]

Intensive
2729

2240 (82%)

10.01 [0.05 to 19.463]
7.71 [0.05 to 18.41]
10.51 [0.197 to 19.463]

8070 [20 to 110,921]

mean [range]

Total cost of failures:
mean [range]

Total cost of censored:
mean [range]

12586 [220 to 145549] 10857 [20 to 110921]

7373 [119 to 189242] 7462 [149 to 97121]

Figures 4.1 and 4.2 give an overview ofthe observed total cost data for each randomisation group.
Figure 4.1 plots the data as a function of'time to failure or censoring, while Figure 4.2 plots the
observed distribution of costs on the untransformed scale and on a log transformed scale. The
graphs in the latter figure are overlain with a normal probability density curve and show that the
costs in all groups are positively skewed with a very small number of high outlying costs. As can be
seen in Table 4.2 in the conventional population the uncensored individuals have a mean cost of
12,586 ranging from 220 to 145,549. More detailed descriptive statistics showed that 75% of
individuals have costs under 14,000; 90% have costs under 30,000; 95% have costs under 42,000;
and 99% have costs under 75,000. The censored population in the conventional arm have a mean
cost of 7,373 ranging from 119 to 189,242. Again the outliers are small in number: 75% of
individuals have costs under 8,500; 90% have costs under 14,500; 95% have costs under 21,000;
and 99% have costs under 36,500. In the intensive uncensored population the average cost incurred
was 10,857 ranging from 20 to 110,921. Again 75% had costs under 14,000; 90% under 24,500;
95% under 32,500; and 99% under 58,500. In the censored population the mean cost was 7,462 in a
range 149 to 97,121, with 75% under 8,900; 90% under 14,000; 95% under 18,000; and 99% under
35,500. Appendix A.4.3 gives some descriptive statistics ofthe observed annual costs for the two

randomisation groups which reveal again a wide spread of costs within each year of follow-up.
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Figure 4.1. Total cost per patient over the study period for conventional and intensive policy groups
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Figure 4.2. Total cost per patient on the untransformed and on the log-transformed scale for

conventional and intensive policy groups
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4.4.2. Main analysis

The purpose of the main analysis is to estimate the average total cost per patient over the UKPDS
study period. For each individual the observables were time to death or last contact, a variable
taking the values of 0 or 1 indicating censoring or failure respectively, the annual costs and the total
cost from the start of follow-up to death or the last contact date. All non-parametric estimators
considered in this chapter and summarised in Table 4.3 below were applied to these trial data within
each arm ofthe main randomisation, i.e. n=\ 138 for the conventional policy over a period of (0,
18.934] years and «=2729 for the intensive policy over a period of (0, 19.463] years. Before
presenting the results obtained from the various estimators some methodological points with regards

to the main analysis follow.

Table 4.3. Non-parametric estimators of mean cost

Kaplan-Meier estimator
c

Mkm = \S(C)dc

(0]

where 5(¢c) -n i - ® U w =E KMI<cS =1),and Y(c)=£ /(M, >¢)

k<e Y (k) ] /= i=i

dNjc)

var(Mim ) T(c)[T(c)-AA(c)]

Uncensored cases estimator
Jtu same as in Kaplan-Meier but only using the uncensored data

var{ffu) same as in Kaplan-Meier but only using the uncensored data

Full-sample estimator
JuFS same as in Kaplan-Meier but treating time of censoring as time of failure for the censored individuals

var(/JES) same as in Kaplan-Meier but treating time of censoring as time of failure for the censored individuals

Lini (Using cost histories)

fum
where S, = ) and £ = =KX, >«,)
) 3 -
K K
var(Mum) = wuwu
i=i *=i /=i
SkYki(Mk -E k) -, \[(X]<ak)SI
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Table 4.3. Non-parametric estimators of mean cost (Contd.)

Lin2 (Not using cost histories)
KH
Muni =TdAk(Sk- s k+1) with « K2 = 0

k=\

where 4, m * k
v" Y

B

K ,with Yg =I(ak <X; <akH,Si=1)

n yk_b[m /. .
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Simple weighted estimator
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Partitioned estimator
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Table 4.3. Non-parametric estimators of mean cost (Contd.)

Simple improved estimator

where
7 =cov(".,Z,)var(Z,.)'1

e{M" (u)} isthe Jx 1 vector of e} { M 2A(u)} with ey{M "~ (u)} = M y(u)if u >1tj and zero otherwise, where
My (u) is the cost incurred in subinterval (¢ [, min(/y,«)],

G *(e{MH(u)},u) isthe/xl vector of G*(e.{MH(u)},u) where

M"\u)}Yt(u
*(e{ MH, =
G*(e{MH(u)},u) Y
var(Anp)
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5 At K(Ti) neK (u
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adlNcu) 1 1
y
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Improved partitioned estimator
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For each ofthe Lin et al estimators, two sets ofresults are presented. The first was obtained when
the study duration was partitioned into yearly intervals, given that individual costs were available
from the trial on an annual basis, while the second was obtained assuming a monthly interval length
with the individual’s monthly cost calculated as the annual cost divided by twelve. This was
undertaken to assess the impact that the interval length ofthe partition has on the estimates as the
validity of'the Lin et al approach relies on the pattern ofthe censoring distribution being such that

censoring times can be confined to the boundaries of the intervals of the partition.

The Bang and Tsiatis partitioned and improved partitioned estimators are based on yearly
subintervals for the same reason as stated above, that is, because intermediate cost history for each
subject was available on an annual basis. Also for this reason, for both simple improved and
partitioned improved estimators, the class of influence functions was restricted by defining a fixed
number of prespecified functionals [ef{ MH(w)},....,ey{M l(w)}] , where 7=19 for conventional and
7=20 for intensive, i.e. annual subintervals were assumed in the recovery of cost information lost

due to censoring, and the set of prespecified functionals were defined in accordance to the authors’
suggestion as ey{M (u)} = Mg (u)if u>tj and zero otherwise, where M y(u) is the cost incurred

in subinterval ( i ,min(/y,w)].

With regards to the stochastic integrals appearing in the Bang and Tsiatis estimators presented

L

above, these are ofthe form ~f{u)dNc{u) =J f(u)dNc(u) (or J/(u)7 A e(w)) where /(*) is
0 1! 0
some function oftime and 0 < L < go . Both /(m) and N c(*) satisfy the required properties stated in

section 4.2.1.2 to ensure that the above integrals are well defined as Lebesgue-Stieltjes integrals.

Moreover, given that Nc(u) = ="yj(Xi<u,5i =0) and as a step function has countably
= =

many jumps at {w,w2,..} with ANc(uk) =N c{uk) - N c(uk-) >0, the above integrals were

evaluated as follows.
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L
where for each individual i, the Stieltjes integral J/(u)dN. (u) = » /(uk)AN. (uk) represents
0 kOak<L

the sum of the values of /() at the jump times (uk) of N.(u) in the interval (0,L] (or (0,coj)
where the jumps of the paths of the process N- (u) are ofsize +1 at the time of censoring for

individual i i.e. at u =X {with 87 - 0.

Finally, despite the fact that the Kaplan-Meier, the uncensored cases estimator and the full-sample
estimators are all known to be biased as concluded previously in the theoretical section, these were

still applied to the data for purposes of comparison.

4.4.3. Results of the main analysis

Table 4.4 presents the estimates of mean cost and the associated variances for the conventional and
the intensive policy groups over the study period as derived from application of'the above non-
parametric estimators to the UKPDS data. Programming was undertaken in Stata 7.0 and the
programs are presented in Appendix A.4.4. for the Kaplan-Meier, the full sample and the
uncensored cases estimators, in Appendix A.4.5. for the Lin estimators and in Appendix A.4.6. for

the Bang and Tsiatis estimators.

Table 4.4. Results of the main analysis

Conventional Intensive
Estimator Mean Standard error  Mean Standard error
Kaplan-Meier ( fakM) 38770.74 5312.02 31620.59 2034.89
Uncensored cases only (fiu) 11901.01 1061.36 10629.97 510.00
Full sample (/)5) 8181.581 305.62 8029.867 146.79
Linetal
Subintervals in years
Linl (/Awi) 14006.2 897.73 13172 340.55
Lin2 (f][jy) 12428 636.93 16910.64 1010.87
Subintervals in months
Linl (Alini) 13771.35 1025.60 13078.02 365.95
Lin2 (Auni ) 12530.39 668.21 16926.22 1012.53
Bang and Tsiatis
Simple weighted ( ft WI) 5732.735 840.8 9737.65 3043.5
Partitioned (juP) 14639.48 1219.4 13839.67 445.6
Simple improved (Jinp) 3668.924 398.1 1620.974 1634
Partitioned improved (A zinp) 334563.3 variance<0 -326293.3 varianceO
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As expected the Kaplan-Meier estimator returns very high values of'the average total cost for both
arms, that are of a different order of magnitude compared to all others (excluding the partitioned
improved estimator which displays results outside the permitted range of values), while the full
sample estimator gives lower estimates for both groups, also as expected, since it does not take into
account the costs incurred past the censoring times. The uncensored cases estimator is also known
to be biased towards the costs of the complete cases who are likely to have shorter survival times
since it is based on this subset alone, which in the UKPDS data represent a very small proportion of

the total number of subjects.

Concentrating on the estimates for mean cost obtained with each of the two methods proposed by
Lin et al, the results show that the length ofthe intervals ofthe partition does not have an impact on
the estimates returned by either the Linl or the Lin2 estimators. This finding holds for both trial

arms.

All estimators apart from Lin2 and the Bang and Tsiatis simple weighted display higher estimates
for the conventional group compared to the intensive. One could argue that the conventional policy
group incurring higher costs on average is probably indicative ofthe “true” result, as the intensive
policy group were known to have significantly lower hospitalisation rates. In addition, the “naive”
estimators resulted in the same direction of difference in mean cost between the two groups which
could be interpreted in support of the previous argument in the following manner. Despite the fact
that the uncensored cases estimator is biased toward the costs ofthe individuals with shorter
survival times as longer survival times are more likely to be censored, the trial data has not shown a
significant difference in survival, both with respect to the proportion dying and the length of
survival time, between the two groups and therefore one may assume that the degree ofbias
imparted in the uncensored cases estimator is similar between the two groups. Along similar lines,
although the full sample estimator is known to be biased downward as the costs incurred after
censoring times are not accounted for, it could again be argued that the degree of bias in the
estimates is similar between the two arms on the basis that the trial data show the same proportion
of censoring in the two groups and that this similarity is also maintained over time. All information
from the trial is suggestive therefore of'the conventional policy group incurring higher costs than

the intensive policy population.

On this basis, the fact that the Lin2 and the Bang and Tsiatis simple weighted estimators display
lower estimates for the conventional group compared to the intensive group in direct contrast to the
results obtained from all other estimators, gives a first indication of poor performance. This
statement may be supported by the following observations. First, there is a similarity between the
Lin2 and the Bang and Tsiatis simple weighted estimators in that they both use only the complete
cost observations in estimating mean cost. Lin et al explicitly state that their second approach relies
on a “reasonable” number of deaths in each sub-interval of the partition and suggest a minimum

number of 5 deaths in each subinterval. The number of deaths in the UKPDS data is small in the
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majority of subintervals and decreases markedly towards the end of the trial, resulting in a number
of deaths below 5 or even zero in the last intervals of the partition. The Bang and Tsiatis simple
weighted estimator not only displays the same pattern as stated above with respect to the direction
of the difference in mean costs between the two arms, but it also results in low values of mean cost
for both arms which are totally unlikely to be true since they are even lower than the respective
mean costs estimated by the full sample estimator. Although the Bang and Tsiatis simple weighted
estimator does not rely on the pattern of'the censoring distribution and therefore the small number
of complete cost observations does not affect the estimates in the same manner as in the Lin et al
second approach, the authors state however that caution should be exercised when applying all their
estimators in circumstances where there is heavy censoring in the tails of'the distribution with small

sample sizes which is precisely the case in the UKPDS data as can also be seen from Figure 4.3.
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Figure 4.3. Kaplan-Meier estimates for the probability of an individual not being censored

The Bang and Tsiatis simple improved estimator gives even lower estimates of average cost for
both arms than the simple weighted estimator. Once again this probably reflects the heavy
censoring experienced at the tails of the distribution. The Bang and Tsiatis partitioned improved
estimator performs very poorly resulting in mean cost estimates of extreme magnitude including
negative values for mean cost for the intensive arm and for variances in both arms. Furthermore,
although the same level of censoring affects both improved estimators, the improved simple does
not result in such extreme values as observed in the improved partitioned. This finding suggests that
the high degree of censoring in particular at the tails ofthe distribution, makes the improved
partitioned much more unstable than the simple improved. A direct consequence of heavy censoring
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at the tails is that the probability of an individual not being censored reaches very small values some
of which approach zero. Thus any quantity weighted by the inverse of such probabilities will be of
extremely large absolute value. Partitioning the study period could amplify this problem. Noting
that the covariance vector is the major difference between the two improved estimators, the most
likely explanation for the observed pattern of results is that the degree of censoring especially at the
tails leads to extremely inflated quantities within this vector and leads to the final estimator being
extremely unstable. Given that the problem cannot be located precisely, further investigation is

undertaken below using artificially generated data.

This leaves two estimators which may be said on first indication to perform adequately in this
particular dataset; the Linl estimator and the Bang and Tsiatis partitioned estimator. Not only do
they both give estimates of a similar sensible magnitude with accompanying reasonable standard
errors, but they also display the anticipated direction of difference in mean cost between the two
groups, with the conventional arm having higher average cost than the intensive arm. The
similarities between these two estimators are the partitioning ofthe study duration into subintervals,
the use of intermediate cost history for each subject and the use of a probability weight to adjust
cost in interval for censoring. The difference lies in the choice of this weight and in the interval cost
adjusted by it. In the Linl estimator the weight is defined as the probability of surviving to the
beginning of each interval and this is used to adjust estimates of mean cost in the interval. The
consistency of this estimator, as stated above, requires appropriate censoring conditions, so that
censoring times correspond to the interval boundaries ofthe partition. By contrast, in the Bang and
Tsiatis partitioned estimator the weight is defined as the inverse of the probability of an individual
not being censored at a given point in time and this is used to adjust individual observed costs in the
interval. Moreover, consistency and asymptotic normality ofthe partitioned estimator does not
depend on the choice of'the intervals ofthe partition or the distribution ofthe censoring times, that

is the asymptotic properties of this estimator are independent of the censoring pattern.

Generally the results of the main analysis support - under conditions of extreme censoring - the
findings reported by Lin et al (1997) and Bang and Tsiatis (2000). Even under moderate censoring
conditions as are considered in these studies, the Linl estimator is reported to perform better than
Lin2 and is clearly preferred to Lin2 at higher levels of censoring if intermediate cost histories are
available as it uses more cost information and requires smaller sample sizes. Bang and Tsiatis show
that the partitioned estimator performed better than their other proposed estimators with increasing
censoring. The results ofthe main analysis here, however, indicate a number of potential difficulties
which may arise when applying the estimators considered above to data with heavy censoring.
Consequently, a number of additional analyses were undertaken to determine whether these
difficulties arose because ofthe characteristics ofthe specific dataset or the intrinsic properties of
the estimators and thus empirically identify conditions under which the estimators perform as

expected from the theory.
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4.4.4. Secondary analysis and results

The additional analyses presented below investigate further the Lin et al and Bang and Tsiatis
estimators concentrating on the specific problems raised above. The estimators are thus assessed
under the following circumstances. First, using the same trial data but excluding the highest
observed total costs. Secondly, using the same clinical trial data but varying the durations of
analysis. Thirdly, using an “artificial” dataset constructed by randomly generating costs and
survival times and varying the levels of censoring. Finally, using the bootstrap method to obtain
estimates ofthe standard error for the estimators as an alternative to the analytically derived

asymptotic variance estimators.
444]. Sensitivity to high cost outliers

As stated previously and shown in Figure 4.2, in both trial arms the distribution of cost was
positively skewed with a very small number of observations having extremely high values. To
assess whether these high cost outliers influence the estimates, the extreme high cost observations
in each arm were excluded from the analysis and the Lin estimates of mean cost based on these data

are presented in Table 4.5.

Table 4.5. Lin estimators excluding the highest observed costs from each group

Conventional Intensive
Estimator Mean Standard error Mean Standard error
Lin 1 13583.07 865.32 13058.34 334.46
Lin 2 12078.4 580.88 16821.76 1009.15

The resultant estimates are naturally slightly lower than the respective ones derived in the main
analysis, but the differences are not significant and the overall pattern ofresults is not altered. The
conclusions drawn from the main analysis results hold therefore regardless of whether these
extreme cost values are included in the analysis or not. The pattern of a positively skewed cost
distribution with a small number of high outliers is also observed in the administrative dataset used
by Lin et al and is likely to be a characteristic of any medical dataset. The relevant results in Lin et
al give no indication that such a characteristic of cost has an impact on the performance oftheir

estimators which is not inconsistent with the finding reported above.
4.4.4.2. Tmpact of varying the duration of analysis
As mentioned previously, the main analysis results indicated that the Lin et al second approach -

not using individual cost histories - gave inconsistent estimates with respect to the direction ofthe

difference in average cost between the two trial arms. Given the reliance of this method on the



number of uncensored individuals in each subinterval and on the number who are censored at the

largest observed time, the duration of analysis was restricted to 18, 17, 16, 15 and 12 years and both

Lin et al estimators were applied to these data.

Table 4.6. Total number of individuals and number of uncensored cases in each interval of the

partition
Conventional
Interval Number entering ~ Number dying
interval within interval
1 1138
2 1125
3 1112
4 1097
5 1076
6 1050
7 1017
8 917
9 816
10 695
11 561
12 433
13 323
14 214
15 129
16 69
17 53
18 32
19 12
20

SO N WJQOva O

Intensive
Number entering Number dying within
interval interval
2729 24
2700 22
2673 28
2632 23
2596 37
2539 51
2442 35
2233 43
1985 39
1681 37
1347 36
1062 33
818 30
556 18
326 13
187 8
127 8
70 3
18 1
2 0

As shown in Table 4.6 the number ofuncensored individuals decreases towards the end of'the study

and is equal to zero for the last two intervals in the conventional group and the last interval in the

intensive group, thus falling below the minimum of five deaths in each interval of the partition

suggested by Lin et al (1997). In addition in both groups there is only one individual censored at the

maximum observed time which implies that the estimate of average cost in the K + 1 interval (with

a K2 = 00) is determined on the basis of this one individual. Restricting the duration of analysis

effectively results in increasing the number of individuals who are censored at the upper bound of

the analysis time, and more importantly eliminates the impact of the last intervals ofthe partition on

the estimates in which the number of uncensored individuals is very small. Table 4.7 reports the

impact of differing durations of analysis on the two Lin et al estimators.
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Table 4.7. Lin et al estimators for different durations of analysis

Conventional Intensive
Estimator Mean Standard error Mean Standard error
L=18years
Lin 1 13564.66 798.29 12752.36 340.01
Lin2 15409.63 2930.63 12597.07 1118.68
L=17years
Lin 1 12831.22 665.14 12295.81 324.57
Lin 2 14785.19 1661.96 14031.57 842.77
L=16years
Lin 1 11884.79 583.97 11434.42 2457
Lin 2 13683.87 1215.49 12206.42 583.56
L=15years
Lin 1 11258.03 512.54 10750.22 210.09
Lin 2 12381.43 987.25 11434.13 480.74
L=12years
Lin 1 8869.467 357.95 8642.844 163.97
Lin 2 9230.879 458.12 8858.892 220.52

The initial point to be made here is that the first estimator by Lin et al (Linl) remains stable for all
different durations of analysis. That is, its absolute magnitude decreases as duration decreases since
it is estimating average costs over a shorter time period and the rate of decrease appears to be
reasonable in both trial arms. More importantly, as in the main analysis results, the conventional
group is shown to incur higher costs on average than the intensive group for all time periods of

analysis.

With respect to the second estimator by Lin et al (Lin2), the results show that when duration of
analysis was restricted to 17 years or less, this estimator became stable resulting in the expected
estimates, that is the estimator resulted in conventional policy having a higher mean cost than
intensive policy. These results indicate that Lin2 is indeed sensitive to the number of deaths in the
intervals ofthe partition and to the number of individuals censored at the largest observed time.
More specifically, increasing these numbers to a “reasonable” level results in obtaining less biased
estimates of mean cost in each ofthe subintervals, as the greater the number of individuals who
contribute cost information in each interval the more representative are the estimates of mean cost

in the corresponding interval.

With regards to the Bang and Tsiatis estimators, the problems identified in the main analysis were
the very low estimates resulting from the simple weighted and the improved simple estimators and
the extreme estimates resulting from the improved partitioned estimator. As the authors point out,

very heavy censoring in the tails of the distribution may render the estimators unstable with small



sample sizes. As already stated, the trial data were very heavily censored reaching 82% in both
conventional and intensive policy groups by the trial end. In addition, as shown in Table 4.6,
towards the end ofthe study the number of individuals still under observation decreases
substantially falling to twelve in the conventional group at the last year of follow-up and to two in
the intensive group at the last year of follow-up. To assess the impact that an increase in the number
of individuals being under observation at the end of the analysis time has on the Bang and Tsiatis
estimators, the duration of analysis was restricted to 18, 17, 16, 15 and 12 years and the estimators

were computed for the conventional policy group.

Table 4.8. Bang & Tsiatis estimators for different durations of analysis for the conventional policy
group

Estimator Mean Standard error

L=18years (censoring 81.3%)

Simple 5732.735 840.7795
Partitioned 14639.48 1219.374
Simple improved 3668.924 398.1052
Partitioned improved 334562.5 varianee<0

L=17years (censoring 81.3%)

Simple 5732.735 840.7795
Partitioned 13410.59 731.8333
Simple improved 3668.924 398.1052
Partitioned improved mean<0 (mean=-15906.16) varianee<0

L=16 years (censoring 81.5%)

Simple 5481.435 829.8462
Partitioned 12519.31 683.966
Simple improved 5064.389 384.9361
Partitioned improved mean<0 (mean=-25535.95) varianceO

L=15years (censoring 81.7%)

Simple 5261.124 826.0686
Partitioned 11832.58 599.1149
Simple improved 5139.35 383.5506
Partitioned improved 13705.7 variance<0

L=12years (censoring 84.5%)

Simple 2577.509 388.2635
Partitioned 9113.796 307.1622
Simple improved 4308.985 285.7729
Partitioned improved 8667.038 variance<0

The results are presented in Table 4.8 and show the same pattern as observed in the main analysis.
That is, the partitioned estimator gives estimates of average cost very similar to the Linl estimator
for the various time durations of analysis, the simple weighted and the improved simple estimators
still give low estimates compared to the partitioned and Linl and the improved partitioned again

results in extreme values. In other words, the problems identified in the main analysis do not appear
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to be resolved by restricting total analysis time. This is probably due to the fact that although the
total number of individuals under observation towards the end of the analysis period slightly
increases as the period is restricted, the proportion of patients who are censored remains high
(between 81% and 82% until 15 years), even increasing slightly as duration decreases (84.5% at 12
years). This gives a strong indication that the issue of heavy censoring especially in the tails of'the

distribution is primarily responsible for the estimators’ poor performance.

44.4.3. Simulation

As the level of censoring is directly related to the performance of all estimators considered and
more specifically as Bang and Tsiatis state very heavy censoring in the tails of the distribution could
result in their estimators becoming unstable, the performance of the various estimators was assessed
for different levels of censoring. Both Lin et al and Bang and Tsiatis construct artificial datasets and
vary the levels of censoring by up to 45%. In a similar manner a simulated dataset was constructed
here to explicitly test the impact that the degree of censoring has on the estimators of interest while
at the same time ensuring that individual costs vary in a predefined manner. As well as having the
advantage that different levels of censoring can be set and the impact of censoring can be isolated,
an artificial dataset also allows estimation ofthe “true” mean cost, that is the mean cost if censoring
was not present in the data. A direct assessment of the performance ofthe various estimators is thus

achieved through comparison ofthe estimated means to the “true” mean.

The approach adopted in the construction of this dataset is similar to the one described in the Lin et
al and Bang and Tsiatis simulation experiment, although the estimates obtained here are not based
on replications ofthe data but have resulted from a single application of each approach to the
artificial dataset once this was generated as follows. A sample size of 1138 individuals was chosen
for this “artificial” dataset to equal the smaller sample size of the clinical trial data used in the main
analysis - since one ofthe concerns for the validity of the methods is related to the sample size.
Survival times were generated from a uniform distribution on [0, 10] years. The average 10-year

cost is the parameter of interest, with the total cost for individual i being
0
Mi=Mi(0) +biTiL+Xr,(min[{7;L- (j-\)} +1]) +d ~ T.< 10)

where M i(0) is the initial diagnostic cost, /2. is the deterministic annual cost, 74 is the random

annual cost for they'th year, di is the terminal death cost and @ += max(0, a ). For the distribution

of each cost element, M ;(0), bt, xijt di are assumed uniformly distributed on [5000, 15000],

[1000, 2600], [0, 400] and [10000, 30000] respectively. Various levels of censoring were
considered with the censoring times being uniformly distributed on [0, 20] years, i.e. 25%
censoring, [0, 12.5] years, i.e. 41% censoring, [0, 10] years, i.e. 51% censoring, [0, 9.5] years, i.c.

55% censoring and [0, 9] years, i.e. 57.5% censoring. Bang and Tsiatis impose similar levels of
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censoring to Lin et al who refer to “light” censoring as censoring set at 25 to 30% and “heavy”
censoring as censoring set at 40 to 45%. Programming was again undertaken in Stata 7.0. as shown
in Appendix A.4.7. The components were generated independently and the simple weighted
estimator, the partitioned estimator, the improved simple, the improved partitioned and the Linl
estimator (which uses individual cost history) were calculated for all levels of censoring. The Bang
and Tsiatis partitioned and improved partitioned estimators were based on yearly subintervals and
for both simple improved and partitioned improved estimators, annual subintervals were assumed in
the recovery of cost information lost due to censoring, and the set of prespecified e-functionals were
defined as in the analysis of'the real trial data. The Linl estimator based on annual subintervals was
also estimated using this artificial dataset as under all circumstances considered in the real data

analyses it remained stable and generally performed well.

Table 4.9. Estimates based on the “artificial dataset”

Estimator Mean Standard error
Censoring 25%

Simple weighted 41348.2 475
Simple improved 40452.9 433.8
Partitioned 41654.9 342.1
Improved partitioned 40876 316.2
Lin 1 39545.6 311
Censoring 41%

Simple weighted 37228.3 1713.2
Simple improved 34724.4 854.7
Partitioned 40000.2 734.4
Improved partitioned 38575.4 366.3
Lin 1 37367.4 355.8
Censoring 51%

Simple weighted 29284.3 3340.4
Simple improved 25334.2 1627.8
Partitioned 37242.8 1306.4
Improved partitioned 34683.7 514
Lin 1 35456.3 354

Censoring 55%

Simple weighted 21037.6 684.6
Simple improved 15922.8 536.2
Partitioned 33839.1 315.2
Improved partitioned 32446.4 varianceO
Lin 1 34280 296.1
Censoring 57.5%

Simple weighted 18921.7 605
Simple improved 13361.8 549.4
Partitioned 33048 271.6
Improved partitioned 32787.7 varianee<(0
Lin 1 33686 271.9

The true mean cost (no censoring) is 41144.5.
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The resultant estimates ofthe average 10-year cost and its asymptotic variance based on the
artificial data are reported in Table 4.9. The “true” average cost obtained when complete
information was assumed on all individuals in these data was equal to 41144.50 and serves as the
reference cost to be compared with all other estimates under different levels of censoring.

As expected, as the level of censoring increases all estimators generally exhibit higher degrees of
bias. The Linl and the Bang and Tsiatis partitioned estimators performed well at all levels of
censoring. The Bang and Tsiatis improved partitioned estimator performed equally well up to a
level of censoring of 51%. It resulted in negative estimates for the variance when censoring reached
55%. The simple weighted and simple improved estimators appear to give increasingly lower
estimates as censoring increases, with the estimates being close to the others only up to 41%
censoring. At 55% censoring the average cost derived by the simple weighted estimator was
approximately halfthe “true” mean cost value and the one derived by the simple improved
estimator was even lower. Overall, the findings from this analysis support the findings of the
analysis based on the real clinical data. The Linl and Bang and Tsiatis partitioned estimators appear
stable at all levels of censoring whereas the simple weighted and both improved estimators appear
extremely sensitive to the level of censoring reflecting a similar pattern, only less extreme, to the

one observed in the trial data.

4.4.4.4. Bootstrap estimates of the variances

The derivation ofthe standard errors for all the estimators proposed by Lin et al and Bang and
Tsiatis is based on the large sample properties of these estimators. Study of their asymptotic
properties as presented previously has shown that the estimators converge to a normal distribution
and use ofthe martingale version ofthe central limit theorem allows estimators for their variances
to be formulated. While efficiency is therefore shown to hold conceptually a potential problem
relates to the validity ofthe underlying assumption of asymptotic normality when the approaches
are applied to any particular dataset. Although asymptotic statistics is of both theoretical and
practical importance, it is a theory of approximations. Such approximations are particularly useful
as shown in the preceding analysis in studying theoretically the efficiency of the statistics of interest
but are of questionable value if the statistical procedure which has been shown to function for

« —» 0o is to be applied to a finite sample. In most situations the theory itself does not provide a
means for assessing the magnitude ofthe approximation errors and it is usually the case that the

accuracy of the asymptotic results is judged by simulation studies.

To test the validity of the estimators’ asymptotic results, empirical standard errors for both Lin et al
estimators and for the Bang and Tsiatis simple weighted and partitioned estimators were derived

using the bootstrap method. The bootstrap estimates were obtained by drawing random samples of
size «=1138 from the observed distribution for the conventional group and «=2729 for the intensive

group and calculating the Lin 1, Lin 2 and the Bang & Tsiatis simple weighted and simple
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partitioned estimates of average cost across a large number ofreplications. All sets of bootstrap
estimates were obtained for 200 and 1000 bootstrap replications which are deemed adequate for the
calculation of standard errors and the relevant Stata programs are presented in Appendix A.4.8. The

standard errors derived from the bootstrap method are reported in Table 4.10.

Table 4:10. Bootstrap estinates of the standard error

Lin et al: When the time o fanalysis was the completefollow-up period (L=18.9 yearsfor conventional
and L-19.5 yearsfor intensive)

Conventional Intensive
Replications 200
Lin 1 823.4994 333.5156
Lin 2 8085.001 3784.319
Replications 1000
Lin 1 927.3038 343.5167
Lin 2 7392.851 3837.986

Lin et al: When the time o fanalysis was 17 years for both conventional and intensive

Conventional Intensive
Replications 200
Lin 1 628.704 307.9546
Lin 2 1541.102 724.1773
Replications 1000
Lin 1 670.0437 322.9126
Lin 2 1789.984 763.5229

Bang & Tsiatis: when the time ofanalysis was the completefollow-mpperiod (L=18.9yearsfor
conventional and L=19.5 years for intensive)

Conventional Intensive
Replications 200
Simple weighted 786.1384 3098.452
Partitioned 1207.907 439.8706
Replications 1000
Simple weighted 830.2415 3132.548
Partitioned 1379.021 451.2829

With respect to the Lin et al estimators the bootstrap estimates were also derived for a duration of
analysis of 17 years as this was the point at which the Lin2 estimator became stable. Comparison of
the empirically derived variance estimates using the bootstrap method with their respective
asymptotic variance estimates reported in Table 4.4 and Table 4.7 shows that for all estimators the
bootstrap estimates ofthe standard error confirm those obtained from the formulae (this being the
case for Lin2 under the conditions where this became stable as expected). This finding therefore
supports the validity of the assumptions underlying the estimators’ asymptotic properties.
Conversely, the bootstrap method gives reasonable approximation to the theoretically derived

variances.
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4.5. Discussion

This chapter has concentrated on non-parametric estimators of cost statistics under conditions of
right censoring. As such estimators are free of assumptions regarding the distribution of cost and
can easily incorporate the presence of censoring in the cost observations they can be particularly
appealing. The Kaplan-Meier estimator has been proven inappropriate in the analysis of cost-to-
event data due to the violation of independence between the random variable of interest and its
censoring variable. Consequently a number of alternative non-parametric estimators have been
proposed recently that require independence between time-to-event and time-to-censoring but not
independence between cost-at-event and cost-at-censoring. Although these estimators are free of
assumptions with respect to the distribution of cost, they are not entirely free of restrictions. More
specifically, consistency ofthe estimators proposed by Lin et al depends on the pattern of'the
distribution of censoring times and although the asymptotic properties ofthe estimators proposed by
Bang and Tsiatis are independent ofthe censoring pattern, the estimators can become unstable
under conditions of heavy censoring at the tails of the distribution. In theory, provided that their
respective assumptions are valid, each ofthe Lin et al and Bang and Tsiatis estimators considered in
this chapter will provide consistent estimators of average cost. From the theory it is also expected
that the degree of censoring will have a direct impact on the estimators’ performance with this
deteriorating as censoring increases although this impact will vary among the approaches. While the
estimators’ desirable properties, that is consistency and efficiency, have been shown to hold
conceptually the degree to which these properties are retained in practice will depend on the
particular application. That is, establishing that an estimator is asymptotically efficient or
asymptotically more efficient than a competing estimator does not ensure that this property holds
for finite samples. This is the reason why simulation studies are commonly undertaken as a means
of assessing the accuracy ofthe asymptotic results in a practical setting before use of the estimator

is recommended within the specific analytic context.

Within the context of the analysis presented here the first estimator proposed by Lin et al which
uses information on intermediate individual cost histories appeared stable under a wide variety of
conditions as opposed to their second estimator which only uses information on total costs from
individuals who are either observed for the full time to event or are censored at the upper bound of
analysis time and was shown to be sensitive to the number of individuals contributing cost
information. With respect to the set of estimators proposed by Bang and Tsiatis, the simple
weighted estimator using only complete cost information and both improved estimators appeared
extremely sensitive to the level of censoring and became increasingly unstable as censoring
increased. In contrast, their partitioned estimator which uses information on intermediate individual
cost histories performed well under all circumstances. Concentrating on the two most stable
estimators, these are similar in that they both partition the study period into subintervals and make
use ofindividual intermediate cost history within each subinterval and in that they both use a weight

to adjust interval costs for censoring. They are different both in the choice of this weight and in the
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interval costs that are adjusted by it. In Linl the weight is the Kaplan-Meier probability of survival
to the start of the interval that adjusts estimates of mean cost in the interval, whereas the Bang and
Tsiatis partitioned estimator uses the inverse ofthe probability of an individual not being censored
evaluated at a given point in time to adjust individual observed costs in the interval. On the basis
that both approaches require the same amount of cost information, but the second approach is not
restricted by the pattern of the censoring distribution and is therefore more general, it might be

preferred.

There is a long history related to the use ofthe inverse of the probability of inclusion in adjusting
estimates for missingness. The same inverse probability weight was first used by Horvitz and
Thompson (1952) in the context of sample surveys, by Koul et al (1981) in studying censored
failure times using a linear regression methodology, by Robins and Rotnitzky (1992) in the context
ofrecovering information missing due to censoring, by Lin and Ying (1993) in non-parametric
estimation of the bivarate survival function under univariate censoring, by Robins, Rotnitzky and
Zhao (1994) in adjusting estimates ofregression coefficients for missingness in the data, by
Rotnitzky and Robins (1995) in studying semiparametric regression models in the presence of
censoring dependent on covariates, by Robins, Rotnitzky and Zhao (1995) in studying
semiparametric regression models for repeated outcomes in the presence of censoring dependent on
covariates, by Zhao and Tsiatis (1997) in deriving a consistent estimator for the distribution of
quality adjusted survival time under conditions of censoring, and recently by Lin (2000) in
adjusting cost estimates for censoring using a linear regression approach as shown in the next
chapter. In all these applications use of this weight results in consistent estimators for the statistics
ofinterest while adjusting for missingness. The same general finding emerges from the analysis
undertaken in this chapter but at the same time the performance ofthe corresponding estimators
appears to be subject to the amount of cost history information entering the estimating equations.
This is why the simple weighted and the partitioned estimators yield such different estimates of
mean cost. That is, although the same general definition ofthe probability weight underlies both
estimators, the points in time at which the individual probabilities are evaluated differ between the
approaches in a manner that is determined by the points at which information on individual cost
histories becomes available. The implication is that the weight alone is not sufficient to adjust the

estimates for the loss of information when the level of missingness is too high.

Nevertheless despite the limitations associated with the assumptions underlying the estimators’
validity and their dependence on the data under consideration, the present analysis has identified
estimators whose performance is deemed satisfactory under extreme censoring conditions.
Consequently, their application to the analysis of censored cost data is appropriate when estimates
of mean cost over the study period are sought. When interest extends however beyond the
maximum time for which data is available or when questions regarding the effect of covariates on
cost arise, parametric models become a necessary alternative. It is clearly important that such

parametric models make adjustment for censoring. Provided that censoring is appropriately
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accounted for and that the distributional assumptions imposed by a specific parametric approach are
justified, the within study estimates derived by such a model could be compared to non-parametric
estimates as a means of assessing the validity ofthe parametric approach before this was used to

extrapolate beyond the end ofthe study period or to a different population setting.
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Chapter 5

Cost analysis: Parametric estimators of treatment cost under conditions of censoring

5.1. Introduction

The primary advantage ofnon-parametric models is that they are free of assumptions concerning
the distribution of cost. There are circumstances however where parametric methods may be the
preferred or necessary alternative. Some investigators including Mullahy and Manning (1996) as
noted in Chapter 2, even suggest that parametric modelling is generally preferable given the
inherent characteristics embodied in trial data. More specifically, while clinical trials attempt to
standardise for population characteristics through randomisation, there may remain systematic
differences in the treatment costs across subgroups of the population defined by different covariate
values. Information on the pattern of cost accumulation may then be gained by assessing covariate
effects on cost using a parametric approach. Furthermore, although focus in this thesis is on within
trial estimates of average cost, it may also be desirable to derive cost estimates associated with
benefits continuing beyond the end of the study period. Parametric models can provide an
instrument for extrapolating estimates of costs over the study period to points in time exceeding the
duration ofthe study. Censoring is again the main concern in the analysis presented in this chapter.
Consequently the parametric approaches to be considered here all attempt to derive estimates of
cost accounting for the presence of censoring. An additional concern common to all these
approaches relates to the specific functional form the parametric model assumes between cost and
the explanatory variables especially given that cost distributions are generally complex and
therefore difficult to parameterise. It is natural to expect the difficulty of appropriately specifying

this relationship to be increased due to the information loss induced by censoring.

As in the case of non-parametric models the earliest attempts to account for censoring in deriving
estimates of mean cost using a parametric approach involved direct application ofthe classical
survival techniques to censored cost data. The Cox proportional hazards model and the Weibull and
exponential models were applied for example by Dudley et al (1993) and Fenn et al (1996) in
estimating within study average cost. However, these approaches are biased for the same reason as
the Kaplan-Meier estimator, that is due to dependent censoring between cost at event and cost at
censoring times. The classical linear regression is also always biased when the outcome variable is
subject to censoring as shown analytically below. A naive alternative would be to estimate the
classical linear regression model using the complete cases only but this is always going to be biased
as it discards the censored observations completely with the degree of bias increasing as censoring

increases. Failure of these approaches to account for censoring in the cost estimates led to two
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recently proposed alternatives. The first adopts a regression approach where cost is modelled as a
function of failure time and adjustment for censoring is achieved in the cost estimates through
adjusting failure time for censoring. The second uses a linear regression methodology in which
adjustment for censoring in the cost estimates is performed through use ofthe inverse of the
probability of an individual not being censored in the estimating equations. All these estimators of
cost together with their properties and underlying assumptions are considered below. When
necessary, counting process and martingale theory again provides the analytical framework in
which the statistical properties ofthe estimators are studied. When the estimators considered are
based on a methodology originally used to analyse time to event data, the approach is first
considered within this context and the extension to cost to event data follows. Although typically in
regression problems the important inference questions are about the conditional distribution ofthe
outcome variable given the covariates, the aim of the present analysis is to assess the estimators’
relative performance with respect to the resultant mean cost estimates over the study period under
extreme censoring conditions using the UKPDS data. Given that the analysis in the previous chapter
identified estimators whose performance is deemed adequate under these conditions, assessment of
the estimators considered below is undertaken by comparison to the most adequately performing

non-parametric estimators considered earlier.

The chapter proceeds as follows. The general setting for the analysis is first outlined and the set of
parametric estimators for cost together with the assumptions underlying their validity are then
presented. The proposed semiparametric regression methodology is considered first and includes
the Cox proportional hazards regression and a proportional means regression model in which the
mean cumulative cost forms the outcome variable. The fully parametric Weibull and exponential
regression models are presented next and these are followed by alternative least squares regression
approaches starting with the classical linear regression model. Extensions to the naive ordinary least
squares approach where adjustment for censoring enters the estimating equations are then
investigated. This methodology allows the analysis to be undertaken both when the cost data are
available at the individual’s death or last contact date and when these data are available at multiple
points in time over the study duration. An alternative regression approach models cost as a function
oftime and attempts to account for censoring in cost through accounting for censoring in failure
time. The resultant cost estimates from application of the alternative regression methodologies to

the UKPDS data follow.

5.2. Parametric estimators of cost under censoring

5.2.1. General setting

As in the previous chapter the basic aim of the approaches presented below is to derive an estimate
ofthe mean total cost /u= E(M) and its variance over a specified period when the data is right

104



censored, where the random variable M denotes the total cost for a patient during some specified
time 7'and £ denotes expectation. Again the distribution ofthe random variable 7'is assumed
continuous over (0, L\ where L denotes the upper bound of 77and M is the total cost incurred by a
patient up to a maximum ofZ, units of time. The main difference between the approaches
considered in the previous chapter and the ones considered below is that the latter attempt to derive
mean cost estimates using a parametric model which relates cost to a set of covariates and as such
they make specific assumptions about the distribution of cost. To accommodate censoring, a

potential time to censoring denoted by Uis defined and letting 7'denote time to death, the
observables from a study in the presence of censoring are X = min(7,U), i.e. the last contact date;

0 =1(T <U), where /(*) is the indicator function taking the value of 1 when the argument is true
(i.e. if the observation is uncensored) and zero otherwise; the cost accrued up to time X and other
intermediate cost history for each subject, i.e. M H(t) = {M(u), u <t), where M H(t) denotes the
cost history up to time t, M =M{T), with M(u) being the known accumulated cost up to time u
and u denoting points in time at which cost information becomes available. Letting Z = (Zlv..,Zp)'

denote a px1 vector ofthe covariates of interest, the observable data for n individuals are then the

independent and identically distributed random vectors

[xi=minl,ui), » =105 <i1), 1/ "(*),2li=1 n

where i identifies an individual.

5.2.2. Cox proportional hazards regression

The Cox proportional hazards model falls into the category of semiparametric models. Due to its
semiparametric nature, it allows the functional form ofpart of the model to be unknown and
therefore unrestricted. The proportional hazards model assumes that the hazard of an individual
having an event is a function of a set of individual covariates and an underlying arbitrary baseline
hazard. Given that part of the model is completely unspecified, as stated previously in section
4.3.3.3, estimation ofthe parameters of interest requires that some assumptions be made or
restrictions be imposed on the statistical relationship between what is observed and what is not
observed. The assumption imposed by this model is that the hazard functions for any two
individuals are proportional with a ratio determined by the covariates that is constant over time.
Clearly if one is unsure as to the functional form ofthe hazard function, adopting a semiparametric
approach could be a preferred alternative to imposing specific parametric assumptions on the
distribution of the hazard function. The usefulness ofthe particular semiparametric specification is
due to a number of reasons such as the easily understood interpretation ofthe idea that the effect of
a given covariate, for instance a treatment, is to multiply the hazard by a constant factor; the
empirical evidence in certain areas that supports the assumption of proportionality of hazards in

distinct treatment groups; the fact that censoring and the occurrence of several types of failure are
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relatively easily accommodated within this model specification and the technical problems of
statistical inference associated with the unknown part of the model, that is the arbitrary baseline

hazard, have a simple solution (Cox and Oakes, 1984).

The observed data in regression problems when the time to failure is subject to right censoring are
the independent observations ofthe quantities (X, 5, Z) as defined above. The same counting

processes can be used to model such data as defined in the previous chapter, that is,

N(t) =1(X<t,a =1) with N(t) =Y N, (t) where N. () =/(X,. <t 5, =1),
H
Nc(t) =1(X <t,§ - 0) with Nc(0 = £ (0 where AC(f) =I(X, <t S, =0), and
M

Y(1)=1(X >1) with Y(z) =Y; Yi(0 where Yt(t) =I(X, >1).
A

The filtration :/ > 0} generated by these processes is given by
=cr\z,N(u), Nc(m):0 <u <t,i =1

and provides information on the individuals’ covariates and failure or censoring status up to and
including time # However interest now lies in the conditional distribution of failure time given the

set of covariates. The conditional survival function is then S{#\Z) = pr(T >¢\Z) and the conditional

hazard function is given by

_ prit <T <t +A\T>t,7)
Z(t\Z) =lim
1 A/>0 At
The proportional hazards regression proposed by Cox (1972) studies the relationship between the
set of covariates Z and the distribution of censored failure times using a model in which the hazard

function is
At\Z) =Z0(t)efiz (5.1)

where (3= (/?,,...,/7p)" is a px 1 vector of unknown regression coefficients and ZO0(t) is an

unknown arbitrary nonnegative function oftime giving the hazard function when Z=0. As such the
model assumes a parametric form only for the covariate effect while the baseline hazard is treated
nonparametrically. The term proportional hazards refers to the fact that the hazard functions for
different individuals defined according to (5.1) are multiplicatively related with a ratio that is

constant over time. For small values of A¢, the conditional hazard rate satisfies
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X(1\Z2)At « pr{t <T,t +AN\T >1t, Z)

and can thus be interpreted as the conditional probability of a failure occurring in the interval
[t t +At), given Z and no failure before £ Censoring plays a similar role in the proportional hazards

model as in the case of the non-parametric hazard and the condition of independence between 7 and

Unow required in the presence of covariates is expressed as

pr(t <T <t +ANT>t,U >t Z) = pr{t <T <t +AN\T >1, Z)

Allowing the covariates to be time-dependent the hazard function for individual i is

Assuming a continuous distribution for failure time, a censoring mechanism that does not depend

on J3 and independence between failure and censoring time, inferences about the regression

parameters J3 are based on the partial likelihood introduced by Cox (1972, 1975) as

()

where the processes A(-) and T(-) have been defined above. The term partial likelihood was used

because the likelihood expression is not dependent on the unknown baseline hazard Z0(t) but only
on the parameters /7. The product is over all uncensored failure times and each term represents the

conditional probability that individual i fails at time ¢ given that one individual among those at risk
at time 7 fails at time # Cox argued that the resulting parameter estimates from the partial likelihood
function would have the same distributional properties as the ones derived from full maximum

likelihood estimators. Thus he suggested treating this likelihood function as an ordinary likelihood

function for the purpose of large sample inference about (3. The log partial likelihood evaluated at

time ¢ is given as

and differentiating this expression with respect to (3 results in

(5.2)
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The solution to the partial likelihood equation U(/?, ®)= 0 yields the maximum partial likelihood

estimator.1Estimators for the hazard function, as this is not estimated by solving the likelihood

equations, have been suggested by Cox (1972), Breslow (1972, 1974, 1975) Oakes (1972) and

others. The estimator AOfor AO(t) = |T O(w)Jw proposed by Breslow (1974) is most commonly
0

used and is given by

MO = M b (5-3)
0YiYi(ue/Zz'M

which reduces to the Nelson-Aalen estimator given in chapter 4 when # =0. The survival function

conditional upon the covariates is given as

S(it\Z) =e sO0(tyMpB%)

and can be estimated by
S(1\2) = e-kVepp?)

where AOQ is the estimator for the integrated hazard. Under circumstances in which there are

covariates whose effect on the hazard is not proportional, a stratified variant of the proportional
hazards model is adopted. This extension leads to stratum specific hazard functions and for stratum

s the proportional hazard function is given as

M |Z) ='U<)exp(HfZ) (5.4)

Under this specification, the subjects in the sth stratum have an arbitrary baseline hazard function
Ak (t) and the effect of other explanatory variables on the hazard is represented by a proportional

hazards model in that stratum as given by (5.4). Hazard ratios are then computed within each

stratum but the regression coefficients are assumed to be the same across all strata although the

The score statistic given by (5.2) can also be written as

Z(S)-M e \d.ii
A0

where jNTF) = Nt(t) - “Yj(u)efSZ, (u) (u)du is the associated martingale process.
0
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baseline hazard functions may be different and completely unrelated. Each stratum contributes a
stratum specific partial likelihood and the full stratified partial likelihood is obtained by multiplying
the contributions to the likelihood with the overall log likelihood being given by

where [s(/?) is the log partial likelihood in stratum s (s = . Stratum specific survival

functions can then be estimated using the same methods as for the non-stratified model. Hence the
t

Breslow estimate for A0i(7) = j/10s(u)du is

_______________ (5'5)

Application to cost

Adoption ofthe proportional hazards model in assessing covariate effects on cost could be
appealing on the basis that the model is free of distributional assumptions concerning the hazard
rate for cost. It could be useful therefore in modelling censored cost data which typically have
complex distributions. In this setting the proportional hazards model relates the hazard of attaining a

particular cost level to a set of covariates under the following specification

Z(cjZ) =A0(c)e/iz (5.6)

where A(clZ) is the hazard of attaining a given cost level ¢ conditional upon the set of covariates Z,

P =(px...,Pp)’ is a px 1 vector of unknown regression coefficients and Z0(c) is an unknown

arbitrary nonnegative function of cost giving the hazard function when Z = 0 . Although there are
no assumptions about how the hazard rates vary with time underlying this model, the hazards rates
for different levels of covariates must be proportional with a constant ratio over cost levels. An

estimate of mean cost over the study period can then be derived as
M = J{50(c)}exp™ )Jc
0

where S(c) = pr{M > c|Z) = {i0(c)}eq(/?2)] is the probability that the cost will be at least ¢ given

the covariates, Z denotes the covariates vector evaluated at the mean values ofthe covariates and
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an estimate SO(c) =e Adc) for 50(c) could be derived by applying the Breslow estimator given by

(5.3) to cost. However due to the positive correlation between cost at failure and cost at censoring
time the resultant estimates are biased unless individuals accumulate costs at a common rate over
time. A solution to the problem of dependent censoring suggested by Lipscomb et al (1998) is to
apply the stratified version ofthe proportional hazards model with time as the stratification variable.

The hazard function for cost in time period 7 is then given as
T.(c|Z) =40(Q z (5.7)

where A(0/(c¢) is an unknown nonnegative baseline hazard function for cost in the rth stratum, that is

in time period £ The cumulative cost function gives the probability that the cost for the time period ¢

will be at least ¢ given the covariates and is

S, (0 =pr(M, >c\l,Z,) =

where Sd(c) = exp 3 \ (k)dk 1s the baseline cumulative cost function defined for each time

period ¢ giving the level of cost when all explanatory variables are set to zero with &k and ¢ denoting

levels of cost. An estimate for the mean cost in time period ¢ is then given as

M, =

where an estimate SU(c) = e An(©) for SA(c) could be derived by applying the Breslow estimator

given by (5.5) to cost. Lipscomb et al (1998) recommend use of this model under censoring
conditions on the basis that stratification by time circumvents the problem of dependent censoring
between cost at failure and cost at censoring, as this specification imposes no constraint as to how
cost varies over time within a given time period which implies that the one-to-one mapping between

time to failure and cost is no longer an issue.

Etzioni et al (1999) however criticise the use ofthe Cox proportional hazards model in analysing
censored cost data and argue that its use within this context will generally lead to biased estimates
on the following basis. For Cox regression to be unbiased, independent censoring is required within
each group formed by each level of covariate ensuring that individuals who are still under
observation are representative ofthe population at risk in each group. When Cox regression is
applied to cost analysis the accrual of costs at different rates will result in dependent censoring
within the subgroups defined by the covariate levels. Covariates that affect the rate of cost accrual
will lead to differential dependent censoring across groups defined by different covariate values. As

a result estimates of cost statistics will be biased. An additional concern relates to the
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proportionality assumption underlying the validity ofthe Cox regression model. Although the
model does not specify the underlying cost hazard, it assumes proportionality of the cost hazards
defined by different levels of covariates. The same assumption underlies the stratified variant for
each stratum. Etzioni et al (1999) show that the proportionality assumption will not generally hold

in circumstances when individuals accumulate costs at different rates as follows.

Assuming a binary covariate Z taking the values 0 or 1 and assuming that given Z =z survival is

exponential with mean 1/ZTand costs accumulate at a rate of az per unit of time (or over a fixed
time period) with probability pz and at a rate bz with probability 1- pz, the cost at event ¢(t) for
an individual with Z =z would be c¢{f) = azt with probability pz and c{t) = bzt with probability

1- pz. Under this model the probability density function for failure time ¢ given Z =z is
fz(t)=Z, exp{- Azt} with survivor function Sz(?) =exp {-Azt)

and the probability density function for cost given Z = z is

W)= eg-y i1+ eq"pu-p)

with survivor function

5ZW eXPl - \pz+eXPj - y-i|(! - P2)

The hazard function for cost given Z =z is

O) @?Zo(?

and the hazard ratio for cost for the different values of the covariate Z is then

Aexp i)

_ia -
« | '+ expi .|0 ")

U jwA +expj- 1 -P\)
a2.,M0) eXpl a, J bl £
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It becomes clear from the above expression that the assumption of proportional hazards for different
values ofthe covariates depends on the values of az, bz, Xz and pz which as the authors argue are
not generally expected to have the values required to ensure the validity ofthe proportionality
assumption. The authors conclude therefore that even ifthe bias imparted by dependent censoring
within the subgroups defined by the covariate levels due to the differential rate of cost accrual is not
severe or is eliminated, use of the model will not be justified as the assumption of proportional cost
hazards across different covariate levels is unlikely to be valid when the rate of cost accumulation
varies among individuals. Essentially whether the assumption of proportionality is valid or not is an
empirical question and depends on the particular application. This assumption can be tested as

presented below both for the non-stratified model and for its stratified variant.

Assessing the proportionality assumption in the proportional hazards model

There are a number of graphical approaches for assessing the proportional hazards assumption (see
Fleming and Harrington, 1991). An approach that provides a test statistic is due to Grambsch and
Themeau (1994). Their approach is a generalisation of the approach by Shoenfeld (1982) who
considered departures from proportionality with respect to one covariate only. In the context of time
to failure data analysis, under the proportional hazards model, the intensity process for individual i

is given as

YAy AdANt)

In general, the assumption of proportionality with respect to covariatej means that

J3j(t) =p forall ¢

which in turn implies that a plot of fij (f) against time will have a zero slope. Under the alternative

assumption of time-varying coefficients, the intensity process for individual i is

Yi(ty v)Ziii)dA0(t)

Grambsch and Themeau (1994) have shown that

where ft is the estimated coefficient vector from the proportional hazards model and

7k = [var(r*)]“' vk is referred to as the scaled Schoenfeld residual derived by scaling the Schoenfeld
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residual by an estimator of its variance.2 Expressing J3(f) as a regression on some function oftime

g(1) as
Jij{t) =/3j+0jgj(1) (5-8)

where; indexes covariates j = 1...,p , Grambsch and Themeau (1994) propose testing the null

hypothesis of proportional hazards, that is, 9.= 0, against the alternative of coefficients which vary

over time through testing the null hypothesis of zero slope in the generalised linear regression of the
scaled Schoenfeld residuals on functions of'time. The test of zero slope is equivalent to testing that
the log hazard function is constant over time and rejection of the null hypothesis would imply

deviation from proportionality.

In applying the approach to testing the assumption of proportionality in the cost hazards, the

analogous regression for covariate; is given as

PJ(c) =PJ +9JgJ(c) (5.9)

where g. (¢) is some function of cost. Testing the null hypothesis of proportional hazards 9y =0,

is now based on testing the null hypothesis of zero slope in the generalised linear regression of the
scaled Schoenfeld residuals defined at cost levels ¢ on functions of cost under the analogous

relationship E(r*) +;3~/?(c). Ifthe stratified version is adopted, it is recommended that this test

be performed on each individual stratum, the reason being that the test described above assumes
homogeneity of variance across risk sets, an assumption which may not be justified across different

strata.

5.2.3. Proportional means regression

A related methodology has been proposed by Lin (2000) in which the mean cumulative cost is

modelled as a function of an unspecified baseline mean function and a set of covariates as

Mz)=Mtyz (5.0)

2The Schoenfeld residual at event time ¢k is defined as

rk(J3) =Z k) where Z () denotes the covariate vector of individual who has an event at

H
time tk. These residuals first proposed by Schoenfeld are based on the individual contributions to the derivative of the

log partial likelihood as can be seen from equation (5.2) above.
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where ju(t\Z) = £{a *(?)|Z)} is the mean cumulative cost at time ? given the covariates with A *?)

denoting the cumulative cost up to time ?and //0(?) is an unspecified baseline mean function of

cost. The model is referred to as the proportional means regression model and is similar to the
semiparametric Cox proportional hazards in that the baseline function is left unspecified and the
covariates have a multiplicative effect on the mean cost. The model assumes that the underlying
cost function is a process with positive jumps of arbitrary sizes. In the case where the process
represents the cumulative number of some cost generating events, for example hospital admissions,
the approach models the marginal mean for recurrent events and is in the same vein as the approach
ofmodelling the marginal hazard functions for recurrent events or multivariate failure times studied

by Lin et al (2000) and Andersen and Gill (1982) among others.

Lin argues that this specification avoids the problem of dependent censoring between cost at failure
and cost at censoring as it models the mean cost at a point in time without assuming any
dependence between failure time and cumulative cost or between the increments ofthe cumulative
cost function A ’(-). The underlying assumption is now the proportionality of the mean costs across
groups defined by different levels of covariates. Under random censoring the author presents the
corresponding likelihood function incorporating adjustment for censoring, maximisation of which
through iteration techniques leads to the estimation of the regression parameters. The estimation
process is shown to be valid even in the case where the underlying process models accumulated cost
expressed in monetary terms where the increments of the underlying cost function have non-

negative arbitrary values. However, deriving an estimator of average cost over the duration of
interest requires estimation ofthe unknown baseline mean function jUX?). A consistent estimator

for /u0(t) is given by

V' dNjjs)
oK (s)Yd

(5.11)

v -1

where K(t) is the Kaplan-Meier estimator for K{7) = pr{U >t) defined in the previous chapter in
section 4.3.3.1. As can be seen from the above expression, deriving an estimator for /r0(?) is only
feasible if all sample paths of A* (*) are known which in turn requires knowledge ofthe amount of
cost accrual for all individuals at every point in time sover (0, 7] in order to determine the jumps of
the process dN*(s) for all /’s.3 As the author points out this is unlikely to be the case when A *(?)
represents charges because in most applications the accumulated cost is only recorded at given
points in time, for example at the individual’s death or last contact date, or at intermediate points in
time corresponding to the time ofthe individual’s cost generating event. Under these circumstances
and on the assumption that the mean costs across groups defined by different levels of covariates

are proportional the approach can only be used to estimate the regression parameters.

3 The stochastic integrals appearing in the estimator for /J((?) are ofthe same form as shown in the previous chapter

on page 87 from where it can be seen that their evaluation requires that all sample paths of A* (¢) be observed.
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5.2.4. Weilull and exponcential regression

Weibull regression

A fully parametnic approach to assessing the effects of covanates on cumulative cost has been basged
om the on the Weibull and cxponential regression models (e.g, Fenn ot al, 1996), Viewed within the
context of failure time analysis, in conteast with the proportional hazards model, such models
specify a torn for the hazard function over time. The Weibull distribution specifies the hazard

Munelion oy
A1 = Ap(Ary™!

lor A, p = (1. Thus the hazard is ume dependent and 15 monotonically increasing for p =1,
monxonically decrcasing for p <1 and 13 constant for p =1, By changing the parameter p and the
scale parameter A a varnety of hazard functions are obrained. The density funcrion of the Weibull
distribution is piven by f{f) = Ap{A0* ™" and the survivor function is then S() = %"

In general, the ih moment of the Weabull distnibution 15 mven by

E{TO=2T{+j!p)
Thus, the mean and variance for the failure time T under the parameterisation above are

E(T)=4 Til+1/ p)
variT} = A7 T+ 2/ p) =31 +1/ ph

&

where [Nia) = jx“"e":ir , & = 0 i3 the Gamma function whose value is positive for all & > 0 and
fu)
{1y =1. This madel can be generalised to incomparate the effect of covariates on failure time by

allowing the hagard rate to be g function of both time and covanates, Assuming that time-mvanant
regressors enter 2 n the form A = L"xp{— S } the hazard funchion given a set of covanates £

becames

A Zy= pe* e Ty

This form for the hazard function is also referred to as the aceclerated failure time hazard on the
hasiy that making A4 a function of a sct of regressors as shown above 18 cquivalent to changing the
units of measurement on the time axis. The comesponding density function is

Fuly= pee' (e 1" and the survivor function is Stilzy=¢e" =



The mean and variance for the failure time 7T are then given as

E(T\Z) =jexp(-/?'Z)r' T(1 +Up)
var(7’|Z2) = {exp(-/TZ)}2{r(1+2/p) - r 11 +1Ip)}

Exponential regression

The exponential distribution can be viewed as a special case of the Weibull distribution for p = 1.
The corresponding hazard function is X{#) = X, that is the hazard is constant over time and the

associated density function is f(?) = Xe~" with survivor function given as S{?) = e~M. The mean

and variance for the failure time 7T are

£(7)=rT (i+i1)=r ‘il=rl
var(r) =r 2{r(i+2)- r2(i+ )} =r 2Q2i-i!) =r 2

Assuming the same parameterisation X = exp{- (3'Z} for incorporating covariate effects results in a

hazard function conditional upon a set of covariates Z given by

X{t\Z) = te~pk

The corresponding density function is / (#\Z) = te~p e~e  and the survivor function is

S(t\Z) = e~e P . The mean and variance for the failure time 7 are then

E(T\Z) = {exp(-fiZ)y' T(1 + 1) = ep’
var(rlZ) = {exp(-"'Z)}-2{r(1+2 ) -r2(1 + 1)} = (epZ)2

Application to cost

Both the Weibull and exponential regression models have been applied to study the effects of
covariates on cumulative cost and to provide an estimate of average cost over the duration of
interest (Fenn et al 1996). In the application of such models to censored cost data, the hazard rate
specifies the conditional probability of having “completed” a given cost conditional upon a set of
covariates. That is, the hazard rate gives the probability of dying having attained ¢ units of cost
given the covariates and that the individual was alive after having attained c-1 units of cost.
Under the Weibull regression model the hazard function for cost given a set of time independent

covariates Z is
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o(clZ) =pcp-\epzY (5.12)

with density function f(c\Z) =pcp'(e pz)pe cPleP Y and survivor function S(c\Z) =e

If the hazard function is increasing, this implies that the likelihood of completing a given cost
conditional upon having reached that cost level and the covariates is increasing in cost, whereas if
the hazard function is decreasing this implies that the likelihood of completing a given cost
conditional upon having reached that cost level and the covariates is decreasing in cost. The mean

and variance for the random variable M denoting cost are

EM\Z) = {exp{-pZ) YXT(1+1/p) (5.13)
var(M1Z) = {exp(-"'Z)}2{T(1+2/p) - Y2(1+ 1/ p)} (5.14)

Similarly the cost hazard under the exponential regression model is given by

Z(c|Z) = ce~pz (5.15)

where the corresponding density function is / (¢ Z) = ce~p e~®  and the survivor function is
S(c\Z) = e~@PZ. This specification implies that the likelihood of completing a particular cost given

that the individual has reached that cost level and the covariates is independent of the cost level, i.e.

1s constant over cost levels. The mean cost and its variance are

EM\Z) ={exp{-pZ)Y' T(1 + 1) = epZ (5.16)
var(M|Z) = {exp(-"Z)}"2{r(1 +2) - T2(1+1)} = (epz)2 (5.17)

As in the non-parametric approach to the analysis of time to event data, the central concept in the
semiparametric and parametric approaches considered above is the conditional probability of an
event occurring at a given point in time given that it has not occurred until that point in time as
modelled through the hazard functions. The additional element here is that the hazard function is
also a function of covariates. For all these models independent censoring requires that individuals
who are censored at time 7 after allowing for covariates be representative of all individuals who are
still under observation at £ When applying these approaches to modelling cost to event data
individuals who are censored having attained a particular cost level must be representative of all
individuals who are still under observation having attained that cost level. This is not the case when
the rate of cost accumulation varies across individuals and therefore all these approaches are

generally inappropriate for the analysis of censored cost data.
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5.2.5. Least squares regression

5.2.5.1. The classical linear regression model

Under the classical linear regression model the relationship between the outcome variable Yand a

set of covariates Z is

Y- PZ+£

where ft is a p x 1 vector of unknown regression parameters and s is a zero-mean error term

assumed normally distributed with constant variance cr2. This model is known to give biased
estimates when applied to censored data (Lancaster 1990, Greene 1997). Following Green (1997),
the reason why this bias arises can be shown in the following manner. The relevant distribution
theory for a censored random variable is similar to that for a truncated one.4 In general, for the
moments of a truncated normal distribution the following theorem holds for the random variable x
(Green 1977, p.951).

If x ~ Nf/u, 2] and the truncation point is w where w is a constant,

£(x|truncation) - ju+oA(a)
Var(xjtruncation) = cr2[l - 3(a)]

where

a=(w-/j)/a,

A(a) = 0(a) /[l - ®(or)] iftruncation is x >w,
A(a) =-0(a) /®(a) iftruncation is x <w,
O(a) =A(a)[A(a) - a] with 0<S(a) <],

O(a) = il_e~a2/2 is the density function of the standard normal distribution N [0,1] and
plK

a

®<2) = JO(x)dx is the cumulative distribution function.

-00

This theorem is used to derive the moments ofthe censored random distribution as follows.
Assuming that the censored random variable y* follows a normal distribution with censoring

occurring at the upper part of the distribution at point w, a new random variable y is defined from
the original y* as

4 In the econometrics literature the distinction between truncation and censoring with respect to the regression model is
that a censored regression model is one where the dependent variable is not fully observed whereas a truncated
regression model is one where both the dependent and independent variables are not fully observed.
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y=w ify*>w

y =y" ify* <w

It follows that if y* ~ N/p, a 2] then using the above relations, the mean ofthe censored random

variable y is

E(y) =pr(y =w) *E(y\y =w) +pr{y <w) *E{yly <w)

=pr(y*>w) *w+pr(y*<w) *EQy* [y <w)
=(1- O)*w+® *(p + ad)

and the variance is shown to be

var(y) = ¢j20[(1 - S) +(a-4)2(1- 0)]

If censoring occurs at the lower part of the distribution, the same expressions apply with the roles of
O and (1- ®) reversed and A defined as shown in the above theorem.

If censoring occurs from above at w =0 and because the distribution is symmetric which implies
(){a) = and ® (-a) = 1- 0 (a), the mean ofthe right-censored random variable is

E(y)- <P(-p/a) *[p +FA(-jul cr)]

® (-/r/cr)
=[1-®(/r/cr)]/r-cr™(/r/cr)

showing that the mean of the right-censored random variable will be lower than the mean ofthe

original random variable.

Similarly, if censoring occurs from below at w= 0 the mean of'the left-censored random variable is

E(y) =[1- ®(-///<)]*[p toA(-p /<)

A(-/tr/o-
=0(p/a)]: p o iﬁ;(;/)cr)
= ®(/t/ cr)p+ ap @)

showing that the mean of the censored random variable with censoring from below will be higher

than the mean ofthe original random variable.
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Extending the above to the case ofthe censored regression model, also referred to as the Tobit
model (Tobin, 1958),5this would be obtained by making the mean correspond to a classical

regression model and for the case of right-censoring at w would be given as

y]=P'Zt +ei

yt=w ify. >w

y, =y* ify* <
e, ~7V[0,0-2] and n =P'Z

Based on the preceding results, for an observation y¢ which might be right-censored,

EW, IZ)={1- <t[(w- P Z.)/ ajw+®[(w- ;3Z )/t P'Z, 4,[(w-pzya)

as opposed to E(y!|Z() =/3'Zi which would be the case if there was no censoring.

Application to cost

When the classical linear regression model is adopted to study the effect of covariates on cost, the

relationship between cost and the set of covariates Z is

M =P'Z +s (5.18)

where /? is a p x 1 vector of unknown regression parameters and e is a zero-mean error term

assumed normally distributed with constant variance cr2. Setting the first component of Z equal to
1 makes the first component of /? correspond to the intercept. In the absence of censoring p is

estimated by the least-squares normal equation

=0 (5.19)
H

5 The Tobit model was originally defined for censoring of the lower part of the distribution with censoring occurring at
point zero as

vl =P'Z, +el
y, -0 ify*<0
y, =/ ify*>o

Here, the analysis is modified to reflect the case of censoring of the upper part of the distribution with censoring
occurring at point W .



In the presence of censoring, estimation by the above equation will lead to biased estimates for the
regression parameters as shown above. A naive approach is then to estimate the model by including
only the uncensored cases in the estimation process. The regression parameters are again estimated
by the least-squares normal equation but now only individuals with complete cost observations
contribute information to the estimation process. As is the case in any similar missing data situation
such an analysis, referred to as complete case analysis, which totally discards the cases with missing
values leads to loss of information which could be a substantial problem ifthe proportion of cases
with missing values is high. On this basis the approach has been deemed useful only for pr0V1d1ng a
baseline method for comparisons. The mean cost over (0, L/ is then estimated as M = (l 'Z where

Z denotes the covariates vector evaluated at the mean values of the covariates and ;3 is the vector

of'the estimated regression parameters where only the uncensored cases have been used in the

estimation process.

5.2.5.2. Least squares regression analysis with randomly right-censored data

In the context of time to event data

A number of alternative approaches have been proposed to handle regression problems when the
dependent variable is subject to censoring. In the context of failure time data analysis, a number of
such models have been proposed to study the effect of covariates on censored failure time some of
which assume specific parametric families for the failure time distribution such as the Weibull and
exponential while others are free of such assumptions. Ofthe regression techniques that do not
assume specific parametric families for the failure time distribution, one of which is the Cox
proportional hazards discussed above, the ones following a least squares approach are described

below.

As stated previously in the presence ofright censoring the observables are X; =min(7"., Ui),

S; =I{Ti <Uj;) and a p x 1 vector of covariates Zj. The general form ofthe linear model when the

dependent variable is failure time 7'is given as

T =P'Z +s; i=1l...,n (5.20)

where Z. is the covariate vector and i identifies individuals. Under random censorship, the error

terms are assumed to be independent and identically distributed random variables with zero mean
and the censoring variables U/ s are independent and identically distributed random variables

which are independent of the error terms.

Miller (1976) introduced an estimator for the unknown parameters /3 which is derived by

minimising the weighted sum of squares of the residuals with the weights determined by the



Kaplan-Meier estimator of the error distribution based on the residuals. Assuming one covariate

only, model (5.20) above is
F(1\2) =F (t-R0-8 2)
with

E(T\Z) =30+ BiZ (5.21)

The estimator proposed by Miller is derived by minimising the sum of squares
n\e2dF(e\p0,3/3 (5.22)

with respect to S, /?, where F(e\$0,/3/3 isthe Kaplan-Meier estimator based on the data
{ol,éei=X -p0-fpxZ,i=1 that is,

where e, < e2 <... are the distinct ordered values of ¢;, d(-} are the number dying at et and n{i)
are the number at risk strictly prior to <2, i.e. at e(- . Expression (5.22) can be viewed as a
generalisation of the usual sum of squares " (Xi- /?20- (3¥)2 for uncensored data. Because (5.22)

is a discontinuous function of /?,, it is difficult to locate the infimum point and hence Miller

proposed an iterative sequence for estimating the regression parameter /?, (Miller, 1976).

Buckley and James (1979) modified Miller’s approach by basing their estimation on the censored-
data analogue of the normal equations rather than the least squares criterion of minimising the sum

of squares. Their estimator for the regression coefficients is based on the following relationship.

(5.23)

By replacing the conditional expectation E(7I\Ti >X¢t) with an estimate based on the Kaplan-Meier

estimator in the expression above, estimates of the coefficients are derived by solving the usual least
squares normal equations iteratively. Thus, the censored observations are replaced by their

expectations and then the sum of squares is minimised.

Koul et al (1981) introduced an estimator that does not require iteration methods and applies the
adjustment for censoring to the original observations rather than the estimated residuals. Their

estimator is based on the following relationship



ENX,) =-\tK(t)dF (t-po- pxZt) forall t (5.24)

where Fj(t) = pr(Xi>t) =F(t- ?,- PxXt) and K(t) =pr(U >t), that is, K(t) is the survivor
function ofthe censoring distribution. For K(#)> 0, this yields

E[S:X, 1=- WtdF(t- A - AZ,)=A +M

that is, the variables {SiX/{K(XI)} 1,i =1,..,n| follow a linear regression model which has the

same parameters as model (5.20) but the error terms here need not be identically distributed. Koul et
al propose an estimator for the unknown survivor function K(%) given as

N[aj=0,Xj<I]

for all ¢

Replacing K(?) with its estimator in the expectation E\8;Xt{K(X;)} '] allows estimation ofthe
regression coefficients P using standard least squares methods. As such, the great advantage of this

technique is that the regression parameters are estimated without requiring iteration procedures.

Consistency of'the various estimators presented in this section has also been considered and
estimators for the covariance matrix ofthe regression parameters have been derived in each case.
The idea of weighting the uncensored observations by the inverse of their probabilities of not being
censored within the context of regression analysis which underlies the approach by Koul et al
(1981) has been also used by Lin et al (2000) in deriving estimators of cost adjusting for covariate

effects under conditions of censoring as will be shown below.

In the context of cost to event data

Lin regression methodology

Assuming the general setting as defined in section 5.2.1 and defining 7*= min(r, L) with Z being

a p x 1 vector of covariates whose effect on the cumulative cost at T+ one wishes to study, the

methodology presented in this section introduced by Lin (2000) attempts to adjust the estimates

derived by the linear model given as

M=pZ +s

123



where # isa px1 vector of unknown regression parameters and £ i a zero-mean error term with

an unspecified distribution for censoring. The first component of Z 15 set equal ko 1 so that the first
component ol F corresponds o the intercepl. As stated ahove, in the absence of censoring # is

estimated by the least-squares normal equation

i(_M,, -BZ)Z, =

In the presence of censoring, undet the assumption of a continuous distribution for failure time over
(0, £] and a continuous distribution of censoring time with censoring arising in a completely

random manner, time o censoring has survivor function K{x) = pr(U > u), Le. the survivor
function K (udevaluated gl a poinl in time w gives the probability of an individual not being
censored at i, Defining & = J{TF > T'") vnder random censoring conditions the estimating equation
for & is modified as

me - FZ)Z, =D

which implies that only individuals with complede cost observations over the duration of interest
contribute cost information Lo the estimation process. The unknown survivor function K(7) is

estimated by the Kaplan-Meicr cstimator based on the data {.-5'|:'r = min(T,, U/, 3,1-0,,i=1,.,n} as

Er) = 1‘[{1 - —“';‘,{;’}] (5.25)

where the counting processes V°(u) and ¥{w} have been defined in section 4.1.2.6. Replacing the
survivor fungtion K(-) with its consistent Kaplan-Meier estimator results in the following
estimating equation for &,

> ﬁ‘:‘; S, = 57,7, 0 (5.26)

whose solulion 15 given as

gl 0 gel| $oO 5.27
: lgxmw’ gk('f.') & 20

where % =1, 0% =a, 2 =o'
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Lin {20661} studies the asymptotic proparties of this estimator and derives estmates for 114

covariance matrix for large samples as outlined below, The lefl hand of {5.26) is written as

Fn:.:l
noA By L
M, -FZ)E - ——(M, - f'Z b (M, = B'Z)Z, =
‘}:HH -FZ) Z U. { - FZ)Z, 21{(?,{‘_)( i~ P'Z)Z,
: K(TH)-K(T') ..
L ENM, - 22,
nFFETJ Z K(T KT ¢ =f2)

U(A) = U, (B) + L,(8), say.

Given that {TI.,UI,,EI,},{{ = .., 7} are assumed independent and identically distribured and failure
titne and censoring time are independent conditional on Z, implying

E{&7 Z,. T y=E4" |1f;'} = K{T}, the term &/ () consists of n independent zero mean

random vectors being the sum of # veetors cach one pertainimg to one individual. To derive an
independent and 1dentically dismbuted representation for the teem L7, (), Lin uses the martingale

process associaled with the process counting censored individuals defined in section 4.3.3.1 as
()= N - [ 2 (e

where A (w)d=T(X, =u, & =00, Y.(u)=T(X, 2w} and A"(u)} is the hazard function for the
censoring distribution with .77 ( Z Ty, Nou) = ZN (u) and ¥Flw) = Z}'{u}
ModiFying the expression (4,13} shown in section 4.3.2.1 ta relate to the censoring time, cxpression
i4.15) beeomes

n"'l{.;kﬂ —A)=n Z I”r{u}'} O d. /7" (u) +a, A1)

=l r{ } (5 EE::I
:J._.:EJ.’ el @70 I:u;l o)
i=l

where AT(1) = jwd#" (@) is the Melson-Aalen estimator for the integrated hazard

"(u

lunction AS{t) = JT.-L" {2)efu For censoring. As shown in the same section (section 4.3.2.1), by the

0

Taylor series expansion

PR ) - K@) % KoY, [ W
- 'ZM:(J{} > )




Thus

- =n- AN
nu2 m m n-uly V4, sc(u) fod))
K(O N O/rls ",/ (1J>«) P

which leads to the following expression for term UZ2(/?)

-172

By the law of large numbers and due to the consistency of i”(-)

lim,,» w"“X I(T\ M' f5Z29Z' = A0, where q(t) is well-defined.
Bon~"Yj.Ax ;s'W )

Thus
n-['ic/(//)= M’ ‘“+"-1,is )'? (o0 * (o0 t»,a
lie/un= My [y )17 (0 " ( )
=»',27Z 1,+ o p(])
Because (« = 1,...,«) are n independent zero-mean random matrices, the central limit theorem

implies that n~JI2U(j3) converges in distribution to a zero mean normal random matrix with
limiting covariance matrix given as B =lim ,» the Taylor series expansion,
nll2(/3- P) = A~In~l/2U(J3), where 4 = ~ A-£-Z,®2 which converges in probability to
A

n A
/T's lim*" «~'""Z ,02 .From the asymptotic normality of rfx2U(j3), it follows that «12(/?-/?)

i-i
converges in distribution to a zero mean normal random matrix and the limiting covariance is

A~{BA.

Replacing the unknown quantities in the expressions above with their respective sample estimators,

a consistent estimator for the covariance matrix is given as
A-1BA~1 (5.29)
where
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(5.30)

(5.31)

with 0, = 1- 5; and

(5.32)

The mean cost over (0, L\ is then estimated as M =;3'Z, where Z denotes the covariates vector

evaluated at the mean values ofthe covariates.

Multiple time intervals

The second approach presented by Lin (2000) extends the previous idea in situations where
information on individual cost histories is available at various point in time over the duration of
interest. The main purpose ofthis method is to increase efficiency by allowing use of cost
information not being used by the preceding estimator. The approach draws on the methods for
analysing longitudinal data using generalised linear models proposed by Liang et al (1986). The

general setting for these approaches is outlined below.

Such data consist of an outcome variable and a p x 1 vector of covariates observed at various points

in time for each individual i. An issue inherent in longitudinal data, that is data consisting of
multiple observations for each subject, is the dependency among the repeated measurements for any
given subject. In such circumstances ordinary least squares is not an appropriate estimation
procedure as the assumptions concerning the error terms are no longer valid. The general procedure
to analysing such data in the econometric and statistical literature is to adopt an alternative model to
ordinary least squares, referred to as the generalised linear regression model, which accommodates

more general patterns for the distribution of the disturbances.

In general in the analysis of longitudinal data, interest lies either in studying the change over time or
in assessing the dependence ofthe outcome variable on the covariates. Liang et al (1986) proposed
a class of generalised estimating equations for the regression parameters which result in consistent
estimates ofthe regression parameters and oftheir variance without requiring specification of the
joint distribution of a subject’s observations. This approach has wide application if interest is in
modelling the dependence ofthe outcome variable on the covariates and not in the pattern of change

of'the outcome variable over time. Under these circumstances, the approach models the marginal
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expectation of'the outcome variable as a function of the covariates at each point in time whilst
accounting for the correlation among the repeated measurements for a given subject by treating the
time dependence among repeated measurements for an individual as a nuisance. When the time
dependence is of primary importance, models for the conditional distribution ofthe outcome
variable given its past values would be more appropriate and then the joint distribution ofa
subject’s observations would need to be specified. The authors argue that if observations gained
from different subjects are independent, the estimates of the regression parameters will be
consistent, provided that the model for the marginal means ofthe outcome variable at each time is
correctly specified even if the correlation structure, that is, the time dependence among repeated
observations for a given subject, is misspecified. More importantly, this approach can also be
applied in the event of some observations being missing, in which case the same results hold
provided that data are missing completely at random in the sense of Rubin (1976).6 This type of
model, that only assumes a functional form for the marginal distribution ofthe outcome variable at
each time and treats the correlation structure over time as a nuisance, describes how the average
response across individuals changes with the covariates and as a result consistency of the estimators
for the regression parameters depends only on the correct specification of the functional form for
the marginal expectation ofthe outcome variable. Using this approach, whereby the marginal
expectation ofthe outcome variable is modelled as a function of covariates, the estimated regression
coefficients have an interpretation for the population on average rather than for any individual in

particular.

Adopting the same framework, Lin (2000) models the marginal expectation of cost at each point in

time for which cost information is available as a function ofthe covariates as follows. The duration
of analysis (0, L\ is partitioned into K subintervals (tk x,tk], (k = 1,..,K ), with 10 =0 and tK=1L ,

and for each subinterval k the following linear model is assumed.

Mki= Plz i+ £k k=\..K i=1,...n
where for individual i Mk = M,. (k) - (tk x) is the cost incurred over subinterval (¢k ,zk],
Pk k=1 are px 1 vectors of unknown regression parameters and the error terms eki's are

assumed to be independent among different subjects but allowed to be correlated within the same
subject. By summing over all k subintervals, the linear model for the cost over the whole duration of

interest becomes

Mi=/7Z;+si i=\..n2

6 The missing data are missing at random if for each parameter value, the conditional probability ofthe observed
pattern of missing data given the missing data and the value of the observed data is free of the missing data (see chapter
2, section 2.4.4)
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where M, = ,fi=7Z A >and si=2 X .Defining * =min(7;,it) and Sk =1(U, >Th),

k=1 *=1 i=1

ie. 8% =/{min(7],C)<//,}, the estimating equation for fik (k = ) is given as

(5.33)
< AU fa)

where K(Tkj) is the Kaplan-Meier estimator for the probability ofnot being censored based on the
dataset [xki,S*,i = where X& = min(T"t/,.).

The solution to the above estimating equation is then given as

1
(5.34)

with

— CY (5.35)
& K(Tk) ) ttK(TH)

Comparing this estimator with its counterpart from the previous approach, the gain in cost
information is due to the fact that here a subject contributes cost information to the estimating
equations over all time intervals for which the individual is not censored, i.e. over all ks for which

Ui > min(7j*,C). By contrast, in equation (5.26) an individual only contributes cost information to

the estimates ifthe individual’s censoring time exceeds the maximum observed time in the study.

In studying the asymptotic properties of this estimator, the same methodology as above is adopted
and the left side of (5.33) becomes

n~"20t(pk) =n-nY, S“iM*“ S fj)ZI )?, «)<*»?'M +0,(1)
I K \Jki) i=l 0
-1/2
%X +M )

Because (ki (n = 1,...,«) are n independent zero-mean random matrices, the central limit theorem
implies that n~'12{//,(/?,),...,UK(J3K)} converges in distribution to a zero mean normal random

matrix with limiting covariance matrix between n~',2Uk(J3k) and n~/[2U,(j3,) given as

Bk =lim ﬁa@l (k,1 =1,..,K). By the Taylor series expansion,
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n' 2(fik - JBk) = Ak'n I/2Uk(/3k) , where Ak =n 1 'Z®2 which converges in probability to
5
n
4 =limn"Mn_1"Z ® 2. From the asymptotic normality of n~V2{Ul(j3l),..., UK , it follows that
H

V2, 2 AN s s )
n ~(?, - 1,,.,J3k - Pk) converges in distribution to a zero mean normal random matrix and the

limiting covariance between n'[2(j3k- fik) and nU2(fi, - fi,) is A~'BKA~].

Replacing the unknown quantities in the expressions above with their respective sample estimators,

a consistent estimator for the covariance matrix is given as

A BA (5.36)
where
(5.37)
A =n~"YuZf?2 (5.38)
(5.39)
(5.40)
K(JU) H

a«) -.=-1tm>’)Z(lk) I@)Z/ 3 (5.41)

The mean cost over (0, L] is then estimated as M =fi'"Z , where Z denotes the covariates vector

evaluated at the mean values of the covariates.

Censoring dependent on covariates

Both approaches described above are generalised to the case of covariate-dependent censoring.

In the context of censored time failure data the issue of covariate dependent censoring has been
addressed by Robins and Rotnizky (1992), Rotnitzky and Robins (1995) and Robins, Rotnizky and
Zhao (1995) using a semiparametric regression methodology. The proposed estimating equations
use the inverse of the probability of an individual not being censored as the weight to adjust for
missingness due to censoring and the resultant estimators are consistent when the data are missing
at random in the sense of Rubin (1976). The model is specified based on the assumption that the

probability of censoring at any given time ¢ is independent of the outcome variable conditional on
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the history up to time { of a vector of time dependent covanates that are correlated with the outcome
variable.

Ta accommodate covariate dependent censoring, Lin {2{0} proposes using the proportional
hazards specification (Cox, |972) to model the effect of covariates on the censoring distribution
allowing formulation of the dependence of censonng both on discrete covanates, which might be
used as stratification vanables, and on continuous covanates as

AQF Y =™ M2 ()

where ¥ represents potential siratification vanables and W the romaining covanates, i[!|l’*’ J) s
the conditional hazard function for censoning given Fand W, A.{-} is an unspecified bascline

harard function for stratum Fand » is a set of unknown regression parameters. Censorning is

assumed independent of all other random variables given (¥, W) and the set of covanates F and #
arc allowed to include a subsct of £,

The survivor funcrion of the censoring distrribution 15 estimated as

| =KX {r.'}e"’“”"-]]

{.'.T |r_.. [F' ]__ - l:I . 5.‘41
where ¥ is the partial maximum likclihood cstimator of 3 and
SV, = ZI{F’, =V, X, =R (1)
The estimating equation for & is
n E' .
Z ________ — (M - g =0 (3.43)
=l K{T ¥, )
whose solulion 15 given as
|r i E" - n a_"‘
AadS e G gm] ; MZ {3.44)
S KT,

Wy | SRE Y

1t can be scen that these cxpressions reduce to the respective cxpressions for covanate independent
censoring for ¥ =1 and ¥, =0 forall i=1..,n.
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When multiple time intervals are considered the corresponding estimating equation for

[3k (k=1 is given as

(5.45)

whose solution is

K
with ;3= 3k, that is,

(5.46)

The asymptotic properties for both these estimators and the expressions for the limiting covariance
matrices reported by Lin (2000) are derived adopting the same analytical framework as for the case
of covariate independent censoring and follow as a direct generalisation ofthe results presented
above for the covariate independent censoring case. The main reason for developing all the
approaches presented in this section is to allow incorporation ofa number of discrete and
continuous covariates in modelling costs under conditions of censoring. In addition, the methods are

not restricted by the censoring pattern or by the number of covariates.

5.2.6. Two-stage regression (Carides et al methodology)

Carides et al (2000) proposed a parametric estimator for mean cost in which the total cumulative
cost is modelled as a function of failure time. Their method was introduced as an attempt to
overcome the limitation ofthe second Lin et al (1997) non-parametric approach, presented in the
previous chapter, imposed by the requirement of a discrete censoring pattern to ensure the
estimator’s consistency. Their estimator is referred to as a two-stage estimator because in the first
stage of the estimation process the expected cost at any given point in time is estimated as a
function of failure time and in the second stage the estimated expected costs at given points in time
are weighted by the Kaplan-Meier probability of death at these points in time. The estimate of
mean total cost is then derived as the sum over time ofthese weighted individual cost estimates.

Under this model the mean cost is therefore given by
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v = <)
0

where g(t) = E(M\T = t) is the expected cost of an individual with survival time 7" and
S(t)=pr(T >/). The first stage involves deriving an estimator g(?) for g(t) = E(M\T =t) using a

regression approach. The authors suggest that the regression be performed only on the uncensored
observations on the basis that the treatment costs of censored individuals typically differ from the

treatment costs of uncensored individuals at the same point in time and inclusion of censored

observations will therefore impart bias into the estimate of g(7). The second stage of the estimation
process involves the weighting of the estimated regression function g(?) by the Kaplan-Meier

estimate ofthe probability of death at time £ The two-stage estimator ofthe mean cost over (0, L]

is then given as

L
Ms = jg(" d5(1) (5.47)
0
AA%s)]
where g(?) is an estimator for g{t) =E(M\T =¢t), S{t) =] 1- ) , that is, S(?) is the
s<t W ]

Kaplan-Meier estimator for S(¢) = pr(T >t). If the last observed time corresponds to censoring in

which case the Kaplan-Meier estimator is undefined (see section 4.3.1), to ensure consistency the

estimator can be expressed as

where M/l is an estimate of cost accumulated over (0, L] for patients who survive beyond L. The

choice ofthe functional form for g(?) depends mainly on the data under consideration and the

authors suggest use of either a parametric regression model or a non-parametric smoother. In the
case of a parametric regression model the authors consider models which are, with or without some
transformation of'the data, linear in the coefficients thus allowing use ofthe ordinary least squares

regression technique to derive estimates for the regression parameters.

If the parametric model for g(?) is a monotonic non-decreasing function of failure time the two-

stage estimator can be given as

ab
p sm {g(0(<®0 (5.48)
0

where Sg) {g(0} is the Kaplan-Meier estimator for Sg{T){g(t)} =pr{g(t) >c} ,that is, the Kaplan-

Meier estimator for the probability ofthe expected cost, as estimated by the model, being at least c.

133



Following the definition ofthe Kaplan-Meier estimator for cost given in section 4.3.1 ofthe

previous chapter, Sg(1){g(t)} is given by
. AAi{g(a)}]
$&=n It Vigw)} 1

where A {g(W} = £ [{g(Xi)<+(:),S = 1}and K{g(«)} =
H =

Thus, the difference between (5.47) and (5.48) is that in (5.47) the estimate for mean cost is derived
as the sum of'the expected costs as estimated from the model weighted by the Kaplan-Meier
probability of death at the respective points in time, whereas in (5.48), the estimate for mean cost is
derived as the area under the Kaplan-Meier cost curve as defined by equation (4.5) given in section
4.3.1. In other words, if the assumed parametric model is monotonically non-decreasing, a one-to-
one correspondence between cost and failure time is ensured which implies that the assumption of
independent censoring between cost at censoring and cost at failure time is satisfied thus allowing

use ofthe Kaplan-Meier approach in deriving an estimate for the mean cost.

Due to the consistency ofthe Kaplan-Meier estimator, consistency of the two-stage estimator is
ensured if the parametric model g(?) is consistently estimated. Although under specific parametric
assumptions the two-stage estimator is asymptotically normal with variance estimator directly
following from the specific statistical distribution, the authors recommend that for practical
purposes the bootstrap method be used to derive standard error estimates for the mean, as they
argue that the assumption of asymptotic normality is unlikely to be valid in most applications. The
issue then becomes to choose a functional form for g(7). Many different alternative models could
be adopted in estimating this functional form. The models considered in this analysis follow the

author’s suggestions and are presented below.

The first model assumes a linear relationship between total costs and failure times specified as
M, =[30+ M + 7,

where the error terms are normally distributed with zero mean and finite variance, so that the two-

stage estimator for mean cost is
M=A+AA (5-49>

where 0 and f§ xare estimated from ordinary least squares regression using only the uncensored
1

cost observations and 8, = jE(u)du is the Kaplan-Meier estimator for mean survival time over
0
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/] vhee SO=n,{>-T7v ]'1

Given that the distribution of costs is commonly positively skewed, the authors consider a model in
which the relationship between cost and survival time is specified by transforming the total costs on

the natural logarithm scale. The regression model is then given as

InM,. =/?20+ M +£,

where the error term is assumed lognormal distributed. Ordinary least squares regression is again

used on the uncensored cost observations to derive estimates for /30 and . The mean cost is given
as
M =eA+M (5.50)

where jB) and /?, are the estimates from the ordinary least squares regression on the uncensored

observations only and /), is the Kaplan-Meier estimate for mean survival time.

Although not considered by Carides et al (2000), under specifications where there has been some
transformation ofthe dependent variable estimation ofthe untransformed scale expectation requires
that retransformation to the untransformed scale be performed. As mentioned in chapter 2 a number
of investigators including Duan (1983) have argued that when retransformation ofthe dependent
variable to the untransformed scale takes place, an incorrect normality assumption with regards to
the error distribution will lead to inconsistent estimates for the untransformed scale expectation
although the ordinary least squares estimate for the regression coefficients is consistent and
unbiased with minimum variance regardless of whether the true error distribution is normal or not.

Given therefore that the error distribution in the untransformed scale is unknown, Duan (1983)

7 Although not shown by the authors this expression for the estimator of mean cost can be derived as follows. The two-

stage estimator for the unrestricted mean is ;US= { ; ('M o .As shown in section 4.2.1,

dInS(t) » =e-lmdt » dSO) = _A(0> =[_A(0]5(0
dt dt dt
and because T (t) = A, it follows that asjy) M 500 =\dS@)\ =f(t)dt.
Sit) dt 5(1)

Assuming g(t) = J30 +J3{ , the two-stage estimator is
Mrs = jv (or (o= Y30\dS()\ + \p a\dS()\=PO\f(t)dt + Px\tf(t)dt= /30 + Pxfit
0 0 0 0 0

Replacing the unknown parameterswith their sample estimators results in theestimator for mean cost as given in
(5.49).
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suggested a non-parametric estimator for the untransformed scale expectation referred to as the

smearing estimator derived as shown below.

Denoting the observations for the dependent variable on the untransformed scale by Yz,i = 1

and letting Z be a covariate of interest, a linear regression model relating the dependent variable on

the transformed scale to the covariate is given by

P{Yi) =pZi +ei

where 7, = (pilp are the observations on the transformed scale and ¥z =/z(7,) denotes the

observations after the retransformation to the untransformed scale has taken place, that is,
h =¢> with (p and h being monotonie and continuously differentiable. For the model

7,=p li+ st on the transformed scale it is also assumed that the error terms have zero mean and

constant variance without being necessarily normally distributed. The smearing estimate for the

untransformed scale expectation, that is after the retransformation, is then given by

‘£(r9) =-1> (fO + ia)
n m

where ft is the ordinary least squares regression estimate on the transformed scale, that is

P=(2'72) Z7Z'7 and =rji- fYZi are the estimated ordinary least squares residuals. This estimator

1s shown to be consistent even when the error distribution in the above model is normal.

The estimate for the mean cost from the model \nMi = /?0+ fi]J[i + sj after smearing is therefore

M = (5.51)

where f3f and /?, are the estimates from the ordinary least squares regression on the uncensored

observations only, //, is the Kaplan-Meier estimate for mean survival time and si are the ordinary

least squares residuals.

Following Carides et al (2000), a third parameterisation for the relationship between cost and
survival time was obtained by transforming the natural logarithm of the total costs on the log scale

once more. The regression model is then given as

In(InM..) = /20+/2, In7] +£,

Ordinary least squares regression is again used on the uncensored cost observations to derive
estimates for J30 and /?,. The mean cost without smearing is given as

136



where 0 and [, are the estimates from the ordinary least squares regression on the uncensored

observations only and /), is the Kaplan-Meier estimate for mean survival time. The estimator for

mean cost with smearing is

(5.53)

The authors conclude that such a regression based approach where the relationship between cost
and failure time is specified through a parametric model is advantageous compared to a non-
parametric approach due to efficiency gains resulting from the use of such a relationship. On the
other hand, this is only going to be the case if the parameterisation reflects the true functional form
of cost and failure time. In the event of model misspecification, a non-parametric approach for
estimating the relationship between cost and failure time will be preferred. Under either case
however the degree of censoring in the data is expected to have a direct impact on the estimates of
mean cost and the methodology presented here cannot incorporate information on individual cost
histories which as shown by the analysis in the previous chapter could be of significant advantage

under extreme censoring conditions.



5.3. Methods and results

5.3.1. Methods

The parametric models discussed above were applied to the UKPDS trial data as the non-parametric

models of'the previous chapter. All estimates were derived separately for each randomisation group.

The covariates of interest were time independent and represented measurements obtained on each
individual at the start of the study on age, body mass index (bmi), fasting plasma glucose level

(fpg), race and sex. The descriptive statistics for each ofthe covariates are shown in Table 5.1.

Table 5.1. Baseline covariate values in conventional and intensive policy groups

Conventional (n=1138)
Age (years)

Bmi (kg/m2)

Fpg (mmol/1)

Race

Sex’*

Intensive («=2729)
Age (years)

Bmi (kg/m2)

Fpg (mmol/1)
Race*

Sex**

Frequency of categorical covariates

Race*

1= Caucasian

2 = Afro-Caribbean
3 = Indian Asian

4 = Other
5 = Other
Sex**

1= male

2 = female

Mean

53.40
27.80
8.48
1.32
1.38

53.21
27.49
8.61
1.31
1.39

Standard
deviation

8.69
5.46
2.03
0.72
0.49

8.62
5.07
2.14
0.70
0.49

Conventional

927
76
126
2

7

701
437

Minimum

Maximum

25.62 72
17.57 55.68
5.5 17.5

1 5

1 2
24.69 72
16.59 60.61
5.4 19.9

1 5

1 2
Intensive

2215

216

276

8

14

1664

1065

As can be seen from Table 5.1 there are no differences in the baseline covariate values between the

two groups. These covariates were deemed clinically meaningful given that the fasting plasma
glucose level provides the means of defining diabetes and body mass index gives an indication of
obesity which is highly positively correlated with the risk of diabetes as is age. There is also
evidence ofracial differences in the incidence and prevalence of diabetes with for example higher
rates in the Asian population. The fact that these covariates were deemed important explanatory

variables for diabetes progression and complications does not imply that they will necessarily

explain cost especially as they were only measured at the start ofthe study. However this represents

the most frequent pattern of covariate measurements within a clinical trial setting where interest lies

138



in recording disease specific predictive factors at the time ofthe individual’s entry to the study and
in certain cases at various points in time over the follow-up period. Before presenting the results

derived from the various estimators some specific methodological points follow.

With respect to the semiparametric methodology it is clear from the arguments presented earlier that
the proportional hazards model will generally return biased estimates of cost for a number of
reasons. Under the strong assumption that adopting the stratified variant of the model with time as
the stratification variable overcomes the bias arising from dependent censoring between cost at
failure and cost at censoring time, the issue then becomes to determine whether the assumption of
proportional hazards holds within each individual stratum. Although based on the conceptual
arguments given above this is not likely to be the case, the proportionality assumption was
empirically assessed for the stratified model using the Gramsch and Themeau approach given on
pages 112-113. The results of these tests are presented in Appendix A.5.1 and as expected they
show violation of'the proportional hazards assumption across all strata. Consequently the
proportional hazards approach is not pursued further. The proportional means model suggested by
Lin (2000) is not pursued either primarily because as stated above a consistent estimator of average
cost over the study period requires derivation of a consistent estimator for the baseline mean hazard
function. The latter can only be derived if all sample paths of'the cost process are known which
would require knowledge ofthe amount of cost accrual for all individuals at every point in time
over the duration of interest. Given that this information was not available it was not possible to

derive an estimator of mean cost using this approach.

The Weibull and exponential regression models although known to be biased were estimated for
comparison purposes to the Kaplan-Meier estimator, the rationale being that they all share the same
source of bias but they differ in the underlying distributional assumptions about cost, with the first
two models imposing specific cost distributions and the latter being free of such assumptions.
Estimation was based on equations (5.12), (5.13) and (5.14) for the Weibull and (5.15), (5.16) and

(5.17) for the exponential regressions.

The three models proposed by Carides et al (2000) presented in section 5.2.6 were applied in an
attempt to estimate cost conditional on failure time. All these models involve the Kaplan-Meier
estimate of mean survival time. This was estimated using equations (4.1), (4.2) and (4.3) as 15.65
years (se=0.21) for the conventional group and 15.96 (se=0.18) for the intensive group. Although
the authors do not consider smearing estimators when the outcome variable was transformed, the
analysis undertaken here derived mean estimates with and without smearing. The mean cost
estimates were based on (5.49) for the untransformed model, on (5.50) and (5.51) for the first
transformation and on (5.52) and (5.53) for the second transformation. An indication ofthe
underlying relationship between treatment cost and study time is given by Figure 4.1 (section 4.4.1)
which plots the observed costs against time for the UKPDS censored and uncensored populations

for both trial arms.
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The regression methodology proposed by Lin (2000) was applied to the data both when individual
costs were available at the last contact date or death and when multiple observations at different
points in time were available for each individual. In the second model annual time intervals were
assumed for each individual because as stated in the previous chapter intermediate cost history was
available for each subject on an annual basis. The approach relating to covariate dependent
censoring was not explored as this was not applicable given the data. Under the first model
estimation was based on equations (5.25) and (5.27) for the regression parameters and on (5.29) to
(5.32) for the coefficient standard errors. Under the second approach the respective estimating
equations are given by (5.33) and (5.35) for the coefficients and by (5.36) to (5.41) for their

standard errors.

The classical linear regression model given by (5.18) was estimated using the uncensored cases
only as a baseline means for comparison to the alternative linear regression methodologies. All
regression models aside from those proposed by Carides et al which used failure time as the

independent variable, were based on the set of covariates described above.

Estimates of'the variance associated with the mean estimators resulting from the above models were
derived using the bootstrap approach with the exception ofthe Weibull and exponential regressions
where the variance estimators were derived using equations (5.14) and (5.17) respectively. For the
remaining models the bootstrap estimates were obtained from 1000 replications. The reason for
using the bootstrap approach is that the asymptotic variance estimators for the mean cost have not
been defined. With respect to the regression parameter standard errors for the Lin regression
models, these were derived both using the bootstrap approach and analytically using equations
(5.29) to (5.32) for the first approach and equations (5.36) to (5.41) for the second as described

above.

5.3.2. Results

The results derived from the parametric approaches are shown in Table 5.2 while Table 5.3 reports
the best non-parametric estimates (with the standard errors as derived from the asymptotic variance
estimators) from the previous chapter as a means of assessing the parametric estimators’
performance. Based on the conclusions drawn in the previous chapter the first approach by Lin et al
(1997), using information on intermediate cost histories, and the Bang and Tsiatis partitioned
estimator were deemed to perform adequately under all circumstances considered. Given that these
two estimators remained stable even under the extreme censoring conditions arising in the UKPDS
data, it can be reasonably confidently asserted that the resultant cost estimates are reflecting the true

cost values.
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Table 5.2. Parametric estimators of mean cost

Conventional Intensive
Estimator Mean Standard error*  Mean Standard ervor*
Weibull regression 43090.52 37577.80 36502.85 28279.72
Exponential regression 54151.55 54151.55 56793.82 56793.82
Carides et al regression models
total cost on time 20353.71 2551.99 19548.07 1228.00
In(total cost) on time without 18086.73 2599.06 21096 1927.38
smearing
In(total cost) on time with 16070.78 1914.10 17939.50 1368.74
smearing
In(In(total cost)) on time without 19080.38 3155.30 23132.24 2680.18
smearing
In(In(total cost) on time with 18959.67 3152.28 21626.47 2545091
smearing
Lin regression methodology
Complete costs 14015.82 3588.94 17573.79 1961.70
Multiple intervals 14941.14 1274.07 13789.33 452.70
Naive OLS 11708.78 1268.10 10845.21 693.58

*The standard errors were estimated using the bootstrap (1000 replications) with the exception of the Weibull and
exponential regression models were the analytic formulae were used.

Table 5.3. Best non-parametric estimators of mean cost

Conventional Intensive
Estimator Mean Standard error  Mean Standard ervor
Linl (Lin et al 1997) {jdum) 14006.2 897.73 13172 340.55
Bang and Tsiatis Partitioned (]Llp) 14639.48 12194 13839.67 445.6

Reported in Table 4.4

With respect to the Weibull and exponential regression models the resultant estimates are high for
both groups confirming the estimators’ bias as expected given the arguments above (estimated
regression coefficients shown in Appendix A.5.2). Comparison with the Kaplan Meier estimates of
38770.74 (se=5312.02) for the conventional arm and 31620.59 (se=2034.89) for the intensive arm
reveals that the bias resulting from these parametric regressions is even greater than that ofthe non-
parametric approach. The most likely explanation is that the bias in the parametric models can arise
from both violation of'the independent censoring assumption as well as model misspecification.
These empirical results confirm once more the predictions of the theory that standard survival
analysis techniques requiring independence between the variable of interest and its censoring
variable are not suitable for the analysis of censored cost data and at the same time highlight the

effect of inappropriate parameterisation.
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Turning to the Carides et al two-stage estimator, the resultant mean cost estimates are high relative
to the non-parametric estimates for both groups (estimated regression coefficients for the various
models and the programs for the bootstrap estimates for the standard error of the mean are shown in
Appendix A.5.3). Moreover the difference in average cost between the treatment arms is generally
ofthe wrong expected direction. Although the approach has initial appeal given that it attempts to
model the time pattern of costs and is not restricted by assumptions concerning the censoring
distribution, the analysis reveals the estimator’s inadequate performance in all the parameterisations
considered. This finding holds even when smearing estimates were obtained following a
logarithmic transformation to account for positive skewness in the cost data. While model
misspecification is liable to be a contributory factor, the estimators’ inadequate performance is also
likely due to the high degree of censoring present in the data. As the regression parameters are
estimated using information from the uncensored cases alone, which in this case amounts to a mere
18% of the total number of observations and will reflect the bias imparted from a complete case
analysis, it is to be expected that the estimated coefficients will not reflect the true parameter values

even assuming the relationship between cost and failure time is correctly specified.

This postulate is supported further by the results obtained when the expected costs were estimated
by a non-parametric regression approach. Carides et al recommend use of such a regression when
there is not enough confidence in a specific parametric relationship between cost and survival time.
The method adopted provides smoothed estimates of cost using locally weighted scatterplot
smoothing (lowess) according to which the smoothed values ofthe dependent variable are derived
by running a regression ofthe dependent variable on the independent variable using for each
estimate the data at the estimation point and a small amount of data near the point. In lowess the
regression is weighted so that the central point each time receives the highest weight and points
farther away receive less. A separate weighted regression is estimated for each point in the data in
order to provide the smoothed estimates. Applying this approach resulted in estimates of mean cost
0f5674.92 (se=853.24) for the conventional group and 9407.87 (se= 3230.63) for the intensive
group where the standard errors were obtained from 1000 bootstrap replications. Such an approach
for deriving expected cost estimates, being free of assumptions about the functional form between
cost and failure time gives a strong indication that an equally important, if not more important,
source of bias aside from model misspecification in the Carides et al estimator is the high level of
censoring. This was to be expected based on the results obtained from the non-parametric
estimators of the previous chapter which only used cost information from the complete cases. Both
the respective Lin et al and Bang and Tsiatis non-parametric estimators performed inadequately
when only complete costs were included in the estimation process and both techniques showed
dramatic improvement when information was increased by incorporating individual cost histories

into the estimating equations.
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Before considering the set of parametric estimators proposed by Lin (2000) the estimates derived
from the naive ordinary least squares regression are considered.8 The estimates derived from this
approach are known to be biased as they are based on a complete cases analysis which ignores all
censored observations, but as stated above, they provide a means for baseline comparisons to the
alternative linear regression methodologies and in particular to Lin’s (2000) regression models
which use the same set of covariates. Although the naive least squares regression resulted in the
expected direction of'the difference between the two arms of the trial with the conventional group
incurring higher costs on average than the intensive, the estimates of mean cost are low. This was
anticipated as the information from censored observations is not used in the estimation process and
it is known that the bias increases as the level of censoring increases. Comparison of the ordinary
least squares cost estimates with the non-parametric uncensored cases estimates reported in chapter
4 - which were 11901.01 (se=1061.36) and 10629.97 (se=510.00) for the conventional and intensive
arms respectively - reveals a close similarity. This may indicate that model parameterisation does
not provide additional information with respect to the distribution of cost and results in the same

degree ofbias as that imparted by censoring in the non-parametric naive estimator.

With respect to Lin’s (2000) parametric approach that uses information only on the complete total
costs, the resultant difference in mean cost between the trial arms is ofthe wrong expected
direction. In addition the estimated mean cost for the intensive group is much higher than expected.9
This pattern alters when the regression uses information on multiple cost observations on each
patient obtained at a number ofpoints in time.10 The latter approach results in estimates that are
very close to the non-parametric counterparts derived from the first Lin non-parametric method
using individual cost histories and even closer to the Bang and Tsiatis partitioned estimator which
again uses individual cost histories. Thus the regression model which uses cost history information
from all individuals results in a significant improvement compared to the parametric model which
discards cost information from the censored cases. This was anticipated and confirms Lin’s
argument that the multiple time intervals approach improves efficiency by using information which
is ignored by the complete costs approach. However the reason why the second regression
methodology performs adequately does not appear to be related to model specification as the

estimates of the regression parameters reported in Table 5.4 indicate.

8 Appendix A.5.4. presents the resultant coefficients and the programs for estimating the standard error ofthe mean
using the bootstrap.

9 Appendix A.5.5. presents the programs for estimating the coefficients and their standard errors using the analytically
derived formulae as well as the program for deriving the bootstrap estimates of the standard errors for the coefficients
and the mean.

10 Appendix A.5.6. presents the programs for estimating the coefficients and their standard errors using the analytically
derived formulae as well as the program for deriving the bootstrap estimates of the standard errors for the coefficients
and the mean.
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Table 5.4. Estimated regression parameters for the naive OLS and the Lin regression models

Conventional Intensive

Regression Standard Standard Regression Standard Standgid

coefficients error error coefficients error error
Naive OLS
const -23980.37 16190.03 13813.83 5647.46 7148.85 8007.90
age 262.47 197.58 161.68 57.55 85.66 100.61
bmi 454.01 270.10 258.15 34.84 123.74 108.39
fpg 537.43 611.44 654.39 -176.55 267.84 231.98
race 1783.51 2204.65 1990.84 146.71 954.35 998.54
sex 1545.94 2646.61 2627.59 1802.75 1250.54 1318.99
Lin complete
costs
const -21043.55 223315.92 25522.02 32901.42 370405.18 24882.84
age 141.61 2388.67 337.58 -211.60 3100.51 315.09
bmi 596.27 4586.22 610.46 208.61 5442.36 267.38
fpg 1099.66 10597.17 1012.11 -979.99 12255.61 753.35
race 1424.06 44620.62 4309.11 1740.02 49061.19 2739.86
sex -206.40 41170.38 8907.59 -2619.76 66535.70 4142.53
Lin multiple
intervals
const -217.49 260748.92 8723.92 12170.94** 256027.34 4883.95
age -16.99 3653.66 141.88 1.86 1830.22 41.83
bmi 127.08 6275.02 211.20 23.84 4818.33 108.31
fpg 1493.37%*%* 13190.91 634.84 148.15 9463.72 187.03
race -247.16 45221.68 1711.94 -863.83 27533.62 630.64
sex 139.01 109954.54 3271.34 517.88 38910.15 806.28

" 1Standard errors analytically derived by the normal equations for OLS and by expressions (5.29), (5.30), (5.31) for
Lin using complete costs and (5.32) (5.36), (5.37), (5.38), (5.39), (5.40) and (5.41) for Lin using multiple intervals

2 Standard errors derived from 1000 bootstrap replications
**significant

The coefficient estimates resulting from all these regressions indicate that the covariates have low
explanatory power. With respect to Lin’s regressions all are insignificant in the complete costs
approach and significant only for fasting plasma glucose in the conventional group in the multiple
time intervals approach. In the case of the naive ordinary least squares regression all coefficients are
insignificant. In other words, the multiple time intervals approach does not exhibit a significantly
improved model specification compared to the complete costs regression. Nevertheless the mean
cost estimates derived from the multiple time intervals regression model are very close to the
comparative non-parametric estimates. As both regressions use an inverse probability weight in
attempting to account for censoring, the most likely explanation for this result is therefore the
increased cost information used in conjunction with the particular weight by the multiple intervals
regression. This appears to be confirmed by the results of a secondary analysis which was
undertaken for the Lin regression models where only fasting plasma glucose was used as a

covariate. Fasting plasma glucose was chosen on the basis that this was the only covariate
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associated with a significant coefficient even though this was only the case for one ofthe regression
models. The results together with the naive ordinary least squares estimates are shown in Table 5.5

for the regression parameters and in Table 5.6 for the mean costs.

Table 5.5. Estimated regression parameters for the naive OLS and the Lin regression models using
fasting plasma glucose as the only covariate

Conventional Intensive

Regression Standard Standard Regression Standard Standgrd

coefficients error error coefficients error error
Naive OLS
const 7367.78 5369.69 5391.06 12142.42%* 2403.76 2171.18
fpg 602.40 603.33 624.86 -144.15 262.42 232.21
Lin complete
costs
const -466.98 85058.80 9367.33 24497.55%* 142302.49 8912.96
fpg 1690.44 10737.78 968.63 -891.05 12645.16 996.83
Lin multiple
intervals
const 4263.38 97544 .86 3963.33 13220.31%* 96850.40 1948.28
fpg 1270.71%* 12934.45 575.85 99.13 9973.46 203.60

Standard errors analytically derived by the normal equations for OLS and by expressions (5.29), (5.30), (5.31) for
in using complete costs and (5.32) (5.36), (5.37), (5.38), (5.39), (5.40) and (5.41) for Lin using multiple intervals
Standard errors derived from 1000 bootstrap replications
~Msignificant

Table 5.6. Estimated mean costs from regression models using fasting plasma glucose as the only
covariate

Conventional Intensive
Estimator Mean Standard ervor*  Mean Standard errvor*
Lin complete costs 13870.84 7060.85 16821.34 2419.14
Lin multiple intervals 15041.21 1578.42 14074.33 454.88
Naive OLS 12477.19 1212.05 10900.58 560.30

*The standard errors were estimated using the bootstrap (1000 replications)

Although the coefficient on fasting plasma glucose did not become significant in any other model,
the mean estimates are very similar to their respective counterparts derived in the analysis based on
the complete set of covariates. In this particular application therefore the choice ofthe set of
covariates does not appear to have an impact on the resultant mean cost estimates. The inverse of
the probability of an individual not being censored entering the estimating equations seems to be
primarily responsible for the resultant mean estimates. However this particular weight alone is

incapable of adequately adjusting for the loss in information when the level of censoring is too high
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as indicated by the poor performance ofthe complete costs regression. As was the case in the non-
parametric analysis, the amount of available information on the cost history process proves as
important as the probability weight which adjusts the estimates for the information loss due to

censoring.

The fact that there was no gain associated with incorporating covariate information in the estimation
process should not be interpreted as a general criticism ofthe particular regression methodology. It
is rather the case that the covariates available in the dataset used in the present study did not provide
any additional information with respect to cost and as such the approach did not provide further
insight into the distribution of costs when compared to the non-parametric approaches of the

previous chapter.

5.4. Discussion

Parametric approaches provide a necessary alternative in deriving estimates of cost statistics in a
number of circumstances, such as when interest lies in the assessment of individual covariate effects
on cost or in extrapolation of estimates beyond the observed study duration or to different patient
subpopulations. Inherent in all parametric approaches is the specification of a functional form for
the relationship between the outcome variable and the covariates of interest. When the outcome
variable is subject to censoring classical least squares estimation is biased and alternative models
have been proposed, a number of which make specific distributional assumptions whereas others
are free of assumptions regarding the underlying distribution of cost. This chapter considered a
number of parametric methodologies which attempt to account for the presence of censoring within
the context of cost analysis. The performance ofthe proposed estimators of cost was assessed under
extreme censoring conditions using the same trial data as were used in the non-parametric analysis

and the main findings are as follows.

The standard parametric techniques for analysing censored failure time data such as the Weibull and
exponential regression are inappropriate for the analysis of censored cost data due to dependent
censoring between cost at event and cost at censoring. The semiparametric proportional hazards
approach although it could be potentially better suited for modelling complex distributions as it
allows the functional form of part of the model to be unknown and therefore unrestricted, is also
subject to the bias induced by dependent censoring. Ordinary least squares regression based on the
complete cases alone is biased with the degree ofbias increasing as censoring increases. The
regression methodology proposed by Carides et al (2000) which models cost as a function of failure
time is also sensitive to the level of censoring because although the weight providing adjustment for
censoring is consistently estimated, the cost estimates being adjusted by it are based on regression
parameter estimates which are in turn obtained using information on complete cases alone.

Consequently, aside from a potential misspecification ofthe functional form for the relationship
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between cost and failure time, bias in the estimates is also going to arise due to the bias attributed to

the complete cases analysis involved in the estimation process.

The regression methodology proposed by Lin (2000) adjusts the estimates for censoring through
weighting the cost observations by the inverse of the probability of an individual not being censored
as was the case in the Bang and Tsiatis non-parametric approach. Ofthe two models constituting
the regression methodology, the one using cost information from the uncensored individuals alone
was shown to result in biased estimates at the levels of censoring present in the particular data,
while the second using information on individual cost histories from all individuals in the study was
shown to perform adequately in deriving estimates of mean cost. The observed performance
patterns however appeared to be unrelated to model specification indicating that in this particular
application incorporation of covariate information did not improve upon the cost estimates derived

from the best performing non-parametric estimators.

Based on these findings, it might be concluded that for the purposes ofthe analysis undertaken here
whose aim was to assess the various estimators’ performance when estimates of mean cost over the
study period are sought, there is no gain in adopting a parametric approach over a consistent non-
parametric estimator. Moreover a non-parametric methodology is usually preferable on the basis
that it involves fewer assumptions compared to a parametric alternative. In situations however
where interest lies in assessing covariate effects on cost and in extrapolation beyond the study
duration or to a different population setting, a parametric methodology becomes the necessary
alternative. Ofthe proposed methodologies considered here, whose assessment was undertaken
under extreme censoring conditions, the multiple time intervals regression proposed by Lin (2000)
performed adequately in providing estimates of mean cost compared to the best non-parametric

estimators even though there was no gain associated from incorporating covariate information.

This finding aside from providing a regression methodology that performs well under extreme
censoring conditions, also confirms the general result of the previous chapter by reaching the same
conclusion from a different analytical perspective. As was the case when the non-parametric
estimators were considered, the present analysis established that censoring in the cost estimates is
most successfully accounted for through weighting the complete observations by the inverse of the
probability of non-missingness although the degree ofretrieval of information lost due to censoring

will also be determined by the amount of available information on the cost history process.
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Chapter 6

Conclusions

This thesis has been set against a background ofincreasing interest in economic evaluation ofhealth
care technologies and a related gradual expansion in economic analysis conducted alongside clinical
trials. Despite the difficulties associated with its theoretical justification and implementation on
occasions, this form of evaluation has been increasingly gaining acceptance as a useful means of
assisting the decision-making process in the choice concerning the allocation of resources among
competing health care interventions. It is implicit in adopting this method that efficiency in the
health care sector is an underlying objective. Although alternative definitions of efficiency lead to
different analytical perspectives, the objective of welfare maximisation is nevertheless maintained.
A prerequisite condition in pursuing this objective is to ensure that the outcome of such an analysis
truly represents a relative valuation ofthe alternative resource allocation states under consideration.
Fulfilment of this condition in turn requires that the methodology employed in deriving relative
valuations is theoretically justified and that the measures it incorporates in deriving these valuations
are appropriately specified and quantified. Assessment of alternative health care resource allocation
patterns is then undertaken through the evaluation ofthe respective competing health care
interventions by investigating the intervention specific resource costs incurred in achieving a given
health outcome. On this basis the importance of deriving appropriate and accurate valuations of
both cost and outcome is self-evident. It is within this context that this thesis has addressed specific
problems relating to the collection and analysis of treatment cost data. Concentration on this
particular subject has been motivated both by the limited consideration ofthe measurement of direct
treatment costs relative to other areas of economic evaluation as well as by the recognition that the
adoption of statistical methodology within the analysis of cost data is necessary especially in

situations where particular data problems arise.

Having established the general setting, the analysis was preceded by an overview ofthe existing
literature which served the purpose of identifying commonly encountered measurement problems
relating to cost data, indicating their importance and revealing the current state of the development
of solutions to these problems. Ofthe identified problems, the limited availability of cost data due
to the data collection process and the incompleteness of cost information for analysis due to
censoring were considered in detail in subsequent parts of the thesis with censoring constituting the

major issue of concern.

Viewed within the context of a clinical trial setting the problem of limited availability of cost data

due to the collection process arises mainly because of data constraints imposed on the economic
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variables by the trial design given that questions regarding the cost-effectiveness ofa given
intervention are normally of secondary importance relative to the testing of the clinical hypothesis
concerning treatment efficacy that the trial considers. As a consequence ofthese priorities the trial
typically records information prospectively on resource use at the patient level and leaves the unit
costs ofthe resources to be determined retrospectively. Within a multi-centre trial setting this
implies that centre specific unit cost information is not normally collected alongside the trial and
some alternative source is thus required to provide the necessary unit cost information in calculating
the total treatment cost. This alternative information source usually provides an average unit cost
for each resource element. Deriving an estimate of treatment cost by combining centre specific
resource volumes with an average unit cost estimate for each resource component results in the
calculated treatment costs encompassing the variation in resource use across the participating
centres but not the variation in the unit costs ofthe resources. The question of whether this matters
was addressed in this thesis by a simulation experiment which assessed the difference in the
estimates of treatment cost between two alternative estimation methods, the first using an average
unit cost for each resource component and the second using centre specific unit cost information.
The alternative approaches were considered within the context of economic theory assuming an
underlying production function in specifying the relationship between inputs and health outcome
while the relationship with the cost of producing a given health outcome was investigated by
considering two distinct scenarios. The first assumed that treatment centres operate as dictated by
economic theory and upheld by economic evaluation and therefore respond to changes in the
relative prices of inputs, resulting for instance from the introduction of a new health care
technology, by substituting the relatively less expensive inputs for the more expensive ones in a
predictable manner, whereas the second assumed that treatment centres operate on the production

function but do not respond to changes in relative input prices.

The analysis shows that if treatment centres respond to unit cost changes as expected from the
theory, then the difference in the estimates resulting from the two methods of cost calculation is
statistically significant and this result holds for a wide range of values of the elasticity of
substitution representing conditions ofnear perfect substitutability to near perfect complementarity
ofthe inputs entering the production process. If on the other hand treatment centres are not
responsive to changes in input unit costs, the differences in the resultant estimates are not
statistically significant. These results held when input unit costs were drawn from a number of
alternative statistical distributions and under circumstances where the response to relative changes
of input unit costs was assumed to have a stochastic component. The implication of this finding is
that under the assumption that treatment centres operate in a rational economic manner in producing
a given level of health outcome, as assessed by the study of a substitution effect on the production
process, the method of cost data collection has an impact on the estimates of treatment cost. In these
circumstances, everything else being equal, lack of centre specific unit cost information will lead to
biased cost estimates because potential substitution effects on the production process are completely

ignored.
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The subsequent analysis concentrated on the issue of primary concern in the thesis, namely the
derivation of unbiased and consistent estimates of cost statistics when the data are subject to
censoring. The objective was to investigate the theoretical justification, underlying assumptions,
statistical properties and empirical performance of a number of alternative estimators of cost which
attempt to account for the loss of information imparted by censoring. A distinction was made
between non-parametric and parametric approaches reflecting the difference in the assumptions
underlying the two groups of methodologies. Regardless of whether the estimators are of a
parametric or a non-parametric nature, the majority are directly related to or originate from the
theory underlying the statistical analysis of'time to event data under conditions of censoring.
Investigation of the theoretical properties ofthe estimators of cost has been undertaken using the
theory of stochastic processes as applied to the study oftime to event data. This analytical approach
allows the notion ofthe time element in the cost observations to be captured, censoring to be
incorporated, variance estimators to be derived and convergence and asymptotic normality of the

statistics of interest to be proven by invoking martingale convergence theorems.

Given the existence of consistent estimators of failure time statistics in the presence of censoring,
initial attempts to adjust estimates of cost statistics for censoring were based on application of
traditional survival analysis techniques to cost data. The assumption underlying the validity of these
approaches is the one of independence between the variable of interest and its censoring variable.
This implies independence between time to event and time to censoring when failure time data are
considered and independence between cost at event and cost at censoring when cost data are
analysed. In the former case the assumption is valid under the random censoring mechanism but in
the latter case it is normally violated due to the lack ofa common rate of cost accrual over time
among individuals, as patients who are in poorer health states generate higher costs per unit oftime
and consequently are expected to generate higher cumulative costs at both the failure time and the
censoring time. This positive correlation implies that removal of certain observations from the
sample due to censoring affects the joint distribution of cost for the remaining observations in the
sense that at any point in time future cost expectation is statistically altered (from what it would
have been in the absence of censoring) by censoring. As a result any analysis that does not model
this dependency will lead to erroneous inferences. Consequently cost estimators based on survival
analysis approaches such as the non-parametric Kaplan-Meier, the semiparametric proportional
hazards regression or parametric models assuming distribution families such as the Weibull and the

exponential are all inappropriate.

Alternative methodologies have been recently introduced by a number of investigators both on the
non-parametric and on the parametric side. Concentrating on the former, Lin et al (1997) proposed
two estimators of average cost under conditions of censoring which under appropriate censoring
conditions are theoretically shown to be consistent and asymptotically normal with analytically
derived consistent variance estimators. More specifically, under both methodologies the study

period is partitioned into a number of subintervals, an estimate of average cost in the interval is
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derived and the estimator of cost for the whole duration of analysis is obtained by summing over the
subintervals the interval cost estimates weighted by interval specific Kaplan-Meier probability
estimates oftime to event. The difference between the two alternatives is that the first only uses
information on the total costs ofuncensored individuals incurred up to the point of the individual’s
death in the estimating process with the weight being defined by an estimate of the Kaplan-Meier
probability of death in each interval ofthe partition, while the second uses information on
intermediate individual cost history from all individuals and the weight is the Kaplan-Meier
probability of survival to the start of each interval of'the partition. Under the assumption of
independent censoring, an extension of'this assumption to require that the censoring mechanism is
unrelated to cost levels, continuous distribution of failure time and appropriate censoring conditions
both estimators are shown to be consistent and martingale theory enables consistent asymptotic
variance estimators to be derived. By appropriate censoring conditions, it is meant that the
censoring distribution is of such a form that individual censoring times can be made to correspond
to the boundaries of the intervals ofthe partition, a condition which essentially requires a discrete

pattern for the censoring times if consistency is to be ensured.

By contrast, the approach proposed by Bang and Tsiatis (2000) allows arbitrary censoring
distribution patterns and in addition attempts to improve efficiency ofthe proposed estimators by
recovering information lost due to censoring through incorporation of some functionals ofthe cost
history process in the estimating equations. The idea underlying all estimators in this class is the use
of an inverse probability weight in the estimating equations through which censoring is
appropriately accounted for. The first estimator uses cost information from the uncensored
individuals alone while the second estimator also incorporates information on intermediate cost
history from censored individuals. Under the first approach, the estimate of mean cost is derived as
the average ofthe complete individual costs weighted by the inverse of the Kaplan-Meier
probability of an individual not being censored evaluated at the point ofthe individual’s death.
Under the second approach, the duration of analysis is partitioned into a number of subintervals, the
first estimator is used to derive the estimated cost incurred in each ofthese subintervals and the
final estimate of mean cost is derived by summing over these intervals. The advantage ofthe latter
method over the former is that an individual is considered uncensored in a given interval whenever
the individual’s censoring time exceeds the end of the interval. Consequently, there is an increase in
the cost information being used by this estimator, as individuals who were treated as censored by
the first approach not having failed by the end ofthe study and whose cost information was thus not
used in the estimation process will be now uncensored in some of the intervals of the partition in
which their costs will contribute to the estimates. Each ofthese estimators is accompanied by an
improved alternative that attempts to increase efficiency in the estimates through use of some
functional of'the cost history process that allows recovery of information lost due to censoring.
Under independent censoring all four estimators are shown to be consistent and variance estimators
are analytically derived by invoking martingale convergence theorems. In addition to the theory of

stochastic processes and martingales which provides the mathematical framework for studying the
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statistical properties of all the above estimators, the study of efficiency of the improved Bang and
Tsiatis estimators is also based on the general theory of semiparametric models when data are

missing at random.

Although the theoretical investigation of'the estimators resulted in general justification for their use
in deriving estimates of medical costs in the presence of censoring, varying performance patterns
emerged when these were applied to heavily censored data. Specifically, the Lin et al and the Bang
and Tsiatis estimators which only use cost information from the uncensored individuals displayed
poor performance at high levels of censoring. In both cases this is due to the degree of censoring
which has the following consequences. In the first case the high degree of censoring restricts the
number of individuals who contribute cost information to each interval of the partition resulting in
an estimated average interval cost that is not representative of the true expected cost in the interval.
In the second case, the heavy censoring observed towards the end ofthe study period results in the
estimated probability of an individual not being censored reaching extremely low values.
Consequently the inverse of these probability values, which enter the estimating equations as the
weights attempting to account for censoring, result in extremely inflated values of weighted costs

whose impact on the final cost estimate is distortionary.

In contrast, the Lin et al and the Bang and Tsiatis estimators that use intermediate cost history from
all individuals in the study performed adequately under the same censoring conditions. With respect
to the improved set of estimators proposed by Bang and Tsiatis, contrary to what was anticipated
from the theory, they both exhibited very poor performance and were completely unstable at the
levels of censoring considered. Additional analysis investigated the impact of various levels of
censoring on the estimators’ performance controlling for other factors and the results confirmed the
above findings with the two adequately performing estimators remaining stable under all

circumstances and the remaining estimators becoming increasingly unstable as censoring increased.

The idea underlying both best performing estimators is the partitioning ofthe study period into
subintervals to allow incorporation of individual intermediate cost histories in the estimating
equations, which are subsequently weighted by an estimated probability that accounts for the
presence of censoring. The estimators differ both in the choice ofthis weight and in the interval
costs that are adjusted by it. In the estimator by Lin et al the weight is the Kaplan-Meier probability
of survival to the start of the interval that adjusts estimates of mean cost in the interval, whereas the
Bang and Tsiatis partitioned estimator uses the inverse of the probability of an individual not being
censored evaluated at a given point in time to adjust individual observed costs in the interval. On
the basis that both approaches require the same amount of cost information but consistency ofthe
second estimator is independent of the pattern ofthe censoring distribution, the latter estimator

becomes the preferred alternative.

152



The analysis therefore identified estimators of mean cost whose performance is deemed satisfactory
under extreme censoring conditions. Under these circumstances and given that even though such
estimators are not assumption free they involve fewer assumptions compared to parametric
alternatives, they are likely to be the preferred estimation technique. When interest extends however
beyond the maximum time for which data is available or when questions regarding the effect of
covariates on cost arise, parametric models become a necessary alternative. Clearly for such models

to provide an appropriate alternative, censoring must be accounted for.

Naturally a first candidate in this category would be the classical linear regression model with cost
forming the response variable but such an approach is known to yield biased estimates when the
outcome variable is drawn from a censored distribution regardless ofthe application of interest. The
naive solution of estimating the regression parameters by completely discarding the censored cases
from the estimation process is also biased with the degree of bias increasing as the proportion of
censored observations increases. This together with the failure of parametric regression models
traditionally used in the analysis of time to event data to account for censoring in the cost estimates
due to informative censoring has led to two alternative regression methodologies within the context

of parametric censored cost analysis.

The first of these methodologies introduced by Carides et al (2000) assumes a relationship between
cost and failure time and involves two stages in deriving estimates of mean cost. In the first stage of
the estimation process the expected cost at any given point in time is estimated as a function of
failure time and in the second stage the estimated expected costs at given points in time are
weighted by the Kaplan-Meier probability of death at these points in time. The estimate of mean
total cost over the duration of interest is then derived as the sum over time ofthese weighted
individual cost estimates. A regression approach is used to derive the expected costs where only
uncensored individuals contribute cost information in order to avoid the bias in the regression
parameter estimates imparted by censoring. Alternative parametric assumptions can be made
regarding the relationship between cost and survival time depending on the data under
consideration. Due to the consistency of the Kaplan-Meier estimator, consistency ofthe proposed
estimator is ensured if the regression model specifying the relationship between cost and failure

time is consistently estimated.

The second parametric alternative was introduced by Lin (2000) and assumes a regression model in
which cost is linearly related to a set of covariates of interest. The method derives estimates of the
regression parameters accounting for the presence of censoring and is not restricted by the
censoring pattern. Two estimators result from this approach. The first uses the individual total
accumulated costs at the individual’s point of death or censoring while the second makes use of
multiple cost observations on each subject obtained at various points in time over the study period.
The main advantage ofthe latter estimator is an increase in efficiency by allowing use of cost

information that is not used by the preceding estimator. In both cases the estimates ofthe regression
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parameters are adjusted for censoring by incorporating the inverse of the probability of an
individual not being censored evaluated at the point of'the individual observed cost in the
estimating equations. The approach derives consistent estimates for the regression parameters and

martingale theory provides asymptotic covariance matrix estimates.

Assessment of the estimators’ performance under the censoring conditions described above was
based on comparing the resultant estimates with the respective estimates derived from the best non-
parametric estimators. The Carides et al estimator resulted in biased estimates for all
parameterisations considered for the relationship between cost and failure time. The results
indicated that the major source of bias was the high degree of censoring rather than a potential
misspecification ofthe regression model. Given that under this approach bias in the cost estimates
arises from bias in the estimates ofthe regression parameters, it is not surprising that the estimated
coefficients do not reflect the true parameter values when their derivation was based on only 18% of
the observed data which constituted the uncensored subset. Therefore, although such an approach is
appealing on the basis that it attempts to model the time pattern of cost, it is of limited value at high
levels of censoring. Given the potential value of methods that allow extrapolation of cost beyond
the study period development of parametric models that successfully do so under conditions of

heavy censoring appears to be a fruitful area for future research.

Concentrating on the Lin regression methodology, the approach using cost information solely from
the complete cases yielded biased estimates of cost as expected given the limited amount of cost
information entering the estimation process, while the approach using information on individual
cost histories resulted in estimates that were very close to the ones derived from the best performing
non-parametric methods which also use information on the individual cost history process. This
result indicates that incorporation of covariate information in the estimation did not improve upon
the cost estimates when these were compared to the ones derived from the best performing non-
parametric estimators. Such a finding however is not meant to undermine the validity and
usefulness of this particular regression methodology in modelling censored costs. It is rather the
case that the covariates considered in the particular application did not provide any additional
information in explaining cost which in turn implies the lack of any additional gain in adopting this
methodology in deriving cost estimates compared to a non-parametric alternative. In general
however assessment of the impact of individual covariates on cost is likely to be of major
importance not least because it allows generalising the study results to different patient populations
defined by different covariate values. The implication for the data collection process alongside a
clinical trial is then that at the design stage of such a study identification of covariates likely to

explain cost should be pursued.

Although within the context of this particular application there is no gain in adopting a parametric
approach over a consistent non-parametric estimator especially given that a parametric

methodology by definition involves a greater number of assumptions compared to a non-parametric
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alternative, the findings reached from the investigation ofthe Lin regression methodology provide
further insight into the general issue of cost estimation in the presence of censoring in the following
manner. Aside from identifying a regression methodology which performs well under extreme
censoring conditions, the analysis strengthens the validity of the main conclusion reached in the
non-parametric analysis. That is, in general weighting the complete observations by the inverse of
the probability of an observation not being censored in deriving cost estimates provides an effective
means for handling the presence of censoring. Nevertheless under conditions of heavy censoring the
success of such a method will also be subject to the amount of available information on the cost
history process as this will in turn determine the degree of retrieval of cost information missing due
to censoring. The implication for the design ofthe clinical study is that regardless of whether the
statistical methodology to be employed in the analysis of cost data under conditions of censoring is
of a parametric or non-parametric nature, effort should be made to record cost information at
intermediate points in time over the study duration. The findings derived from the preceding
analysis provide conclusive evidence in support of this requirement with the value of'the available

information on the cost history process increasing as the degree of censoring increases.

To conclude, all aspects of the investigation undertaken in this thesis signify the importance that the
level of cost information imparts to the study of the distribution of treatment cost. Normally cost
information will be incomplete to differing degrees and for a variety ofreasons. The issue then
becomes to identify the most appropriate methodology for deriving consistent estimates of cost
when information is missing. The choice between alternative methods narrows as the degree of
incompleteness becomes higher. At the levels of incompleteness considered in the preceding
analysis when cost information is missing due to censoring, the general conclusion is consistent
with that reached in similar investigations of censored data within different analytical contexts.
However additional concerns were raised by the present analysis mainly due to the extreme
censoring levels which were not an issue in the few existing studies of censored cost data. More
specifically, the effectiveness of the inverse of the probability of non-missingness in adjusting
estimates of the statistics of interest for censoring is confirmed within the context of censored cost
data analysis. The same probability weight has been used in numerous applications in an attempt to
adjust estimates for missingness including the study of censored failure times, adjusting regression
coefficients for missingness in the data, studying semiparametric regression models in the presence
of covariate dependent censoring, and estimating the distribution of quality adjusted survival time
under conditions of censoring. In all these applications use ofthe inverse ofthe probability of
inclusion in the estimating equations results in consistent estimators for the statistics of interest
while adjusting for missingness. The same general finding emerges from the analysis undertaken in
this thesis but under conditions. When the level of censoring is too high the specific weight is
necessary but not sufficient in adjusting the estimates for the particular type of missingness. In these
circumstances knowledge ofthe history ofthe process under study proves a determining factor in

the performance ofthe estimator. The proposed methodology then becomes both necessary and
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sufficient and derives consistent estimates of medical cost accounting for the missingness in the

data due to censoring even when censoring reaches extreme levels.
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Appendix A.2.1. Review of the economic literature on type 2 diabetes

As stated in chapter 1the empirical analysis in chapters 4 and 5 was based on the UKPDS trial data
which assessed whether intensive policy delayed diabetes related mortality and the onset and
progression of diabetic complications compared to conventional policy in a population ofnewly
diagnosed type 2 diabetic patients. The aim ofthe review chapter was to provide general
background information on a number of methodological issues arising in the collection and analysis
of cost data which are considered in detail in the following chapters. Given that interest in the thesis
is in methodological aspects of general applicability that are not restricted to a particular disease
area, discussion of'the economic literature in the area of diabetes was deemed to be of secondary
importance. An overview of this literature is thus presented below for completeness purposes. In
fact, as will be shown, there have been relatively few economic analyses undertaken in this clinical
area even though this is a relatively prevalent disease. Moreover in accordance with the findings of
Briggs and Gray (1998) discussed above, the limited degree of statistical analysis undertaken within
economic evaluation appears to be true within this disease area. Given the overriding concern with
censored cost data it is also important to note that none of the studies reviewed below account for
censoring in their analyses.

The economics of screening and treatment in type 2 diabetes

Over a relatively recent period there has been a vast improvement in the understanding of the basic
aetiology, epidemiology and treatment of diabetes mellitus. This chronic metabolic disorder which
occurs when the body is unable to control blood glucose levels efficiently is classified into two
main types. Type 1 diabetes, arising from chronic failure of insulin secretion and requiring insulin
therapy, is commonly associated with children and individuals under the age 0f40. Type 2 diabetes,
common in the elderly and certain ethnic populations, is caused by defective insulin secretion and
action and is treated through dietary control and drugs. A third and less common form is gestational
diabetes and results from complications during pregnancy. Type 2 diabetes has the highest
prevalence with over 75 per cent of all diabetic patients being classified as type 2 (Harris, 1996).
Information on all types of manifestation is difficult to acquire because of the chronic, long-term
nature of the disease, the large range ofrisk factors and the many associated complications.
Knowledge has improved with the collection of basic survey data on a range of populations
(Alberti, 1993; Alwin and King, 1995; King and Rewers, 1993), by greater awareness ofthe
attributable risks of comorbidities resulting from diabetes and through a number of clinical trials
which have followed individuals over time to defined clinical end-points (UKPDS 1998; Ohkubo et
al, 1995). Such trials have typically defined diabetes as a fasting plasma blood glucose level greater
than 6mmol/l on at least two occasions.

As epidemiological and clinical information has improved, there has been a greater emphasis placed
on the economic consequences of the disease. This is not surprising given the magnitude ofthe
economic impact that this particular disease has on individuals and health systems. As the illness
progresses the range and prevalence of complications also increase. Any therapy whose aim is to
slow disease progression, thereby delaying the onset of complications, is therefore likely to be of
major clinical and economic benefit. Consequently one of the main research questions is whether
intensified management of type 2 diabetes is effective and, if so, cost-effective.

The aim here is to present a systematic review ofthe literature on the economics of screening and
treatment in type 2 diabetes with emphasis on cost of illness and cost-effectiveness studies. This
systematic review is supplemented by an overview of some ofthe main findings in the literature
relating to the cost-effectiveness oftreating type 2 diabetic complications. The review is structured
as follows. A discussion ofthe methods employed in identifying the relevant literature and the
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criteria used for selecting the studies for inclusion is presented first. Subsequently the main findings
ofthe individual studies under review are reported and these are followed by a discussion ofthe
main issues identified within this literature. Finally there is a short discussion ofthe literature
related to the economics oftype 2 diabetic complications.

Methods

A search ofthe literature dating back to 1995 was undertaken. The justification for the choice of
this date is that recent epidemiological and clinical data have had a dramatic impact on the general
knowledge of diabetes and treatment patterns have subsequently been changing significantly.
Moreover the incidence and prevalence of diabetes, in particular type 2 diabetes, appear to have
been increasing over the recent past. Finally the evidence on cost-effectiveness of type 2 diabetes
treatment interventions prior to this date was covered in a review by Gulliford (1997), specifically
within the UK by Marks (1995) and more generally by Jonsson et al (1995). Computerised
searches were used to identify articles on the economics of diabetes. MEDLINE and the Social
Sciences Citation Index were the primary source databases. Search terms included “diabetes
mellitus”, “diabetes”, “economics”, “economic evaluation”, “cost-effectiveness”, “cost” and “cost-
benefit”. The web site http://www .pitt.edu/~tjs/costrefs.html, dedicated to referencing economic
literature relating to diabetes, was also searched. In addition the references of each individual article
were hand searched. While the initial search identified over 300 studies the vast majority of these
were excluded as the analysis was not specific to type 2 diabetes or its complications. The 58
remaining articles were then examined for duplication, lack of analytical content and general
suitability leaving less than 20 studies forming the core ofthis review. The inclusion criteria were
that all studies undertake an economic analysis oftype 2 diabetes alone or that there was a clear
distinction of'the type 2 population from the general diabetic population. Exclusion criteria were
based on whether or not the individual studies were based solely on secondary data, whether
findings relating to type 2 diabetes could be distinguished from general results (i.e. results relating
to diabetes mellitus in general), whether budgetary considerations alone were discussed and
whether an economic analysis was reported. Articles were then classified into two main categories:
those dealing with the cost/burden oftype 2 diabetes and those concerned with economic
evaluations oftype 2 diabetes interventions.

The review ofthe economic studies relating to diabetic complications is not considered to be
systematic as a number of articles were identified which presented results on diabetes mellitus
generally without differentiating between type 1 and type 2 diabetes. Where a clear distinction was
made, the findings have been included here, but this does not mean that the present overview of the
economics of diabetic complication in type 2 diabetics is fully comprehensive.

According to the general format recommended by the U.K. National Health Service Economic
Evaluation Database the following information was extracted, where possible and appropriate, from
each study:

Author (s)

Year of publication

Year used for cost valuation

Country of analysis

Currency used for cost valuation

Alternative considered for evaluation (if relevant)
Cost-effectiveness measure (where relevant)
Patient population

Effectiveness data sources
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Cost elements

Cost data sources

Time horizon

Discount rate

Variables included in sensitivity analysis
Baseline results

Results from sensitivity analysis
Author(s) conclusions

Information was extracted in this manner for ease of exposition. All costs were converted into 1999
prices using a domestic deflator and converted into US$ using the prevailing exchange rate to allow
comparison.

Results

The main findings are reported in Tables A.2.1.1 and A.2.1.2 with textual commentary highlighting
methodological or additional results. The burden and cost-of-illness studies in type 2 diabetes are
presented first (results in Table A.2.1.1). Given that the information gathered is both country- and
time-specific the results are reported largely in a descriptive manner. Following this set ofresults,
the cost-effectiveness literature is discussed (results in Table A.2.1.2). Finally a brief discussion of
the literature on the economics of complications arising from type 2 diabetes is presented in the text
but not in a separate table as it only attempts to be informative rather than comprehensive. More
extensive reviews of cost studies on a number of specific diabetic complications are given by
Ragnarson-Tennvall and Apelqvist (1997), Deerochanawong (1992), Waugh (1989) and Wood
(1990).

Burden of illness studies

It has been reported that type 2 diabetes affected an estimated 110 million individuals worldwide in
1995 and that this would more than double by the year 2010 due to demographic influences
(Zimmet and McCarthy, 1995; Alberti, 1997). Such estimates however rely on susceptible
prevalence figures. It has been estimated that at any given time up to 50 per cent of type 2 diabetic
cases in the population are undiagnosed (Alberti, 1995). The limited although continuously
improving prevalence and incidence data make it difficult to estimate the true patient population.

Even if disease prevalence is established, calculation ofthe burden of illness requires estimation of
the attributable cost arising from associated complications. It is known that diabetes increases the
relative risk of other diseases. The range of complications is well known: retinopathy, nephropathy,
neuropathy and macrovascular disease are all common. The precise attributable risks ofthese
diseases are however not fully established although estimates for a number of complications exist.
The aetiology ofthe disease therefore makes it difficult to assess the true cost ofillness of type 2
diabetes for at least two reasons. First, costs ofillness studies based solely on a primary diagnosis of
type 2 diabetes will considerably underestimate the true resource cost given that they do not take
account ofthe resource cost associated with the treatment of complications. The acknowledged
under-reporting of type 2 diabetes in hospital and mortality statistics exacerbates such
underestimation. Secondly and related to this, the true resource costs associated with the treatment
of complications are best defined as the excess treatment costs incurred by the diabetic population
over and above the costs incurred by a matched cohort population without diabetes.
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Bearing these problems in mind the most straightforward studies in terms of methodology are those
by Henriksson et al (2000) and Evans et al (2000). The first of these studies calculated costs based
on questionnaires concerning resource utilisation over a six-month period within nine primary care
centres in Sweden covering a total of 777 type 2 diabetic patients. These data were factored up to
the Swedish population through the use of prevalence data to give an annual estimate ofthe cost of
type 2 diabetes in Sweden. Prevalence and incidence data on complications were obtained from the
questionnaires and used to estimate the cost of treating the associated complications. These rates
were compared with rates gained from a review ofthe literature. Generally the study prevalence
rates were smaller than the literature based figures making it difficult to verify the study rates.
Overall, the results showed that hospitalisation costs dominated treatment costs amounting to 42 per
cent of the total. Drug costs were 27 per cent of total costs. Drug costs for insulin treated individuals
were twice as high as in those treated with oral antidiabetic agents. Complications had a varying
impact on cost. For individuals with microvascular complications alone the annual cost was ofthe
same order of magnitude as for those with no complications. For the ones with macrovascular
complications alone the annual cost was approximately double the cost ofthose individuals without
complications. Costs for individuals with both microvascular and macrovascular complications
were approximately three fold higher than the costs in those without complications. In a similar vein
the study by Evans et al (2000) used a patient register in a region of Scotland to identify both type 1
and type 2 diabetic patients. Using extrapolation the authors suggest that patients with diabetes
account for approximately 8 per cent ofthe UK drugs budget and of'this 90 per cent of'the
expenditure is attributable to type 2 diabetic patients. The relative risk of drug usage was higher for
type 1diabetes (1.70 for type 2, 2.07 for type 1) but given their lower prevalence the budget impact
was greater for type 2 diabetes.

O’Brien et al (1998) used resource utilisation and unit costs from a wide variety of sources to derive
their estimates. Resource use profiles were designed for a number of complications over lifetime
with the first year costs defined explicitly and subsequent years defined as static states such that
subsequent years were allocated the same cost for each of the complications if this was applicable.
This is obviously a simplification likely to lead to a conservative estimate of costs since it assumes
a constant rate of complication treatment cost over time. Five US state discharge databases were
used to determine the prevalence ofthe complications based on primary diagnosis with diabetes
recorded as a comorbidity. The event cost was dominated by the hospitalisation cost, apart from the
case of ischaemic stroke where hospitalisation cost represented a quarter ofthe event total cost. The
formulation ofthe subsequent annual costs was based on treatment guidelines due to inadequate
published observational studies. The most obvious application ofthis analysis would be to the
population ofthe standard therapy arm of a cost-effectiveness model. The authors point out
however that their approach has a number of limitations arising from the lack of observational
studies on the treatment of'type 2 diabetes and its complications, their assumption that the annual
costs attributed to complications are constant over time and that as treatment technology improves
their estimates of cost will date.

A similar method is used in two related studies (Brown et al, 1999; Brown et al, 1999) that are
based on observational data. The first study considers newly diagnosed type 2 HMO patients
matched with a control cohort over 8§ years of follow-up. Observational data were based on clinical
records and limited to the HMO scheme. As outpatient and other ancillary service use were not
directly recorded, resource utilisation ofthese services was estimated by a regression model.
Broadly speaking the annual costs ofthe diabetic population were approximately double those of
the matched case controls. After years one and two costs fell to their lowest level and then increased
steadily over the remaining study period by 65 per cent at the end of the study compared to the
initial year. Costs were dominated by in-patient treatment (46 per cent of the total). Cardiac and
cerebrovascular complications were 23 per cent of total incremental costs where the increment was
defined as costs attributable to the diabetic population over and above the matched control costs.
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An interesting finding was that hospital admissions unrelated to diabetes accounted for more than
half ofthe incremental cost over the study period and consequently for most ofthe growth in these
costs over time. The authors concluded that the more costly stages of treatment for diabetic
complications occur after an 8-year lead-time. The authors also state that their cost figures are lower
than other reported estimates and attribute this to the use of costs rather than charges and the use of
cost-effective strategies utilised by the particular HMO.

In the second study undertaken by Brown et al (1999) a similar population was used and
incremental costs over and above a matched control population were calculated for the differing
stages of treatment for cardiovascular and renal complications. The estimates were based on
regression analysis. Type 2 diabetic patients without complications had an average annual treatment
cost 0f $2,263. The incremental cost for cardiovascular disease was approximately $1,210, making
total average annual treatment cost equal to $3,472 if the patient was on drug therapy alone for
cardiovascular disease and rising to approximately an annual total treatment costs of $8,235 ifa
major cardiovascular event was suffered. Type 2 diabetic patients with renal disease were estimated
to have annual total treatment costs of $3,750, $4,428 and $17,445 (all 1999 prices) for early onset,
advanced renal dysfunction and chronic renal failure respectively. These were higher estimates than
earlier studies had reported which according to the authors was due to a better representation of
incremental costs through the modelling approach than reliance purely on observational data on the
basis that observational studies only attribute costs after clinical identification ofthe complications.
The modelling approach, according to the authors, is better able to identify the increased costs
incurred prior to clinical (or labelled) identification as a model provides more accurate estimates
across the full term oftreatment. Clinical understanding ofthe disease however did not support
some of'the model predictions. Females for instance had slightly higher predicted treatment costs in
the model than males which is not what clinical evidence would suggest.

Economic evaluation of treatment interventions for type 2 diabetes

There are relatively few studies on the cost-effectiveness of interventions for type 2 diabetes as
shown in Table A.2.2. This reflects as stated above the long observation time required to track
disease progression and complications, the difficulties in establishing optimal standard therapies
and the relatively few long-term clinical studies that assess interventions in terms of final outcome.
The economic evaluation literature mainly addresses the following questions: is screening for type 2
diabetes cost-effective; are there primary prevention strategies which are cost-effective; is intensive
therapy cost-effective; is early initiation of insulin therapy cost-effective. In general, each one of
these questions has been addressed in one study only reflecting the limited extent of the literature in
this area.

Given the under-reporting of type 2 diabetes and the extensive range of complications, screening
and primary prevention clearly become policy options. The Centre for Disease Control and
Prevention of Diabetes Cost-effectiveness Group ran a Monte Carlo simulation model to estimate
the lifetime cost-effectiveness of a one-year opportunistic screening programme (Engelgau et al,
1998). Cost-effectiveness was estimated for a cohort of individuals aged 25 years and over. This
opportunistic programme was compared with the current US guidelines which recommend that
screening be initiated at 45 years of age. The model predicted that screening in the younger cohorts
reduced microvascular complications. The health benefits were large in terms of life years gained,
and more than doubled when measured in terms of quality adjusted life years (QALYSs). Screening
was more cost-effective when applied to the youngest age groups as they had the most QALY's to
gain and to ethnic minorities as these have a higher incidence ofthe disease. The results were
sensitive to the assumptions made and should therefore be taken as indicative rather than
authoritative.
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Segal et al (1998) used a similar modelling approach in the analysis of primary prevention
programmes in Australia. Given that particular populations are at higher risk of type 2 diabetes and
that incidence increases with age this study considered whether particular prevention programmes
would be cost-effective from a health service provider perspective. The programmes ranged from
intensive dietary therapy and behavioural change in obese men through surgical intervention for
obesity to a media campaign aimed at informing the general population of disease symptoms and
progression. Transition matrices were formed across three states: normal glucose tolerance,
impaired glucose tolerance and non-insulin dependent diabetes. The transition probabilities were
based on a Swedish study ofintensive weight loss and fitness enhancement programme for
overweight individuals and mortality rates were obtained from epidemiological literature. Under a
range of assumptions all primary prevention programmes considered were stated to be “highly cost-
effective”. This result arose because the low provider incurred cost in the majority of'the prevention
programmes was recouped in cost-offsets due to delay or avoidance of complications. Even when
success rates were reduced to relatively low levels the cost-effectiveness of the majority of
programmes was retained. As the authors state the cost-effectiveness of these programmes would be
improved greatly if quality of life was incorporated into the outcome measure. The model is
characterised as relatively simple by the authors with single transition matrices used to progress
each cohort to different diabetic states. There are only three transition probabilities which influence
the outcomes and this does not adequately reflect the observed complex progression of the disease.
Long-term clinical studies show that glucose intolerance is an inherently dynamic property
associated with increasing baseline levels over time.

Until recently the standard clinical practice oftreating type 2 diabetes has been based on dietary
control initiated at diagnosis and altered to drug therapy as glucose intolerability increases and
complications manifest. This has recently been challenged and the effectiveness and cost-
effectiveness of intensive therapy and early introduction of insulin have been studied. Given the
importance of dietary advice, Franz et al (1995) compared basic nutritional advice to advice based
on formal guidelines. The cost-effectiveness of this study was based on a trial that failed to show a
statistical difference in the clinical outcomes which were assessed in terms of fasting plasma
glucose levels and HbAic levels. Nevertheless, the insignificant difference in the clinical outcomes
resulted in similar cost-effectiveness ratios. The authors suggested that the lack ofany conclusive
finding might have been a reflection of the short time period (six months) considered.

At the other end of'the treatment spectrum is the evaluation of insulin therapy in the type 2 diabetic
population. The Kumamoto clinical study (Wake et al, 2000) investigated whether intensive
glycaemic control based on multiple insulin injections (MIT) reduces the frequency or severity of
microvascular complications compared to conventional insulin therapy (CIT) in this population. On
entry, patients were classified into a primary prevention group who had no evidence ofretinopathy
or microalbuminuria and to a secondary prevention group with mild retinopathy and
microalbuminuria. Over a six-year period the cumulative percentages ofthe development and
progression ofretinopathy and nephropathy were 7.7 per cent for the MIT group and 32 per cent for
the CIT group in the primary prevention sub-population, and 19.2 per cent for the MIT group and
44 per cent for the CIT group in the secondary prevention sub-population. The population was
subsequently followed-up for a total often years. Generally the clinical trial results were maintained
over time. MIT prolonged the number ofyears free of diabetic complications (for example 2 years
for progression ofretinopathy and 2.2 years for progression of clinical neuropathy). Associated total
treatment costs over the ten-year period were also calculated and the MIT cost was shown to be
$1,233 (1999 prices) less expensive than the CIT therapy due to the greater cost offsets achieved.
On this basis the authors conclude that intensive treatment appears to be justified.

A study of a more comprehensive treatment package is given by Eastman et al (1997, 1997). This is
based on a simulation model which considered an incident population cohort oftype 2 diabetic
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patients with disease progression modelled over lifetime focussing on fourteen disease stages
encompassing microvascular and macrovascular disease. The data used to populate the model were
taken from various US epidemiological studies. Glycaemic control was introduced through a one-
offreduction in incidence rates and then risk gradients, taken from the Diabetes Control and
Complications Trial study in type 1diabetes (DCCT), were applied over time. Standard care costs
were based on treatment patterns prior to the DCCT study and comprehensive care was based on the
treatment patterns associated with two previously undertaken clinical trials. The measure of
effectiveness was defined to be a QALY with life years estimated by the model and weighted by
quality of life weights obtained from the literature. The results ofthe model suggest that
comprehensive care reduces end-stage microvascular and neuropathic conditions by 67 to 87 per
cent. Under baseline assumptions cardiovascular disease increased by 3 per cent as glycaemic
control was assumed not to affect this disease. The incremental cost per QALY under
comprehensive therapy was estimated to be $17,809 (1999 prices). This was sensitive to age at
onset of disease but remained below $55,000 per QALY if age at onset was less than 50. For the
cohort developing diabetes at 75 years of age the cost per QALY rose considerably to $248,844.
Ethnicity also had a marked impact on the incremental cost-effectiveness ratio and when the rate of
renal failure in the standard care arm decreased the cost-effectiveness ratio increased as cost-offsets
in this arm were lower (a 25 per cent reduction increased the cost per QALY to $23,535).
Consequently, the use of ACE inhibitors in reducing renal failure (with no concomitant impact on
cardiovascular disease) while effective and inexpensive increased the cost per QALY further to
$26,142. If glycaemic control is assumed to affect cardiovascular disease (cardiovascular disease
attributable to diabetes falling by 20 per cent per 10 per cent reduction in HbAic) the cost per
QALY falls to $13,097. The general conclusions reached are that cost-effectiveness is greatest in
the younger age groups even though treatment duration is longer and in minority populations. These
conclusions reflect the level of effectiveness and cost-offsets to be gained over time through early
detection and targeting ofhigh risk sub-populations. The authors stress the conservative nature of
their results particularly with regards to cardiovascular disease. Notwithstanding these conservative
assumptions most sensitivity analyses show comprehensive therapy to be “in the range of
interventions generally considered to be cost-effective” (Eastman et al, 1997).

By far the greatest improvement in knowledge concerning the treatment and progression oftype 2
diabetes has come from the UK Prospective Diabetes Study (UKPDS 33, 1998). As described in
chapter 1, this was a prospective randomised control trial in which 5102 newly diagnosed type 2
diabetic patients were followed over a median follow-up often years. After initial dietary treatment
4209 patients with baseline fasting plasma glucose concentrations of 6.1 to 15 mmol/l1 who had no
symptoms of hyperglycaemia entered the trial. Ofthese, 342 overweight patients were randomised
to metformin, with the remainder (3867) entering the main randomisation and allocated either to
conventional policy (mainly diet, 1138) or intensive policy with insulin (1156) or sulphonylureas
(1573). Conventional policy had the aim of maintaining patients free of diabetic symptoms and with
fasting plasma glucose concentration below 15 mmol/1, while intensive policy had the aim of
maintaining fasting plasma glucose concentration below 6 mmol/1. The trial results showed that
although baseline levels of fasting plasma glucose concentration increased over time in all groups,
intensive therapy significantly reduced the risk of any diabetes related end-point by 12 per cent. The
trial did not show a statistically significant difference in diabetes related deaths or all cause
mortality over the study period.

The results ofthe economic evaluation based on the main randomisation data reported the
incremental cost per diabetes event free year gained, as mortality differences were not statistically
significant (UKPDS 41, 2000). Time to first diabetes related endpoint formed the basis of this
measure. A competing risk simulation model was used to predict the time to first event for those
individuals who had not experienced a diabetes related endpoint over the trial period. Measurements
of direct provider cost were based on the trial data and these were supplemented with predicted
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costs for non-inpatient resource use derived from regression analysis based on a cross-sectional
questionnaire obtained from trial participants. The resultant cost effectiveness ratios were
accompanied by confidence interval estimates based on Fieller’s method and were compared with
bootstrap estimates for consistency given the skewed nature of the cost data. While some of the
individual components of cost were found to be statistically significantly different between the
intensive and conventional policies, the overall difference in total treatment costs was not
statistically significant. When trial protocol driven costs were replaced with estimates of costs likely
to be incurred in a standard clinical practice setting, the incremental cost effectiveness ratio was
estimated to be $1,458 (1999 prices) with both costs and effects discounted at the 6 per cent rate as
recommended by the UK government. Overall the intensive therapy appeared to be cost-effective
over arange of assumptions. Acceptability curves reported that there was a 10 per cent probability
that the intensive therapy was cost saving, a 50 per cent probability that the cost per diabetes related
endpoint free year lay below (or above) $1,458, and an 80 per cent probability that the ratio was less
than $3,132.

As noted above the UKPDS included a number of overweight patients, 342 of whom were further
randomised to metformin and 411 were allocated to conventional policy achieved primarily through
diet (UKPDS 51, 2000). In the conventional policy group the aim was to achieve the lowest
possible fasting plasma glucose level attainable with diet alone and in the intensive policy group the
aim was a fasting plasma glucose level of less than 6 mmol/1 achieved by increasing dosage of
metformin (from 500 to 2550 mg per day) as required. If fasting plasma glucose concentration
became greater than 15mmol/l or hyperglycaemic symptoms developed on the maximum tolerated
dosage of metformin then glibenclamide was administered. Ifhyperglycaemia persisted, insulin
therapy was initiated. Resource use data were taken from the trial but missing in-patient records for
approximately 16 per cent of the cases meant that length ofhospital stay was imputed for these
patients. As in the main UKPDS economic evaluation non-inpatient resource use was estimated
from a regression model based on a cross-sectional questionnaire data. The outcome measure was
life years gained based on the differences in mortality recorded within the trial and on a model that
simulated life expectancy in those individuals who were still alive at the end of the trial assuming
that hazard rates were the same between the groups. While the metformin group patients were
associated with higher treatment costs they also experienced greater cost-offsets mainly due to
shorter length of hospital stay. This coupled with a gain in life expectancy of one year in the
metformin group, resulted in this therapy being effective and cost saving on average. The results
also reported the incremental cost-effectiveness ratio using acceptability curves and showed that for
the metformin policy there was a 70 per cent probability that it is cost-saving and a greater than 95
per cent probability that the cost-effectiveness ratio is less than $2,259. The reduction in costs of
complications will therefore in most cases outweigh the higher treatment costs.

The UKPDS had a further randomisation trial embedded within it. The Hypertension in Diabetes
Study (HDS) randomised a total of 1148 type 2 diabetic hypertensive patients to tight or less tight
blood pressure control. The aim of the tight control policy was to achieve blood pressure <150/<85
mm Hg using the ACE inhibitor captopril (25 mg twice daily increasing to 50 mg twice daily if
required) or the (3-blocker atenolol (50 mg daily increasing to 100 mg daily if required). The aim of
the less tight control policy was initially to achieve blood pressure <200/105 mm Hg, which was
modified in 1992 to <180/<105mm Hg after publication of other clinical trial findings in non-
diabetic hypertensive patients. Clinical data were analysed as in the main economic evaluation of
the UKPDS and years free of diabetes related endpoint was the defined outcome measure (UKPDS
40, 1998). Life years gained were also calculated based on a parametric model which predicted the
hazard rate for fatal and non-fatal cardiac events, the hazard for fatal and non-fatal strokes and the
hazard for all other deaths. Incremental cost-effectiveness ratios and associated confidence
intervals, calculated in the same manner as the main UKPDS analysis, were reported and
acceptability curves were presented. There was no significant difference in the total cost between
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the tight and the less tight blood pressure control policies even when standard practice resource use
patterns replaced trial protocol driven patterns. The incremental cost per additional year free of
diabetes related endpoints was $1,312 (costs and effects discounted at 6 per cent; 1999 prices) and
the incremental cost per life year gained was $900. The acceptability curve associated with the
incremental cost per additional year free of diabetes related endpoints showed a 33 per cent
probability that tight blood pressure control was cost saving, a 50 per cent probability that the ratio
lay below $1,312, and a two per cent probability that it was not cost effective. Similar results were
reached for the cost per life year gained.

A related study by the same investigators assessed the incremental cost effectiveness ofthe ACE
inhibitor captopril versus the p-blocker atenolol as the two competing tight blood pressure control
policies in hypertensive type 2 diabetic patients (UKPDS 54, 2001). This study was based on the
main Hypertension in Diabetes Study and performed the secondary comparisons between the two
blood pressure control agents assessing patients on the ACE inhibitor (400 patients) and those on P-
blocker (358 patients). A similar methodological approach as adopted in the main hypertension
study was undertaken with costs calculated in a similar manner and life years gained estimated
through the simulation model mentioned above. The results showed that 66 per cent of patients
receiving the p-blocker received additional glucose lowering treatment four years after
randomisation compared to 53 per cent in the ACE inhibitor group and that a difference was
maintained over time. This led to the mean cost of antidiabetic drugs in the P-blocker group being
higher over time offsetting the higher cost ofthe ACE inhibitor. There was also a higher cost of
hospitalisations in the ACE inhibitor group leading to overall treatment costs being statistically
significantly higher for ACE inhibitors than for p-blocker. There was no statistical difference in
outcomes with the P-blocker therapy performing slightly better than the ACE inhibitor. Given no
difference in effect but a significant difference in costs of $1201 per patient (1999 prices), the
results of the cost-effectiveness analysis favoured p-blocker over ACE inhibitor as the preferred
tight blood pressure control policy.

Economic evaluation of complications associated with type 2 diabetes

As stated previously the literature concerned with the cost-effectiveness of interventions aimed at
diabetic complications in general has not differentiated between type 1 and type 2 diabetes. A broad
conclusion is that screening and treatment of complications is cost-effective. The results reported
below relate to studies which have either specifically targeted the type 2 diabetic population or have
reported results within this population. As mentioned earlier, this part of the review is not
comprehensive but rather highlights general findings using specific studies as examples.

There has been some controversy over the cost-effectiveness of screening for diabetic retinopathy.
Early studies were criticised for utilising sub-optimal screening technologies and not using
opportunistic screening as a comparator (Buxton et al, 1991). A recent UK study assessed the
incremental cost-effectiveness of a systematic screening programme compared to an opportunistic
programme (James et al, 2000). This analysis was based on an earlier clinical study and the
incremental cost-effectiveness was calculated as the additional cost required to generate each
additional true positive case identified after replacing the opportunistic programme with the
systematic one. The base case results report an incremental cost-effectiveness of complete
replacement of the opportunistic programme as being $39 (1999 prices). One of the controversies
underlying the studies is the baseline prevalence. This study assumed a prevalence of approximately
14 per cent while earlier studies had assumed prevalence rates to be about one third ofthis. This is
important as prevalence will fall to the incidence rate over time with a systematic screening
programme. The study reported that while the incremental cost-effectiveness ratios rose over time,
the systematic programme was always more cost-effective than the opportunistic programme. These
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results were similar to the results of an earlier US study (Lairson et al, 1992). Javitt and Aiello
(1996) used an epidemiological model to extrapolate screening results into treatment effectiveness
and subsequently into the cost per QALY. Ophthalmic screening and treatment for type 2 diabetic
patients ranged from $3,198 to $3,849 (1999 prices) per QALY compared to no treatment
depending on whether insulin was used or not. A similar criticism may be levelled at this study,
that is that the true alternative ought to be opportunistic screening. These results suggest that
systematic screening alone as well as a combined screening and treatment programme are relatively
cost-effective. A Dutch study by Crijns et al, 1999 considered the optimal timing of screening
intervals using a simulation model to calculate the marginal cost ofno screening versus screening
once a year if diabetic retinopathy is diagnosed, twice a year if macular oedema is diagnosed and
four times a year if proliferative diabetic retinopathy is diagnosed. Three further scenarios
decreased the frequency of screening. Direct and indirect costs were considered for both type 1 and
type 2 diabetic patients. The results relating to type 2 diabetes showed that the indirect costs were of
little consequence while the direct costs per year ofrealised sight gained were considered low
compared to other interventions with optimal initiation of screening associated with the youngest
age cohort considered (35 years ofage). Generally the results were similar to those gained by Javitt
and Aiello (1996) and support that screening is cost-effective relative to other interventions.

It is estimated that between 5 and 15 per cent of diabetic patients have ulceration oftheir feet with
approximately 1to 20 per cent requiring amputation (Ragnarson-Tennvall et al, 1997; Krentz et al,
1997; Ollendorfet al, 1998). Difficulty is encountered in defining precisely some of the conditions
that lead to diabetic foot disorders, neuropathy in particular. It has been estimated that some 50 per
cent of amputations are avoidable and one study has suggested that considerable savings may be
attained through the adoption ofprevention programmes (Ollendorfet al, 1998). The costs of
treatment, particularly for amputation, (van Houtum, 1995) are known to increase considerably as
complexity increases. Panayiotopoulos et al (1997) showed that there was no statistically significant
difference in surgical outcome between diabetic and non-diabetic patients, although the diabetic
patients tended to perform worse. In contrast, the diabetic population undergoing surgery had
significantly higher costs compared to the non-diabetic population. Total cost for the diabetic
population was $12,823 (1999 prices) compared to $8,868 for the non-diabetic population. With
regards to less severe diabetic foot infections Eckman et al (1995) found little difference in the cost-
effectiveness across a range of strategies.

Recently interest has turned to the analysis of treatment of diabetic patients at risk of coronary heart
disease. This interest stems not only from the high risk of CHD in the diabetic population but also
from the sub-group analysis of the diabetic population undertaken within the Scandinavian
Simvastatin Survival Study (Herman et al, 1999). In this analysis three sub-groups were identified:
those with normal fasting glucose, those with impaired fasting glucose and those with diabetes.
Each group was analysed comparing the simvastatin arm to a placebo with direct health care
resource utilisation defining the outcome measure. While the study did not differentiate between
type 1 and type 2 diabetes the impaired fasting glucose group can be considered representative of a
mild to moderate type 2 diabetic population. Concentrating on the findings for this group, the study
reports that cardiovascular hospitalisations were reduced by 30 per cent in the simvastatin group
compared to placebo (comparable reduction was 23 per cent in the normal fasting glucose group),
and length ofhospital stay was reduced by 38 per cent (compared to 28 per cent in the normal
fasting glucose group). On average the impaired fasting glucose group showed a decrease in
hospital costs of $4,600 (1999 prices) which offset 74 per cent of'the cost of simvastatin. Indeed
there was a net cost saving for the diabetic sub-group in this respect. Building on this study, but
using a modelling approach, Grover et al (2000) considered the cost-effectiveness of simvastatin
use in primary prevention by comparing a diabetic population without symptomatic CVD to a non-
diabetic population who had CVD. Interest was in whether the treatment of primary prevention
patients at high risk was as cost-effective as secondary prevention. The cost-effectiveness ratio was
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similar in male diabetic patients without CVD to CVD males without diabetes. These results held
across several countries, largely because the cost offsets were low relative to the treatment costs.

Grover et al (2001) also showed similar results when they stratified by different LDL cholesterol

levels.

Banz et al (1998) analysed the impact that bodyweight gain in type 2 diabetic patients had on the
development of CHD. They used data from a clinical trial within a decision analytic approach to
predict the rate of CHD in individuals with weight gain of less than two kilograms over a ten-year
period and with weight gain greater than two kilograms over the same period. The results predicted
a significantly lower rate of CHD (30.3%) in individuals with relatively stable bodyweight
compared to those with bodyweight gain greater than two kilograms over the study period (CHD
rate was predicted to be 38.2%). The study compared further first-line therapy use of glibenclamide,
which has the side-effect of increasing bodyweight, with acarbose, which does not increase
bodyweight. Their findings suggest that although acarbose is four times more expensive than
glibenclamide in the environment studied (Germany), approximately one-third ofthis increase was
offset by the lower CHD event rate associated with acarbose. The authors state that this is a
tentative finding as all bodyweight changes were attributed to the drug therapy.

There is limited evidence of cost-effectiveness in the treatment of type 2 diabetic patients for
nephropathy. One study has extended the modelling oftype 1 diabetic patients treated with
captopril to type 2 diabetic patients (Rodby et al, 1996). The study reported that this treatment
resulted in direct cost savings over lifetime. A study by Golan et al (1999) assessed the cost-
effectiveness of screening for gross proteinuria and microalbuminuria, both assumed to be
predictors of diabetic nephropathy, as well as the use of ACE-inhibitors. The study used a Markov
model which simulated the progression of diabetic nephropathy. The screening strategies were
shown to have higher cost and lower benefit compared to treating all patients with ACE-inhibitors.

Conclusions

As shown in the papers reviewed the costs associated with the treatment of type 2 diabetes increase
over the lifetime of any individual patient. Consequently the cost-offsets arising from delaying the
progression ofthe disease and the development of diabetic complications are substantial. Even
though the more costly diabetic complications such as chronic renal failure are rare, even the less
costly complications incur substantial expenditure given their intrusive nature. Although all these
studies have contributed to the general knowledge of disease progression and associated
complications to differing degrees with the UKPDS providing the most recent and extensive
information, there is still substantial ground to be covered in reaching perfect understanding ofthe
disease itself and in identifying optimal treatment patterns. Even the UKPDS after 11 years of
average follow-up did not show a statistically significant difference in mortality between the two
randomisation groups. A direct consequence ofthe lack of adequate clinical information is the lack
of adequate information on the cost impact ofthe disease which will only be accentuated by
adopting inappropriate analytical techniques or by ignoring specific data problems in the analysis.
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Table A.2.1.1. Cost of illness studies

Author

Year of Publication

Y ear used for cost
valuation

Country where analysis
occurred

Currency used for cost
valuation

Methodology

Alternatives considered
Cost-effectiveness measure

Patient population

Effectiveness data sources

Cost elements

Cost data sources

Time horizon

Discount rate
Variables considered in the

sensitivity analysis

Brown, Nichols, Glauber et
al
1999
1993

Us §

Excess cost-of-illness

n.a.

n.a.

HMO matched newly
diagnosed Type 2 diabetic
and non-diabetic patients
n.a.

Direct health care costs

Internal HM O cost
calculations. Charges for
out-of-HM O direct care.
Discharge data bases for
prevalence oftreatment

up to 8 years

n.a.

n.a.

Brown, Pedula and Bakst

1999
1993

USA

us s

Cohort study

No alternatives

n.a.

HMO Type 2 diabetics over
30 years ofage

n.a.

Annual treatment costs;
costs oftreating
cardiovascular and renal
complications

HMO expenditures on in-
patient stays, out-patient

stays and procedures.

average 5.3 years follow-up

n.a.

n.a.

Evans, MacDonald, Leese

et al
2000
1995
UK
UK £

Cost-of-illness
n.a

n.a

Prevalent diabetic

population

n.a

Drug prescribing costs

Internal Health Authority

costs

one year

n.a

n.a

Henriksson, Agardh, Berne,
et al
2000
1998

Sweden

Swedish Kroner

Cost-of-illness

n.a

n.a

Type 2 diabetics from
selected Swedish health
care centres

n.a

Direct medical costs

Health care expenditures
and questionnaires from
patients and practitioners
on resource utilisation

6 months factored up to 1
year
n.a

n.a

O'Brien, Shomphe,
Kavanagh et al
1998
1996

USA

UsS §

Cost-of-illness

n.a.

n.a.

Type 2 diabetics suffering

complications

n.a.

Direct health care costs

Discharge databases,
clinical guidelines,
government reports, fee
schedules, and literature
review. Cost-to-charge
ratios used.

Defined by the episodic
event

not reported
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Table A.2.1.1. Cost of illness studies (Contd.)

Author

Baseline results

Results from sensitivity

analysis

Brown, Nichols, Glauber et
al

Incremental per annum
costs averaged $2,930
higher for the Type 2
diabetic group than the
non-diabetic group over the
8 year period. Hospital
costs were the highest
component (46%). Primary
and out-patient care
accounted for an average of
26% ofthe costs and drugs
20%. Total costs for the
diabetic population were
approximately double those
for the control population
throughout the period.

Brown, Pedula and Bakst

$2,263 total average annual
treatment cost with no
complications; increasing
to $3,472 with minor
cardiovascular treatment;
and to $8,235 with major
cardiovascular
complication. Total average
annual treatment cost for
Type 2 patients with
abnormal renal function
was $3,750; $4,428 for
those with advanced renal
disease; and $17,445 with
end-stage renal disease

Evans, MacDonald, Leese
et al

Patients with Type 2
diabetes accounted for
6.6% oftotal prescriptions
dispensed, representing
7.1% ofthe cost in the
Health Region (5.5%
excluding antidiabetic
prescriptions). Higher
proportionate drug costs in
nearly all drug categories
ranging from 2.6% higher
(endocrine system) to
10.8% higher
(cardiovascular). Type 2
diabetics were 1.70 times

more likely to be dispensed

a drug item.

Henriksson, Agardh, Berne,
et al

Overall direct costs of
treatment were $613
million. 42% were borne by
the hospital sector;
ambulatory care was 31%;
drug costs 27%; insulin
was approximately 4% of
the total cost

Patient with both macro-
and micro-vascular
complications had
approximately double the
costs ofthose without
complications

O'Brien, Shomphe,
Kavanagh et al

AMI event cost $28,920
(subsequent annual costs
$2,983); Angina event cost
$2,592 (subsequent annual
costs $1,133); Ischemic
stroke event cost $42.,513
(sub. annual cost $9,687);
TIA event $6,494 (sub.
annual $47);
microalbuminuria event
$65 (sub. annual cost $15);
gross proteinuria event $72
(sub. annual cost $24); end-
stage renal dialysis annual
cost $56,164;Background
retinopathy annual cost
$59; macular edema event
$1,151 (sub. annual cost
$59); proliferative diabetic
retinopathy event $ 1,092
(sub. annual cost $59);
blindness annual cost
$3,684; Symptomatic
neuropathy event $228; 1st
LEA event cost $28,150
(sub. annual cost $1,820);
2nd LEA event cost
$28,389)

n.a.
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Table A.2.1.1. Cost of illness studies (Contd.)
Author Brown, Nichols, Glauber et
al

More than 60% of the total

cost in hospital admissions

Author(s) conclusions

and most ofthe annual
growth in costs over the 8
year period was attributable
to admissions not normally
associated with diabetes.
Hospital admissions for
acute complications of
diabetes and for renal,
lower-extremity,
ophthalmic, hypoglycaemic
and infectious
complications accounted
for 13% ofincremental
hospital costs. Cardiac
disease contributed 17% to
total incremental hospital
costs. The low level of
costs compared to other
studies was taken as
representative of using
costs rather than charges. It
was anticipated that costs
would increase
dramatically over time.

Brown, Pedula and Bakst

Renal complications most
expensive, but occur in
only 23% of Type 2
population compared to
cardiovascular
complications (75% ofthe
population). Women have
significantly higher costs.
Age does not affect the cost
oftreating complications. If
co-morbidity of diabetes is
not taken into account there
is an under-estimation of
cost.

Evans, MacDonald, Leese Henriksson, Agardh, Berne,
et al et al
Increased drug utilisation is

high in Type 1 diabetics

compared to Type 2

diabetics. Type 2 diabetics

are higher absolute users as

they are older, and the

prevalence is greater.

Increased drug utilisation

even in drug categories

unrelated to diabetes.

O'Brien, Shomphe,
Kavanagh et al

177



Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes

Author

Year of
Publication
Year used for
cost valuation
Country where
analysis
occurred
Currency used
for cost
valuation
Methodology

Alternatives
considered

Cost-
effectiveness
measure

Eastman,
Javitt, Herman
et al.

1997
1994
USA
US$
Model
Conventional
therapy versus
intensive
therapy
Incremental

cost per QALY

Engelau,

Narayan,

Thompson et al
1998
1995

USA

USS$

Monte Carlo
simulation
model

Opportunistic
screening for
diabetes versus
current practice

Cost per life
years gained;
QALYs

Franz, Splett,

Monk et al
1995
1993

USA

US$

Clinical trial

Basic guidance
on dietary
advice versus
practice
guideline
advice on diet

Change from
baseline fasting
plasma glucose
level and
glycated
haemoglobin

Golan,
Birkmeyer and
Welch

1999

1996

USA

US §

Markov model

Screen for
gross
proteinuria;
Screen for
microalbuminu
ria; treat all
with ACEi

Cost per
QALY

Segal, Dalton
and Richardson

1998

1997

Australia

Aus $

Markov model

Intensive diet
and
behavioural
modification;
surgery for
severe obesity;
group
behavioural
modification
for men;
General
practitioner
advice; media
campaign with
community
support

Life years
gained

UKPDS 40

1998
1997

UK

UK £

Economic
evaluation
alongside
clinical trial
Tight and less
tight control of
hypertensive
Type 2
diabetics

incremental
cost per extra
year oflife free
from diabetic
end point,
incremental
cost per life
year gained

UKPDS 41

2000
1997

UK

UK £

Economic
evaluation
alongside trial

Conventional
versus
intensive
glucose control

incremental
cost per event
free(of
diabetic end
point) year
gained

UKPDS 51

2001
1997

UK

UK £

Economic
evaluation
alongside trial

Conventional
therapy
(primarily diet)
versus
intensive
therapy with
metformin in
overweight
Type 2
diabetics

Incremental
cost per life
year gained

UKPDS 54

2001
1997

UK

UK£

Economic
evaluation
alongside
clinical trial
Use of
Atenolol (beta-
blocker) versus
captopril
(ACEi) in
Type 2 diabetic
patients with
hypertension

Life
expectancy and
mean cost per
patient

Wake,

Hisashige,

Katayama et al
2000

1998

Japan

US §

Cost
consequence
analysis

Multiple
insulin
injection
therapy;
Conventional
insulin
injection
therapy
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author

Patient
population

Effectiveness
data sources

Cost elements

Eastman,
Javitt, Herman
et al.

Incident Type
2 diabetics

Incidence data
from National
Health
Interview
Survey:
complications
from
Wisconsin
Epidemiologic
Study of
Diabetic
Retinopathy
and Rochester
Epidemiology
Study

Standard direct

therapy costs:
pharmacy
costs, hospital
costs,self-
monitoring
blood glucose

Engelau,
Narayan,
Thompson et al
hypothetical
cohort of
10,000 incident
Type 2
diabetics

Screening and
treatment cost

Franz, Splett,
Monk et al

Type 2
diabetics

Clinical trial
run in
conjunction
with the
economic
evaluation

Total cost of
nutritional care

Golan,
Birkmeyer and
Welch
Incident Type
2 diabetics
over 50 years
old at risk of
renal failure

Transition
probabilities:
RCT (for Type
1 diabetics) US
Renal Data
System;
Clinical
Guidelines.
Utilities;
Beaver Dam
Health
Outcomes
Study

ACE inhibitor
therapy,
screening,
treatment of
end-stage renal
disease

Segal, Dalton
and Richardson

Hypothetical
cohort

Survey of
clinical trials,
observational,
epidemiologica
land
intervention
studies

Direct health
care
programme
costs

UKPDS 40

Randomised
clinical trial
population

Clinical trial
outcomes,
based on
frequency of
diabetic related
end-points

Direct health
care
programme
costs

UKPDS 41

Randomised
clinical trial
population

Clinical trial
outcomes,
based on
frequency of
diabetic related
end-points

Direct health
care
programme
costs

UKPDS 51

Randomised
clinical trial
population who
had >120% of
ideal body
weight
Clinical trial
outcomes,
based on
frequency of
diabetic related
end-points

Direct health
care
programme
costs

UKPDS 54

Randomised
clinical trial
population
with Type 2
diabetes and
hypertension
Clinical trial
outcomes,
based on
frequency of
diabetic related
end-points

Direct health
care
programme
costs

Wake,
Hisashige,
Katayama et al
Randomised
clinical trial
population

Clinical trial
outcomes,
based on
frequency of
diabetic related
end-points

Direct medical
care costs
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author

Cost data
sources

Time horizon

Discount rate

Variables
considered in
the sensitivity
analysis

Eastman,
Javitt, Herman
et al.

National
Medical
Expenditure
Survey;
National
Health
Interview
Survey; Three
studies
(DCCT,
Vetems
Administration
Cooperative
Study &
Metformin
Cooperative
Trial)
Lifetime

3%

Risk of
complications;
discounting

Engelau,
Narayan,

Thompson et al

lifetime

Risk factors

3%

Franz, Splett,
Monk et al

Clinical trial

6-month study
period
n.a.

95% c.i. for
outcomes;
inclusion/exclu
sion of
laboratory test

Golan,
Birkmeyer and
Welch
Medicare
Clinical
Diagnostic Fee
Schedule; U.S.
Renal Database
System

Lifetime

3%

Age at
diagnosis;
relative risk of
disease
progression;co
sts; quality of
life; screening
adherence;
treatment
discontinuation

Segal, Dalton
and Richardson

Literature
survey
material,
internal Health
Authority
costs, National
Health Survey
costs

lifetime

5%

Effectiveness
rates; discount
rate; impact of
preventative
programme on
incidence of
NIDDM,; life
expectancy;,
high risk group

UKPDS 40

Resource data
from trial, unit
costs from
national
statistics and
participating
units

11 years and
lifetime

6%, 3% for
costs and
benefits and
0% for benefits
reported
Protocol driven
resourcing
changed to
likely standard
practice.
Standard
practice pattern
and related unit
costs of visits
and tests.
Confidence
intervals and
acceptability
curves
reported.

UKPDS 41

Resource data
from trial, unit
costs from
national
statistics and
participating
units

11 years

6%

Protocol driven
resourcing
changed to
likely standard
practice.
Discount rate
varied.
Confidence
intervals and
acceptability
curves
reported.

UKPDS 51

Resource data
from trial, unit
costs from
national
statistics and
participating
units.

Lifetime

6%

Increase in
therapy costs.
Different
regression
model applied
to non-
inpatient costs.
Confidence
intervals and
acceptability
curve reported.

UKPDS 54

Resource data
from trial, unit
costs from
national
statistics and
participating
units.

Lifetime

6%

Cost of
standard
practice. Cost
of captopril.
Non-hospital
costs.

Wake,
Hisashige,
Katayama et al
Internal
National
Health care
costs

10 years

3%

Relative risks
in progression,
costs, discount
rate
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author

Baseline results

Eastman,
Javitt, Herman
et al.

Baseline cost
per QALY
S17,809.
Sensitive to
age of onset of
diabetes; ICER
< $55,000 if
age of onset
less than 50. If
age of onset
>75 the ICER
is $248,844.
Ethnicity had a
major impact
as rate of
complications
differ.
Sensitive to
rate of renal
failure.
Sensitive to
compliance
rates.

Engelau,
Narayan,
Thompson et al
Incremental
cost of
opportunistic
screening of
individuals
aged 25 or
older was
estimated to be
$252,192 per
life-year
gained and
$60,420 per
QALY.

Franz, Splett,
Monk et al

Average cost
per mg/dl
change in
fasting blood
glucose level is
$5.92 in the
basic dietary
information
group and
$4.67 in the
practice
guidelines
nutrition care
group.
Difference
statistically
insignificant.

Golan,
Birkmeyer and
Welch

$7,850 per
QALY

Segal, Dalton
and Richardson

All primary
prevention
programmes
had low cost-
effectiveness
ratios. Surgery
yielded the
largest
reduction in
the number of
diabetic years,
but was the
most expensive
intervention at
$5,894 per life
year gained;
certain
programmes
were cost
saving
(intensive diet
& behavioural
therapy in the
seriously obese
impaired
glucose
tolerance
population;
behavioural
therapy for
overweight
men, & the
media
campaign plus
community
support in a
mixed
population).

UKPDS40

Based on
standard
practice
resource use
incremental
cost per extra
year free from
end points was
$1312(6%
discounted
costs and
benefits); $543
(costs
discounted at
6% and effects
undiscounted).
Incremental
life year gained
was $900 (6%
discounted
costs and
benefits); $364
(6% discounted
costs and
benefits).

UKPDS 41

Based on
standard
practice
resource use
incremental
cost per event
free year was
$1,458 (6%
discounted
costs and
benefits) and
$703 (costs
discounted at
6% and effects
undiscounted).

UKPDS 51

Therapy with
metformin is
cost-saving
under a range
ofassumptions

UKPDS 54

No statistical
difference in
life
expectancy.
Beta-blocker
(atenolol) was
less expensive
with an
average
treatment cost
14% lower
than ACEi.

Wake,
Hisashige,
Katayama et al
Multiple
insulin
injection
therapy (MIT)
reduced the
relative risk of
progression to
a diabetic end-
point for
retinopathy (by
76%);
photocoagulati
on (by 77%);
nephropathy
(by 66%);
albuminuria
(100%) and
clinical
neuropathy
(64%). MIT
also prolonged
complication
free time. MIT
had a lower
ten-year cost of
therapy than
conventional
insulin therapy
due to the
reduced costs
oftreating
complications -
MIT $1,233
less expensive
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Table A.2.1.2. Cost consequence and cost effectiveness of screening and treatments for type 2 diabetes (Contd.)

Author

Results from
sensitivity
analysis

Author(s)
conclusions

Eastman,
Javitt, Herman
et al.

Cost per
QALY is
lowest for
those at
greatest risk of
complication;
and therefore
for ethnic
minorities and
those with
higher HbAlc.
Cost-
effectiveness
of
comprehensive
care of
diabetes
appears similar
to other
preventative
treatments.

Engelau,
Narayan,
Thompson et al
Opportunistic
screening is
most cost-
effective in
younger age
groups and
ethnic
minorities as
these groups
have a higher
lifetime risk of
major diabetic
complications.
Early diagnosis
& treatment by
opportunistic
screening of
type 2 diabetes
increases costs
but could
reduce the
lifetime
incidence of
major
microvascular
complications
generating
gains in health
benefits. The
selection of
target
populations for
opportunistic
screening
should
consider risk
factors as well
as disease
prevalence.

Franz, Splett,
Monk et al

Results
extremely
sensitive to
outcome level
assumed to be
achieved

Golan,
Birkmeyer and
Welch

> $21,000 per
QALY ifage at
diagnosis 55 or
over; or if
ACEi
treatment cost
increased by
one-third; or
relative risk of
microalbiminur
ia increased

Segal, Dalton
and Richardson

Net cost per
life year saved
is sensitive to
assumptions of
programme
success and
discount rate.
However
prevention
remains below
$5,512 per life
year gained in
all cases.
Programmes
for the
prevention of
NIDDM are
stated to be
highly cost-
effective
relative to
other funded
health care
programmes.
Access to such
programmes
should be
increased for
the sub-
populations at
highest risk of
NIDDM

UKPDS 40

Acceptability
curves
presented

Evidence that
tight control of
blood pressure
for Type 2
hypertensive
patients is a
cost-effective
means of
reducing
complications
and improving
health
outcomes.

UKPDS 41

Acceptability
curves
presented

Intensive blood
glucose control
in patients with
Type 2
diabetes
increased
treatment costs
but these were
offset by
reduced costs
oftreating
complications
and increased
time free of
complications.
Intensive
therapy of
Type 2
diabetics is
feasible and
economically
supportable.

UKPDS 51

Cost-saving
findings robust
to arange of
sensitivity
analyses

Cost-saving is
induced largely
through lower
hospital in-
patient costs.

UKPDS 54

Results robust
to sensitivity
analysis

UKPDS
supports the
use of either
captopril or
atenolol on
clinical
grounds with
the latter being
the less
expensive
therapy.

Wake,
Hisashige,
Katayama et al

Intensive
glycaemic
control can
delay onset and
progression of
the early stages
of
microvascular
complications
in Type 2
diabetics. This
reduces
treatment costs
and, therefore,
MIT is a
recommended
strategy in
those Type 2
patients
requiring
insulin.
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Appendix A.4.1. Consistency of the Bang and Tsiatis simple weighted estimator

T 1/” OMi m ) ,if sm, if «Mim)
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The second term is bounded from above by

K(u)-K(u)

Assuming that total cost is bounded, the upper bound above converges to zero in probability due to

the fact that sup K(u) - K(u) =o («'l2+£) with probability one (Csbrgo and Horvath, 1983). Hence,

u<L

consistency follows by the law of large numbers.

Appendix A.4.2. Variance of the Bang and Tsiatis partitioned estimator
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where the integrand in the second term corresponds to the K variance terms and the pairwise
covariance terms among them. Its expansion is shown below.

SCi(Mi,)I(T- >u)} =j E{Ms-CIl(MJ,u)

7=1 7=1

+2S S £[K -G, (Mpw}O-;*>u)x {Mi-Gi(M, u)}HT,"> u)]
7=1H

For j <I, the cross-product terms in the summand reduce to

EMij ~Gj (M ,u)]{Mn- G (M ,,u)}[(TJT>u)\= SJ(u)"jj(MIM,, u)-GJ(MJ,u)Gj (Ml,u)}
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Appendix A.4.3. Descriptive statistics of the UKPDS annual cost data

Table A.4.3.1. Annual cost per patient by year of randomisation for the conventional policy group

Year

O 002N DN B W —

ot el e e el
O 001N nh WihH— O

Number of
observations

1138
1125
1112
1097
1076
1050
1017
917
816
695
561
433
323
214
129
69
53
32
12

Mean annual
cost

580.7277
573.3312
774.554

856.332

730.7807
872.7527
839.9952
832.7916
747.0578
976.0969
894.3764
934.465

1054.579
852.0495
1264.868
946.3403
1500.837
1222.613
736.0087

Standard
deviation

1477.233
1150.522
2847.989
4397.077
1740.947
2790.088
2657.49
2225.708
1838.934
3139.52
1943.828
1978.162
3044.994
1931.715
4680.558
2847.115
3253.058
3099.91
951.7124

Minimum
annual cost

19.8
19.8
19.8
19.8
19.8
19.8
16.15
19.8
19.8
19.8
19.8
77.8
77.8
77.8
77.8
220.4
149.1
243.35
80.55

Maximum
annual cost

29020.4
11602.4
74200.4
131010.7
24692.35
64387.83
60169.1
36255.14
30230.81
57920
22582.6
29271.91
35017.7
23846.85
45530.36
23856.83
22122.4
17772.29
3668.684

Table A.4.3.2. Annual cost per patient by year of randomisation for the intensive policy group

Year

O 00 1N LN A W —
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Number of
observations

2729
2700
2673
2632
2596
2539
2442
2233
1985
1681
1347
1062
818
556
326
187
127
70
18
2

Mean annual
cost

567.4993
622.5739
660.4301
715.3494
681.6874
750.5341
891.7456
802.6076
914.5527
948.5564
906.1987
890.46
857.7013
868.8157
1018.485
977.7186
1296.673
749.9228
454.16
350.337

Standard
deviation

1375.245
1241.575
1368.677
1705.962
1389.174
1339.22
2326.112
1772.513
2353.804
2393.213
1839.467
1724.105
1564.98
1424.465
2224572
1679.65
3432.144
854.7124
191.4103
164.9496

Minimum
annual cost

19.8
16.88
19.8
19.8
19.8
17.975
17.975
17.975
19.8
19.8
16.15
14.325
16.15
19.8
33.1
33.1
19.8
210.1895
233.7
233.7

Maximum
annual cost

45151.02
19759
30435.51
34714.98
30483.65
22638.41
43403.86
44092.96
45555.75
39735.35
24701.2
25616.9
220353
14481
28933.1
12498.17
29200.56
5563.155
1048.372
466.9739
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Appendix A.4.4. Program for the Kaplan-Meier estimator

Based on equations (4.4), (4.5) and (4.6)

Kaplan-Meier estimator
**mean* *

stset Mi, failure (censorig==1)
sts gen stcost KM=s

gsort - stcost KM Mi
quietly gen lagMi=Mi[ n-1]
replace lagMi=0 if lagMi==.

gen areali= stcost KM* (Mi- lagMi)
egen meanKMtrue=sum(areai)

**yariance**

gsort -Mi
gen Aix=sum(@reai)
egen Ai=max (Aix), by(Mi)

gen int const=1

gsort -Mi

gen Rix=sum(const)

egen Ri=max (Rix), by (Mi)

egen di=sum(censorig), by (Mi)
gen termi=((AiA2) *censorig)/ (Ri* (Ri-di))

egen varKMtrue =sum(termi)
gen seKMtrue=sqrt (varKMtrue)

Full sample estimator
Same as in Kaplan-Meier but treating time of censoring as time of failure for
the censored individuals

Uncensored cases estimator
Same as in Kaplan-Meier but only using the data for the uncensored individuals

%k
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Appendix A.4.5. Programs for the Lin et al estimators (Lin et al, 1997)

Linl: Cost histories recorded

Based on equations (4.9), (4.10) and (4.11) for the mean and on equations
(4.18), (4.19) and (4.20) for the wvariance

For Conventional (similarly for intensive)
** Mean **

gen ak=year-1
gen akl=year

egen Xi=min(timallde), by (ukno)
egen di=min (censorig) , by (ukno)

stset Xi 1if year==1, failure(di==1)
sts gen survl138=s

gen int inttime=int(Xi)+l if year==
egen mintime=min (Xi), by (inttime)
gen st=survl1l38 if mintime==Xi

egen Skx=min(st), by (inttime)

gen slx=Skx 1if inttime==

gen s2x=Skx if inttime==

gen s3x=Skx 1if inttime==

gen s4x=Skx 1f inttime==

gen sbx=Skx 1if inttime==

gen s6x=Skx if inttime==

gen s7x=Skx if inttime==

gen s8x=Skx if inttime==

gen s9x=Skx 1if inttime==

gen sl0x=Skx if inttime==10
gen sllx=Skx if inttime==11
gen sl2x=Skx if inttime==12
gen sl13x=Skx if inttime==13
gen sl4x=Skx if inttime==14
gen slbx=Skx if inttime==15
gen sl6x=Skx if inttime==16
gen sl7x=Skx if inttime==17
gen sl18x=Skx if inttime==18
gen sl19x=Skx if inttime==19
egen sl=min (slx)
egen s2=min (s2x)
egen s3=min (s3x)
egen s4=min (s4x)
egen sb5=min (s5x)
egen sb6=min (s6x)
egen s7=min (s7x)
egen s8=min (s8x)
egen s9=min (s9x)
egen sl0=min (s1lOx)
egen sll=min(sllx)
egen sl2=min(sl2x)
egen sl3=min (sl3x)
egen sld4=min(sl4x)
egen sl1l5=min (s15x)
egen sl6=min (sl6x)
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egen sl7=min(sl7x)
egen sl8=min(s18x)
egen sl9=min(s!9x)

gen Sk=:si if ak==
replace Sk=s2 if ak===
replace Sk=s3 1if ak==2
replace Sk=s4 1if ak===3
replace Sk=sb 1if ak===4
replace Sk=s6 if ak===5
replace Sk=si 1if ak===6
replace Sk=s8 1if ak===/
replace Sk=s9 if ak===8
replace Sk=sl0 if ak==9
replace Sk=mmsii if ak===10
replace Sk=s12 1if ak==11
replace Sk=sl13 if ak===12
replace Sk=s14 if ak===13
replace Sk=sl15 if ak==—14
replace Sk=sl6 if ak===15
replace Sk=sl17 if ak===16
replace Sk=sl18 if ak==17
replace Sk=sl19 if ak===18

gen Yki=1 if Xi>=ak
replace Yki=0 1if Yki==.

gen Cki=costyr
replace Cki=0 if Cki==.

egen sYki=sum (Yki), by(ak)
gen YkiCki= Yki* Cki
egen sYkiCki=sum( YkiCki), by(ak)

gen Ek= sYkiCki/ sYki
gen SkEk= Sk* Ek
egen meanlinl=sum( SkEk), by (ukno)

**Variancex* *

gen terml= (Sk* Yki* ( Cki- Ek))/ sYki
gen Xi le ak=1 if Xi<=ak
replace Xi le ak=0 if Xi>ak

gen int const=1

gsort ak -Xi

by ak: gen Rix=sum(const)
egen Ri=max (Rix), by(ak Xi)
drop Rix

gen term2a=( Xi le ak* di)/Ri
gen diRj2=di/ (RiA2)
gen minakXi=min (ak, Xi)

sort ak Xi

by ak: gen Slx=sum( diRj2) if Xi<= minakXi
egen Sl=max(Slx), by(ak Xi)

egen S2=max(S1l), by(ak)

replace S1=S2 1if Sl==.

replace S1=0 1if Sl==.

gen term2b=S1
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gen term2=Sk*Ek* (term2a-term2b)
gen wki=terml-term?2

egen sumwki=sum@wki), by (ukno)
gen wkiwli=wki*sumwki

egen varlinl=sum(wkiwli)

Lin2: Cost histories not recorded

Based on equations (4.21), (4.22) and

(4.23)

for the mean and on equations

(4.28), (4.29), (4.30) and (4.31) for the wvariance

For Conventional (similarly for intensive)

*% Mean**
egen Ci=min (Mi), by (ukno)

egen Xi=min(timallde), by (ukno)

egen di=min (censorig), by (ukno)

sort ukno ak

quietly by ukno: gen Skl=Sk[ n+l]
replace Skl1=0 if ak==19

egen tmax=max (Xi)

gen Yki=1 if ((ak<=Xi & Xi<akl) & di==
replace Yki=0 if Yki==.

egen sYki=sum(Yki), by(ak)

gen YkiCi= Yki* Ci

egen sYkiCi=sum(YkiCi), by (ak)

gen Ak= sYkiCi/ sYki
replace Ak=0 if Ak==.

gen AkS= Ak* (Sk-Skl)

egen meanlin2=sum (AkS), by (ukno)

** Variance **

)

gen terml= ((Sk- Ski)* Yki*( Ci- Ak))/ sYki

replace terml=0 if terml==.

* k k k

gen int const=1

gsort ak -Xi

by ak: gen Rix=sum(const)
egen Ri=max (Rix), by(ak Xi)
drop Rix

(Xi>=tmax & ak==19)
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Appendix A.4.6. Programs for the Bang and Tsiatis estimators (Bang and Tsiatis, 2000)

Simple weighted estimator

Based on equations (4.32) and (4.33) for the mean and on equations (4.35) and
(4.36) for the wvariance

For Conventional (similarly for intensive)

** Simple weighted estimator: Mean and Variance Conventional **

stset timallde, failure (censorig==1)

sts gen survl1138=s

gen censorl=1 if censorig==
replace censorl=0 1if censorl==.

label wvar censorl "l:censored; O0:dead"
stset timallde, failure (censorl==1)
sts gen censll38=s

gen diMi KTi= (censorig* Mi)/ censl138
replace diMi KTi=0 if diMi KTi==.

egen sumalli=sum(diMi KTi)

gen meansimp=(1/1138)* sumalli

**Variance**

gen MiMiu=( censorig* Mi* Mi)/ censl1138
replace MiMiu=0 1if MiMiu==.

gsort -timallde

gen sMiMiu=sum (MiMiu)

egen sumMiMiu=max (sMiMiu), by (timallde)
drop sMiMiu

gen gMiMiu=(1/1138)*(1/ surv1138)*sumMiMiu

gen Miu=( censorig* Mi)/ censll138
replace Miu=0 if Miu==.

gsort -timallde

gen sMiu=sum(Miu)
egen sumMiu=max (sMiu), by (timallde)

drop sMiu
gen gMiu 2=((1/1138)*(1/surv1138)*sumMiu) *2

gen intern2=(censorl/ (censll3872)) * (gMiMiu- gMiu 2)
replace intern2=0 if intern2==.

egen sumint2=sum (intern2)
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gen term2=(1/1138)* sumint?2

gen internl= censorig* ((Mi- meansimp)A2)/ censl1138

replace internl=0 if internl==.
egen sumintl=sum(internl)

gen terml=(1/1138)*sumintl

gen varsimp=(1/1138)* (terml+term?)
gen sesimp=sqgrt (varsimp)

** To calculate Yu **

gen int const=1

gsort -timallde

gen Yux=sum(const)

egen Yu=max Yux), by (timallde)
drop Yux

label wvar Yu "no. at risk"

Partitioned estimator

Based on equations (4.37) for the mean and on equations

(4.40) for the variance

For Conventional (similarly for intensive)

** Partitioned mean and variance: Conventional**

gen tj l=year-1
gen tj=year

gen Mij=costyr
replace Mij=0 if Mij==.

egen Xi=min(timallde), by (ukno)
egen di=min (censorig) , by (ukno)
gen minTitj=min(Xi, t3j)

gen Xij=min(minTitj, Xi)

gen dij=1 1if (minTitj==tj I (minTitj==Xi & di==

replace dij=0 1if dij==.
stset Xij, failure(dij==0)
sts gen KjTij=s, by(tj)

gen intern=(dij*Mij)/KjTij
replace intern=0 1if intern==.

))
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egen sumintjs=sum(intern), by (ukno)

** Variance:

gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen
gen

11=1
12=2
13=3
14=4
15=5
16=6
17=7
18=8
19=9
110=10
111=11
112=12
113=13
114=14
115=15
116=16
117=17
118=18
119=19

Jjmaxll=max (tj, )
jmaxl2=max (tj, )
jmax1l3=max (tj, 13)
jmaxl4=max (tj, 14)
Jmaxl5=max (tj, 15)
Jjmaxl6=max (tj, 16)
jmaxl7=max (tj, 17)
jmaxl8=max (tj, 18)
Jmaxl9=max (tj, 19)

jmax11O0=max (tj , 110
jmaxlll=max (tj, 111
jmaxll2=max (tj , 112
jmaxll3=max(tj, 113
tj, 114
tj, 115
tj, 116
tj, 117
tj, 118
tj, 119

jmaxll4=max
jmaxllb=max
jmaxll6é=max
jmaxll7=max
jmaxll8=max
jmax1ll9=max

Jminll=min (tj, 11
jminl2=min (tj, 12
tj, 13
tj, 14
tj, 15
tj, 16
tj, 17
tj, 18
jminl9=min (tj, 19

Jminl3=min
Jminl4=min
Jminl5=min
jminlé=min
Jminl7=min

~ e~~~ —~ —~

Jminl8=min

jminllO=min (tj, 110
Jjminlll=min(tj , 111
jminll2=min(tj , 112
Jminll3=min (tj, 113
jminll4=min(tj, 114
Jminll5=min (tj , 115
jminll6=min (tj, 116
Jminll7=min(tj , 117
Jjminll8=min (tj , 118

conventional**
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gen jminll9=min (tj , 119)

gen Tijminl=min(Xi, jminll)
gen TijminZ2=min(Xi, jminl2)
gen Tijmin3=min (Xi, Jjminl3)
gen Tijmin4=min (Xi, jminl4)
gen Tijmin5=min (Xi, jminl))
gen Tijmin6=min (Xi, jminlé)
gen Tijmin7=min(Xi, jminl7)
gen Tijmin8=min (Xi, Jjminl8)
gen Tijmin9=min (Xi, Jjminl9)
gen TijminlO=min (Xi, jminllO)
gen Tijminll=min (Xi, jminlll)
gen Tijminl2=min (Xi, jminll2)
gen Tijminl3=min(Xi, Jjminll3)
gen Tijminl4=min (Xi, Jjminll4)
gen TijminlS5=min(Xi, Jjminll5)
gen Tijminl6=min (Xi, jminlld)
gen Tijminl7=min(Xi, Jjminll7)
gen Tijminl8=min(Xi, jminll8)
gen Tijminl9=min (Xi, Jjminll9)

gen Tijmaxl=min (Xi, jmaxll)
gen Tijmax2=min (Xi, jmaxl2)
gen Tijmax3=min (Xi, jmaxl3)
gen Tijmax4=min(Xi, Jmaxl4)
gen Tijmaxb=min (Xi, Jjmaxlb))
gen Tijmax6=min (Xi, Jjmaxle6)
gen Tijmax7=min (Xi, jmaxl7)
gen Tijmax8=min (Xi, jmaxl8)
gen Tijmax9=min (Xi, jmaxl9)
gen TijmaxlO=min (Xi, JjmaxllO)
gen Tijmaxll=min (Xi, Jjmaxlll)
gen Tijmaxl2=min (Xi, Jjmaxll2)
gen Tijmaxl3=min (Xi, Jjmaxll3)
gen Tijmaxl4=min (Xi, Jjmaxll4)
gen Tijmaxl5=min (Xi, jmaxll5)
)
)
)
)

gen Tijmaxl6=min (Xi, Jjmaxlld
gen Tijmaxl7=min(Xi, jmaxll7
gen Tijmaxl8=min (Xi, jmaxl1l8
gen Tijmaxl9=min (Xi, Jjmaxll9

gen dijmaxl=1 if Tijmaxl==jmaxll
replace dijmaxl=0 if dijmaxl==.

gen dijmax2=1 if Tijmax2==jmaxl?2
replace dijmax2=0 if dijmax2==.

gen dijmax3=1 if Tijmax3==jmaxl3
replace dijmax3=0 1f dijmax3==.

gen dijmax4=1 if Tijmax4==jmaxli4
replace dijmax4=0 if dijmax4==.

gen dijmaxb5=1 if Tijmax5==jmaxl5
replace dijmax5=0 1if dijmax5==.

gen dijmax6=1 if Tijmax6==jmaxl6
replace dijmax6=0 1if dijmax6==.

gen dijmax7=1 if Tijmax7==jmaxl7
replace dijmax7=0 if dijmax7==.

(Tijmaxl==Xi

(Tijmax2==Xi

(Tijmax3==Xi

(Tijmax4==Xi

(Tijmax5==X1i

(Tijmax6==X1i

(Tijmax7==X1i

di==1)

di==1)

di==1)

di==1)

di==1)

di==1)

di==1)
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gen dijmax8=1 if Tijmax8==jmaxl8 |
replace dijmax8=0 if dijmax8==.

gen dijmax9=1 if Tijmax9==jmaxl9 I
replace dijmax9=0 if dijmax9==.

gen dijmaxl0O=1 if TijmaxlO==jmaxllO
replace dijmaxl0=0 if dijmaxlO==.

gen dijmaxll=1 if Tijmaxll==jmaxlll
replace dijmaxl11l=0 if dijmaxll==.

gen dijmaxl1l2=1 if Tijmaxl2==jmaxl112
replace dijmaxl2=0 if dijmaxl2==.

gen dijmaxl13=1 if Tijmaxl3==jmaxll3
replace dijmaxl3=0 if dijmaxl3==.

gen dijmaxl4=1 if Tijmaxl4==jmaxll4
replace dijmax14=0 1if dijmaxlé==.

gen dijmax15=1 if Tijmaxl5==jmax115
replace dijmax15=0 if dijmaxlb==.

gen dijmaxlé=1 1if Tijmaxl6==jmaxllé6
replace dijmaxl6=0 if dijmaxlé==.

gen dijmaxl7=1 if Tijmaxl7==jmaxll7
replace dijmaxl1l7=0 1if dijmaxl7==.

gen dijmaxl8=1 if Tijmaxl8==jmaxl18
replace dijmaxl18=0 if dijmaxl8==.

gen dijmaxl19=1 if Tijmaxl9==jmax119
replace dijmaxl9=0 if dijmaxl9==.
stset Tijmaxl, failure(dijmaxl==0)

sts gen Kjmaxll=s, by(tj)

stset Tijmax2, failure(dijmax2==0)
sts gen Kjmaxl2=s, by(t7j)

stset Tijmax3, failure(dijmax3==0)
sts gen Kjmaxl3=s, Dby(t7j)

stset Tijmax4, failure(dijmax4==0)
sts gen Kjmaxl4d=s, Dby (t7j)

stset Tijmax5, failure(dijmax5==0)
sts gen Kjmaxl5=s, by(t7j)

stset Tijmax6, failure(dijmax6==0)
sts gen Kjmaxl6=s, by(t])

stset Tijmax7, failure(dijmax7==0)
sts gen Kjmaxl7=s, by(t]j)

stset Tijmax8, failure(dijmax8==0)
sts gen Kjmaxl8=s, by(t]j)

stset Tijmax9, failure(dijmax9==0)
sts gen Kjmaxl9=s, Dby(t7])

(Tijmax8==Xi & di

(Tijmax9==Xi & di

(TijmaxlO==Xi

(Tijmaxll==Xi

(Tijmaxl2==Xi

(Tijmax1l3==Xi

(Tijmaxl4==Xi

(Tijmaxl5==Xi

(Tijmaxle==Xi

(Tijmaxl7==Xi

(Tijmaxl8==Xi

(Tijmaxl19==Xi



stset TijmaxlO, failure (dijmaxl0==0)
sts gen KjmaxllO=s, by(tj)

stset Tijmaxll, failure(dijmaxll==0)
sts gen Kjmaxlll=s, by(t])

stset Tijmaxl2, failure (dijmaxl2==0)
sts gen Kjmaxll2=s, by(t])

stset Tijmaxl3, failure(dijmaxl3==0)
sts gen Kjmaxll3=s, by (tj)

stset Tijmaxl4, failure(dijmaxl4==0)
sts gen Kjmaxlléd=s, by(t])

stset Tijmaxl5, failure (dijmaxl5==0)
sts gen Kjmaxll5=s, Dby (t7j)

stset Tijmaxl6, failure(dijmaxl6==0)
sts gen Kjmaxllé6=s, by(t])

stset Tijmaxl7, failure(dijmaxl7==0)
sts gen Kjmaxll7=s, Dby(t7j)

stset Tijmaxl8, failure(dijmaxl8==0)
sts gen Kjmaxll8=s, by(tj)

stset Tijmaxl9, failure(dijmaxl9==0)
sts gen Kjmaxll9=s, by(tj)

gen dijminl=1 if Tijminl==jminll | ([Tijminl==Xi & di==1)
replace dijminl=0 if dijminl==.

gen dijmin2=1 if Tijmin2==Jminl2 | (Tijmin2==Xi & di==1)
replace dijmin2=0 1if dijmin2==.

gen dijmin3=1 if Tijmin3==jminl3 I (Tijmin3==Xi & di==1)
replace dijmin3=0 1if dijmin3==.

gen dijmind=1 if Tijmin4==jminl4 | (Tijmin4==Xi & di==1)
replace dijmin4=0 if dijmind==.

gen dijmin5=1 if Tijmin5==Jminl5 | (Tijminb5==Xi & di==1)
replace dijminb5=0 if dijminb==.

gen dijminé=1 if Tijminé==jminlé | (Tijmin6==Xi & di==1)
replace dijmin6é=0 1if dijminé==.

gen dijmin7=1 if Tijmin7==jminl7 | (Tijmin7==Xi & di==1)
replace dijmin7=0 1if dijmin7==.

gen dijmin8=1 if Tijmin8==jminl8 I (Tijmin8==Xi & di==1)
replace dijmin8=0 if dijmin8==.

gen dijmin9=1 if Tijmin9==jminl9 | (Tijmin9==Xi & di==1)
replace dijmin9=0 1if dijmin9==.

gen dijminlO=1 if TijminlO==jminllO I (TijminlO==Xi & di==1)
replace dijminlO=0 1if dijminlO==.

gen dijminll=1 if Tijminll==jminlll | @Tijminll==Xi & di==1)
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replace dijminll=0 if dijminll==.

gen dijminl2=1 if Tijminl2==jminll2
replace dijminl2=0 if dijminl2==.

gen dijminl3=1 if Tijminl3==Jjminll3
replace dijminl3=0 if dijminl3==.

gen dijminl4=1 1if Tijminl4==jminll4
replace dijminl4=0 if dijminlé4==.

gen dijminl5=1 if Tijminl5==jminll5
replace dijminlb5=0 if dijminlb==.

gen dijminlé=1 1if Tijminl6==jminllé6
replace dijminlée=0 if dijminlé==.

gen dijminl7=1 if Tijminl7==jminll7
replace dijminl7=0 if dijminl7==.

gen dijminl8=1 1if Tijminl8==jminll8
replace dijminl8=0 if dijminl8==.

gen dijminl9=1 1if TijrtiinlS9==jminll9
replace dijminl9=0 if dijminl9==.
stset Tijminl, failure(dijminl==1)

sts gen Sjllu=s, by(tj)

stset Tijmin2, failure (dijmin2==1)
sts gen Sjl2u=s, by(tj)

stset Tijmin3, failure(dijmin3==1)
sts gen Sjl3u=s, by(tj)

stset Tijmin4, failure(dijmind==1)
sts gen Sjldu=s, Dby(tj)

stset Tijmin5, failure(dijmin5==1)
sts gen Sjlbu=s, by(tj)

stset Tijmin6, failure(dijminé6==1)
sts gen Sjloéu=s, by(tj)

stset Tijmin7, failure(dijmin7==1)
sts gen Sjl7u=s, by(t7j)

stset Tijmin8, failure (dijmin8==1)
sts gen Sjl8u=s, by(tj)

stset Tijmin9, failure(dijmin9==1)
sts gen Sjl9%u=s, by(tj)

stset TijminlO, failure(dijminlO==1)
sts gen Sjl10u=s, by(tj)

stset Tijminll, failure(dijminll==1)
sts gen Sjlllu=s, by(t])

stset Tijminl2, failure(dijminl2==1)
sts gen Sjll2u=s, by(tj)

stset Tijminl3, failure(dijminl3==1)

(Tijminl2==Xi

(Tijminl3==Xi

(Tijminl4==Xi

(Tijminlb==Xi

(Tijminle==X1i

(Tijminl7==Xi

(Tijrainl8==Xi

(Tijminl9==Xi

di==1)

di==1)

di==1)

di==1)

di==1)



sts gen

stset Tijminl4,

sts gen

stset Tijminl}5,

sts gen

stset Tijminle,

sts gen

stset Tijminl7,

sts gen

stset Tijminl$§,

sts gen

stset Tijminl?9,

sts gen

Sjl13u=s, by

Sjlldu=s, by

Sjll5u=s, by

Sjlleu=s, by

Sjll7u=s, by

Sjl18u=s, by

Sj119%u=s, by

sort ukno tj

gen Millead=Mij

quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly

replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace
replace

by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen
by ukno : gen

Millead=-9
Mi2lead=-9
Mi3lead=-9
Midlead=-9
Mi5lead=-9
Mi6lead=-9
Mi7lead=-9
Mi8lead=-9
Mi9lead=-9
MilOlead=-9
Milllead=-9
Mil2lead=-9
Mil3lead=-9
Mildlead=-9
Mil5lead=-9
Mil6lead=-9
Mil7lead=-9
Mil8lead=-9

(t3)

failure(dijminléd==1)

(t3)

failure (dijminl5==1)

(t3)

failure (dijminlé==1)

(t3)

failure(dijminl7==1)

(t3)

failure (dijminl8==1)

(t3)

failure(dijminl9==1)

(t3)

Mi2lead=MiHead [ n+l
Mi3lead=Mi2lead[ nt+l
Mid4lead=Mi3lead[ n+l

Mi6lead=Mi5lead[ n+l
Mi7lead=Mi6lead[ nt+l
Mi8lead=Mi7lead[ n+l

[ ]

[ ]

[ ]
Mi5lead=Midlead[ n+l]
[ ]

[ ]

[ ]

]

Mi 9lead=Mi8lead[ n+l
MilOlead=Mi9lead[ n+l]

Mil8lead=Mil71lead
Mil9lead=Mil8lead

Milllead=MilOlead[ n+l
Mil2lead=Milllead [ n+l
Mil3lead=Mil2lead [ n+l
Mi l4lead=Mil3lead [ n+l
Mil5lead=Mildlead [ n+l
Mil6lead=Mil5lead [ n+l
Mil7lead=Milo6lead [ n+l

[

[

if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
f year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
if year~=1
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replace

egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen

Millead
Mi2lead
Mi3=max (Mi3lead
Mid=max (Midlead),

Mil=max ( )

( )

( )

( )
Mi5=max (Mi5lead),

( )

( )

( )

)

Mi2=max

14
4

4

Mi6=max (Miolead
Mi7=max (Mi7lead
Mi8=max (Mi8lead
Mi9=max (Mi9lead),
MilO=max (MilOlead
Mill=max (Milllead
Mil2=max (Mil2lead
Mil3=max (Mil3lead
Mil4=max (Mildlead

(

(

4
4

4

Mil5=max (Mil5lead
Mil6=max (Milolead
Mil7=max (Mil7lead
Mil8=max (Mil8lead

)
)
)
)
)
)
)
)
)
Mil9=max (Mil9lead)

Mil9lead=-9 if year~=1

gen gMjMll= (dijmaxl* Mij* Mil)/ Kjmaxll

replace

gen gMjMl2=
replace

gen gMjMl13=

gMjM11=0 if gMjMll==.

(dijmax2* Mij* Mi2)/ Kjmaxl2
gMiM12=0 if gMjM12==.

(dijmax3* Mij* Mi3)/ Kjimaxl3

replace gMjM13=0 if gMjMl13==.

gen gMjMl4=
replace

(dijmax4* Mij* Mi4d)/ Kjmaxl4d
gMjM14=0 if gMjMl4==.

gen gMjM15= (dijmax5* Mij* Mi5)/ Kjmaxl5

replace

gMjM15=0 if gMjMl5==.

gen gMjMl6= (dijmax6* Mij* Mi6)/ Kjmaxld

replace

gen gMjM17=
replace

gen gMjM18=
replace

gen gMjM19=
replace

gen gMjM110=
replace

gen gMjMlll=
replace

gen gMjMll2=
replace

gen gMjM113=
replace

gen gMjMl1l4=

(dijmaxlO*
gMjM110=0 if gMjM11l0==.

gMjM16=0 if gMjMl6==.

(dijmax7* Mij* Mi7)/ Kjmaxl7
gMiM17=0 if gMIM17==.

(dijmax8* Mij* Mi8)/ Kjmaxl$8
gMiM18=0 if gMiM18=-.

(dijmax9* Mij* Mi9)/ Kjmaxl9
gMIM19=0 if gM3M19=-.

Mij* MilO)/ KjmaxllO

(dijmax11l* Mij* Mill)/ Kjmaxlll
gMiM111=0 if gMjM1ll=—.

(dijmax12* Mij* Mil2)/ Kjmaxl1l2
gMiM112=0 if gMiMll2==.

(dijmax13* Mij* Mil3)/ Kjmaxll3
MijM113=0 if gMjM113==.
gtlj gilJ

(dijmax14* Mij* Mild)/ Kjmaxll4



replace gMjM114=0 1if gMjMll4==.

gen gMjM115= (dijmaxl15* Mij* Mil5)/ Kjmaxll5
replace gMjM115=0 1if gMjM1l1l5==.

gen gMjM1l6= (dijmaxldé* Mij* Mil6)/ Kjmaxllé
replace gMjM1l1l6=0 if gMjMlle==.

gen gMjM117= (dijmaxl7* Mij* Mil7)/ Kjmaxll7
replace gMjM117=0 if gMjM1ll7==.

gen gMjM118= (dijmaxl18* Mij* Mil8)/ Kjimaxl1l8
replace gMjM118=0 1if gMjM1l18==.

gen gMjM119= (dijmaxl9* Mij* Mil9)/ Kjmaxll9
replace gMjM119=0 1if gMjM119==.

gen gMjll= {dijmaxl* Mij)/ Kjmaxll

replace gMjll=0 if gMjll==.

gen gMjl2= (dijmax2* Mij)/ Kimaxl2
replace gMjl2=0 if gMjl2==.

gen gMjl3= (dijmax3* Mij)/ Kjmaxl3
replace gMjl3=0 if gMjl3==.

gen gMjléd= (dijmax4* Mij)/ Kjmaxl4
replace gMjl4=0 if gMjléd==.

gen gMjl5= (dijmax5* Mij)/ Kjmaxl5
replace gMjl5=0 if gMjl5==.

gen gMjle= (dijmaxd* Mij)/ Kjmaxlé
replace gMjlée=0 if gMjle==.

gen gMjl7= (dijmax7* Mij)/ Kjmaxl7
replace gMjl7=0 if gMjl7==.

gen gMjl8= (dijmax8* Mij)/ Kjmaxl8
replace gMjl8=0 if gMjl8==.

gen gMjl9= (dijmax9* Mij)/ Kjmaxl9
replace gMjl9=0 if gMjl9==.

gen gMjllOo= (dijmaxlO* Mij)/ KjmaxllO
replace gMjll0=0 if gMjllO==.

gen gMjlll= (dijmaxll* Mij)/ Kjmaxlll
replace gMjlll=0 1if gMjlll==.

gen gMjll2= (dijmaxl2* Mij)/ Kjmaxll2
replace gMjll2=0 if gMjll2==.

gen gMjll3= (dijmax13* Mij)/ Kjmaxll3
replace gMjl1l3=0 if gMjll3==.

gen gMjlld= (dijmaxl4* Mij)/ Kjmaxll4
replace gMjll4=0 if gMjlléd==.

gen gMjll5= (dijmaxl5* Mij)/ Kjmaxll5
replace gMjll5=0 if gMjllb==.

gen gMjlle= (dijmaxlé* Mij)/ Kjmaxlle



replace gMjlle=0 if gMjlle==.

gen gMjll7= (dijmaxl7* Mij)/ Kjmaxll7
replace gMjll7=0 if gMjll7==.

gen gMjll8= (dijmaxl18* Mij)/ Kjmaxll8
replace gMjll8=0 if gMjll8==.

gen gMjll9= (dijmaxl19* Mij)/ Kjmaxll9
replace gMjll9=0 if gMjll9==.

%

gen gMll= (dijmaxl*
replace gMl11=0 if

gen gMl2= (dijmax2*
replace gM12=0 if

gen gM1l3= (dijmax3*
replace gM13=0 if

gen gMl4= (dijmax4*
replace gM14=0 if

gen gM15= (dijmax5*
replace gM15=0 if

gen gMlé= (dijmax6*
replace gM16=0 1if

gen gMl7= (dijmax7%*
replace gM17=0 if

gen gMl8= (dijmax8*
replace gM18=0 if

gen gMl9= (dijmax9*
replace gM19=0 if

Mil)/ Kjmaxll
gMll==.

Mi2)/ Kjimaxl2
gMl2==.

Mi3)/ Kjmaxl3
gM13==.

Mid)/ Kjmaxl4
gMl4d==.

Mi5)/ Kjmaxl5
gM15==.

Mi6)/ Kjmaxlé6
gMle==.

Mi7)/ Kjmaxl7
gMl7==.

Mi8)/ Kjmaxl8
gMl8==.

Mi9)/ Kjmaxl9
gM19==.

gen gM110= (dijmaxlO* MilO)/ KjmaxllO

replace gM110=0 if

gM110==.

gen gMlll= (dijmaxll* Mill)/ Kjmaxlll

replace gMl111=0 1if

gMl1ll==.

gen gMl12= (dijmaxl2* Mil2)/ Kjmaxll2

replace gM112=0 if

gMl12==.

gen gM113= (dijmaxl13* Mil3)/ Kjmaxl1ll3

replace gM113=0 if

gM113==.

gen gMll4= (dijmaxl4* Mild)/ Kjmaxll4

replace gM114=0 if

gMl1l4==.

gen gM115= (dijmaxl5* Mil5)/ Kjmaxll5

replace gM115=0 if

gM115==.

gen gMll6= (dijmaxld6* Mil6)/ Kjmaxllé

replace gM116=0 if

gMlle==.

gen gM117= (dijmaxl7* Mil7)/ Kjmaxll7

replace gM117=0 1if

gM117==.
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gen gM118= {dijmaxl18* Mil8)/ Kjmaxll18

replace gM118=0 if gM118==.

gen gM119= (dijmax19* Mil9)/ Kjmax1l1l9

replace gM119=0 1if gM119==.

gsort tj -Tijminl

by tj: gen gMjMllx=sum(gMjM1l1)
replace gMjMllx=0 if TijminKXi
egen sgMjMll=max (gMjMllx), by (t]
drop gMjMllx

gsort tj -Tijmin2

by tj: gen gMjMl2x=sum (gMjM1l2)
replace gMjMl12x=0 1if Tijmin2<Xi
egen sgMjMl2=max (gMjMl2x), by (t]
drop gMjMl2x

gsort tj -Tijmin3

by tj: gen gMjMl3x=sum (gMjM13)
replace gMjM13x=0 1if Tijmin3<Xi
egen sgMjMl3=max (gMjM13x), by(t]
drop gMjM13x

gsort tj -Tijmin4

by tj: gen gMjMl4x=sum (gMjM1l4)
replace gMjMl4x=0 if Tijmin4<Xi
egen sgMjMl4=max (gMjMl4x), by (t]
drop gMjMl4x

gsort tj -Tijminb

by tj: gen gMjMl5x=sum (@MjM15)
replace gMjM15x=0 if Tijminb<Xi
egen sgMjMl5=max (gMjM15x), by (t]
drop gMjM15x

gsort tj -Tijminod

by tj: gen gMjMléx=sum(gMjM16)
replace gMjMlé6x=0 if Tijmin6<Xi
egen sgMjMlé6=max (gMjMlé6x), by (t]
drop gMjM1lox

gsort tj -Tijmin7

by tj: gen gMjMl7x=sum (@MjM17)
replace gMjMl17x=0 1if Tijmin7<Xi
egen sgMjMl7=max (gMjM17x), by(t]
drop gMjM1l7x

gsort tj -Tijmin8

by tj: gen gMjM1l8x=sum(gMjM18)
replace gMjM18x=0 1if Tijmin8<Xi
egen sgMjMl8=max (gMjM18x), by (t]
drop gMjM18x

gsort tj -Tijmin9

by tj: gen gMjM1l9x=sum(gMjM19)
replace gMjM19x=0 1if Tijmin9<Xi
egen sgMjMl9=max (gMjM19x), by (t]
drop gMjM19x

gsort tj -TijminlO
by tj: gen gMjM110x=sum(gMjM110)
replace gMjM110x=0 if TijminlO<Xi

Tijminl)

Tijmin2)

Tijmin3)

Tijmin4)

Tijmin5)

Tijmin6)

Tijmin7)

Tijmin8)

Tijmin9)
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egen sgMjM1l1l0=max (gMjMUOx) , by (t]
drop gMjMUOx

gsort tj -Tijminll

by tj: gen gMjMlllx=sum(gMjM111)
replace gMjM1l1l1lx=0 if Tijminll<Xi
egen sgMjMlll=max (gMjMlllx), by (t]
drop gMjMlllx

gsort tj -Tijminl2

by tj: gen gMjMll2x=sum(gMjM112)
replace gMjM112x=0 if Tijminl2<Xi
egen sgMjMll2=max (gMjM112x), by (t]
drop gMjMll2x

gsort tj -Tijminl3

by tj: gen gMjM1l1l3x=sum(gMjM113)
replace gMjM113x=0 if Tijminl3<Xi
egen sgMjMl13=max (gMjM113x), by (t]
drop gMjM113x

gsort tj -Tijminl4

by tj: gen gMjMll4x=sum(gMjM114)
replace gMjM114x=0 if Tijminl4<Xi
egen sgMjMll4=max (gMjMl1l4x), by(t]
drop gMjMll4x

gsort tj -Tijminl5

by tj: gen gMjM115x=sum(gMjM115)
replace gMjM115x=0 if Tijminl5<Xi
egen sgMjMl1l5=max (gMjM115x), by (t]
drop gMjM115x

gsort tj -Tijminld

by tj: gen gMjMlléx=sum(gMjM110%)
replace gMjM1l1l6x=0 if Tijminl6<Xi
egen sgMjMllé=max (gMjMlléx), by(t]
drop gMjM1l16x

gsort tj -Tijminl7

by tj: gen gMjMll7x=sum(gMjM117)
replace gMjM117x=0 if Tijminl7<Xi
egen sgMjMll7=max (gMjM117x), by(t]
drop gMjM117x

gsort tj -Tijminl8

by tj: gen gMjM118x=sum (gMjM118)
replace gMjM118x=0 if Tijminl8<Xi
egen sgMjMl1l8=max (gMjM118x), by(t]
drop gMjM118x

gsort tj -Tijminl9

by tj: gen gMjM119x=sum(gMjM119)
replace gMjM119x=0 if Tijminl9o<Xi
egen sgMjM1l1l9=max (gMjM119x), by (t]
drop gMjM119x

gsort tj -Tijminl
by tj: gen gMjllx=sum(gMjll)
replace gMjllx=0 if Tijminl<Xi

TijminlO)

Tijminll)

Tijminl2)

Tijminl3)

Tijminl4)

Tijminl5)

Tijminl6)

Tijminl7)

Tijminl8)

Tijmini 9)

egen sgMjll=max(gMjllx), by(tj Tijminl)

drop gMjllx



gsort tj -Tijmin2
by tj: gen gMjl2x=sum(@gMjl2)
replace gMjl2x=0 if Tijmin2<Xi

egen sgMjl2=max(gMjl2x), by(tj Tijmin2)

drop gMjl2x

gsort tj -Tijmin3
by tj: gen gMjl3x=sum (gMjl3)
replace gMjl3x=0 if Tijmin3<Xi

egen sgMjl3=max (gMjl3x), by(tj Tijmin3)

drop gMjl3x

gsort tj -Tijmin4
by tj: gen gMjldx=sum(gMjl4)
replace gMjl4x=0 if Tijmin4<Xi

egen sgMjlé4=max(gMjl4x), by(tj Tijmin4)

drop gMjléx

gsort tj -Tijminb5
by tj: gen gMjlbx=sum (@gMjl5)
replace gMjl5x=0 if Tijminb5<Xi

egen sgMjlb=max(gMjlbx), by(tj Tijmin))

drop gMjl5x

gsort tj -Tijmind
by tj: gen gMjlox=sum (@Mjlé6)
replace gMjlox=0 if Tijmin6<Xi

egen sgMjlé=max (gMjlé6x), by(tj Tijmin6)

drop gMjléx

gsort tj -Tijmin7
by tj: gen gMjl7x=sum(gMjl7)
replace gMjl7x=0 if Tijmin7<Xi

egen sgMjl7=max (gMjl7x), by(tj Tijmin7)

drop gMjl7x

gsort tj -Tijmin8
by tj: gen gMjl8x=sum(gMjl8)
replace gMjl8x=0 if Tijmin8<Xi

egen sgMjl8=max (gMjl8x) , by(tj Tijmin8)

drop gMjl8x

gsort tj -Tijmin9
by tj: gen gMjl9x=sum(gMjl9)
replace gMjl9x=0 if Tijmin9<Xi

egen sgMjl9=max (gMjl9x), by(tj Tijmin9)

drop gMjl9x

gsort tj -TijminlO

by tj: gen gMjllOx=sum(gMjll0)
replace gMjll0x=0 if TijminlO<Xi
egen sgMj 110=max @MjHOx ), by (t]
drop gMjllOx

gsort tj -Tijminll

by tj: gen gMjlllx=sum(@Mjlll)
replace gMjlllx=0 if TijminlKXi
egen sgMjlll=max(gMjlllx) , by (t]
drop gMjlllx

gsort tj -Tijminl2

by tj : gen gMjll2x=sum(gMjll2)
replace gMjll2x=0 1if Tijminl2<Xi
egen sgMjll2=max(gMjll2x), by(t]

TijminlO)

Tijminll)

Tijminl2)



drop gMjll2x

gsort tj -Tijminl3

by tj: gen gMjll3x=sum(gMjll3)
replace gMjll3x=0 1if Tijminl3<Xi
egen sgMjll3=max (gMjll3x), by(t]
drop gMjll3x

gsort tj -Tijminl4

by tj: gen gMjlldx=sum(gMjll4)
replace gMjll4x=0 1if Tijminl4<Xi
egen sgMjlld4=max @Mjlldx), by(t]
drop gMjlléx

gsort tj -Tijminlb

by tj: gen gMjll5x=sum(gMjll5)
replace gMjllbx=0 if Tijminl5<Xi
egen sgMjll5=max (gMjll5x), by(t]
drop gMjllbx

gsort tj -Tijminlé6

by tj: gen gMjlléx=sum(gMjlle)
replace gMjllex=0 if Tijminl6<Xi
egen sgMjllé=max (gMjlléx), by(t]
drop gMjlleéx

gsort tj -Tijminl?7

by tj: gen gMjll7x=sum(gMjll7)
replace gMjll7x=0 if Tijminl7<Xi
egen sgMjll7=max (gMjll7x), by(t]
drop gMjllix

gsort tj -Tijminl8

by tj: gen gMjll8x=sum(gMjll1l8)
replace gMjll8x=0 if Tijminl8<Xi
egen sgMjll8=max (@Mjll8x), by(t]
drop gMjll8x

gsort tj -Tijminl9

by tj: gen gMjll9x=sum(gMjl19)
replace gMjll9x=0 1if TijminlO<Xi
egen sgMjll9=max (gMjll9x), by (t]
drop gMjll9x

gsort tj -Tijminl
by tj: gen gMllx=sum(gMl1l)
replace gMllx=0 1if Tijminl<Xi

Tijminl3)

Tijminl4)

Tijminlb)

Tijminlé6)

Tijminl7)

Tijminl8)

Tijminl9)

egen sgMll=max (gMllx), by(tj Tijminl)

drop gMllx

gsort tj -Tijmin2
by tj: gen gMl2x=sum(gMl2)
replace gMl2x=0 1if Tijmin2<Xi

egen sgMl2=max (gMl2x), by(tj Tijmin2)

drop gMl2x

gsort tj -Tijmin3
by tj: gen gMl3x=sum(gM13)
replace gMl3x=0 1if Tijmin3<Xi

egen sgMl3=max (gM13x), by(tj Tijmin3)

drop gM13x

gsort tj -Tijmin4

207



by tj: gen gMl4dx=sum(gMl4)

replace gMl4x=0 if Tijmin4<Xi

egen sgMl4=max (gMl4x), by(tj Tijmin4)
drop gMl4x

gsort tj -Tijmin5

by tj: gen gMl5x=sum(gM1l5)

replace gM15x=0 if Tijminb<Xi

egen sgMlb=max (@M15x), by(tj Tijmin))
drop gM1l5x

gsort tj -Tijminé

by tj: gen gMléx=sum (@Mlo)

replace gMléex=0 if Tijmin6<Xi

egen sgMlé6=max (gMlé6x), by(tj Tijminé6)
drop gMlé6x

gsort tj -Tijmin7

by tj: gen gMl7x=sum(@M17)

replace gM17x=0 if Tijmin7<Xi

egen sgMl7=max(gMl7x), by(tj Tijmin7)
drop gM1l7x

gsort tj -Tijmin8

by tj: gen gMl8x=sum (gMl8)

replace gM18x=0 if Tijmin8<Xi

egen sgMl8=max (gM1l8x), by(tj Tijmin8)
drop gM1l8x

gsort tj -Tijmin9

by tj: gen gMl9x=sum(gM19)

replace gM19x=0 if Tijmin9<Xi

egen sgMl9=max (gM1l9x), by (tj Tijmin9)
drop gM19x

gsort tj -TijminlO

by tj: gen gMl1l0x=sum(gM1l10)

replace gM110x=0 if TijminlO<Xi

egen sgMllO=max (gMUOx) , by(tj TijminlO)
drop gMUOx

gsort tj -Tijminll

by tj: gen gMlllx=sum(gMl1l1l)

replace gMl1l1lx=0 if TijminlKXi

egen sgMlll=max(gMlllx), by(tj Tijminll)
drop gMlllx

gsort tj -Tijminl2

by tj: gen gMll2x=sum (@M112)

replace gMl12x=0 if Tijminl2<Xi

egen sgMll2=max(gM1l12x) , by(tj Tijminl2)
drop gMl1l2x

gsort tj -Tijminl3

by tj: gen gMl1l3x=sum (@M113)

replace gM113x=0 if Tijminl3<Xi

egen sgMll3=max (gM113x), by(tj Tijminl3)
drop gM113x

gsort tj -Tijminl4

by tj: gen gMll4dx=sum(gM114)

replace gMl1l4x=0 if Tijminl4<Xi

egen sgMll4=max (gMlldx), by(tj Tijminl4)
drop gM1l1l4x
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gsort tj -Tijminl5

by tj: gen gMl15x=sum(gM115)
replace gM115x=0 if Tijminl5<Xi
egen sgMl1l5=max (gM115x), by (t]
drop gM115x

Tijminlb)

gsort tj -Tijminlé6

by tj: gen gMll6x=sum(gM116)
replace gMl16x=0 if Tijminl6<Xi
egen sgMllé6=max (gMll6x), by(t]
drop gMlléx

Tijminlo6)

gsort tj -Tijminl7

by tj: gen gMll7x=sum(gM117)
replace gMl17x=0 1if Tijminl7<Xi
egen sgMll7=max (gMl1l7x) , by(t]
drop gM1l17x

Tijminl7)

gsort tj -Tijminl8

by tj: gen gM118x=sum(gM118)
replace gM118x=0 if Tijminl8<Xi
egen sgMl1l8=max (gM118x), by(t]
drop gM118x

Tijminl8)

gsort tj -Tijminl9

by tj: gen gMl19x=sum(gM119)

replace gM119x=0 if TijminlO<Xi

egen sgMll9=max (gM119x) , by(tj Tijminl9)
drop gM119x

%

gen sxjll1=((1/1138)* sgMjM1l1l-(1/1138)*
replace sxjll=0 1if sxjll==.

gen sxj12=((1/1138)* sgMjM12-(1/1138)*
replace sxjl2=0 if sxjl2==.

gen sxjl3=((1/1138)* sgMjM13-(1/1138)~*
replace sxjl3=0 if sxjl3==.

gen sxjl14=((1/1138)* sgMjM14-(1/1138) *
replace sxjl4=0 1if sxjld==.

gen sxj15= ((1/1138)* sgMjM15-(1/1138)*
replace sxj15=0 if sxjlb==.

gen sxjl6=((1/1138)* sgMjMle-(1/1138)*
replace sxjl16=0 if sxjlé==.

gen sxjl7=((1/1138)* sgMjM17-(1/1138)~*
replace sxjl7=0 if sxjl7==.

gen sxjl8= ((1/1138)* sgMjM18-(1/1138)*
replace sxj18=0 if sxjl8==.

gen sxjl9=((1/1138)* sgMjM19-(1/1138)*
replace sxjl19=0 1if sxjl9==.

gen sxjl10= ((1/1138)* sgMjMHO- (1/1138)
replace sxjl10=0 1if sxjll0==.

gen sxjlll=((1/1138)~*
replace sxjll1=0 1if sxjlll==.

SgMiM111-(1/1138)*

SgMj11* (1/1138)*(1/ Sjllu)* sgMll)

sgMjl2* (1/1138)*(1/ Sjl2u)* sgMl2)

sgMj13*(1/1138)*(1/ Sjl3u)* sgM13)

sgMj14*(1/1138) * (1/ Sjldu)* sgMld)

sgMj15* (1/1138)*(1/ Sjl5u)* sgM1l5)

sgMjle*(1/1138)*(1/ Sjléeu)* sgMlo)

sgMj17* (1/1138)* (1/ Sjl7u)* sgM17)

sgM318%*(1/1138)*(1/ S3j1l8u)* sgM18)

sgMj19* (1/1138)*(1/ Sj19u)* sgMl9)

*

sgMj 110* (1/1138 )*(1/ SjllOu)* sgMUO)

sgM3j111* (1/1138)* (1/ Sjlllu)* sgMlll)



gen sxjl12=((1/1138)
replace sxjl112=0 if

gen sxj113=((1/1138)
replace sxjl113=0 if

gen sxj114=((1/1138)
replace sxjll14=0 if

gen sxj115=((1/1138)
replace sxjll5=0 if

gen sxj1l6=((1/1138)
replace sxjll6=0 if

gen sxj117=((1/1138)
replace sxjl17=0 if

gen sxj118=((1/1138)
replace sx3j118=0 if

gen sx3j119=((1/1138)
replace sx3j119=0 if

gen sumsxls=

egen sumsall=sum(sumsxls) ,

* sgMjM112-(1/1138) *
sxj1ll2==.

* sgMjM113-(1/1138) *
sxj113==.

* sgMjM114-(1/1138)*
sxjlld==.

* sgMjM115-(1/1138)*
sxjllb==.

* sgMjM116-(1/1138)*
sxjlle==.

* sgMjM117-(1/1138)*
sxjll7==.

* sgMjM118-(1/1138)*
sxjl18==.

* sgMjM119-(1/1138)*
sxj119==.

by (ukno)

sgMjl12*(1/1138)*(1/

sgMj1l13*(1/1138)*(1/

sgMjl14*(1/1138)* (1/

sgMjl1l5*(1/1138)*(1/

sgMjll6*(1/1138)*(1/

sgMjl117+*(1/1138)*(1/

sgMj1l18*(1/1138)*(1/

sgMj119*(1/1138)*(1/

S§112u) *

S§113u) *

S§11l4u) *

S§115u) *

Sj11l6u) *

S§117u) *

Sj118u)*

S3§119u) *

collapse sumintjs sumsall di censorig Mi censll1l38 survl138 censori Yu,

label wvar di

%k

"censorig"

egen mpx=sum (sumintjs)
gen meanpart=(1/1138) *mpx

%

gen internl=di* (( Mi- meanpart)A2)/ censll38
replace internl=0 if internl==.

egen sumintl=sum (internl)

gen terml=(1/1138)*

gen intern2=(censori/

replace intern2=0
egen sumint2=sum (

gen term2=sumint?2

gen varpart=(1/1138)

*(

sumintl

(Yu* censll38))*

if intern2==.

intern2)

terml+ term?2)

gen separt=sqrt (varpart)

kek

sumsall

sgM112)

sgM113)

sgM114)

sgM115)

sgM116)

sgM117)

sgM118)

sgM119)

sxjJ1ll+sxjl2+sxj1l3+sxjld+sxj1l5+sxjl6+sx)1l7+sxj18+sxjJ1l9+sxj110+
sxj111+sx3112+sx3113+sxj114+sxjJ115+sxj116+sxj1l17+sxj118+sxj119

by (ukno)
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Simple improved estimator

Based on equations (4.42), (4.43), (4.45) and (4.406)

equations (4.44), (4.45) and (4.46) for the wvariance
For Conventional (similarly for intensive)
EES

gen tj l=year-1
gen tj=year

gen Mij=costyr
replace Mij=0 if Mij==.

egen di=min(censorig), by (ukno)
egen Xi=min ( timallde), by (ukno)

gen ejMi=Mij 1f Xi>tj
replace ejMi=0 if ejMi==.

gsort tj -Xi

by tj: gen Sejx=sum( ejMi)
egen Sej=max{ Sejx), by(tj Xi)
drop Sejx

gen gejM=Sej/Yu

gen difejg= ejMi- gejM

gen internj=(censorl/censll38)* difejg
replace internj=0 if internj==.

egen sinternij=sum(internj), by(tj)

**cov vector**

gen coval=(di*Mi)/censl138
replace coval=0 if coval==.

gsort tj -Xi

by tj: gen scovalx=sum( coval)

egen scoval=max( scovalx), by(tj Xi)
*drop scovalx*

gen gMu=(1/1138)* (1/surv1138)* scoval
replace gMu=0 if gMu==.

gen cova2= Mi-gMu

gen cova3=(di*Mij)/censll38
replace cova3=0 1if cova3==.

gsort tj -Xi

by tj: gen scova3x=sum( cova3)

egen scova3=max( scova3x), by(tj Xi)
*drop scova3x*

gen gMju=(1/1138)*(1/surv1138)* scova3
replace gMju=0 if gMju==.

gen covad4= Mij-gMju

for the mean and on
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gen covab=( di/ censll38)* cova2* cova4
replace covab5=0 if covab==.

**xties **

gen int const=1

sort tj Xi

by tj Xi: gen ties=sum(const)
egen maxties=max(ties), by (tj Xi)

v
gsort tj -Xi ties

by tj: gen scovabx=sum( cova)b)
gen scovab=scovabx 1if ties==maxties

egen scovabSxx=min ( scovab), by(tj Xi maxties)

replace scovab=scovabxx 1if scovab==.
*drop scovabx scovabxx*

gen cova6=(1/1138)*(1/surv1138)* scovab

gen cova7=( censorl/ (censll138A2))* covad
replace cova7=0 if cova7==.

egen scova/=sum(cova7), by(t])

gen covj=(1/1138) *scova’

**Variance vector**
sort ukno tj

gen a4d4leadl=covai4

quietly by ukno: gen ad4lead2=a4d4leadl][ n+l]
quietly by ukno: gen ad4Ilead3=adlead2[ n+l]
quietly by ukno: gen a4d4lead4=adlead3[ n+l

[

[

[
quietly by ukno: gen a4d4leadb5=adlead4[ n+tl

[

[

[

quietly by ukno: gen a4d4lead6=adlead5[ n+l
quietly by ukno: gen a4d4Ilead7=adlead6[ n+l
quietly by ukno: gen a4d4Iead8=adlead7[ n+l

quietly by ukno: gen a4lead9=a4lead8[ nt+l
quietly by ukno: gen a4d4leadlO=ad4lead9[ n+l]

quietly by ukno: gen ad4leadll=ad4leadlO [ n+l
quietly by ukno: gen adleadl2=adleadll [ n+l
quietly by ukno: gen adleadl3=adleadl2 [ n+l
quietly by ukno: gen a4d4leadl4=ad4leadl3 [ n+l

[
[
[
[
quietly by ukno: gen adleadl5=a4dleadl4d [ n+l
[
[
[
[

quietly by ukno: gen adleadl6=ad4leadl5 [ n+l
quietly by ukno: gen a4d4leadl7=a4d4leadl6 [ n+l
quietly by ukno: gen a4leadl8=adleadl7 [ n+l
quietly by ukno: gen a4Ieadl9=ad4leadl8 [ n+l

replace adleadl=. if tj~=1
replace a4dlead2=. if tj~=1
replace a4dlead3=. if tj~=1
replace adleadd=. if tg~=1
replace adlead5=. if tj~=1
replace adlead6=. if tj~=1
replace a4dlead7=. if tj~=1
replace adlead8=. if tj~=1
replace a4dlead9%=. if tj~=1
replace a4d4leadlO=. if tj~=1
replace adleadll=. if tj~=1
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gen vara55=(di/censll138)*vara45
replace varab55=0 if wvarab55==.

gen vara56=(di/censll38)*vara4dé6
replace varab56=0 if varabé6==.

gen vara57=(di/censl1138)*varad’
replace varab57=0 1f wvarab7==.

gen varab58=(di/censll38)*vara48
replace varab58=0 1if varab58==.

gen vara59=(di/censll38)*varad?
replace vara59=0 if wvarab59==.

gen vara510=(di/cens 1138) *varadl0
replace varabl0=0 if varablO==.

gen vara5ll=(di/cens 1138)*varadll
replace varabll=0 if wvarab5ll==.

gen varab5l2=(di/censl138)*varadl?
replace varabl12=0 if varabl2==.

gen varab5l13=(di/censl1138)*varadl3
replace varabl3=0 1if varabl3==.

gen varabl4=(di/censll38)*varadld
replace varab5l4=0 if wvarabl4==.

gen varabl5=(di/censll38)*varadl5s
replace varab515=0 if wvarab5l5==.

gen varab5l6=(di/censll138) *varadls6
replace varab5l16=0 1if wvarab5le==.

gen varab5l7=(di/censl138) *varadl’
replace varab5l17=0 if varabl7==.

gen vara518=(di/censl138)*varadls
replace varabl8=0 if wvarab5l8==.

gen vara519=(di/censll138)*varadl9
replace varabl9=0 if wvarab5l19==.

gsort tj -Xi ties

by tj: gen svarablx=sum( varabl)

gen svarabl=svarablx if ties==maxties
egen svarablxx=min ( svarab5l), by(tj Xi

replace svarabl=svarablxx 1f svarabl==.

drop svarablx svarablxx

gsort tj -Xi ties

by tj: gen svarab2x=sum( varab2)

gen svarab2=svarab52x if ties==maxties
egen svarab2xx=min ( svarab2), by(tj Xi

replace svarab2=svarab2xx if svarab2==.

drop svarab52x svarab52xx

gsort tj -Xi ties

by tj: gen svarab3x=sum( varab53)

gen svarab3=svarab3x if ties==maxties
egen svarab3xx=min ( svarab3), by(tj Xi

maxties)

maxties)

maxties)



replace svarab3=svarab3xx 1if svarab3==.
drop svarab3x svarab3xx

gsort tj -Xi ties

by tj: gen svarabS4x=sum( varab4)

gen svarab4=svarab4x 1f ties==maxties

egen svarab4xx=min ( svarab4), by(tj Xi maxties)
replace svarab4=svarabdxx 1if svarabd==.

drop svarab4x svarab4xx

gsort tj -Xi ties

by tj: gen svarabbx=sum( varab5)

gen svarab5b5=svarab5bx 1if ties==maxties

egen svarabbxx=min ( svarab5), by(tj Xi maxties)
replace svarab5=svarab5xx if svarabb==.

drop svarabbx svarabbxx

gsort tj -Xi ties

by tj: gen svarabé6x=sum( vara56)

gen svarab6=svarab6x if ties==maxties

egen svarab6xx=min( svarab56), by(tj Xi maxties)
replace svarab6=svarab6xx 1if svarabe6==.

drop svarab6x svarab56xx

gsort tj -Xi ties

by tj: gen svaraS57x=sum( varab7)

gen svarab7=svarab7x 1f ties==maxties

egen svarab7xx=min ( svara57), by(ty Xi maxties)
replace svarab7=svarabixx 1if svarabi==.

drop svarab7x svarab7xx

gsort tj -Xi ties

by tj: gen svarab58x=sum( vara58)

gen svarab8=svarab8x 1f ties==maxties

egen svarab8xx=min ( svarab8), by(tj Xi maxties)
replace svarab58=svarab58xx if svarab8==.

drop svarab8x svarab8xx

gsort tj -Xi ties

by tj: gen svarab59x=sum( varab9)

gen svarab59=svarab59x 1if ties==maxties

egen svarab9xx=min ( svarab9), by(tj Xi maxties)
replace svarab9=svarab59xx 1if svarab9==.

drop svarab9x svarab59xx

gsort tj -Xi ties

by tj: gen svarablOx=sum( varab5l0)

gen svarablO=svarab5lOx if ties==maxties

egen svarablOxx=min ( svara5l0), by (tj Xi maxties)
replace svarablO=svarab5l0xx 1if svarablO==.

drop svarab5l0x svarab5l0xx

gsort tj -Xi ties

by tj: gen svarabllx=sum( varabll)

gen svarabll=svarabllx if ties==maxties

egen svarabllxx=min ( svarab5ll), by(tj Xi maxties)
replace svarabll=svarabllxx 1if svarab5ll==.

drop svarabllx svarabllxx

gsort tj -Xi ties

by tj: gen svarabl2x=sum( varab5l2)

gen svarabl2=svarabl2x if ties==maxties

egen svarabl2xx=min ( svara5l2), by (tj Xi maxties)
replace svarabl2=svarabl2xx 1if svarabl2==.
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drop svarabl2x svarabl2xx

gsort tj -Xi ties

by tj: gen svarab5l3x=sum( vara513)

gen svarab5l3=svarabl3x 1if ties==maxties

egen svarabl3xx=min ( svarab51l3), by(tj Xi maxties)
replace svarab5l3=svarabl3xx if svarab5l3==.

drop svarabl3x svarabl3xx

gsort tj -Xi ties

by tj: gen svarabl4x=sum( varab5l4)

gen svarabl4=svarabl4x 1if ties==maxties

egen svarabl4xx=min ( svara5l4), Dby (tj Xi maxties)
replace svarab5l4=svarabl4xx if svarab5l4==.

drop svarabl4dx svarab5l4xx

gsort tj -Xi ties

by tj: gen svarab5lb5x=sum( vara5lb)

gen svarablb=svarablbx 1if ties==maxties

egen svarablSxx=min( svarab5l5), by(tj Xi maxties)
replace svarabl5=svarabl5xx if svarablb5==.

drop svarablb5x svarablb5xx

gsort tj -Xi ties

by tj: gen svarabléx=sum( varab5l6)

gen svarablé=svarableéx if ties==maxties

egen svarabloxx=min( svarab5l6), by(tj Xi maxties)
replace svarabl6=svarabléxx if svarable==.

drop svarabl6x svarab5loxx

gsort tj -Xi ties

by tj: gen svarabl7x=sum( varab5l7)

gen svarabl7=svarabl7x 1if ties==maxties

egen svarabl7xx=min ( svara5l17), by(t] Xi maxties)
replace svarab5l7=svarablixx if svarab5l7==.

drop svarabl7x svarab5lixx

gsort tj -Xi ties

by tj: gen svarab5l8x=sum( vara518)

gen svarabl8=svarab5l8x if ties==maxties

egen svarabl8xx=min ( svarab5l8), by (tj Xi maxties)
replace svarabl8=svarabl8xx if svarabl8==.

drop svarabl8x svarab5l8xx

gsort tj -Xi ties

by tj: gen svarab5l9x=sum( vara519)

gen svarabl9=svarab5l9x 1f ties==maxties

egen svarabl9xx=min( svarab5l9), by(tj Xi maxties)
replace svarabl9=svarab5l9xx if svarabl9==.

drop svarab5l9x svarab5l9xx

gen varab6l=(censorl/ (censll38A2))* (1/1138)* (1/surv1138) *svarabl
replace vara6l=0 1if varaé6l==.

gen vara62=(censorl/ (censl138A2))*(1/1138)*(1/surv1138)*svarab2
replace vara62=0 1f vara62==.

gen vara63=(censorl/ (censll38A2))*(1/1138)* (1/surv1138)*svarab3
replace vara63=0 1if vara63==.

gen vara64=(censorl/ (censl1138A2))* (1/1138)* (1/surv1138)*svarab4
replace vara64=0 1if varab6d==.



gen varab65=(censorl/ (censl1138A2)
replace vara65=0 1f vara65==

gen varab6=(censorl/ (censl1138A2)
replace vara66=0 1f vara66==

gen varab67=(censorl/ (censl1138A2)
replace vara67=0 1f wvara67==

gen vara68=(censorl/ (censl138A2)
replace vara68=0 if vara68==

gen vara69=(censorl/ (censll38A2))

replace vara69=0 if vara69==

gen vara6l0=(censorl/ (censl1138A2)
replace vara6l0=0 if vara6l0==.

gen varab6ll=(censorl/ (censll38A2)
replace vara6ll=0 if vara6ll==.

gen vara6l2=(censorl/ (censll38A2)
replace vara6l2=0 if vara6cl2==

gen vara6l3=(censorl/ (censll38A2)
replace vara6l3=0 if varacl3==

gen varat6ld=(censorl/ (censll38A2)
replace vara6l4=0 if varacld==.

gen vara6l5=(censorl/ (censl138A2)
replace vara6l5=0 if vara6lb5==

gen vara6lo6=(censorl/ (cens 1138A2) )
replace vara6l6=0 if vara6lé==

gen varab6l7=(censorl/ (censl1138A2)
replace vara6l7=0 if vara6l7==.

gen vara6l8=(censorl/ (censll38A2)
replace vara6l18=0 if vara6l8==.

gen vara6l9=(censorl/ (censll1l38A2)
replace vara6l9=0 if vara6l9==

vara ol
vara 62

egen var71l=gIIT
egen var72=sum
egen var73=sum ( vara 63) , by
egen var74=sum ( vara 64) , by

( ), by (t]

( ) (t3

( ) (tJ

( ) (t3

egen var75=sum ( vara65) , by (tj
( ) (t3

( ) (tJ

( ) (t3

( ) (tJ

(

, by

egen var7 é=sum ( vara 66) , by
vara 67) , by
vara 68) , by

egen var77=sum
egen var78=sum

egen var7 9=sum ( vara 69

, by

)

)
egen var71l0=sum ( vara610), by (t]j
egen var7ll=sum ( varadll), by (t]
egen var712=sum ( vara6l2), by (t]
egen var713=sum ( vara61l3), by (t]
egen var7l4=sum ( vara6l4), by (t]
egen var715=sum ( vara6l5), by (t]
egen var7l6=sum ( vara6l6), by (t]
egen var717=sum ( vara6l7), by (t]
egen var718=sum ( vara6l8), by (t]
egen var719=sum ( vara6l9), by (t]

—_— — — — — — — — — —

(1/1138)

(1/1138)

(1/1138)

(1/1138)

*(1/1138)*

(1/1138)

(1/1138)

(1/1138)

(1/1138)

(1/1138)

(1/1138)

(1/1138)

(1/1138)

(1/1138)

(1/1138)

(1/surv1138)

(1/surv1138)*

(1/surv1138)

(1/surv1138)

(1/surv1138)

(1/surv1138)*

(1/surv1138) *

(1/surv1138)

(1/surv1138)

(1/surv1138)*

(1/surv1138)

(1/surv1138)

(1/surv1138)

(1/surv1138)

(1/surv1138)*

svarabb

*svarab56

*svarab’

*svarab58

*svarab59

svarab10

svarabll

*svarabl2

*svarabl3

svarabl4

*svarab51l5

*svara51l6

*svarabl7

*svarabl8

svarab1l9
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gen varjll=(1/1138)* wvar7l
gen varjl2=(1/1138)* wvar72
gen varjl1l3=(1/1138)* wvar73
gen varjl4=(1/1138)* var74
gen varjl5=(1/1138)* wvar75
gen varjle=(1/1138)* wvar76
gen varjl7=(1/1138)* wvar77
gen varjl8=(1/1138)* wvar78
gen varjl9=(1/1138)* wvar79
gen varjl1l0=(1/I1138)* wvar710
gen varjll1l=(1/1138)* wvar71ll
gen varjll2=(1/1138)* wvar712
gen varjl13=(1/1138)* wvar713
gen varjll4=(1/1138)* wvar71l4
gen varjll5=(1/1138)* wvar71l5
gen varjlle=(1/1138)* wvar716
gen varjll7=(1/1138)* wvar71l7
gen varjll18=(1/1138)* wvar7l8
gen varjll9=(1/1138)* wvar719

** Matrix calculations for Simple Improved for conventional*

keep if ukno=="00011D"
keep ukno year sinternj covj varj*
mkmat varjl*,matrix (var)
matrix invvar=syminv (var)
svmat invvar

mkmat covj, matrix(covs)
matrix Gs=covsl*invvar
svmat Gs

mkmat sinternj, matrix(A)
matrix ws=Gs*A

svmat ws

gen wsterm= wsl/1138

matrix varsterm=Gs*covs
svmat varsterm

gen msimpimp= meansimp-xxx

gen internlimp= censorig* ((Mi- msimpimp)A2)/ censl138
replace internlimp=0 if internlimp==.

egen sumintlimp=sum(internlimp)

gen termlimp=(1/1138)*sumintlimp

gen term3imp=xxxx

gen varsimpimp=(1/1138)* (termlimp+term2- term3imp)
gen sesimpimp=sqgrt ( varsimpimp)



Improved Partitioned estimator

Based on equations (4.47), (4.42) (4.46) and (4.48) for the mean and on

equations (4.49), (4.46) and (4.48) for the variance

For Conventional (similarly for intensive)

** TImproved Partitioned: Covariance vector: Conventional**

gen tj l=year-1
gen tj=year

egen Xi=min(timallde), by (ukno)
egen di=min (censorig), by (ukno)

gen Mij=costyr
replace Mij=0 1if Mij==.

gen minTitj=min (Xi, t3j)
gen Xij=min(minTitj, Xi)

gen dij=1 if (minTitj==tj I (minTitj==Xi & di==1))
replace dij=0 if dij==.

stset Xij, failure(dij==0)
sts gen KjTij=s, Dby(t3j)

gen intern=(dij*Mij)/KJjTij
replace intern=0 1f intern==.

gen dijsurv=1l 1if (minTitj==Xi & di==1)
replace dijsurv=0 1if dijsurv==.

stset Xij, failure(dij==1)
sts gen Slu=s, by(t])

gsort tj -Xi

by tj: gen glMlx=sum(intern)
replace glMlx=0 if Xij<Xi

egen sglMl=max (glMlx), by(tj Xi)
replace sglMl=0 if Xij<Xi

gen glM1=(1/1138)*(1/S1lu)*sglMl
replace glM1=0 if glMl==.

gen Mil gl=Mij-glMl

gen 11=1
gen 12=2
gen 13=3
gen 14=4
gen 15=5
gen 16=6
gen 17=7
gen 18=8
gen 19=9
gen 110=10
gen 111=11
gen 112=12
gen 113=13
gen 114=14
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gen 115=15
gen 116=16
gen 117=17
gen 118=18
gen 119=19

gen jmaxll=max(tj, 11)
gen JjmaxlZ2=max(tj, 12)
gen Jjmaxl3=max (tj, 13)
gen jmaxl4=max(tj, 14)
gen jmaxlb5=max(tj, 15)
)
)
)
)

=

(
gen jmaxlé6=max(tj, 16
gen jmaxl7=max (tj, 17
gen jmaxl8=max(tj, 18
gen jmaxl9=max (tj, 19
gen jmaxllO=max(tj, 110
gen jmaxlll=max(tj, 111
gen JjmaxllZ2=max(tj, 112
gen jmaxll3=max(tj, 113
gen jmaxll4=max(tj, 114
gen jmaxllb=max(tj, 115
gen jmaxllé=max(tj, 116
gen jmaxll7=max(tj, 117
gen jmaxll8=max(tj, 118
gen jmaxll9=max(tj, 119

O - D D T = — - —

gen Tijmaxl=min (Xi, jmaxll)
gen Tijmax2=min (Xi, jmaxl2)
gen Tijmax3=min (Xi, Jjmaxl3)
gen Tijmax4=min (Xi, jmaxl4)
gen Tijmax5=min (Xi, jmaxlh)
gen Tijmax6=min (Xi, jmaxl6)
gen Tijmax7=min (Xi, jmaxl7)
gen Tijmax8=min (Xi, jmaxl8)
gen Tijmax9=min (Xi, jmaxl9)
gen TijmaxlO=min (Xi, JjmaxllO)
gen Tijmaxll=min (Xi, jmaxlll)
gen Tijmaxl2=min (Xi, jmaxll2)
gen Tijmaxl3=min (Xi, Jjmaxll3)
gen Tijmaxl4=min(Xi, Jjmaxll4)
gen Tijmaxl5=min (Xi, jmaxll5)
gen Tijmaxl6=min (Xi, jmaxlld)
gen Tijmaxl7=min (Xi, jmaxll7)
gen Tijmaxl8=min (Xi, jmaxl18)
gen Tijmaxl9=min (Xi, Jjmaxll9)
gen dijmaxl=1 if Tijmaxl==jmaxll
replace dijmaxl=0 1if dijmaxl==.

gen dijmax2=1 if Tijmax2==jmaxl?2
replace dijmax2=0 1if dijmax2==.

gen dijmax3=1 if Tijmax3==jmaxl3
replace dijmax3=0 1if dijmax3==.

gen dijmax4=1 if Tijmax4==jmaxli4
replace dijmax4=0 if dijmax4==.

gen dijmaxb5=1 if Tijmax5==jmaxl5
replace dijmaxb5=0 1f dijmaxb5==.

gen dijmax6=1 if Tijmax6==jmaxl6

(Tijmaxl==Xi

(Tijmax2==Xi

(Tijmax3==X1i

(Tijmax4==X1i

(Tijmax5==X1i

(Tijmax6==Xi

di==1)
di==1)
di==1)
di==1)
di==1)
di==1)
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replace dijmax6=0 1if dijmaxé==.

gen dijmax7=1 if Tijmax7==jmaxl7 |
replace dijmax7=0 if dijmax7==.

gen dijmax8=1 1f Tijmax8==jmaxl8 |
replace dijmax8=0 if dijmax8==.

gen dijmax9=1 if Tijmax9==jmaxl9 |
replace dijmax9=0 if dijmax9==.

gen dijmax10=1 if TijmaxlO==jmaxl10
replace dijmax10=0 1if dijmaxlO==.

gen dijmaxll=1 if Tijmaxll==jmaxlll
replace dijmax11=0 1if dijmaxll==.

gen dijmax12=1 1if Tijmaxl2==jmaxll12
replace dijmaxl2=0 if dijmaxl2==.

gen dijmax13=1 if Tijmaxl3==jmax113
replace dijmaxl3=0 if dijmaxl3==.

gen dijmaxl4=1 if Tijmaxl4==jmaxll4
replace dijmaxl4=0 if dijmaxlé4==.

gen dijmax15=1 1if Tijmaxlb5==jmaxl15
replace dijmaxl15=0 1if dijmaxl5==.

gen dijmaxlé=1 1if Tijmaxlé==jmaxllé6
replace dijmaxl6=0 if dijmaxl6==.

gen dijmaxl7=1 1if Tijmaxl7==jmax117
replace dijmaxl7=0 if dijmaxl7==.

gen dijmax18=1 1if Tijmaxl8==jmaxl118
replace dijmax18=0 if dijmaxl8==.

gen dijmaxl9=1 if Tijmaxl9==jmax1l19
replace dijmax19=0 if dijmaxl9==.

stset Tijmaxl, failure(dijmaxl==0)
sts gen Kjmaxll=s, by(t]j)

stset Tijmax2, failure(dijmax2==0)
sts gen Kjmaxl2=s, by(t])

stset Tijmax3, failure(dijmax3==0)
sts gen Kjmaxl3=s, by(t7j)

stset Tijmax4, failure(dijmax4==0)
sts gen Kjmaxld=s, by (t])

stset Tijmax5, failure(dijmax5==0)
sts gen Kjmaxl5=s, by(t]j)

stset Tijmax6, failure(dijmax6==0)
sts gen Kjmaxl6=s, by(tj)

stset Tijmax7, failure(dijmax7==0)
sts gen Kjmaxl7=s, by(t])

(Tijmax7==Xi & di==1)
(Tijmax8==Xi & di==1)
(Tijmax9==Xi & di==1)
I (Tijmaxl0==Xi & di==1)
| (Tijmaxll==Xi & di==1)
| (Tijmaxl2==Xi & di==1)
| (Tijmaxl3==Xi & di==1)
I (Tijmaxl4==Xi & di==1)
I (Tijmaxl5==Xi & di==1)
| (Tijmaxl6==Xi & di==1)
| (Tijmaxl7==Xi & di==1)
di==1)

(Tijmaxl8==Xi &

(Tijmax1l9==Xi & di==1)



stset Tijmax8, failure (dijmax8==0)

sts gen

Kjmax18=s, by (t])

stset Tijmax9, failure(dijmax9==0)

sts gen

Kjmax19=s, by (t])

stset TijmaxlO, failure (dijmaxl0==0)

sts gen

Kjmax1l1l0=s, by (t7])

stset Tijmaxll, failure(dijmaxll1l==0)

sts gen

Kjmaxlll=s, by(tj)

stset Tijmaxl2, failure(dijmaxl2==0)

sts gen

Kijmax1l12=s, by(t])

stset Tijmaxl3, failure(dijmaxl3==0)

sts gen

Kjmaxl1l3=s, by (t7j)

stset Tijmaxl4, failure(dijmaxl4==0)

sts gen

Kimaxll4=s, by(t])

stset Tijmaxl5, failure(dijmaxl5==0)

sts gen

Kjmax1l15=s, by(t])

stset Tijmaxl6, failure(dijmaxl6==0)

sts gen

Kjmaxllé=s, Dby(tj)

stset Tijmaxl7, failure(dijmaxl7==0)

sts gen

Kjmax11l7=s, by (tj)

stset Tijmaxl8, failure(dijmaxl8==0)

sts gen

Kjmaxl18=s, by (t])

stset Tijmaxl1l9, failure(dijmaxl9==0)

sts gen

Kjmax119=s, by(t])

sort ukno tj

gen Millead=Mij

quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly
quietly

replace
replace

by ukno: gen Mi2lead=Millead[ n+l]
by ukno: gen Mi3lead=Mi2lead[ n+l]
by ukno: gen Mid4lead=Mi3lead[ n+l

[
[
[
by ukno: gen MiS5lead=Mid4lead[ nt+l
[
[
[

by ukno: gen Mi6lead=Miblead
by ukno: gen Mi7lead=Mi6lead[ n+l
by ukno: gen Mi8lead=Mi7lead[ n+l

by ukno: gen Mi9lead=Mi8lead[ n+l
by ukno: gen MilOlead=Mi9lead[ n+l]

by ukno: gen Milllead=MilOlead [ n+1
by ukno: gen Mil2lead=Milllead [ n+l
by ukno: gen Mil3lead=Mil2lead [ n+l
by ukno: gen Mild4lead=Mil3lead [ n+l

[
[
[
[
by ukno: gen Mil5lead=Mild4lead [ n+l
[
[
[
[

by ukno: gen Mil6lead=Mil5lead [ n+l
by ukno: gen Mil7lead=Mil6lead [ n+l
by ukno: gen Mil8lead=Mil7lead [ n+l
by ukno: gen Mil9lead=Mil8lead [ n+l

Millead==-9 1if tj~=1
Mi2lead==-9 if tj~=1
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replace Mi3lead=-9 if tj~=
replace Midlead=-9 if tj~=
replace MiS5lead=-9 if tj~=
replace Mi6lead=-9 if tj~=
replace Mi7lead=-9 if tj~=
replace Mi8lead=-9 if ti-~=
replace Mi9lead=-9 if tj~=
replace MilOlead=-9 if tj~=
replace Milllead=-9 if ti~=
replace Mil2lead=-9 if tj~=
replace Mil3lead=-9 if tj~=
replace Mildlead=-9 if tj~=
replace Milb5lead=-9 if tj~=1
replace Mil6lead=-9 if tj~=
replace Mil7lead=-9 if tj~=
replace Mil8lead=-9 if tj~=
replace Mil9lead=-9 if tj~=1

egen Mil=max (Millead), by (ukno)
egen MiZ2=max (Mi2lead) , by (ukno)
egen Mi3=max (Mi3lead) , by (ukno)
egen Mid=max (Midlead) , by (ukno)

egen Mi6=max (Mi6lead
egen Mi7=max (Mi7lead
egen Mi8=max (Mi8lead
egen Mi9=max (Mi9lead) , by (u
egen MilO=max (MilOlead)
egen Mill=max (Milllead)
egen Mil2=max (Mil2lead)
egen Mil3=max (Mil3lead)
egen Mil4d=max (Mil4lead) , by (ukno
egen Milb5=max (Milblead)

( )

( )

( )

( )

(
( (
( ) (
( ) (

egen Mib=max (Mi5lead) , by (ukno)

( ) (
( ) (
( ) (

(

, by (ukno
egen Mil6=max (Mil6lead) , by (ukno
egen Mil7=max (Mil7lead) , by (ukno
egen Mil8=max (Mil8lead) , by (ukno
egen Mil9=max (Mil9lead) , by (ukno

gen mul=(di*Mil) /censl1138
replace mul=0 if mul==.

gen mu2=(di*Mi2)/censll38
replace muz2=0 if mu2==.

gen mu3=(di*Mi3)/censl1138
replace mu3=0 if mu3==.

gen mud=(di*Mi4d)/censl138
replace mu4=0 if muéd==.

gen mu5=(di*Mi5)/censl138
replace mu5=0 if mubS==.

gen mu6b=(di*Mi6) /censl1138
replace mu6=0 if mu6==.

gen mu7=(di*Mi7)/censl1138
replace mu7=0 if mu7==.

gen mu8=(di*Mi8)/censl138
replace mu8=0 if mu8==.

gen mu9=(di*Mi9) /censl138
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replace mu9=0 if mud==.

gen mulO=(di*Mil0O) /censl138

replace mul0=0 if mulO==.

gen mull=(di*Mill)/censll138

replace mull=0 if mull==.

gen mul2=(di*Mil2)/censl1138

replace mul2=0 1if mul2==.

gen mul3=(di*Mil3)/censl1138

replace mul3=0 if mul3==.

gen muld=(di*Mil4d)/censl138

replace mulé4=0 if muléd==.

gen mul5=(di*Mil5) /censll138

replace mul5=0 if mulb==.

gen mul6= (di*Mil6) /cens 1138

replace mul6=0 1if mulé6==.

gen mul7=(di*Mil7)/cens1138

replace mul7=0 if mul7==.

gen mul8=(di*Mil8)/censll38

replace mul8=0 if mul8==.

gen mul9=(di*Mil9)/censl1138

replace mul9=0 if mul9==.

gsort tj -Xi
by tj : gen smulx=sum(mul)

egen smul=max (smulx), by(t

drop smulx

gsort tj -Xi
by tj: gen smu2x=sum(mu?2)

egen smu2=max (smu2x), by(t

drop smu2x

gsort tj -Xi
by tj: gen smu3x=sum (mu3)

egen smu3=max (smu3x), by(t

drop smu3x

gsort tj -Xi
by tj: gen smudx=sum(mu4)

egen smué4=max (smu4dx), by(t

drop smuéx

gsort tj -Xi

by tj: gen smubx=sum(mub)
egen smub=max (smubx), by
drop smubx

gsort tj -Xi
by tj: gen smu6x=sum(mub6)

egen smub6=max (smu6x), by (t

drop smu6x

J

j

]

j

t]

J

Xi)

Xi)

Xi)

Xi)

Xi)
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gsort tj -Xi
by tj: gen smu7x=sum(mu7)

egen smu7=max (smu’x), by(tj Xi)

drop smu7x

gsort tj -Xi
by tj: gen smu8x=sum(mu8)

egen smu8=max (smu8x), by(t] Xi)

drop smu8x

gsort tj -Xi
by tj: gen smu9x=sum (mu9)

egen smu9=max (smu9x), by(tj Xi)

drop smu9x

gsort tj -Xi
by tj: gen smulOx=sum(mulO)

egen smulO=max (smulOx), by (t]

drop smulOx

gsort tj -Xi
by tj: gen smullx=sum(mull)

egen smull=max (smullx), by(t]

drop smullx

gsort tj -Xi
by tj: gen smul2x=sum(mul2)

egen smul2=max (smul2x), by(t]

drop smul2x

gsort tj -Xi
by tj: gen smul3x=sum(mul3)

egen smul3=max (smul3x), by (t]

drop smul3x

gsort tj -Xi
by tj: gen smuldx=sum(muli4)

egen smuld=max (smulédx), by (t]

drop smulédx

gsort tj -Xi
by tj: gen smulbx=sum(mulb)

egen smulb=max (smulbx), by (t]

drop smulbx

gsort tj -Xi
by tj: gen smulé6x=sum(mul6)

egen smul6=max (smulodx), by (t]

drop smulox

gsort tj -Xi
by tj: gen smul7x=sum(mul?)

egen smul7=max (smul7x), by (t]

drop smul7x

gsort tj -Xi
by tj: gen smul8x=sum(mul8)

egen smul8=max (smul8x), by (t]

drop smul8x

gsort tj -Xi
by tj: gen smul9x=sum(mul9)

egen smul9=max (smul9x), by (t]

Xi)

Xi)

Xi)

Xi)



drop smul9x

gen gmul=(1/1138)

(1/surv1138)*

replace gmul=0 if gmul==

gen gmu2=(1/1138)

(1/surv1138)*

replace gmu2=0 1if gmu2==

gen gmu3=(1/1138)

(1/surv1138)*

replace gmu3=0 1if gmu3==

gen gmuéd=(1/1138)

(1/surv1138)*

replace gmu4=0 if gmud==

gen gmub5=(1/1138)

(1/surv1138)*

replace gmub5=0 if gmubS==

gen gmu6=(1/1138)

l/survll38)

replace gmu6=0 if gmub==

gen gmu7=(1/1138)

(1/surv1138)*

replace gmu7=0 if gmu7==

gen gmu8=(1/1138)

l/survll38)

replace gmu8=0 if gmu8==

gen gmu9=(1/1138)

(1/surv1138)*

replace gmu9=0 1if gmu9——

gen gmulO=(1/1138)
replace gmul0=0 if

gen gmull=(1/1138)
replace gmull=0 if

gen gmul2=(1/1138)
replace gmul2=0 if

gen gmul3=(1/1138)
replace gmul3=0 if

gen gmuld=(1/1138)
replace gmuléd=0 if

gen gmul5=(1/1138)
replace gmulb5=0 if

gen gmul6=(1/1138)
replace gmul6=0 if

gen gmul7=(1/1138)
replace gmul7=0 if

gen gmul8=(1/1138)
replace gmul8=0 if

gen gmul9=(1/1138)
replace gmul9=0 if

gen mlgml= Mil-gmul
gen m2gm2= Mi2-gmu2
gen m3gm3= Mi3-gmu3

l/survll38)
gmulO==

(1/surv1138)*
gmull==

l/survll38)
gmul2==

(1/surv1138)*
gmul377

1/survll38)
gmuléd==

(1/surv1138)*
gmulb5==

(1/surv1138)*
gmul 6==.

(1/surv1138)*
gmul7==.

(1/surv1138)*
gmul8==

(1/surv1138)*
gmul9——

smul

smu?2

smu3

smué

smub

smu6

smu’/

smu8

smu9

smulO

smull

smul2

smul3

smuléd

smulb

smul6

smul’7

smul8

smul9



gen m4gmé4= Mi4 gmu4
gen mbgmb5= Mi5-gmub
gen m6gmé= Mi6 gmub
gen m7gm7= Mi7-gmu7
gen m8gm8= Mi8-gmu8
gen m9gm9= Mi9-gmu9

gen mlOgmlO= Mi10- gmulO
gen mllgmll= Mill- gmull
gen ml2gml2= Mil2- gmul2
gen ml3gml3= Mi 13- gmul3
gen mld4gmléd= Mil4- gmul4
gen ml5gml5= Mi1l5- gmulb
gen mlégmlé= Mil6- gmul6
gen ml7gml7= Mil7- gmul’
gen ml8gml8= Mi 18- gmul8
gen m!9gml9= Mi19- gmul9
%

gen covijl=Mil gl*mlgml
gen covij2=Mil gl*m2gm2
gen covij3=Mil gl*m3gm3
gen covij4=Mil gl*mé4gmé
gen covij5=Mil gl*m5gmb
gen covij6=Mil gl*mé6gm6
gen covij7=Mil gl*m7gm7
gen covij8=Mil gl*m8gm8
gen covij9=Mil gl*m9gm9
gen covij 10=Mil gl*ml0ginlO
gen covljll=Mil gl*mllgmll
gen covijl2=Mil gl*ml2gml2
gen covijl3=Mil gl*ml3gml3
gen covijl4=Mil gl*mlé4gmli4
gen covijl5=Mil gl*ml5gml5
gen covijl6e=Mil gl*mlé6gml6
gen covijl7=Mil gl*ml7gml7
gen covijl8=Mil gl*ml8gml8
gen covijl9=Mil gl*ml9gml9

gen covajl=(dijmaxl/Kjmaxll)*covljl
replace covajl=0 1f covajl==.

gen covaj 2= (dijmax2/Kjmaxl2)*covlj 2
replace covaj2=0 if covaj2==.

gen covaj 3= (dijmax3/Kjmaxl3) *covlj 3
replace covaj3=0 1if covaj3==.

gen covaj 4= (dijmax4/Kjmaxl4)*covlj 4
replace covaj4=0 if covajd==.

gen covaj 5=(dijmax5/Kjmaxl5)*covl1j5
replace covaj5=0 1if covajb5==.

gen covaj 6= (dijmax6/Kjmaxl6) *covlj 6
replace covaj6=0 if covajo6==.

gen covaj 7=(dijmax7/Kjmaxl7)*covlj 7
replace covaj7=0 1if covaj7==.

gen covaj 8=(dijmax8/Kjmax18) *covlj 8
replace covaj8=0 1if covaj8==.
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gen covaj 9= (dijmax9/Kjmax19) *covlj 9
replace covaj9=0 if covaj9==.

gen covajlO=(dijmaxl0/Kjmax1l1l0) *covl]j 10
replace covajl0=0 if covajlO==.

gen covajll=(dijmaxll/Kjmaxl1ll)*covlj 11
replace covajll=0 if covajll==.

gen covajl2=(dijmaxl2/Kjmaxll2)*covl]j 12
replace covajl2=0 1if covajlz==.

gen covajl3=(dijmaxl13/Kjmax113)*covlj 13
replace covajl3=0 if covajl3==.

gen covajld=(dijmaxl4/Kjmaxl1l4)*covl] 14
replace covajl4=0 if covajléd==.

gen covajlb5=(dijmaxl5/Kjmaxl115)*covl]j 15
replace covajlb5=0 1if covajlb==.

gen covajlo=(dijmaxl6/Kjmax116)*covlj 16
replace covajl6=0 1if covajlé==.

gen covajl7=(dijmaxl7/Kjmaxl117)*covl]j 17
replace covajl7=0 if covajl7==.

gen covajl8=(dijmaxl18/Kjmax118)*covlj 18
replace covajl8=0 if covajl8==.

gen covajl9=(dijmaxl9/Kjmax119)*covlj 19
replace covajl9=0 1if covajlo==.

**ties**

gen int const=1

sort tj Xi

by tj Xi: gen ties=sum(const)
egen maxties=max (ties) , by (tj Xi)

gsort tj -Xi ties

by tj: gen scvajlx=sum(covajl)

replace scvajlx=0 if Xij<Xi

gen scvajl=scvajlx 1f ties==maxties

egen scvajlxx=min (scvajl) if Xij==Xi, Dby (tJ Xi maxties)
replace scvajl=scvajlxx if scvajl==.

replace scvajl=0 if Xij<Xi

*drop scvajlx scvajlxx*

gsort tj -Xi ties

by tj: gen scvaj2x=sum(covaj?2)

replace scvaj2x=0 1if Xij<Xi

gen scvaj2=scvaj2x if ties==maxties

egen scvaj2xx=min (scvaj2) if Xij==Xi, by (tj Xi maxties)
replace scvaj2=scvajl2xx 1f scvajz==.

replace scvaj2=0 1if Xij<Xi

*drop scvaj2x scvaj2xx*

gsort tj -Xi ties
by tj: gen scvaj3x=sum(covaj?3)
replace scvaj3x=0 if Xij<Xi
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gen scvaj3=scvaj3x 1if ties==maxties

egen scvaj3xx=min(scvaj3d) 1f Xij==Xi, by (t]
replace scvaj3=scvaj3xx if scvaj3==.
replace scvaj3=0 1if Xij<Xi

*drop scvaj3x scvaj3xx*

gsort tj -Xi ties

by tj: gen scvajdx=sum(covajd)

replace scvajd4x=0 if Xij<Xi

gen scvajé4=scvajdx 1if ties==maxties

egen scvajdxx=min(scvajd) 1if Xij==Xi, by (t]
replace scvajd=scvajdxx 1if scvajd==.
replace scvaj4=0 if Xij<Xi

*drop scvajdx scvajldxx*

gsort tj -Xi ties

by tj: gen scvajbSx=sum(covajb)

replace scvajbx=0 1if Xij<Xi

gen scvajbS=scvajbx 1if ties==maxties

egen scvajbxx=min(scvajb) 1f Xij==Xi, by (t]
replace scvajb=scvajbxx if scvajb==.
replace scvajb=0 if Xij<Xi

*drop scvajbx scvajbxx*

gsort tj -Xi ties

by tj: gen scvajéx=sum(covajb)

replace scvaj6x=0 1if Xij<Xi

gen scvajb=scvajébx 1if ties==maxties

egen scvajbxx=min(scvaj6) if Xij==Xi, Dby (t]
replace scvajb=scvajbxx 1if scvaj6==.
replace scvaj6=0 1f Xij<Xi

*drop scvajbx scvajoxx*

gsort tj -Xi ties

by tj: gen scvaj7x=sum(covaj’)

replace scvaj7x=0 if Xij<Xi

gen scvaj7=scvajlx 1if ties==maxties

egen scvaj7xx=min(scvaj7) 1f Xij==Xi, Dby (t]
replace scvaj7=scvaj7xx 1f scvaj’==.
replace scvaj7=0 if Xij<Xi

*drop scvaj7x scvaj7lxx*

gsort tj -Xi ties

by tj: gen scvaj8x=sum(covaj’)

replace scvaj8x=0 1if Xij<Xi

gen scvaj8=scvaj8x if ties==maxties

egen scvaj8xx=min (scvaj8) 1f Xij==Xi, Dby (t]
replace scvaj8=scvaj8xx if scvaj8==.
replace scvaj8=0 1if Xij<Xi

*drop scvaj8x scvaj8xx*

gsort tj -Xi ties

by tj: gen scvaj9x=sum(covaj9)

replace scvaj9x=0 1if Xij<Xi

gen scvaj9=scvaj9x if ties==maxties

egen scvaj9xx=min (scvaj9 1if Xij==Xi, by(t]
replace scvaj9=scvaj9xx 1if scvaj9==.
replace scvaj9=0 if Xij<Xi

*drop scvaj9x scvajoxx*

gsort tj -Xi ties

by tj: gen scvajlOx=sum(covajl0)
replace scvajlOx=0 1if Xij<Xi

gen scvajlO=scvajlOx 1f ties==maxties

Xi maxties)

Xi maxties)

Xi maxties)

Xi maxties)

Xi maxties)

Xi maxties)

Xi maxties)



egen scvajlOxx=min (scvajll) 1if Xij==Xi, by(t]
replace scvajlO=scvajlOxx 1f scvajlO==.
replace scvajl0=0 1if Xij<Xi

*drop scvajlOx scvajlOxx*

gsort tj -Xi fies

by tj: gen scvajllx=sum(covajll)

replace scvajllx=0 1if Xij<Xi

gen scvajll=scvajllx 1if ties==maxties

egen scvajllxx=min (scvajll) if Xij==Xi, by (t]
replace scvajll=scvajllxx 1f scvajll==.
replace scvajll=0 1if Xij<Xi

*drop scvajllx scvajllxx*

gsort tj -Xi ties

by tj: gen scvajl2x=sum(covajl2)

replace scvajl2x=0 if Xij<Xi

gen scvajl2=scvajl2x if ties==maxties

egen scvajl2xx=min(scvajl2) 1if Xij==Xi, by (t]
replace scvajl2=scvajl2xx 1f scvajl2==.
replace scvajl2=0 if Xij<Xi

*drop scvajl2x scvajl2xx*

gsort tj -Xi ties

by tj: gen scvajl3x=sum(covajl3)
replace scvajl3x=0 if Xij<Xi

gen scvajl3=scvajl3x if ties==maxties

Xi maxties)

Xi maxties)

Xi maxties)

egen scvajl3xx=min (scvajl) 1if Xij==Xi, by(tj Xi maxties)

replace scvajl3=scvajl3xx if scvajl3==.
replace scvajl3=0 1if Xij<Xi
*drop scvajl3x scvajl3xx*

gsort tj -Xi ties

by tj: gen scvajldx=sum(covajl4)

replace scvajld4x=0 if Xij<Xi

gen scvajld=scvajldx 1if ties==maxties

egen scvajlédxx=min(scvajl4) 1if Xij==Xi, by (t]
replace scvajld=scvajldxx 1f scvajlé==.
replace scvajl4=0 if Xij<Xi

*drop scvajlédx scvajldxx*

gsort tj -Xi ties

by tj: gen scvajlb5x=sum(covajld)

replace scvajlbx=0 if Xij<Xi

gen scvajlb=scvajlbx if ties==maxties

egen scvajlbSxx=min(scvajld) 1f Xij==Xi, by (t]
replace scvajlb=scvajlbxx if scvajlb==.
replace scvajl5=0 1if Xij<Xi

*drop scvajlbx scvajlbxx*

gsort tj -Xi ties

by tj: gen scvajléx=sum(covajlo)

replace scvajlex=0 if Xij<Xi

gen scvajlé=scvajléx if ties==maxties

egen scvajlé6xx=min (scvajl6) 1if Xij==Xi, by(t]
replace scvajl6=scvajléxx 1f scvajlé==.
replace scvajl6e=0 1if Xij<Xi

*drop scvajléx scvajloxx*

gsort tj -Xi ties

by tj: gen scvajl7x=sum(covajl?)

replace scvajl7x=0 1if Xij<Xi

gen scvajl7=scvajl7x if ties==maxties

egen scvajl7xx=min (scvajl7) 1if Xij==Xi, by (t]

Xi maxties)

Xi maxties)

Xi maxties)

Xi maxties)
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replace scvajl7=scvajlixx if scvajl7==.
replace scvajl7=0 1if Xij<Xi
*drop scvajl7x scvajl7xx*

gsort tj -Xi ties

by tj: gen scvajl8x=sum(covajl8)
replace scvajl8x=0 1if Xij<Xi

gen scvajl8=scvajl8x 1if ties==maxties

egen scvajl8xx=min(scvajl8) if Xij==Xi, by(tj Xi maxties)

replace scvajl8=scvajl8xx if scvajl8==.
replace scvajl8=0 1if Xij<Xi
*drop scvajl8x scvajl8xx*

gsort tj -Xi ties

by tj: gen scvajl9x=sum(covajl9)
replace scvajl9x=0 if Xij<Xi

gen scvajl9=scvajl9x 1if ties==maxties

egen scvajl9xx=min(scvajl9) if Xij==Xi, by(tj Xi maxties)

replace scvajl9=scvajl9xx if scvajlo==.
replace scvajl9=0 1if Xij<Xi
*drop scvajl9x scvajl9xx*

gen covbl=(1/1138)*(1/Slu)*scvajl
replace covbl=0 if covbl==.

gen covb2=(1/1138)* (1/Slu)*scvaj?2
replace covb2=0 1f covb2==.

gen covb3=(1/1138)*(1/Slu)*scvaj3
replace covb3=0 1f covb3==.

gen covb4=(1/1138)*(1/Slu)*scvaj 4
replace covb4=0 1f covbid==.

gen covb5=(1/1138)*(1/Slu)*scvajb
replace covb5=0 if covbb5==.

gen covb6=(1/1138)*(1/Slu) *scvajb
replace covb6=0 if covb6==.

gen covb7=(1/1138)* (1/Slu)*scvaj’
replace covb7=0 1f covb7==.

gen covb8=(1/1138)*(1/Slu)*scvaj 8
replace covb8=0 if covb8==.

gen covb9=(1/1138)*(1/S1lu)*scvaj?
replace covb9=0 if covb9==.

gen covblO=(1/1138)* (1/S1lu)*scvajlo
replace covbl0=0 1if covblO==.

gen covbll=(1/1138)* (1/Slu) *scvajll
replace covbll=0 if covbll==.

gen covbl2=(1/1138)*(1/Slu)*scvajl2
replace covbl2=0 1if covbl2==.

gen covbl3=(1/1138)* (1/S1lu) *scvajl3
replace covbl3=0 1if covbl3==.

gen covbl4=(1/1138)* (1/Slu) *scvajld
replace covbl4=0 1if covbli4==.
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gen covbl5=(1/1138)*(1/S1lu)*scvajls
replace covbl5=0 1if covblb==.

gen covbl6=(1/1138)*(1/Slu)*scvajl6
replace covbl6=0 if covblée==.

gen covbl7=(1/1138)* (1/S1lu) *scvajl7
replace covbl7=0 1if covbl7==.

gen covbl8=(1/1138)*(1/Slu)*scvajls8
replace covb!8=0 if covbl8==.

gen covbl9=(1/1138)*(1/S1lu)*scvajl9
replace covb!9=0 1if covbl9==.

egen covcl=sum(covbl) , by( )
egen covc2=sum(covb2), by( )
egen covc3=sum(covb3) , by (ukno)
egen covcéd=sum(covb4), by( )
egen covcbS=sum(covb5), by (ukno)
egen covcé=sum(covb6), by (ukno)
egen covc/=sum(covb?) ( )
egen covc8=sum(covb8), by (ukno)
egen covc9=sum(covb9), by( )
egen covclO=sum(covbl0) , by (ukno
egen covcll=sum(covbll) , by (ukno
egen covcl2=sum(covbl2) , by (ukno
egen covcl3=sum(covbl3) , by (ukno
egen covcléd=sum(covbl4d), by (ukno
egen covclS5=sum(covbl5) , by (ukno
egen covclé6=sum(covblé) , by (ukno
egen covcl7=sum(covbl?) , by (ukno
egen covcl8=sum(covbl8), by (ukno
egen covcl9=sum(covbl9) , by (ukno

gen covdl=(censorl/ (censll1l38A2) )*covcl
replace covdl=0 if covdl==.

gen covd2=(censorl/ (censll38A2))*covc2
replace covd2=0 if covd2==.

gen covd3=(censorl/ (censll38A2))*covc3
replace covd3=0 if covd3==.

gen covd4d=(censorl/ (cens 1138A2)) *covcd
replace covd4=0 if covdd==.

gen covdb5=(censorl/ (censll38A2))*covch
replace covd5=0 if covdS5==.

gen covdé=(censorl/ (censl138A2))*covcé
replace covd6=0 if covdé==.

gen covd7=(censorl/ (censll138A2))*covc?
replace covd7=0 if covd7==.

gen covd8=(censorl/ (censll138A2))*covc8
replace covd8=0 1if covd8==.



gen covd9=(censorl/ (censl138A2) )*covc9
replace covd9=0 if covd9==.

gen covdlO=(censorl/ (censl1138A2) )*covclO
replace covdl0=0 if covdlO==.

gen covdll=(censorl/ (censll1l38A2) )*covcll
replace covdll=0 1if covdll==.

gen covdl2=(censorl/ (censll138A2))*covcl2
replace covdl2=0 1if covdl2==.

gen covdl3=(censorl/ (censl138A2) )*covcl3
replace covdl3=0 if covdl3==.

gen covdl4=(censorl/ (censll1l38A2) )*covcld
replace covdl4=0 if covdlé4==.

gen covdl5=(censorl/ (censl138A2) )*covcl5
replace covdl5=0 1if covdlb==.

gen covdlé=(censorl/ (censll38A2))*covcl6
replace covdl6=0 if covdlé==.

gen covdl7= (censorl/ (cens1138A2))*covcl?7
replace covdl7=0 if covdl7==.

gen covdl8=(censorl/ (censl138A2) )*covcl8
replace covdl8=0 1if covdl8==.

gen covdl9=(censorl/ (censll38A2) )*covcl9
replace covdl9=0 1if covdl9==.

*
egen covel=sumi (covdl), by (tj)
egen coveZ=sumi (covd2), by (tj)
egen cove3=sumi (covd3), by (tj)
egen coved=sum (covd4d), by (tj)
egen coveb=sumi (covd5), by (tj)
egen coveb=sumi (covd6), by (tj)
egen covel=sum (covd7), by (tj)
egen cove8=sumi (covd8), by (tj)
egen cove9=sumi ooV by (tj)
egen covelO sum(covdlO) by &j)
egen covell= sum(covdll) by (t3)
egen covel2= sum(covdl2) by wj)
egen covel3=Bsum (covdl3) by (t])
egen coveléd=sum(covdl4) by wj)
egen covelb=sum(covdlb) by wj)
egen covel6=sum(covdlo) by &j)
egen covel7=sum(covdl7) by (tj)
egen cove!8=sum(covdl8) by &j)
egeni covel9=sum(covdl9), by (tj)
gen covjl=(1/1138) *covel
gen covj 2=(1/1138) *cove2
gen covj 3=(1/1138) *covel

*coved

( )

( )

( )

gen covj 4=(1/1138)
gen covj5=(1/1138) *coveb

( )

( )

)

)

gen covj 6=(1/1138) *coveb
gen covj 7=(1/1138) *covel
gen covj8=(1/1138) *cove$
gen covj 9=(1/1138) *cove9
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gen aovwili=(1 FI13R) *aawall)
gen cov]ll=(lsLL3E] *cowall
gen cou]li=(1/1138]) Yeaval?
gen cov]l3i={1,/113E]) *covall
cen corild=(1, 1138) *2avald
qen oovylS=(1/1138) *oawall
gen cov]le=(ls1138) *cavaln
gery couw]l?-(1/1138) *eaval T
gen cov]la=(1s1138) *covels
ger covilB=(1/1138) *caveld

s+ Matrpix calecolations for Imoroved partitioned Zor conventional

keepn 18 ukoo=—"0001170
keep if ti-=-1

mkmal cow]*, maleix{oovp)
svmat covp

matrix Sp= covp*invvar
Svmat Sp

matrix wpsGp*h

symat wp

gen wplerm= wpls/l138

matrix wvarpterm=Sp*covp!

swmat vacrptoom

* &

gen internlpimp=s i *((Mi—- mpactimp) ~F) ¢ cens113H
replace internlpimp=0 if iaternlpimp==.

crjert suminl lpimp=samiialernlpimg)

gen termlpimp=(1/1133)*zumintlpimp

gen warbermpd=124 0000000
gern svarpartimp=(1/1133)*( termlpimp+ termd)-(151138:"* vartcrmpsd

gen separtimp=sgrt( varpartimp)

%
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Appendix A.4.7. Generation of the artificial dataset (as described in section 4.4.4.3)
For 25% censoring (Similarly for all other levels of censoring)

**Generating the artificial dataset for 25%

drop _all
set seed 1001
set obs 1138

gen const=1
gen ukno=sum(const)
drop const

sort ukno
gen timallde=10*uniform()+0
gen Ci=20*uniform()+0

gen censorig=1l 1if timallde<=Ci
replace censorig=0 if censorig==.

gen Mi0=10000*uniform()+5000
gen bi=1600*uniform()+1000

gen til=400*uniform
gen ti2=400*uniform
gen ti3=400*uniform
gen ti4=400*uniform)|)
gen ti5=400*uniform)
gen ti6=400*uniform)
gen ti7=400*uniform ()
gen ti8=400*uniform)
gen ti9=400*uniform
gen til0=400*uniform )

gen deathci=20000*uniform()+10000
sort ukno

gen censorl=1l 1f censorig==
replace censorl=0 if censorig==

stset timallde, failure (censorig==

sts gen survl1138=s

stset timallde, failure (censorl==

sts gen censll38=s

drop t0 _t d _st

gen int const=1

gsort - timallde

gen Yux=sum(const)

egen Yu=max(Yux), by(timallde)
drop const Yux

sort ukno

censoring**

235



save "C:\WINDOWS\Desktopl\artificialdata\nll38 cens6\nll38censé6.dta", replace

use "C:WINDOWS \Des ktop\artificialdata\nll38 censl\nll38 yrslO.dta", clear

keep ukno year

sort ukno year

merge ukno using

drop _merge

gen cyr=

replace
replace
replace
replace
replace
replace
replace
replace
replace

gen x=1

gen truecyr=cyr if x==

bi+til if year==

cyr=bi+tiz
cyr=bi+ti3
cyr=bi+tid
cyr=bi+tib
cyr=bi+ti6
cyr=bi+ti7
cyr=bi+ti8
cyr=bi+ti9

cyr=bi+til0 if year==10

if
if
if
if
if
if
if
if

year==2
year==3
year==
year==
year==
year==7
year==
year==

if timallde>=year-1

replace truecyr=0 1if

egen struecyr=sum(truecyr),
gen Mitrue=MiO+ struecyr+deathci

gen Mi=MiO+ struecyr+censorig*deathci
label wvar Mitrue
egen maxyear=max (year)
gen costyr=truecyr+MiO if year==

replace costyr=truecyr+censorig*deathci if year==maxyear & costyr==.

replace costyr=truecyr+censorig*deathci+MiO
replace costyr=truecyr

sort ukno year

collapse Mitrue Mi,

label wvar Mitrue

sort ukno

merge ukno using

drop _merge

save "C:WINDOWS\Desktoplartificialdata\nll38 cens6\nll38cens6.dta", replace

*

"NO censoring"

if x~=.

if costyr==.

by (ukno)

"NO censoring"

by (ukno)

if maxyear==

"C:\WINDOWS\Desktop\artificialdata\nll38 cens6\nll38cens6.dta"

"C:\WINDOWS\Desktopl\artificialdata\nl1l38 cens6\nll38cens6.dta"
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Appendix A.4.8. Programs for estimating the standard errors of Linl, Lin2 and Bang and
Tsiatis simple weighted and partitioned estimators using the bootstrap

**For Lin 1: Cost histories recorded**

use "C:\WINDOWS\Desktop\linlconvyrsl9test.dta",

rename ukno uknoO

do "C:\WINDOWS\Desktop\bsLinlconv.txt"
where "C:\WINDOWS\Desktop\bsLinlconv.txt"

**Linl: Cost histories recorded**

*CONVENTIONAL** Mean **

program define linlsim

LE mtgomomwgn
global S 1 "mean"
exit

}

egen Xi=min(timallde), by (ukno)
egen di=min(censorig), by (ukno)

stset Xi 1if year==1, failure(di==1)

sts gen survl1138=s

gen int inttime=int(Xi)+1l if year==1
egen mintime=min (Xi), by (inttime)

gen st=survl138 if mintime==Xi
egen Skx=min(st), by (inttime)

gen ak=year-1
gen akl=year

gen slx=Skx if inttime==
gen s2x=Skx 1if inttime==
gen s3x=Skx 1if inttime==
gen s4x=Skx if inttime==
gen sbx=Skx 1if inttime==
gen s6x=Skx if inttime==
gen s7x=Skx if inttime==
gen s8x=Skx 1if inttime==
gen s9x=Skx if inttime==9
gen slOx=Skx if inttime==10
gen sllx=Skx if inttime==11
gen sl2x=Skx 1if inttime==12
gen sl13x=Skx 1if inttime==13
gen sld4x=Skx if inttime==14
gen sl15x=Skx if inttime==15
gen slé6x=Skx if inttime==16
gen sl7x=Skx 1if inttime==17
gen sl18x=Skx if inttime==18
gen sl19x=Skx if inttime==19

egen sl=min (slx)
egen s2=min (s2x)
egen s3=min (s3x)
egen s4=min (s4x)
egen sb5=min (s5x)
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s6=min (s6x

egen ( )
s7=min (s7x)
( )

)

egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen
egen

s8=min (s8x

s9=min (s9x

s1O=min (s10x)
sll=min (sllx)
sl2=min (sl2x)
sl3=min (s1l3x)
sld4=min (sl4dx)
sl5=min (s1l5x)
sl6=min (sl6x)
sl7=min (sl7x)
s18=min ( )
s!9=min ( )

s18x
s19x

gen Sk=s1 if ak==0

replace Sk=s2 if ak==
replace Sk=s3 if ak==
replace Sk=s4 1if ak==
replace Sk=s5 if ak==
replace Sk=s6 1f ak==
replace Sk=s7 1f ak==
replace Sk=s8 1if ak==
replace Sk=s9 if ak==
replace Sk=slO if ak==
replace Sk=sl1ll if ak==10
replace Sk=sl2 if ak==11
replace Sk=sl3 1if ak==12
replace Sk=sl4 1if ak==13
replace Sk=sl1l5 if ak==14
replace Sk=sl6 if ak==15
replace Sk=sl7 if ak==16
replace Sk=sl1l8 if ak==17
replace Sk=s19 if ak==18

gen Yki=1 if Xi>=ak
replace Yki=0 if Yki==.

gen Cki=costyr
replace Cki=0 if Cki==.

egen sYki=sum(Yki), by(ak)

gen YkiCki= Yki* Cki
egen sYkiCki=sum( YkiCki), by(ak)

gen Ek= sYkiCki/ sYki

gen SkEk= Sk* Ek

egen sSkEk=sum( SkEk), by (ukno)

rename sSkEk meanlinl
sum meanlinl

post 'l' (r(mean))

end
*

set seed 1001
bstrap linlsim, reps (1000) dots cluster (uknoO)
saving (C:Windows\desktop\bslinlconv1000.dta)

-k ~k

idcluster (ukno)
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For Lin 2: Cost histories not recorded

use "C:\WINDOWS\Desktop\lin2convyrsl9.dta", clear
rename ukno uknoO
do "C:\WINDOWS\Desktop\bsLin2conv.txt"

where "C:\WINDOWS\Desktop\bsLin2conv.txt" is:
** Lin 2: Cost histories NOT recorded *x*
** CONVENTIONAL ** Mean**

program define lin2sim

: N\ rm__ngn

if | 7" |
global S 1 "mean"
exit

}

egen Xi=min (timallde), by (ukno)
egen di=min (censorig), by (ukno)

stset Xi if year==1, failure (di==1)
sts gen survl1l1l38=s

gen int inttime=int(Xi)+l 1if year==
egen mintime=min (Xi), by (inttime)
gen st=survl1138 if mintime==Xi

egen Skx=min(st), Dby (inttime)

gen ak=year-1
gen akl=year

gen slx=Skx 1if inttime==
gen s2x=Skx 1f inttime==
gen s3x=Skx 1if inttime==
gen s4x=Skx 1if inttime==4
gen sb5x=Skx 1if inttime==
gen s6x=Skx 1if inttime==
gen s7x=Skx if inttime==
gen s8x=Skx 1if inttime==
gen s9x=Skx 1if inttime==
gen slO0x=Skx 1if inttime==10
gen sllx=Skx if inttime==11
gen sl2x=Skx 1if inttime==12
gen sl13x=Skx if inttime==13
gen sld4x=Skx 1f inttime==14
gen sl5x=Skx if inttime==15
gen slé6x=Skx if inttime==16
gen sl7x=Skx if inttime==17
gen sl18x=Skx 1if inttime==18
gen sl19x=Skx if inttime==19

slx
S2X
s3x
sdx

egen sl=min ( )
( )
( )
( )
egen sb5=min (s5x)
( )
( )
( )
( )

egen s2=min
egen s3=min
egen s4=min

egen s6=min (s6x
s7x
s8x
egen s9=min (s9x
egen sl1lO0=min (s10x)

egen s7=min
egen s8=min
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coen s51l=min{sllx]
ecer 2li=minislix)
egern s13=min(s13x]
enet 21d=-mir{s1dx])
egen 21Z-min{=z15x)
el S16=mir (5] 6Hx)
egen =1 7=miniz17x)
cxepexry s 1d=min (518x]
egen 213=min(=z15x)

cen Sk==z1 1f ak==0
replace k=57 if ak==]
replace k=23 1f ak==2
replace Sk=sd if ak==3
replace Sk-=I if ak--4
ceplace Sh=38 1Y ak——5
roplace Sk=57 if ak==
replace tk—s8 if ak==7
replace Skes? 0 ak=—d
replace Zk=z1C i sk-=9
reprlace Gk=511 §if ak=-=10
replace Sk=512 if ak==11
replace k=513 if ak==l:
roplace Sk=x14 if ak=—13
replace 2k-s51% if ak=-14
roplace: S5k-s18 10 ak——1%
replace £k-517 if ak--1G
replace Sk=s14 i ak——17
replace Zk=31% if zk--13 | zk=-=1%

egen Ci=maini(Miy, byiukno)

E0rt uknoc ak
guietly by ukno: gen Skl=Gk[_a+l]

replace Skl=C if ak==1%
EOer tmax=max (K1)

oo Yhi=1 iF (faks=Xi & Xi<akl)] &% oi—==1) | (Mir—tmax & ak==13)

replace Yki=0 1if Yki==,
egen siki=sumi(ykil, byl(akl

TEN ¥YhilZi= ¥YEi* Ci
egen stkili-sumiykicCi), by{ak)

gen Ak= sYkiCi/ =Yki
replace BlE=0 if Bl=-—.

gen AkS= RE* (EK-5K1)
segen sAkS=sumi(BkS), by (akna)
recame 2Bks meanling

zum meanlind
post "1' (rimean))
end

et zeed 1001
bstrap linZsim, cepsil220) dots clusbarc(ukood)

aving (C:wvWindowshdesktonoslin2oonw L2000, dta)
& A

ideluzter (uknol
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For Bang and Tsiatis simple weighted estimator

use
do

where sesimplesim conv.txt is:

* % * %

Simple mean: conventional

program define sesimpsim
if "lf lll::"?" (

global S 1
exit

"meansimp"

}

stset timallde, failure (censorig==1)
sts gen survl1138=s

gen censorl=1 if censorig==
replace censorl=0 1if censorl==.

label var censorl "l:censored; 0:dead"

stset timallde, failure (censorl==1)
sts gen censll38=s

gen diMi KTi= (censorig* Mi)/ censl138
replace diMi KTi=0 if diMi_ KTi==.

egen sumalli=sum(diMi KTi)

gen meansimp=(1/1138)* sumalli

sum meansimp, meanonly

post '1' (r (mean) )

end

set seed 1001

bstrap sesimpsim, reps(1l000) dots saving(C

"D:\Chapterl COST\Original ukpds data\KM conv1l138.dta",
"D:\Chapterl COST\tsiatis new\Partitioned simull\sesimplesim conv.txt"

clear

:\windows\desktop\conv_sesimplO00.dta)
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For Bang and Tsiatis partitioned estimator

use "C:\... \conv_partyrs.dta", clear
rename ukno uknoO
do "C:\... \separtsim conv.txt"

where separtsim conv.txt is:
** Partitioned mean:conventional **

program define separtsim

if Mricm==vgn
global S 1 "meanpart"

exit
gen tj l=year-1
gen tj=year

gen Mij=costyr
replace Mij=0 1if Mij==.

egen Xi=min (timallde), by (ukno)
egen di=min (censorig) , by (ukno)

gen minTitj=min(Xi, t3j)
gen Xij=min(minTitj , Xi)

gen dij=1 if (minTitj==tj I (minTitj==Xi & di==

replace dij=0 if dij==.
stset Xij, failure(dij==0)
sts gen KjTij=s, by(t])

gen intern=(dij*Mij)/KjTij
replace intern=0 if intern==.

egen sumintjs=sum(intern), by (ukno)
collapse sumintijs, by (ukno)

egen sumintjn=sum(sumintjs)
gen meanpart=(1/1138) *sumintjn

sum meanpart, meanonly
post '1' (r (mean))
end

*

set seed 1001

bstrap separtsim, reps (1000) dots cluster (uknoO)

saving (C:\.... \conv_separtl1000.dta)

%k

))

idcluster (ukno)

242



Appendix A.5.1. Assessing the proportionality assumption in the stratified Cox model

The test for assessing the assumption of proportional hazards proposed by Grambsch and Themeau
(1994) results in a x I distribution for the statistic and whenever Prob<0.05 the null hypothesis of
proportional hazards is rejected.

CONVENTIONAL

year==

year==

Test of proportional hazards assumption

age
fpg
bmi
race
sex

global test

rho

.00730
.04028
.03453
.00716
.01358

chi?2

0.58
18 .69
13.77

0.54

2.02

0.41

Test of proportional hazards assumption

year==

year==

age
frg
bmi
race
sex

global test

— — —F H

rho

.01343
.01023
.02807
.03575
.00576

chi?2

.98
.18
.16
.71
.36

O Wk

0.32

Test of proportional hazards assumption

age
frg
bmi
race
sex

global test

—_— —

-0.

el eNe]

Test of proportional

age
fpg
bmi
race
seX

global test

[REg—

rho

01347
.03543
.00308
.00315
.00634

chi?2

.99
.30
11
11
.44

O O O b

0.18

hazards assumption

rho

.01939
.00331
.00173
.00205
.01866

chi?2

.13
.12
.03
.05
.80

w O O O

0.09

df

N

df

[

df

g

df

e

Prob>chi?2

O O O O O

Prob>chi?2

[ecNeoNeNoNe]

Prob>chi2

O O O O o

.4455
.0000
.0002
.4604
.1556

.9949

.1595
.2765
.0025
.0002
.5464

.9972

.1584
.0002
.7398
L7422
.5074

.9993

Prob>chi

O O O O O

.0422
L7241
.8525
.8298
.0512

.9999
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year==
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2

age I -0.02979 9.67 1 0.0019
fpg 1 -0.01945 4.33 1 0.0375
bmi | 0.01885 4 .14 1 0.0418
race | 0.01245 1.66 1 0.1977
sex | 0.02159 5.10 1 0.0239
global test | 0.27 5 0.9982
6

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2

age I -0.00316 0.11 1 0.7418
fpg 1 -0.02637 7.86 1 0.0051
bmi | 0.01008 1.16 1 0.2807
race I -0.02485 6.67 1 0.0098
sex | 0.03614 14.22 1 0.0002
global test | 0.29 5 0.9978
7

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I -0.01230 1.61 1 0.2050
fpg 1 0.02570 7 .17 1 0.0074
bmi | -0.00058 0.00 1 0.9504
race | 0.01507 2.43 1 0.1193
sex | 0.02397 6.12 1 0.0133
global test | 0.15 5 0.9995

year==8

Test of proportional hazards assumption

1 rho chi2 df Prob>chi?2
age I -0.02564 6.86 1 0.0088
fpg I 0.01777 3.33 1 0.0681
bmi ! -0.01460 2.33 1 0.1266
race | 0.02067 4.55 1 0.0328
sex | -0.00348 0.13 1 0.7177
global test | 0.12 5 0.9998
=9

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi2
age I -0.01398 2.08 1 0.1489
fpg 1 0.03390 11.49 1 0.0007
bmi | 0.00712 0.55 1 0.4566
race I 0.01743 3.41 1 0.0648
sex | 0.02573 7 .14 1 0.0075

global test | 0.13 5 0.9997



year =0
Test of proportional hazards assumption

1 rho chi2 df Prob>chi?2
age 1 0.00196 0.04 1 0.8411
fpg 1 0.06275 37.97 1 0.0000
bmi 1 -0.00398 0.17 1 0.6820
race 1 0.00419 0.20 1 0.6536
sex 1 -0.03594 13.80 1 0.0002
global test | 0.13 5 0.9997
year=-11

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age 1 -0.01868 3.69 1 0.0549
fpg 1 -0.02439 5.67 1 0.0172
bmi 1 -0.04956 24.92 1 0.0000
race 1 0.01462 2.55 1 0.1105
sex 1 0.02038 4.41 1 0.0358
global test 1 0.06 5 0.9999

year= =12

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age 1 0.05852 37.55 1 0.0000
fprg 1 -0.00362 0.13 1 0.7192
bmi ! 0.00480 0.23 1 0.6311
race 1 -0.00193 0.05 1 0.8264
sex 1 0.06320 43.20 1 0.0000
global test 1 0.08 5 0.9999

year= =3

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age 1 0.04364 20.01 1 0.0000
frg ! -0.01616 2.53 1 0.1118
bmi 1 -0.01559 2.67 1 0.1024
race 1 0.02144 6.55 1 0.0105
sex 1 0.04384 19.91 1 0.0000
global test 1 0.02 5 1.0000
year= =4

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age 1 0.03388 12.70 1 0.0004
fpg 1 -0.02012 3.62 1 0.0570
bmi 1 -0.05235 27.10 1 0.0000
race 1 0.03085 14.59 1 0.0001
sex 1 -0.02536 6.82 1 0.0090

global test 0.01 5 1.0000



year==15
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age 1 0.08021 67.07 1 0.0000
fpg 1 -0.02630 5.37 1 0.0205
bmi 1 0.09872 94.27 1 0.0000
race 1 -0.06248 35.79 1 0.0000
sex 1 -0.04451 19.97 1 0.0000
global test | 0.01 5 1.0000

year==16

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I 0.01978 3.93 1 0.0473
fpg 1 0.01225 1.02 1 0.3132
bmi | -0.00341 0.10 1 0.7473
race I 0.01193 1.25 1 0.2642
sex | -0.01670 2.74 1 0.0977
global test | 0.00 5 1.0000

17
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi2
age I 0.37451 1249.91 1 0.0000
fpg 1 0.26504 325.63 1 0.0000
bmi | 0.08720 75.29 1 0.0000
race | 0.29140 424 .58 1 0.0000
sex | -0.07251 52.53 1 0.0000
global test | 0.02 5 1.0000
18

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I -0.07142 37.37 1 0.0000
fpg I 0.15217 49.09 1 0.0000
bmi | 0.06861 23.44 1 0.0000
race I 0.22924 43.23 1 0.0000
sex | -0.04373 15.29 1 0.0001

global test | 0.00 5 1.0000



INTENSIVE

year== Test of proportional hazards assumption
rho chi?2 df Prob>chi?2

age I -0.02339 14.94 1 0.0001
fpg ! 0.02470 17.02 1 0.0000
bmi | -0.00468 0.62 1 0.4326
race | -0.00544 0.82 1 0.3640
sex | 0.01778 8.33 1 0.0039
global test | 0.46 5 0.9934
2
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I -0.03174 27.49 1 0.0000
fpg I 0.03792 40.31 1 0.0000
bmi | 0.02688 20.26 1 0.0000
race | -0.01710 8.18 1 0.0042
sex | 0.00133 0.05 1 0.8294
global test | 1.11 5 0.9536
3
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I -0.00214 0.12 1 0.7244
fpg 1 0.04231 49.36 1 0.0000
bmi | 0.00963 2.60 1 0.1070
race | 0.00951 2.49 1 0.1149
sex | 0.01871 9.26 1 0.0023
global test | 0.74 5 0.9808
4
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I -0.01373 5.13 1 0.0236
fpg 1 0.02216 13.61 1 0.0002
bmi | -0.00807 1.79 1 0.1813
race | -0.00219 0.13 1 0.7151
sex | -0.00605 0.97 1 0.3250
global test | 0.22 5 0.9989
5
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I -0.01167 3.71 1 0.0541
fpg 1 0.04401 53.40 1 0.0000
bmi | 0.01653 7.46 1 0.0063
race | 0.00777 1.70 1 0.1927
sex | -0.01166 3.60 1 0.0577

global test | 0.67 5 0.9843



year==6
Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2

age I 0.00127 0.04 1 0.8341
fpg I 0.04362 53.22 1 0.0000
bmi | 0.01400 5.36 1 0.0206
race I 0.00728 1.42 1 0.2332
sex | 0.01966 10.23 1 0.0014
global test ! 0.72 5 0.9821
7

Test of proportional hazards assumption

rho chi?2 df Prob>chi2
age I -0.01623 6.98 1 0.0083
fpg I 0.03346 30.85 1 0.0000
bmi I 0.01618 7.11 1 0.0077
race I -0.04225 46.28 1 0.0000
sex | 0.03045 24.56 1 0.0000
global test | 0.99 5 0.9636

year===8

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age ! 0.00899 2.11 1 0.14061
fpg 1 0.03152 27.18 1 0.0000
bmi | 0.01654 7.01 1 0.0081
race I 0.01202 3.59 1 0.0583
sex | 0.01533 6.23 1 0.0126
global test | 0.30 5 0.9977
:9

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi?2
age I -0.00443 0.51 1 0.4731
fpg 1 0.03666 37.57 1 0.0000
bmi | 0.02703 18 .12 1 0.0000
race I 0.00584 0.82 1 0.3665
sex | -0.02640 18.56 1 0.0000
global test I 0.28 5 0.9979
=10

Test of proportional hazards assumption

1 rho chi?2 df Prob>chi2
age I 0.00324 0.27 1 0.6019
fpg I 0.01l661 7.01 1 0.0081
bmi I 0.01453 5.24 1 0.0221
race | 0.00151 0.06 1 0.8145
sex | 0.01302 4.49 1 0.0342
global test | 0.06 5 1.0000

248



year==11
Test of proportional hazards assumption

year=

year=

year=

year=

—

age I
fpg 1
bmi |
race I
sex |

global test |

12

O O O o o

rho

.02087
.03978
.00763
.00880
.00057

chiz2

11.31

39.39
1.49
1.84
0.01

0.11

Test of proportional hazards assumption

age I
fpg

bmi |
race |
sex |

global test

13

Test of proportional

age
fpg
bmi
race
sex

=y

global test |

14

-0.

0

-0.
-0.
-0.

rho

.00987
.01510
.03257
.01875
.00951

chi2

2.43
5.52
26.59
8.02
2.38

0.04

hazards assumption

rho

03706
.06124
01886
01051
02676

chiz2

32.90
91.79
9.03
2.71
18 .95

0.08

Test of proportional hazards assumption

[

age
fpg
bmi
race
sex

=y

global test I

15

Test of proportional

—

age I
fpg 1
bmi |
race I
sex |

global test |

rho

.00878
.01685
.00248
.02739
.04579

chiz2

1.83
6.58
0.16
18.38
54.17

0.01

hazards assumption

rho

.05050
.04553
.03090
.10985
.09169

chiz2

61.02
47.49
22.07
334.91
214.26

0.05

df

-

df

-

df

P

df

-

df

-

Prob>chi?2

.0008
.0000
L2224
.1754
.9263

loNoNel e

o

.9998

Prob>chi?2

0.1187
0.0188
0.0000

0.0046
0.1225

1.0000

Prob>chi2

.0000
.0000
.0027
.0998
.0000

S oo @ @

o

.9999

Prob>chi?2

0.1766
0.0103
0.6861
0.0000
0.0000

1.0000

Prob>chi?2

.0000
.0000
.0000
.0000
.0000

S oo o o

1.0000
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year==16

year=

year=

year=

Test of proportional hazards assumption

1 rho chiz2
age I -0.05392 63.18
fpg 1 -0.05905 92.40
bmi | -0.11303 172.69
race I 0.05597 79.46
sex | 0.06123 95.89
global test | 0.01
17

Test of proportional hazards assumption

1 rho chiz2
age I -0.07907 133.29
fpg I -0.01417 6.06
bmi | -0.00769 0.74
race I -0.04379 42.12
sex | 0.08005 169.73
global test | 0.00
18

Test of proportional hazards assumption

1 rho chi2
age I -0.07637 94.12
fpg 1 0.04809 33.82
bmi I -0.05181 22.06
race I 0.00330 0.21
sex | -0.03560 30.49
global test | 0.00
19

Test of proportional hazards assumption

1 rho chi2
age I -0.44672 5529.79
fpg I -0.55970 1358.31
bmi | -0.03993 18.406
race | 0.45140 1145.20
sex | 0.14766 733.09
global test | 0.00

df

—

df

ke

df

—

df

—

Prob>chi2

.0000
.0000
.0000
.0000
.0000

O O O O O

1.0000

Prob>chi?2

.0000
.0138
.3885
.0000
.0000

O O O O O

1.0000

Prob>chi?2

0.0000
0.0000
0.0000
0.6461
0.0000

1.0000

Prob>chi?2

.0000
.0000
.0000
.0000
.0000

[eoNeolNeoNeoNe]

1.0000
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Appendix A.5.2. Weibull and Exponential regression models on total cost

CONVENITIONAL

Weibull regression

Weibull regression --

No. of subjects
No. of failures
Time at risk

Log likelihood

age
bmi

fpg
race

sex 1
cons 1

/ln p i

1/p i

Exponential

Exponential regression --

No. of subjects
No. of failures
Time at risk

Log likelihood

age
bmi i
frg
race
sex
cons

1138
= 213
= 9500509.408

= -575.43213

Coef. Std. Err.
-.051336 .0098131
.0032357 .0126375
.0046819 .0304612
.0592436 .1076293
.2290909 .1317603
12.93738 .7914047
.1394609 .0429129
1.149654 .049335
.869827 .0373268

regression

1138
213
9500509 .408

-580.15453
Coef. Std. Err.
-.0622891 .0105939
.0002449 .0142341
-.0064317 .0342738
.0894702 .1232363
.2737993 .1502651
13.77712 .8571194

o

.26
.15
.55
.74

= O O

-5.88
0.02
-0.19
0.73
1.82
16.07

accelerated failure-time form

Number of obs

LR chi2 (5)
Prob > chi2

P>1z1 [95% Conf.
0.000 -.0705094
0.798 -.0215333
0.878 -.0550209
0.582 -.15170061
0.082 -.0291545
0.000 11.38626
0.001 .0553531
1.056914
.79966

accelerated failure-time form

Number of obs

LR chi2 (5)
Prob > chi2

P> 1z | [95% Conf.
0.000 -.0830527
0.986 -.0276535
0.851 -.0736071
0.468 -.1520685
0.008 -.0207148
0.000 12.09719

= 1138

— 41.86
= 0.0000

Interval]

-.0321026
.0280048
.0643848
.2701932
.4873363

14.48851

.2235687

1.250532
.946151

= 1138

= 47.79
= 0.0000

Interval]

-.0415254
.0281432
.0607437
.3310088
.5683134

15.45704
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INTENSIVE

Weibull regression
Weibull regression --
No. of subjects 2729

No. of failures = 489
Time at risk = 22024713.02

Log likelihood -1305.,9663

to Coef. Std. Err.
age 1 -.048417 .005711
bmi 1 .0011463 .0074388
fpg 1 -.0453473 .0160413
race 1 .0236118 .0650777
sex 1 .496793 .0800094
cons 1 12.79873 .4562066
/1n p 1 .2637249 .0301343
P 1 1.30177 .0392279

1/p 1 .7681848 .0231487

Exponential regression
Exponential regression --
2729

489
22024713.02

No. of subjects
No. of failures
Time at risk =

Log likelihood -1337 .773
_t1 Coef. std. Err.
age | -.0691696 .0069622
bmi | -, 0022877 .0097351
fpg 1 -.064018 .0204434
race | .0542264 .0846879
sex | .6271029 .1021918
cons | 14.29921 .5686191

-8

.48
.15
.83

0.36
6.21

.05

.75

accelerated failure-time

.94
.23
.13
.64
.14
.15

accelerated failure-time form

Number of obs = 2729
LR chi2 (5 133.63
Prob > chiz2 = 0.0000

P> 1z | [95% Conf. Interval]
0.000 .0596104 -.0372237
0.878 .0134335 .015726
0.005 .0767877 -.01390068
0.717 .1039381 .1511616
0.000 .3399775 .6536085
0.000 11.90458 13.69288
0.000 .2046629 .322787
1.227111 1.380971
.7241281 .814922

form
Number of obs = 2729
LR chi2 (5 = 155.10
Prob > chi2 = 0.0000
P> 1z | [95% Conf. 1Interval]
0.000 -.0828153 -.055524
0.814 -.021368 .0167927
0.002 -.1040863 -.0239497
0.522 -.1117589 .2202117
0.000 4268106 .8273951
0.000 13.18474 15.41368
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Appendix A.5.3. Carides regression models (Carides et al, 2000)

Carides regression models for conventional

Total cost against time-to-failure using the uncensored cases only

Source

Model
Residual

Total

Mi

timallde
cons

SR

SS

3.1175e+09
6.5604e+10

6.8721e+10

Coef.

972.4001
5137.195

df

1
211

212

Std.

MS

3.1175e+09
310917115

324155825

Err. t

307.0877 3.17
2644.424 1.94

P>111

0.002
0.053

Number of obs 213
F( 1, 211) = 10.03
Prob > F = 0.0018
R-squared = 0.0454
Adj R-squared = 0.0408
Root MSE = 17633
[95% Conf. Intervall]
367.0471 1577.753
-75.68007 10350.07

Log transformed total cost against time-to-failure using the uncensored cases

only

Source

Model
Residual

Total

InMi

timallde
cons

Log-Log transformed total Bost against time-to-mfailure

cases only

Source

Model
Residual

Total

1InlnMi

timallde
cons

SS

45.0008132
205.262457

250.26327

Coef.

.1168289
7.974748

SS

.663258557
2.76336055

3.42661911

Coef.

.0141834
2.066175

df

1
211

212

Std.

.0171773
.1479184

df

1
211

212

Std.

.001993
.0171627

MS

45.0008132
.972807853

1.18048712

Err. t

6.80
53.91

MS

.663258557
.013096496

.016163298

Err. t

7.12
120.39

P>111

0.000
0.000

P>111

0.000
0.000

Number of obs 213
F( 1, 211) = 46.26
Prob > F = 0.0000
R-squared = 0.1798
Adj R-squared = 0.1759
Root MSE = .98631
[95% Conf. Intervall]
.0829679 .1506899
7.68316 8.266335

using the uncensored

Number of obs 213
F( 1, 211) = 50.64
Prob > F = 0.0000
R-squared = 0.1936
Adj R-squared = 0.1897
Root MSE = .11444
[95% Conf. Interval]
.0102546 .0181123
2.032342 2.100007
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Carides regression models for Intensive

Total cost against time-to-failure using the uncensored cases only

Source

Model
Residual

Total

Mi

timallde
cons

i
i

i

SS

9.174 %9e+09
6.293%e+10

7.2114e+10

Coef.

1053.654
2731.592

df MS

1 9.1749%+09
487 129238492

488 147774693

std. Err. t

125. 0527 8.43
1092 .836 2.50

P>111

0.000
0.013

Number of obs
F( 1, 487)
Prob > F
R-squared

Adj R-squared
Root MSE

[95% Conf.

807.9443
584.3366

489
70.99
= 0.0000
= 0.1272
= 0.1254
= 11368

Interval]

1299.363
4878.848

Log transformed total cost against time-to-failure using the uncensored cases

only

Source

Model
Residual

Total

InMi

timallde
cons

Log-Log transformed total cost against time-to-failure

cases only

Source

Model
Residual

Total

1InlnMi

timallde
cons

SS

156.708772
372.078572

528.787344

Coef.

.1377031
7.759076

SS

2.31441056
5.74446578

8.05887634

Coef.

.0167347
2.040383

df MS

1 156.708772
487 .764021708

488 1.08358062

std. Err. t

.009615
.0840257

14.32
92.34

df MS

1 2.31441056
487 .011795618

488 .016514091

std. Err. t

.0011947
.0104405

14.01
195.43

P>111

0.000
0.000

P>T1 1

0.000
0.000

Number of obs
F( 1, 487)
Prob > F
R-squared

Adj R-squared
Root MSE

[95% Conf.

.1188111
7.593978

489
= 205.11
= 0.0000
= 0.2964
0.2949
= .87408

Interval]

.1565952
7.924174

using the uncensored

Number of obs
F( 1, 487)
Prob > F
R-squared

Adj R-squared
Root MSE

[95% Conf.

.0143873
2.019869

489
= 196.21
= 0.0000
= 0.2872
0.2857
= .10861

Interval]

.0190821
2.060897
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Programs for obtaining bootstrap estimates for the standard errors of the mean for the
Carides et al models

**Carides Models: Bootstrap for the standard errors *x*

program define pcarides
if "rllv==ron {

global S 1 "mclinear mclnMi mclnMism mclnlnMi mclnlnMism"
exit

**KM mean survival*¥*

stset timallde, failure (censorig==1)
sts gen survt KM=s

gsort - survt KM timallde

quietly gen lagXi= timallde[ n—1]
replace lagXi=0 if lagXi==.

gen areaiXi= survt KM* ( timallde- lagXi)
egen meansurvtKM=sum(areaiXi)
**Regression models**

**Mi against time-to-failure**

regress Mi timallde if censorig==
matrix beta=e (b)

svmat beta

gen bo0x=beta2

egen bO=min (bOx)

gen blx=betal

egen bl=min (blx)

gen meanclinear= bO+bl* meansurvtKM

**1nMi against time-to-failure**
gen 1nMi=1ln (Mi)

regress InMi timallde if censorig==
predict residlnMi, residuals
matrix betaln=e (b)

svmat betaln

gen bo0lnx=betaln2

egen bO0ln=min (bOlnx)

gen bllnx=betalnl

egen blln=min (bllnx)

gen eresidlnMi=exp ( residlnMi)

egen seresidlnMi=sum( eresidlnMi)

gen smearlnMi=(1/1138)* seresidlnMi
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gen meanclnMi=exp (b0ln+ blln* meansurvtKM)

gen meanclnMism=(exp (b0ln+ blln* meansurvtKM))* smearlnMi

**1nlnMi against time-to-failure**

gen 1nlnMi=1n (InMi)

regress 1nlnMi timallde if censorig==

predict residlnlnMi, residuals

matrix betalnln=e (b)

svmat betalnln

gen bo0lnlnx=betalnln2

egen b0lnln=min (bOlnlnx)

gen bllnlnx=betalnlnl

egen bllnln=min(bllnlnx)

gen eresidlnlnMi=exp( residlnlnMi)

gen meanclnlnMi=exp (exp (bOlnln+bllnln* meansurvtKM))
gen eelnlnMism=exp ((exp (bOlnln+bllnln* meansurvtKM))* eresidlnlnMi)
egen seelnlnMism=sum( eelnlnMism)

gen meanclnlnMism=(1/1138)* seelnlnMism

%k

tempname vyl
summarize meanclinear, meanonly
scalar 'yl'=r (mean)

tempname y2

summarize meanclnMi, meanonly
scalar 'y2 '=r (mean)

tempname y3

summarize meanclnMism, meanonly
scalar 'y3'=r (mean)

tempname y4

summarize meanclnlnMi, meanonly
scalar 'y4'=r (mean)

summarize meanclnlnMism, meanonly

post "t ' ('yl') ('y2 ") ('y3" ('vy4’) (r(mean))
end

o~k
end of do-file
set seed 1001

bstrap pcarides, reps(1000) dots
saving (C:\WINDOWS\Desktop\regressions new\Carides\bsconv1000.dta)



Appendix A.5.4. Ordinary least squares regression using the uncensored cases only

Using the complete set of covariates

CONVENTIONAL

Source

Model
Residual

Total

age
bmi
fpg
race
seXx
cons

INTENSIVE
Source

Model
Residual

Total

age
bmi
fpg
race
sex
cons

Using fasting plasma glucose (fpg) as the only covariate

— e e

— e e

SS

1.9587e+09
6.67 62e+10

6.8721e+10

Coef.

262.4724
454.0052
537.4346
1783.516
1545.937
-23980.37

SS

492715435
7.1621e+10

7.2114e+10

Coef.

57.55115
34.83646
-176.5466
146.7123
1802.747
5647.455

CONVENTIONAL
Source 1 SS

Model 1 323160914
Residual | 6.8398e+10
Total 6.8721e+10

Mi 1 Coef.

fpg 1 602.4029

cons 1 7367.779

df MS
5 391745120
207 322523233
212 324155825
std. Err. t
197.5792 1.33
270.1044 1.68
611.4397 0.88
2204.647 0.81
2646.605 0.58
16190.03 -7 8
df MS
5 98543086.9
483 148284337
488 147774693
Std. Err. t
85.66172 0.67
123.7422 0.28
267.8438 -0.66
954.3455 0.15
1250.537 1.44
7148.846 0.79

df

211

212

Std.

603.3339
5369.693

MS

323160914
324160540

324155825

Err. t

1.00
1.37

P>111

.185
.094
.380
.419
.560
.140

O O O O OO

P>111

.502
.778
.510
.878
.150
.430

O O O O o O

P>111

0.319
0.171

Adj

Number of obs
E( 5, 207)
Prob > F
R-squared

Root MSE

[95% Conf.
-127.0531
-78.50296
-668.0129
-2562.924
-3671.818
-55898.86

Number of obs

F( 5 483)
Prob > F
R-squared
Adj R-squared
Root MSE
[95% Conf.
-110.7645
-208.303
-702.8295
-1728.469
-654.417
-8399.223

Number of obs
F( 1, 211)
Prob > F
R-squared
Adj
Root MSE

[95% Conf.

-586.9315
-3217.339

R-squared

R-squared

213

= 1.21
= 0.3034
= 0.0285
= 0.0050
17959

Interval]

651.998
986.5134
1742.882
6129.956
6763.693
7938.124

489
= 0.66
= 0.6505
= 0.0068
= -0.0034
= 12177

Interval]

225.8668
277.9759
349.7363
2021.894
4259.911
19694.13

= 213
= 1.00
= 0.3192
= 0.0047
= =0.0000

18004

Interval]

1791.737
17952.9
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INTENSIVE

Source | SS df MS
Model 1 44656082.7 1 44656082.7
Residual | 7.206%9e+10 487 147986436
Total 1 7.2114e+10 488 147774693
Mi 1 Coef. Std. Err. t
fpg 1 -144.1522 262.4169 -0.55
cons 1 12142 .42 2403.761 5.05

Number of obs
F( 1, 487)
Prob > F
R-squared

Adj R-squared
Root MSE

[95% Conf.

-659.7613
7419.398

489
0.30
0.5830
0.0006
-0.0014
12165

Interval]

371.4569
16865.44

Programs for obtaining bootstrap estimates for the standard errors of the coefficients and the

mean for the OLS regression model
**OLS naive on total costs:

progra?fdigf?%zgggﬁnalve

global S 1
exit

}

egen meanage=mean (age)
egen meanbmi=mean (bmi)
egen meanfpg=mean (fpg)
egen meanrace=mean (race)
egen meansex=mean (sex)

regress Mi age bmi fpg race sex if censorig==1
matrix betaallZ=e (b)
svmat betaallZ

gen bOx= betaallZé
egen bO0=min ( bOx)

gen blx= betaallZl
egen bl=min ( blx)

gen b2x= betaallZ2
egen b2=min ( b2x)

gen b3x= betaallZ3
egen b3=min( b3x)

gen bidx= betaallZz4
egen b4=min ( bix)

gen bbx= betaallZb
egen b5=min ( b5x)

drop DbOx blx b2x b3x bdx bbx

Bootstrap estimates for the standard errors**

"bO bl b2 b3 b4 b5 mclinear bOfpg blfpg mcfpglinear"

gen meanclinear=b0O+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex
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regress Mi fpg if censorig==

matrix betafpg=e (b)
svmat betafpg

gen bOfpgx= betafpg2
egen bOfpg=min( bOfpgx)

gen blfpgx= betafpgl
egen blfpg=min( blfpgx)

drop DbOfpgx blfpgx
gen meancfpglinear=bOfpg+blfpg* meanfpg

tempname yl
summarize bO, meanonly
scalar 'yl'=r (mean)

tempname y2
summarize bl, meanonly
scalar 'y2 '=r (mean)

tempname y3
summarize b2, meanonly
scalar 'y3'=r (mean)

tempname vy4
summarize b3, meanonly
scalar 'y4'=r (mean)

tempname yb5
summarize b4, meanonly
scalar 'y5'=r (mean)

tempname y6
summarize b5, meanonly
scalar 'yé6 '=r (mean)

tempname vy7
summarize meanclinear, meanonly
scalar 'y7'=sr(mean)

tempname y8
summarize bOfpg, meanonly
scalar 'y8 '=r (mean)

tempname y9
summarize blfpg, meanonly
scalar 'y9'=sr (mean)

summarize meancfpglinear, meanonly

post '1' ('yl1') ('y2"') ('y3') ('y4'")
(r (mean))
end

* %

end of do-file

set seed 1001
bstrap polsnaive, reps(1000) dots

('y5")

('y6 ")

('y7"

('y8 ")

saving (C:\WINDOWS\Desktop\regressions new\OLS naivel\bsconvl1000.dta)

('y9"
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Appendix A.5.5. Programs for the Lin (2000) regression methodology using the total costs at
the last contact dates or at the point of death

Based on equations (5.25) and (5.27) for the regression parameters and on
equations (5.29), (5.30), (5.31) and (5.32) for the coefficient standard errors
**Lin 2000: Total costs: Conventional (similarly for intensive)**

**Mean and coefficients' standard errors**

egen maxtimelL=max ( timallde)

gen di=1 1if censorig==
replace di=o0 if di==.

gen di_star=1 if (di== | maxtimelL== timallde)
replace di star=0 if di star==.

gen di_ censor=1-di
stset timallde, failure(di star==0)
sts gen G _Tistar=s

egen meanage=mean (age)
egen meanbmi=mean ( bmi)
egen meanfpg=mean (fpg)
egen meanrace=mean (race)
egen meansex=mean (sex)

gen int replicate=6

expand replicate

gen int const=1

sort ukno

by ukno: gen constx=sum(const)
sort ukno constx

gen Zi=const if constx==
replace Zi=age if constx==2
replace Zi=bmi if constx==
replace Zi=fpg 1if constx==
replace Zi=race if constx==
replace Zi=sex 1if constx==

move Zi age

gen 7Zi0_ ZiOp=Zi*const
gen Zil Zilp=Zi*age
gen Zi2 Zi2p=Zi*bmi
gen Zi3 Zi3p=Zi*fpg
gen 7Zid4 Zidp=Zi*race
gen Zi5 ZibSp=Zi*sex

gen wziO ziOp= (di_star/ G _Tistar)* zi0 ZiOp
gen wzil Zzilp= (di_star/ G _Tistar)* zil Zilp
gen wzi2 zi2p= (di_star/ G _Tistar)* zi2 Zi2p
gen wzi3 zi3p= (di star/ G _Tistar)* zi3 Zi3p

260



gen wzi4 Zidp= (di_star/ G Tistar)* Zid4 Zidp
gen wzi5 ZibSp= (di_star/ G _Tistar)* Zi5 Zi5p

constx
constx
constx

egen swziO ZiOp=sum WZzZiO_ZiOp) , by )
)
)
constx)
)
)

egen swzil Zilp=sum(wZil Zilp), by
egen swzi2 Zi2p=sumWzi2 Zi2p), by
egen swzi3 Zi3p=sum Wzi3 Zi3p) , by
egen swzid4 Zidp=sumWwzi4 Zidp), by
egen swzib5 ZibSp=sum Wzi5 Zi5p) , by

constx
constx

~ e~ o~~~ —~

gen wYizZi=( di star/ G_Tistar)*Mi*zi
egen swYiZi=sum(wYiZi), by (constx)

mkmat swZi0 ZiOp swZil Zilp swZi2 Zi2p swzi3 Zi3p swZzid Zidp swZzib ZibSp if
ukno=="00011D", matrix(bterml)

mkmat swYiZi if ukno=="00011D", matrix (bterm2)
matrix beta=syminv (bterml)*bterm2
svmat beta

matrix list beta

egen bOx=min (betal) if constx==1
egen bO=min (bOx)

egen blx=min (betal) if constx==
egen bl=min (blx)

egen b2x=min (betal) if constx==
egen b2=min (b2 x)

egen b3x=min (betal) if constx==4
egen b3=min (b3x)

egen b4x=min (betal) if constx==5
egen bd=min (b4dx)

egen bbx=min (betal) if constx==
egen b5=min (b5x)

drop bOx blx b2x b3x bdx bbx

gen meancost=bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4d* meanrace+b5* meansex

sum meancost

**Standard errors for the coefficients**

gen beta Zi=bO*const+bl* age+b2* bmi+b3* fpg+b4* race+b5* sex
gen Yi bZi=Mi-beta 7Zi

gen Btermli= (di star/ G _Tistar)* Yi bzi*zi

gen Xi= timallde

**ties**

sort constx Xi

by constx Xi: gen ties=sum(const)
egen maxties=max (ties), by (constx Xi)

**For I(Ti star>t in Q(t)**
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gsort constx -Xi ties

by constx: gen QXinumx=sum( Btermli)

gen QOXinum=QXinumx 1f ties==maxties

egen QXinumxx=min (QXinum), by (constx Xi maxties)
replace QXinum=QXinumxx if QXinum==.

gsort constx -Xi
by constx: gen QXidenomx=sum (const)
egen QXidenom=max (QXidenomx), by (constx Xi)

gsort constx -Xi ties

egen QXxx=sum(Btermli), by (constx Xi)
gen QXinumtest=QXinum-QXxx

gen QXitest=QXinumtest/ QXidenom

gen Bterm2itest=di censor*QXitest
gen djcens QXjsXltest= di censor* QXitest/ QXidenom

sort constx Xi ties

by constx: gen Bterm3ixtest=sum(djcens QXjsXltest)

gen Bterm3itest=Bterm3ixtest if ties==maxties

egen Bterm3ixxtest=min (Bterm3itest), by (constx Xi maxties)
replace Bterm3itest=Bterm3ixxtest if Bterm3itest==.

gen Bterml23itest= Btermli+Bterm2itest- Bterm3itest

gen Bterml23i lxtest=Bterml23itest if constx==
egen Bterml23i ltest=min( Bterml23i lxtest), by (ukno)

gen Bterml23i 2xtest=Bterml23itest if constx==
egen Bterml23i 2test=min( Bterml23i 2xtest) , by (ukno)

gen Bterml23i 3xtest=Bterml23itest if constx==
egen Bterml23i 3test=min( Bterml23i 3xtest), by (ukno)

gen Bterml23i 4xtest=Bterml23itest if constx==
egen Bterml23i 4test=min( Bterml23i 4xtest), by (ukno)

gen Bterml23i 5xtest=Bterml23itest if constx==
egen Bterml23i Stest=min( Bterml23i 5xtest), by (ukno)

gen Bterml23i 6xtest=Bterml23itest if constx==
egen Bterml23i 6test=min( Bterml23i 6xtest), by (ukno)

gen Btermp pltest= Bterml23itest* Bterml23i ltest
gen Btermp p2test= Bterml23itest* Bterml23i 2test
gen Btermp p3test= Bterml23itest* Bterml23i_3test
gen Btermp pédtest= Bterml23itest* Bterml23i 4test
gen Btermp pStest= Bterml23itest* Bterml23i 5Stest
gen Btermp pé6test= Bterml23itest* Bterml23i 6test

egen sBtermp pltest=sum
egen sBtermp p2test=sum
egen sBtermp p3test=sum
egen sBtermp p4test=sum
egen sBtermp pStest=sum
egen sBtermp pétest=sum

( Btermp pltest) , by (constx)
( Btermp p2test), by(constx)
( Btermp p3test) , by(constx)
( Btermp pdtest), by(constx)
( Btermp pb5test), by(constx)
( Btermp pétest) , by (constx)
mkmat sBtermp pltest sBtermp p2test sBtermp p3test sBtermp pdte
sBtermp pStest sBtermp pétest if ukno=="00011D", matrix (seBxtest)



matrix seBtest=(1/1138) *seBxtest

svmat seBtest

matrix list seBtest

matrix covbetamattest=seinvA*seBtest*seinvA
svmat covbetamattest

matrix list covbetamattest

* %

Bootstrap estimates of the standard errors for the coefficients and the mean for Lin (2000)

using the total costs at the last contact dates or death

use "C:\Desktop\Lin2000\conv_orig.dta", clear
rename ukno uknoO

do "C:\Desktop\Lin2000\Total costs\bs total.txt"
where bs total.txt is:

**1,in2000 on total costs: Conventional and/or Intensive**

**Bootstrap Estimation of standard errors for coefficients

program define ptotal
if AL li '":".?" {

global s 1 "bO bl b2 b3 b4 b5 meanc"
exit

}

egen maxtimelL=max ( timallde)

gen di=1 if censorig==
replace di=0 if di==.

gen di_star=1 if (di==1 | maxtimelL== timallde)
replace di star=0 if di_star==.

gen di censor=1-di

stset timallde, failure(di_ star==0)
sts gen G _Tistar=s

egen meanage=mean (@age)

egen meanbmi=mean ( bmi)

egen meanfpg=mean (fpg)

egen meanrace=mean (race)

egen meansex=mean (sex)

gen int replicate=6

expand replicate

gen int const=1

and mean**
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sort

ukno

by ukno: gen constx=sum(const)

sort

gen
repl
repl
repl
repl
repl

move

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

egen
egen
egen
egen
egen
egen

gen

egen

collapse meanage meanbmi meanfpg meanrace meansex swYiZi swZiO_ZiOp swZzZil Zilp

ukno constx

Zi=const if constx==
ace Zi=age 1f constx==
ace Zi=bmi if constx==
ace Zi=fpg if constx==4
ace Zi=race if constx==
ace Zi=sex 1f constx==

Zi &age

Zi0_7ZiOp=Zi*const

Zil Zilp=Zi*age

212 7i2p=Zi*bmi

Z2i3 Zi3p=Zi*fpg

Zi4 Zidp=Zi*race

Zi5 ZibSp=Zi*sex

wzi0 ZiOp= (di star/ G Tistar)* ZiO ZiOp

wzil Zilp= (di _star/ G Tistar)* Zzil Zilp

wZi2 Zi2p= (di_star/ G _Tistar)* Zi2 Zi2p

wzi3 Zi3p= (di_star/ G Tistar)* Zi3 Zi3p

wzi4 Zidp= (di_star/ G_Tistar)* Zid4_Zidp

wZzi5 ZibSp= (di star/ G_Tistar)* Zi5 Zi5p
swzi0O_ZiOp=sum(wzZiO_ZiOp), by (constx)
swzil Zilp=sum(wZil Zilp), by (constx)
Swzi2 Zi2p=sum(wZi2 Zi2p), by(constx)
swzi3 Zi3p=sum(wZi3 Zi3p), by(constx)
swzid Zidp=sum(wZid4 Zidp), by(constx)
swzi5 ZiSp=sum(wZi5 Zi5p), by (constx)

wYizi=( di_star/ G Tistar)*Mi*zi

swYiZi=sum wYiZi), by (constx)

SWZi2 Zi2p swZi3 Zi3p swZid Zidp swZi5 Zib5p,

sort

mkmat swzZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZi5_ Zi5p,

matr

mkma

matr

svma

gen
egen
gen
egen
gen
egen
gen
egen

constx

ix (bterml)

t swYiZi, matrix(bterm?2)

ix beta=syminv(bterml)*bterm2
t beta

bOx=betal 1if constx==
bO=min (bOx)

blx=betal if constx==
bl=min (blx)

b2x=betal 1f constx==3
b2=min (b2 x)

b3x=betal 1if constx==
b3=min (b3x)

by (constx)
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gen bdx=betal if constx==
egen b4=min (b4x)
gen bbx=betal if constx==
egen bb5=min (b5x)

gen meancost=bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4d*

tempname yl
summarize bO, meanonly
scalar 'yl'=r (mean)

tempname y2
summarize bl, meanonly
scalar 'y2 '=r (mean)

tempname y3
summarize b2, meanonly
scalar 'y3'=r (mean)

tempname y4
summarize b3, meanonly
scalar 'y4'=r (mean)

tempname yb5
summarize b4, meanonly
scalar 'y5'=sr(mean)

tempname yé
summarize b5, meanonly
scalar 'yé6 '=r (mean)

summarize meancost, meanonly
post '1' ('yl1) ('y2")
end

w*

end of do-file

set seed 1001

bstrap ptotal, reps(1000) dots cluster (uknoO)

saving (C:\Documents and

Settings\raikou\Desktop\Lin2000\Total costs\Conventionall\bsconvl1000.dta)

kok

('y3")

('vd")

('yd")

('yé ")

meanrace+b5* meansex

(r (mean))

idcluster (ukno)
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Appendix A.5.6. Programs for the Lin (2000) regression methodology using multiple time
intervals

Based on equations are given by (5.33) and (5.35) for the coefficients and by
(5.30), (5.37), (5.38), (5.39), (5.40) and (5.41) for their standard errors.

**Lin 2000 on Annual Costs: Conventional (similarly for intensive) **

gen tk l=year-1
gen tk=year

gen Xik=min (Xi, tk)
egen maxtimelL=max (X1i)

gen dik star=1 1if (Xik==tk | (Xik==Xi & di==1) | (Xik==Xi & maxtimelL==Xi))
replace dik star=0 if dik star==.

stset Xik, failure( dik star==0)
sts gen GTik star=s, by(tk)

drop st d t to

egen meanage=mean (age)
egen meanbmi=mean (bmi)
egen meanfpg=mean (fpg)
egen meanrace=mean (race)
egen meansex=mean (sex)

gen int replicate=6
expand replicate

gen int const=1

sort ukno year

by ukno year: gen constx=sum(const)
sort ukno year constx

gen Zi=const if constx==
replace Zi=age if constx==
replace Zi=bmi if constx==
replace Zi=fpg if constx==
replace Zi=race 1if constx==5
replace Zi=sex 1if constx==

move Zi age

move constx age_entr

move const age

drop age_entr maxyear gender

sort ukno year constx

gen Zi0O ZiOp=Zi*const
gen Zil Zilp=Zi*age
gen Zi2 Zi2p=Zi*bmi
gen Zi3 Zi3p=Zi*fpg
gen 7Zid4 Zidp=Zi*race
gen 7Zi5 ZibSp=Zi*sex

gen wziO ziOp= ( dik star/ GTik star)* Zi0 ZzZiOp
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gen wzil Zilp= ( dik _star/ GTik star)* Zil Zilp
gen wzi2 Zi2p= (dik star/ GTik star)* Zzi2 ZiZ2p
gen wzi3 Zi3p= (dik star/ GTik_star)* Zi3_Zi3p
gen wzi4 Zidp= (dik _star/ GTik star)* Zi4d Zidp
gen wzi5 ZibSp= ( dik star/ GTik_star)* Zi5_Zi5p

egen swziO_ ZiOp=sum(wZiO_ ZiOp), by (tk constx
egen swZzZil Zilp=sum(wZil Zzilp), by (tk constx
egen swZzi2 Zi2p=sum(wZzZi2 Zi2p), by(tk constx
egen swzi3 Zi3p=sum@zi3 Zi3p), by(tk constx
egen swzid4 Zidp=sumwzi4 Zidp), by(tk constx
egen swzi5 ZiSp=sumWZzi5 Zi5p), by (tk constx

14

)
)
)
)
)
)

gen wYikZi=( dik star/ GTik star)* Mik*ZzZi
egen swYikZi=sum@wYikZi), by (tk constx)
sort ukno tk constx

mkmat swzZiO ZiOp swZzil Zilp swZi2 Zi2p swZi3  Z7i3p swZi4 Zidp swZi5 Zib5p if
(ukno=="00011D" & tk==1), matrix(bklterml)

mkmat sw¥ikzi if (ukno=="00011D" & tk==1), matrix(bklterm2)
matrix betakl=syminv (bklterml)*bklterm2

svmat betakl
*

mkmat swzZiO ZiOp swZzil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZzib5 Zibp if
(ukno=="00011D" & tk==2), matrix(bk2terml)

mkmat sw¥ikzi if (ukno=="00011D" & tk==2), matrix (bk2term2)
matrix betak2=syminv (bk2terml)*bk2term2

svmat betak2
*

mkmat swzZiO ZiOp swZzil Zilp swZzZi2 Zi2p swZi3 7Zi3p swZi4 Zidp swZzZi5 Zi5p if
(ukno=="00011D" & tk==3), matrix (bk3terml)

mkmat sw¥ikzi if (ukno=="00011D" & tk==3), matrix (bk3term2)
matrix betak3=syminv (bk3terml)*bk3term2

svmat betak3
*

mkmat swzZ2iO ZiOp swZzil Zilp swZzi2 Zi2p swZi3 Zi3p swZzZid Zidp swzib ZibSp if
(ukno=="00011D" & tk==4), matrix(bkd4terml)

mkmat sw¥ikzi if (ukno=="00011D" & tk==4), matrix (bkdterm2)
matrix betakd4=syminv (bk4terml) *bkdterm2

svmat betak4
*

mkmat swZ2iO ZiOp swZzil Zilp swZzi2 Zi2p swZzZi3 Zi3p swZzid Zidp swZzZib5 ZibSp if
(ukno=="00011D" & tk==5), matrix (bk5terml)

mkmat sw¥ikzi 1if (ukno=="00011D" & tk==5), matrix (bk5term2)
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matrix betak5=syminv(bk5terml) *bkS5term?2

svmat betakb

*

mkmat swZi0 ZiOp swzZil Zilp swZi2 Zi2p swZi3 Zi3p sw2id_Zidp swZi5_Zi5p if
(ukno=="00011D" & tk==6), matrix{bkéterml)

mkmat swYikZi if (ukno=="00011D" & tk==6), matrix(bk6term2)
matrix betak6=syminv{bk6terml)*bk6term2

svmat betake

.
mkmat swziO_ziOp swZil Zilp swZiZ2_212p swZi3_Zi3p swZid_Zidp swzi5_ziSp if
(ukno=="00011D" & tk==7}), matrix(bk7terml)

mkmat swYikZi if (ukno=="00011D" & tk==7), matrix{bk7term2)

matrix betaki=syminv(bk7terml)*bk7term2

svmat betak?

*

mkmat swZ2i0_Zi0p swZil Zilp swZi2 2i2p swZi3 7i3p swZid_Zidp swii5_Zi5p if
(ukno=="00011D" & tk==8), matrix(bkB8terml)

mkmat swYikZi if (ukno=="00011D" & tk==8), matrix(bkB8term2)

matrix betak8=syminv(bkB8terml)*bkB8term2

svmat betak8

*
mkmat swZi0_2ZiOp swzil Zilp swZi2 Zi2p swZi3_Zi3p swZid4_Zidp swZi5_ziSp if
(ukno=="00011D" & tk==9), matrix(bk9terml)

mkmat swYikZi if (ukno=="00011D" & tk==9), matrix(bkSterm2)

matrix betak9=syminv(bk9terml)*bk9term2

*

svmat betak9

mkmat swZzi0_ZiOp sw2il Zilp sw2i2_2i2p sw2i3_2i3p swZid_Zidp swZi5 2i5p if
(ukno=="00011D" & tk==10), matrix(bklOterml)

mkmat swYikZi if (ukno=="00011D" & tk==10), matrix(bklOterm2)

matrix betaklO=syminv(bklOterml)*bklOterm2

*

svmat betaklO

mkmat swZi0 ZiOp swZil Zilp swzi2 Zi2p swZi3 Zi3p swZid_Zidp swZi5_ZiSp if
(ukno=="00011D" & tk==11), matrix{bkllterml)

mkmat swYikZi if (ukno=="00011D" & tk==11), matrix(bkllterm2)
matrix betakll=syminv{bkllterml)*bkllterm2

svmat betakll
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mkma . swZil Zi0p 2wZil Zilp swBiZ 2i2p awill E10p swils Zisp swldil_2ilp il
(ukoo=<="000110" & tk==1Z), matrixibklZiterml}

mkmat sSw¥ik2i 12 (ukoo-="000L10" & tk==132;, mutrix[bzlZdlerm:)
matrix betakli=zyminvibklzterml)*bkliterm?

avmat betakli

mkmat sWwail 2i0p swRil Ailp SwIii Ridp =wBil Eilp awiid pidp swdil _2ifp if
Cukpo=="000112" ¢ th==13), matrixi{bkliterml}

mkmat swY¥ikai if {akno=="I001107 &5 tk==13), malreix{bRl3term:s)
matrix batakl3=syminv  Bk13Le2-ml] *bkl3termd

symat botakld

*

mkmat
TR Sgem—

W

SWELD Bidp swRiY RiTm swRlE Biip swdii Ziip ewiid_iidp ewiild silp il
Ha00L

ip* & thk==4], matzixikkldterml)

mhkmat  sw¥ikii if jusns——"000220" & thk==14), matrix{bkldlecms)
matrix zetakl d-syminvichldtarml)vokldtoermd

gvmat oatakld

*

mbmat SWELD Bilm swRil _Filp swIlZ Z1&p sWiis Zisp swiaid sidp swiEid_aidp i€
aknag=="00020% & tix==_0}, pmatriz oklSterml)

riarat sw¥ixZl 1f judno=="000__D0" & th--151, matrixibklStarmi]
matrix setak b=gyminy |2xlbterml) *ohlitarmd
sWEat oebaklh

mxnat swril Billp swiRit_Rllp swZlid Zidp sWwil3 ZEi3p swild sidp swiid _8idp if
lxno=="0005110" & ti==_6,, matrix,ock_btezml]

mamat  swWYixei if |uans=="000110" & tk==1f), mekrix(bhklbLerms)

oatris petaslé=gyoine (bslé.venl ] ~Lilalarms

swmalh potaxle

;H:uﬁ swrill Rlp awRil_Zilp swEl2 ZIlidp swild_uilp swiid Eldp swili_Eiip if
Insno=="000110" & -k==17:, matrix(px>7tarml]

mamat  awiikel if [(ukno—=="0007110" & Ex==171, malrix{bklTLexnl]

=TTl hnrnk1?=ﬂy:iuv(hk1T;Efm1}'b£1TtEIm2

swman bezaxly

mEmAL swihil_Rifdp swRil _Zilp awEl2 Zldp sWwIld_Zilp ewiid _sidp swilld Zi0p if
[ukno=="000110" & —k==18), matrix(kxlBtarn’)
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mkruat sw¥ikzi if (ukno=="00011D" & tk==18), matrix (bkl8term2)
matrix betakl8=syminv (bkl8terml)*bkl8term2

svmat betakls

*
mkmat swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZid4 Zidp swzib5 Zib5p if
(ukno=="00011D" & tk==19), matrix(bkl9terml)

mkmat sw¥ikzi if (ukno=="00011D" & tk==19), matrix (bkl9term2)

matrix betakl9=syminv (bkl9terml) *bkl9term2

svmat betakl9

matrix
beta=betakl+betak2+betak3+betakd+betakS+betakb6+betak7+betak8+betak9+betaklO+beta
kll+betakl2+betakl3+betakld+betakl5+betaklo+betakl7+betakl8+betakl?

svmat beta

gen bOx=betal if constx==

egen bO=min (bOx)

gen blx=betal if constx==
egen bl=min (blx)

gen b2x=betal if constx==
egen b2=min (b2 x)

gen b3x=betal if constx==
egen b3=min (b3x)

gen bé4x=betal 1f constx==5
egen b4=min (b4dx)

gen bbSx=betal if constx==
egen b5=min (b5x)

matrix list beta

sum bO bl b2 b3 b4 bd

drop DbOx blx b2x b3x bdx bbx

gen meancost= bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex

sum meancost

**For the standard errors of the coefficients**

gen bOklx=betakll if (constx==1)
egen bOkl=min (bOklx)

gen blklx=betakll 1if (constx==2)
egen blkl=min(blklx)

gen b2klx=betakll if (constx==3)
egen b2kl=min (b2 klx)
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gen b3klx=betakll if
egen b3kl=min (b3klx)

gen bdklx=betakll if
egen bdkl=min (b4klx)

gen bbSklx=betakll if
egen bS5kl=min (b5klx)

gen b0 k2x=betak21 if
egen bok2=min (b0 k2 x)

gen blk2x=betak21 if
egen blk2=min (blk2x)

gen b2 k2x=betak21 if
egen b2 k2=min (b2 k2 x)

gen b3k2x=betak2l if
egen b3k2=min (b3k2x)

gen b4dk2x=betak21 if
egen b4dk2=min (b4k2x)

gen bSk2x=betak2l if
egen b5k2=min (b5k2x)

gen bOk3x=betak3l if
egen b0k3=min (b0k3x)

gen blk3x=betak3l if
egen blk3=min (blk3x)

gen b2k3x=betak3l if
egen b2k3=min (b2k3x)

gen b3k3x=betak31l if
egen b3k3=min (b3k3x)

gen b4k3x=betak3l if
egen b4k3=min (b4k3x)

gen bb5Sk3x=betak3l if
egen b5k3=min (b5k3x)

gen bOk4dx=betak4l if
egen bOk4=min (bOk4x)

gen blk4x=betak4l if
egen blk4=min (blk4x)

gen b2k4dx=betak4l if
egen b2k4=min (b2k4x)

gen b3kdx=betakdl if
egen b3k4=min (b3k4x)

gen bdkdx=betakdl if
egen bdk4=min (b4k4x)

gen bbSk4dx=betak4l if
egen bbk4=min (b5k4x)

gen bOkbx=betak51l if

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)



egen b0k5=min (b0k5x)

gen blkbSx=betak5l if
egen blk5=min (blk5x)

gen b2k5x=betak51 if
egen b2k5=min (b2k5x)

gen b3kbx=betakb51 if
egen b3k5=min (b3k5x)

gen b4kbx=betak5l if
egen b4k5=min (b4k5x)

gen b5Skbx=betak5l if
egen b5k5=min (b5k5x)

gen bOkéox=betakol if
egen boké6=min (b0 k6 x)

gen blkox=betakol if
egen blké=min (blkox)

gen b2ké6x=betakol if
egen b2 ké6=min (b2 k6 x)

gen b3k6x=betak6l if
egen b3k6=min (b3k6x)

gen bdkox=betakol if
egen b4k6=min (b4k6x)

gen bSk6x=betak6l if
egen b5k6=min (b5k6x)

gen bOk7x=betak71l if
egen bOk7=min (b0k7x)

gen blk7x=betak71 if
egen blk7=min (blk7x)

gen b2k7x=betak7l if
egen b2k7=min (b2k7x)

gen b3k7x=betak7l if
egen b3k7=min (b3k7x)

gen b4kT7x=betak71 if
egen b4k7=min (b4k7x)

gen bbSk7x=betak71l if
egen bS5k7=min (b5k7x)

gen bOk8x=betak8l if
egen bOk8=min (b0 k8 x)

gen blk8x=betak81l if
egen blk8=min (blk8x)

gen b2k8x=betak81l if
egen b2 k8=min (b2 k8 x)

gen b3k8x=betak81l if
egen b3k8=min (b3k8x)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)
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gen b4k8x=betak8l if (constx==5)

egen b4k8=min (b4k8x)

gen b5k8x=betak8l if (constx==6)

egen b5k8=min (b5k8x)

gen bO0k9x=betak9l if (constx==1)

egen bOk9=min (b0k9x)

gen blk9x=betak9l if (constx==2)

egen blk9=min (b1lk9x)

gen b2k9x=betak9l if
egen b2k9=min (b2k9x)

(constx==3)

gen b3k9x=betak9l if (constx==4)

egen b3k9=min (b3k9x)

gen b4k9x=betak9l 1if (constx==5)

egen b4k9=min (b4k9x)

gen b5k9x=betak9l if
egen b5k9=min (b5k9x)

gen boklox=betaklol if
egen bOklO=min (bOk1lOx)

gen blklox=betaklol if
egen blklO=min (blklOx)

gen b2klox=betaklol if
egen b2klo=min (b2 kl0x)

gen b3klOx=betaklO0l if
egen b3kl0=min (b3k1l0x)

gen b4dklox=betaklolr if
egen b4kl0=min (b4k1l0x)

gen b5kl0x=betakl0l if
egen b5kl10=min (b5k1l0x)

gen bOkllx=betaklll if
egen bOkll=min (bOkllx)

gen bl kllx=betaklil if
egen blkll=min (blkllx)

gen b2kllx=betaklll if
egen b2kll=min (b2 kllx)

gen b3kllx=betaklll if
egen b3kll=min (b3kllx)

gen bédkllx=betaklll if
egen b4kll=min p4kllx)

gen bbkllx=betaklll if
egen bbkll=min (b5kllx)

gen bokl2x=betakl21 if
egen bokl2=min (b0 kl2x)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)
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gen blkl2x=betakl21 if
egen blkl2=min (blkl2x)

gen Db2kl2x=betakl21 if
egen b2kl2=min (b2 k12 x)

gen b3kl2x=betakl2l if
egen b3kl2=min (b3kl2x)

gen bdkl2x=betakl21 if
egen b4kl2=min p4kl2x)

gen bbSkl2x=betakl2l if
egen bSkl2=min (b5k1l2x)

gen bO0kl3x=betakl31l if
egen b0k13=min (b0k1l3x)

gen blkl3x=betakl3l if
egen blkl3=min (blkl3x)

gen b2k1l3x=betakl31l if
egen b2kl3=min (b2k1l3x)

gen b3kl3x=betakl3l if
egen b3kl3=min (b3k1l3x)

gen b4kl3x=betakl3l if
egen b4kl3=min pp4k1l3x)

gen b5kl3x=betakl31l if
egen b5k13=min (b5k13x)

gen b0Okldx=betakl4l if
egen bOkl4=min (bOkl4x)

gen blkl4x=betakldl if
egen blkl4=min (blkl4x)

gen b2kl4dx=betakl4l if
egen b2kl4=min (b2kl4dx)

gen b3kldx=betakl4dl if
egen b3kl4=min (b3kl4dx)

gen b4kl4x=betakl4l if
egen b4kl4=min pb4klidx)

gen bbkl4x=betakl4l if
egen b5kl4=min (b5kl4x)

gen b0Okl5x=betakl5l if
egen b0k15=min (b0k1l5x)

gen blkl5x=betakl5l if
egen blkl5=min(blklb5x)

gen b2kl5x=betakl51 if
egen b2kl5=min (b2k1l5x)

gen b3kl5x=betakl5l if
egen b3k1l5=min (b3k1l5x)

gen b4kl5x=betakl51 if

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)



egen b4kl5=min (b4kl5x)

gen b5klbx=betakl5l if
egen b5kl5=min (b5k15x)

gen bOkl6ox=betaklo6l if
egen boklé=min (b0 k16 x)

gen blkléox=betakl6l if
egen blklé=min (blklé6x)

gen b2kléex=betaklol if
egen b2klée=min (b2kléx)

gen b3klox=betakl6l if
egen b3kl6=min (b3kl6x)

gen bdkleox=betakl6l if
egen b4dklée=min (b4klox)

gen bSkl6ox=betakl6l if
egen bS5kl6=min (b5kl6éx)

gen bOkl7x=betakl71l if
egen bO0kl7=min (b0kl7x)

gen blkl7x=betakl71l if
egen blkl7=min (blkl7x)

gen b2kl7x=betakl71l if
egen b2kl7=min (b2kl7x)

gen b3kl7x=betakl71l if
egen b3kl7=min (b3kl7x)

gen b4kl7x=betakl71l if
egen b4kl7=min (b4kl7x)

gen bbkl7x=betakl7l if
egen bbkl7=min (b5kl7x)

gen b0kl8x=betakl81 if
egen boklg8=min (bOk1l8x)

gen blkl8x=betakl81 if
egen blkl8=min (blk18x)

gen b2kl8x=betakl81 if
egen b2klg=min (b2 k1l8x)

gen b3kl8x=betakl81l if
egen b3kl8=min (b3k18x)

gen b4kl8x=betakl81 if
egen b4kl8=min (b4kl8x)

gen bb5kl8x=betakl81 if
egen b5kl18=min (b5k18x)

gen b0kl9x=betakl9l if
egen b0kl9=min (b0k19x)

gen blkl9x=betakl91l if
egen blkl9=min (blk1l9x)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2}

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)

(constx==3)

(constx==4)

(constx==5)

(constx==6)

(constx==1)

(constx==2)
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gen b2kl9x=betakl9l 1if (constx==3)
egen b2k19=min (b2k1l9x)

gen b3kl9x=betakl91l if (constx==4)
egen b3kl9=min (b3k1l9x)

gen b4kl9x=betakl9l if (constx==))
egen b4kl9=min (b4kl9x)

gen b5kl9x=betakl9l if (constx==6)
egen b5k19=min (b5k19x)

gen bOk=DbOkl if tk==
replace bok=bok2 if tk==
replace b0Ok=b0k3 if tk==3
replace b0k=b0k4 if tk==4
replace bOk=b0k5 1if tk==5
replace b0k=b0ké if tk==
replace bOk=b0k7 if tk== 1
replace bok=bo0k8 if tk== 8
replace b0k=b0k9 if tk==9
replace bo0k=boklo if tk=- 10
replace bo0k=b0okll if tk=-11
replace b0 k=btkl2 :i: cx- - 12
replace bOk=b0kl3 if tk==13
replace bOk=b0kl4d if tk==14
replace bOk=b0kl5 if tk==15
replace b0k=bo0klée :: cx- =16
replace bOk=b0kl7 if tk==17
replace bo0k=bokls8 if tk==18
replace b0k=b0kl9 if tk==19

gen blk=Dblkl if tk==
replace blk=blk2 1if tk==2
replace blk=blk3 1if tk==3
replace blk=blk4 1if tk==4«
replace blk=blk5 1if tk==5
replace blk=blke if tk==6
replace blk=blk7 if tk==7
replace blk=blks if tk==8
replace blk=blk9 if tk== 9
replace blk=blkle if tk=-10
replace blk=blkll :: cx-- 11
replace blk=blkl2 if tk=- 12
replace blk=blkl3 if tk==13
replace blk=blkl4d if tk==14
replace blk=blkl5 if tk==15
replace blk=blklé if tk==16
replace blk=blkl7 if tk==17
replace blk=blkl8 if tk==18
replace blk=blkl9 if tk==19

gen b2k=b2kl if tk==

replace b2k=b2k2 1if tk==
replace b2k=b2k3 if tk==
replace b2k=b2k4 1if tk==
replace b2k=b2k5 if tk==
replace b2k=b2kée if tk==
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replace b2k=b2k7

if

t k==

replace b2k=b2k8 if tk==
replace b2k=b2k9 if tk==

replace b2 k=b2klo
replace b2 k=b2kll
replace b2 k=b2 kl2
replace b2k=b2kl3
replace b2k=b2kl4
replace b2k=b2kl5
replace b2 k=b2kle
replace b2k=b2kl7
replace b2 k=b2kls8
replace b2k=b2k19

if
if
if
if
if
if
if
if
if
if

gen b3k==b3kl if tk==

replace b3k=b3k2
replace b3k=b3k3
replace b3k=b3k4
replace b3k=b3k5
replace b3k=b3ké6
replace b3k=b3k7
replace b3k=b3k8
replace b3k=b3k9
replace b3k=b3kl0
replace b3k=b3kll
replace b3k=b3kl2
replace b3k=b3k1l3
replace b3k=b3kl4
replace b3k=b3kl5
replace b3k=b3klé6
replace b3k=b3k1l7
replace b3k=b3kl8
replace b3k=b3k1l9

*

if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if

gen bdk=bd kl. if tk==

repiace b4 k=4 k2
repiace b4 k=4 k3
repiace b4 k=4 k4
repiace b4 k=4k5
repiace b4 k=4ké6
repiace b4 k=b4 k7
repiace b4 k=4 k8
repiace b4 k=94 k9
repiace b4 k=4 k10
repiace b4 k=4 kl1
repiace b4 k=4kl2
repiace b4 k=b4 k13

repiace b4 k=4 kl 4

repiace b4 k=p4 k15
repiace b4 k=bdkle
repiace b4d k=p4d k17
repiace b4 k=b4 k18

repiace b4 k=b4 k19

if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if
if

gen bbSk=b5kl if tk==

replace b5k=b5k2
replace b5k=b5k3
replace bb5k=b5k4
replace b5k=b5k5
replace b5k=b5k6
replace bb5k=bbk7

if
if
if
if
if
if

tk==10
tk==11
tk==12
tk==13
tk==14
tk==15
tk==16
tk==17
tk==18
tk==19
tk==
tk==
tk==
tk==
tk==
tk==
tk==
tk==
tk==10
tk==11
tk==12
tk==13
tk==14
tk==15
tk==16
tk==17
tk==18
tk==19
tk==
tk==
tk==
tk==
tk==
tk==
tk==
tk==
tk==10
tk==11
tk==12
tk==13
tk==14
tk==15
tk==16
tk==17
tk==18
tk==19
tk==
tk==
tk==
tk==
tk==
tk==



rapnlace 25k=nb4B if th==3

raplace DSk=n5k9 if tk==%

replace bBhk=RGKEI0 if Ck==10
replace bBEk=b5KLL if ctk==11
replace bSk=h5k12 if t$k==17
replace bBSEk=b5kid Lf ck==13
roplace boSk=h5k14 if tk==131
replace bBSk=bS5K1S 1f ck==15
replace bSk=hoklEe if —k==1%
replace bSk=bSklT 1f Ca==17
replace bSk=bSklE if ck==148
replace bSk=b5K19 1if ch==1%

*

e betak lishlk+bl iz agesbdkbmi+b3k* Lpg+ba k™ raced bBSk* e
ver Yik bhIi-Mik-L=tax EL
gen ksiki_tesmi= Jdlx star/ 3Tik_atar)* Yik bkZi+*Zi

il T L

sort constx th Hi

by constx tk ¥i: gen cieg=gumiconat)
egen maxties=maxities!, bylconsze 3k Wil

LW ]
**For L(Ti star>t] in Q[T)i**

geort constx tk -Xik -X1 ties

by constx tk: gen QEinumx=sumikziki terml;

gen Qkdizum=ChkEinome< if ties==maxtics

agaen QRN inumex=min {Qainwn) , by(conatx th X1 maxties)
roplace gk¥inum=0WEinumes 17 QkAinum==.

raplace CQk¥lnum=0 1f Mik<dd

qgort  consgsty bl -xK3

by cansklx Lk: gen QEXIZencmy=3umconst)

agen Gkdidenom—max lokdidencm), by (constx th Hi)

gen di csnsor=1-4i

guaact consbe -Xik -¥1 Liea

agen GhMxw=sum|kaiki terml), by(constx tk Hik)

raplace Qk¥xx=0 1f Mik<Hi

gan GhXinumtesc =0k num= 0k

renlaca GR¥inumtost=0 1iE Mik«ki

gen QiRitast=0kdinumtest/ QkIidosom

J2n ksiki carmdtest=di_censor*QkXitest

gen  dicens QkXijsKltest= di_cesnsar* QREiLkeslts Qkxidencm

sark  conste tkh Wi Lima

by constx tk: gen kziki termixtest=sumidjoens GRX)sKltCest]

guen ksiki_bLersdiesl=ksikl term3xtest if ties--maxtiss

egen kalki cermixxtest=min{ksiki term3tost), byioconsbx b XD maxties)
roploco ksiki_term3test~ksikl term3xxtest if keiki termlitast==,
gan Esikizest=ksiki_terml+ksikl _termitest-ksiki termitest

L 3
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e
gen kzikll dw= kaikiteat if (tk==1 & constx==1]
egen ksikll l=min( ksik11_ 1=}, byluknz]

gen keikll Zx= kKsikitest if (lk==1 & G- |
egeern kmikll Zemipnd kelkll 2x), bylukne)

gell keikll 2x- kzikiteszst if (tk==1 & conslw——3]
eger k2ikll Zemind kzikll 3x), byiukno)

gen kz2ikll dx= kzikitest if (tk==1 & oconsoix——4]
cogen ksikl1 _d=-ming ksikll 1=, byilukoo:

gen ksikll_bi= ksikitest 1f {tk==1 & conatx-==3;
egen ksikll Z=mizd ksikll Sx). byiukoo)

gen kesikll Bx- ksikitest if {bk==1 & conata=-=g£)
i1 [ kﬂikll_h—miﬁf kSikll_EH], byi:k:n]

drop keikll 1x keikll Zx keikll x kzikll 4x ksikll Gx ksikll_sx

iiL_Eii
gen ksiklZ lz= ksikitast if (kk==Z &k conslx==1}

egen kslkli l=ping ksikl2 Lz, 2yiakao)

gen kelklZ Zx= ksikitest 1f (th-=2 & oonstx==7)

agan kﬁik??_l—miu: kﬁlk;l_ﬂxI, :yiuknaj

gen ksllkll 3x= kslilcest 1f {tke-2 & constx==3)
ajan ksitf?_ﬁ:nfu! kﬂlkiﬂ_ﬁx;, LY luKnal

gan =s5ixlid_d=— asliloest LI (ch==2 & constx--4)
#3en x5ixl? d-min| xsiklZ 4x], Eyiukna)

gen xsiili Dx= keilkitest Lf [tk==2 & zonstx==3)
agon xs5ikld _S=min{ ksikld_5«1, LEyiuknal

gen x5ikl2 Gx= ksikitest LD [Lk=—I & constx==g)
egen £3lxl2 g=min{ ksiklZ €xl, by{ukna)

drop 28ikl? lm xsikl? 2a ksikl2 3x ksikl?_dx ksiklZ 5x ksiklZ 6x

-*1_3--
gen Auiskd lx— ksikitest LL [Ch==3 & constx--1)
egen xsikld l=minl ksikl3_ 1x!, byinkn:z]

TR k51k13_2x" ksikitear 1f [th==3 L pconaty==2]
egen ksikl? Z=min( ksikl3_Zsxl, bylukno]

men ksikl3 3x= ksikilesl 1L (tk==3 & conaii==3)
egen kaiklld 2-mini ksikll w3, Bwiukno]

gern ksikl3d dx= kuikitest 10 [(Lh==2 & Conati=={]
egen kaikl? d-min( kaikll 4x), bByluknz]

gen ksikl? IFx= ksikiteost 1€ (tk——3 & consbd==h]
egen kaikl? Zeminl kaikl? Ix), byluknc!

gen ksikl? #x= ksikitest i (tk==3 & consbx==6]




egen ksikl3 6=min( ksikl3 6x), by (ukno)

drop ksikl3 1x ksikl3 2x ksikl3 3x ksikl3 4x ksikl3 5x ksikl3 6x

k k

J Nk ok

gen ksikl4 1x= ksikitest if (tk==4 & constx==1)

egen ksikl4 1=min( ksikl4 1x), by (ukno)

gen ksikl4 2x= ksikitest if (tk==4 & constx==2)

egen ksikl4 2=min( ksikl4 2x), by (ukno)

gen ksikl4 3x= ksikitest if (tk==4 & constx==

egen ksikl4 3=min( ksikl4 3x), by (ukno)

gen ksikl4 4x= ksikitest if (tk==4 & constx==

egen ksikl4 4=min( ksikl4 4x), by (ukno)

gen ksikl4 5x= ksikitest if (tk==4 & constx==

egen ksikl4 5=min( ksik!4 5x), by (ukno)

)

)

)

gen ksikl4 6x= ksikitest if (tk==4 & constx==6)

egen ksikl4 6=min( ksikl4 6x), by (ukno)

drop ksik!4 1x ksik!4 2x ksik!4 3x ksik!4 4x ksik!4 5x ksik!4 6x

*k k

kkl=5kk

gen ksikl5 1x= ksikitest if (tk==5 & constx==

egen ksik!5 1=min( ksikl5 1x), by (ukno)

gen ksikl5 2x= ksikitest if (tk==5 & constx==

egen ksikl5 2=min( ksikl5 2x), by (ukno)

gen ksikl5 3x= ksikitest if (tk==5 & constx==

egen ksikl5 3=min( ksik!5 3x), by (ukno)

gen ksikl5 4x= ksikitest if (tk==5 & constx==

egen ksikl5 4=min ( ksikl5 4x) , by (ukno)

gen ksikl5 5x= ksikitest if (tk==5 & constx==

egen ksikl5 5=min( ksikl5 5x), by (ukno)

gen ksikl5 6x= ksikitest if (tk==5 & constx=

egen ksikl5 6=min( ksikl5 6x), by (ukno)

)

)

)

)

)

=6 )

drop ksik!5 1x ksik!5 2x ksik!5 3x ksik!5 4x ksik!5 5x ksik!5 6x

gen ksiklé 1x= ksikitest if (tk==6 & constx==
(

egen ksiklé l=min( ksiklé 1x), by (ukno)

gen ksiklé 2x= ksikitest if (tk== & constx=

egen ksiklé 2=min ( ksik!6 2x), by (ukno)

gen ksikl6 3x= ksikitest if (tk==6 & constx==

egen ksikl6 3=min( ksikl6_ 3x), by(ukno)

gen ksikl6 4x= ksikitest if (tk== & constx==

egen ksikl6 4=min( ksikl6 4x), by (ukno)

gen ksik!6 5x= ksikitest if (tk==6 & constx==

)

=2)

)

)

)
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L hsihLE_h—ninl LELELE_ER}, byluhn&:

gen A5lal8 Bx= A51AITedT 1L [Tk==£ & Conatye==g)
egen A51x1& &-ninl ksiklé €xi, byluxnzg

drop xeixld Ix 4s5ixlé Zx ksikld Jw wmikli_dw kuiklG_Sx kali_g_Bx

=

gen £alxl7_la= xslxites:t if (Tk==7 & consts==1]
ggEn wni w7 I=in | kﬁ1k1?_1x$. Loy [nans

HEE LH;&;T_EK_ asakitesn 1Ff [(th=="7 & congbu==2]
egen 51x17 Z-minl ksikl? Zxl, by luxnsd

gen Asiw17 Je= wsikivest i85 (tk==T L pconslae—d)
egen As5lalV 3=minl k2iklT 3x) . Dy lwEno

gen gaxxlV _ix= kaikites:t iI (tk==7 & constx==4.
BB k51k1?_4—m1rf kHik1?_dx}. Lot T benein)

ger hkssklV ba= kKaikitest iI (tk==7 & conatsx==3;
pren ki k17 S=minl kxik1?_Sx), by (okooe)

yern ksikl? Sw— ksikilesl 12 (Lh==T § CoLsTx=—E)
egen kzikl? f-mini ksikl? fx), byivkne!

drop ksikl? Ik ksikl7 ZFx ksik]7 3x ksik17T 4w mslnlT_ba AsliklV Ex

-i--i-l-E----
gen x5ikld_1x= keikitest i (tk==0 & monsbx==11
egen X3ikld l=min( ksikld l1x), byiukno)

gen xsikld Zw= kaikiteatr if (tk==2 & conabxe=2)
egen ksikld Z=min( ksikld Zx!, bylukno]

gen xs:kl8 Jx= ksikitest i (tk==0 & consbx==3]
ETEN k$|k1H_3—11nl HHitJH_lﬂﬁ. Lot (LN,

qen w5 %0 dw= wmikivesy iF [(Lk==d & consbd=—d4|
egen £alxli df=m_nl ksikld 4w, byluxno

gen £31x18 Gx= ksikitest ii 1tk==3 & constx==3|
Egen As.sl8 S=minl kaikld Zx) . Dy lukno)

gen xsikl8 £x- ksikitest il (tk==8 & constix==§
egen Zsikld E=min( kaikld &x), by lokno)

drop kaikld Ix keikls 2w keikld 2x ksikli® 4x «s5lxB Ox xslk1B &x

LI )

---i-l_q::"'----

qEn w5i%l% 1x= wgikizest if [tk==% & oconsts=—>L]
egen £31x1% leman( kaikl® lx), byluinz;

gen 45i%l1% Tw= kmikirTeost Af (th==% & consba——d]
egen xalkl® Z-minl kaikl?® 2x), byluxns]

gen £3142% Ix= Zsikirtest if ([tk==% § consts==3)
I xﬁ;qlﬁ_!-x_n[ kﬂiklﬁ_ln?. bavy [Lirds,;

gen alil% 4x= kaikitea:t if (tk==3 & conaci——4)

J -

egen £3Z4l% f-minl ksikl9® 4x!, byloxnz:
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gen ksikl? Sx= ksikibest If [Tk==% & consiw==3;
egern ksikl®d E=min] kslil% Gumi, bylukno)

gen ksikl® Owx= ksikitast 1f [th==% & consie—-—8)
egeers ksikl® B-min] 2s5lal% ax), byilukno)

deop kzikld 1x kelklS 2x xaikl? 3x keikl?® ox keikl? Ix ksikl3 6x

ﬁﬁl_.lﬁﬁﬁ
rpen ksikl10 1=— ksixitest il (Lk==10 & conatx==1;
ecen ksiklld l=mini xsik110_1x), byivkno)

gen ksiklld Zx= ksikivest if (tk==10 & conslx—=i)
egen ksikll) Zemin| «3ikl1I0 2, by(ukoo)

gen ksikll]d 3m= xaikitest i (tk==10 & constx==3)
e kaiklID_3-—min ksikl110 Z=). by (uknog

gen ksikliD_dx= <gaikizesat if (tk==10 & constx==4)
agen ksikll0 d=pint ksik110 dxy . by fukoo)

gan ksiklld Sx= xsikitest il (tk==10 5 constr==3])
agernn ksLkLID b=meond kaikl1o Exb. by iukzo)

e ksik1'ﬂ_ﬁx= ksikilesl 1f (bhk==10 & constx=-=6)
egen keikll) Gemini ksikllD Ox) . by {aknol

drog keiklll Ix kaikl1D Zx ksikl1D 3x ksikl10_dx ksikllD bz x8ikll0_&x

LR

*wl=llww

gen #s5lxlll_lx= ksikitest if {(tk==11 Fr canstx==1]
agen x5LxL11 1=min{ ksiklll lx). by{ukno)

gen wslalll 2x= keikitest if {tk--ll & constx==Z2)
agan Es:ki11_2=min( kxihlll_ﬁx], by iuknaol

gen x5lxill 3= kzikitest 1f {thk-=-11 & constx==3]
egen £5:k111 3=min( ksikl111_3x], oy iuknal

gen ksiklll dx= kzikitest if {tk==11 & constx==4]
egen ksiklll 4=min({ ksiklll 4=x]. Dyiuknal

gen ks5ikl11l_3x= ksikitest if {tk=—11 & canstu==3]
pgen kiiklll Z=ming ksiklLL Dxi, by luxnzl

yen ksiklll éx= ksikitest 1f |Ex—11 & conshx==4l
egen ksiklll G=min{ ksixlIL 8«1, Ll[uzno]

drop ksiklll 1x ksiklIl 2w ®sikll]_Hdm <gixi11 4 28ik11] 3x ksiklll fx

++1_12++
gen ksikllZz lx= ksikitest 1L [Lk==12 & conatx==1;
eger ksikllz l=mind xaikllZ2 lx), by lukno)

gen ksiklls 2= kslilteat 1if (tk--12 & constx==3)
egen ksiklls Z=min| ®sikl1d_Hdwd, by (ukoog

cen ksikllZ 3x= ksikitest 10 [(tke==12 & constx==3)
eden ksikllZ 3=minl ksikllZ 3x), byiukro)
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gen ksikll2 4x= ksikitest 1if (tk==12 & constx==4)
egen ksikll2 4=min( ksikll2 4x), by (ukno)

gen ksikll2 5x= ksikitest 1if (tk==12 & constx==5)
egen ksikll2 5=min( ksikll2 5x), by (ukno)

gen ksikll2 6x= ksikitest if (tk==12 & constx==6)
egen ksikll2 6=min ( ksikll2 6x), by (ukno)

drop ksikl1l2 1x ksikll2 2x ksikll2 3x ksikll2 4x ksikll2 5x ksikll2 6x

* %
**l=13**

gen ksikl1l3 1x= ksikitest if (tk==13 & constx==1)
egen ksikll3 1l=min( ksikll3 1x), by (ukno)

gen ksikll3 2x= ksikitest if (tk==13 & constx==2)
egen ksikll3 2=min( ksikll3 2x), by (ukno)

gen ksikl1l3 3x= ksikitest if (tk==13 & constx==3)
egen ksikll3 3=min( ksikll3 3x), by (ukno)

gen ksikl1l3 4x= ksikitest if (tk==13 & constx==4)
egen ksikll3 4=min( ksikll3 4x) , by (ukno)

gen ksikl1l3 5x= ksikitest if (tk==13 & constx==5)
egen ksikll3 5=min( ksikll3 5x), by (ukno)

gen ksikll3 6x= ksikitest if (tk==13 & constx==6)
egen ksikll3 6=min( ksikll3 6x), by (ukno)

drop ksikll3 1x ksikll3 2x ksikll3 3x ksikll3 4x ksikll3 5x ksikll3 6x

* *

* j_:}_4 * *

gen ksikll4 1x= ksikitest if (tk==14 & constx==1)
egen ksikll4 1=min( ksikll4 1x), by (ukno)

gen ksikll4 2x= ksikitest if (tk==14 & constx==2)
egen ksikll4 2=min( ksikll4 2x), by (ukno)

gen ksikll4 3x= ksikitest if (tk==14 & constx==3)
egen ksikll4 3=min( ksikll4 3x), by (ukno)

gen ksikll4 4x= ksikitest if (tk==14 & constx==4)
egen ksikll4 4=min( ksikll4 4x), by (ukno)

gen ksikll4 5x= ksikitest if (tk==14 & constx==5)
egen ksikll4 5=min( ksikll4 5x), by (ukno)

gen ksikll4 6x= ksikitest if (tk==14 & constx==6)
egen ksikll4 6=min( ksikll4 6x), by (ukno)

drop ksikll4 1x ksikll4 2x ksikll4 3x ksikll4d 4x ksikll4 5x ksikll4d 6x

%k

**1:15**
gen ksikll5 1x= ksikitest if (tk==15 & constx==1)
egen ksikll5 l=min( ksikll5 1x), by (ukno)

gen ksikll5 2x= ksikitest if (tk==15 & constx==2)
egen ksikll5 2=min( ksikll5 2x), by (ukno)

gen ksikll5 3x= ksikitest if (tk==15 & constx==3)
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egen ksikll5 3=min( ksikll5 3x), by (ukno)

gen ksikll5 4x= ksikitest if (tk==15 & constx==4)
egen ksikll5 4=min( ksikll5 4x), by (ukno)

gen ksikll5 5x= ksikitest if (tk==15 & constx==5)
egen ksikll5 5=min( ksikll5 5x), by (ukno)

gen ksikll5 6x= ksikitest 1if (tk==15 & constx==6)
egen ksikll5 6=min( ksikll5 6x), by (ukno)

drop ksikll5 1x ksikl1l5 2x ksikll5 3x ksikll5 4x ksikll5 5x ksikll5 6x

k k

**1:16**

gen ksikllé 1lx= ksikitest if (tk==16 & constx==1)
egen ksikllé l=min ( ksiklleé 1x), by (ukno)

gen ksikllé 2x= ksikitest if (tk==16 & constx==2)
egen ksikllé 2=min ( ksikllé 2x), by (ukno)

gen ksikll6 3x= ksikitest if (tk==16 & constx==3)
egen ksikll6 3=min( ksikll6_ 3x), by (ukno)

gen ksikll6 4x= ksikitest if (tk==16 & constx==4)
egen ksikll6 4=min( ksikll6_ 4x), by (ukno)

gen ksikll6 5x= ksikitest if (tk==16 & constx==5)
egen ksikll6 5=min( ksikll6_ 5x), by (ukno)

gen ksikllé 6x= ksikitest if (tk==16 & constx==6)
egen ksikllé 6=min ( ksikllé 6x), by (ukno)

drop ksiklleée 1x ksikll6 2x ksikll6 3x ksikll6 4x ksikll6 5x ksikllée 6x

*AOA= 2_‘yk*
gen ksikll7 1x= ksikitest if (tk==17 & constx==1)
egen ksikll7 l1=min( ksikll7 1x), by (ukno)

gen ksikll7 2x= ksikitest if (tk==17 & constx==2)
egen ksikll7 2=min( ksikll7 2x), by (ukno)

gen ksikll7 3x= ksikitest if (tk==17 & constx==3)
egen ksikll7 3=min( ksikll7 3x), by (ukno)

gen ksikll7 4x= ksikitest if (tk==17 & constx==4)
egen ksikll7 4=min( ksikl1l7 4x), by (ukno)

gen ksikll7 5x= ksikitest if (tk==17 & constx==5)
egen ksikll7 5=min( ksikll7 5x), by (ukno)

gen ksikll7 6x= ksikitest if (tk==17 & constx==6)
egen ksikll7 6=min( ksikll7 6x), by (ukno)

drop ksikll7 1x ksikll7 2x ksikll7 3x ksikll7 4x ksikl!7 5x ksikll7 6x

k k

**1:18**

gen ksikll8 1x= ksikitest if (tk==18 & constx==1)
egen ksikll8 l1=min( ksikll8 1x), by (ukno)

gen ksikll8 2x= ksikitest 1if (tk==18 & constx==2)
egen ksikll8 2=min( ksikl1l8 2x), by (ukno)



gen ksikll8 3x= ksikitest if (tk==18 & constx==

egen ksikll8 3=min( ksikl1l8 3x), by (ukno)

gen ksikl1l8 4x= ksikitest if (tk==18 & constx==

egen ksikll8 4=min( ksikl1l8 4x), by (ukno)

gen ksikll8 5x= ksikitest if (tk==18 & constx==

egen ksikll8 5=min( ksikll8 5x), by (ukno)

gen ksikl!8 6x= ksikitest if (tk==18 & constx=

egen ksikll8 6=min ( ksikl1l8 6x), by (ukno)

drop ksik!18 1x ksik!18 2x ksik!18 3x ksik!18 4x ksik!18 5x ksik!18 6x

* *]_:]_9 %ok

gen ksikll9 1x= ksikitest if (tk==19 & constx==

egen ksikll9 1=min( ksikll9 1x), by (ukno)

gen ksikll9 2x= ksikitest 1if (tk==19 & constx==

egen ksikl1l9 2=min( ksikll9 2x), by (ukno)

gen ksikll9 3x= ksikitest if (tk==19 & constx==

egen ksikll9 3=min( ksikll9 3x), by (ukno)

gen ksikll9 4x= ksikitest if (tk==19 & constx==

egen ksikll9 4=min( ksikl1l9 4x), by (ukno)

gen ksik!19 5x= ksikitest if (tk==19 & constx==

egen ksikll9 5=min( ksikll9 5x), by (ukno)

)

)

)

)

)

)

)

)

)

gen ksikll9 6x= ksikitest if (tk==19 & constx==6)

egen ksikll9 6=min( ksikll9 6x), by (ukno)

drop ksik!19 1x ksik!19 2x ksik!1l9 3x ksik!1l9 4x ksik!19 5x ksik!1l9 6x

%k

sort: ukno tk constx

gen x11 1= ksikitest* ksikll 1
gen x11 2= ksikitest* ksikll_ 2
gen x11 3= ksikitest* ksikll 3
gen x11 4= ksikitest* ksikll 4
gen x11 5= ksikitest* ksikll 5
gen x11 6= ksikitest* ksikll_e6

gen x12 1= ksikitest* ksikl2 1
gen x12 2= ksikitest* ksikl2 2
gen x12 3= ksikitest* ksikl2 3
gen x12 4= ksikitest* ksikl2 4
gen x12 5= ksikitest* ksikl2 5
gen x12 6= ksikitest* ksikl2z 6

gen x13 1= ksikitest* ksikl3 1
gen x13 2= ksikitest* ksikl3 2
gen x13 3= ksikitest* ksikl3 3
gen x13 4= ksikitest* ksikl3 4
gen x13 5= ksikitest* ksikl3 5
gen x13 6= ksikitest* ksikl3 6

gen x14 1= ksikitest* ksikl4d 1
gen x14 2= ksikitest* ksikl4 2
gen x14 3= ksikitest* ksikl4 3
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gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen

x14 4=
x14~"5=
x14~'6=

x15 1=
x15 2=
x15 3=
x15~"4=
x15~"5=
x15~~6=

x16 1=
x1l6 M2=
x16~3=
x16 "4=
x16 "5=
x16 >=

x17 1=
x17 "2=
x17~"3=
x17""4=
x17~"5=
x17~[6=

x18 1=
x18~2=
x18~'3=
x18~'4=
x18~'5=
x18~6=

x19 1=
x19'2=
x19""3=
x19~ 4=
x19 V5=
x1 9"6=

x110 1=
x1lo 2=
x110 3=
x110 4=
x110 5=
x11l0 6=

x111 1=
x111 2=
x111 3=
x111 4=
x111 5=
x111 6=

x1l2 1=
x112 2=
x112 3=
x112 4=
x112 5=
x112 6=

x113 1=
x113 2=
x113 3=
x!13 4=

ksikitest™*
ksikitest™
ksikitest™

ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

ksikitest™
ksikitest*
ksikitest™
ksikitest™
ksikitest™
ksikitest™

ksikitest*
ksikitest*
ksikitest™
ksikitest™*
ksikitest™
ksikitest*

ksikitest*
ksikitest™
ksikitest™
ksikitest*
ksikitest™
ksikitest*

ksikitest™
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

ksikitest™*
ksikitest™*
ksikitest™
ksikitest™*
ksikitest™*
ksikitest™

ksikitest™
ksikitest™
ksikitest™
ksikitest™
ksikitest™
ksikitest™*

ksikitest™*
ksikitest*
ksikitest™*
ksikitest™*
ksikitest™
ksikitest™

ksikitest™
ksikitest™*
ksikitest™*
ksikitest™*

ksikl4d 4
ksikl4 "5
ksikl4 "6

ksikl5 1
ksikl5 ¢2
ksikl5 "3
ksikl5 "4
ksik1l5 ’'5
ksikl5 ~6

ksiklé 1
ksikle "2
ksikleé '3
ksikle ~4
ksiklé ~5
ksiklé ~6

ksikl7 1
ksikl7 m
ksik1l7~"3
ksikl7 "4
ksikl7~'5
ksikl7 ~6

ksikls 1
ksikls "2
ksikls "3
ksik1l8 "4
ksik18 "5
ksikl8 ~6

ksikl9 1
ksik1l9 "2
ksikl9 "3
ksik1l9 "4
ksikl9 "5
ksik1l9 ~6

ksik110 1
ksik110_2
ksik110 3
ksik110 4
ksik110 5
ksik110_6

ksik11l 1
ksikl11_2
ksik11l 3
ksiklll 4
ksikl11ll 5
ksik111_6

ksikllz 1
ksikll2_2
ksikll2 3
ksikl12 4
ksik112 5
ksikl112_6

ksik113 1
ksik113 2
ksik113 3
ksik!13 4
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gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

gen
gen
gen
gen
gen
gen

%
drop

%k

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

x113

5=

x113 6=

x114
x114
x114
x114
x114

1=
2=
m=
4=
"=

xll@_:6:

x115

x115
x115
x115
x115

x115

x11l6
x116
x116
x11le6
x116

1=
2=
3=
W=
"=
B =

1=
2=
B=
4=
5=

x116 "6=

x117
x117
x117
x117
x117
x117

x118
x118
x118
x118
x118

1=
9 =
3=
"=
5=
6=

1=
"=
"3=
4=
"5=

x118 ~&=

x119
x119
x119
x119
x119
x119

1=
"=
"3=
"=
"o=
6=

ksikl~*

ksikitest*
ksikitest*

ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*
ksikitest*

sx11l l=sum(x1ll 1),
sx11l 2=sum(x1l 2),

sx11l 4=sum(x1ll 4
sx11l 5=sum(xll 5
sx1ll 6=sum (x11_6),

(
(
sx11l 3=sum(x1ll 3
(
(

)
)
)
)

4

4

4

sx12 l=sum(xl2 1),
sx12 2=sum(x12 2

sx12 3=sum
sx12 4=sum

x12 3

4

4

4

sx12 5=sum(x12_ 5),
sx!2 6=sum(x!2_ 6

( )
( )
( )
(x12_4)
( )
( )

4

ksikl13 5
ksikl113 &

ksikl1l4 1
ksikll4 2
ksikll4 3
ksikll4 "4
ksikl1ld '5
ksikll4 6

ksikll5 1
ksikl1l5 "2
ksikl1l5 '3
ksikll5 "™
ksikl1l5 '5
ksik1l1l5 s

ksiklls 1
ksiklls 2
ksiklle "3
ksikl11s "
ksikl1ls 'S

ksik116 ‘s

ksikll7 1
ksik11l7 m
ksikl1l7 '3
ksik117 "
ksikl11l7 "5
ksikll7 '6

ksik118 1
ksik118 <2
ksik118 '3
ksik118 "
ksik118 5
ksik118 "

ksik119 1
ksik119 72
ksikl1l9 3
ksik119 ™
ksik119 'S
ksik119 %

by (tk constx)
by (tk constx)
tk constx)
tk constx)
by (tk constx)
by (tk constx)
by (tk constx
by (tk constx
tk constx
tk constx
by (tk constx

)
)
)
)
)
by (tk constx)
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egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen

sx13
sx13
sx13
sx13
sx13
sx13

sx14
sx14
sx14
sx14
sx14
sx14

sx15
sx15
sx15
sx15
sx15
sx15

sx16
sx16
sx16
sx16
sx16
sx16

sx17
sx17
sx17
sx17
sx17
sx17

sx18
sx18
sx!8

sx18
sx18
sx18

sx19
sx19
sx19
sx19
sx19
sx!9

sx110
sx110
sx110
sx110
sx110
sx110

sx111
sx111
sx111
sx111
sx111
sx111

sx112

l=sum(x13 1), by
2=sum(x13 2), by
3=sum(x13 3), by
4=sum(x13 4) , by
5=sum(x1l3 5) , by
6=sum(x13 .6), by
l=sum(x14 1), by
2=sum(x14 2), by
3=sum(x1l4 3) , by
4=sum(x14 4) , by
5=sum(x14 5) , by
6=sum(x14 6), by
l=sum(x15 1), by
2=sum (x15 2), by
3=sum(x1l5 3) , by
4=sum(x15 4) , by
5=sum(xl5 5) , by
6=sum(x15 ), by
l=sum(xlé6 1), by
2=sum(xl6 2), by
3=sum(x1l6 3) , by
4=sum(x1l6 4) , by
5=sum(x16 5) , by
6=sum(xl6 .6), by
l=sum(x17 1), by
2=sum(x17 2), by
3=sum(x1l7 3) , by
4=sum(x17 4) , by
5=sum(x17 5) , by
6=sum(x1l7 6), by
l=sum(x18 1), by
2=sum(x18 2 ), by
3=sum(x1l8 3) , by
4=sum(x18 4) , by
5=sum(x18 5) , by
6=sum(x18 ), by
l=sum(x19 1), by
2=sum(x1l9 2), by
3=sum(x19 3) , by
4=sum(x19 4) , by
5=sum(x19 5) , by
6=sum(x19 ¢), by
l=sum(x110 1),
2=sum(x110 2),
3=sum(x110 3) ,
4=sum (x110 4),
5=sum(x110 5) ,
6=sum(x110 6),
l=sum(x111l 1),
2=sum(x111l 2 X,
3=sum(x1l1l1l 3) ,
4=sum(x111 4)i,
5=sum(x111 5),
6=sum(x111 ),
l=sum(x112 1},

t ot ot ot
AN A A AN R

&t o
~ AN

constx)
constx)
constx)
constx)
constx)
constx)

constx)
constx)
constx)
constx)
constx)
constx)
constx)
constx)
constx)
constx)
constx)
constx)

constx)
constx)
constx)
constx)
constx)
constx)

constx)
constx)
constx)
constx)
constx)
constx)

constx)
constx
constx
constx
constx
constx)

)
)
)
)

constx)
constx)
constx)
constx)
constx)
constx)

by (tk constx
by (tk constx

tk constx

by (tk constx
by (tk constx

)
)
tk constx)
)
)
)

by (tk constx
by (tk constx

)
)
tk constx)
tk constx)
)
)

by (tk constx
by (tk constx

by (tk constx)
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egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

egen
egen
egen
egen
egen
egen

% ~k

egen
egen
egen
egen
egen
egen

sx11l2 2=sum(x112
sx112 3=sum(x112
sx112 4=sum(x112
sx112 5=sum(x112
sx11l2 6=sum(x112

x113
x113
x113
x113
x113
x113

sx113 l=sum
sx113 2=sum
sx113 3=sum
sx113 4=sum
sx113 5=sum
sx113 6=sum

sx114 l=sum(x114
sx114 2=sum(x114
sx114 3=suin(x11l4
sx114 4=sum(x114
sx114 5=sum(x114
sx114 o6=sum(x114

x1!5
x115
x115
x115
x115
x115

sx115 l=sum
sx115 2=sum
sx115 3=sum
sx115 4=sum
sx115 5=sum
sx115 6=sum

sx116 l=sum(x11lé6
sx116 2=sum(x11l6
sx116 3=sum (x116
sx116_4=sum(x11l6
sx116_ 5=sum(x11lé6
sx116 6=sum(x116

sx117 l=sum(x117
sx117 2=sum(x117
sx117 3=sum(x117
sx117 4=sum(x117
sx117 5=sum(x117
sx117 6=sum(x117

sx118 l=sum(x118
sx118 2=sum(x118
sx118 3=sum(x118
sx118 4=sum(x118
sx118 5=sum(x118
sx118 6=sum(x118

x119
x119
x119
x119
x119
x119

sx119 l=sum
sx1!9 2=sum
sx119 3=sum
sx119 4=sum
sx119 5=sum
sx!19 6=sum

s2i0_ZiOp=sum(z2iO_ZiOp) ,
sZzil Zilp=sum (zil Zilp) ,
SZ2i2 Zi2p=sum(zi2_ 7ZiZ2p),
SZ21i3 Zi3p=sum(zi3_ Zi3p

szid4 Zidp=sum(zid Zidp
s21i5 ZibSp=sum(zi5 Zi5p),
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)
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keep 1if ukno=="00011D

sort tk constx

mkmat
matrix (seAx)

matrix seA=(1/1138) *seAx

svmat seA

matrix list seA

matrix seinvA=syminv (seA)

svmat seinvA
matrix list se

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sx11 1
sx12 1 s
sx13 1
sxl4 1
sx15 1
sxlé 1 s
sx17 1
sx18 1 s
sx19 1

sx110 1
sx111
sx1l1l2~
sx113
sx114
sx115
sx116
sx117
sx118
sx119

sxll_2
sx13 2
sxl4 2
sx15 2

sx17 2

sx19 2

invA

sx11l 3
sxl2 3
sx13 3
sxl4 3
sx15 3
sxl6 3
sx17 3
sx18 3
sx19 3
sx110 2 sxl110
sx111
sxl12
sx113
sx114
sx115
sx116_
sx117
sx118
sx119

x12 2

x16_2

x18_2

sx112
sx113
sx114
sx115
sx11le
sx117
sx118
sx!19

matrix Bkl 1lall=(1/1138)*(

svmat Bkl lall

matrix list Bkl lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sx11 1
sxl2 1
sx13 1
sxl4 1
sx15 1
sxle 1
sx17 1
sx18 1
sx19 1
sx1lo 1
sx111 1
sx1l2 1
sx113 1
sx114 1

sx11l 2
sxl2 2
sx13 2
sxl4 2
sx15 2
sxl6 2
sx17 2
sx18 2
sx19 2

sx11l 3
sx12 3
sx13 3
sxl4 3
sx15 3
sxl6 3
sx17 3
sx18 3
sx19 3
sx110 2 sx110
sx111~2 sx111
sx112 2 sx112
sx113 2 sx113
sx11l4~ 2 sx114

3
sxl11 3

sxll 4
sxl2 4
sx13 4
sxl4 4
sx15 4
sxl6 4
sx17 4
sx18 4
sx19 4

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
sx19

sx110 4
sx111 4

3 sx112 4
sx113 4
sx114 4
sx115 4
sxl1l6 4
sx117 4
sx118 4
SX119 4

sz2i0 7iOp sZil Zilp sZi2 7Zi2p sZi3 _Zi3p

sx11
sxl2
sx13
sx14
sx15
sx16
sx17
sx18
sx19
sx110 5~
sx111 5
sx112 5
sx113 5
sx114 5
sx115 5
sx116_5
sx117 5
sx118 5
sx119 5

szid4 7Zidp sZi5 ZiSp if tk==1,

if
if
if
if
if
if
if
if
if
sx110
sx111
sx112
sx113
sx114
sx115
sx116
sx117

sx118 "6

sx119

tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
6 if
6 if
6 if
"G if
6 if
6 if
6 if
"6 if
if
6 if

sx1l 4 sx11 sx11 if tk= =2,
sxl2 4 sxl2 sx12 e oex- =2,
sx13 4 sx13 sx13 if tk==,
sx14 4 sx14 sx14 if tk==2,
sx15 4 sx15 sx15 if tk==2,
sxl6 4 sx16 sx16 if tk==2,
sx17 4 sx17 sx17 if tk==2,
sx18 4 sx18 sx18 if tk==—=2,
sx19 4 sx19  sx19 if tk==—=2,
3 sx110 4 sx110 5 sx1l0_6 if
3 sx111 4 sx111 5 sx111_6 if
sx112 4 sx112 5 sxll2_6 if
sx113 4 sx113 5 sxl113 6 if
sx114 4 sx114 5 sx114 6 if

mat rix (Bklllx)
mat rix (Bkl1l2x)
mat rix (Bk1l13x)
mat rix (Bkl1l4dx)
mat rix (Bk1l15x)
mat rix (Bklléx)
mat rix (Bkl1l7x)

matrix (Bkl18x)

mat rix (Bk1l19x)
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1,
tk==1

4

Bk1lllx+ Bkll2x+ Bk1l1l3x+ Bkll4x+ Bkll5x+ Bklléex+
Bk1l1l7x+ Bkll8x+ Bkl1l9x+ Bkl1l10x+ Bkllllx+ Bklll2x+ Bk1l113x+ Bklll4x+ Bkl1ll5x+
Bkllléx+ Bklll7x+ Bk1ll1l8x+ Bkl119x)

mat rix (Bk211x)
mat rix (Bk212x)
mat rix (Bk213x)
mat rix (Bk214x)
mat rix (Bk215x)
mat rix (Bk216x)
mat rix (Bk217x)
mat rix (Bk218x)
mat rix (Bk219x)

tk==2,

tk==2, matrix(
tk==2, matrix(
tk==2, matrix(
tk 2, matrix(

matrix (Bk2110x
Bk2111lx
Bk2112x
Bk2113x

)
)
)
)
Bk2114x)
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mkmat
mkmat
mkmat
mkmat

mkmat

*k k

sx115 1
sx116 1
sx117 1
sx118 1

sx119 1

sx115 2
sxll6 2
sx117 2
sx1!8 2 sx!18

sx119 2

matrix Bk2 1lall=(1/1138)*(

sx115 3
sx116_ 3
sx117 3

sx119 3

sx115 4
sx116 4
sx117 4
3 sx1!8 4

sx119 4

Bk21l6x+ Bk2117x+ Bk2118x+ Bk2119x)

svmat Bk2 lall

matrix list Bk2 1lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sx11 1
sx12 1
sx13 1
sxl4 1
sx15 1
sxl6e 1
sx17 1
sx18 1
sx19 1
sx110 1
sx111 1
sx112 1
sx113 1
sx114 1
sx115 1
sx1lle 1
sx117 1
sx118 1
sx119 1

sx1ll 2
sx1l2 2
sx13 2
sxl4 2
sx15 2
sxl6 2
sx17 2

sx11l 3
sx1l2 3
sx13 3
sx1l4 3
sx15 3
sxl6 3
sx17 3
sx18 2 sx18 3
sx19 2 sx19 3
sx110 2
sx111 2
sx112 2
sx113 2
sx114 2
sx115 2
sx116 2
sx117 2
sx118 2

sx119 2 sx119

matrix Bk3 lall=(1/1138)*(
Bk317x+ Bk318x+ Bk319x+ Bk3110x+ Bk311llx+ Bk3112x+ Bk3113x+ Bk3114x+ Bk3115x+
Bk31llox+ Bk3117x+ Bk3118x+ Bk3119x)

svmat Bk3 lall

matrix list Bk3 lall

mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

sx11 1
sxl2 1
sx13 1
sxl4 1
sx15 1
sxl6 1
sx17 1
sx18 1
sx19 1
sx110 1
sx111 1
sx112 1
sx113 1
sx114 1
sx115 1
sx116 1

sx11l 2 sx11 3
sxl2 2 sx12 3
sx13 2 sx13 3
sxl4 2 sx14 3
sx15 2 sx15 3
sxl6 2 sxl6 3
sx17 2 sx17 3
sx18 2 sx18_3
sx19 2 sx19_3
sx110 2 sx110
sx111”72 sx111
sx112~ 2 sx112
sx113~ 2 SX113
sx11l4~ 2 sx114
sx115 2 sx115
sx116 2 sx116

sx110_ 3
sx111 3
sx112 3
sx113 3
sx114 3
sx115 3
sx116_ 3
sx117 3
sx118 3

sx11
sx12
sx13
sx14
sx15
sx16
sx17

sx1ll 4
sxl2 4
sx13 4
sxl4 4
sx15 4
sxl6 4
sx17 4
sx18 4 sx18
sx19 4 sx19
sx110 4
sx111 4
sx112 4
sx113 4
sx114 4
sx115 4
sx11l6 4
sx117 4
sx118 4
3 sx119 4

sx11
sx12
sx13
sx14
sx15

sx1ll 4
sx1l2 4
sx13 4
sx14 4

sx15 4
sxl6 4
sx17 4
sx18 4
sx19 4

sx16
sx17
sx18
sx19

3 sx110 4
sx111 4
sx112 4
sx113 4
sx114 4
sx115 4
sx11l6 4

w www ww

sx115 5
sx116 5
sx117 5
sx!18 5

sx119 5

Bk211lx+ Bk212x+ Bk213x+
Bk217x+ Bk218x+ Bk219x+ Bk2110x+ Bk211lx+ Bk2112x+

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
sx19
sx110_5
sx111 5
sx112 5
sx113 5
sx114 5
sx115 5
sx116_5
sx117 5
sx118 5
sx119 5

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
sx19
sx110 5
sx111 5
sx112 5
sx113 5
sx114 5
sx115 5
sx116 5

sx115 6
sx116_ 6
sx117 6
sx!18 6

sx119 6

if
if
if
if
if
if
if
if
if tk=
sx110_6
sx111l 6
sx112 6
sx113 6
sx114 6
sx115 6
sx116 6
sx117 6
sx118 6
sx119 o6

tk=
tk=
tk=
€=

tk=

tk=
if
if
if
if

tk=
tk=
tk=

tk==
tk=:
tk= =

tk==

if
if
if
if

tk=

tk=:
tk=:
tk=:

sx110_6
sx111 6
sx112 6
sx113 6
sx114 6
sx115 6
sx116 6

if
if
if
if

if

=3,

=3,
if
if
if
if
if
if
if
if
if
if

tk==2, matrix (Bk2115x)
tk==2, matrix (Bk2116x)
tk==2, matrix (Bk2117x)
tk==2, matrix (Bk2118x)
tk==2, matrix (Bk2119x)

Bk214x+ Bk215x+ Bk2lox+
Bk2113x+ Bk2114x+ Bk2115x+

mat rix (Bk311x
matrix(Bk312x)

mat rix
mat rix
mat rix
mat rix
mat rix
mat rix

Bk313x)
Bk314x)
Bk315x)
Bk3l6x)
Bk3l7x)
Bk318x )

matrix(Bk3l9x)

tk==3,
tk==3,
tk==3,
tk==3,
tk==3,
tk==3,
tk==3,
tk==3,
tk= 3,
tk= 3,

mat rix
mat rix
mat rix
mat rix

matrix Bk3110x
matrix Bk311llx
matrix Bk3112x
matrix (Bk3113x
matrix Bk311l4x
matrix Bk3115x
matrix Bk3116x
matrix Bk3117x
matrix Bk3118x

)
)
)
)
)
)
)
)
)
matrix Bk3119x)

Bk311lx+ Bk312x+ Bk313x+ Bk314x+ Bk315x+ Bk31l6x+

(Bk41l1lx
(Bkd4l2x
(Bk413x
(Bk414x
(

mat rix Bk415x)
matrix(Bk416x)
matrix(Bk4l7x)
matrix(Bk4l8x)
matrix(Bk4l9x)

tk==4,
tk==4,
tk==4,
tk==4,
tk==4,
tk 4,
tk==4,

matrix Bk4110x)
matrix Bk4111x)
matrix Bk4112x)
matrix Bk4113x)
matrix Bk4114x)
matrix Bk4115x)
matrix Bk41lleox)
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mkmat exll? 1 sxll¥ 2 =2xll7 3 =2xll7 4 axll7 b =2xll7 6 if ck==4, matrix(EBk4117x;
mkmat sx11d 1 =xllf 2 5x11E 3 sxllBE 4 sxllB 5§ quLE_E if chk==4, matrix(Bk41718x=}
mkmat 8x119 1 #x119 2 sx119 3 sxllY d =xli¥ 5 sxll8 & if cke=-d4, matrix(skillox|

matrix Bké 1all=(ls113E)*{ Bk4llx+ Bkd4lZx+ Bk413x+ Bkd4ldx+ Bk413x+ Bk4ldx+
Ekd 1 Vx+ Bk4lHx+ DkdlYx+ BkdllDx+ Bkdlllx+ Bkd11Z2:x4 BrIL13x+ Bk4l14md BkO11G3:
Brdlléx~- BkLllVx+ 3kd11Ex+ Bhkd4llox)

svmat Bk2 1all

matri= Jist Bk4 lall

mkmat s=211 1 sx11 E 53]1_3 5x1l_ﬂ =xll 5 xx11 ﬁ il Lk==%, matrix (BRI11x}
mkmat axll 1 =axl? 2 =xl? 3 exlz 4 exl? & exlZ E if thk—F5, matrix(BkI1lZx)
mkmat -311_1 ,x1J = Jxl3_3 sxl3 4 5xl3 & 5313 E i1 Lk==5, macrix(Bk5123x
mkmat axii 1 axld 2 o=xla 3 exld 4 =exld b exld 6 if th--5, matrix(Bkilix
mEmat 5x13 1 sx13 7 5x15 3 sxl5 4 s5x15 5 sxl5 6 if bLk-=5, matrix(BkilSx;
mikrmat axlé 1 axlB 2 exl6 3 gxla 4 =sxle & =xle 6 if th==5, matrix(Bk3léx
mikmat sxi7 1 =x17 2 sxl7 3 sx17 4 sxlT 5 sx17 6 if tk——5, mabtrix[Bk3lTx|
memall s¥i8 1 axld Z sxls 3 sxle 4 =xl6 5 sxlE 6 if thk==5, matrix(Bk3ldx:
mimat axl® 1 &x1% Z sxl® 3 s5x19 4 s5xl19% 5 s5x1% 6 if tk==5, mabtrix[Bkal®x;
mEmal axl10 1 axlld 2 sx1180 5 sxlld 4 sxll0 5 sx110 6 if tk==5, matrix(BX5110x]
mkmat axlll 1 =xlll 2 =xlll 3 sxlll 4 axlll_ﬁ sx111 6 if te==5, matrix(Bk5111x]
mkmab sx112 1 sxI1Z F sxl12 3 sxl12 4 sxllZ b exllZ 6 if th==0, matrix(Bk3112x]
mhmat ax113 1 ax113 7 =xll3 3 sxll3 4 sx113 5 sxll3_A if btk=—5, matrix(Dk5l13z)
mEmal sx114 1 sx114 2 2x114 3 sxlld 4 sxlld b exlld 6 if th—>5, matrix(Bk3lldx]
mkmat 5x11% 1 sx113 2 sx115_3 sxl15 4 sxllb 5 2x115 6 1f thk==5, matrix(Bk5115x]
Fikmar aslle 1 axlle 2 =xlle 3 sxlle 4 =xlle 6 =xll6 B if tk==5, matrix(Bk3116x]
mkmat sx117 1 sx117 7 sx117 35 &x117 4 sx117 5 sx117 6 if tk==5, matrix(Bk5117x]
mikmat axll8 1 =xl118 2 sx118 3 sx118 4 sx118 5 sxl18 6 if Lk==h, zmatrlix[BR511Ex]
pkerat sxl11% 1 axll® ¥ sxll¥ 3 sx119 4 sx119 5 sx119 6 if th==5, matrix(Bk5113x)

l:

.|1

mabrix B3 1all=(1/1138)*( BkEllxe BkOL1Zx1 BkLD1Zx+ BROLdx+ BEELGx+ BRI1gx+
Bk517x- BkSI18x+ Bk31%3x+ Jk5110x+ BkS5111lx+ BkS11Ex+ BRS113x+ DkSL14n+ BRO11G2+
BkSllEx- Be53i17w+ Gk5115x4 DkS1159:x)

sveat OkS_1all
matrix 1iat BkE lall

ckmat sxll 1 sxl1l F osx11 3 sxll d sxll 5 osxll 6 1f thk==6, matrix(Bkellx)
ghoat sxi2 1 2x12 2 =x12 3 =xlZ sxl2 B sxlz 6 if tk==6, matrix(Bkéllx]
mimat sxi? 1 sxl3 2 sxl3 3 swld 4 sxl3 5 sxli 6 if the-6, matrix(Bkélldx
mEkmal sxid 1 sx14 F sxld 3 sxld 4 sxld b oexld B Aif tk==6, mabrix(Bkélax)
mkmat s5x13 1 sx13 7 5x15 3 s5x15 4 s5x15 5 sx15 6 Af tk==-8, matrix(BRelix)
mismalt axié 1 axle 2 =xle 3 sxle 4 sxle 5 sxl6 6 if tk==6, mabtris (BRELIEH)
mkmat sx17 1 sx17 7 &x17_3 sxl¥ 4 sxls 5 sxlT 6 if the=8, matrix(Bké17x)
mikmar sx19 1 =xl18 7 sxlE 3 sxlE 4 sx1B_S5 sxl¥ & ir Lk==6, matriz(Bkeldx)
mkmat sxl¥ 1 =xld ¥ osxl9 3 sxlﬂ_d 2:x189 5 sxl9 6 if tk==6, matrTix(BEkéldx)
mkmat sx11C 1 sx110 7 sx110 3 sx110_4 sx110 5 sxlld 6 if th==c, matrix(Bk<é110x]
mkmad =5x111 1 sx111 2 sxlll 3 sxlil 4 sxlll 5 sxlll 6 if tk==6, malrix(GkElllx;
mkmat sx112 1 sxll2 2 sxll2 3 s=l1] 2 4 s5xllé 5 sxll2 6 Lf th==g, matrix(BkellZx;
mkmal sx113 1 2x113 2 exll3 3 sxlil 4 =xlld 5 sxll3 6 if tk=—6, matrix(5kelllx
mkmat sxlls 1 =xlld 2 5x114 3 sxlld 4 sxlld 5 sxlld 6 if Ek——&, matrix(Bkeéllax]
mikmat axlls 1 =x115 £ sxllh 3 sxllh 4 =sx115 5 sxll5_ 6 if tk—&, matrix(Bkellix]
mkmat sxllé 1 sx116 2 5=l16 3 sx116 4 sxlle 5 sxllé & if tke=¢, matrix(Bk6116x|
mimat %119 1 22117 2 =x1l7 3 sx117 4 s5x117 5 sx117_6 iF Lk=—8, matrix(skellix)
mkmat sx118 1 =sxl118 2 sx]11B 3 sxllB_d sxl1E_b sxllB 6 I1f ck==&, matrix(Rk&l1H=;
mkmat =x11% 1 sxll% 7 sxlif9 3 axll9 4 sxll9 & sx119 6 if tkewé, matrixi(Bkellsz]
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-

matrix Baé 1all=(1/71138;*( Rk&llx- Bag_dwm+ DkAl3x
Rki_tw- BeElBxs BkS1Fnd

Bktllln+ Bieillx-

BkEélléx+ BkG117x+ BkE11ix+ BeEllGw:

swmaz BkE_lall

matrix list Bks _lall

* &

mkmat
mkmat
mkmat
wikna |
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat
mkmat

b b

mabzix Bk _lall={l/Ll3E]*]
Bk71l7x+ BETLEx+ Bk71l9x+ BRTLLI=+ BETI11x+ Sk7113x+
BkillBx+ BRLL17x+ BRTLIzn

gxll 1
amii 1
exll 1
nmld 1
=xls 1
suld 1
zxl7 1
sxld 1
zxla |
sxlll 1
Exlll 1

#1122 1 =

2x113 1
sxllie |
sxl15 1
=xlle |
sxll7 1
zxllE 1
sxlls 1

1]
v
—
—
Fud
[}

Hxlﬁ:
sulil
anld_
zxl:
ﬁnlﬁ:
zxl?

| S WA U SR N e

2
=xlld 2
sxllh 2
sxllh 2
zxlli 2
sxllE 2
zxlls 2

swma L Bk?_Lill

mal 1=

E
mhkmzt
mlmat

mkmat &

mkmsat
mkmal

mkmat =

mkmzt

mkmal =

mkmat
mkmat
mkmat

mxmat. =

mkmat
rLkrLa L
m&mat
mxmat
mirmzl
mamat
mrEst

Ll

e}

KT lall

exll 2
sl 2 o5

sxl3_& =

sxld 2 5
sxlb_ 2
5315_2 b
=xl7 2
stE_E E
%19 2 s
axllo 2
sxlll 2
sxll2 2
51l 2
gxlld 2

s=115 2

axlls 2

gl 1T 2 s

5k11B 2
awlln 2

sx110 3
sxlll 3
sxllz 3
selld 3
=xlld 3
sxllh 3
sxllb 3
=xll7 3
511?3_3
=xlld 3

I osxll 4
gxlz 4
CFoEx]E 4oy
sxld_3 zxld 4
=xl: 4
zxle 4
zxl7 4
sxld_d
sxls 4

axll 4
sxl? A

z2xls
sZxla
sxllo 4
sx111 4
zxllz 4
51113_1
=xlld 4
sxll5 1
5!11ﬁ_ﬂ
=xll7 4
5x1lﬁ_ﬂ
sxll3 4

BlkTLll9x)

=xll
sxlE
=xl3
sald
i =xlE
] sxlG
4 5=17
i =xlE
d 5xlH4
Dﬂd
axlll 4
stLEﬁd
sx1.3 4
axlld 4

3 mxlls d

gsllio 4
sxllT 4
sHill 4
axlla 4

Bagl

_5 a1
5 sull_

i 5 wx_d

5 axls

35 mmib

> 5 anle

nal
5 =xla
5 nxl%
2xlld 5
5x111_5
=x112 3
sxll13 =
=xlld 3
gxlls =
ﬂxllb_h
=xlly =
EHllE_:

sxll=2 5

Bk7llx+ Bk7lzxt+ 5k713x+

5 sxll
bhozmlE

5
Tl
5 o=xli_
5 oaxle
oouxll
_boexld
5 sxld
5311ﬂﬂ5
2xlll 5
gxlls &
5x113_ﬁ
sxlld 5
sxllh &

Exli

Bkaldx-

BatlZx+ BRELGN-
BkE]l " Ax- Bafllindt GRE_14%:

matrix(BKY11x}
mn:rir[ﬁk?lﬁx?
martrix (BkT13ix:
maTrix Sk 1dx)
matrix(akTlzx)
matrix (SkT]Ex)
matrixi(akT17x)
matrix(3kT1ix)
matrix(GkT15x)

_2at

6 LL Lai=——

6 Lf ta==T,

6 L[ Lgm=T

6 Lf tai==T7,

6 2l Le—="7

6 1f Tai==

6 if Le—=",

6 if Th==

6 iF Lhk=—7,
exlli & if tk==7,
Axlll & 4l t==T,
sx112 & if tk==7,
gall & 1 tk==T,
sxlld & i Lk=—=7,
exlli & i thk--7,
5111%_6 1% fk==T,
sx117 & if Ltk==T,
gxlld & if tk-=T,
5x11% & 120 Lhk==1,

6 if
6 1%
6 irf
6 if
6 iFf
6 1f
6 il
6 if
6 1if

Ek==4,
tk==2,
‘tk::-r
tk==3,
tk==4%,
tk==3,
lLk——%,
tk-=2,
thk==2,
5x110 &
sx111 6
exll: B
sxll3 B
sxlld 6
sx1lh &
51115_&
=xllT 6
sx11E 6
=xll9 A

ir
if
if
il
if
1t
il
if
it
if

matrix(AkT 110,
matrixisky1l1l1lx;
meboix i 112%;
matrix(3kT113x]
meleixiSk7114x:
matrix(3k711 5=
mztrixizklllox
masl s i (IR LK
matrix(2kI118x8;
mabrix(skT11l%x:

Bk714x+ 3kT15x+ RETLbx+
Ek'11%:x4 3kTLlidxd

BkT1lEx+

mabrixiBEELL:)
matrixiHBkELZx]
matrix {BRELIK]
matxix  HEELdx]
mab-ix i BEELSx]
matrix{BkELGx)
mabtrix:BkELY®)
matrix BRE]lEx]
matrix BEELDx]

L=,
Lk==%&,
tk==8,
Lk==g,
t ||;==EII
Lh==E,
Lk—8,
t k== .
tk==F,
tk=—E&,

matrixziBkE1L10x)
mabrix |BEELLL1x)
matri= | REZ112x)
matrix HESLL3x)
mal.rix!BRELLAX)
matrixz {BkELLS®)
mabrle ! BkELLAK)
matrig BRELLTx)
matrix BEE112x)
mabris ' DRELLSK)
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matrix Bk8 1all=(1/1138)*( Bk8llx+ Bk812x+ Bk813x+ Bk814x+ Bk815x+ Bk8lé6x+
Bk817x+ Bk818x+ Bk819x+ Bk8110x+ Bk8111lx+ Bk8112x+ Bk8113x+ Bk8114x+ Bk8115x+
Bk811l6x+ Bk8117x+ Bk8118x+ Bk8119x)

svmat Bk8 lall

matrix list Bk8 1lall

mkmat sx11 sx1ll 2 sx11l 3 sx11 4 sx11 5 sxl11 6 1f tk== mat rix (Bk911x)
mkmat sx12 = sx12 2 sx12 3 sxl2 4 sx12 5 sx12 6 if tk== mat rix (Bk912x)
mkmat sx13  sx13 2 sx13 3 sx13 4 sx13 5 sx13 6 if tk== mat rix (Bk913x)
mkmat sx14_ sx14 2 sx14 3 sx14 4 sx14 5 sx14 '6 if tk== mat rix (Bk914x)
mkmat sx15  sx15 2 sx15 3 sxl5 4 sx15 5 sx15 6 if tk== mat rix (Bk915x)
mkmat sx16  sx16 2 sxl16 3 sxl6 4 sxl6 5 sx16 6 if tk== mat rix (Bk916x)
mkmat sx17 sx17 2 sx17 3 sxl17 4 sx17 5 sx17 6 if tk== mat rix (Bk917x)
mkmat sx18  sx18 2 sx18 3 sx18 4 sx18 5 sx18 6 if tk== mat rix (Bk918x)
mkmat sx19 1 sx19 2 sx19 3 sx19 4 sx19 5 sx19 6 if tk== mat rix (Bk919x)
mkmat sx110 1 sx110 sx110 3 sx110 4 sx110 5 sx110 6 if tk== matrix (Bk9110x)
mkmat sx111 sx111 sx111 3 sx111 4 sx111 5 sx111 '6 if tk==9 matrix(Bk9111x)
mkmat sx112 sx112 sx112~ 3 sx112 4 sx112 5 sx112 6 if tk==9 matrix(Bk9112x)
mkmat sx113 sx113 sx113 3 sx113 4 sx113 5 sx113 6 if tk==9 matrix(Bk9113x)
mkmat sx114 sx114 sx114 3 sx114 4 sx114 5 sxl1l4 6 if tk==9 matrix (Bk9114x)
mkmat sx115 sx115 sx115~ 3 sx115 4 sx115 5 sx115 6 if tk==9 matrix(Bk9115x)
mkmat sx116 sx116_ sx116 3 sx116 4 sx116 5 sxlld 6 if tk== matrix (Bk91l1lox)
mkmat sx117 sx117~ sx117~ 3 sx117 4 sx117 5 sx117 6 if tk==9 matrix (Bk9117x)
mkmat sx118 sx118 sx118 3 sx118 4 sx118 5 sx118 6 if tk==9 matrix(Bk9118x)
mkmat sx119 sx119 sx1!9 3 sx119 4 sx119 5 sx119 6 if tk==9 matrix(Bk9119x)

matrix Bk9 1all=(1/1138)*( Bk91llx+ Bk912x+ Bk913x+ Bk91l4x+ BkI15x+ BkIl6x+
Bk917x+ Bk918x+ Bk919x+ Bk9110x+ Bk9111lx+ Bk9112x+ Bk9113x+ Bk9114x+ Bk9115x+
Bk9llox+ Bk9117x+ Bk9118x+ Bk9119x)

svmat Bk9 lall

matrix list Bk9 lall

BklOllx
Bkl012x

mkmat sx11 1 sx11 2 sx11 3 sx11 4 sxll  sxl11  if tk==10, matrix ( )
mkmat sx12 1 sx12 2 sx12 3 sx12 4 sxl2 = sxl2  if tk==10, matrix ( )
mkmat sx13 1 sx13 2 sx13 3 sx13 4 sx13 sx13 if tk==10, matrix (Bkl013x)
mkmat sxl14 1 sxl4 2 sxl14 3 sx14 4 sxl4_ sx14 if tk==10, matrix (Bk1l01l4x)
mkmat sx15 1 sx15 2 sx15 3 sx15 4 sx15 sx15 if tk==10, matrix (Bkl015x)
mkmat sx16 1 sx16 2 sx16 3 sxl6 4 sxl6  sxl6  if tk==10, matrix (BklOléx)
mkmat sx17 1 sx17 2 sx17 3 sx17 4 sx17_ sxl17_ if tk==10, matrix (Bk1017x)
mkmat sx18 1 sx18 2 sx18 3 sx18 4 sx18 sx18  if tk==10, matrix (Bkl018x)
mkmat sx19 1 sx19 2 sx19 3 sx19 4 sx19 sx19 if tk==10, matrix (Bkl019x)
mkmat sx110 1 sx110 2 sx110 3 sx110 4 sx110 5 sx110 6 if tk==10,

matrix (Bkl0O1l1lOx)

mkmat sx111 1 sx111 2 sxl111 3 sx111 4 sx111 5 sx111 6 if tk==10,

matrix (BklOlllx)

mkmat sx112 1 sx112 2 sx112_3 sx112 4 sx112 5 sxll2_6 if tk==10,

matrix (Bkl0112x)

mkmat sx113 1 sx113 2 sx113 3 sx113 4 sx113_ 5 sx113_6 if tk==10,

matrix (Bkl0113x)

mkmat sx114 1 sx114 2 sx114_ 3 sx114 4 sx114_5 sxll4_6 if tk==10,

matrix (Bkl10114x)

mkmat sx115 1 sx115 2 sx115_3 sx115 4 sx115 5 sx115 6 if tk==10,

matrix (Bkl10115x)

mkmat sx116 1 sx116 2 sx116 3 sx116 4 sx116 5 sx11o6 6 if tk==10,

matrix Bk10116x)
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mkmat sx117 1 sx117 2 sx117 3 sx117 4 sx117 5 sx117 6 1if tk==10,
matrix (Bk1l0117x)
mkmat sx118 1 sx118 2 sx118 3 sx118 4 sx118 5 sx118 6 if tk==10,
matrix (Bk10118x)

mkmat sx119 1 sx119 2 sx119 3 sx119 4 sx119 5 sx119 6 if tk==10,

matrix (Bk10119x)

matrix BklO_lall:(l/ll38)*( Bk101l1lx+ Bk1l01l2x+ Bk1013x+ Bk1014x+ Bk1l015x+
Bkl0lé6x+ Bk1l017x+ Bk1l018x+ Bk1l019x+ Bk10110x+ Bk1011llx+ Bk1l0112x+ Bk1l0113x+
Bk10114x+ Bk1l0115x+ Bkl0Olleox+ Bk1l0117x+ Bk10118x+ Bk10119x)

svmat Bk1lO lall

matrix list Bk1lO 1lall

mkmat sx11 1 sx11 2 sxll 3 sx1l 4 sxll 5 sxll 6 if tk==1]1, matrix(Bkl1l1llx)
mkmat sx12 1 sxl2 2 sxl12 3 sxl12 4 sxl2 5 sxl2 6 if tk==11, matrix(Bkll12x)
mkmat sx13 1 sx13 2 sx13 3 sx13 4 sx13 5 sx13 "6 if tk==11, matrix(Bklll3x)
mkmat sx14 1 sxl4 2 sx14 3 sxl4 4 sx14 5 sxl4 '6 if tk==11, matrix(Bklll4x)
mkmat sx15 1 sx15 2 sx15 3 sxl5 4 sxl5 5 sx15 '6 if tk==11, matrix(Bkll1l5x)
mkmat sx16 1 sx16 2 sxl6 3 sx16 4 sxl6 5 sx16 "6 if tk==1], matrix(Bkl1l16x)
mkmat sx17 1 sx17 2 sx17 3 sxl17 4 sx17 5 sx17 '6 if tk==11, matrix(Bklll7x)
mkmat sx18 1 sx18 2 sx18 3 sx18 4 sxl18 5 sx18 '6 if tk==1]1, matrix(Bkll1l8x)
mkmat sx19 I sx19 2 sx19 3 sx19 4 sxl19 5 sx19 6 if tk==11, matrix(Bkl1l19x)

mkmat sx110 1 sx110 7 sx110| 3 sx110_4 sx110 5 sx11Ci 6 if tk==11,
matrix (Bk1l1110x)
mkmat sx111 1 sx111 2 sx111 3 sx111 4 sx111 5 sx111 6 if tk==11,
matrix (Bkl1l111x)
mkmat sx112 1 sx112 2 sx112 3 sx112 4 sx112 5 sx112 6 if tk==11,
matrix (Bkl1112x)
mkmat sx113 1 sx113 2 sx113 3 sx113 4 sx113 5 sx113_6 if tk==11,
matrix (Bkl1l1113x)
mkmat sx114 1 sx114 2 sx114 3 sx114 4 sx114 5 sx114 6 if tk==11,
matrix (Bkl1114x)
mkmat sx115 1 sx115 2 sx115 3 sx115 4 sx115 5 sx115 6 if tk==11,
matrix (Bkl1115x)
mkmat sx116 1 sx116 2 sx116_3 sx116_4 sxl116_5 sxl116_6 if tk==11,
matrix (Bkl1116x)
mkmat sx117 1 sx117 2 sx117 3 sx117_ 4 sx117 5 sx117 6 if tk==11,
matrix (Bkl1117x)
mkmat sx118 1 sx118 2 sx118 3 sx118 4 sx118 5 sx118 6 if tk==11,
matrix (Bk11118x)
mkmat sx119 1 sx119 2 sx119 3 sx119 4 sx119 5 sx119 6 if tk==11,
matrix (Bk11119x)

matrix Bkll 1all=(1/1138)*( Bk1llllx+ Bkll1l2x+ Bk1l113x+ Bklll4x+ Bkl11ll5x+
Bklllé6x+ Bk1117x+ Bk1118x+ Bk1l119x+ Bk1l111O0x+ Bk1l1llllx+ Bk1l1l112x+ Bk1l1113x+
Bk1l111l4x+ Bk11115x+ Bkllllox+ Bkllll7x+ Bk11118x+ Bk1l1119x)

svmat Bkll lall

matrix list Bkll 1lall

mkmat sx11 1 sx11 2 sx11 3 sxll 4 sx11 5 sxll 6 if tk==12, matrix(Bkl211lx)
mkmat sx12 1 sx12 2 sx12 3 sxl1l2 4 sx12 5 sx12 6 if tk==12, matrix(Bk1l212x)
mkmat sx13 1 sx13 2 sx13 3 sxl13 4 sx13 5 sx13 6 if tk==12, matrix(Bkl213x)
mkmat sx14 1 sx14 2 sxl1l4 3 sxl4 4 sxl4 5 sxl4 6 if tk==12, matrix(Bkl214x)
mkmat sx15 1 sx15 2 sx15 3 sx15 4 sx15 5 sx15 6 if tk==12, matrix(Bk1l215x)
mkmat sx16 1 sx16 2 sxl16 3 sxl6 4 sx1l6 5 sx16 6 if tk==12, matrix(Bkl21l6x)



mkmat sx17 1 sx17 2 sx17 3 sx17 4 sx17 5 sx17 6 if tk==12, matrix(Bk1l217x)
mkmat sx18 1 sx18 2 sx18 3 sx18 4 sx18 5 sx18 6 if tk==12, matrix(Bk1l218x)
mkmat sx!9 1 sx!9 2 sx!9 3 sx!9 4 sx!9 5 sx!9 6 if tk==12, matrix (Bk1l219x)
mkmat sx110 1 sx110 2 sx110 3 sx110 4 sx110 5~ sx110 6 if tk==12,

matrix (Bk1l2110x)

mkmat sxl11l 1 sx111 2 sx111 3 sx111 4 sx111 5 sx111 6 if tk==12,

matrix (Bkl2111x)

mkmat sx112 1 sx112 2 sx112 3 sx112 4 sx112 5 sx112 6 if tk==12,

matrix (Bk1l2112x)

mkmat sx113 1 sx113 2 sx113 3 sx113 4 sx113 5 sx113 6 if tk==12,

matrix (Bk1l2113x)

mkmat sx114 1 sx114 2 sx114 3 sx114 4 sx114 5 sx114 6 if tk==12,

matrix (Bkl2114x)

mkmat sx115 1 sx115 2 sx115 3 sx115 4 sx115 5 sxl115 6 if tk==12,

matrix (Bk1l2115x)

mkmat sx116 1 sx116 2 sx116 3 sx116 4 sxll16 5 sxll6 6 if tk==12,

matrix (Bkl2116x)

mkmat sx117 1 sx117 2 sx117 3 sx117 4 sx117 5 sx117 6 if tk==12,

matrix (Bk1l2117x)

mkmat sx118 1 sx118 2 sx118 3 sx118 4 sx118 5 sx118 6 if tk==12,

matrix (Bk12118x)

mkmat sx119 1 sx119 2 sx119 3 sx119 4 sx119 5 sx1!9 6 if tk==12,

matrix (Bk12119x)

matrix Bk1l2 1all=(1/1138)*(

Bkl211lx+ Bkl212x+ Bk1l213x+ Bkl214x+ Bk1l215x+
Bkl2leéex+ Bkl217x+ Bk1l218x+ Bk1219x+ Bk12110x+ Bk1l2111lx+ Bk1l2112x+ Bk1l2113x+

Bk12114x+ Bk12115x+ Bk12116x+ Bk1l2117x+ Bkl2118x+ Bk1l2119x)

svmat Bkl2 lall

matrix list Bkl2 1lall

i

mkmat sxl11 1 sxll 2 sxl11 3 sxll 4 sxll 5 sxll 6 if tk==13, matrix (Bk1l311lx)
mkmat sx12 1 sx12 2 sx12 3 sxl2 4 sx12 5 sxl1l2 6 if tk==13, matrix (Bkl31l2x)
mkmat sx13 1 sx13 2 sx13 3 sx13 4 sx13 5 sx13 6 if tk==13, matrix(Bk1l313x)
mkmat sxl4 1 sxl4 2 sx1l4 3 sxl4 4 sxl4 5 sxld4d 6 if tk==13, matrix(Bkl31l4x)
mkmat sx15 1 sx15 2 sx15 3 sxl15 4 sx15 5 sx15 6 if tk==13, matrix(Bk1l315x)
mkmat sx16 1 sxl16 2 sxl16 3 sxl16 4 sx16 5 sxlo 6 if tk==13, matrix(Bkl316x)
mkmat sx17 1 sxl17 2 sx17 3 sx17 4 sx17 5 sx17 6 if tk==13, matrix (Bk1l317x)
mkmat sx18 1 sx18 2 sx18 3 sxl18 4 sx18 5 sx18 6 if tk==13, matrix (Bk1l318x)
mkmat sx19 1 sx19 2 sx19 3 sx19 4 sx19 5 sx19 6 if tk==13, matrix(Bk1l319x)
mkmat sx110 1 sx110 2 sx110 3 sx110 4 sleP_S sx110 6 if tk==13,

matrix (Bk13110x)

mkmat sx111 1 sxlll 2 sx111 3 sx111 4 sxl111 5 sxl11 6 if tk==13,

matrix (Bk13111x)

mkmat sx112 1 sx112 2 sx112 3 sxl1l2 4 sx112 5 sx112 6 if tk==13,

matrix (Bk1l3112x)

mkmat sx113 1 sx113 2 sx113 3 sx113 4 sx113 5 sx113 6 if tk==13,

matrix (Bk13113x)

mkmat sx114 1 sx114 2 sx114 3 sx114 4 sx1!4 5 sx114 6 if tk==13,

matrix (Bk13114x)

mkmat sx115 1 sx115 2 sx115 3 sx115 4 sx115 5 sx115 6 if tk==13,

matrix (Bk13115x)

mkmat sx1!6 1 sxl!6 2 sx116 3 sxl116 4 sxll6 5 sx1ll6_6 if tk==13,

matrix (Bkl1l3116x)

mkmat sx117 1 sx117 2 sx117 3 sxl117 4 sx117_5 sx117 6 if tk==13,

matrix (Bk1l3117x)

mkmat sx118 1 sx118 2 sx118 3 sx118 4 sx118 5 sx118_6 if tk==13,

matrix (Bk13118x)

mkmat sx119 1 sx119 2 sx119_3 sx119 4 sx119 5 sxl119 6 if tk==13,

matrix (Bk13119x)



* *

malrix Bh13 lall=(1/1138%*( Sk1311x+ BR1312x+ BR1IL3x+
Bk111léx+ BEK1317x+ Bk131dx+ Sk131%x+ RR13IT10x= Bx1
Gkl3li4axd

EWmat

k13 1

Gkl3115mi

all

matrix list 5k13 lall

*

mkmat
mkmat
mkmal
mkmat
mkmal
mikmat
mkmaot
mkmat
mikmian b
mkmat

3311_1
sxld 1
axli 1
exld 1
sl 1
axle 1
sx17jl
exla 1
srxld ]
sxllc

axll 2
sxld 2

anld & =

sxl4 2

Hx]:_ﬂ E

gxle 2

sx17 F o5

sx18 2
wmla F

1 axll1c

matrisiBk14110x)
mkmat sx111 1 sx111
matrix (BK14111%)

mkmat

sulli

1 =112

matrix(Bkl4ll2x)

mkmiat

#ml13

1 ==xl113

matrlwlﬁkldll’wa

mkmat &x114 1 axlld 2

matrlx[Ek14114x

mkmat

sxll:

L sxll:

matriz (RET14T15x)

mkmat sx1lcé 1 sx1lc 2

matrix(Bkl4allexn)

mkmat

sull?

1 55117

matriz(Gk14117%)

mkmatr sx113 1 sx119

maleiw (BR1411d=)

mkmaz sx11% 1 sx11% 2

matrix [Bk1411%=)

AR

matrix Bk14 Jall=(171138)*( Ek1411xd
Bklsléx+ Bk1417x+ Bk1419x+ Sk1419x+ BE14700=+ PeI4T1T=+ BR1411dx
BkeldllfBx+ HkLl4119x!}

Bkl

SVmat

matrix list Bkl4

L

mkmaz
mkmaz
mkmas
mkmaz
mkmas
mkmat
mkmaz
mkmat
mkmaz
mionazT

mkmat axlll 1 ax111 2 ax111

i14u+

Bhls 1

sull 1
axld 1
£x13 1
axld 1
axly 1
smlé 1
axul? 1
wld 1
sml% 1

Bk

1411 5%

all

sxll 2
axla 2
#x13 2
axla 2
axls 2
swle 2
gxl? 2
amld 2
sx13 2

Ekl41lbx+ Bk14117m+

_lall

sxll
axld
Axld
sxld
axli
sx1%_
axl7
anld
s5x1%

[ B LPS  FPL R P W}

l:.u Lad et al

ax210 1 ax11n 2 axllu
mu:r'ﬁfEkl“llPH

masr i [Rx1571711x;

sx11 4
axl? 4
#xld 4
sxl14 4
axls 4
5x1ﬁ_4
sxl7 4
anld 4
sxl3 4

sxll 3
axl2 §
513 5
sxle G
anls b

5H1E_ﬁ.

anl? &
axnld b
sx14 5

3 axllﬂ A oaxl

2 gxlll 4 axlll &

LA ]
o
F

. 1 .
el I S B WL L B S
Hec B e T L = L

o |
=

4
|

[
H
i
m a\c.

axl B
sxl 9
in_ R

| | [l el el
H H = HhHh

| el el
H: Hh +h

if

Brlil2x+ Bhldl3m+ Bialdldu-

tk==1

th==10,
Lk==1l,
Lk==13,
th==15,
Ek=—15,
tk==13,

Bhl3lim+ BR131Zx+
AL17xs BR1311%x+ Gk13113w-

Ek13116xt 3k132117x+ Bk13118=+ Bk1311%x,
2xll 2 zxll 4 axll 5 axll & if ck==14, matrix(Bkl:illx)
sxl2 3 sxlZ2 4 5xl2 5 os5xl2 6 i nk==T4, matrix(Bkl4lix]
zxnli 3 z2xl3 4 anll 5 3xlld & Lf ch==l4, matrix(sklLllx]
exld FoExls 4 sxli 3 osxld E if ch==14, moirix(Bk1414m]
sxlz 3 oaxli 4 sxls 5 selb & Lf Che=I14, matrix(sklilIx]
zxlE 2 zxle 4 axle 5 ale E 1f ch—14, matrixitkliléx;
o x1?_1 Hxleh ﬂx-f E L[ Lk=—14, matrix(Gklilvx
zxld 2 =xld 4 sxl8 5 sxlf & if tk==14, matrix(Gk1&ldx!
gxl3 3 2xlD 4 #x1% 5 awld & LE Chke=ld, matrix(Bk141%x;
_2 5110 3 o=x110 4 sx110 3 sx1l0 € if tk==14
2 o=sx111 3 osx111 4 5x111 5 sxl111 & if th==14,
7 5x11?_3 5x112_i ﬁx112_5 smll _ﬁ LE Lk==14&,
CE osxll3 3 osxll3 4 5xl113 5 sxll3 8 Lf the==14,
exlld 2 exlld 4 axlld b osxlldi & if tk==1s,
_2 ax1lE 3 o=x113 4 swlld 5 axlld 6 if tk==1g,
k116 3 sxlle 2 sxlle 5 salla & iF th==14%,
_2 osx117 3 osx117 4 5=117 5 s= G iF Lek==l4,
2 sxlld 3 oExlld & sxllB 5 5x 6 if gk==14,
axllz 3 5x11% 4 5x119 5 5x119 6 1if th==14

Ekl1LlZn-
Bklal13m-

macrix (Rk1517«]
matrixisklIidx!
mAatrix(Bkl1SIix!
matrix [RkT514x]
matrix(Bkl315x]
cabrix(Gkl1alex]
matrix(Bk1517x]

bh=—1h, matrixiBkl31l8x]

tk=—1%5,

mabrix [Gkl1519%]

selli 6 if tk==15,

sxlll 6 1if tk==13,
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mkmat sx112 1 sx112 2 sx112 3 sx112 4 sx112 5 sx112 6 if tk==15,
matrix (Bk1l5112x)
mkmat sx113 1 sx113 2 sx113 3 sx113 4 sx113 5 sx113 6 if tk==15,
matrix (Bk15113x)

mkmat sx114 1 sx114 2 sx114 3 sx114 4 sx114 5 sx114 6 if tk==15,
matrix (Bk15114x)
mkmat sx115 1 sx115 2 sx115 3 sx115 4 sx115 5 sx115 6 if tk==15,
matrix (Bk15115x)
mkmat sx116 1 sx116 2 sx116 3 sx116 4 sx116_5 sx11l6 6 if tk==15,
matrix (Bk1l5116x)
mkmat sx117 1 sx117 2 sx117 3 sx117 4 sx117 5 sx117 6 1if tk==15,
matrix (Bk15117x)
mkmat sx118 1 sx118 2 sx118 3 sx118 4 sx118 5 sx118 6 if tk==15,
matrix (Bk15118x)
mkmat sx119 1 sx119 2 sx119 3 sx119 4 sx119 5 sx119 6 if tk==15,
matrix (Bk15119x)

k &

matrix Bk1l5 1all=(1/1138) *( Bk1l511x+ Bk1512x+ Bk1513x+ Bk1l5l14x+ Bk1l515x+
Bkl516x+ Bk1517x+ Bk1518x+ Bk1519x+ Bk15110x+ Bk15111x+ Bk15112x+ Bk15113x+
Bk15114x+ Bk15115x+ Bk1l5116x+ Bk1l5117x+ Bk15118x+ Bk15119x)

svmat Bk1l5 1lall

matrix list Bk1l5 1lall

mkmat sx11 1 sx11 2 sx11 3 sxll 4 sxll 5 sx11 6 if tk==16, matrix (Bklollx)
mkmat sx12 1 sx12 2 sxl12 3 sx12 " sxl12 5 sx12 6 if tk==16, matrix (Bklo6l2x)
mkmat sx13 1 sx13 2 sx13 3 sx13 4 sx13 5 sx13 '6 if tk==16, matrix (Bkl613x)
mkmat sxl4 1 sx1l4 2 sxl4 3 sxl4 '4 sx1l4 5 sxl4 6 if tk==16, matrix (Bklol4dx)
mkmat sx15 1 sxl15 2 sx15 3 sx15 4 sx15 5 sx15 6 if tk==16, matrix(Bkl615x)
mkmat sx16 1 sx16 2 sxl16 3 sxl6 "4 sx16 5 sxl6 6 if tk==16, matrix (Bkl616x)
mkmat sx17 1 sx17 2 sx17 3 sx17 "M sx17 5 sx17 6 if tk==16, matrix (Bkl617x)
mkmat sx18 1 sxl18 2 sx18 3 sx18 ™ sx18 5 sx18 % if tk==16, matrix (Bkl618x)
mkmat sx19 1 sx19 2 sx19 3 sx19 " sx19 5 sx19 '6 if tk:ng' matrix (Bk1619x)

mkmat sx110 1 sx110 2 sx110 3 sx110 4 sx110 5 sxll1C1 6 if tk==l¢,
matrix (Bkl16110x)
mkmat sx111 1 sx111 2 sx111 3 sx111 4 sx111 5 sxlll 6 if tk==le6,
matrix (Bklelllx)
mkmat sx112 1 sx112 2 sx112 3 sx112 4 sx112 5 sx112 6 if tk==le6,
matrix (Bklell2x)
mkmat sx113 1 sx113 2 sx113 3 sx113 4 sx113 5 sx113_6 if tk==le6,
matrix (Bkl6113x)
mkmat sx114 1 sx114 2 sx114 3 sx114 4 sx114 5 sx114 6 if tk==16,
matrix (Bkl6114x)
mkmat sx115 1 sx115 2 sx115 3 sx115 4 sx115 5 sx115 6 if tk==16,
matrix (Bkl1l6115x)
mkmat sx116 1 sx116 2 sx116_3 sx116_4 sx116_5 sxll6_6 if tk==le6,
matrix (Bkl6llox)
mkmat sx117 1 sx117 2 sx117 3 sx117 4 sx117 5 sx117 6 if tk==16,
matrix (Bkl6ll7x)
mkmat sx118 1 sx118 2 sx118 3 sx118_4 sx118 5 sx118_6 if tk==leo,
matrix (Bkl16118x)
mkmat sx119 1 sx119 2 sx119 3 sx119 4 sx119 5 sx119 o6 if tk==16,
matrix (Bkl16119x)

matrix Bkl6 1all=(1/1138)*( Bkl6llx+ Bkl612x+ Bk1l613x+ Bkl6l4x+ Bkl615x+
Bklolox+ Bklol7x+ Bklol8x+ Bk1l619x+ Bkl611l0x+ Bkl61lllx+ Bkloll2x+ Bkloll3x+
Bkl6114x+ Bkl6115x+ Bklollox+ Bkloll7x+ Bk1l6118x+ Bk1l6119x)

svmat Bkle6e lall



matrix list Bkl6 lall

mkmat sx1l1 1 sx11 2
mkmat sx12 1 sxl12 2
mkmat sx13 1 sx13 2
mkmat sxl14 1 sx14 2
mkmat sx15 1 sx15 2
mkmat sx16 1 sxl6 2
mkmat sx17 1 sxl17 2
mkmat sx18 1 sx18 2
mkmat sx19 1 sx19 2
mkmat sx110 1 sx110

matrix (Bk17110x)
mkmat sx111 1 sxl111
matrix (Bkl1l7111x)

mkmat sx112 1 sx112

matrix (Bkl1l7112x)

mkmat sx113 1 sx!13

matrix (Bkl17113x)

mkmat sx114 1 sx114

matrix (Bkl1l7114x)

mkmat sx115 1 sx115

matrix (Bkl17115x)

mkmat sx116 1 sx116

matrix (Bk1l7116x)

mkmat sx117 1 sx117

matrix (Bk17117x)

mkmat sx118 1 sx118

matrix (Bk17118x)

mkmat sx119 1 sx119

matrix (Bk17119x)

matrix Bk1l7 1all=(1/1138)*(
Bkl716x+ Bk1l717x+ Bk1l718x+ Bk1l719x+ Bk17110x+ Bk1l7111x+ Bk1l7112x+ Bk17113x+

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
sx19

W W wwwwww
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sx11 4
sx12 4
sx13 ™
sx14 "4
sx15 4
sx16 4
sx17 4
sx18 4
sx19 4

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
sx19

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
5 sx19

oo o o o o ot

2 sx11Ci 3 sx110 4 sx110 5

2 sx111 3
2 sx112 3
2 sx113 3
2 sx114 3
2 sx115 3
2 sx116 3
2 sx117 3
2 sx118 3

2 sx119 3

sx111 4
sx112 4
sx113 4
sx114 4
sx115 4
sx116_ 4
sx117 4
sx118 4

sx119 4

sx111 5
sx112 5
sx113 5
sx114 5
sx115 5
sx116_5
sx117 5
sx118 5

sx119 5

if
if
if
if
if
if
if
if
if
sx11C1

oY O O)Y OO O)Y O O)Y O O

sx111l 6
sx112 6
sx113 6
sx114 6
sx115 6
sx116_6
sx117 6
sx118 6

sx119 o6

if

if

if

if

tk==17,
tk==17,
tk==17,
tk==17,
tk==17,
tk==17,
tk==17,
tk==17,
tk==17,
6 if t

tk

tk

tk

tk

tk

tk

tk

tk

tk

(Bk1711x)
(Bk1712x)
(Bk1713x)
(Bk1714x)
(Bk1715x)
(Bk1716x)
(Bk1717x)
(Bk1718x)
(Bk1719x)
==17,
=17,
=17,
=17,
=17,
=17,
=17,

==17,

==17,

Bkl1711x+ Bk1l712x+ Bk1l713x+ Bk1l714x+ Bk1l715x+

Bk17114x+ Bk17115x+ Bkl7116x+ Bk1l7117x+ Bkl1l7118x+ Bk17119x)

svmat Bk1l7 lall

matrix list Bkl7 1lall

mkmat sx11 1 sx11 2
mkmat sx12 1 sxl12 2
mkmat sx13 1 sx13 2
mkmat sx14 1 sx14 2
mkmat sx15 1 sx15 2
mkmat sx16 1 sxlo6 2
mkmat sx17 1 sx17 2
mkmat sx18 1 sx18 2
mkmat sx19 1 sx19 2
mkmat sx110 1 sx110

matrix (Bk18110x)

mkmat sx111 1 sx111 2 sx111 3

matrix (Bk18111x)

mkmat sx112 1 sx112

matrix (Bk18112x)

mkmat sx113 1 sx113

matrix (Bk18113x)

mkmat sx114 1 sx114

matrix (Bk18114x)

sx11
sx12
sx13
sx14
sx15
sx1 6
sx17
sx18
sx19

wWwwwwwww

3

sx11
sx12
sx13
sx14
sx15
sx1 6
sx17
sx18
sx19 4

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
sx19

sx11
sx12
sx13
sx14
sx15
sx16
sx17
sx18
5 sx19

(G2 BN, BNC R, BN G BN G BN RO

2 sx110 3 sx110 4 sx110 5

2 sx112 3
2 sx113 3

2 sx114 3

sx111 4
sx112 4
sx113 4

sx114 4

sx111 5
sx112 5
sx113 5

sx114 5

6 if tk==18,
"6 if tk=ml8
'6 if tk=nT8
"6 if tk=qT8
% if tk==18,
6 if tk==18,
6 if tk==18,
"6 if tk==18,
"6 if tk==18,

Bk1811lx
Bk1812x
Bk1813x
matrix (Bk1l814x

matrix )
)
)
)
matrix (Bk1815x)
)
)
)
)

(
matrix(
matrix(
(
(
matrix (Bk1l81lox
matrix (Bkl1817x

matrix (Bk1818x
matrix (Bk1819x

sx11C1 6 =& hizHHES

sx111 6
sx112 6
sx113 6

sx114 6

if

if

if

if

tk==18,
tk==18,
tk==18,
tk==18,
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mkmat sx115 1 sx115 2 sx115 3 sx115 4 sx115 5 sx115 6 if tk==18
matrix (Bk18115x)
mkmat sx116 1 sx116 2 sx116 3 sx116 4 sxl116 5 sx116 6 if tk==18
matrix (Bk1l8116x)
mkmat sx117 1 sx117 2 sx117 3 sx117 4 sx117 5 sx117 6 if tk==18
matrix (Bk1l8117x)
mkmat sx118 1 sx118 2 sx118 3 sx118 4 sx118 5 sx118 6 if tk==18
matrix (Bk18118x)
mkmat sx119 1 sx119 2 sx119 3 sx119 4 sx119 5 sx119 6 if tk==18
matrix (Bk18119x)

matrix Bk18 1all=(1/1138)*( Bkl811lx+ Bk1l812x+ Bk1813x+ Bkl8l4xt Bk1l815x+
Bk181l6x+ Bk1817x+ Bk1818x+ Bk1819x+ Bk18110x+ Bk1l811lx+ Bk1l8112x+ Bk18113x+
Bk18114x+ Bk18115x+ Bk1l81llox+ Bk1l8117x+ Bk1l8118x+ Bk18119x)

svmat Bk18 lall

matrix list Bk18 1lall

Bkl911lx
Bkl912x

mkmat sxll 1 sxl1l 2 sx11 3 sx11 4 sx11 5 sx11 if tk==19, matrix ( )
mkmat sxl2 1 sx12 2 sx12_ 3 sx12 4 sx12 5 sx12_ if tk==19, matrix ( )
mkmat sx13 1 sx13 2 sx13 3 sx13 4 sx13 5 sx13 if tk==19, matrix (Bk1913x)
mkmat sxl4 1 sxl4 2 sx14_ 3 sx14 4 sx14 5 sx14 ir tx==19, matrix (Bkl91l4x)
mkmat sx15 1 sx15 2 sx15 3 sx15 4 sx15 5 sx15 if tk==19, matrix (Bk1915x)
mkmat sx16 1 sx16 2 sx16 3 sx16 4 sx16 5 sxl6  if tk==19, matrix (Bkl9lé6x)
mkmat sx17 1 sx17 2 sx17_3 sx17_4 sx17 5 sx17_ if tk==19, matrix (Bkl917x)
mkmat sx18 1 sx18 2 sx18 3 sx18 4 sx18 5 sx18  if tk==19, matrix (Bkl918x)
mkmat sx19 1 sx19 2 sx19 3 sx19 4 sx19 5 sx19 if tk==19, matrix (Bk1919x)
mkmat sx110_ 1 sx110 2 sx110_3 sx110_4 sx110_5 sx110 6 if tk==19,

matrix (Bk19110x)

mkmat sxl11l 1 sx111 2 sx111 3 sx111 4 sx111 5 sx111 6 if tk==19,

matrix (Bk19111x)

mkmat sx112 1 sx112 2 sx112_ 3 sx112 4 sx112 5 sxl112 6 if tk==19,

matrix (Bk19112x)

mkmat sx113 1 sx113 2 sx113_3 sx113 4 sx113 5 sx113 6 if tk==19,

matrix (Bk19113x)

mkmat sx114 1 sx114 2 sx114_ 3 sx114 4 sx114_5 sxl114_6 if tk==19,

matrix (Bk19114x)

mkmat sx115 1 sx115 2 sx115 3 sx115 4 sx115 5 sx115 6 if tk==19,

matrix (Bk19115x)

mkmat sx116 1 sx116 2 sx116_3 sx116_4 sx116_5 sxll6_6 if tk==19,

matrix (Bk19116x)

mkmat sx117 1 sx117 2 sx117_3 sx117 4 sx117 5 sx117_6 if tk==19,

matrix (Bk19117x)

mkmat sx118 1 sx118 2 sx118 3 sx118 4 sx118 5 sx118 6 if tk==19,

matrix (Bk19118x)

mkmat sx119 1 sx119 2 sx119 3 sx119 4 sx119 5 sx119 6 if tk==19,

matrix (Bk19119x)

matrix Bkl9_lall:(1/ll38)*( Bk1911x+ Bk1912x+ Bk1913x+ Bk1l914x+ Bk1915x+
Bk1916x+ Bk1917x+ Bk1918x+ Bk1919x+ Bk19110x+ Bk1l9111lx+ Bk19112x+ Bk19113x+
Bk19114x+ Bk19115x+ Bk1l911l6x+ Bk19117x+ Bk19118x+ Bk19119x)

svmat Bkl9 lall

matrix list Bk1l9 1lall

matrix B= Bkl lall+ Bk2 lall+ Bk3 1lall+ Bk4 lall+ Bk5 lall+ Bk6_lall+ Bk7 lall+
Bk8 lallt Bk9 lall+ BklO lall+ Bkll lall+ Bkl2 lallt Bk1l3 lall+ Bkl4 lallt

Bk1l5 lall+ Bk1lé6 lallt Bkl7 1lallt Bk18 1lallt Bk1l9 lall
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svman B

matrax lisat B

MATE1X covbeta= seinvA*B* =einvh
svmat covbeta

matrix lizt covhota

Bootstrap estimates of the standard errors for the coefficients and the mean for Lin {2000)
using multiple time intervals

For coavestional (Similarly for intenzive)
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sort ukno year
by ukno year: gen constx=sum(const)
sort ukno year constx

gen Zi=const 1f constx==

replace Zi=age 1if constx==
replace Zi=bmi if constx==
replace Zi=fpg if constx==4
replace Zi=race 1if constx==
replace Zi=sex 1if constx==

move Zi age

move constx age entr

move const age

drop age_ entr maxyear gender
sort ukno year constx

gen ZiO_ZiOp=Zi*const

gen Zil Zilp=Zi*age

gen Zi2 Zi2p=Zi*bmi

gen Zi3 Zi3p=Zi*fpg

gen 7Zid4 Zidp=Zi*race
gen Zi5 ZiSp=Zi*sex

gen wziO ZiOp= ( dik star/ GTik_star)* Zi0_ZiOp
gen wzil zilp= ( dik_star/ GTik_star)* Zzil zilp
gen wzi2 Zi2p= ( dik star/ GTik_star)* Zi2_Zi2p
gen wzi3 Zi3p= ( dik star/ GTik star)* Zi3 Zi3p
gen wzi4 Zidp= ( dik star/ GTik star)* Zid4 Zidp
gen wzi5 Zib5p= ( dik star/ GTik_star)* Zi5_Zi5p

egen swZiO_ZiOp=sum(wzZiO_ ZiOp) , by (tk constx
egen swzil Zilp=sum(wZil Zilp), by(tk constx
egen swzZi2 Zi2p=sum(wzi2 Zi2p) , by (tk constx
egen swZzi3 Zi3p=sum(wzZi3 Zi3p) , by (tk constx
egen swzi4 Zidp=sum(wzid4 Zidp), by (tk constx

)
)
)
)
)
egen swzib ZibSp=sum Wzi5 Zi5p) , by (tk constx)

gen wYikZi=( dik _star/ GTik star)* Mik*Zi
egen swYikZi=sum(wYikZi), by (tk constx)
sort ukno tk constx

collapse meanage meanbmi meanfpg meanrace meansex swYikZi swZzZiO_ ZiOp swZil Zilp
SWZi2 Zi2p swZzZi3 Zi3p swZzi4 Zidp swZi5 Zi5p, by (tk constx)

sort tk constx

mkmat swZiO ZiOp swZil Zilp swZi2 7Zi2p swZi3 Zi3p swZid4 Zidp swzib5 Zib5p if
tk==1, matrix(bklterml)

mkmat sw¥ikzZi if tk==1, matrix(bklterm2)
matrix betakl=syminv (bklterml)*bklterm2

svmat betakl
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mkmat swziO ZiOp swZil Zilp swzZi2 Zi2p swZi3 Zi3p swZid4 Zidp swzi5 Zibp if
tk==2, matrix (bk2termi)

mkmat sw¥Yikzi 1if tk==2, matrix (bk2term2)
matrix betak2=syminv (bk2terml) *bk2term2
svmat betak?2

mkmat swZiO ZiOp swzil Zilp swZzi2 Zi2p swZzZi3 Zi3p swzid4 Zidp swZi5 Zibp if
tk==3, matrix (bk3terml)

mkmat sw¥ikzi if tk==3, matrix (bk3term2)
matrix betak3=syminv (bk3terml) *bk3term?2
svmat betak3

mkmat swziO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swzid4 Zidp swzi5 Zibp if
tk==4, matrix (bkdtermi)

mkmat sw¥ikzi 1if tk==4, matrix (bkdterm2)
matrix betak4=syminv (bk4termi)*bkdterm2
svmat betak4

mkmat swziO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZzid4 Zidp swzi5 Zibp if
tk==5, matrix (bkStermi)

mkmat sw¥ikZzi if tk==5, matrix{bk5term2)
matrix betakb5=syminv (bk5terml)*bk5term2
svmat betakb

mkmat swziO ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZzid4 Zidp swzi5 Zibp if
tk==6, matrix (bkdterml)

mkmat sw¥YikZzi if tk==6, matrix (bko6term2)
matrix betak6=syminv (bkdoterml) *bk6term2
svmat betakod

mkmat swziO ZiOp swzil Zilp swZi2 Zi2p swZi3 Zi3p swzid4 Zidp swzi5 Zibp if
tk==7, matrix (bk7terml)

mkmat sw¥ikzi if tk==7, matrix (bk7term2)
matrix betak7=syminv (bk7termi)*bk7term2
svmat betak?

mkmat swziO ZiOp swzil Zilp swZi2 Zi2p swZi3 Zi3p swzi4 Zidp swzi5 Zibp if
tk==8, matrix (bk8terml)

mkmat sw¥ikzi if tk==8, matrix (bk8term2)
matrix betak8=syminv (bk8terml) *bk8term2

svmat betak8
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mkmat swzZ2iO ZiOp swzil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZzZib ZibSp if
tk==9, matrix(bk9terml)

mkmat sw¥ikZi 1if tk==9, matrix (bk9term2)
matrix betak9=syminv (bk9terml)*bk9term2
svmat betak9

mkmat swZiO ZiOp swZil Zilp swZi2 Zi2p swZi3 7Zi3p swZi4 Zidp swzib ZibSp if
tk==10, matrix (bklOterml)

mkmat sw¥ikzi if tk==10, matrix (bklOterm2)
matrix betaklO=syminv (bklOterml) *bklOterm2
svmat betaklO

mkmat swZiO ZiOp swZil Zilp swZi2 7Zi2p swZi3 7Zi3p swZi4 Zidp swZzZib ZibSp if
tk==11, matrix(bkllterml)

mkmat sw¥ikZi if tk==11, matrix(bkllterm?2)
matrix betakll=syminv (bkllterml) *bkllterm?2
svmat betakll

mkmat swzZ2iO ZiOp swzil Zilp swZi2 Zi2p swZi3 7Zi3p swZi4 Zidp swzib ZibSp if
tk==12, matrix (bkl2terml)

mkmat sw¥ikzi 1if tk==12, matrix(bkl2term?)
matrix betakl2=syminv (bkl2termi)*bkl2term2
svmat betakl2

mkmat swZ2iO ZiOp swzil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZzZib ZibSp if
tk==13, matrix(bkl3terml)

mkmat swYikZi if tk==13, matrix(bkl3term2)
matrix betakl3=syminv (bkl3termi)*bkl3term2
svmat betakl3

mkmat swzZ2iO ZiOp swzil Zilp swZi2 Zi2p swZi3 7Zi3p swZi4 Zidp swZzZib ZibSp if
tk==14, matrix(bkldterml)

mkmat sw¥ikZi if tk==14, matrix(bkldterm?)
matrix betakl4d=syminv (bkl4termi)*bkldterm2
svmat betakl4

mkmat swZ2iO ZiOp swZil Zilp swZi2 7Zi2p swZi3 7Zi3p swZi4 Zidp swZzZib ZibSp if
tk==15, matrix (bkl5terml)

mkmat sw¥ikzZi if tk==15, matrix(bkl5term?2)
matrix betaklb=syminv (bkl5terml) *bkl5term?2

svmat betakl)
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mkmat swzZiO_ ZiOp swZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZzib ZibSp if
tk==16, matrix (bkl6terml)

mkmat swYikZzi if tk==16, matrix (bkl6term2)
matrix betakl6=syminv (bkl6terml) *bkloterm?2
svmat betakl6

mkmat swZiO ZiOp swZzil Zilp swZzZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZzZib ZiSp if
tk==17, matrix(bkl7terml)

mkmat swYikZzi if tk==17, matrix(bkl7term2)
matrix betakl7=syminv (bkl7terml) *bkl7term?2
svmat betakl?

mkmat swZiO ZiOp swZzZil Zilp swZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZzZib5 ZiSp if
tk==18, matrix (bkl8terml)

mkmat sw¥ikZi if tk==18, matrix (bkl8term2)
matrix betakl8=syminv (bkl8termi)*bkl8term2
svmat betakl8

mkmat swZiO ZiOp swZzil Zilp swZzZi2 Zi2p swZi3 Zi3p swZi4 Zidp swZzZib ZiSp if
tk==19, matrix(bkl9terml)

mkmat swYikZi if tk==19, matrix(bkl9term2)

matrix betakl9=syminv (bkl9terml) *bkl9term?2

svmat betakl9

matrix
beta=betakl+betak2+betak3+betakd+betakb+betakb+betak7+betak8+betak9+betaklO+beta
kll+betakl2+betakl3+betakld+betakl5+betaklot+betakl7+betakl8+betakl9

svmat beta

matrix list beta

gen bOx=betal if tk==1 & constx==
egen bO=min (bOx)

gen blx=betal if tk==1 & constx==2
egen bl=min (blx)

gen b2x=betal if tk==1 & constx==3
egen b2=min (b2x)

gen b3x=betal 1if tk==1 & constx==
egen b3=min (b3x)

gen bidx=betal if tk==1 & constx==5
egen b4=min (b4dx)

gen bSx=betal if tk==1 & constx==
egen b5=min (b5x)
gen meancost= bO+bl* meanage+b2* meanbmi+b3* meanfpg+b4* meanrace+b5* meansex
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tempname vyl
summarize bO, meanonly
scalar 'yl'=r (mean)

tempname y2
summarize bl, meanonly
scalar 'y2'=r (mean)

tempname y3
summarize b2, meanonly
scalar 'y3'=r(mean)

tempname vy4
summarize b3, meanonly
scalar 'y4'=r(mean)

tempname yb5
summarize b4, meanonly
scalar 'y5'=r(mean)

tempname yo6

summarize b5, meanonly
scalar 'y6'=r(mean)

summarize meancost, meanonly

post '1' (‘y1" ('y2') ('y3"') ('vd'") ('y5") ('y6') (r(mean))
end

k k
end of do-file
set seed 1001

bstrap pannual, reps (1000) dots cluster (uknoO) idcluster (ukno) saving
(C:\Desktop\Lin2000\bs convannuall000.dta)



