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Abstract
This thesis studies copula applications to correlation products. There are six self-contained but 
related projects in this research, with the following objectives: 1) to review reduced-form approaches 
to model the default process of a single-name obligor and their extension to model the joint 
distribution of defaults in a portfolio of obligors; 2) to set up the CDO market; 3) to introduce 
copulae and to provide a justification of copulae as modelling tools; 4) to provide with our view 
regarding the most suitable copula when modelling complex correlation products; 5) to prepare a 
time-inhomogeneous intensity model for valuing cash-flow CDOs, which explicitly incorporates the 
credit rating of the firms in the collateral portfolio as the indicator of the likelihood of default; 6) to 
prepare a pricing model for CDOs of EDSs.

We found strong evidence that the Clayton copula is a suitable tool when modelling 
correlation products with Li’s Survival model. The Clayton copula had some important 
consequences: we noticed a redistribution of losses from the Junior note to the Mezzanine and 
Senior notes; in addition, it picked up some extra risk in the Senior note, and finally, when compared 
with the Normal copula, it overestimated the fair compensation of the Senior and the Mezzanine 
notes and underestimated the fair compensation of the Junior note. We also found the Clayton copula 
was very adaptable into the dynamic copula framework of Schonbucher and Schubert.

Modelling the notes of cash-flow CDOs with copulae and time-inhomogeneous transition 
matrices has not been an easy task. This is because the computation of the transition matrices for 
arbitrary periods of time was based on an annual transition matrix. In addition, this matrix, as most 
of the empirical annual transition matrices, was not compatible with a continuous Markov process 
since it did not admit a valid generator. Therefore, we computed a modified version of a true 
generator. Following this, we successfully applied one method, originally advanced by JLT (1997), 
to calibrate the adjusted matrix to the S&P’s probabilities of default. Finally, we described how to 
simulate the credit rating migration of one single credit, and how to join n -credit rating migrations 
via the Normal copula. Modelling the collateral credit risk in this way is very powerful, since it 
allowed us to take into account quality trigger linked to the rating-performance of the collateral and 
to keep the model of the joint credit rating migrations, totally separate with copulae. For example, 
when there are performance triggers linked to the collateral average rating, our Rating Transition 
Copula model perfectly captures the diversion of cash from the interest waterfall to the principal 
waterfall for the benefit of the Senior and Mezzanine notes.

To price single-name Equity Default Swaps and CDOs of Equity Default Swaps, we extended 
the GARCH option framework of Duan (1995). Volatility of the underlying equity price is the 
critical factor affecting option prices, and in our EDS model, the variance of the equity return 
followed a nonlinear GARCH in mean. When pricing single-name EDS, we proposed two nonlinear 
GARCH in mean (NGARCH-M): normal and /-Student NGARCH-M model. As a benchmark, we 
assumed that the equity returns moved accordingly to the standard homoskedastic lognormal process 
of Black & Scholes and priced the single-name EDS with the Rubinstein and Reiner model for 
binary barrier options. The problem we found with this approach was that the implied volatilities for 
very deep out-of-the-money put options were not available. When the volatility was modelled as a 
GARCH process, it was not possible to derive the future distribution of the underlying equity. 
Therefore, our model relied on Monte Carlo simulations. To ensure that the simulated option price 
did not violate rational option pricing bounds, we used the empirical martingale simulation originally 
advanced by Duan and Simonato, coupled with the standard variance reduction technique. To 
address the issue of how to price a basket of EDSs, we resorted to the concept of copula. With 
copulae, we were able to decouple the pricing problem: keeping the aspect of modelling the marginal 
distribution of the equity returns via NGARCH-M, totally separate from addressing the dependence 
problem.
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Chapter 1: Credit risk literature review

1.1 Background of the study

1.1.1 Before copulae

In recent years, banks and other financial institutions have completely changed the way they see 

credit risk. Traditionally, a loan would remain on the bank balance sheet until it matured or it 

defaulted. There was little scope to efficiently price a loan, as there was no efficient way to transfer 

the credit risk to another party via capital markets. Whether or not a loan was mis-priced was not 

possible to determine with certainty, as there was not a transparent market where credit risk could be 

traded.

With the introduction of credit derivatives, all this has changed. Credit derivatives allow 

banks to synthetically lay-off loans from their balance sheets, while keeping the business relationship 

with the obligor. This process is called securitisation.

Using credit derivatives, banks were initially allowed to exploit loopholes in the regulatory 

discipline of Basel I. The new Basel II tries to correct and remove some of the arbitrages between 

banking businesses that Basel I brought. It is still too soon to foresee the effect that, the new 

regulation will have on the banking businesses. However, as advanced banks will be allowed to use 

their internal credit risk models to measure their economic capital, we can reasonably expect a boost 

towards an active credit risk management.

More importantly, credit derivatives allow banks and other financial institutions to buy and 

sell credit risk. Schonbucher (2003) says credit is now a traded asset. However, the trading credit 

risk market is still far from becoming an efficient location to price credit risk in all its forms. We 

believe, Schonbucher’s observation is correct for some credit products, such as credit default swaps 

(CDSs), but incorrect for correlation products, such as CDOs, as they do not enjoy the same level of 

liquidity.

Although intensity based models are now widespread and commonly used to price contingent 

claims dependent on the default process of one single obligor, such as CDSs, literature is still 

evolving with regard to correlation products. The most obvious way of adding correlation is by 

imposing correlation on the default intensities of the obligors. However, extensive research proves 

that, if the default dynamics are modelled as a pure diffusion process, the order of the default 

correlation that can be reached is just too small (Schonbucher (2003), Jouanin et al. (2001) and 

Rogge and Schonbucher (2003)).
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There have been attempts to correct the low-correlation problem: joint jumps in the default 

intensities and joint defaults. The possibility of joint jumps in the default intensities allows reaching 

any degree of default correlation. A good example is Duffie and Garleanu (1999) who modelled the 

obligors default intensities as affine jump-diffusion processes. The issue with this model is the poor 

analytical tractability, particularly when the model needs to be calibrated to actual CDS spreads. 

Moreover, it is also difficult to analyse the joint loss distribution implied to this model.

Alternatively, joint defaults models cause joint defaults of several obligors at the same time. 

Examples of this approach are Duffle and Singleton (1998), Davis and Lo (2000) and Jarrow and Yu 

(2001). The former model becomes very impractical as the number of obligors in the reference 

portfolio grows. The basic idea behind the two other models is the phenomenon called default 

contagion, that is, the default of one obligor causes a jump in the default intensities of other obligors. 

This phenomenon is frequently observed in the market: for example, the default of Enron and the 

financial crises in the Asian markets in the late 1990’s. The problem of these models is how to 

achieve a calibration. With Jarrow and Yu model, we also face the problem of selecting those 

primary obligors whose default status triggers the default of secondary obligors.

To date, when adapting structural models to capture default dependence, financial literature 

has relied on a natural extension of, either Merton type models, or Black and Cox type models. Two 

examples are KMV (1998) and CreditMetrics (Gupton, Finger and Bhatia (1997)). Yet, these models 

cannot be adapted to price modem financial products such as correlation products. This is because 

they are essentially static models and cannot capture timing risk of default (Rogge and Schonbucher 

(2003)), which is very important when managing CDOs. They also cannot be calibrated to CDS 

spreads and thus, cannot be used for hedging purposes. Finally, they assume that the joint loss 

distribution of a portfolio of obligors is Gaussian, and therefore, fail to capture key modem features 

of risk management, such as tail dependence, which is very important in pricing senior notes.
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1.1.2 Correlation products: the CDOs market

CDOs are typically diversified portfolios of debt collateral, which include corporate debts, 

commercial and residential mortgages, equities and other asset-backed securities. They are offered in 

response to banks, insurance companies and fund managers who wish to efficiently redistribute and 

transfer or speculate on credit risk.

In a typical CDO structure, the originator, also called the sponsor, sells a portfolio of debt 

instruments, or transfers their credit risk, to a special purpose vehicle (SPV) and takes an equity 

interest. The SPV funds the purchase of the portfolio through issuing prioritised notes: senior, 

mezzanine and junior notes. Senior notes are usually purchased by relatively risk-averse investors 

and are repaid before the mezzanine and the junior notes. Any remaining cash is paid to the equity 

holders. CDOs are usually distinguished as cash-flow CDOs and synthetic CDOs (or synthetics).

In general, cash-flow CDOs are difficult to compare, as they provide large flexibility in 

arranging deals, ranging from subordination, quality of the collateral, trigger tests, diversity, spread 

trapping mechanisms and turbo repayment features. This is why simple models cannot cope with the 

huge complexity of CDOs.

Synthetic CDOs on the other hand, just as nth to default baskets, do not contain the same 

degree of structural protection available to the note holders. For these deals, the main element to 

consider is how the loss materialises while the deal ages. Hence, correctly modelling dependence 

within the reference portfolio is paramount, so that mis-pricing a deal through unrealistic 

assumptions on the dependence structure can be avoided.

In practice, a CDO can be seen as a portfolio of credit default swaps (CDSs) and to manage 

these products, an accurate understanding of the market price dynamics of CDSs is needed, as well 

as the ability to capture their default dependency in a realistic manner.

More recently, financial markets have witnessed the development of standardised synthetic 

CDOs, such as CDX.NA.IG (125) and CDX.NA.HY (100). They are essentially buying and selling 

notes of synthetic corporate CDOs, where each note has a different sensitivity to correlation within 

the reference corporate portfolio. A way of looking at this new CDO is as options on portfolio losses 

(McGinty et al. (2004)) with a payoff dependent on default time correlation. In particular, when we 

look at the equity piece, its premium is insensitive to default time correlation. This is because, when 

increasing default time correlation, the defaults cluster together, but only few defaults are needed to 

trigger a principal loss. On the contrary, senior notes are in essence deep-out-the money options, as 

their payoff depends upon the risk that losses will cluster in the future, which is seen by many as a 

very unlikely event.

The effect of this latest imiovation in the CDO market is that correlation is now a tradable 

asset, and hence it is market-priced.
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The complex nature of CDOs means that rating agencies play a key role as gatekeepers in this 

market (Perraudin (2004)).

1.1.3 What are copulae?

Copulae describe the interdependence between various random variables. They are a powerful and 

flexible way to describe dependence between risk components. Using copulae enables to keep the 

model of the marginal distribution of variables, independent of the model of the dependence between 

the same variables.

Copulae also allow dropping the assumption of joint normality and highlighting the pitfalls 

behind the use of linear correlation. They have become an unavoidable modelling tool, for valuing 

securitised products, such as CDOs and Asset Backed Securities in general, where modelling co-

movements between non-normal variables may be very relevant.

The concept of copula was first introduced by Sklar (1959) and studied by many other authors 

such as Nelsen (1999) and Joe (1997). They have been first applied to multidimensional problems 

related to credit risk. They are currently finding their way as modelling tool in the equity options 

area, to confirm their flexibility. In this thesis, we will use copulae to price baskets of CDSs and of 

equity default swaps as well.

1.1.4 Modelling correlation products with copulae

A classical assumption used for modelling credit risk in portfolios of obligors, is that the joint 

distribution between the given individual risks or marginal distributions, can be represented with the 

Normal distribution. When a copula joins the marginal distributions via the Normal distribution, we 

talk of Normal copula. However, not all individual risks, when pooled together to form a portfolio, 

are likely to behave in a Normal distribution fashion. Moreover, when the joint Normal distribution 

is assumed, we fail to catch important joint behaviours in the tails of the distribution, with some 

relevant consequences on the prices of correlation products.

With copulae, we are given plenty of their families. As well as the Normal copula, there are 

also the i-Student copula, the Clayton copula, the Gumbel copula, and many others. Consequently, 

copulae are flexible tools to produce richer dependences between marginal distributions, than the 

one produced by the Normal copula.

The Normal copula is often considered the natural assumption, especially if we consider that 

the credit market lacks of data on the dependence, to motivate the use of an alternative copulae. Yet 

the reason in practise financial institutions select the Normal copula is motivated by its easy 

tractability, especially under Monte Carlo simulations. For this reason, the Normal copula has
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become the standard tool to price standardised synthetic CDOs and baskets of CDSs today. It is too 

often neglected that by assuming a different copula, the price of these products would inevitably 

change.

It is standard approach to use the Normal copula to price correlation products in a fashion, 

which is consistent with a set of initial term structures of intensity rates. It is further assumed that 

those intensities do not change at future dates. To appreciate all consequences that the choice of a 

copula has on future survival rates, it is necessary to analyse the copula dynamics. For example, 

what happens to the credit spreads and to the premiums of CDO notes when few credits in the 

reference portfolio default. Hence, addressing the correct copula dynamics is clearly very important 

for hedging.

1.1.5 Copulae, rating transition matrices and cash-flow CDOs

Cash-flow CDOs are characterised by several waterfall triggers linked to different performance 

statistics of the collateral. When they are triggered, they divert cash due to pay the interests of the 

junior notes to accelerate the amortisation of the senior notes. One of the most frequent waterfall 

trigger is the one linked to the credit ratings of the firms in the collateral portfolio.

Credit rating transitions have been modelled in the past as a finite Markov chain, which 

assumes that, the credit rating changes from one rating to another at given time intervals with a 

certain probability. Due to the Markov property, the probabilities of future credit rating only depend 

on the current rating. Jarrow, Lando and Turnbull (1997) were the first to develop a Rating 

Transition (RT) model, where the credit rating classes evolve according to time-homogeneous and 

time-inhomogeneous Markov process.

Transition matrices can be obtained by the three main rating agencies, Moody’s, Fitch and 

S&P. However, transition matrices published by rating agencies are not suited for valuing default- 

risky financial instruments, since they are typically available only for annual frequencies, with the 

shortest period being one year. Many financial instruments have maturities shorter than a year, and 

thus require transition matrices over arbitrary time horizons.

The approach that obtains transition matrices of any arbitrary time horizons involves 

embedding the discrete-time Markov chain into a continuous-time Markov process (Kingman 

(1962)). Solving the embedding problem essentially means to find a generator matrix (Kreinin and 

Sidelnikova (2001)). The extra complexity in the valuation of a default-risky financial instrument 

with a rating agency transition matrix is the fact that the rating agency transition matrix is not 

compatible with a continuous-time Markov process.

Copulae are the perfect tool to address the issue of modelling migration dependence. To date, 

copula research has been focused on modelling joint defaults and it has lacked of the same interest 

towards modelling joint rating migrations, with some few exceptions such as Hamilton, James and
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Webber (2001). However, because under the new banking regulation (BIS (2004)), capital 

requirements are driven in part by rating migrations, we foresee an increase of interest in combining 

copulae with the rating migration models.

There is also lack of copula application on modelling the actual legal structure of cash-flow 

CDOs. The large part of current research is on synthetic CDOs, where calculating the joint loss 

distribution of the reference portfolio is sufficient to infer the loss distribution of the CDO notes. 

Cash-flow CDOs represent a substantial portion of the CDO universe, hence addressing the correct 

modelling approach is clearly very important.

1.1.6 Copulae, NGARCH-M and equity default swaps

Equity default swaps (EDSs) are similar to CDSs as the protection buyer makes regular payments 

and receives a payment from the protection seller should a trigger event happen. The difference lies 

in how the occurrence of the trigger event is determined. In the CDS the trigger event occurs when 

the reference entity defaults, whereas, in the EDS the trigger event is defined as the drop in the 

equity price of the reference equity below a specified percentage of the equity price, called the 

trigger value, at the beginning of the trade.

While any combination of the trigger value and the recovery rate can be considered, the 

current EDS market seems to be in favour of a trigger value of 30% and a recovery rate of 50% of 

the notional amount. In this respect, EDSs are similar to path-dependent deep-out-of-the money 

equity digital options. Unlike digital options where the premium is paid up front, the premium of the 

EDS is spread until it matures.

EDSs have found their way onto the CDO market. They are structured as single-tranche 

CDOs and are privately rated by Moody’s, S&P or Fitch. They are different from baskets of deep- 

out-of-the money equity digital options because the others have never been rated by a rating agency. 

The rating is the prerequisite to bring new CDOs of EDSs to the credit investors and in our view is 

the key factor for a much larger market for EDSs. Moody’s (2004), S&P (2004) and Fitch (2004) 

consider the depth of historic data available on the equity markets as the main advantage for the 

rating process, and look at the past volatility of the equity returns as the main variable for the rating.

It seems natural that the large amount of work researchers have put into modelling the 

volatility of equity and index returns should also be very relevant for modelling the prices of EDSs, 

since the default leg and the premium leg of an EDS are linked to the performance of the reference 

equity or index. It is well documented in the literature that the equity returns possess properties such 

as fat-tails, volatility clustering and time-varying variances. Following the path-breaking paper by 

Engle (1982), a new literature has focused on autoregressive conditional heteroskedasticity (ARCH) 

models. Bollerslev (1986) and Taylor (1986) proposed the generalised ARCH (GARCH), Nelson
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(1991) the exponential GARCH (EGARCH), Engle and Ng (1993) the nonlinear GARCH 

(NGARCH).

With reference to the application of GARCH in the option pricing area, Duan (1995) 

developed a risk-neutral model within the GARCH framework. He characterised the transition 

between the actual and the risk-neutral probability distributions if the dynamic of the underlying 

equity price is given by a GARCH process, and thus established the foundation for the valuation of 

options under GARCH. His model is also called nonlinear GARCH in mean (NGARCH-M).

Stochastic volatility models are alternative methods to GARCH to model the time-varying 

nature of the equity return volatility. It is in the estimation exercise that GARCH models have a 

distinct advantage over stochastic volatility models. Because the volatility of the equity prices is not 

easily observable, rather it has to be implied from current option prices, the implementation of a 

stochastic volatility model is a very difficult task. In contrast, GARCH models have the advantage 

that the volatility is observable from the history of equity prices, without requiring any information 

on option prices. Heston and Nandi (2000) emphasised that with GARCH models only a finite 

number of parameters need to be estimated regardless of the length of the time series. Option pricing 

applications under GARCH also benefit from the fact that they are relatively easy to re-estimate. 

Whereas, for stochastic volatility models, it may not be realistic to repeat the estimation procedure 

on a rolling basis, as new option prices become available.

Copulae are the natural tools to model dependence within a CDO of EDSs. Brownian motion 

frameworks have been used to model multivariate option prices for a very long time. In the past, the 

dependence among equity returns has been represented by a multivariate normal distribution, where 

correlation has been the measure of dependence. More recently, Cherubini and Luciano (2002) 

addressed the issues of non-normal returns, and the dependence in the multivariate contingent 

pricing problem, was addressed using copulae. Van den Goorbergh and Genest (2004) used a 

dynamic copula model to price multivariate options where the dependence structure between two 

asset prices is time-varying over time and expressed with copulae. None of these authors linked 

copulae to a NGARCH-M pricing model.

1.1.3 The problem statement

This thesis investigates copula applications on correlation products. In order to present the results in 

a meaningful and manageable manner, six self-contained but interrelated chapters are included in 

this thesis. In this section, we will state the objectives for each of them separately.
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1.2.1 Objective of chapter 1

Chapter 1, entitled “Credit risk literature review”, is a review of current structural and reduced-form 

approaches to model the default process in the case of a single obligor, and of literature efforts to 

extend reduced-form approaches to model the joint distribution of default times in a portfolio of 

obligors. The chapter is heavily weighted towards reduced-form models, as they are the most 

popular class of credit derivative pricing models, they are easily calibrated to market prices and they 

provide realistic dynamics of default-risky bonds. We also investigate how to implement them under 

a variety of different approaches: Cox et al. (1985), Heath et al. (1992), numerical trees and PDEs 

based. Before closing the chapter, we will cover attempts to extend them to the multi-obligors case. 

Our objective is to help navigate in the reduced-form modelling literature, before moving to copula- 

base models, where reduced-form models have found new applications.

This chapter also establishes the background of the research, highlights the problems, explains 

the significance and outlines the structure of the thesis.

1.2.2 Objectives of chapter 2

Chapter 2, entitled “A survey of CDOs and their use in bank balance sheet management”, aims to 

describe the nature of typical CDOs in detail, and to explain different categories of transactions and 

features in the CDO market. In particular, we show why it is important to distinguish between cash-

flow and synthetic CDOs. The distinction will motivate using two different pricing models for the 

two categories and are prepared in chapter 4 and 5.

The second objective is to show the rationale behind different transactions. Thirdly, this 

chapter helps understanding the universe of buyers in the CDO market: who should consider 

investing in CDOs, and who should not do so. Fourthly, as rating agencies have acquired, in the 

structured products market, the important role of ensuring that the transaction is constantly 

monitored, we review one of the rating agencies cash-flow CDO model with which the CDO notes 

are rated.

1.2.3 Objectives of chapter 3

Chapter 3, entitled “Copulae”, has as objective to introduce copulae and to provide a justification of 

copulae as modelling tools. By the end of this chapter, it will be become apparent why linear default 

correlation is not a canonical measure of dependence between random variables, whereas copulae, 

along with Kendall’s tau, Spearman’ correlation and tail dependence, provide a much more flexible 

way to represent market co-movements and dependence.
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1.2.4 Objectives of chapter 4

The objective of this chapter, with title “Modelling correlation products with copulae”, is to provide 

with our view regarding the most suitable copula when modelling complex correlation products, 

such as nth to default. To do so, we review the solutions proposed in the financial literature to the 

problem of extending intensity-based models to the multivariate case via several different copulae. 

By modelling different real-life transactions, we want to draw conclusions regarding how the prices 

of senior, mezzanine and junior notes would change when different copulae are used in place of the 

Normal copula. Furthermore, we want to measure how their prices would change when modelling 

with dynamic copulae.

1.2.5 Objectives of chapter 5

The objective of chapter 5, entitled “Structuring and rating cash-flow CDOs with rating transition 

matrices” is to prepare a time-inhomogeneous intensity model for valuing cash-flow CDOs, which 

explicitly incorporates the credit rating of the firms in the collateral portfolio as the indicator of the 

likelihood of default. Our model can prove very useful for the pricing, structuring, rating and risk 

management of CDO notes, whenever the legal structure of the transaction, includes waterfall 

triggers linked to the credit ratings of the firms in the collateral portfolio. If the waterfall triggers are 

breached, they divert cash due to pay the interests of the junior notes to accelerate the amortisation 

of the more senior notes. For this reason, we believe that in order to measure the risk and value of 

the CDO notes, it is necessary to combine a credit risk model with the exact cash-flow waterfall 

model of the given structure.

To reach our objective, we firstly need to model the rating transition process of each single 

obligor in the portfolio according to a set of time-inhomogeneous transition matrices, calibrated to 

historical default probabilities. Only then, to address the issue of modelling migration dependence, 

we rely on the concept of copula.

The algorithms developed by Lando (1998a) and Israel, Rosenthal and Wei (2001) will be 

very useful for preparing the transition matrices to feed our cash-flow CDO model.

1.2.6 Objectives of chapter 6

Chapter 6, entitled “Pricing and rating CDOs of equity default swaps with NGARCH-M copulae” 

has the objective of preparing a pricing model for CDOs of EDSs. The pricing model that we want to 

develop must be capable of replicating the observed equity return properties such as fat-tails, 

volatility clustering and time-varying variances.
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To model the single-name EDS we will use a nonlinear GARCH in mean (NGARCH-M). The 

dependence within a CDO of EDSs is modelled via copulae.

1.3 The significance of the study

The first three chapters are introductory studies to develop the framework within which the research 

of chapter four to six will fall. In what follows, we explain the research significance of chapters 4, 5 

and 6.

1.3.1 The significance of chapter 4

The first application of copulae for pricing baskets of credits is attributed to Li (1999 and 2000). He 

proposed the Survival copula to model the joint default dependency in the collateral portfolio of 

credits. Finger (2000) was the first to compare the results of the Li’s Survival model with the Merton 

model. In his work, he joined the times of default of homogeneous credits with the Normal copula. 

He found that the Survival model tends to underestimate the expected loss of the junior loss note and 

overestimate the expected loss of the mezzanine and senior notes.

More recently, Meneguzzo and Vecchiato (2002), and Mashal, Naldi and Zeevi (2003) 

expanded the work of Finger and used the Li‘s Survival model with the Clayton copula and the t- 

Student copula respectively, to real-life credit portfolios. Meneguzzo and Vecchiato found that the 

Clayton copula is not useful in modelling the tail dependence of times of default. Mashal, Naldi and 

Zeevi concluded that the Normal copula would generally overestimate the 1st to default and 

underestimate the 3rd and the 2nd to default when compared with the ¿-Student copula with 12 d.o.f..

The findings of Mashal, Naldi and Zevi, and of Meneguzzo and Vecchiato puzzle us. Mashal, 

Naldi and Zevi empirically studied the application of the ¿-Student copula, with 12 degrees of 

freedom (d.o.f.) on a 1st, 2nd and 3rd to default on a five-name basket with a maturity of five years. 

Our view is that it is not possible to draw general conclusions regarding redistribution of losses from 

the 1st to default into the 2nd and the 3rd to default, only by modelling a reference portfolio of five- 

names. Therefore, we will expand their work and look for general rules, as the reference portfolio 

grows.

More importantly, Mashal, Naldi and Zevi empirical results would also suggest a 

redistribution of losses when Normal, ¿-Student and Clayton copulae are used with default time 

correlation equal to zero. In our view, when default time correlation is zero, the three copulae ought 

to calculate the same values since the times of default are not really joint together via copulae. 

Hence, we will investigate the role of correlation and the wider concept of dependence, when they 

are modelled with different copulae.

10



Chapter 1: Credit risk literature review

Meneguzzo and Vecchiato found that the Clayton copula does not appear useful. We have a 

positive expectation with regard to the Clayton copula, and want to use this chapter to explore the 

benefits of the Clayton copula when it used to price real-life transactions.

Once we have established the significance of the Clayton copula when modelling correlation 

products, we want to prove its power by showing how easy it is to extend into a dynamic copula set-

up.

1.3.2 The significance of chapter 5

The significance of this chapter, is to measure the impact of modelling credit rating transitions as 

trigger events which, when breached, divert the distribution of cash from the junior to senior notes, 

so accelerating the repayment of senior notes. No previous research has so far linked rating transition 

matrices and copulae to the actual legal structure of a cash-flow CDO. To our knowledge, this is the 

first model of cash-flow CDOs, which uses a rating agency transition matrix, publicly available that 

we successfully calibrate using historic cumulative default rates.

A further innovative feature of our research is the application of the rating transition copula 

model to determine the rating of CDO notes. The rating methodology that we want to develop is 

based on the expected losses that the holder of a rated note would suffer when investing in cash-flow 

CDO notes. Based on both the marginal and the joint probability distribution of the credit rating 

migrations, we calculate the amount of the rated debt by comparing the expected cumulative losses 

of the note with the expected cumulative losses associated with that rating category.

The rating transition copula model will be numerically compared with Li’s Survival model 

(1999 and 2000). The advantage of the Survival model is clearly the saving in the computational 

time required to perform the simulations. This is because the final time of default and not the full 

migration path until the credits mature or default is simulated. However, as we will see, with the 

Survival model, we will not be able to model correctly the interest and the principal waterfalls.

1.3.3 The significance of chapter 6

To date, there has been no known literature, which incorporates NGARCH-M, and more in general, 

GARCH, into the pricing of EDS. To illustrate our original methodology, we use two nonlinear 

GARCH-M processes: the nonlinear normal-GARCH-M (1,1) and the nonlinear i-GARCH-M (1,1). 

We will also borrow from Duan (1995) to explain the transition between the actual and the risk- 

neutral probability distributions.

Because the multi-period distribution of the nonlinear GARCH-M process in unknown, we 

need to recur to some numerical procedures. Heston and Naldi (2000) closed-form solutions for
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European options under GARCH, are not applicable in our exercise, since the EDS default payment 

can be triggered before the final maturity. Ritchken and Trevor (1999) trinomial trees to price 

American options under GARCH, could be useful only for single-name EDSs. Since our research 

deals with CDO of EDSs, the numerical scheme of Ritchken and Trevor will soon become 

impractical as the number of EDSs in the CDO grows. Hence, our model will rely on Monte Carlo 

simulations.

With reference to Monte Carlo simulations Duan and Simonato (1995) observed that the 

simulated option price violates rational option pricing bounds and hence it is not a sensible price 

estimate. The simulated path of the equity price fails to possess the martingale property even though 

the theoretical model does. As a solution, Duan and Simonato proposed a correction to the standard 

Monte Carlo technique which ensured that the simulated paths of the equity price are “empirical” 

martingales. This correction was called the empirical martingale simulation (EMS). Our EDS model 

uses Duan and Simonato EMS-Monte Carlo model, coupled with the standard variance reduction 

technique.

In our model, the dependence within a CDO of EDSs is modelled through copulae. Our 

contribution is on measuring the impact of different copula functions on the price of the same CDO 

of EDSs. We propose to use the following copulae with the EMS-NGARCH-M model: Normal, t- 

Student and Clayton.

A further innovative feature of our research is to use our model to calculate the rating of three 

CDO of EDS notes. The rating methodology that we want to develop is based on the expected losses 

that the holder of a rated note would suffer when investing in a product whose reference portfolio is 

made of EDSs. In a single-name EDS, the probability of triggering the seller payment is driven 

mainly by the time-varying volatility of the underlying equity price, exactly as for a deep-out-the 

money equity digital option the probability of expiring in the money depends on the same time- 

varying volatility. In a portfolio of EDSs, where the seller payment is triggered by any of the prices 

of the equities in the reference portfolio hitting the trigger value, the dependence between pairs of 

equity prices is another important component to analyse. Based on both the marginal and the joint 

probability distribution of the equity prices, we propose to calculate the amount of the rated debt as it 

is generally done for CDO notes, and compare the expected cumulative losses of the note with the 

expected cumulative losses associated with that rating category.

1.4 The organisation of the study

The structure of this thesis is as follows. Chapter 1 contains the literature review of credit risk. 

Chapter 2 investigates the market of CDOs. Chapter 3 introduces the concept of copulae. Chapter 4 

examines the application of different copulae to value real-life correlation products. Chapter 5 

develops a rating-transition-copula model for cash-flow CDOs. Chapter 6 explores nonlinear
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GARCH in mean and copulae to price EDS and CDOs of EDSs. Chapter 7 summarises and 

discusses the results, and suggests direction for future research.

Throughout this study, we will first present models and then apply them to real-life 

transactions. All the outputs of the numerical exercises will be given with tables and figures. The 

complete list of these tables and figures is in the Appendices.
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1.5 Literature review

In the literature of modelling the default event, a variety of alternative approaches has been explored 

to characterise the pricing equation of a default-risky bond. Using the same nomenclature adopted in 

all financial literature on default, two distinct approaches have evolved: the structural approach and 

the reduced-form approach. While in the structural approach the value of the firm is used to model 

the time of default, in the reduced-form approach the intensity of default is modelled as a jump- 

process, and the time of default is expressed as the first jump of the intensity.

Structural models try to provide the link between the credit quality of a firm and its financial 

strength. Hence, the time of default is endogenously generated within the model. Alternatively, in 

reduced-form models, the time of default is the first jump of an exogenously given jump process.

Another important difference between the two approaches is on the treatment of the recovery, 

when default happens. Reduced-form models exogenously specify recovery rates, whereas in 

structural models, the recovery value depends upon the firm’s asset and liability values, at the time 

of default.

One of the new areas in financial research is modelling the behaviour of default dependency, 

that is, the manner in which the joint likelihood of default of various obligors changes over time. An 

understanding of this phenomenon is obviously of great importance for those who want to trade or 

invest in correlation products, such as CDOs and ;?th to defaults.

Both structural and reduced-form approaches can be adapted to incorporate dependency 

among several obligors.

In the structural approach, default dependency between several obligors is easily introduced 

through asset correlation. This is the approach taken by KMV (1998) and CreditMetrics (Gupton, 

Finger and Bhatia (1997)). However, since defaults remain predictable, jumps in credit spreads 

cannot appear at all, hence these models cannot be used for pricing purposes. Moreover, they are 

essentially static models, as they model only default risk over a fixed time horizon, and do not 

capture timing risk of default. Last critique to KMV and CreditMetrics is that the joint defaults are 

only modelled in a Gaussian framework, hence it is not possible to model extreme events. In spite of 

these limitations, KMV and CreditMetrics provide important insights into the relationship between 

the firm’s fundamentals and correlated default events.

The first and most obvious way of adding correlation with reduced-form models, is to 

introduce correlation between the default intensities of the obligors.1 If this is done using only 

diffusion-based dynamics for the default intensities, the default correlation that can be reached is of 

the same order of magnitude as of the default probabilities.2 Thus, for highly good credit quality

1 In this thesis, we will use the terms of credit and obligor as synonymous.
2 In Schonbucher (2003) p. 317.
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portfolios, the degree of default correlation is just too low.3 4 This would not be acceptable for 

modelling dependence in a default-risky portfolio of highly dependent obligors, for example in the 

same industry, and with very low probabilities of default.

There are essentially two ways out of low default correlation with reduced-form models: joint 

jumps in the default intensities and joint defaults.

The possibility of joint jumps in the default intensities allows reaching high default 

correlation, in principle even perfect one, by letting all intensities jump to infinity at the same time. 

A good example is Duffie and Garleanu (1999). To impose a higher degree of default correlation, 

but still not enough, they let intensity experience correlated jumps and assumed an affine 

dependence on a set of state variables. The issue with this model is the poor analytical tractability 

and difficult calibration to market prices.

One of the first examples of joint default models is Duffie and Singleton (1998), where 

defaults are triggered by idiosyncratic as well as other regional, industry, or wide-economic shocks. 

The typical common shock, which may trigger joint defaults, is the natural catastrophe of an 

earthquake, or the liquidity systemic crisis in the banking sector. The arrival time of the default event 

of each single obligor is a homogeneous Poisson process with constant intensity. Thus, the single 

obligor time of default is exponential distributed. Likewise, the arrival times of default caused by 

common shocks are exponential distributed. In this way, if the industry shock arrives before the 

idiosyncratic shock, all obligors in the same industry would default at the same time. Other examples 

of joint default models are Kijima (2000), and Kijima and Muromachi (2000). A first critique that is 

moved to these models is how to achieve calibration. For a small portfolio of ten obligors, we 

already have 1024 possible joint default events to calibrate. A second critique relates to the non- 

realistic cluster of defaults that these models generate: joint defaults do not all happen at the same 

time. Furthermore, it should be noted that this approach find an easy and direct application into the 

Marshall and Olkin copula.

A second way of looking at joint default is via the credit phenomenon of contagion,4 which is 

the phenomenon of joint sudden and large jumps in credit spreads across several obligors (Davis and 

Lo (2001), Jarrow and Yu (2001) and Giesecke and Weber (2002 and 2003)). For example, after the 

default of Enron, several utility companies in the US experienced large upward changes in their 

credit spreads. Giesecke (2002) refers to the contagion phenomenon as “the market is re-assessing 

the default probabilities of the companies” that experience sudden change in their credit spread. The 

idea behind these models is that the default intensity of an obligor would jump upwards if another 

related obligor defaults. Essentially, every obligor’s default intensity depends on every other 

obligor’s survival, and thus also on the other obligors default intensities, which in turn depend on the

3 For a proof, see Jouanin, Rapuch, Riboulet and Roncalli (2001) p. 5.
4 So defined by Allen and Gale (2000).
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first obligor’s survival/ This is a sort of loop dependency very difficult to model. Jarrow and Yu 

(2001) simplified the loop dependency, by only modelling one-way dependency: the intensity rate of 

a secondary firm jumps at the default event of another firm, called primary firm.

A third way to include dependence, and not only correlation, among obligors is through 

copulae. We will review copulae, as modelling tools, and copula-based approaches, in the following 

chapters of this thesis.

Our objective in the rest of this chapter is to review some of the most important single-name 

reduced-form models and summarise the key features of reduced-form models when default 

dependency is added. Hence, the structure of this chapter continues as follows: in section seven we 

very briefly review structural models, in section eight and nine we introduce the reduced-form 

approach and review some single-name reduced-form models. Finally, in section ten we review two 

default dependency reduced-form models: Duffie and Garleanu (1999) and Jarrow and Yu (2001). 

Before reviewing these models, we will introduce some probabilistic notations.

1 . 6 Probability framework

The economic uncertainty is modelled via specifying a filtered probability space (Q, J * 6 7, P ) ,  where 

Q is the set of possible states of nature, J 7 = cr(j^J and P  is the actual probability

measure.6

The model for the default-free term structure of interest rate is given by a non-negative, 

bounded and J~t -adapted default-free short-rate process r{t) ,7

We also assume there are no arbitrage opportunities and there exists a risk-neutral probability 

measure Q  , equivalent to the actual probability measure P  , under which the price of a contingent 

claim, which pays no coupons or dividends, becomes a J 7 -martingale under Q t , when it is 

discounted using the saving account J3(t) given by8

Pit)  = exp jV(s)J.s ( 1. 1)

The price of a default-free zero-coupon bond is given by
f

B(t,T) = EQ Pit)
PiT)

7 ( 1.2)

3 In Rogge and Schonbucher (2003) p. 5.
6 In section 1.8, we will expand the probability space to deal with reduced-form models.
7 In Elizalde (2003) p. 3.
8 In Harrison and Kreps (1979), Harrison and Pliska (1981), and Bielecki, Jeanblanc and Rutkowski 
(2003).
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We denote the time of default as z  , the indicator function of the default event as

1 i1 r ~ t
'Tiu [0 i f  else

(1.3)

Finally, under the risk-neutral probability measure G , we indicate the distribution function 

of the time of default z  as

E Q(l{r<f}) = Gl(r < t)  w ith /> 0 (1.4)

The use of the actual or risk-neutral probability measure depends upon the final objective of 

the implementation. Generally for pricing, we will prefer the probability measure Q  , whereas, for 

risk management purposes, the probability measure P  will be our choice. Under the actual 

probability measure P  , we indicate the distribution function of the time of default z as

^ P(l{r<f})~ P̂(t  — t)  with / > 0 (1.5)

1.7 Structural models

The structural approach tries to establish a direct link between some economic fundamentals, such as

the capital structure of a firm, and the probability of downgrade or default.

It is the oldest of the pricing models of default-risky securities. It was first proposed by Black

and Scholes (1973) and subsequently expanded by Merton (1974) and Black and Cox (1976).

This type of modelling is in theory solid, with some important advantages.

(1) The link to an economic context that underlies the event of default and the clear definition of 

the default itself.

(2) An easy option price framework.

(3) A stochastic process of default linked to the firm’s asset value.

There are also some important issues.

(1) The assumption that the firm’s asset value can be observed is not realistic, since in practise, 

continuous-time observations of the firm’s asset value are not available.

(2) The assumption that the firm’s asset is a tradable security is also incorrect.

(3) It is difficult to estimate the volatility of the firm’s asset value.

(4) Since the firm’s asset value is a quantity difficult to estimate, remains unclear how to infer the 

model parameters from market data.

(5) The Merton’s original expression is easy to implement, however, it leads to unrealistic credit 

spreads that are not observed in the credit markets. Credit spreads for maturities going to zero 

are zero which means that investors do not ask for a premia, when they invest in default-risky 

bonds with very short maturity.
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Most recent contributions have added complexity to the original proposition. Zhou (1997) 

allowed jumps in the process of the firm’s asset value, which solved the problem of unrealistic low 

short-term credit spreads that are typical in all structural models.

Other models were developed to take into account the term structure of default-free interest 

rates and to model the recovery value in the event of default as exogenous and independent from the 

firm’s asset value.

The capital structure of a firm is sensitive to interest rates and it changes accordingly, 

amongst other things. There is reason to include some correlation between the credit default and the 

default-free interest rates. One of the first models that tried to find a solution to the problem of credit 

risk in presence of stochastic interest rates was Shimko, Tejima and Van Deventer (1993). As 

Merton (1974) before them, they assumed that the firm can only default at the debt maturity and the 

default can only occur when the firm’s assets are exhausted. This assumption was removed in 

Longstaff and Schwartz (1995), and in Saa-Requejo and Santa Clara (1997). Longstaff and Schwartz 

(1995) reached closed-form solutions for default-risky bond prices where the default can be 

triggered before the maturity of the debt (as in Black and Cox (1976)) and the firm’s asset value is 

correlated with stochastic default-free interest rates. Saa-Requejo and Santa Clara (1997) based their 

proposal on both Black and Cox (1976) and Longstaff and Schwartz (1995) models, and changed the 

constant default barrier into a stochastic barrier specifically assimilated in the value of the liabilities 

of the firm. Longstaff and Schwartz (1995) and Saa-Requejo and Santa Clara (1997) are special 

cases of Briys and de Varenne (1997), which is the most generic of this type of models. Briys and de 

Varenne (1997) allowed a degree of correlation between the firm’s asset value and the default-free 

interest rates, and in the event of default, both the probability of default and the recovery value are 

related to the level of the firm’s asset value.

Most recently, Duffie and Lando (2001) generated realistic credit spreads by allowing 

imperfect information. In a market place where only incomplete information is available, investors 

are not able to assess how close the firm’s asset value is to the default threshold. The default is now 

a total unpredictable event as in the reduced-form models.

The basic elements in all structural models are the firm’s asset process and the barrier process. 

We indicate with A (t) the firm’s asset value and with H (t)  the barrier value. The time of default 

is expressed in terms of the time of hitting a barrier.

Definition 1.1: The time o f default r  is typically defined in terms o f A (t) and H (t)  as follows

t  = inf{i > 0 : t e  [0, T], A(t) < H ( t) j  (1.6)

Typically, r  is an J 7 -stopping time, and since the underlying filtration J 7 in most 

structural models, is generated by a standard Brownian motion, r  is a J 7 -predictable stopping
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time. This means that with a structural model, there is a sequence of stopping times, which 

announces the time of default. In this sense, the default time is predictable.

In what follows we will only review Merton and Black and Cox model. For a review of 

Longstaff and Schwartz, Saa-Requejo and Santa Clara, Briys and de Varenne, Zhou models and 

more in general on structural models, we refer to Cossin and Pirotte (2001).

1.7.1 Merton model

To value bonds subject to default risk, Merton (1974) considered a firm, which is financed by equity 

and by zero-coupon bond. The firm’s asset value A (t) ,  under the actual probability measure P  ,

follows a ) -diffusion process given by

dA(t) = A(t)/udt + A (t)odW (t) (1.7)

where jit is the drift, a  is the volatility, and W (t) is a standard Brownian motion.

The firm has a single debt with promised terminal payoff L , interpreted as the zero-coupon 

bond with maturity T  and face value L > 0 . The firm cannot issue new senior debt and cannot pay 

dividends. There is a constant default-free interest rate r, uncorrelated with the firm’s asset value. 

Default may happen only at the maturity date T  of the default-risky zero-coupon bond, and the 

default event corresponds to {A(T) < L) .

In the Merton model, the random time of default r  and the default indicator function l {r=7.} 

are defined as

r  =
\T  i f  A(T) < L 

co i f  else

1
t = T )

[l i f  r  = T  <=> A(T) < L 

[0 i f  else

The default-risky zero-coupon bond at maturity is evaluated as

D ( T , T )  = m i n ( A ( T ) , L )

= A(T) -  max(A (T )  -  ¿,0) = A(T) -  V(T) 

which is the firm’s asset value minus equity, where the equity is V (T ) = max(y4(r) — L ,0)

( 1.8)

(1.9)

( 1. 10)

The terminal debt payoff is equivalent to owning the asset and being short a call option on the 

same asset with an exercise price equal to the face value of the debt. Thus, the equity holder is in the 

same position as the holder of a call option on the same asset, with a strike value equal to face value, 

also called book value, of the zero-coupon debt. The equity value V (t) and the debt value D (t, T)

can be found by using one of the two approaches for European derivatives. The first approach

19



Chapter 1: Credit risk literature review

consists in building a hedging portfolio, which returns the default-free rate. The second approach is 

based on the Feynman-Kac theorem, which states that the conditional expectation of a stochastic 

process obeys a partial differential equation.9 With either approach, the equity and debt values are 

given as solutions of two PDEs with some given boundary conditions. It is possible to obtain closed- 

form solutions for the equity, the default-risky zero-coupon bond and the risk-neutral default 

probability.

The Merton model remains a milestone in the derivative modelling: it was the first to value 

the firm’s equity as a call option on the firm value. However, the following problems have limited its 

application.

It is unrealistic to assume that the default can occur only at maturity of the debt when the 

firm’s asset value is not sufficient to cover the debt obligations. This is because safety covenants 

provide the bondholders with the right to force the firm into bankruptcy or reorganization if the firm 

is poorly performing.

The classes of bondholders are not homogeneous and senior debt should not be priced as a 

junior debt.

Empirical studies like Jones et al. (1984) showed that the Merton model systematically 

produces too low credit spreads that do not match the credit spreads observed in the market.

The Merton model reaches closed-form solutions with debt expressed as zero-coupon bond, 

and once coupon bonds are added to the equation, Merton achieved closed-form solution only with 

infinite maturity.

1.7.2 Black and Cox model

Black and Cox (1976) introduced a default boundary level H (t), with 0 < H 0 < A0 , at which the 

bondholders will liquidate the firm. Whenever the asset value drops below the level H (t) , the firm 

defaults, whether or not at the maturity of the debt.

Black and Cox chose a default boundary level that evolves deterministically according to

H (t) = Ke~nT-,) (1.11)

for some discount rate Y , and where K , 0 < K  < L , is a constant.

For a given boundary level H (t)  the early time of default r  is defined as

t  = inf{i e  [0 ,7 ) : A(t) < H (t)}  (1.12)

and the Merton’s time of default r  at maturity is equal to

T ~ T}-{A(T)<L} + °°1{/I(7>i} (1-13)

9 In Tavella and Randall (2000) p. 24.
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The pricing PDE that D (t,T ) follows is the same as in Merton model, but with different 

boundary conditions.10

1.8 Reduced-form models

Reduced-form or intensity models do not use the company capital structure to trigger default but 

directly model the time of default or downgrade as the time of the first jump of a Poisson process. 

More specifically, the risk of default is reflected either by a deterministic default intensity function, 

or by a stochastic intensity. The advantage of these models is that they create a pricing framework 

very similar to default-free interest rate theory. The main result is of discounting promised payments 

with a default-adjusted rate, instead of discounting them with the default-free interest rate. The 

adjustment is exactly the default intensity (or the default intensity times the loss rate in case it is 

assumed a fractional recovery at default).

They were originally initiated by Lando (1994 and 1998), Jarrow and Turnbull (1995) and 

Duffie and Singleton (1998). Jarrow and Turnbull considered the simple case of the time of default 

modelled as a homogeneous-time Poisson process with known payoff at default. Duffie and 

Singleton used the same Poisson process, but with a constant recovery, proportional to the value of 

the default-risky bond just before default. Lando (1994) was the first to apply the Cox process (and 

the iterated conditional expectations) to model default. Lando (1998) also extended his previous 

work to include a Markov chain model of credit rating migrations. Further references are found in 

Bielecky and Rutkowski (2002) and Bielecky, Jeanblanc and Rutkowski (2003).

1.8.1 Hazard function

We assume that we are given a reference filtered probability space (Q, (g, P ) , where it is 

convenient to model the filtration (g as (g = J 7 v  J ~ f , where 3~f is the filtration that carries full 

information about default events, whereas the filtration J 7 carries all information regarding other

financial and economic processes, such as default-free interest rates, but it does not carry full 

information about the default event. We begin by defining the following objects.11

10 The closed-form expressions of the equity and the default-risky zero-coupon bond, in Merton and 
Black and Cox models, are found in Cossin and Pirotte (2001).
11 The following definitions are in Rutkowski (2000) pp. 2-3.
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Definition 1.2: We let z  be a finite, non-negative random variable on a probability space 

(Q, (g, P), referred as the random time o f default. We also assume that P (r  = O), and 

P (r  > t) > 0 so z is unbounded.

Definition 1.3: We let F  be the right-continuous distribution function o f Z F ( t) = P('T < t ) , and 

S(t) be the survival function o f Z S(t) = P(r > t) .

Definition 1.4: The increasing right-continuous function T , given by the formula

r(0 = - l n ( l - F ( 0)

is called the hazard function o f a random time o f default z .

(1.14)

Definition 1.5: I f  the distribution function F ( f ) , is an absolutely continuous function, that is if

i
F (t) = ^ f(u )d u  (1.15)

then we have

F (t) = l — e r(0 = 1 -  exp -  jh (u)du

where we set

h it)  = • m

(1.16)

(1.17)

7> 0 IS

i - m

The function h(t) is called the hazard rate o f z  .

We now introduce the right-continuous jump process H {t) = and J~f = 

the filtration generated by the process H {t) .

Definition 1.6:12 For any t < s , the conditional probabilities o f the objects in definition 1.3 are

f  s \
(1.18)P (r > 4 # , ) =  l {r>(}P (r  > s\z > t)=  l {T>t) exp 

p(f < z < s \j- ft ^= l ,r>(;P(l < z < j | r  > t) = 1

j' h(u)du
v  t J

f  r
1 -  exp

V  v  t

-  ^h(u)du  (1.19)

12 For a proof, see Bielecki et al. (2003) p. 23.
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which are very useful to analyse the distribution of next jump times, at later points in time t > 0 .

1.8.2 Poisson and Cox processes

Poisson process provides a convenient way of modelling the arrival of default in intensity models. 

We first let N (t) be a counting process associated with an increasing sequence of stopping time

{z t J  e N} = { r,,r2,...} , defined by

N ( t )  =  with \-r i < z i+\ 1 (L2°)

Definition 1.7: The time of default z is the time of the first jump of N (t)

z  = inf {r > 0; N(t)  > 0} ( 1.21)

Definition 1.8: The sequence (zr) is an inhomogeneous Poisson process with deterministic intensity

function fi( t ) , if the increments N(T)  — N(t)  are independent on the <7 -field Gjt and for t < T , 

the Poisson process is given by

P (N{T) -  N(t )  = k) exp
i

-  | A(u)du ( 1.22)

Definition 1.9: Alternatively, X (t) is the intensity of the counting process N (t) if and only if

t

A (t) = j/l(s)J s  (1-23)
o

is the predictable compensator of N {t), i.e. M(f) = N(t)  — A(t) is a local martingale.

With the inhomogeneous Poisson process, we set the time of default equal to the first jump 

time of the Poisson process N {t) .  The survival probability can be calculated from (1.22) where 

there are no jumps until time t

' l
S (0  = P (r > i |S o )= P ( t f (0  = 0) = exp -  pl(zf)du

V o
(1.24)

and hence fi(t) = h( t ) .

The density of the time of the first jump, given that no jump has occurred until t is
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r n e  (t ,  t  + d t )) = X ( t )  exp -  { X ( u ) d u (1.25)

We can further simplify the intensity in (1.22) and assume it is a constant X .

Definition 1.10: The sequence o f the arrival times ( z -) is now called a homogeneous process with 

intensity X if  the inter arrival times ZM —  zi are independent and exponentially distributed with 

parameter X . The probability o f having k  jumps is given by

P (N (T ) -  N (t) = k ) = ~ X k( T -  t) k (1.26)
k\

and the survival probability simplifies to

S{t) = e~M (1.27)

As originally specified by Lando (1998),13 we now assume that the time of default z , is 

generated by a Cox process with stochastic intensity 2 (t) .

Definition 1.11:13 14 A Cox process15 N (t) with intensity X ( t f  is a Poisson process with stochastic 

intensity, with the restriction that conditional on the realisation o f X(t), N ( t) is a time- 

inhomogeneous Poisson process with intensity X { t) .

The stochastic intensity X(t) can be presented as X(t) = X {X { tj) , where the process X  

represents the dynamics of the state variables driving the intensity X (t) . The state variables may 

include the default-free interest rate r ( t ) , stock prices, credit ratings and any other relevant 

variables.

We denote with ( f ) tl,0 the filtration generated by X  and we assume that the default-free 

process r(t) and the stochastic intensity X are ( f ) t>0 -adapted. Moreover, we let be the

filtration generated by the counting process N (t) , which, for every t > 0 , reveals the information 

about defaults up to time t.  The full filtration ( ^ , ) f>0 is then defined as the enlarged a-field,

(<dt) t>o = 0 v  . where f t  = : o < 5 < and

13 Other contributors of the Cox process applied to reduced-form models are: Duffie and Singleton 
(1998), Madan and Unal (1998) and Schonbucher (1998 and 1999).
14 In Giesecke (2003).
15 Also known as doubly stochastic Poisson process.
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A = :  0 < s < t } , and hence represents the information set, on the path of the state

variable X  , and on defaults occurred, available at time t .

The law of iterated expectations16 then leads to the jump probabilities

V (N {T) -  N (t) = k )  = E(l

= e (e (i

{N(T)-N(t)=k\)

w

= E
f  T

-H  J /l{u)du exp -  jA (u)du
V t

(1.28)

Hence, the unconditional survival probability, the conditional survival probability, and the density 

are respectively given by

T > t) = E
r t

exp ■{A(u)du
v o

P(r > s|^(i)) = expj -  j A(u)du

P(rn+i -  r n e  (t, t + dt)) = E A(t) exp -  J A(u)du

(1.29)

(1.30)

(1.31)

A way of simulating the first jump r  of a Cox process JV , is to let Z  be a unit exponential 

random variable, assumed independent from ( J :t ) t>0, and hence from the state variable X , and 

define the time of default as

T

z  = in f 11 : J A (X (s))ds > Z (1.32)

The compensated process M(?) reads the same as the compensated process of the 

inhomogeneous Poisson process, with the only difference that A(t) is now stochastic. Also 

important is the expected increment of the Cox process, which is

^ { N ( t) \ f r)=  A(t)dt (1.33)

In essence, there are two different ways of modelling the default event, first through the point 

of view of stochastic processes and predictable compensator A ( t ) , hence including intensities, and 

second by analysing the distribution of the next jump time, thus using hazard rates.

16 In Schonbucher (2003) p. 125, Duffle and Singleton (2003) p. 33, Giesecke (2003) and Lando (1998) 
pp. 99-120.

25



Chapter 1: Credit risk literature review

1.8.3 Pricing blocks

As an application of the Cox process, we recall the well known result of for the pricing of default- 

risky claims of Lando (1998). A default-risky claim of maturity T is a r.v. X  measurable with 

respect to (gT. We assume that there is a martingale measure Q  , and the pre-default arbitrage-free 

price at time t of the claim X  is

f ( T \ \
D(t ,T)  = EQ exp — j r(s)ds \X <3,K t ) y

(1.34)

We further assume that the claim pays Y , if no default occurs until maturity, or a recovery (p 

if there is a default. We focus here on the case where recovery is zero if there is a default, that is 

X  = l (r>7-, Y . The case of positive recovery is treated in the following sections. We also suppose

that Y is itself ^-m easurable.17

Proposition 1.1:18 19 For a positive or bounded J~T -measurable r.v. Y , we have on {t  > l }

f f T ^ \ f ( T \ \
e q exp -  J r(s)ds 1 YQ, = e q exp -  J (r(s) + A(5))i/s 7 7,

V v t y J V t J )
(1.35)

With the inhomogeneous Poisson process and assuming that the default-free interest rate 

process r(t) and the default event are independent, and both non-stochastic, the price simplifies

into 19

D(t,  T)  = exp -  j (r(s) + /((s))^
V i

(1.36)

1.8.4 Example: a credit option with the intensity approach

We now proceed, using both an inhomogeneous Poisson process and a Cox process, to price a credit 

option, which pays £1 at time Tk+1, if and only if the default of a reference default-risky bond

happens in the period \Tk,Tk+] ]. The example was originally proposed in Schonbucher (2003).20

17 See Rutkowski (2000) for details.
18 For a proof, see Jouanin et al. (2001) p. 4.
19 In Jarrow and Turnbull (1995) pp. 53-85.
20 In Schonbucher (2003) p. 118.
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We indicate with e(0, Tk, Tk+l) the credit option price at time t = 0 , with B{0, Tk, Tk+]) the 

forward price at time t = 0 of a default-free zero-coupon bond which matures at time Tk+X for the 

period [Tk,Tk+l], and with D(0,Tk,Tk+x) the forward price at time t = 0 of a default-risky zero- 

coupon bond which matures at time Tk+X for the period [Tk, Tk+X ]. The credit option price is written 

as

e ( 0 , T k , T t „ )  = EQ
f (  Tk+l \

exp -  J r(s)ds
V K o J lW(rt)=o} V (r4+1)=o} (1.37)

where the inner parenthesis contains the probability of default in the interval [Tk, Tk+X ].

Calling upon the assumption of independency between the default event and the default-free 

interest rate, the price in (1.37) becomes

f  (  V\-
e(0,Tk,Tk+x) = ^ exp -  i r(s)ds (e q (i {w(7. )=0}) -  EQ(l

V o J  J

i  n
= B(0, Tk+X) exp -  J A(s)ds

V o
1 -  exp

f  Tm
-  J/t(5)J5

V rk

{ N (T k+P = 0 }

JJ

))

= D(0,Tk)B(0,Tk,Tk+l)
f f  j 'N'N 2k+1
1-exp -  J/l(s)Js

V V Tk

= D( 0, Tk )B( 0, Tk, Tk+X )-D (0 ,T k, Tk+l) (1.38)

The final step in (1.38) has an arbitrage interpretation: the credit option in (1.37) is equivalent 

to a default-risky zero-coupon maturing at time Tk, whose face value is reinvested in a forward

default-free zero-coupon bond for the period \Tk, Tk+] ], and being short on a forward default-risky 

bond maturing at time Tk+X.

As Tk+] —> Tk , i.e. At —> 0 , we can write (1.38) in continuous time as

e(0,T)= lim —  e(0,T,T + At) = D(0,T)MT) (1.39)
A;̂ 0 At

The credit option has a different expression under the Cox process. To see this, we write the 

payoff of £1 discounted from the time of default T as

|W) = i exp(~

which is the sum of the discounted values until default occurs.

We take the expectation of (1.40) and use the expression of the predictable compensator of 

N(t) in (1.33), and write the expected payoff as

exp - j r(s)ds
V 0

Jr(5)t/5 \ {r>t]dN(t) (1.40)
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EQ
f  ̂ T ^ \ . n i l *  (exp -  j r(s)ds = E ° [exp
V V o  ) 2 U  V

e(0 ,T) = E

T f

{EQ exp
0 V

price in (1.

e q
( f

exp
V

(  t

V o
i r(s)ds  1 {ra}A(0 dt

A
T)

)

(1.41)

(1.42)

1.8.5 Recovery schemes

For modelling purposes, we can consider three recovery conventions that may be useful in practical 

situations:21

(1) recovery of treasury (RT),

(2) recovery of par value (RPV) and

(3) recovery of market value (RMV).

The recovery of treasury (RT) assumes that when there is a default, investors receive a 

constant fraction cp e  [0,1] of an equivalent default-free zero-coupon bond, which is held until 

maturity. Hence, the price of a default-risky bond becomes

f i r  A f  t  A A
D (t,T )  = E,Q exp

V V
J r(S)ds h>T) + eXP - i r(S)ds W\<T\
t )  V  I )

(1.43)

The recovery of par value (RPV) assumes that the firm is liquidated at the time of default and 

the bond investors receive a fraction payment of the face amount at the time of default, and the price 

of a default-risky bond becomes
/

D (t,T ) = EJQ
(  T

exp

= EQ

v v t

'  f  T

exp -  J ,
V x '

- 1 r(s)ds l {r>T} + exp -  J r(s)ds  b l {r£r}
f  

v t

{ r(s)ds  + (p jx ( t ,  u) exp^ - j r(s)ds
^ A 

du (1.44)
V

where n (t,u )  is the density of the time of default, which under a Cox process, is in (1.31), and for 

the inhomogeneous Poisson process, is in (1.25).

21 We also note that the face value of this default-risky bond is of £.1.
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If the bond investors, upon default, receive a fraction of the pre-default bond market value, 

the scheme takes the name of the recovery of market value (RMV), and the price of a default-risky 

bond can be written as

f  r

V  t
D ( t ,  T ) = E° exp -  } r ( s ) d s  l {r>r} + exp -  j r ( s ) d s  (l -  , T ) l {r£r}

V  t
(1.45)

where 1 — l { z )  is the recovery of a pre-default market value D ( r  , T )  .

Duffie and Singleton (1998) wrote the price of a default-risky bond, under the RMV as 

follows

D ( t ,  T )  = E f  exp -  J (r(s) + l A ( s ) ) d s (1.46)

where r ( t )  and X (t )  are independent.

The price in (1.46) is the consequence of the following pricing rule,

EQ d D ( r , T )
J T = ( r { z )  + U { z ) ) d t (1.47)

that is, holding the default-risky bond should return the default adjusted short rate r  + IX .

The expectation in (1.47) shows that it is not possible to simultaneously extract both the 

recovery and the intensity rate from market prices, because what we observe is the product IX . One 

possibility is to use the recovery rates as published by Moody’s, S&P or Fitch for different rating 

classes and location of the issuer, and then to proceed to derive the term structure of the intensity 

rates. It should be noted that this is correct so long as, after deriving the term structure of the default 

rates, the default model used to price default-risky bonds maintains the assumption of independency 

between default-free interest rate and the default event.

1.8.6 Random recoveries

To model random recoveries, we recur to the compound Poisson process.

Definition 1.12: Let {N {t) : t > 0} be a Poisson process with intensity /.( /) , and suppose that the 

time o f each event Ti is associated to a realization o f a r.v. , where {O^ : n > 0} is a family of 

i.i.d. random variables sharing some distribution function F((p) = P ( 0 (. < cp). We also let 

{On : n > 0} be independent o f { N ( t) : t > 0} . Then the stochastic process

22 For a proof, see Schonbucher (2003) p. 139.
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N(t)

z ( 0  = 2 > ,  c1-48)1=1
is said to be a compound Poisson process.

In a compound Poisson process at each time of jump Ti of a Poisson process, a r.v. 0 ( is 

drawn from a distribution Ffip). O i is called the marker to the point of jump z i , and the whole set 

{(r; , 0  ¡),i e N } of points in time and markers, is called a marked Poisson process.23 The marked 

Poisson process is a generalisation of the Poisson process N (t ) .

The marker can be any type of r.v., we only assume that it is drawn from a measurable 

probability space (E , £) , where E  is the unit interval [0,1], and the cr — algebra £ is the Borel 

sets on E .

To represent the information contained in a marked Poisson process, we recur to the jump 

measure.

Definition 1.13:24 The jump measure o f a marked Poisson process {(r; , 0 (), i e  N} is a random 

measure on E  x i R+ and on a time interval [0 ,t] , such that for all E  £ £

t co

/a(co,E,[Q,t}) = J u(co,e,s)deds = Wlth ® e Q (L49)
0 E  i= °

which counts the number of events ( t i , 0 ;) , with a marker from E  during the time interval [0, t \ .

With the jump measure in (1.49), we can describe the realisations of the marked Poisson 

process. To specify the probabilities of the realisations of the marked Poisson process, we define a 

r.v. v(de ,d t) as the predictable compensator measure of ju(de,dt).

Definition 1.14:25 The compensator measure o f ju{de,dt) is the unique predictable r.v. 

v(&>, de, d t) with the following property.

Let f(c o ,e ,s ) be a predictable stochastic function.26 Let M (co,t) be defined as follows:

2j In Schonbucher (2003) and Taylor and Karlin (1984).
24 In Schonbucher (2003) p. 92.
25 In Schonbucher (2003) p. 94.
26 The predictable stochastic function can be the function, which describes the recovery payoff. See also 
sections 1.9.4 and 1.9.5.
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i i

M ( c o , t )  = ^ f ( c o , e , s ) j u ( c o , e , s ) d e d s - ^ f ( ( o , e , s ) v ( c o , e , s ) d e d s  (1.50)
0 E 0 E

then M ( t ) is a local martingale.

We now write v (d e ,  d t )  as the product of the density of the recovery rate <J> at time t , 

f ( t , e ) ,  and the probability of having a jump in the next very small time step d t ,

v ( d e , d t ) = f ( e , t ) A ( t ) d e d t  (1.51)

with j f ( e ) d e =  1
E

As an example,27 we price the recovery of par value (RPV) of a default-risky bond. Using the 

jump measure of the marked point process in (1.49), the payoff at default can be written as

Tr r (B(0,t)<p i f  T < T
J ̂ B ( 0 , s ) e / u { e , s ) d e d s  = <j ^ 7 (1-52)

0 o t h e r w i s e

Taking the expectation of the integral in (1.52), we can write the recovery price at time t  = 0 ,
l

E ° j ̂  B ( 0 ,  s )e ju(e ,  s ) d e d s (1.53)
0 E

Combining the results in (1.50), (1.51) and (1.52), we can write (1.53) as
i

= EQ J s ) e f ( e ,  s ) d e M t ) d t
0 E

T f  \

j e f  ( e ) d e
0 \ e  y

i

= EQ \ B ( 0 , s ) g ( t ) A ( t ) d t (1.54)

This is a very useful result as it shows that the pricing problem with a random recovery payoff 

<D , can be solved as a pricing problem with a predictable process g ( t ) as recovery payoff.28

1.8.7 Calibration

Credit default swaps (CDSs) are the most liquid products in the credit derivative market. Hence, they 

are used to extract risk-neutral probabilities.

27 Originally in Schonbucher (2003) p. 144.
28 In Schonbucher (2003) p. 144.
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Typically, there are five main assumptions behind the calibration of risk-neutral probabilities 

on CDS premiums.

(1) The default-free interest rate process and the default process are independent.

(2) The default process is modelled as a time-inhomogeneous Poisson process.

(3) Defaults can only happen at a set of finite and discrete dates.

(4) Default payments are settled immediately upon default.

(5) Recoveries are assumed constant.

In a CDS the protection buyer makes regular payments and receives a payment from the 

protection seller should a default event happen. If the default event occurs, a percentage 1 — (p of 

M  is paid to the protection buyer, where (p is the recovery rate and M  is the notional amount of 

the contract. The amount M  (1 -  (p) is called the default payment.

At the payment dates t j ,  with j  e {1,2 and tm = T , the protection buyer pays the

regular payment fee of

s S j l [tjSr] at tj (1.55)

to the protection seller. Here 5 denotes the CDS premium, 8- is the day count fraction for the 

interval \tj_x, t ■ ] and 1{( £t! is the indicator function that the default event has not occurred before 

the payment date t j .

Furthermore, at the time of default z  , the protection buyer makes a final payment covering 

the time between the last payment date and the time z  of the trigger event. Let j  = max {j \ t j  < z}  

be the last payment date before the time z  . Then, the protection buyer pays the extra fee of

s 5 r l { ,  .< r < , , }  a t  7 ( 1-56)

to the protection seller. Here 8.. is the day count fraction for the interval [ t.. , r ] .  If we denote

Vp(t) as the value at time t of receiving lbp of fee payments and no fees after the interval 

[ i < Z < tj ], then we can write

VP(t) = M E °
f  m \

X B ( 0 , t j ) 8 j l  + B (0 ,z )8  1 , Qt
1 » y

where B (0 ,t) is the discount factor of the default-free interest rate.

If the default occurs before the final payment date tm = T , i.e. if Z < tm = T , then the 

protection seller pays to the protection buyer the default amount M (\  — (p) . Thus, the payment is
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atM (  1 iP)l{Z<T}

We denote the value of the default leg at a time t  as

vD{ t ) = m Q(B{o,T){\~(p)\[r<T)\ § )

(1.58)

(1.59)

Given (1.57) and (1.59), the fair CDS premium rate at time t , is that rate at which the 

premium leg has the same value as the default leg

s  = Ml
vP{t)

(1.60)

Under the assumptions one to five, and that B ( 0 , t ) is a deterministic function, the default 

and the premium legs simplify into

Vp ( t )  = M I  B (  0, t j  ) S j  (l - F ( t j ) ) +  S .  ( f  ( t j  ) -  F ( t H ) M  h ) (1.61)

and

VD (t ) = M I X  -  <p) J  ( F ( t j )  -  F ( t H ) )B (0 ,  t j )
.7 = 1

(1.62)

where 5 is assumed to be half a coupon period.

To calibrate the hazard function, we now follow Arvanitis and Gregory (2001), and Duffie 

(1999) and assume that the hazard function in (1.17) is a deterministic piece-wise constant, i.e. it is 

constant between maturity dates of the CDS {Tx ,7) , . . ,Tn }, to which we are calibrating

h{u) = a i for i e [ly_,, ̂  ] (1.63)

which means that the risk-neutral probabilities of default are given
b

(1.64)

The CDS with the shortest maturity Tx is used to calibrate a x . Once we know a x , we can 

proceed to calibrate a 2 on the CDS with maturity T2 , and so on.

(  m , \

VI 1 = 1 -  exp 1
'—

J

1.9 Implementation of stochastic intensity models

There are two main aspects when implementing stochastic intensity models. The first is the choice of 

the model specification and the second is the numerical implementation. In terms of the correct 

choice of the model, the reduced-form approach literature has hugely relied on the analogy between 

survival probabilities and forward credit spreads with the term structure models of short-term
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interest rates and applied many of the short-term interest rate models to derive reduced-form 

models.29 The dynamics of the credit spreads either, have been specified in such a way that the 

solutions of survival probabilities and default-risky bond prices have been derived analytically, or 

whenever that has not been possible, numerical implementations such as numerical trees, numerical 

methods for solving PDEs, and Monte Carlo simulations have been applied.

In the rest of this section, we will review the extension of some of the most important default- 

free interest rate models to value default-risky bonds with stochastic intensity rates as in the spirit of 

Lando (1998). We will start with a model that has closed-form solutions: one-factor Cox et al. 

intensity model without and with jumps. After that, we will review the application, to default-risky 

bonds, of default-free interest rate models which require a numerical implementation: two-factor 

Hull and White numerical tree, HJM forward rate model, and PDE-based model with stochastic 

recoveries.

1.9.1 Cox e t  al. intensity model

Duffie and Garleanu (1999) showed how to apply the single factor Cox et al. (1985) to model the 

intensity rate process. The dynamics of the intensity rate process are given by

d \ ( t )  = k (6 -  \ ( t ) ) d t  + O y l X ( t ) d W ( t ) (1.65)

where

W ( t )  is a standard Brownian motion,

0  is the long-term mean of A ( t ) ,

K is the mean rate of reversion to the long-term mean, and 

a  is the volatility coefficient.

The survival probability at time t , from Mo T , is given analytically by

f i r  V
r  > T \ f f )= E °

V
exp~lA(u)du \ = exp(a(T-t)  + j3(T-t)A(t)] (1.66)

v i ) )

where a  and f5 are time-dependent coefficients and can be found in Duffie and Garleanu (1999). 

By changing each of the parameters in (1.65), they also draw reach term structures of the

intensity rates, which we summarise below. The volatility, expressed as <j / , causes a decline

in the probability of default, given a survival until a certain time. This is because the change on the 

volatility does not affect the mean of the intensity rate process, but increases the dispersion around 

the mean, that is the variance. This, in turn, increases the survival probability and therefore reduces

29 For a review of default-free interest rate models, see James and Webber (2000).
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the default probability. The mean-reversion K adds a further complexity to the intensity rate. For 

example, as K —> 0, the variance increases and the probability of default drops. A high rate on 

mean-reversion keeps the intensity rates close to its initial level, and reduces the effect of the 

volatility on the shape of the intensity rates. A high initial A(0) with respect to the mean reversion 

level indicates that a firm has a poor credit quality, but it will improve with the time, conditioned on 

survival. How fast it improves depends on the mean-reversion. The conclusion is of a trade-off 

between the volatility and the mean-reversion parameters.

Duffie and Garleanu also extended the CIR to include jumps. They adopted a pre-intensity 

process A , solving a stochastic differential equation of the form

dk(t)  = k (0 -  X(t))dt + <j^jA(t)dW(t) + Jd N (t) (1-67)

where N (t) is independent of W (t), the jumps sizes J  are independent and exponential 

distributed with mean |Uy , the jump times are those of an independent Poisson process with 

intensity rate c . All remaining parameters are the same as already specified in (1.65).

The survival probability at time t , from t to T , is given as in (1.66) but with different a  

and (5 coefficients which can be found in Duffie and Garleanu (1999).

For comparing calibration issues of Cox et al. intensity model, with and without jumps, we 

revert to Duffie and Singleton (2003).

1.9.2 Tree-based models: Schonbucher (1999)

Schonbucher model is based upon the two-factor Hull and White (1994) model for default-free 

interest rates. It can be fitted to any given term structure of default-free and default-risky bond 

prices. The initial set up is a Gaussian specification, also known as the extended Vasicek (1977) 

model. As consequence of that choice, intensities and interest rates can become negative at some 

node of the tree. A remedy to this problem is also given and it is to specify a tree only for the 

logarithm of interest rate and intensity. For example, the dynamics of the interest rate and default 

intensity can be specified with the Black and Karazinsky (1991). The disadvantage of this remedy is 

that the calibration can only be done numerically.

As a tree-based model, it shares all the advantages of this type of models: its mechanics are 

intuitive, the hedge ratios are found automatically with the prices, and for pricing credit derivatives 

with an early exercise of the option it dominates Monte Carlo methods. However, since this model 

can be viewed as an explicit finite difference scheme to solve a partial differential equation (as all
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tree-based models), it shares all the weaknesses of the explicit finite difference schemes when 

compared with the implicit finite difference schemes and the Crank-Nicolson method.30

Schonbucher also modelled the effect of correlation in the dynamics of interest rates and 

intensities.

The model builds the dynamic of the interest rate process in a recombining trinomial tree 

structure with steps up, middle and down. For each time step of length At the short rate will evolve 

as r(t + At) = r(t) + kAt where k  e [—1,0,1] is a negative or positive integer and Ar is given by

A r = Cy/SAt (1.68)

The branching probabilities at the nodes are evaluated by the use of three constraints: firstly, 

the first two moments of the process, secondly, the probabilities must add up to 1, and thirdly, the 

tree may not grow infinitely otherwise probabilities might become negative (this last requirement 

has an effect on the geometry of the tree).

After the branching probabilities and the temporary tree for the interest rate process are built, 

the calibration procedure starts. This is done iteratively using forward induction ,31 and it will lead to 

the fitted tree of the interest rate process, that is the tree with which the default-free bond prices 

B (0 ,t) are recovered without arbitrage.

Once the tree of the interest rate process is completed, the model moves to build the tree of 

the default intensity, and then to combine the two trees into one three-dimensional tree.

Where the dynamics of the default-free interest rates and of the default intensity are 

correlated, the nodes of the three-dimensional tree are refitted. This is done by redistributing the 

probability weights among the nodes of the tree of the same time step. One problem remains 

unsolved. When correlation is not zero, the default-risky bond prices cannot exactly be recovered 

from the three-dimensional tree because there is no closed-form solution.32 Schonbucher, only in a 

later research,33 suggested a method to find the k  of the default intensity parametrically.

Schonbucher extracted some important results when he moved to numerical applications. For 

example, when the implied default probabilities are extracted from his model, they increase as the 

correlation increases. Fie explained this as intuitive. When interest rates and credit spreads are 

positively correlated, defaults are more likely in the economic environment with high interest rates 

(in the model, this corresponds to the nodes with high interest rates). In an economic environment 

with higher interest rates, the prices of default-risky bonds are further compressed by discounting 

with high interest rate than with low interest rates. To reach a given price for a default-risky bond,

j0 For a comparison of explicit, implicit and Crank-Nicolson methods in finance, see James and Webber 
(2000), or in more general, Thomas (1995).
31 Jamshidian (1991) introduced the method of forward induction and placed the tree methods on a sound 
theoretical ground, also enabling them to be calibrated to market prices.
32 When correlation is p  *  0 the following is true D(t,T)* 5(q T)E,Q (exp(-f A(s)ds)).
33 In Schonbucher (2003) pp. 187 - 200.

36



Chapter 1: Credit risk literature review

the absolute default likelihood must therefore be higher. The argument runs conversely for negative 

correlation. These results are only in part supported by recent empirical research: Christiansen 

(2000) found that the credit spreads and the level of the term structure of interest rates are negatively 

correlated. Longstaff and Schwartz (1995) reported that changes in credit spreads are negatively 

related to changes in Treasury prices.

Two points we think Schonbucher needed to clarify: the first is the default-risky bond prices 

used in the calibration, and secondly, the parametric methodology used to fit the three-dimensional 

tree.

1.9.3 An intensity model in a HJM framework

An alternative approach assumes that the default intensities are determined by the forward default- 

risky rate as in the spirit of the term structure modelling approach of Heath, Jarrow and Morton 

(1992). In this section, we will show how Duffie and Singleton (1998), and Schonbucher (1998) 

extended the HJM model to incorporate default risk.34

In the HJM model, an entire curve of forward rates evolves simultaneously, according to a set 

of volatility curves.33

First we write the dynamics of the continuously compounded default-free and default-risky 

forward rate as

d f  ( t)  = ju ( t )d t  + J  a i ( t ) d W l( t) (1.69)
¿=1

n

and d f D ( t)  = ¡ufD ( t ) d t  + ^  a  fD. (t)dW fD. {t) (1.70)
¿=1

where W  and W .̂D are two «-dimensional vector Brownian motions with independent components.

From (1.69) and (1.70) we can write the default-free zero-coupon bond B (t,T ) and the 

default-risky zero-coupon bond D {t,T ) as

f  T
B ( t , T )  = e x p - ¡ f ( t , s ) d s

v  t

(  T
D ( t , T )  = ( l - N ( t ) ) e x p  - \ f D{ t , s ) d s

v  t

(1.71)

(1.72)

and the default-free interest rates r ( t )  and the default-risky interest rate rD( t )  as

34 As references of the HJM model, we recommend Baxter and Rennie (1996), Bjork (1998), Rebonato 
(1998) and James and Webber (2000).
,5 James and Webber (2001) show how Ho and Lee (1986) can be embedded into the HJM model and 
subsequently use this model to derive the price of a European interest rate call option.
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and

1
r ( t )  = T = i \ f ( t >s)ds

t

T

rD{t) = -fzj ^ f D{ t , s ) d s

(1.73)

(1.74)

The factor 1 — N ( t ) in (1.72) ensures that the default-risky zero-coupon bond D ( t , T ) price 

drops to zero at the time of default T ,3b

By Ito’s lemma, the dynamics of the default-free zero-coupon bonds B ( t , T ) and of the 

default-free interest rates r ( t )  are given, respectively as

d B { t , T )  

B ( t , T )

l ^

and

where

- a ( i , r )  + r(i)  + - £
^  i= 1

KO = / ( 0 ,0  + a ( t , T )  + £  bi( t , T ) d W i( t)
i=1 

T

b ( t , T )  = - ^ < y i ( t , v ) d v
t

T

a ( t , T ) = j/t( i,v )Jv

d t  + ^  b ^ t ^ d W ^ t )  (1-75)

(1.76)

(1.77)

(1.78)

By Ito’s lemma, the dynamics of the default-risky zero coupon bonds D { t , T ) and of the 

default-risky interest rates rD( t ) are given, respectively as

4 ¡=i

and

where

d D ( t , T )  = D ( t , T )

D ( t , T ) f i bOJ( t , T ) d W DJ( t ) - D ( t , T ) d N ( t )
1=1

fD (0 = fD (0. 0 + «U (*. ̂ ) + Z  (*’ (0

d t  +

(1.79)

(1.80)
¡=1

i
bD( t , T )  = - j c r D i( t , v ) d v

t

T

aD( tJ )  = J/tD(t,v)i/v

(1.81)

(1.82)

To avoid arbitrage opportunities, the dynamics of the forward rates in (1.69) and (1.70) must

’ In Schônbucher (1998) p. 207.
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satisfy the following two no-arbitrage conditions. A drift restriction, which is an extended version of 

the HJM restriction for the default-free bond, and a drift restriction for the default-risky bond, which 

ensures that the default-risky interest rates are always greater than the default-free interest rates. 

Under the martingale measure Q  , all bond price processes must have a drift r , hence

E Q [ d B ( t , T ) ]  = r ( t ) B ( t , T ) d t  (1.83)

and E Q [ d D ( t , T ) \  = r ( t ) D ( t , T ) d t  (1.84)

Taking the expectation of (1.75) and setting this equal to (1.83) we are able to write

a (t,T ) = ^ f j b2(t,T )  (1.85)
^  Z=1

and using (1.77) and (1.78)

1 n
^{t ,v)dv = ~ Y j  \ v :(t,v)dv
t  i=1 V

( 1.86)

Removing the integral by taking the first derivative with respect to T , (1.86) leads to

1 n T

v) = -  Y j  <*,- v) (t, v)dv
^  i=i ,

= X _cr«-(i>v)^ ( i»v) (1-87)
1=1

where ju(t,T) and c r ft,T )  are the coefficient functions in the forward rate process of (1.69).

Schonbucher defined the drift condition of (1.86) as the Forward Rate Drift Condition which 

corresponds to the drift of the original HJM model, applied to default-free interest rates.

To write the Forward Rate Drift Condition of the default-risky forward rate in (1.70), we take 

the expectation of (1.79) and setting this equal to (1.84), we have

aD (t, T) = rD (0  -  r{f) -  f { t )  + ^  ̂  b 2Di (t, T) (1.88)

where we have used the fact that EQ [dN (t)] = A (t)d t.

Using (1.81) and (1.82), (1.88) becomes
2

(1.89)

where /uD(t,T )  and <7Di(t,T )  are the coefficient functions of the forward rate process in (1.70). 

We can notice that as T —> t , (1.89) simplifies into37

r 1 ” I r
j fiD (*> v ) d v  = r D  (0 -  KO -  MO + -  X  J c r D J  (t, v)dv
t ^  '=i V t y

37 Schonbucher (2003) writes the second condition X(t) = rD(t)-r(t) as A(t) = f D(t,t) -  f ( t , t ) , whereas 
T —> t , the two expressions are equivalent.
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A(t) = rD( t ) -  r(t) (1.90)

that is, the difference between the default-free interest rate r(t) and the default-risky interest rate 

rD(t) is indeed the intensity rate A ( t) .

Using the result in (1.90), and removing the integral in (1.89) by taking the first derivative 

with respect to T , (1.89) leads to

1 n T

M d  (A v) = -  Z  a D,i (A V )  v ) d v
1  1=1 t

n

= Y j ~ a D,i(t,v)bD4(t,v ) .  (1.91)
(=i

The equation in (1.87), (1.90) and (1.91) are the three conditions that ensure the absence of 

arbitrage conditions. Schonbucher suggested to modelling the spread between the default-free 

forward rate and the default-risky forward rate. For example, the square root model of Cox et al. 

could be used to model the dynamics of the spread s ( t) , because it would generate positive spread 

rates. In this case, it is necessary to ensure the following drift condition on the dynamics of the 

spread,38

1 n T

/is{t,v)dv  = - £ c r  s i(t,v )\cxs i(t,v)dv  (1.92)
1 i=i t

where the dynamics of the spread s ( t) are expressed as

n

ds{t) = n s(t)d t + Y J(TSJ(t)dW s i( t ) . (1.93)
i=1

1.9.4 PDE with random recovery

Here we show how to derive the partial differential equation and how a numerical scheme could be 

implemented, to price the default-risky zero-coupon bond where, when default happens, the recovery 

(p(j) is no longer constant, but it is a r.v.. Later on, a PDE of the same type is implemented to value 

the credit put option to hedge the default risk on the same default-risky bond. The problem was 

analysed by Wilmott (1998), Tavella and Randall (2000) and Schonbucher (2003).

We assume that the value of a default-risky zero-coupon bond depends on the default-free 

interest rate r ( t ) , default intensity A (/),  and time t . To describe the dynamics of the model, we 

also assume the following stochastic process of the default-free interest rate r ( t ) , and of the default 

intensity A{t)

38 In Schonbucher (2000).
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d r ( t )  = ju ( t )d t  + c r ( t ) d W ( t ) (1.94)

and d A ( t )  = jux ( t ) d t  + a x ( t ) d W x (t) (1.95)

with d W ( t ) d W x ( t)  = p d t (1.96)

where

W ( t )  and Wx (t)  are the standard Brownian motions of the default-free interest rate and default 

intensity,

/u(t) and JUz ( t )  are their drifts, and 

<x(i) and cr. ( t)  are their volatilities.

We also assume that the random recovery cp(z) is described by the marked Poisson process, 

defined in section 1.8.6.

With the default-free interest rate, the intensity rate and the marked Poisson processes so 

defined, we move to price a default-risky zero-coupon bond with the following payoff structure.

(1) The final payoff at time T , is D (T)  , which is a constant face value.

(2) No payment is received by the default-risky zero-coupon holder before maturity or default.

(3) At the time of default z  , the payoff is a function g{r(t), A{t),(p{z),z) of the interest rate 

process r ( t) , the default intensity A(t) , and of the random recovery rate (p{z) .

(4) In the time between t and T A T , the default-risky zero-coupon bond is represented as 

function of D (r(t) ,A (t) ,t) for t < z  a  T .

By Ito’s lemma, the partial differential equation satisfied by D  is as follows,39’40 

d D  =

3 D  3 D
------b H ------b Hi
3t  d r  A 3A

3 D  1 2 3 2D  1 2 3 2D  8 2D  a

3 A 2 d r 2
■ + Pr,X(7(Ji

3 r 3 A
dt

+
 ̂t~v  ̂rv

J(g(2, r ,  t, tp) -  D ( A ,  r ,  tj)ju(t,e,cp)dedt + (7^—-dW (t) + cr. —  dWÀ(t)
(1.97)

[0 ,1] d r 3A

Since the default-risky zero-coupon bond defaults when N  jumps, the integral represents the 

decrement in value of the default-risky zero-coupon bond at default, which will take D  to the 

payoff g(-) . The payoff at default g(-)  is contained in the dynamics of D , while in most options 

the payoff is on the boundary conditions only.

39 From Schobucher (2003) p. 202, Willmott (1998) p. 569, and Tavella and Randall (2000) p. 36.
40 For the Ito’s lemma in presence of jumps, see Jacod and Shiryaev (1988).
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Under the fundamental pricing rule that the expected rate of return of holding any security 

under the martingale measure Q  is the default-free interest rate r ( t ) ,  the risk-neutral expectation

of dD  , E q  (dD ) , must be equal to rD d t , and (1.97) becomes 

rDdt =

d D  1 2 d 2D  1 2 d 2D
—  + M —  + MA—  + - V i ^ 7 r  + - ° ^ T  + Pr,A(7(JA
d D  d D
------h JU----
d t  d r

+

d A  2 A dA 2 2 

|(g(/1, r ,  t ,  cp) -  D ( A ,  r ,  t ) ) f  (e ) d e A d t

d r
d 2P   ̂
d r d /1

dt

(1.98)

[ 0 . 1 ]

where the expectation of the jump measure ( /u ( t , e , (p))  is replaced with its predictable 

compensator measure f { e ) d e ? i d t  in (1.51).

Removing from (1.98) d t , and remembering that ^ f ( e ) d e =  1, the pricing PDE is
[0,1]

d D  d D
' + P —  + P i

d D  1 2 d 2D  1 2 d 2D
■H--- CT, ■ + — c r + P r . l ^ l

d 2D

dt  ‘ d r  ‘ A d A  2 A dA2 2 d r 2 ' A d rd A

- ( A  + r ) D  + A  [ ( g ( A , r , t , ( p ) ) f ( e ) d e  = 0
[ 0 ,1]

Schonbucher (2003) called J"(g(A, r,  t ,  ( p ) ) f  (e ) d e  the locally expected default payoff.

(1.99)

[ 0 , 1]

The PDE in (1.99) is a partial integro-differential equation PIDE. To simplify the solution 

procedure Wilmott (1998) and Tavella and Randal (2000) assumed a known recovery value

f\ g { A , r , t , ( p ) ) f { e ) d e  = z  (1.100)
[0 ,1]

For example, if there is a default, the value of the default-risky zero-coupon bond drops to 

z D ( t ~) , where D (r~) is the value of the default-risky zero-coupon bond just before the time of 

default r  .

The assumption simplifies the solution of the partial integro-differential equation into a partial 

differential equation, and (1.99) becomes

d D  d D  d D  1 2 d 2D  1 2 d 2D  d 2D
—cr:— -  + —a~■ u — + u , ■ 

dt  d r  dA  2

— (A  + r ) D  + A z D  = 0

The change in value can also be written as known loss fraction ID  , and we have

r D  + A D  -  A z D  — r D  + AID  with l  = 1 -  z . (1.102)

dA2 dr" ■ + P r , l ° ° l
d r d A ( 1. 101)
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1.9.5 A default protection option with known recovery

The investor of the default-risky zero-coupon bond in (1.101) faces two types of risk: firstly, in case 

of default, he receives at the time of default a random recovery of the bond face value, secondly, in 

case the perceived risk of default rises, the credit spread will widen, and the default-risky zero- 

coupon bond price drops.

Credit spread options are designed to give protection in case of spread widening. The put 

version gives the holder the right to sell the default-risky zero-coupon bond for a pre-specified yield 

spread H  (the strike of the put option) in case the yield spread between the default-risky zero- 

coupon bond and the default-free zero-coupon bond becomes higher than H  before the option 

expires.

To hedge the default and the credit spread risk of the default-risky zero-coupon bond, the 

investor needs to buy a default protection option (put option) with the following variables and payoff 

structure.

(1) (p is the bond recovery in case of default, assumed here to be equal to a constant z  .

(2) B(t,TB) is the default free zero coupon bond that matures at time TB.

(3) D (t, Td  ) is the default-risky zero-coupon bond that matures at time TD, with TD —TB.

(4) H  is the strike (a constant).

(5) When there is no default until the option maturity, T0 , with TQ <TD =TB , the option pays

max[0, HB(T0 ,TB) ~  D(T0 ,TD)} = [HB(T0 ,TB) ~  D(T0 , TD)]+

(6) If default occurs before the option maturity, the option has the following payoff

H B(z ,Tb) — tpD(z ,Td )

and with default the option comes to an end.

(7) No payment is received by the option holder before maturity or default.

Such payoff protects against a drop in the value of the default-risky zero-coupon bond as well. 

In fact, when the perceived risk of default rises, the credit spread will widen, and at maturity, the 

option will be in the money.

In the time between t and earliest of default time z and maturity of the option T0 , the 

option price is represented as function of C (r(i),/l(i) ,t)  for t < z  a  T0 .

The PDE of this option, is very similar to the one found in (1.99) for the default-risky zero- 

coupon bond. We have only to change D  with C , and substitute the known default payoff of the 

default-risky zero-coupon bond zD  with the option payoff in case of default, [HB  — zD ]+,
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8C dC 8C  1
------- h U ------- V U , ------- 1----
dt dr 8A 2

8 C 
8A2 2

82C
dr 2 + P r .h ^ l

8 C  
drdA (1.103)

~ (r  + A)C  + A[HB -  zD]+ = 0

The PDEs in (1.101) and (1.103) can be solved with the numerical method of Crank- 

Nicolson. To correctly build the numerical scheme of the option in (1.103), we first need to build the 

numerical scheme of the default-risky D (t,T ) and default-free zero-coupon B {t,T ) bonds, to 

know their values on the grid, before moving to build the numerical scheme of the option in (1.103).

The numerical scheme is broken down in three steps.

(1) Solve the PDE of the default-free zero-coupon bond B (t,T ) ,  which is a well known
41equation

8B 8B 1 , 8 2B
■ + — a :------f 1 ~

dt dr 2 dr"
rB = 0 (1.104)

(2) Solve the PDE of the default-risky zero-coupon bond D (t, T ) in (1.101), and

(3) Solve the PDE of the default protection option C (t,T ) in(1.103).

1.10 Default correlation

In the previous pages, we saw how structural and reduced-form approaches distinctively model the 

credit event of one obligor or credit. This section reviews two models which incorporate the default 

dependence between credits within a reduced-form approach: Duffle and Garleanu (1999) and 

Jarrow and Yu (2001). They are essentially two distinct efforts to resolve the issue of low default 

correlation, typical of reduced-form models. The first is an example of joint jumps in the default 

intensities and the second of joint defaults. Before moving on, we remind the definition of times of 

default in a portfolio of credits.

1.10.1 Defining the times of default

We consider n credits with associated random times of default T1 Tn defined on a given reference 

complete filtered probability space (Q, j f ,  P) . As in the spirit of Lando (1998), to model the credit 41

41 From the derivation of the PDE, see Wilmott (1999).
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event of default, we associate to each credit i , an ) -adapted,42 non-negative and continuous 

process Ai (t) and set

t t
A f t )  = ^ A f s ) d s  with a.s. ^ A f s ) d s  < oo .

0 0

Definition 1.15: In a reduced-form set-up, the time o f default o f credit i is defined as

= inf | ? : | A t ( s ) d s  > Z i

(1.105)

(1.106)

where A f t)  is the intensity rate of credit i , and Z ; is an exponential random variables of

parameter 1, which can be seen as a stochastic barrier.

There is an alternative and equivalent representation of the time of default in (1.106).

Definition 1.16: Given a Cox process N f t )  with intensity A f t ) , we set

Ti -  in f > 0; N f t )  > 0} (1.107)

and Tt is a stopping time with respect to the fdtration generated by the Cox process N i (t ) . The two 

definitions in (1.106) and (1.107) are equivalent since we have chosen A ft)  as intensity of the Cox 

process N t ( t ) .

In general, the Ti s are not stopping times with respect to (J :t). For this reason, we consider 

the filtration generated by the survival process J~Cl t = c r { l : 0 < s < t} , which contains 

information on the credit event of the credit i , and we introduce the enlarged O' -field, 

(fgt)m  = J :t v  3~(it v  J - f2l. .. .v  n t, which represents all information available to an agent at 

time t.

1.10.2 Duffie and Garleanu model: j o i n t  ju m p s

For baskets of credits, the correlation is an important issue and Duffie and Garleanu (1999) proposed 

to solve it by allowing correlation through the state variables.

42 We denote by ( J ~t) , the filtration generated by all state variables, economic, interest rates, currencies, 

etc., including the intensity process A t (t ) .
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To study the implication of changing correlation in the times of default of a portfolio of 

credits, Duffie and Garleanu assumed an affine43 dependence on a set of state variables, which have 

an affine specification. They used the fact that a basic affine model can be written as the sum of 

independent basic affine models, provided that, the mean rate of reversion, the volatility coefficient 

and the mean of the jump sizes are common to the underlying independent basic affine processes.43 44 

As they wrote, this is to ensure a parsimonious and a tractable 1-factor model45 to model the 

probability of default of each credit.

They assumed a collateral portfolio of n credits, whose times of default Tl , T 2, . . ,T n have 

basic affine intensity processes \ A n . The correlation is introduced in the following way

Ai = X i + X c (1.108)

where X i and X c are independent basic affine processes, meaning nonnegative affine process 

X i (t ) and X c (t ) , which satisfy the following

dXfit) = k (Qi -  Xfit))dt + a-yjX i(t)dWi(t) + J idNi(t) (1.109)

and

d X c (t) = k (0c  -  X c {t))dt + <j2j X c (t)dWc (t) + J cdNc {t) (1.110)

where the jumps sizes and J c are independent and exponential distributed with common jump 

mean fUj = , the jump times are those of independent Poisson processes with different intensity

rates l  i and i  c , and the parameters k  and <J are common to the underlying pair of independent 

affine processes. All remaining parameters are the same as already specified in (1.65).

They explained X { as the state variable, which governs the idiosyncratic default of credit i ,

whereas X c is the state variable common to all (t) ,  which explains common aspects of

economic performances such as, industry, sector and geographic location of the credits. The n +1 

underlying state variables X x, X 2,. . ,X n, X c are assumed independent. Because A fit)  is the sum

of X t and X c , it is itself a basic affine process with parameters (K, 9i + 0C, a ,  ¡a, £ l + 1 c ).

In this model, the risk-neutral survival probability of credit i has an analytic expression equal 

to

43 For a review of affine processes, see Duffie (2002).
44 In Duffie and Singleton (2003) p. 256. For a proof, see Duffie and Garleanu (2001).
43 Duffie and Garleanu also extend the one-factor to handle multifactor risk.
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With the second assumption, they managed to find an analytical expression for the 

unconditional joint default distribution, which is the probability of M  defaults out of n credits,48 

equal to

Q  (M  = k) =
rn '

U y
j  P n  n ^ + l (1.114)

where

\ k j

n\

and

(n  -  k ) \ k \

i n . . . n p „ n s k+ln . . .n s .
7=1

(1.115)

f  k  ^
• d j

Kn - J )
(1.116)

Under the third assumption, Duffle and Garleanu were able to find an analytic expression for 

the expectation operator in (1.113) as

d j =  1 -  exp(ac (T ) + ( T ) X C (0) + j a ,  ( T )  + j(d l ( T ) X i (0)) (1.117)

where a c , J3C , a i and jdi , are given explicitly and can be read in their paper.

Critically, they recognised that the case in (1.113) to (1.117) is a special one, and the way to 

prepare more realistic analytic expressions, is to form sub-groups of credits, so as to reduce the 

number of permutations of credits to be considered.

This is exactly the approach taken by Huge (2001). He initially decomposed the m-io- 

defaults49 50 in a portfolio of n credits, into a portfolio of D'-to-default contracts, each of which is 

priced using affine intensities. In this way, the order in which, the credits of the original collateral 

default, is no longer important, and the pricing approach is based on a purely arbitrage argument. 

Huge achieved a remarkable reduction of the necessary computational time, but still insufficient for 

large portfolio. For example, if there are 50 credits and the first m-to-defaults is 10, then the number

of 1 -to-default to be calculated is;„ 5 0 SI7 = 0

i  \n

V )
= 1010, against the case of 10 16 if we want to look at16 ■

all unique ways in which 50 credits can be placed in the first 10-to defaults.

Huge found another way to simplify the computation. Instead of making the whole collateral 

as homogenous, as Moody’s diversity score does, he divided the collateral in heterogeneous subsets

48 This extends the traditional binomial-expansion formula to include correlation.
49 He also extends his methodology to CDOs by treating the m-to-default as the first m defaults in a CDO.
50 The number of unique ways (given that position is not longer important) in which 50 objects (credits) 
can be placed in 10 positions is called combinations, and it is given by:

50!/[101(50-10)!] "50)

,10J
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of homogeneous credits. In this way, he achieved considerable speed-ups in pricings, without

One point we think Huge did not clarified is how the joint distribution of the heterogeneous 

subsets compares with the joint distribution of the original collateral.

As an alternative to analytical expressions, Duffie and Garleanu explored the route of Monte 

Carlo simulations. Their computation consists of simulating the paths of X l, X 2,. . ,X n, X c and

f , Z2 An for time steps of one week. In this way, they were able to simulate the compensator A (- 

in (1.105). At the same time, they simulated n standard unit-mean exponential distributed variables 

Z1,Z 2,..,Z w. The time of default xi was set as in (1.106).

To model dependent defaults, Jarrow and Yu (2001) proposed to make a distinction between primary 

firms and secondary firms. In the former group, they included those firms whose probabilities of 

default are only influenced by macroeconomic conditions, and not by the default of other firms. In

asymmetric information in the market place.

For the primary firms, they assumed the existence of a family of ( J~t ) -adapted intensity 

processes Al,A2,..,Ak that produces a collection of ( f t ) -conditionally independent random times 

of default T1,T2,...,Tk with the following method

where c>i, i = \,...,k  are mutually independent identically uniform distributed random variables, 

under the martingale measure Q  , and with — In = Zi , where Z, is a unit exponential random 

variable, so to link (1.118) with (1.106).

For the secondary firms, they assumed that the probability space is large enough to support a 

set of '£)i, i = k  + 1,..., n of mutually independent identically unifomi distributed random variables.

These variables are independent not only from the filtration (f ) , but also from the already 

constructed times of default of the primary firms.

51 For the pricing expressions for the to default and CDO, see Huge (2001).

making the heterogeneous subsets independent.51

1.10.3 Jarrow and Yu model: j o i n t  d e fa u lt

the second group, they included those firms whose default probabilities depend in part or entirely on 

the credit status of primary firms. The construction of their model is based on the assumption of

(1.118)
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The times of default for the secondary firms, ^ k+l,T k+1, . . . ,T k+p , are defined by means of the 

same method as in (1.118)

Tk+j = in f j t  > 0 : J%\ +j( u ) d u  > - l n £

where the intensities /li+1, Ak+2 ,--,^k+p are now given by

h +j(t) = Mk+j(t) +

k + j (1.119)

a} ( 1.120)

In (1.119), the %k+J-, j  = , are mutually independent identically uniform distributed

random variables, and juk+J- and v k+j l are ( J ~t) -adapted stochastic processes. In case the default of

the Ith primary firm does not affect the default of the j th secondary firm, we set Vk+Jl to zero.

There are some important issues with this model. To investigate them, we let 

(Qt)t>o = T t v  i i v  3~C2 e — v  i the enlarged filtration, and we let

. v  J~Cn be the filtration generated by the reference filtration 

(J y) and the observations on defaults of secondary firms. Then, the times of default of primary

firms are no longer conditionally independent when the filtration (Jy ) is replaced by ( J 7, ) , as the 

defaults of primary firms become dependent on defaults of secondary firms. Schonbucher (2003) 

pointed out that, “the resulting joint process of the default indicators (iV, (?),.., N n (t )), is not a Cox

process any more, as from the joint intensities, we can draw conclusions about the time of default”.

We also observe that it will not be easy to establish the criteria, which differentiates primary 

from secondary firms.

A third issue is how to calibrate p (t)  and v ( t ) , in (1.120), to historical observations of 

default frequencies or CDS premiums.

Jarrow and Yu initially considered the very simple case of two firms, A and B . A is the 

primary firm, and B is the secondary firm. Then, they moved to analyse the multiple case, where 

A and B are two primary firms and C is the secondary firm dependent simultaneously on A and 

B . In their examples, the default process is assumed independent of the default-free interest rate. In 

what follows, we will only analyse the case of two firms.

The default intensity of firm A is assumed constant XA , so that (1.118) can be written as

t a = inf{/ > 0 : j /lA(u)du = XAt > - l n ^ }  (1.121)
o

For the secondary firm B , the default intensity is simplified and satisfies the following
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K ( t )  = bx\ {TA>t)+b2\ {r̂ } (1.122)

where bx > 0 and > 0 are two constants and must be chosen ensuring the positivity of the 

default intensity in (1.122). Thus, the time of default of B is defined as
t

zB = inf{i > 0 : j/lB(u)du > - ln ^ }  (1.123)
o

where E,A and <Z,B are mutually independent.

Jarrow and Yu prepared the prices of two default-risky bonds, respectively issued by A and 

by B . The default-risky bond issued by A is equal to

D A(t,T )  = B (t , T)(<pA + ( \-c p A) e - ^ T-‘\ A>t]) (1.124)

For the default-risky bond issued by B , with the default intensity in (1.122), in the case 

where A has not defaulted, we have

D b (t , T) = B(t, T){cpB + (1 -<pB )K (X A, , a)(T  - 1) 1{Tb>i] ) (1.125)

and where A has defaulted,

D , (t,T) = B(t,T)(<p, + (1 -  -> ) (1.126)

where, K (A A,A,B,a ) = (l + a(T  — t ) ) e <'a~b' ){T') if b2 = a

u -(a+^xr-o _  np-(h+b2w-t)
and K ( l A,A B,a ) = ^ --------------- —------------- if b , * a .

b2 ~ a

52We can summarise the following properties in the two-firm set-up.

(1) h A(t) is the intensity of TA , with respect to the filtration ( J :l) ,

(2) XB (t) is the intensity of TB , with respect to the filtration ) V ,) and

(3) XA (t) is not the intensity of z A , with respect to the filtration ) V (5iT, t) . 52

52 In Bielecki et al. (2003) p. 69.
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Chapter 2: A survey of CDOs and their use in 
bank balance sheet management

2.1 Introduction

This chapter explores the market of collateralised debt obligations (CDOs) and synthetic CDOs and 

their use in bank balance sheet management. We first review different types of CDOs used in 

capital markets and their economic rationales and then discuss the growth in synthetic CDOs under 

structural and balance sheet management perspectives. Following this, we analyse the CDO equity 

piece and how it can be used in portfolio management. The last section is dedicated to Moody’s 

table of idealised cumulative expected losses.

2.2 The CDO structure

A CDO is a special purpose company or vehicle (SPV), complete with assets, liabilities and a 

manager. Typically, the CDO’s assets consist of a diversified portfolio of illiquid and default-risky 

assets such as high yield bonds (CBO) or bank leverage loans (CLO).1

We have set up a typical CDO structure in Figure 2.1. The assets, also called the collateral 

portfolio, are transferred to the SPV that funds the purchase, from cash proceeds of the notes it has 

issued.

O rig inating

Bank

A s s e ts  Sold to  th e  SPV In te rest & Principal
__________________ W Senior N otes►

SPV

r

-4 ------------------------------- M ezz N otes-----------------------
Cash Funding Equity

Figure 2.1: CDO diagram.

The CDO structure allocates interest income and principal repayment from a pool of different 

debt instruments to a prioritised collection of securities notes called tranches. Senior notes are paid 

before mezzanine and lower rated notes. Any residual cash flow is paid to the equity investors. This 

makes the senior notes significantly less risky than the collateral.

1 Most recently, CDO technology has been extended to emerging market debts, structured finance 
securities, commercial real estate-linked debt, distressed assets, and last to arrive, private equity funds.
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On every payment date, the equity investors receive cash distributions after the scheduled 

payments and other costs have been paid off. The equity is also called the “first-loss” position in the 

collateral portfolio. This is because it is exposed to the risk of the first pound loss in the portfolio.

The CDO rating is based on its ability to service the notes, with the cash flows generated by 

the collateral portfolio. The service of the notes depends on the diversification and quality of the 

collateral, subordination and structural protection.

As we move down the CDO’s capital structure, the level of risk increases. The equity 

investors bear the highest risk, and their gain lies in the residual cash, also called excess spread 

between the interest income from the assets sold to the SPV, and the interests due to the notes plus 

any non-interest costs and losses.

The equity investors also have the option to call the CDO notes after the end of the non-call 

period, which in most cases lasts three to five years. In this case, the assets are liquidated and the 

proceeds are used to pay down the notes and interests due.

The typical CDO has a ramp-up period, a reinvestment period and an amortising period. 

During the ramp-up period the collateral portfolio is formed. In the reinvestment period, all proceeds 

received from the assets matured, are promptly reinvested in new assets. The amortising period is the 

terminal phase, when the notes are repaid in order of seniority using the proceeds from the collateral 

portfolio.

In the ramp-up period, there is the risk of negative carry, which is the condition in which the 

cost of borrowing money exceeds the return obtained from it. This is because, before the CDO is 

fully ramped-up, the proceeds received from issuing the notes, are invested in highly rated and 

secured bonds, such as US Government Bonds and Pfandbriefe,2 with very little return.

The above problem is rectified in synthetic CDOs,3 since the notes issued represent only a part of the 

collateral portfolio.

Figure 2.2 displays an example capital structure, where the high yield bonds collateralise 

CDO liabilities.

Chapter 2: A survey o f CDOs and their use in bank balance sheet management

2 For the list of these securities see Deacon (2003) and updates from press release of Bank of International 
Settlements, URL: http//www.bis.org.
3 In a Synthetic CDO the credit risk is synthetically transferred from the originating bank to capital 
markets, via Credit default swaps. See section 2.8 for synthetic CDOs.
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%  o f  th e  C a p it a l  
S t r u c tu r e

6 9 %

1 5 %

8 %

4 %

4 %

Figure 2.2: CDO capital structure.

2.3 Arbitrage and Balance Sheet CDOs

Most CDOs can be placed into one of two main groups: arbitrage and balance sheet transactions. 

Figure 2.3 shows the conceptual breakdown between the two structures.

M o o d y 's / S & P  R a t in g :  A a a / A A A  
C o u p o n :  L ib o r + 4 5 b p

M o o d y 's / S & P  R a t in g :  A 2 / A  
C o u p o n :  L ib o r -* 1 4 5 b p

M o o d y 's / S & P  R a t in g :  B a a 2 / B B B - 
C o u p o n :  L ib o r + 2 4 5 b p

M o o d y 's / S & P  R a t in g :  B a 3 / N R  
C o u p o n :  L ib o r -+ 6 4 5 b p

E q u it y  
N o t  R a te d

E x p e c t e d  R e t u r n :  2 5 %  -3 0 %

Source: Morgan Stanley (2001)4 

Figure 2.3: CDO structure.

A cash flow CDO is one where the collateral portfolio is not actively traded by the CDO 

manager.5 The CDO performance depends on whether the notes are fully repaid and there are no

4 Schorin and Weinreich (2001).
5 We will look at the role of the CDO manager in section 2.6.
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interest payment delays. Losses are the main source of risk, and not the volatility of the market value 

of the collateral portfolio.

A market value CDO is one where the performance of the CDO notes is primarily a mark-to- 

market performance, i.e. all securities in the collateral are marked to market with high frequency. In 

the case where the collateral market value drops below a certain value, called the market value 

trigger, the CDO manager is obliged to pay the CDO notes by selling all the assets of the collateral 

portfolio. The market value trigger is set to create a reserve between the market value of the 

collateral portfolio and the par values of the CDO notes.

Because the collateral of market value CDOs is constantly traded, the CDO performance 

depends upon the CDO manager, who will buy and sell the collateral assets. As part of normal due 

diligence, a potential market value CDO investor needs to evaluate the ability of the manager, the 

institutional structure around him, and the suitability of the management style to a leveraged 

investment vehicle.

Balance-sheet cash flow CDOs are structures for the purpose of regulatory capital relief, 

where the assets of the collateral portfolio are lower yield debt instruments. The regulatory capital 

relief reduces funding costs or increases return on equity, by selling to the SPV the assets that take 

too much regulatory capital, and thus removing them from the originator’s balance sheet.

These transactions rely on the quality of the collateral that is made of guaranteed bank loans 

with a very high recovery rate.6 In this case the CDO takes the name of collateralised loan 

obligations (CLOs). The relatively low coupon of these assets results in a smaller excess spread7 8 

than the arbitrage CDOs. Given their relative superior credit quality when compared to assets used in 

arbitrage CDOs, they require less subordination.6 The size of a typical balance sheet CLO is in 

general larger than an arbitrage CDO, as the transaction must have an impact on the return on 

regulatory capital (RORC) of the originating bank looking for capital relief. Because the collateral is 

represented by bank loans with an opaque market value, CLOs are only in the form of balance sheet- 

cash flow.

More recently, active credit portfolio management has been cited as another reason behind 

CLOs. Through active credit portfolio management, banks are able to measure the risk-adjusted 

efficiency of their credit portfolio.9 The CLO is now the tool for a bank to redeploy freed-up 

resources in higher yield and better diversified instruments.

Chapter 2: A survey o f CDOs and their use in bank balance sheet management

6 Statistics regarding the recovery rates for CDO have been published in, S&P (20 Feb 2004), Recovery 
Rates for credits in global synthetic CDOs Q4 2003, whereas the statistics of corporate defaults have been 
published in, S&P (Feb 2004), Corporate Defaults in 2003 Recede from Recent Highs. Both reports can 
be found on URL: http//www.standardandpoors.com.
7 Excess spread is the difference between the interests earned from the collateral assets and the expenses 
and the interests paid to the notes. We will look at the excess spread in section 2.4.
8 Subordination is the prioritisation of investor claims, and it defined in section 2.4.
9 See Jobst (2002) on how to use active credit portfolio management to remove credit risk from the bank 
balance sheet.
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Market value-arbitrage CDOs go through a very extensive trading by the CDO manager, 

necessary to exploit perceived price appreciations. This type of CDO relies on the market value of 

the collateral portfolio, which is monitored on a daily basis. Every security traded in capital markets, 

with a liquid market price, can be included in this type of CDO. The important aspect is the 

collateral manager’s capacity to generate a high total rate of return. In these CDOs, the CDO 

manager has a great deal of flexibility in terms of the assets included in the deal. He can also 

increase or decrease the funding amount, which changes the leverage of the structure, during the 

reinvestment period.

In cash flow-arbitrage CDOs, the collateral assets have been purchased at market price and 

are negotiable instruments, primarily bonds. However, syndicated loans, usually tradable, have been 

included in past transactions. In the majority of the cases, the collateral assets have already been 

used in a previous CDO, and by merging the collateral with a more diversified pool, or by simply re-

trenching the original notes, it is possible to extract an arbitrage benefit. Unlike market value- 

arbitrage CDOs, the collateral assets are not traded very frequently.

The aim of arbitrage CDOs is to capture the arbitrage opportunity that exists in the credit- 

spread differential, between the high yield collateral and the highly rated notes.10 Most arbitrage 

CDOs are private deals, where size is not large and the number of assets included in the collateral 

portfolio are very limited compared to the cash flow type.

2.4 Credit enhancement

Credit enhancement is a way to protect senior note and mezzanine note investors from quality 

deterioration of the collateral portfolio. It is ensured through prioritisation of investor claims, also 

known as subordination, over-collateralisation and excess spread.

2.4.1 Subordination

The principal repayment and the interest income of the collateral portfolio are generally distributed 

sequentially to the note investors in order of their seniority, via the principal waterfall and the 

interest waterfall.

The interest waterfall specifies the order in which interest income is paid in the CDO. The 

fees, the hedge costs such as interest rate swap payments are paid before the interest due to the 

senior notes and the interest due to the mezzanine notes. Any additional income is called extra 

spread and is paid to the equity investors.

Chapter 2: A survey o f CDOs and their use in bank balance sheet management

10 For a detail analysis on how to create an arbitrage CDO, see Goodman (2001).
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The interest waterfall is subject to changes where certain triggers11 are breached. For example, 

a trigger can be defined in such a way that no more than a certain percentage of the par value of the 

collateral portfolio is rated below BBB. In these instances, the interest proceeds that would normally 

go to pay the interest due to the mezzanine notes are used to pay down (turbo or accelerate) the 

senior notes. This form of early amortisation ensures that the investors of the senior notes are insured 

against further reduction of the value of the collateral portfolio due to rising defaults or downgrades.

The principal waterfall is the distribution of the principal repayment. At the top, are the senior 

notes. The mezzanine notes are repaid as soon as the senior notes are fully redeemed. In this way, 

the performance of the mezzanine notes is subordinated to the good performance of senior notes.

2.4.2 Over-collateralisation

Over-collateralisation (OC) provides a further protection to the senior notes by imposing two quality 

tests on the collateral portfolio: the par value test and the interest coverage test.

The par value test requires that the collateral portfolio A , is sufficient to repay the various 

notes at any future date and until the notes are redeemed. For example, a par value test may be 

applied on the senior note Ls , so that they are never greater than a percentage fd , of the collateral 

portfolio minus defaults. In this case, it is defined as

[At -  defaultst \j3 -  L s t > 0 with 0 < (3 < 1 (2.1)

The par value test is also applicable to the mezzanine note LM . In this case, the percentage is

selected at a lower rate, and it is defined as

[At -  defaultst - L S t \ a - L U t > 0  with 0 < a  < ¡3 < 1 (2.2)

The interest coverage test guarantees that all expenses and interests due on the liability side 

are fully covered by the interest proceeds from the collateral portfolio.12 We indicate as I A the 

interests earned on the collateral assets, as Ex the expenses and as I L the interests on the notes, and 

we write the test as

I a - E x - I l > 0 (2.3)

If either test is breached, the interest waterfall is changed, and the repayment of the senior 

notes (or mezzanine notes) is accelerated.

Chapter 2: A survey o f CDOs and their use in bank balance sheet management

11 The triggers are all defined in the Offering Circular of the CDO transaction.
12 See Moody’s (22 March 2002), Collateralised Debt Obligations Indices: January 2002, for a report on 
par value tests on current CDOs in US and Europe. For example for arbitrage cash flow CDOs, the senior 
note average par value OC test was in January 2002 equal to 126.33%, whereas the senior note average 
interest rate coverage was, during the same period, 226.15%.
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2.4.3 Excess spread

The excess spread is what is left in the interest waterfall after paying all expenses and the interests 

due to the notes. Before the excess spread is distributed to the equity investors, it is used to cover 

losses in the collateral portfolio. In this way, it represents the first layer of credit protection of the 

note investors.

In a real life CDO, it is very difficult to estimate the excess spread that can be used to protect 

the senior notes and then returned to the equity investors. For example, if the CDO suffers a large 

number of defaults in the last stage of the transaction and the par value test is breached so that the 

interest waterfall is changed to accelerate the repayment of the senior notes with the extra spread, the 

equity investors have had plenty of time to collect excess spread and achieve a remarkable return. In 

contrast, if the CDO suffers a large number of defaults in the early days of the transaction, the equity 

investors would bear the first loss and would not collect any excess spread, because it would be used 

to accelerate the senior notes.

2.5 Credit enhancement in market value CDOs

Chapter 2: A survey of CDOs and their use in bank balance sheet management

Market value CDOs have three further forms of credit enhancement: advance rates, market value 

over-collateralisation test, and minimum net worth test.

The advance rate is the maximum percentage of the collateral portfolio market value that can 

be used to issue senior and mezzanine notes. Rating agencies assign the collateral advance rate 

according to the historic volatility of the collateral return and on the liquidity of its market price. 

Assets with a higher return volatility and lower liquidity are given lower advance rates. Table 2.1 

shows the advance rates that Fitch would apply to different types of assets as collateral. For example, 

when a portfolio of Certificate of Deposits (CD) or Commercial Paper (CP) is used as collateral of a 

note rated AA, Fitch allows to uses only 95% of the CD and CP market value. In this instance, 5% of 

the market value of the CD and CP is the equity that the originating bank retains. The advance rate 

of CD and CP would rise to 100% where the note is rated BB.

Asset Category AA A BBB BB B
C ash  and E qu iva len ts 100% 100% 100% 100% 100%
C D  and C P 95% 95% 95% 100% 100%
S en io r S ecu red  B ank Loans 85% 90% 91% 93% 96%
B B -H igh  Y ie ld  D eb t 71% 80% 87% 90% 92%
<B B -H igh  Y ie ld  D eb t 69% 75% 85% 87% 89%
C onve rtib le  Bonds 64% 70% 81% 85% 87%
C onve rtib le  P re fe rred  S tock 59% 65% 77% 83% 86%
M ezzan ine  Debt, D is tressed , E m erg ing  M arke t 55% 60% 73% 80% 85%
Equity, Illiqu id  D eb t 40% 50% 73% 80% 85%
Source: Fitch

Table 2.1: Fitch’s advance rates.
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In market value CDOs, the par value OC test is called the market value OC test and is applied 

on the market value of the collateral portfolio MVAt , as follows

[.MVAt -  defaultst \J3 - L S t > 0 with 0 < ¡3 < 1 (2.4)

To illustrate how the advance rate and the market value OC tests work in practise, we 

introduce a simple example with the collateral portfolio and the liability structure of Table 2.2.

C o lla te ra l N o tes
A sse ts M a rk e t V a lu e  (eu ro ) % T ra n c h e R ating F ace  V a lu e  (eu ro ) %
C D  and C P £230 46% S en io r N otes A A £375 75%
B B -H igh  Y ie ld  D ebt £225 45% M ezz. N otes BB B £50 10%
C o n ve rtib le  B onds £10 2% Ju n io r N otes B £25 5%
M ezz. D ebt £25 5% E qu ity NR £50 10%
E qu ity £10 2%
Total £500 100% Total £500 100%

Table 2.2: Market value CDO.

In Table 2.3, we apply the AA advance rates of Table 2.1 to each asset of the collateral 

portfolio of Table 2.2. In column 5, we have calculated the senior advance amounts of each asset, by 

multiplying the AA advance rates (from Table 2.1) by the asset market values of column 2 of Table 

2.2. Their sum gives the Total Advance Amount of £402.

To prepare the AA OC test, we take the difference between the Total Advance Amount of 

£402 (in Table 2.3) and the Senior Note face value of £375 (in Table 2.2). The difference of £27m is 

the Borrowing Amount Surplus and is the maximum change in the collateral market value that the

CDO can sustain before breaching the AA market value OC test.

C o lla te ra l
A ssets M arke t V a lu e  (eu ro ) % A A  A d va n c e  Rates Sr. A d va n c e  A m ou n ts
C D  a n d  C P £ 2 3 0 4 6 % 9 5 % £ 2 1 9
B B -H ig h  Y ie ld  D e b t £ 2 2 5 4 5 % 7 1 % £ 1 6 0
C o n v e r t ib le  B o n d s £ 1 0 2 % 6 4 % £ 6
M e z z . D e b t £ 2 5 5 % 5 5 % £ 1 4
E q u ity £ 1 0 2 % 4 0 % £4

Tota l £ 5 0 0 1 0 0 %  T o ta l A d v a n c e  A m o u n t £ 4 0 2
S e n io r  N o te s £ 3 7 5
B o rro w in g  A m o u n t  S u rp lu s £ 2 7

Table 2.3: Market value OC test.

A collateral manager must ensure that the market value tests are not violated. A breach of the 

market value OC test is quite serious, and when it happens, the collateral manager must remedy it 

within a cure period that is usually between two to ten business days.

There are usually two options:

(1) to sell asset(s) with lower advance rate and buy one or more with higher advance rate,
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(2) or to sell asset(s) with lower advance rate and repay some or a portion of the notes, starting 

from the most senior notes, until the OC test is in compliance.

The first action is preferred when the OC test is slightly out of compliance. The second is a 

drastic cure.

The minimum net worth test is designed to offer a further credit protection to the senior notes. 

This is achieved by imposing that the collateral market value MVAt , less the par value of all notes,

is never lower than the equity face value multiplied by a percentage 8 , indicated by the rating 

agency13

[MVAt - L S t - L M t - L J t ] 8 - V >  0 with 0 < 8  < 1 (2.5)

In cases where the test is breached, the manager has a cure period to bring the CDO into 

compliance, by either

(1) redeeming part or all of the senior notes, or

(2) by generating enough capital gains by selling some assets.

The latter is preferable for the equity investors since the manager would not de-leverage the deal.

If the collateral manager cannot comply with the market value OC test or the minimum net 

worth test, the notes investors have the legal power to take control of the CDO and liquidate the 

collateral portfolio.14

2.6 The CDO manager

The manager of the CDO is responsible for the credit performance of the collateral portfolio and for 

ensuring that the transaction meets the diversification, quality and structural guidelines specified by 

the rating agencies. In return for managing the collateral portfolio, the manager receives a fee, 

typically divided into base and incentive components. During the reinvestment period, the CDO 

manager continuously evaluates the state of the collateral portfolio and of the overall market. He 

trades out positions at risk for credit deterioration, and takes advantage of appreciation opportunities.

The key to a successful market value CDO is the manager’s ability to generate high returns 

through research, market knowledge and trading ability. Different managers stress different 

strategies. For example, an insurance company may depend on its portfolio risk management system, 

a mutual fund group may use its size and market knowledge, and a private equity sponsor may rely 

on its knowledge of leveraged companies. The market value CDO is typically only accessible to

Chapter 2: A survey o f CDOs and their use in bank balance sheet management

J See Yvonne and Gluck (1998) p. 12.
14 For an exhaustive explanation of the SPY laws, regulations, tax and accounting, see Deacon (2003).
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managers who have established track records and who have demonstrated a high level of 

organisational commitment to the CDO business.

Today, successful CDO management franchises are found in a variety of asset management 

organisations, including mutual fund groups, insurance companies, banks, private equity firms and 

hedge funds.

In recent CDOs, the collateral manager has the opportunity to use CDSs to hedge positions or 

lock profits, which can then be used to provide a further credit enhancement to the transaction. 

Where the manager purchases protection without having exposure, these transactions are called 

naked short bucket transactions. This new facility combines elements of a cash flow-arbitrage CDO 

with elements of a synthetic CDO and further protects the portfolio against credit deterioration. In 

more general terms, the collateral manager can enter into short CDSs to buy protection and hedge his 

credit exposure to the obligors under cash obligations, total return swaps and other CDSs. The only 

condition to enter into short CDSs is to have sufficient excess spread available to pay the upfront 

premium. If, in subsequent periods, there is no longer a sufficient excess spread, the manager will 

close out the trade by entering into offsetting CDSs. CDS gives extra flexibility to a manager: if a 

sector is perceived as too risky, rather than simply selling assets, he can close out positions by 

buying credit protection.

2.7 The motivations for CDOs

Chapter 2: A survey o f CDOs and their use in bank balance sheet management

The main motivations for CDOs are market price inefficiency, funding costs and regulatory capital 

relief.

2.7.1 Market price inefficiency

CDOs make most economic sense for collateral portfolios in markets where there is limited 

information (inefficient) with the possibility of high risk-adjusted returns through active 

management. Default-risky assets, such as the debt of leveraged corporations, are often difficult to 

analyse and value, thus limiting their potential investor base and creating a gap in the economy 

between the demand and supply of risky finance. As a result, corporate debts are relatively illiquid in 

the secondary market. The CDO structure addresses this market inefficiency by bringing a 

specialised manager to the transaction and allocating much of the credit risk and of the liquidity risk 

in the equity class.

The CDO acts as a cushion and hedges the collateral portfolio from defaults (in a cash flow 

CDO) and from the direct impact of mark-to-market changes in the value of the collateral (in a 

market value CDO).
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2.7.2 Funding cost

If the main motivation is funding cost, which is the interest paid on the notes, the originating bank 

would try to reduce the funding costs by minimizing the size of the subordinated notes (mezzanine 

notes and the equity piece).

Funding can be an issue for banks whose rating has declined to a level where funding from 

other sources is expensive. The advantage of funding through a CDO is that the size of the 

subordinated notes, and so the funding cost, depends on the good quality of the collateral portfolio. 

To improve it, the originating bank would also fund the Cash Collateral Account (CCA), which is a 

cash deposit that reinforces the credit protection, by creating another layer of protection before the 

equity piece, usually in the range of 1% of the collateral portfolio.

2.7.3 Regulatory capital

Regulatory capital relief is another important motivation for issuing CDOs. Under the BIS rules, 

loans require regulatory capital R C , of the size of 8% of the risk weighted assets R WLoan, of 

100%.15

In Figure 2.4, we have prepared an example to outline the originating bank regulatory capital 

before and after the CDO: in the left box we have a portfolio of loans before they are transferred to 

the CDO and in the right box after they are purchased by the CDO. We assume that the loan 

collateral A , is of £100, all loans are of the same amount of £2 and pay the default-free rate r ( t) ,

assumed the libor rate of 5%, plus a spread s Loan , of 100 bps.

Ignoring any loan eligibility rule for a R WLoan reduction, the regulatory capital charge of the 

loan portfolio RCCLoan, before the CDO is

RCC = RW Loan * £ 1 0 0 *R C

RCC = £8 (2.6)

Chapter 2: A survey o f CDOs and their use in bank balance sheet management

15 At the time we are writing this chapter, the new Basel regulation on capital charges before and after 
securitisation, is under negotiation. An update can be found in, Basel Committee on Banking Supervision, 
Charges to the Securitisation Framework (30/1/04), URL: http://www.bis.org.
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On Balance Sheet Fully Funded CDO

Loan Collateral 
£100

50 loans of £2 each

Senior Note 
£90

Libor + 25 bp

@
Libor + 100 bps

Mezzanine Note 
£4

Libor + 80 bp
Junior Note 

£4
Libor + 200 bp

Retained Equity 
£2

Pre-CDO
RW=100%

RW * £100 * 8% 
Reg. Capital = £8 

Funding = Libor 5% 
Return = 100 bps 

RORC = 12.5%

Post-CDO 
RW (V) = 1250%

RW * £2 * 8%
Reg. Capital = £2 

Funding = Libor + Spreads 
=£5.24

Return = £0.76
RORC = 38%

Figure 2.4: Regulatory capital relief and RORC.

We also assume that the funding cost o f the portfolio is libor (with no spread) and we derive 

the R O R C ,

RORC  = - ^ s s s -
RCLoan

RORC  = ^  = 12 .5 %  (2.7)
8%

With the CDO in the right box o f Figure 2.4, the originating bank sells, through senior, 

mezzanine and junior notes, 98% o f the original loan portfolio and retains on its balance sheet only 

2%. Under the BIS rules, the only capital charge is on the equity piece V , which receives full 

regulatory capital deduction,16 that is, RWV = 1 2 5 0 % . With (2.6) we can calculate the new 

regulatory capital o f the originating bank, which drops from £8 to £2,

RCC = RWV *£ 2  *RC

RCC  = £2 (2.8)

To calculate the RORC  , we first compute the funding cost, F C , o f the three notes, where 

Ls , Lm and L j , are respectively the notionals o f the three notes, and ss , sM and Sj , are their 

spreads over the libor r(t) ,

16 For the current rules on regulatory capital charges before and after securitisaton see, Basel Committee 
on Banking Supervision, Charges to the Securitisation Framework (30/1/04).
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FC  = Ls (r(t) + s s ) + L m (;r(t) + ) + Z ,  (r(i)  + Sj )

F C  = £5.24 (2.9)

After this, we subtract from the interest on the asset, I Loan, the funding cost in (2.9)

I  Loan ~ FC = £6 -  £5.24

I  L o a n  - F C  = £0-76 (2.10)

where 1  Loan = (K 0  + S L„an ) A  > and divide (2-10) bY (2-8)
PA H  (L

RORC  = ——— /1 00% = 38% (2.11)
£2

If this transaction had a bigger volume it would hugely affect the RORC of the overall bank.17

2.8 Synthetic CDOs

In the CDOs we have seen so far, assets are actually transferred into the SPV. The process of 

transferring loans to the SPV requires significant up front work. A loan-by-loan analysis is necessary 

to check it complies with the securitisation programme and to verify that there are no special clauses 

attached to any loan limiting its transfer. We would like to call these CDOs conventional, to 

distinguish them from a new generation of CDOs called synthetics.

The term synthetic appeared when the credit risk was transferred into the SPV through a 

credit default swap,18 and the underlying credit ownership of the underlying pool remained in the 

originating bank’s balance sheet. In this instance, the term synthetic was used, since the risk was 

synthetically transferred out of the originating bank’s balance sheet. With synthetic CDOs, the big 

advantage is that sensitive client relationship issues arising from loan transfer notification, 

assignment provisions and other restrictions can be avoided. Client confidentiality is maintained. It 

also takes less time to complete the transaction.

In the following two sections, we will review how CDSs can be used to transfer the credit risk 

from the originating bank to capital markets, with both fully funded and partially funded CDOs.

2.8.1 Fully funded synthetic CDOs

In Figure 2.5, we illustrate a simplified example of how a fully funded synthetic CDO is structured.

17 This is an exemplified opportunity cost for regulatory capital relief. A full calculation would normally 
include: rating agency costs, lawyer structuring fees, underwriting costs, and would take into account the 
amortising profile of the notes.
18 Swiss Bank brought Glacier Finance 1997-1 and 1997-2 to market in late 1997. Swiss Bank transferred 
the credit risk to the SPV, via a portfolio of credit linked notes.
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T h e l o a n c oll at er al A , is £ 1 0 0. T h e S P V iss u es o n e n ot e L ^  , r at e d as A A A, of £ 9 8 t h at 

p a ys t h e d ef a ult fr e e r at e r (t ) , ass u m e d t h e li b or r at e, pl us t h e s pr e a d s A A A, a n d t h e ori gi n at or b a n k 

O , r et ai ns t h e e q uit y V  , o f £ 2. T h e pr o c e e ds o f t h e n ot e ar e i n v est e d i n hi g h q u alit y s e c uriti es S  , 

w hi c h h a v e 0 % ris k w ei g ht ass ets, a n d r et ur n t h e d ef a ult-fr e e r at e r { t ).

I n or d er t o tr a nsf er t h e cr e dit ris k o f t h e l o a n c oll at er al, t h e ori gi n ati n g b a n k e nt ers i nt o a C D S 

wit h a n O E C D b a n k, r ef err e d t o t h e l o a n c oll at er al A , f or a n oti o n al a m o u nt of £ 1 0 0. Wit h t h e C D S 

t h e ori gi n ati n g b a n k b u ys cr e dit pr ot e cti o n o n t h e l o a n c oll at er al A  , i n r et ur n f or t h e pr e mi u m, y Q. 

T h e n, t h e S P V s ells a C D S wit h r ef er e n c e t o t h e s a m e l o a n c oll at er al A  , t o t h e s a m e O E C D b a n k i n 

r et ur n f or t h e pr e mi u m y s pv  , w h er e w e ass u m e y S P V = y Q . At t his p oi nt, t h e ori gi n ati n g b a n k h as 

r e m o v e d t h e cr e dit ris k fr o m its b al a n c e s h e et, a n d t h e S P V h as a c q uir e d t h e cr e dit ris k, b ot h e ntiti es 

vi a  t h e C D S m ar k et. T h e C D S pr e mi u m y s p v , t h at t h e S P V r e c ei v es, pl us t h e i nt er ests o n t h e 0 % 

ris k w ei g ht ass ets r (t ),  s h o ul d b e l ar g e e n o u g h t o p a y t h e i nt er ests o n t h e n ot es r (t ),  pl us t h e 

s pr e a d s A A A. T his is t h e m ai n c o n diti o n f or t h e ori gi n ati n g b a n k t o g o a h e a d wit h a f ull y f u n d e d 

s y nt h eti c C D O. W e writ e t his c o n diti o n

Y s p y  A  +  S r ( t )  >   ̂  A A A  0 r ( t )  +  S  A A A  )

Y s p v  A +  L a A A S  A A A   >  0 wit h A >  L a a a  =  S

Y s p v  > s a a a  Z  ( 2 - 1 2)
A

B ot h y s p v  a n d s A A A ar e w h at w e li k e t o c all, m ar k et i n p uts: s ^  is t h e s pr e a d o v er t h e 

d ef a ult-fr e e r at e t h at t h e A A A i n v est or is willi n g t o e ar n t o h ol d t h e A A A n ot e, y S P V is t h e cr e dit 

pr e mi u m t h at a n O E C D b a n k is willi n g t o e ar n t o t a k e o v er t h e cr e dit ris k o f t h e l o a n c oll at er al. As 

l o n g as t h e l o a n c oll at er al A  h as a gr e at er cr e dit ris k t h a n t h e n ot e L ^ , a n d y s pv > s ^  , t h e 

S P V g e n er at es g u ar a nt e e e x c ess s pr e a d t h at fl o ws b a c k t o t h e ori gi n at or b a n k.

W e n o w l o o k at t h e r e g ul at or y c a pit al c h ar g e o f t h e ori gi n ati n g b a n k aft er t h e f ull y f u n d e d 

s y nt h eti c C D O.

U n d er t h e BI S r ul es, t h e r e g ul at or y c a pit al c h ar g e, R C C % C DS  o n t h e C D S is 1. 6 %, c al c ul at e d 

as t h e ris k w ei g ht ass et R W C DS 0 E C D  , o f 2 0 %, ti m es t h e r e g ul at or y c a pit al R C , o f 8 %

R C C % C D s   —  R W  C D S , o e c d  *  R  C

R C C % c d s  = 1 - 6 % ( 2. 1 3 )

T h e 1. 6 % is t h e n m ulti pli e d b y t h e n oti o n al a m o u nt o f t h e C D S o f £ 1 0 0, t o gi v e t h e 

r e g ul at or y c a pit al c h ar g e R C Ct C DS  , o f £ 1. 6

C h a pt er 2: A s u r v e y o f C D Os a n d t h eir us e i n b a n k b al a n c e s h e et m a n a g e m e nt
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R C C i ,c d s  =  R C C %.c d s  * C D S

RCC£CDS ~ £1 -6 (2.14)

The originating bank has retained the equity of £2. The regulatory capital charge of the equity 

is the risk weight asset RW V , of 1250%, times the regulatory capital R C , of 8%, times the equity 

of £2, which is £2,

RCC£V = R W v * R C * V

R CC£ v = £  2 (2.15)

As result, the total capital charge of this transaction is £3.6,

RCCiV + RCC£CDS = £3.6 (2.16)

With the fully funded synthetic CDO in Figure 2.5, the originating bank does not achieve a 

further reduction of regulatory capital, when moving from a conventional CDO. Because the CDS is 

with an OECD bank, there is actually an additional regulatory capital of £1.6.

In Figure 2.6, we show an alternative structure to the one in Figure 2.5. All variables are the 

same, except that the CDS is directly with the SPV. Since the proceeds from the note L AAA, are 

invested in high quality securities that have a 0% risk weight assets, the CDS does not bring any 

regulatory capital charge and R WCDS spv = 0 . Therefore the only regulatory capital remains the £2

of the equity.

As in Figure 2.5, with the structure in Figure 2.6, the originating bank has synthetically 

transferred the credit risk to capital markets, and preserved confidentiality: it does not notify its

clients that the loan is transferred to the SPV.

Originating
Bank

is CDS 
Buyer 
with 

OECD 
Bank

CDS 
Premium 

-------------►

•4-------
Credit
Protection

S
0% Risk 
Weight 
Asset 
£98

Investing Interest 
& Principal

OECD
Bank

is CDS 
Seller 
with

Originator 
and CDS 

Buyer 
with SPV

CDS 
Premium 

-------------►

◄-------
Credit
Protection

SPV
is CDS 
Seller 
with 

OECD 
Bank

Interest 
& Principal 
------------- ►

◄----
Funding

L
Note

Rated
AAA
£98
@

libor + 
s(AAA)

V = Equity 
£2

A
Loan

Collateral
£100

Source: Investing in Collateralized Debt Obligations, Frank J. Fabozzi, Laurie S. Goodman. 

Figure 2.5: Fully funded synthetic CDO with CDS with an OECD bank.
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s
0% Risk 
Weight 
Asset 
£98

Investing Interest 
& Principal

Originating CDS SPV Interest L
Bank Premium is CDS & Principal Note

is CDS ------------- ► Seller w Rated
Buyer with AAA
with Originator

.4 _______
£98

OECD Bank @
Bank Credit Funding libor +

Protection s(AAA)
V = Equity

£2

A

Loan
Collateral

£100

Source: Investing in Collateralized Debt Obligations, Frank J. Fabozzi, Laurie S. Goodman

Figure 2.6: Fully funded synthetic CDO with CDS with an SPY.

2.8.2 Partially funded structures

In the fully funded synthetic CDO in Figure 2.5, the SPV has issued a note equal to 98% of the loan 

collateral. This is a very expensive funding programme and thus, the originating bank is far from 

achieving an efficient capital use. The alternative is a partially funded synthetic CDO transaction 

where the originating bank still buys credit protection, either directly from an SPV (Figure 2.7) or 

from an OECD bank (Figure 2.8). The difference is that in this instance, the SPV issues a lower 

amount of notes.

In Figures 2.7 and 2.8, the SPV issues one note LA, of £18, rated A, that pays the default-free 

rate r{t) plus the spread s A , whose proceeds, are invested in high quality securities S  , that have 

0% risk weight assets, and return the default-free rate r ( t) . The originating bank retains the equity 

V  , of £2. To transfer to capital markets the credit risk of the same collateral portfolio A , of £100, 

the originating bank enters in two CDSs: one called super senior CDS, C D SS, also called un-

funded piece, and a second called junior CDS, CD SJ , also called funded piece. The notional of the 

junior CDS, C D SJ is £20

CDSJ = L a + V

CDSJ =£20  (2.17)

What really characterises this structure is the super senior CDS, CDSS , whose notional is

£80

CDSs = A -  CDSJ

67



Chapter 2: A survey o f CDOs and their use in bank balance sheet management

C D S  s = £ 8 0  (2.18)

To see how the super senior CDS influences the funding benefit between a fully funded and a

partially funded synthetic CDO, we write as k sSPV and as v JSPV , respectively the super senior CDS

premium and the junior CDS premium and we assume that market forces preserve the following 

relationship between the premiums of this example and the premium of the previous one,

(2.19)

Then, we rewrite the condition of (2.12) as

v s p v  >  7 s p v  >  k S P V

v JspvC D S J + S r ( t ) > L ( r ( t )  + s A)

vspy C D S  > L a s a with C D S J > L A = S  (2.20)

We can notice two relationships in (2.20). Firstly, from (2.17) and (2.18), the larger the 

notional of C D S s , the smaller the size of the note L A , and the smaller the funding cost, 

L a (r(t) + 5^ ) . Secondly, v Jspv and k sSPV are the premiums that two OECD banks are willing to

earn to take over the credit risk of the loan collateral. As long as the funded piece C D S J , has a 

greater credit risk than the note L A , the SPV generates guarantee excess spread that flows back to 

the originating bank.

The size, the rating and the spread of the note L A are what drive the funding benefit of this 

structure when compared with the fully funded CDO, which we can write as follows

(2 .21)

We now look at the regulatory capital charge, of the originating bank, after the partially 

funded synthetic CDO.

Under the BIS rules, if the super senior CDS, C D S s , is with another OECD bank, the risk 

weight asset, RW  s is 20%, and returns the regulatory capital charge, R C C  s , is £1.6,
C D S  ,\y iS C D  C ,C D S

L a A A S A A A  L a S a  >  0

R C C „ . = R W m „s . * R C  * C D S 0
£ ,C D S Ò C D S s  /O E C D

R C C
i ,C D S b

=  £ 1.6 (2.22)

The regulatory capital rules on the equity piece and on the junior CDS, are the same as those 

applied on the fully funded synthetic CDOs in 2.8.1, and we have to distinguish between the case 

where junior CDS is directly with the SPV or with another OECD bank.

Figures 2.7 and 2.8 illustrate the mechanics of these types of CDOs, whereas Table 2.4 shows 

the regulatory capital results of the structures of Figures 2.5 to 2.8, and compares their funding costs, 

where we have assumed a libor rate r ( t ) , of 5%, and spreads over the libor, s ^  and SA of 10 bps 

and 50 bps, respectively of the notes rated AAA and A.
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Super Senior COS
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Source: Investing in Collateralized Debt Obligations, Frank J. Fabozzi, Laurie S. Goodman. 

Figure 2.7: Partially funded synthetic CDO with CDS with an SPY.
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Figure 2.8: Partially funded synthetic CDO with CDS with an OECD bank.
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Notional Figure 5 Figure 6 Figure 7 Figure 8
Regulatory Capital

CDS £100.00 £1.60 £0.00 £0.00 £0.00

Senior CDS £80.00 £0.00 £0.00 £1.60 £1.60

Junior CDS £20.00 £0.00 £0.00 £0.00 £1.60

Equity £2.00 £2.00 £2.00 £2.00 £2.00

Total £3.60 £2.00 £3.60 £5.20

Funding Cost

Note Notional £98.00 £98.00 £18.00 £18.00

Note Rating AAA AAA A A

Libor 5% 5% 5% 5%

spread (bps) 10 10 50 50

£5.00 £5.00 £0.99 £0.99

Table 2.4: Regulatory capitals and funding costs of Figures 2.5 to 2.7.

2.9 Balance sheet management with CDSs

Figure 2.9 contains a new partially funded CDO structure, where the loan collateral is the same as in 

the previous examples.

Partially Funded CDO

Super Senior CDS 
£87

premium of 14 bp 
(the un-funded piece is 

funded @ Libor) 
Senior Notes 

£3
Libor + 25 bp 

Mezzanine Note 
£4

Libor + 80 bp 
Junior Note 

£4
Libor + 200 bp 

Retained Equity 
£2

Figure 2.9: Partially funded synthetic CDO.

This structure is also free of any interest rate risk: it pays libor and receives libor. The spread, 

s Loan ° f 100 bps over libor compensates the bank for taking the credit risk. The spreads on the three

notes, ranging from 25 to 200 bps, compensate the notes investors for taking different credit risks.

We can remove the libor, leave the spreads on the note side and write the loan collateral as 50 

loans paying the spread s Loan, of 100 bps over libor, as prepared in Table 2.5.
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P a rtia lly  F u n d ed  S y n th e tic  C D O

A s s e ts % S p re a d s L ia b ilit ie s % S p re a d s
Loan 1 2% 100 bps S upe r S e n io r CDS 87% 14 bps
Loan 2 2% 100 bps S e n io r Notes 3% 25 bps
Loan 3 2% 100 bps M ezzan ine  N otes 4% 80 bps

100 bps Ju n io r N otes 4% 200 bps
Loan 50 2% 100 bps R eta ined  E qu ity 2% D iv idend

Table 2.5: CDO structure with hedged interest rate risk.

A CDS is designed to mimic the credit behaviour of a floating rate note, such as the loans in 

Table 2.5. The loan spread, that is constant until the loan matures, is equivalent to the fixed leg of a 

CDS. In fact, the CDS seller, who seeks credit exposure, receives X basis points, i.e. a spread, per 

year until the credit reference matures or defaults. The constant spread is the fixed leg of the CDS. 

As a consequence, we can remove the loans and add the CDSs on the asset side.

P a rtia lly  F u n d ed  S y n th e tic  C D O

A s s e ts % S p re a d s L ia b ilit ie s % S p re a d s
C D S 1 2% 100 bps S u pe r S en io r C D S 87% 14 bps
C D S 2 2% 100 bps S e n io r Notes 3% 25 bps
C D S 3 2% 100 bps M ezzan ine  Notes 4% 80 bps

100 bps Ju n io r Notes 4% 200 bps
C D S 50 2% 100 bps R eta ined  Equ ity 2% D iv idend

Table 2.6: CDO structure with hedged interest rate risk and with CDS in place of loans.

With the CDO in Table 2.6 the originating bank is now exposed to the credit risk of 50 

synthetic assets. To hedge its position, the bank borrows via three different notes and a CDS. 

Retaining the equity, gives it the right to a possible dividend.

Viewed from this angle, a CDO is a hedged portfolio. The assets are a portfolio of CDSs, the 

liabilities are the notes with different seniority. By hedging its balance sheet from credit risk, the 

bank is trying to achieve a higher return than investing in default-free treasury bonds. By partially 

funding the CDO structure, the bank has also achieved a leverage position, with potentially huge 

returns. The problem is how to correctly price the portfolio of CDSs.

2.10 CDO equity piece

The CDO equity piece is a truly hybrid security. It exhibits the features of a coupon bond, a 

corporate equity, a call option on the collateral and a managed fund.
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As a coupon bond, CDO equity is issued at or near par19 and has a final maturity date. Like 

convertible bonds, cash payments are not specified, although the range of expected distributions is 

established at the time of issuance. In a similar way to a call option, the value of CDO equity 

increases with the price and volatility of the underlying assets, the collateral portfolio. As with any 

actively managed investment, the contribution of the manager is a crucial determinant of CDO 

equity performance.

2.10.1 The CDO equity piece performance

The equity of a CDO represents a leveraged investment in the underlying asset class and in the asset 

management skills of the CDO manager. The leverage is achieved by issuing investment and sub- 

investment-grade debt as term20 asset-backed securities.

Credit losses are the obvious drivers of the CDO equity piece performance and can affect 

investors in two ways. First, as collateral shrinks because of defaults (in cash flow CDOs) or realised 

price deterioration (in market value CDOs), the amount of collateral portfolio reduces and with it the 

size of received interest payments. Second, if the par size of the collateral drops below the par value 

test or where the interest coverage test is breached, the excess spread that is normally paid to the 

equity investors is redirected to pay down the senior liabilities, thereby de-leveraging the CDO.

Equity payments resume only after the tests are restored above the trigger levels. Redirection 

of equity distributions can also be triggered by a drop in the interest income relative to the interest 

cost of the transaction.

According to Moody’s (2002),21 the average excess spreads in cash flow-arbitrage CDOs, in 

January 2002, was of 3.14%. In the same month the average life, in cash flow-arbitrage CDOs, was 

of 5.95 years. That means that, on average, in cash flow arbitrage CDOs, the return on the CDO 

equity was of 18.7% (3.14% times 5.95 years).

2.10.2 The CDO embedded call option

Depending on the collateral asset type and the timing of the transaction, the call option embedded in 

CDO equity may be quite valuable. Figure 2.10 shows the historical spread over Libor on the 

Goldman Sachs Single B Bond Index and the estimated cost of funding of CDO liabilities.22 The

19 This means that if an investor would like to purchase the full equity piece, he will have to pay an 
amount equal to the equity piece face value (£2 in Figure 2.6).
20 The “term” is used to differentiate the term securitisation where the SPV liabilities are bonds, from 
conduit where the SPV liabilites are commercial papers.
21 See Moody’s (22 March 2002), Collateralised Debt Obligations Indices: January 2002, for a report on 
excess spreads, average lives and other statistics on CDOs in US and Europe.
22 From Olberg et al. (2001).
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wider the gap between the income from the assets and the cost of the liabilities, the greater the 

investment incentive for CDO equity. Is it also greater the capital appreciation for the equity 

investors as a consequence of calling the CDO.23 24

Chapter 2: A survey o f CDOs and their use in bank balance sheet management
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Figure 2.10: GS Single B Bond Index over Libor and the bond-backed CDO issuance incentive.24

The upside from calling the transaction depends hugely on the type of collateral, making the 

distinction between CBOs and CLOs imperative. Those CDOs where the collateral is represented by 

bonds purchased at low prices (when interest rates were high) and where the structure is financed 

through cheap term notes (current low interest rates) offer the most likely possibility of significant 

capital appreciation. Floating-rate collaterals such as leveraged loans can easily be refinanced. The 

underlying borrowers can prepay outstanding loans and refinance at a lower funding rate. For this 

reason, a manager of a CLO will be in a very difficult position if he wishes to generate outsized 

capital appreciation. In other words, they do not offer as much potential for significant appreciation.

As the remaining expected returns fall, the equity holders are likely to exercise their option 

during the repayment period, either to take advantage of potential appreciation in CBOs, or to 

minimise the impact of a difficult credit environment with CLOs.

2.10.3 Investing in CDO equity

For long-horizon investors such as pension plans, endowments and insurance companies, portfolio 

diversification is an important investment consideration. In principle, diversification across asset 

classes lowers portfolio volatility without altering expected returns.

23 Flere we refer to the right of the equity investors to liquidate the collateral portfolio and use the 
proceeds to pay down the notes and interests due.
24 From Olberg et al. (2001).
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Traditionally, investments in properties and foreign securities have been seen as effective 

diversification strategies. More recently, as volatilities in financial markets have increased, asset 

investors have also turned to more illiquid asset types such as private equity, hedge fund 

investments, commodities, insurance risk securities and ultimately CDO equities.

CDO equities are perceived to have a lower correlation if compared with the traditional asset 

classes which they are made. This is not a surprise since the CDO cash flow structure hedges the 

equity investment against short-term liquidity or technical fluctuations in the value of the collateral. 

Indeed, the combination of non-generic collateral and active management should result in a low 

correlation between CDO equity returns and returns on benchmark asset classes, such as public 

equity, investment-grade corporate liabilities and government debt. Low long-term horizon return 

correlations, along with high expected returns, should lead asset investors such as insurance 

companies, pension plans, endowments and foundations, to consider investment in CDO equity as an 

effective diversification strategy and “alternative investment” bucket in the portfolios of long-term 

horizon investments.

The problem is that historical data on CDO equity returns are unavailable because the market 

is relatively new and remains a very private one.

Orberg et al. (2001) looked at how to measure the correlation of CDO equities. Their route 

was to look at the underlying collateral markets as a starting point for thinking about correlations 

between returns on CDO equities and returns in other asset classes. In their analysis they took the 

Merrill Lynch Single B Index as the proxy of the CDO equities to measure correlations with other 

market indices.
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Historical (1 2 /8 9  -  12/00) asset class return statistics

ML single B LB Govt LB Credit S&P 500 Russell 2000

Average ( % ) 9 .3 7 .62 8 .21 15.48 12.85

Standard 
deviation ( % ) 2 1 .48 14.17 16 .26 4 7 .98 6 3 .64

Correlations

ML single B LB Govt LB Credit S&P 500 Russell 2000

ML single B 1.00 0 .31 0 .4 7 0 .49 0 .57

LB Govt 0 .31 1.00 0 .9 5 0 .3 4 0 .15

LB Credit 0 .4 7 0 .9 5 1.00 0 .43 0 .2 6

S&P 500 0 .4 9 0 .3 4 0 .43 1.00 0 .69

Russell 2000 0 .5 7 0 .1 5 0 .2 6 0 .6 9 1.00

Table 2.7: Historical (12/89 -  12/00) asset class return statistics and correlations (from Orberg et 

al.).
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Table 2.7 shows the historical annualised monthly return averages, standard deviations and 

correlations for the Merrill Lynch Single B Index, the Lehman Brothers Government Index, the 

Lehman Brothers Credit Index, the S&P 500 Index and the Russell 2000 Index. As they expected, 

the high-yield Merrill Lynch Single B Index returns display the highest correlation with the small- 

cap Russell 2000 Index and lowest correlation with the Lehman Brothers Government Index.

Table 2.7 is useful for fund managers who would like to invest in Government bonds and does not 

want to lose the appreciation given by investing in equities. They are interested in seeing how the 

CDO equity would diversify their portfolio.
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Figure 2.11: Three efficient frontiers: ML single B - LB Governments, ML single B -S&P and S&P - 

LB Governments.

Using the data in Table 2.7, we have formed three different portfolios: LB Governments and 

ML single B, LB Governments and S&P, and ML single B and S&P. In Figure 2.11, we have 

prepared the efficient frontiers of these portfolios. The first name in each of the three portfolios has 

the initial weight of 100%. Subsequently, the portfolio weights change, the first name weight moves 

from 100% to 0%, whereas the second name weight moves from 0% to 100%.

We can see that below a risk (standard deviation) of 15.8%,25 the fund manager should 

diversify by combining Government bonds with CDO equities (ML single B) rather than combining 

Government bonds with equities (S&P 500). From Figure 2.11, we can make a further point. It is 

never good to combine equities with CDO equities.

25 At 15.8%, the split between Government bonds and ML single B is 40% to 60%.
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2.11 The Moody’s diversity score and the table of idealised

cumulative expected losses

The ratings are important features of the CDO market. They summarise the view that, one, two or all 

three main international rating agencies, Moody’s, S&P and Fitch, not only have on the credit 

quality of the collateral portfolio, but also on the quality of the CDO structure (principal waterfall, 

interest waterfall, par value tests, interest coverage, excess spread diversion etc).

Moody’s (Cifuentes and O’Connor (1996), Cifuentes and Wilcox (1998) and Tabe (2002)), 

S&P (2002) and Fitch (2003) have their own methodologies to assess the credit risk in a collateral 

portfolio. For a comparison of the three rating methodologies, we recommend Zhu et al. (2003). In 

what follows, we will review three aspects of the Moody’s methodology: the table of idealised 

cumulative expected losses, the binomial expansion technique (BET) and the diversity score.

Moody’s methodology is based upon the concept of expected losses, which reflects the 

amount that the CDO notes investors may lose until the CDO note matures. The approach Moody’s 

takes is to calculate, at a given rating category, the level of subordination below a certain note, so 

that the cumulative expected losses of the note, are the same as the benchmark of cumulative 

expected losses associated with that rating category. The benchmarks of expected cumulative losses 

are also known as the Table of idealised cumulative expected losses and are shown in Table 2.8. 

These are cumulative losses based on the historical performances of rated bonds. The data includes 

actual credit default experiences of corporate bonds and asset-backed securities. The cumulative 

losses are calculated as frequencies of issuer losses over the total number of rated issuers. The 

issuers are then characterised by rating classes and maturities. For example, a loss probability of 

2.035% means that if we were to hold the totality of bonds rated as Baa3, we would make a loss of 

2.035% over a period of 6 years. The consequence is that for each level of expected cumulative 

losses and maturity, there is an associated rating category, or otherwise said, the bond rating depends 

on its maturity and on its expected loss.
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Year
1 2 3 4 5 6 7 8 9 10

A a a 0.000% 0.000% 0.000% 0.001% 0.002% 0.002% 0.003% 0.004% 0.005% 0.006%

A a1 0.000% 0.002% 0.006% 0.012% 0.017% 0.023% 0.030% 0.037% 0.045% 0.055%

A a2 0.001% 0.004% 0.014% 0.026% 0.037% 0.049% 0.061% 0.074% 0.090% 0. 110%

A a3 0.002% 0.010% 0.032% 0.056% 0.078% 0. 101% 0. 125% 0. 150% 0. 180% 0.220%

A1 0.003% 0.020% 0.064% 0. 104% 0. 144% 0. 182% 0.223% 0.264% 0.315% 0.385%

A2 0.006% 0.039% 0. 122% 0. 190% 0.257% 0.321% 0.391% 0.456% 0.540% 0.660%

A 3 0.021% 0.083% 0. 198% 0.297% 0.402% 0.501% 0.611% 0.715% 0.836% 0.990%

B a a l 0.050% 0. 154% 0.308% 0.457% 0.605% 0.754% 0.919% 1.085% 1.249% 1.430%

B a a 2 0.094% 0.259% 0.457% 0.660% 0.869% 1.084% 1.326% 1.568% 1.782% 1.980%

B a a 3 0.231% 0.578% 0.941% 1.309% 1.678% 2.035% 2.382% 2.734% 3.064% 3. 355%

Ba1 0.488% 1. 111% 1.722% 2.310% 2.904% 3.438% 3.883% 4.340% 4.780% 5. 170%

B a2 0.858% 1.909% 2.849% 3.740% 4.626% 5.374% 5.885% 6.413% 6.958% 7.425%

B a3 1.546% 3.030% 4.329% 5.385% 6.523% 7.419% 8.041% 8.641% 9. 191% 9.713%

B1 2.574% 4.609% 6.369% 7.618% 8.866% 9.840% 10.522% 11. 127% 11.682% 12.210%

B2 3.938% 6.419% 8.553% 9.972% 11.391% 12.458% 13.206% 13.833% 14.421% 14.960%

B3 6.391% 9. 136% 11.567% 13.222% 14.878% 16. 060% 17.050% 17.909% 18.579% 19. 195%

C a a 14.300% 17.875% 21.450% 24. 134% 26.813% 28.600% 30.388% 32. 174% 33.963% 35.750%

Table 2.8: Moody’s idealised cumulative expected losses.26

Moody’s sometimes refers to the table of idealised cumulative expected default rates,26 27 which 

is prepared from Table 2.8, after adjusting the losses for a constant recovery rate of 45%.

To aggregate the single creditor loss into the losses of the collateral portfolio, Moody’s uses 

the binomial expansion technique (BET). The BET is based on the following assumptions: a) the 

probability that one particular credit of the collateral portfolio defaults is independent of the 

probability that any other credit in the same portfolio defaults, b) all credits have the same size, 

maturity, probability of default p  , and loss / ,  in case of default.

The consequence of such assumptions is the probability of a loss of X  = n l , with n < D  can be 

calculated with the Binomial Distribution

P (Z  = nl)
\ n J

P n( l - P )
D -n (2.23)

where D  is the diversity score of the collateral portfolio, explained below.

To be able to use the BET, any portfolio of credits (bonds, loans etc) must be conveniently 

approximated with a number D  of homogeneous credits. The diversity score reduces the actual 

portfolio of collateral credits with correlated default probabilities, to a homogenous portfolio of D  

credits with uncorrelated default probabilities. Moody’s defines the diversity score of a given 

collateral portfolio as the number D  of bonds in an idealised comparison portfolio formed by 

matching the first two moments of the loss distribution of the original and comparison portfolios. A 

detailed explanation of alternative diversity score method calculations, is given in Cifuentes et al. 

(1999), whereas applications are discussed in Schorin and Weinreich (1998) and Duffle and 

Garleanu (1999).

26 From Cifuentes and O’Connor (1996).
27 Tabe (2002).
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These attempts have succeeded in bridging the gap of knowledge amongst practioners on one 

side and Moody’s on the other. However, as Schonbucher (2003) highlighted, the Moody’s BET is 

not a formal portfolio default model, it is inaccurate and is unsuitable for pricing. Besides, Moody’s 

has never been generous in disclosing how the diversity score is calculated and updated, and more 

importantly, how it has approximated the default behaviour of real portfolios of credits, especially 

during the years 2002 and 2003 of very high defaults. In spite of these observations, the diversity 

score has become a market standard for communicating the degree of diversification of a portfolio.

An alternative approach is taken by S&P (2002) and Fitch (2003),28 who use default 

probabilities to find the CDO note ratings. Perraudin and Peretyatkin (2003) discussed the 

differences between expected loss and default probability based ratings for all asset-backed 

securities (to which CDOs belong). They showed that thick notes (such as senior notes rated AAA) 

tend to have superior ratings if the expected loss approach is taken. They found this to be consistent 

with the view that Moody’s enjoys greater market share for rating senior notes, while S&P and Fitch 

obtain a larger share for rating mezzanine notes.

We also note that the S&P and Fitch models do not arrive at an idealised construction of 

defaults, but rather build a distribution of aggregate default rates for the collateral portfolio. From 

the distribution, they apply different confidence levels for different ratings, and calculate the credit 

enhancements, firstly without and ultimately with recoveries.

In Table 2.9 we have extracted the rating confidence levels that S&P and Fitch use for rating 

CDO notes, together with the S&P stressing factors.
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A A A A A A BBB BB B

Fitch C onfidence 
Levels 99.62% 98.98% 97.86% 94.52% 84.04% 68.70%
S & P  C onfidence 
Levels 99 .95% 99.55% 97.87% 90.94% 47.54% 33.09%
S & P  S tressing 
Factors 120% 111% 102% 93% 81% 72%
S & P  Pre S tressing 
F acto r C on fidence 
Levels 99 .05% 99.05% 97.87% 95.25% 83.95% 74.71%

Table 2.9: Fitch and S&P confidence levels for rating CDO notes (AAA to B).

28 S&P uses the CDO Evaluator to simulate correlated default times, with a one-step period Monte Carlo 
simulation. Fitch uses the Vector CDO model, a Merton-based model, where the aggregated distribution 
of correlated default times is calculated with a multi step Monte Carlo simulation.
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Chapter 3: Copulae

3.1 Introduction

In this chapter, we introduce the notion of copulae, which allows us to combine a general framework 

of default dependency with the calibration of the marginal distribution of probability of default either 

on market CDS premiums or historical default information. We will do so, by separating the 

individual term structure of credit spreads (the marginal distributions) from the default dependency 

using copulae. We will also examine survival copula, and the use of copulae in setting probability 

bounds for sums of random variables.

3.2 Copula definitions

We denote by f ( x )  and ,F(x) , respectively the joint probability distribution function (p.d.f.) and 

the joint distribution function (d.f.) of an «-dimensional random vector X ( = ( X Y t , X 2 X n t)T 

at point x t = (xu ,X2t,...,Xnt)T. The univariate margins1 p.d.f. and d.f. of each element of X, at

points x t are denoted by f f ix f i  and Ft(xi) respectively, with i = 1,2,...,«.

Before defining the copula, we recall the following proposition of probability-integral and 

quantile function that we will use repeatedly in this chapter.

Proposition 3.1 :2 Let X  be a random variable with distribution function F , with notation 

X  ~ F , and let F  1 (t) be the quantile function or the generalised inverse of F , defined as

F~l(t) = in f{x  6 )R : F(x)  > t) (3.1)

for all t e  [0,1]. Then,

(1) for any uniformly distributed U  ~ U (0,1), we have F  l (U ) ~ F  ;

(2) if F  is continuous, then the random variable X  is uniformly distributed, i.e.

F ( X ) ~ U (  0,1).

(1) provides a simple way of simulating random variables with the distribution function F , 
by drawing uniformly distributed numbers.

1 In this thesis, we will use the terms of margins and marginals as synonymous.
2 In Embrechts, McNeil and Straumann (1999) p. 4. The proof is in Wang (1997).
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Definition 3.1:3 An n-dimensional copula is a function C defined on [0,1]" with range on [0,1] 

with the following properties:

(1) (grounded) for every u in [0,1]", C { u )  — 0 if  at least one coordinate u-  = 0 with 

j  = 1,2,.., n.

(2) (reflectiviness) i f  all coordinates o f u are 1 except u- then, C(u) = Uj with j  = 1,2,.., n.

(3) («-increasing) for every point ux and u2 in [0,1]" the C-volume Vc ([u1,u 2 ]) is non-

negative,

> 0 (3.2)
Jl= 1 Jn= 1

for all ( u u , u 2 l , . . . ,un f)  and (ul 2 , u 22 , . . . , u n2) in [0,1]" with u j x < u j 2 and

j  = 1,2,..,« ,4

From its definition, a copula represents the joint d.f. of «-standard uniform random variables, 

£/,, U2,.., U n , that is, a multivariate distribution with uniform margins

C(Mj , m2,..,mJ  = P(£/j < u x, U 2 < u 2, . . , U n < u n) (3.3)

A copula may be used to represents joint d.f. of any general random variables. As a 

consequence of probability-integral and quantile function we have

F(xl,x2,..,xn) =

P(Fi (X.) < f i  (x,), F2 (X2) < F2 (x 2 Fn (X„) < Fn (xn))

= C(iq(x1),F2(x2),..,F„(xJ) (3.4)

that is, any continuous multivariate d.f. F ( x 1, x 2,..,x ii) of random variables 2f,,2 f2,..,X n can be 

decomposed into a composition of the individual marginal d.f. F fixfi and the copula C(-) . This is 

formally stated in the following theorem.

Theorem 3.1 (Sklar’s 1959):5 Let F  be an n-dimensional distribution function with margins 

F f i x f i ^ f i x ^ i . ^ F f i x f ) . Then there exists an n-copula C  such that for all X in 91",

J In Nelsen (1999) p. 39, Embrechts et al. (1999) p. 4, and Meneguzzo and Vecchiato (2002) pp. 5-6. The 
original definition was in Sklar (1959) in french.
4 From Embrechts et al. (1999) p. 4. Property 2 follows from the fact that the marginals are uniform [0,1]; 
property 3 is true because the sum in (3.2) can be interpreted as = P(«j l <U1<ul2,..,un l<Un <un^)
which is non-negative.
5 For a proof, see Sklar (1996).
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F(xx,x2,..,xn) = C(F](xl),F2(x2),..,Fn(xn)) (3.5)

This theorem explains why copula reveals the link between multivariate distribution function 

and its individual margins. An important corollary is the following.

Corollary 3.1:6 Let F be an n-dimensional distribution function with continuous margins 

Fx(xx),F2(x2),..,Fn(xn) and copula C (where C satisfies (3.5)). Then for any u in [0,1]"

C(ux,u2,..,u2) = F (Ffl ( w , F f l (un)) (3.6)

In this way, a copula is a joint distribution function of uniform variates U), i = 1,2,...,« , 

each of which has a standard uniform distribution.

Remark 3.1: From the previous definition of copula, in terms of density, we have the following 
representation of the copula-density c 7

/(* !  >*2 ,~,xn) = c(Fl (x,), F2 (x2),..., Fn (x„)) • f j  f  (x,.) (3.7)

where

and

c (F1(x 1) ,F 2(x 2),...,F b (x J )
a''C (F i(x ,),F2(x2),...,F „(xJ)

dFfxl)dF2(x2)...dFn{xn)

U x i )  = dxt

(3.8)

(3.9)

There is also a copula K , the survival copula, that separates an «-dimensional survival 

function S , from its univariate survival margins <S'1(x i ),5 ,2(x ,)..,5 '„(x ;i) . In what follows, we

start with the relationship between the survival copula and the copula in the bi-dimensional case.

Before defining a survival copula, we remind an elementary relationship of survival analysis 

in the bi-dimensional case.8 We denote by iS'(x1,x 2) the joint survival function, which can also be 

written as

^(Xj, x2) = 1 -  Fx ( x j  -  F2 (x 2 ) + F(xx, x2) (3.10)

Similarly, the survival function Cs (ux,u 2) = P([/j > u x,U 2 > u 2) of two (7(0,1) random 

variables, with copula C(ux,u f i  is

6 In Embrechts, Lindskog and McNeil (2001) p. 4.
7 For a proof for the bivariate case, see Meneguzzo and Vecchiato (2002) p. 11.
8 In Bowers et al. (1997).
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C s (u x, u 2) -  1 -  w, - u 2 + C { u x, u 2)

Since C(Fl (x,), F2 (x2)) = F(Xj, x2) , we have Cs (F, (Xj), F2 (x2)) = ^(X], x2) .

(3.11)

(3.12)

Definition 3.2: For a copula C , we define the survival copula K as

K(ux,u2) = C y(l-w ,,l-tt2)

= Mj + u 2 -1  + C(1 -M],l ~ u 2) (3.13)

where we note that K is a copula, whereas Cs in (3.11) is not.9 10

Sklar’s theorem can be easily restated in terms of a survival copula K .

Theorem 3.2: Let S be an 2-dimensional joint survival function with margins Sx (x,) and S2 (x2). 

Then there exists a 2-copula K such that for every ( X j , X , ) in 1R",

S(x , , x 2) = K (S j (x , ) ,S 2(x 2)) (3.14)

For the multidimensional one, the «-survival copula K is

S(x i ,..,x „) = K (S 1(x i ),..,S„(x 2)) (3.15)

where the relationship between the multidimensional survival copula K and copula C , cannot be 

easily expressed as for the bi-dimensional case in (3.13). For this relationship, we refer to Georges et 
al. (2001).

3.3 Special copulae

We let C (u),CL(u) and C+ be three functions defined on [0,1]" as follows

 ̂ n \
C~ (u) = max ^  u(. -  n +1,0

V i=\

CL(u) = u1u2 ••■un 

C+ (u) = min(M, ,u2,...,un) 

with CL{u) the product copula.

(3.16)

(3.17)

(3.18)

Theorem 3.3 (Frechet 1951):10 If C is a n-copula, then for every u in [0,1]",

9 For a proof see Cherubini and Vecchiato (2004) p. 75.
10 For more details and a proof, see Nelsen (1999).
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C~ (u )  < C ( u )  < C + (u ) (3.19)

With Frechet’s theorem, it is possible to fix some bounds to joint distribution functions: 

C~ (u ) is the lower bound and C+ (u ) is the upper bound. The same theorem suggests some sort of 

ordering in the values of a copula. For the cases of n = 2 , the bounds are themselves copulae, since 

every copula is the distribution function of a random vector ( U x , U 2) r , and we can write

C ~ ( u l , u 2) = P ( l/  < u x, l - U  < u 2)  (3.20)

C +( u ], u 2) = P((7 < u l , U  < u 2 ) (3.21)

We say that C +( u 1, u 2) describes perfect positive dependence and C ~ ( u l , u 1) describes 

perfect negative dependence between two random variables. Whereas, C ± ( u 1, u 2) describes the 

case of independence. Yaari (1987) expressed the relationship between X x and X - , , if they have

the copula C+ as co-monotonic and if they have the copula C  as counter-monotonic.

To understand the role played by co-monotonicity in baskets of credits, consider the following 

CDO structure11 12 where the investor 1, called originator, retains the first portion of the loss L  , called 

equity piece E q  , and the investor 2 suffers any loss above the equity E q  . The loss of the

originator, X x, and the loss of the investor, X 2 , can be represented as follows

V . J 1  i f L i E “ xJ°  (3.22,
[ E q  i f  L >  E q  ~ [L  -  E q  i f  L  > E q

Note that X x — g x (L ) and X 2 = g 2 (L ) are not linearly correlated since we cannot write 

one as a linear function of the other. However, since they are always non-decreasing functions of the 

loss L  , they are co-mono tonic.12

3.4 Measure of dependence

The Pearson’s linear correlation coefficient, which is by far the most used measure to test 

dependence in the financial community, is not a measure of general, but only linear dependence. If 

two or more random variables are well represented by a multivariate Elliptical distribution, their 

dependence structure is linear. Hence, the linear correlation coefficient is a meaningful measure of 

dependence. Outside the Elliptical distribution, their dependence structure is not linear, and the use 

of linear correlation coefficient as a measure of dependence may lead to incorrect conclusions.

11 For a review of the CDO market, see Picone (2003).
12 This example was originally proposed by Wang (1997) to aggregate losses in a portfolio of correlated 
insurance claims.
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Therefore, Copula methods for capturing wider forms of dependence should be considered. Copulae 

are more general tools to describe dependence between random variables than the Pearson’s linear 

correlation. In this section we review the inadequacies of linear correlation as measure to describe 

non linear dependency between random variables, together with the properties of copulae.

3.4.1 Pearson’s Linear Correlation

Definition 3.3: Let (X ,, X  2)7 be a vector o f two random variables with nonzero variances. The 

Pearson’s linear correlation is

p (X v X 2) Cov(Xx, X 2) 
^ V a r ( X ^ V a r ( X 2)

(3.23)

where Cov(Xj,X2) is the covariance of (X1, X 2)r and Var(X] ) and Var(X2 ) are the

variances of X x and X 2. An alternative representation of (3.23) is the following

P(X1, X 2) = J3
^Var(X2)
yjVar(Xx)

(3.24)

where ¡3 is the slope of the following equation X x = a  + fiX2, for a constant a > 0 . This 

explains why (3.23) describes a linear relationship between two random variables.

The popularity of the Pearson’s linear correlation can be attributed to three important reasons. 

Firstly, Pearson’s linear correlation is straightforward to calculate. Secondly, Pearson’s linear 

correlation and covariances are easy to manipulate under strictly linear operations, and this property 

is extensively used to calculate the inputs to derive the efficient frontier and portfolio analysis in the 

Markowitz portfolio theory.13 A third reason is due to the quality of the Pearson’s linear correlation 

of being a natural measure of dependence in multivariate normal distributions, and more in general, 

of multivariate spherical and elliptical distributions.14

Pearson’s linear correlation is not a copula based measure of dependence, and very often leads 

to misleading results. The following shortcomings should prevent everybody to look at the Pearson’s 

linear correlation as the canonical measure of dependence.

The first problem is that the Pearson’s linear correlation is defined only where the variances 

are finite. Where the two random variables, X x and X , , are elliptically joint with the i-Student

13 For more on how to manipulate linear correlation under linear operations, see Elton and Gruber (1991) 
p. 98.
14 For more on Elliptical and Spherical distributions, see Lindskog (2000) p. 11 and Embrechts et al. 
(1999) pp. 7-13.
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distribution with degree of freedoms V < 2 , the Pearson’s linear correlation is not defined since the 

second moments are infinite.15

The second problem is that the Pearson’s linear correlation is not an invariant measure under 

non-linear increasing transformations. For example, if the two variables are log transformed, we 

have the following

p (X x, X 2) ri p f l o g ^ l o g ^ ) ] . (3.25)

The reason is that the Pearson’s linear correlation depends on the distribution of the margins, 

thus the measure is affected by non-linear change in the scale of the margins, such as the log 

transformation.16 Bouye and Salmon (2000) explained the above problem writing the Pearson’s 

linear correlation at copula level as

p (X x,X 2) _________1_________
^Var(Xt) jVar(X2)

1 1
|  j(C(Wj, u 2) -  )dF~l (u1 )dFfx (u 2)
0 0

(3.26)

From (3.26) we see that the Pearson’s linear correlation depends on the copula and on the 

margins, F] and F2.

A common misunderstanding around the Pearson’s linear correlation is to confuse zero linear 

correlation with independence. Independence of two random variables implies a Pearson’s linear 

correlation equal to zero, but the reverse is not in general true. It is true only when the marginals are 

normal distributed and the joint distribution is normal as well.17

One last limitation is that the Pearson’s linear correlation is not a measure to capture extreme 

co-movements in two or more random variables. As we shall see in the following section, tail 

dependence is a property of the underlying copula.

3.4.2 Dependence with copulae

Perhaps, one of the most important properties of copulae is the one captured in the following 

theorem, which explains why copulae are better tools to describe dependence between random 

variables than the Pearson’s linear correlation.

Theorem 3.4 (Invariance):18 Let ( X },..., X n ) T be the random vector with copula C . I f  

(g^ (X j),.., g n ( X n)) T are strictly increasing on the range o f X l X n, then they also have C

15 See Embrechts et al. (2001) pp. 6-13.
16 For a proof see Schweizer and Wolff (1981).
17 For more about marginals normally distributed and non-normal joint distributions see Embrechts et al. 
(1999).
18 For a proof see Embrechts, McNeil and Straumann (1999) p. 6.
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as their copula.

This theorem shows that the new variables g f iX f i  have the same copula as the original 

variables X (. . Therefore, the way variables move together, or are dependent, is captured by the

copula, regardless of the scale in which the same variables are expressed.19 This statement holds for 

Pearson’s linear correlation only under linear transformations.

There are indeed two measures of dependence that do not share the same limitation as the 

Pearson’s linear correlation and are very useful when it is required to compare any two copulae. 

These are the Spearman’s rank correlation p s { X x, X 2) and the Kendall’s rank correlation

P r & M .

Definition 3.4:20 Kendall’s rank correlation o f a random vector (X t, X 1) is defined as

P A X „ X 2) = P((X,- X [ ) ( X 2 - X ' 2) > o ) - P ( ( ^ - X [ ) ( X 2 - X ' 2) < o) (3.27)

where (X j, X 2) is an independent realisation of the joint distribution of (X ,, X 2 ) . The Kendall’s 

rank correlation in (3.27) looks like the difference of two probability measures, the first is the 

probability of concordance and the second is the probability of discordance.

Definition 3.5:21 Spearman’s rank correlation o f a random vector (X j, X 2) is defined as

Ps(Xv X 2) = 3(p((X, -  x ; x x 2 - X ’2) >  o ) -  p ( ( x ; -  x ; x x 2 -  X ") < o)) (3.28)

where (X ,, X 2 ) and ( X , , X-,) are independent realisations of the joint distribution of (X !, X 2 ) . 

Both Spearman’s p s and the Kendall’s p T can be written at copula level as follows22

i i

p s ( X x, X 2) = \ 2 ^ C ( u l , u 2) d u ]d u 2 “ 3 (3.29)
0 0

1 1
p z (X ,, X 2)  = 41 j C ( u 1, u 2) d C ( u 1, u 2)  -1  (3.30)

0 0

With (3.29) and (3.30), both Spearman’s p s and Kendall’s p T depend only on the copula,

whereas, we showed in (3.26) that the Pearson’s linear correlation depends not only on the copula, 

but on the marginal distributions as well.

19 Schweizer and Wolff (1981) showed that the copula accounts for all dependence between two r.v.s.
20 In Embrechts et al. (1999) p. 16.
21 In Embrechts et al. (2001) p. 13.
22 In Embrechts et al. (1999), theorem 3. p. 16.
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Spearman’s p s and Kendall’s p z are measures of the degree of monotonic dependence 

between two random variables, whereas the Pearson’s linear correlation is only the measure of linear 

dependence. For example, if p s (X ,, X 2) = p r (X x, X 2) = 1 the random variables X 1, X 2, have

joint distribution C + . In case p s ( X l , X 2) = /5r (X ,,X 2) = - 1  the random variables X ,,X 2, 

have joint distribution C .

For last, they are also invariant under monotonic transformations. This is because both can be 

expressed in terms of copula, which is invariant under strictly increasing transformations of the 

marginal distributions (theorem 3.4).

Rather than looking at global measures of dependence such as Spearman’s p s and Kendall’s 

p z , further insight into the association between two random variables can be gained by considering

local measures of dependence. Upper and lower tail dependence are local dependence measures of 

bi-variate extremes, which cannot be measured by the Pearson’s linear correlation.

The concept of tail dependence relates to the dependence that arises in extreme observations, 

that is, those located in the upper right and lower left quadrant tail of the bivariate distribution. It is 

defined as follows.

Definition 3.6:23 Let ( X }, X 2 ) be a vector of continuous random variables with marginal functions 

Fx and F2. The coefficient of upper and lower tail dependence of (X x, X 2) are

= l im P (x 2 > F2 l(u2) | X x > F f \ u j)) (3.31)

XL = l im P fx , < F ; \ u 2) I X, < F f \ u x)) (3.32)

provided that the limits Xv and XL e [0,1] exists.

It is evident that (3.31) (and (3.32)) is the probability that one component is extremely large 

(small) given that the other component is extremely large (small).

An alternative and equivalent definition, from which it can be seen that the concepts of upper 

and lower tail dependence are indeed copula properties is the one proposed by Joe (1997)

1 - 2  u + C(u ,u )
1 - u  (3.33)

X, = lim -
U—>1

and X,  = lim — U,V- . (3.34)
«-»0 u

2j In Embrechts et al. (2001) pp. 15-16 and Georges, Lamy, Quibel and Roncalli (2001). For a proof see 
Joe (1997) p. 33.

87



Chapter 3: Copulae

3.5 Examples of copula

There are many choices of copulae available in the literature that would permit various dependence 

structures. We begin with Marshall and Olkin exponential copula. Following this, we introduce two 

Elliptical copulae: Normal and i-Student, and two Archimedean copulae: Clayton and Gumbel.

3.5.1 Marshall and Olkin exponential copula

The Marshall and Olkin exponential copula (1967) is used to model the credit events as 

triggered by either idiosyncratic shocks or a by a shock common to a number of obligors, which is in 

the spirit of the approach of Duffle and Singleton (1998). It has been used for years in the actuarial 

field, but just recently applied to finance. Among the first and major contributors are Embrechts, 

Lindskog and Straumann (1999), Embrechts, Lindskog and McNeil (2001) and Giesecke (2002).

We begin with bivariate Marshall and Olkin exponential copula and present analytic 

expressions for the rank correlation and tail dependence. Then, we move to the multivariate case.

For simplicity we begin with an economy characterised by only two credits. In this simplified 

world, we let the defaults of the two credits be driven by firm-specific factors, as well economic-

wide factors.

We let tx and t 2 denote the maturity of the two credits. Furthermore, assume there are three 

independent time-homogeneous Poisson processes N x, N 1 and N  with intensity rate \  , A2 and 

Ap that we can interpret as the idiosyncratic shocks of credit 1 and 2 ( A j, A2), whereas we think of 

A,2, as the systematic shock that affects both credits simultaneously. Also, since there are only two 

credits in the economy, the economic-wide factor, A , coincides with systematic shock of credit 1 

and 2, A,-,, and we can write Ap = A .

Definition 3.7: We define the random time o f default r ; of credit i as

z i = inf{i > 0 : N i (t) + N( t )  > 0} (3.35)

which means that default takes place unexpectedly if either the idiosyncratic or a systematic shock 

strikes the credit i . Thus, credit i defaults with an intensity equal to A(. + A . The random times

Z"], r 2 and T , of occurrence of the three shocks are independent exponential random variables with 

intensity rate A1 , A2 and A respectively. Hence P (rj = r 2) >  0 .
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The univariate survival margin of credit i is

Si(ti) = P(r, > tx) = exp(- (hi + h)t) (i = 1, 2 and t > 0), (3.36)

and the joint survival of credit 1 and 2 is

S(t], t2) = P ( t j > tx, r 2 > t2)=  P (r, > t x)P (r2 > t2)P (r > m a x ^ , t2)) (3.37) 

From the fact that max(tx, t2) = t x + 12 — m m (tx , t2) > we ean re-write (3.37) as 

S { t x, t 2)  = exp(- (A, + X)tx -  (A2 + X)t2 + A m in ^ , t 2))

= Sj ( tx ) S 2 {t2) m iniexpiA/,), exp(Ai2)) (3.38)

We let <S'i (i! ) = u i and 6 i be the ratio of the joint intensity rate A and the intensity rate of 

credit i A; , 0i = A/(A. + A) . Then, exp(A^) = u 9' , and exp(Ai2) = u 02. Hence, the survival 

copula K  is given by

K ( u l t u 2) = S ( S ~ 1( u l ) , S ; l ( u 2))

= u xu 2 m m ( u x 0' , u 2&2) = min (u\~e' u 2, u xu 2 &1) (3.39)

where the vector (6X, 02) controls, as Giesecke (2002) pointed out, the degree of dependency 

between the two times of default. The copula in (3.39) is known as the Marshall and Olkin copula.

When defaults are independent, A = 0 , then 6X = 6^ = 0 , and we are able to write the 

product copula in (3.17) as

K ( u ], u 2) = u xu 2 (3.40)

When defaults are perfectly positively correlated (we prefer to speak of co-monotone 

defaults), i.e. credits default simultaneously, then \  = A2 = 0 and 6X = 02 = 1. Hence, we write 

the Frechet upper bound copula in (3.18)

K ( u x, u 2) = m m ( u x, u 2) (3.41)

Otherwise, we write uxu2 < K(ux,u2) < , meaning that with the Marshall and

Olkin copula, defaults can only be positively related.24

Embrechts et al. (2001)25 showed that the Spearman’s rho and Kendall’s tau (and Pearson’s 

correlation)26 of the times of default z x and r 2 are easily evaluated for this copula as

and

Ps (^i i 7 2 )
w xe2 3A

2 6 , + 2 6 2 -  6 x6 2 3A + 2A, + 2A2

A6\62
6x +92 -  0,0, A, + A2 + A

(3.42)

(3.43)

~4 In Giesecke (2002) p. 5.
23 In Embrechts et al. (2001) pp. 18-19.
26 In Lindskog (2000) p. 23.
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In Figure 3.1 we plot the two rank default correlation measures as a function of the joint 

default intensity A , and with the idiosyncratic shocks A, and A2 equal to 0.1.

Figure 3.1: Spearman’s rho and Kendall’s tau measures with idiosyncratic shocks Aj = A, = 0 .1 .

When A = 0 , the rank default correlation measures are equal to zero and the credits default 

independently. When A, = A2 = 0 , the joint shock dominates the idiosyncratic component and the

firms will default simultaneously. As the joint default intensity A increases, Spearman’s rho 

dominates the Kendall’s tau. However, this is not always true. In Figure 3.2 we show the case with 

the idiosyncratic shocks \  and A2 equal to 0.5, and for A greater than 0.5 the Spearman’s 

measure underestimates the Kendall tau measure.

Figure 3.2: Spearman’s rho and Kendall’s tau measures with idiosyncratic shocks A, = A2 = 0.5 .

In Figure 3.3 we plot the Spearman’s rho and Kendall’s tau measures with constant joint 

default intensity A of 0.5, and with Aj and A2 changing from 0 to 1. Intuitively, the rank default 

correlation measures decrease as the two idiosyncratic rates increase, and the idiosyncratic 

component dominates the joint shock component of default.
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Figure 3.3: Spearman’s rho and Kendall’s tau measures with systematic shock A  = 0.5.

The upper tail dependence has a closed form solution 7 equal to

Au = mh\(6 x,Q2) (3.44)

Thus, the ratio of the joint intensity rate, A , and the intensity rate of credit 1, A l , (or the intensity 

rate of credit 2, A2), controls the asymptotic measure of tail dependence between the two credits.

Before we move to the multivariate extension of the bivariate Marshall and Olkin exponential 

copula, we set up the three-variate case. We assume a three-credit economy, with n = 3, where the 

default of an individual firm is driven by firm-specific factors, some sector, geographic or country 

factors common to pairs of credits, as well an economic-wide factor common to all three credits. The 

factors are independent Poisson processes, N x, N 2, N 3 , N X1, N n , N 23 and N U3 with

respective intensities Ax, A2, A3, AX1, A13, A23 and Am  . The maturities of the three credits are

denoted t x, t 2 and t 3 .

To indicate whether a non-firm specific factor leads to the firm default we introduce a 

matrix27 28 with elements (a„ , where the value 1 indicates that the factor leads to the default and' lJ  '  nX m

the value 0 does not:

A, ¿ 2 a 3 A ,  2 ¿ 1 3 ¿ 2 3 ¿ 1 2

"1 0 0 1 1 0 r
) - 0 1 0 1 0 1 i

_0 0 1 0 1 1 i

with j  = 1,2,. .,7 and i  = 1,2,3.

(3.45)

27 The derivation of that result can be found in Embrechts et al. (2001) p. 19.
28 This matrix representation was taken from Giesecke (2002).
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29Definition 3.8: We define the random time o f defaidt T] o f credit 1 as

r, = inf{i > 0 : anNf t )  + auNl2(t) + alsNn (t) + a]7Nl23(t) > 0} (3.46)

The survival probability of credit 1 can be written as

f  1Si (/,) = P(r, > 0 =  exp -  Z  ayJ i f
V

and the joint survival probability of the three credits is

S ( t 7, t 2, t 3)  = P( t j > t1,T2 > t2,T3 > t 3)

(3.47)

exp Z P t i  ~  Z  a ijPi max^ ’ l j ) “  P i  max(;i ^2^3)/=1 /< j

(3.48)

with /?; as defined in (3.45).

Similar arguments yield to the following «-dimensional exponential survival function

s ( t , n) = H f  > tl ,...,rn > 0 =

exp -  Z  M  -  Z  a vÀü max(iff; ) -  Z  tn.ax(tit j t k ) - . . . -  a12..„^2., max(i,, t 2 tn )
1=1 <</' i<j<k

(3.49)

Using the same arguments used for the two-dimensional copula, once i and j  6 are

fixed, with i 4  j , the two-dimensional survival copula of credit i and j  is

K ( u i,u j ) = if(l,..,l,M;,l,..,My,l,..,l)
(3.50)

where and 0 y are the ratios of the joint default intensity of credit i and j  to the default of credit i 

(or j  for the latter) equal to
7 7

Z  W j k P k

■ , 1-0, 1-0, X= m in{ u , u l , uju j J)

Y . aikajkPk
0 ; = — ,----------- k=\

Z  a ikPt

O j  =  7
(3.51)

Z  a jkPkk=1 i=l
In analogy to the bivariate case, the (i,j)th entry of the Spearman’s and Kendall’s rank 

default time matrix are respectively given by

PS(Ti’Tj) =J'  20i + 20j -  0.0.
(3.52)

29 Similarly, the random time of default of credit 2 and 3 can be defined.
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and Pr(Ti,Tj) = (3.53)

The critique we can move to the multivariate Marshall and Olkin exponential copula is the 

large number of parameters to calibrate. Given the lack of available market data, this seems an 

impossible task. Embrechts et al. (2001) suggested setting the shock intensities for subgroups with 

more then two elements, {Ayk {Aijk to zero. As they underlined, in this case the copula 

would have only a bivariate dependence.

This is also the route taken by Wong (2000). By setting ctykAyk , and all higher orders in

(3.49) to zero, he derived a multivariate extension of the exponential distribution calibrated to the 

parameters specified in the KMV model. With Wong’s assumptions, (3.49) becomes

The simplest model, which yet accounts for default dependency in a credible way, is to set the 

shock intensities for subgroups with more then one element, {Ay}, {Aijk},... to zero, with the

exception of the subgroup with the highest number of elements, {Aijk n}. In this way, the times of 

default are still dependent upon each other through the common shock with intensity {Ayk n }.

n

3.5.2 Normal copula

Definition 3.9: Let ® denote the standard univariate normal distribution and ® ( denote the 

standard multivariate normal distribution with correlation matrix E . Then the multivariate Normal 

copula is defined as follows

(3.55)

where ® 1 is the inverse of the standard normal cumulative distribution function. 

In the bivariate case the normal copula can be written as30

where p ( X x, X 2 ) is Pearson’s linear correlation of the two random variables.

30 In Lindskog, Me Neil and Schmock (2001) p. 25.
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The Pearson linear correlation p ( X x, X 0) for a normal copula can be expressed in terms of 

both Kendall’s p r( X x, X 2) and Spearman’s p s ( X x, X f  31 in the following way

P ( X 1, X 2) = 2sin - p s ( X x, X 2) 
V 6

K = sin n
p A * » x  2) (3.57)

This copula fails to incorporate tail dependence and correlates the random variables near the 

mean and not in the tails. In spite of its limitations, it has been extensively applied in finance, given 

its nice properties.

3.5.3 /-Student copula

Definition 3.10: Let tv denote the univariate t-Student distribution and t"y denote the multivariate

t-Student distribution with correlation matrix Z and V degrees o f freedom. Then the multivariate t- 

Student copula is defined as follows

C ^ ( u l,u2,...un) = tnvZ(C(ux) ,C (u2),..,C(un)) (3.58)

In the bivariate case the copula expression can be written as32

ru\ Ul)t-'(u2)

Ĉ£(M],m2)= J ! ! + *
-2p(X\,X2)xlx2 +x:

2 'i -(j*-2)/2

-00 -00 2 n ]\ - p f X v X f ) \  u (l- p \ X v Xf))
dxydx, (3.59)

where p ( X x, X 2) is Pearson’s linear correlation and tu is defined only for v > 2 .

It can be shown that the ¿-Student copula has upper (and lower) tail dependence equal to31 * 33

A, = L  = 2 (V T T T V K p î T T T )  / Vi + P (V „ A \ )) (3.60)

where tu+x denotes the tail of a univariate ¿-Student distribution.

Table 3.1 shows some tail dependence coefficients of a bivariate ¿-Student copula for different 

degrees of freedom and linear correlation values. For example, with a bivariate normal distribution, 

the probability associated with joint tail events, given that a marginal tail event has occurred is zero 

(last row of Table 3.1 with infinity as degrees of freedom). However, if we use the ¿-Student copula 

to describe the same phenomena, the probability of these events would be different from zero. With 

3 degrees of freedom and a correlation value of 0.5, the probability is 31.25%; with 10 degrees of 

freedom and a correlation value of 0.9, the probability is 46.27%, and so on.

31 In Lindskog et al. (2001). This result will prove to be very important for comparing samples drawn 
from Elliptical copulae with those drawn from Archimedean copulae.
’2 In Lindskog et al. (2001) p. 26.
33 In Embrechts et al. (1999) p. 19.
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0 .0257 0.1161 0.2161 0.3125 0.6701 1

0.0001 0.0068 0.0331 0.0819 0.4627 1

3 .00E -06 0.0010 0.0097 0.0346 0.3724 1

9 .00E -08 0.0002 0.0029 0.0151 0.3051 1

0 0 0 0 0 0

Table 3.1 : Bivariate /-Student copula tail dependence coefficients.

Another illustration of the different weights the t- Student copula gives to extreme events is 

given in Figures 3.4a, 3.4b, 3.5a, and 3.5b. Figure 3.4a and 3.5a show two charts with 5,000 runs

from a Normal-copula with linear correlation p ( X x, X 2) of 0.25 and 0.5, respectively. Figure 3.4b 

shows a chart of 5,000 runs from a /-Student copula with 10 degrees of freedom and linear 

correlation p ( X x, X 2) of 0.25, whereas Figure 3.5b shows a chart of 5,000 runs from the /-Student 

copula with 5 degrees of freedom and linear correlation p ( X x, X 2) of 0.5. Clearly, the /-Student 

copula generates more joint extreme events.

Figures 3.4a (left) and 3.4b (right): The left chart shows 5,000 runs from a Normal copula with linear 

correlation p ( X x, X  2) of 0.25. The right chart shows 5,000 runs from a /-Student copula with 

linear correlation p ( X x, X 2) of 0.25 and 10 degrees of freedom.
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Figures 3.5a (left) and 3.5b (right): The left chart shows 5,000 runs from a Nonnal copula with linear 

correlation p ( X x , X 2) of 0.5. The right chart shows 5,000 runs from a ¿-Student copula with linear 

correlation p ( X }, X 2) of 0.5 and 5 degrees of freedom.

Heavy tails phenomena concern the potential for extreme co-move?nents between financial 

assets. Recent empirical studies suggest that extreme joint movements are intrinsically present in the 

joint behaviour of many financial assets. Karolyi and Stultz (1996), Straetmans (2000) and Longin 

and Solnik (2001) found strong evidence of this behaviour across international equity markets. More 

recently, Mashal, Naldi and Zeevi (2003) found that the VAR of portfolios of options on the G5 

equity market indices, currencies and metals, calculated on the assumption of a normal dependence 

structure, are typically between 10% to 50% smaller than those calculated with a dependence 

structure, which supports extreme co-movements, such as the ¿-Student distribution. In particular, 

they found a non-trivial degree of dependence in the tails. They also rejected, with negligible error 

probability, the consistency of normal dependence structure and the statistical significance of their 

results became stronger as the number of underlying assets increases.

In baskets and CDOs of credits, extreme co-movements correspond to joint defaults'. Thus, 

large joint movements that are not captured via the multivariate normal distribution can lead to large 

discrepancies in the calculated prices of these instruments.

The Normal copula places little mass on the tails relative to the ¿-Student copula. Unlike the 

Normal copula where dependence is captured only via linear correlation, the ¿-Student copula retains 

the use of linear correlation while introducing an additional parameter that controls the heaviness of 

the joint tails, the degree of freedom. Another important property of the ¿-Student copula is the so- 

called tail dependence. This means that even in very extreme events, asset returns remain dependent 

while within the Normal copula they become asymptotically independent. Both properties lead to a 

higher probability of occurrence of joint defaults and therefore greater risk in baskets or CDOs.

It is easy to understand the relationship of the ¿-Student copula with the Normal copula: the 

multivariate ¿-Student distribution is a generalisation of the multivariate normal distribution, in the 

sense that as the degrees of freedom go to infinity, the ¿-Student distribution approaches the normal
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distribution. An approach commonly taken to generate draws from a ¿-Student distribution is to

chi-squared distributed with V degrees of freedom, and X  and S  are independent. Then, Y  will 

be distributed as tu v .

3.5.4 Archimedean copulae

Elliptical copulae are easy to simulate, but have two main disadvantages: they do not have closed- 

form expressions and therefore are expensive in computational terms, and cannot generate those 

asymmetries necessary to model dependence in financial markets, i.e., stronger dependence between 

large losses than large returns. In contrast, Archimedean copulae have closed-form expressions and 

can generate a wide range of dependence structures.

Definiton 3.11:34 Let us consider a function <p(u): [0,1] —>[0,co] which is continuous, strictly 

decreasing cpfu) < 0 for all u e  [0,1], convex <p"(u) > 0 for all u e  [0,1]. cp(u) is called the 

generator o f the copula and uniquely determines an Archimedean copula.

Definiton 3.12:35 We define the pseudo-inverse o f (p(u) as follows

If (p(ff) = oo , the pseudo-inverse collapses into an ordinary inverse function. When this 

happens, we say that (p{u) is a strict generator, and the copula is called a strict Archimedean 

copula.

define Y  = Xyfu7~S , where X  ~  N (0 ,2 ) is multivariate standard normal distributed, S  ~  x l  is

(3.61)

Note that cp 1 (u ) : [0, oo] —» [0,1] is continuous, strictly decreasing. Furthermore, 

cp~x (tp(u)) = u on [0,1], and

(3.62)

34 In Nelsen (1999) p. 90.
35 In Nelsen (1999) p. 90.
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Theorem 3.5 (Kimberling 1974): Let C be the function from [0,1]" to [0,1] given by

C (uv u 2,..,u n) = (p~X + (p(u2) + .. + (p{un)) (3.63)

Then C is a copula i f  and only i f  tp~' is convex

Gumbel and Clayton are classical Archimedean copulae. Below we report their expression, in 

the bivariate form, dependent on one parameter a , together with the Kandall’s rank correlation p T 

and the tail dependence.36 37

Definition 3.13 (Clayton copula 1978): Let tp(u) = u “ -1  with a e  [—1, oo) \ {0} then using 

theorem 3.5 we have

C(ux,u2) = +u2a — l )_1/fl ,0] (3.64)

with
a

ci 2
(3.65)

and XL = 2~1/fl (3.66)

Definition 3.14 (Gumbel copula 1960): Let <p(u) = ( -  ln(w))“ with a e  [1, oo)

theorem 3.5 we have

C(ux,u2) = exp(((- \n(uf))a + ( - I n  («,))" )“1/fl)

then using 

(3.67)

with Pr (3.68)

and Xfj = 2 -  2 lla (3.69)

3.5.5 Drawing from multivariate Archimedean copulae

Drawing from Archimedean copulae is more complex than drawing from Elliptical copulae. A 

method to simulate draws from a chosen copula is the conditional sampling.

Genest (1987) and Genest and Rivest (1993) introduced the idea of simulating the full 

distribution of random variables ( X l , X 2, . . ,X k, . . ,X n) by recursively simulating the conditional

distribution of X t given ( X if X 2, . . ,X k_x) . The task is to generate pairs (u ,v ) e  [0,1] of 

uniformly distributed random variables U  and V whose joint distribution is the copula C.  Assume

36 For a proof see Nelsen (1999) p. 91.
’7 For more on definitions, generators and dependence measures of Archimedean copulae, see Joe (1997), 
Nelsen (1999) and Embrechts et al. (2001).

98



Chapter 3: Copulae

that we have already drawn from the uniformly random variable U , and that we want to draw from 

another random variable V  joint to U  through the function C , i.e. the copula. The idea is to use 

the conditional distribution of V  , given the draw value of U , as defined below

c „  (v) = H v  < vIU  = . )  = lim Ou + Au X (y) ^
A“-*-0 A u ou

The application of the conditional sampling to the Archimedean copulae leads to the

following sampling algorithm. 38

(1) Simulate k random variates ( u l , u 2 , . . . . ,uk ) from t /  (0,1) .

(2) Set v, = u x (the first draw).

(3) Set the random variate «, = C2 (v2 | Vj) from which v2 = Cj"1 (u 2 | v,) .

(4) ....

(5) Set the random variate u k = Ck(vk \ vx,v2,v.i ,..,vk_x) 

from which vk = Ckx(uk \ Vj, v2, v3 vk_x).

In the following two sections, we will apply the sampling algorithm to generate multivariate 

Clayton and Gumbel copulae.

3.5.6 Clayton n-copula

The Clayton «-copula is given by
’ n "l-l/fl

2 X a ~ n + l
. ¡=i

From the definition of the Clayton copula, its generator is given by (p(v) = v 

inverse is tp~' (t ) = (t + l ) ”1/fl , with t = (p~l (v) .

The derivatives of the inverse (p~x (t ) , are as follows

p->a)(i) = _ I (i + l)-i/«-i
a

a “ 38

C(v,,v2,..,v J = (3.71) 

- 1  and the

38 For a detailed description of the application of conditional sampling to general Archimedean copulae 
and derivation of the sampling algorithms, see Genest (1987), Genest and Rivest (1993), Lee (1993), 
Frees and Valdez (1998), Marshall and Olkin (1988), Embrechts et al. (2001) and Meneguzzo and 
Vecchiato (2002).
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„-<‘>(0 = (-*)* (g + 1X° + 2)-(a + ̂ ~ l)(< + (3.72)

With the knowledge of the derivatives, draws from a Clayton «-copula can be simulated with 

the following algorithm.

(1) Simulate k random variates ( u l , u 2, . . . . , u k ) from (7(0,1).

(2) Set Vj = u l (the first draw).

(3) Set u 2 = C 2( v 2 |V j),w ith u 2 =
c p - ^ { c x) . ci =<p(yi) = v ?  - 1

and c 2 = cpiy^) + (p(y2 ) = v i a + v 2a -  2 .

It follows that u n =
( v"° + v 2-  - l v

V vi
and v 1 =

r  ̂ a h

v , - W2 0+1 - 1 +  1

V V 7 J

(4) Set u 3 = C3 (v3 | v2, v ,) , with u 3 =
<P~'m ( c 3)

cp~X(2\ c 2)

(3.73)

and c3 = ^(v ,) + ^(v2) + ^(v3).

It follows that
V + v r + v , - - 2 ' " ; 

v .- '+ v p - l

^ -1/f —+2
and v3 =

-1 /a

" J(vr"+ v r - i ) - ( v , - + v2-"-2) (3.74)

(5) ...

(6) Set = CA (v4 | vt-1...v2, Vj) , with u k

and c k = (p {v l ) + (p{y2) + ... + (p{vk ) .  

It follows that v k is equal to

9 ™ { c k)
V m ick_x)

f /  a ^ 5
vk = k ' + v r + . • + v p ,- *  + 2 < " - ‘>-'-1 + 1

V l  7 J

- H a

(3.75)

An illustration of the different weights the Clayton copula gives to extreme events is given in 

Figures 3.6a and 3.6b. Figure 3.6a shows a chart with 1,000 runs with lower tail dependence XL of 

0.794 and Kendall p z of 0.6. In Figure 3.6b we have achieved a stronger dependence in the lower

tail by moving the tail dependence A L to 0.917 and Kendall p T to 0.8. Note the concentration at the 

lower-left quadrant.
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Clayton Clayton

0.0
0.20 0.40 0.60 0.80 1.00

Figures 3.6a (left) and 3.6b (right). 1,000 runs from Clayton copula, left with a = 3, XL = 0.794 

and p T = 0.6 ; right with a = 8 , XL = 0.917 and p v = 0.8.

3.5.7 Gumbel «-copula

The Gumbel «-copula is given by

C ( v 1, v 2, . . , v n) = exp<j E ( - l n v ) 1' “
-  1=1

with a > 1 (3.76)

From the definition of the Gumbel copula, its generator is given by (p(v) = (—ln(v)°) and 

the inverse is (p 1 (t) = e x p ( -11 a ), with t -  (p~x (v) .

The derivatives of the inverse cp~l(t) , are as follows

- i d ) _ exp(-f1/fl) U
i-i

(3.77)

Knowing the derivatives, draws from a Gumbel «-copula, can be simulated with the following 
algorithm.

(1) Simulate k random variates (ux,u 2,....,uk) from (7(0,1).

(2) Set V, = ul (the first draw).

<tT 1(1)(c  )
(3) Set u2=C2(v2 |Vj) with u2 = ■ ... 2 , cx = (p{vx) = (-lnV j)"  and

<P (c i)

c2 = (piyx) + <p(v2) = (-ln(vj))'1 + (-ln (v2))a
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and solve for v2 so that u2 = r U1)(c2) ;

(4) Set w3 = C3(v3 | v 2,Vj) with, w3 =

(5) and so until vk is solved.

(p (cx)

cp-X(2\ c , )

is satisfied.

V X(2\ c 2)
and solve for v3 >

An illustration of the different weights the Gumbel Copula gives to extreme events is given in 

Figures 3.7a and 3.7b. Figure 3.7a shows a chart with 1,000 runs with lower tail dependence of

0.794 and Kendall p r of 0.6. In Figure 3.7b we have achieved a stronger dependence in the upper 

tail by changing the tail dependence k L to 0.917 and Kendall p r to 0.8. Note the concentration at 

the upper-right quadrant.

Gumbel Gumbel

0.20 0.40 0.60 0.80 1.00

Figure 3.7a and 3.7b: 1,000 samples from a 

with a — 5 and r  = 0.8.

Gumbel copula, left with a = 2.5 and r  = 0.6 ; right

It is not always possible to calculate the inverse function analytically, and this is the case of 

multivariate Gumbel copula. In this case a numerical algorithm must be used. Marshall and Olkin 

(1988) found an alternative route to a numerical algorithm, and suggested generating multivariate 

outcomes from compound constructions of copulae and using the inverse Laplace transform for the 

generator. We refer to Marshall and Olkin (1988) for this method.
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Chapter 4: Modelling correlation products with
copulae

4.1 Introduction

The goal of this chapter is to compare copulae and copula models when applied to real-life 

transactions. To do so, we review the solutions proposed in the financial literature to the problem of 

extending intensity-based models to the multivariate case by modelling the dependence structure 

among the defaults of different obligors or credits through the copula. We will also provide our view 

regarding the most suitable copula when modelling correlation products.

The first applications of copulae were in the actuarial field. Frees and Valdez (1997) explored 

copula properties and applied different copula functions for joint life mortality and multi-decrement 

applications. They also explained Monte Carlo algorithms and covered the issue of the calibration of 

the copula. Wang (1997) applied copulae for modelling insurance correlated risk and proposed 

Monte Carlo simulations and fast Fourier transform, as efficient methods of aggregating losses.

These pioneer copula applications would not have been possible without the work of Marshall 

and Olkin (1988) who prepared most of the numerical algorithms to simulate multivariate random 

variables for several copula functions.

In finance, the first applications of copulae were in the Value at Risk area, and are attributed 

to Embrechts, McNeil and Straumann (1999).

The first author to use the copula approach for pricing baskets of credits was Li (1999 and 

2000). He proposed the Survival copula to model the joint default dependency in the collateral 

portfolio of credits. In his model, the specification of the stochastic dependence between each pair of 

credits is completely independent of their marginals. This model is called the Survival model. Li 

achieved speed and flexibility. Moreover, calibration is also relatively easy, if historical default time 

data is available.

Based on the same principle, Schonbucher and Schubert (2001) extended the Survival model 

to incorporate the dynamics of the default intensities and named this the Default Trigger model. In 

their model, the default occurs when the intensity process of a credit reaches a pre-specified 

threshold, the trigger, which is an exponential random variable. The originality is in linking the 

different thresholds with a dynamic copula.

Both Li’s and Schonbucher and Schubert’s models are computationally intense since they rely 

on Monte Carlo simulations. Laurent and Gregory (2002) proposed a simplified version of the 

Schonbucher and Schubert’s model and obtained closed-form formulae for certain conditional 

intensities of default, by making specific assumptions regarding the copula. In this way, they were

103



Chapter 4: Modelling correlation products with copulae

able to write fast computational expressions for the stochastic intensities of default times, credit 

spreads, and prices of large baskets of credits. Their approach is known as Factor copula.

Finger (2000) was the first to compare the results of the Li’s Survival model with the Merton 

model. In his work, he joined the default times of homogeneous credits with the Normal copula. He 

found that the Survival model tends to underestimate the expected loss of the junior loss note and 

overestimate the expected loss of the mezzanine and senior notes, when compared with the Merton 

model. The differences increases as default time correlation increases. Jouanin, Rapuch, Riboulet 

and Roncalli (2001) compared the Survival model of Li (1999) with the Default Trigger model of 

Schonbucher and Schubert (2001) using the Normal copula, and concluded that the two models give 

very different simulated default times, even if the same margins are used.

More recently, Meneguzzo and Vecchiato (2002), and Mashal, Naldi and Zeevi (2003) 

expanded the work of Finger and used the Survival model of Li (1999) with the Clayton copula and 

the i-Student copula respectively, to real-life credit portfolios. Meneguzzo and Vecchiato found that 

the Clayton copula is not useful in modelling the tail dependence of default times. Mashal, Naldi and 

Zeevi concluded that the Normal copula, when compared with the i-Student copula, tends to 

overestimate the expected loss of the junior loss note and underestimate the expected loss of the 

mezzanine and senior notes.

We argue that the Normal copula, which is the current industry standard in the financial 

industry, cannot generate realistic default dependency, whereas the Clayton copula can. Therefore, 

we will use this chapter as an opportunity to research the advantages of the Clayton copula over 

other copulae and disprove the conclusions of Meneguzzo and Vecchiato. We also find difficult to 

read the research of Mashal, Naldi and Zeevi, where they concluded that with zero correlation, the 

Normal copula tends to overestimate the expected loss of the junior loss note and underestimate the 

expected loss of the mezzanine and senior notes, when compared with the i-Student copula. We 

argue that with zero correlation, all copulae would calculate the same expected loss. Hence, we will 

study how the change in default time correlation, effects the prices of real-life CDOs, under different 

copula assumptions.

With the Li’s Survival model, we cannot specify the dynamics of the default intensities. Even 

though, as we aim to show by the end of this chapter, we have a method that generates default 

scenarios that are consistent with an initial set of default intensities, we cannot control the future 

evolution of the credit spreads. Schonbucher and Schubert provided with a dynamic framework, 

where, if the copula function that is used to generate dependent defaults is the Clayton copula, all 

default intensities jointly jump upwards by a discrete amount at a default of one obligor. This is a 

very realistic behaviour of credit spreads. Furthermore, with the Clayton copula, we are able to work 

with a joint distribution function in closed-form, which also provide an efficient algorithm to 

generate dependent defaults.
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Both Li’s Survival and Schonbucher and Schubert models can be easily calibrated to 

individual term structures of default intensities. Hence, we can start with the same set of time- 

inhomogeneous default intensities, model the same real-life CDO, and analyse the results.

This chapter develops through the following sections. Firstly, we describe correlation 

products, which will be used throughout this chapter for comparing copula models. Section three 

deals with modelling dependence with the Marshall and Olkin copula, whereas in section four we 

review Li’s Survival Normal copula and extend it to include the i-Student copula and Clayton 

copula. Section seven gives a short overview over the Schonbucher and Schubert dynamic copula. In 

this chapter, we also present four numerical exercises: one with the Marshall and Olkin copula, in 

section 3, two with Li’ Survival model, in sections 5 and 6, and one with Schonbucher and Schubert 

dynamic copula in section 8. Their goal is to highlight the differences in the rating, in the price and 

in the expected shortfall of baskets and CDOs, that inevitably are found when a copula is preferred 

to another, and when a dynamic copula replaces a static copula.

4.2 Correlation products

The copula models we review in this chapter are for pricing, hedging and managing the credit risk of 

correlation products which can be grouped into two categories: n h to default baskets and CDOs. As 

we will see in the next two sections, where those products are formally introduced, in order to 

correctly evaluate the effect of diversification on the credit risk generated by the underlying portfolio 

of credits, the key is how to handle the dependence between the n random times of default Ti s. The

pricing problem is not elementary, whenever the hypothesis of independence of perfect linear 

correlation between the underlying credits is dropped. It becomes even more complex when the 

questionable assumption of joint normality is also abandoned. Furthermore, no closed-form solution 

is available. Thus, we will pay particular care to Monte Carlo simulation. In what follows we will 

explore the application of the copulae explained in the previous chapter as pricing tools for 

correlation products. Before doing so, we formally introduce the two main categories of correlation 

products.

4.2.1 n th to default baskets

We consider thereafter the case of m out of n defaults, where there is a default payment when the 

m'h default occurs, and n is the number of credits. The payout depends on the temporal ranking of 

the defaults. We associate with the collection of the times of default of n credits Tl,..,Tm,..,Tn, the 

ordered sequence of the same times r (1),.. ,r (m),..,T(n). By definition r (1) = m in(r(1),..r(m),..,r (B))
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is the first-to-default, and r (n) = m ax(r(1),.. ,r (m),..,r (n)) is the last-to-default. We indicate with

M i the notional or current balance of the credit i and with cpl its recovery rate, then the default 

payment of the m out of n credits can be written as

V M f l - f f l . l ,  r ,T , r . at r,¿—i ,v t i J {r;=r(m)} ¡r [m)<T} I0 m) (4.1)
1=1

We denote the value of the default leg of the m out of n defaults at a time t < tj _l as

0  = E
Q

i= 1
<T) G, (4.2)

If we denote Vp (m)(t) as the payment leg, i.e. the value at time t of receiving lbp of fee

payments and no fees after the interval [/ _, < z (m) < t ■ \ , then we can write

W 0  = E
Q

i=l 1=1
(rn)i t y ^ r(i»)<f/}

y
(4.3)

where means that the wth defaulting credit is the z'th credit. In (4.3), we have also taken into

account for the final payment that the protection buyer makes to cover the time between the last 

payment date and the time r (m) of the mth default event. The fair premium rate at time t of the m 

out of n defaults can be written as

W O (4.4)

4.2.2 CDOs

CDOs are characterised by a payout dependent on percentiles of the loss distribution caused by 

default events. They involve the tranching of the reference portfolio of credits into different classes 

of notes:

(1) Sen(t), the senior note,

(2) M ez{t) , the mezzanine note,

(3) Jun(t)  , the junior note.

The proceeds from the issuance of the notes are invested in default-free bonds, which 

guarantee the repayment of the principals of the notes, if no default has occurred. The difference
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between the reference portfolio of credits, ^  M i , and the sum of the notes, is the equity piece,
i=1

E q ( t )  = T ,M , ( t)  -  S e n j t )  -  M e z j t ) -  J u n j t ) .

Definition 4.1: The cumulative loss o f a portfolio o f credits at time t is indicated as the pure jump 
process

(4.5)

where N f t )  = l |r.<,j is the counting process which jumps from 0 to 1 at the time of default i.

The cumulative loss CL(t) of any given note can be written as follows

0 i f  ^  D (t)

CL(t) = (4.6)
L ( t ) - D ( t )  i f  D ( t ) < L ( t ) < C ( t )

L ( t ) - C ( t ) i f  C ( t ) < L ( t ) < B { t )

L ( t ) - B ( t ) i f  B{t) < L ( t )<  M,.

where D (i) = Eq{t), C{t) = Eq{t) + Junit) and B (t) = C (t) + M ez(t) .

CL(t) is a pure jump process as L ( t ) . Every time there is jump in CL(t) , then a default 

payment occurs, equal to CL(ri) -  CL{ri)  , where T~ is the time just before the jump. Laurent 

and Gregory (2002) and Meneguzzo and Vecchiato (2002) noticed that, since CL(t) is an 

increasing process, it can be defined the Stieltjes integrals with the respect to CL(t). Besides, 

because CL(t) is constant between jump times, any Stieltjes integral with the respect to CL(t) ,

J g(t)dC L (t) ,  for some function g ( t ) , is written as a discrete sum with respect to every jump 

time,i.e. X ^ ) [ C I ( G ) - C Z ( r , : ) ] .
i

As a direct consequence of the notation of Laurent and Gregory, and Meneguzzo and 

Vecchiato, we can write the default payments of the CDO notes as a discounted payoff
T

Ji?(0, t)dCL(t) = £  B(  0, r (.)[CZ(r,.) -  CL( t 7)] (4.7)

Thus, the default payment leg of any given CDO note, under the martingale measure Q  , is as

follows

:Q jB(0,t)dC L(t) (4.8)
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Using integration by part and Fubini’s theorem1 we have

(  T

E Q \ B ( 0 , T ) d C L ( t )
T

5(0, T ) EQ ( C L ( T ) )  + j / ( 0 ,  t ) B ( 0, f)EQ (<C L (t ) ) d t  (4.9)
VO /  0

with f ( 0 , t ) as the instantaneous forward rate.

For any given note, the premium payment leg is the payment made, provided that the 

cumulative loss distribution C L ( t )  is not greater than the note itself,

:Q
& t j  SEqB(Q, t j  ) E q  ( t j  )1 j L(t, ) < D ( t j ) }

V u
+

T Jô‘isJUnB (0,tj )Jun(tj)l { D ( t l ) < L ( t J ) < C ( t A } +
M
m

j= 1
+

7=1

(4.10)

where m is the number of payment dates.

At launch, the premiums s Eq , s Jun , s Mez and s Sen are found by putting into equivalence the 

default leg with the premium leg.

4.3 Modelling with Marshal and Olkin exponential copula

In this section, we apply the Marshal and Olkin copula to price a nth to default basket. With this 

copula, the calculation of the aggregated loss distribution becomes an easy and tractable intensity- 

based model in the spirit of Duffle and Singleton (1998). However, as we saw in the previous 

chapter, when we assume that defaults can be triggered by idiosyncratic as well as other regional, 

industry, or economic-wide shocks, the probability of multiple defaults at the same time is not zero. 

If we keep this assumption and the claim depends upon the temporal ranking of the credit events, the 

Marshal and Olkin copula can be used with Monte Carlo simulations. If we assume that the 

probability of multiple defaults at the same time is zero, we move into an exponential set-up where a 

closed-form pricing formula exists for the 1st to default. For us, this is the natural benchmark to 

compare the Marshal and Olkin copula with Monte Carlo simulations.

1 In Meneguzzo and Vecchiato (2002) p. 24.
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4.3.1 1st to default with an exponential model

To price a l '1 to default with an exponential model, we assume that the valuation is carried on under 

the risk-neutral measure Q , and hence, in the credit default swap market, the quotes of the credit 

spreads are available, from which we extract the risk-neutral time-homogeneous intensity rates ^  ,2

Definition 4.2: We define the risk-neutral intensity rate o f credit i as

4 °  = 4 + 4 , 2 .  . „ w ,  C4 - 1 1 )

where \ 2 i n is the joint intensity, i.e. the intensity of the systematic shock that affects all credits 

simultaneously.

A further assumption is that there is zero probability that more than one credit defaults at the 

same time Q {zi = Tj , i  ^  j )  = 0.

Proposition 4.1:3 Suppose that Q (z i —Tj, i  ^  j )  = 0. Then r (1) = m in(r], r 2, .. .. ,rn), i.e. the 

first time o f default, occurs at an intensity rate

A(i) = Aj + A>2 + _+ An (4.12)

that is, the joint distribution of the first time of default is still exponential distributed, with a intensity 

rate A(]) equal to the sum of the individual intensity rates.

Expressing (4.12) in terms of risk-neutral intensity rates, we obtain

A p = 4 °  +-- + ^ - ( « - 1 ) \ 2 (4-13)

To value the two legs of the 1st to default, we also assume that the default-free interest rate 

process r ( t ) , is constant, hence, correlation between the default-free interest rate and intensity rate 

do not materialise. We further assume that the credits in the reference portfolio have the same 

maturity T{ , the same notional M ; , and when there is a default the net loss is the same, i.e.

L  = ( p f i M i for every i = 1,2,..., n.

The default payment leg of the Is' to default in (4.2) further simplifies into4

2 See chapter 1 on how to calibrate the intensity rate to the market quotes of CDSs.
J In Duffle (1998) p. 3. For a proof, see pp. 3-4.4 In Li (1999) p. 45.
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T
VDm(t) = L ^ e ^ ’ds

= L
XQ

'(1)
r + X,

il- (4.14)

In (4.14) the default payment leg of the 1st to default is effectively valued by discounting its 

real cash flows with the credit risk adjusted discount factor. When the intensity and default-free 

interest rate are two independent processes, the credit risk adjusted discount factor is the product of 

the credit risk free discount factor and the pure credit risk discount factor. Therefore, in (4.14) we

rT —?i Tas the default free discount factor, ecan interpret e

L / a s  the real financial instrument cash flows.

as the pure default discount factor and

Figure 4.1 shows what happens to the value of the default payment leg of the 1st to default in 

(4.14), of a basket of five credits where we assume different values of the joint intensity of the 

systematic shock, X i i a s - The five credits have an identical nominal value of £1, the same

marginal intensity rate Al at 10%, and a maturity greater or equal to 2 years, which is also the 

maturity of the 1st to default. According to (4.13), when the joint intensity Al2 n, rises, X^} falls.

When the five credits are independent, 2̂345 = 0 , the reference portfolio 1st to default

risk-neutral intensity rate in (4.13) reverts to (4.12), and the value of the default payment leg is 

£0.5864.

When X  2345 = 1, we expect the value of the default payment leg to be the same as the

value of the default payment leg default on only one of the five credits. This is because when one 

credit defaults, the other four credits default too and we do not benefit from any diversification of 

risk.

In all other cases, the reference portfolio intensity rate /t^  is calculated with (4.13), and 

using the relationship in (4.14), we calculate the values shown in Figure 4.1. The values follow the 

expected pattern: as the joint intensity 2 3 4 5 rises, the value falls. In addition, when X  2 3  4 5  =  1 >

the value is 0.1638, the same as the value of the default payment leg default on only one of the five 

credits.
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V a lue  o f the default paym ent leg o f a 1st to  default

Figure 4.1: Value of default payment leg default of a 1st to default as A, 2 3 4 5 changes from 0 to 1.

4.3.2 Simulating times of default with Marshall and Olkin 

copula

The Marshal and Olkin exponential copula can easily be used to price nth to defaults and not only a 

l bt to default, and without assuming that Q ( r ; = r ., i V j )  = 0. This is done with Monte Carlo 

simulations.

To simulate default times we rely on the quantile transforms in (3.1). With this method, first a 

model is used to calculate the survival probability S i{tt) . Following, a uniformly distributed r.v.

U j , is drawn, and the time of default Ti , is found as follows

S M - U ,

h = s ; \ u t) (4.15)

In the exponential model, to simulate the time of default r f , of credit i , with a risk-neutral 

time-homogeneous intensity rate , (4.15) becomes

exp(-A° r,.) = u t

Ti = ~TTTln(Mi) (4-16)

This is still incomplete, since we want to draw dependent default times. We can do this in the 

following way.

In (4.16) we substitute with the joint intensity A, 2 n. Then, we simulate two times of 

default: the time T when the joint intensity , n strikes credit i , and the time r ; when the
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intensity X? strikes credit i . I f  T < r (. , credit i defaults at time T . Otherwise it defaults at time r ; 

(when the idiosyncratic shock X f  strikes).

The simulation algorithm can be written as follows (as adapted from Giesecke (2002)).

(1) Simulate m +1 independent exponential times of default with given intensities

/ i f , X  X^ , X  > by drawing m + 1 uniform random variates w, ,u~, ,uu m ■

(2) The credit i (/ = 1,2,..., m) defaults at time

In (a,.)
i n

A ~ ..m

and the time the joint intensity strikes credit i is

_ _ ln(Um+1)
‘»l+l —

(3) To simulate the exponential times of default for the credit i , take the minimum of the time of 

default r ; and the joint default time r m+1
Ti =m tn(r,,rm+1).

(4) Generate the joint uniform random variate v,., with

V/ = «xp(-T,.A?) .

(5) To arrive at the credit i dependent default time, set

z . ln(V/)

(6) and so on for the other credits.

This algorithm is very flexible and correctly distinguishes between the intensity rate A j, and

risk-neutral intensity rate X  . When we want to add other joint intensity rates we can do so by

calculating their times of default as in point 1 and 2, and then using the minimum condition in 3 

where applicable.

Also, we can use an exponential model where the default times are simulated by drawing 

correlated standard normal random variables X l, X 2,..,Xm, X u m . If we set ui = 0 (A 2 ) , then

we have effectively joint uniform random variates ui , through the Normal copula, where O(-) is the 

standard normal distribution.
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4.3.3 Numerical example

In this section, we use the simulation algorithm to calculate the value of the default payment leg of 

the 1st, 2nd and 3rd to default of a basket with the number of credits in the reference portfolio going 

from 1 to 50. We assume that the intensity rate is flat at 10% and it is common to all credits. The 

term structure of interest rates is flat at 10% and the default time linear correlations p ( j i,Tj ) ,  are 

0.25 and 0.5. Using the relationship in (3.43), default time linear correlation of 0.25 and 0.50 are 

equivalent to joint intensity rates Xx n, respectively of 4% and 6.67%.

The contract matures in two years. At default, the protection seller pays when the default 

occurs. We disregard the effect of the accrued premium in (4.3). The number of runs in the Monte 

Carlo is 10,000 simulations. Table 4.1 summarises the inputs of the exponential model.

P a ra m e te rs
M a tu r ity 2  Y e a rs
In te re s t R a te 10%
In te n s ity  R a te  (th e  s a m e  fo r  a ll c re d its ) 10%
N u m b e r o f A s s e ts 1 to  50
C a se  1
J o in t In te n s ity  R a te 4 .0 %
D e fa u lt T im e  L in e a r C o rre la tio n 0 .2 5
C a se  2
J o in t In te n s ity  R a te 6 .6 7 %
D e fa u lt T im e  L in e a r C o rre la tio n 0 .5

Table 4.1: nth to default parameters.

In Table 4.2 (in the Appendix 1) we have computed the reference portfolio 1st to default 

intensity rate using (4.13), with different default time linear correlation assumptions.

Tables 4.3 to 4.7 show the Monte Carlo results: values, standard errors and the time necessary 

to complete the calculation. The time always refers to the total time (in seconds) necessary to value 

the 1st, 2nd and 3rd to default together.

To benchmark the Monte Carlo algorithm, we use the valuation formula in (4.14) and call the 

value it calculates, the analytic value. To perform our benchmarking, we see whether the analytic 

value is contained in the range of the value ± the standard error as calculated with the simulation 

algorithm. From Tables 4.3 and 4.4 we can see that the value calculated with the Monte Carlo 

algorithm is out of that range only once, and this occurs in Table 4.3 when the number of credits is 

two. However, the same analytic value is contained within the wider range of the value ± 1.5 x the 

standard error.

Tables 4.5 and 4.6 contain the values and standard errors of the 2nd and 3rd to default, with 

default time linear correlation of 0.25 and 0.5. The computational time is the same as in Tables 4.3 

and 4.4, respectively.
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In Figures 4.5, 4.6 and 4.7 we show the accuracy of the Monte Carlo results as the number of 

sample paths goes from 5,000 to 300,000. All values refer to the 1st, 2nd and 3rd with two-year 

maturity, on a reference portfolio of 10 credits. All credits have the intensity rate at 10%, the term 

structure of interest rate is flat at 10%, and the default time linear correlation p ( r ; , r  •) is 0.50. The 

computational times are in Table 4.7.

Figure 4.5 compares the Monte Carlo values, computed with different sample paths, with the 

analytic values. The analytic value is within the standard error bars of the Monte Carlo values, with 

the exception of the value computed with 5,000 sample paths. We can therefore say that even with 

only 10,000 sample paths, the results are very accurate for the 1st to default.

For the 2nd and 3rd to default, we do not have the analytic value to use as a benchmark, nevertheless, 

Figures 4.6 and 4.7 point to a good quality already with 10,000 sample paths.

Clearly, accuracy improves as the number of sample paths rises, but with that so does the time 

to obtain the results. The computational times under different sample paths are in Table 4.7: with 51 

seconds, it is possible to value a basket of 10 credits. However, when trying with 300,000 sample 

paths, the computational time of 1,556 sec. becomes prohibitive.

The simulation algorithm we have used is the crude Monte Carlo, where the random numbers 

are generated with the Bays-Durham algorithm.5 The programming code is in VBA. We can 

reasonably expect a further reduction in the computational time, where a faster Monte Carlo 

algorithm, such as the stratified sampling or Sobol with variance reduction, together with C++, is 

used.

4.4 Li’s Survival copula and Merton model

This section shows how Li’s Survival (1999) model uses copulae to add dependence in baskets of 

credits. This model differs from the Schonbucher and Schubert (2001) model (which we will treat in 

section 4.7) as the copula is directly put on the survival times. For this reason, it is called Survival 

copula. Alternatively, in the Schonbucher and Schubert (2001) model, the copula is put on the 

exponential random variables, which behave like random thresholds or triggers. This is why this 

model is sometimes referred as, Default Threshold copula.

We will also review the Merton model, which we will use as a benchmark to compare the 

results produced with Li’s Survival model.

5 The algorithm is from Press, Flannery, Teukolesky and Vetterling (1997).
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4.4.1 Dependent times of default with Merton model

The Merton model assumes that the firm’s asset value A(l) , is a stochastic quantity that triggers the 

default when it hits a certain threshold value, at , with 0 < a0 < A0 .

Chapter 4: Modelling correlation products with copulae

Definition 4.3: The time of default Ti o f credit i is given by

r,. = in f{ i > 0 : A ft)  < ait\ (4.17)

We can write the processes of all firm’s asset values A f t ) , as

dAx (t) = A] {t)/uxdt + At (t)crldWl (t) 

dA2(t) = A2(t)/u2dt + A2{t)a2dW2{t)
(4.18)

dAn (t ) = An (t)/andt + An (t)crndWn (t )

where /ui and (7i are the return and volatility of the ith firm value and d W f  are correlated normal

variates. We also assume that the correlation is constant with respect to time.

The threshold value that triggers the i,h firm’s default can be calculated from the fact that 

Wf t )  is normally distributed. From the s.d.e. of the ith firm in (4.18), and after it is discretised, we

can extract Wf t )  with the following

In

W ft) =

f A f t Ÿ  

v 4 ( 0  ) ,
(4.19)

which is the normalised return of the i‘h firm over time t, i.e. ~  W(0,1) .
We want to calculate the probability that the ith firm’s asset value will fall at or cross the 

value, aH , that triggers the default, during the time t, which from (4.19), can be written as

f

P ( 4 ( < ) i a „ ) = P
In

W ft)<

ait

v 4 (0 )y

h h 
- M f

a

= V (W ft)< w u)

where O(-) is the cumulative standard normal distribution.

(4.20)
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From (4.20), we can relate the scaled threshold value, wlt, to the normalised return, a it, as 

a ,  =<D-I(P (iri( 0 < ^ ) )  (4.21)

where O ”1 (•) is the inverse of the cumulative standard normal distribution.

From (4.21) we can draw two important conclusions: we can recover a it from the required 

cumulative probability; as we have substituted the threshold value au , in (4.20), with the scaled 

threshold value wit, we can work with the normalised return a it. In this particular case, a it can be 

recovered, either from the cumulative probabilities of default over time t implied in the CDS 

premiums of firm i, or from the actual cumulative probabilities of default over time t estimated for 

example by rating agencies.6 We indicate as q t.01 the cumulative probabilities of default over time

t , and a it is recovered with the following

(4.22)

This guarantees that the probability that the i h firm’s value hits the threshold, during the first 

period, is equal to the probability of default, q l{)1,

?{Ai( \ ) < ail ) = qrM (4.23)

To calculate the threshold for the next period, we have to condition upon the fact that the ith 

firm has not defaulted at the end of period 1. We rely on the following condition7
> ai\ ^4,(2) ^ aii)~ ^(l»'((l)>afl̂ »'i(2)̂ ai2 ) = Q i\\,2 (4-24)

which can also be written as

li-, 0,2 (4.25)
1 —  *7;;0,1

where q i x2 is the ith firm’s probability of default between the period 1 and the period 2, condition 

upon being survived until period 1, and the term is defined in (4.23).

Finally, the correlation among the «-normal variates Wt , for i = 1,2,..,« is imposed with

the Cholesky decomposition as follows: from the correlation matrix £ we construct a lower 

triangular matrix

6 For example, the actual probabilities of default are those prepared by Moody’s and given in Table 2.8 in 
chapter two, after been adjusted by the recovery rate of 45%.7 In Arvanitis and Gregory (2001) p. 161.

116



Chapter 4: Modelling correlation products with copulae

( K 0 . . . 0 '

¿>2i b22 . 0
B =

b , b , . bk Bl n 2 n\n y

(4.26)

such that £  = BB r , where B 7 is the transpose of B . The elements of the matrix can be calculated 

from the Cholesky algorithm as proposed by Burden and Faires (1989), Johnson (1987) and Wang 

(1997):8

b iJ =
Pa T I  M *

V-ri 2 
<U=1 ° j s

1 < j < i < n (4.27)

with the convention that ^  ; (•) = 0, and p tj an element of the correlation matrix X .

To simulate the time when the i"‘ firm’s asset value hits the threshold value and the firm 

defaults, we proceed with the following numerical algorithm.

(1) Collect the cumulative default probabilities of all the n credits, qk0 ntfio  2>-"’^ro t  f°r

i = 1,2,..., n , where T  is the number of periods until the 12th to default matures.

(2)

(3)

(4)

In the first period, we set the threshold values with (4.22), i.e. a n = O  1 ) .

For the following periods, we set the threshold values, a ik, equal to the conditional default 

probability of the klh period as,

«ft = °
-1 ^ i;0 ,k  Qvfi.k-X  

1 — Qifi.k-l

In each &th period, we draw correlated standard normal r.v.s X ik by Cholesky decomposition

and compared them to the threshold values of the same period, a ik , and when X ik < a ik , the 

firm defaults.

The main advantage of this model is that it is easy to draw correlated random variables using 

the Cholesky decomposition, and it can be used in waterfall CDOs, where it is important to know 

when the credit defaults.

This model has two main drawbacks: by construction, it does not allow any correlation of 

defaults through time. For example, if a high rate of default is realised in one period, in the next

8 Wang (1997) reminds us to calculate the element of B from top to bottom and from left to right.
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period the simulation starts without any memory of what has happened in the previous one. This is 

not how the financial credit market works. If the quality of credit i deteriorates in one period, market 

participants will tend to overweight risk of default in the next period. In order to capture this 

behaviour, Finger (2000) simulated default times with random variables correlated in consecutive 

periods. This creates a sort of migration to higher or lower rating classes. He called this approach the 

single diffusion process. Even with Finger’s correction, the Merton’s model maintains its second 

drawback: it requires a stepwise approach, where the defaults of the portfolio are simulated at very 

small time steps. At each time step, the defaulted credits are dropped and the simulation continues on 

the remaining credits for the following time step and so on. Clearly this is very time consuming.

4.4.2 Li’s Survival model

We start by defining, in a inhomogeneous Poisson set up, the survival function S i(ti),  the joint 

survival function S(tx , t 2 ,..,tn) ,  the default function Ff t f )  and the joint default function 

F( t x, t2,..,tn) of the random vector z  = (zx, r 2 Zn) of the times of default as follows

(  'i
S i ( t t) = P (c > 0 =  exP -  \ ^ ( s ) d s

V o

S(tl,t2,..,tn) = V(z1 >tx,z2 >t2,..,zn > 0

(  t.

F¡ ( f )  = P (c < 0  = 1-e x p  -  j' f f s ) d s
V o

F(tx,t2,..,tn) = T{zx <tx,z2 <t2,..,zn < 0

with the time of default r ; , as in definition 1.15.

If the intensity processes are independent, we obtain

s f t . w . ) = n s , f c )i=1

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

Otherwise, using the Sklar’s theorem, Li proposed to model the joint survival function 

directly with the Survival copula as follows

S(tl,t2,..,tn) = f ( z x >tx,z2 >t2,..,zn >0 = K(Sx(tx),S2(t2),..,Sn(tn)) (4.33)

The Survival approach has one apparent drawback: it is essentially a static model, since it 

does not account for changes in the intensity rates, i.e. it does not condition on the new flow of 

information which has become available in the market place.

To calibrate the Li’s model, we assume that ( q r0 j , q rQ 2,..., q i.0 T ) is a vector of a given set 

of cumulative probabilities of default of credit i, for example extracted from market prices of CDSs

118



Chapter 4: Modelling correlation products with copulae

or from the Moody’s idealised cumulative expected losses in Table 2.8 in chapter 2. Then, the 

calibration is achieved by linking a vector of n correlated standard normal r.v.s ( X 1, X 2, . . ,X /l), 

via the normal copula as follows

Cy (u v u 2, . . , u n) = P(<7i;0jr < ® - \ X , ) , . . , q n.0J < 0 _1( x j )  (4.34)

This leads to the following algorithm to simulate correlated times of default.

(1) Draw a correlated standard normal variable and set the time of default as

(2) If Ti > q t.0 T, then credit i does not default before the maturity of the wth to default.

(3) Otherwise, we locate the time of default in the kth period with qi;0tk_i < Ti < q(.;0jt.

The correlated X t numbers are drawn with Cholesky factorisation.

The Li Normal copula model can be adjusted to include the ¿-Student copula. We consider a 

vector of correlated normal distributed r.v.s ( X 1, X 2, . . , X n) , and a vector of distributed r.v.s 

( S ^ , S - , , . . , S n) with V  degrees of freedom. We also assume S  is independent of X  , then 

Y- = X t -yjo / S i is ¿-Student distributed.

The calibration is achieved by linking the vector (Y1, Y 2, . . ,Yn) , via the ¿-Student copula as 

follows

^0,1 ’ U2 (4.35)

The Survival model with the ¿-Student copula can be used with the following simulation 

algorithm.

(1) Simulate n correlated standard normal r.v.s X i with one extra r.v. Sj. distributed as a 

with V  degrees of freedom.

(2) Create ¿-Student distributed r.v.s by taking Yt = and set the time of default as

(3) If Tj > q̂ Q T, then credit i does not default before the maturity of the «* to default.

(4) Otherwise, we locate the default time in the kxh period with q-r0 k_x < z i < q i.Q k .

Alternatively, if we consider a vector of random variables (Vj ,v2 vn) joined with the 

Clayton copula, we are able to write the following
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C(v1,v2,..,v„) = P(v1 < qV0T,..,vn < q n,0 J ) (4.36)

With (4.36), we draw n times of default, joined with the Clayton copula. If v,- < qi.0 T, then 

credit i defaults before time T, and we locate the time of default in the klh period with 

Qi-o k-i < vi — di n k • Otherwise, it survives.

4.5 Numerical exercise: pricing 1st, 2nd and 3rd to default with

Li’s Survival copula

In this section we use a numerical example to illustrate the differences in the values of the default 

payment leg of a 1st, 2nd and 3rd to default, when the random times of default are joined with 

different copulae via the Survival model. We also use the Merton model as a sort of benchmark. 

With the Merton model, the assets paths are only joined with the Normal copula.

We will change the default time correlation9 and the number of credits in the reference 

portfolio to emphasize the differences in prices. When the Clayton copula is used, we will rely upon 

the only available parameter a to capture both the lower tail dependence AL and Kendall’s p T. In

this way, the prices calculated with the Clayton copula will be comparable with those calculated with 

the Elliptical copulae.

For simplicity, the contract is the same as in section 4.3.3 and we assume the same flat 

intensity rate at 10% common to all credits.

In the Monte Carlo set-up, the following parameters are used.

(1) We apply three default time Pearson’s linear correlation p { z l , r .), to analyse their impact on

the valuation of the 1st, 2nd and 3rd to default: 0, 0.25 and 0.5. We do not expect to notice any 

difference in the values calculated with the Merton Normal copula, and the Survival model 

with the Normal and /-Student copulae when p(z¡, z  ■) = 0 .

(2) The degrees of freedom to generate /-Student distributed random variates are 100, 12, 8 and 4. 

We believe this choice will allow us to see the effect of joint default events in the final values.

(3) We use nine Clayton copulae. To calibrate them we find iteratively that a in (3.66) which 

allows us to calculate the lower tail dependence XL in (3.66) which is equal to the upper and 

lower tail dependence of the /-Student copula in (3.60).

(4) The maturity of the 1st, 2nd and 3rd to default is 2 years, and the default time step is a quarter.

(5) With the Monte Carlo algorithm, we simulate the quarter when the default occurs and not the 

exact time of default. To accommodate for the fact that the contract pays when default occurs,

9 Note that with the Merton model the default time correlation is the asset correlation.
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we adjust the default payment leg by assuming that the default happens midway between 

quarters.

(6) The interest rate used to discount the losses is assumed to be flat at 10%.

(7) The number of sample paths is 10,000, and it was chosen since it gave a good trade-off 

between accuracy and time in section 4.3.3.

The results produced by the models are contained in the Appendix 2. We distinguish between 

three sets of Tables. In Tables 4.8 to 4.10 we show premiums and standard errors for the Survival 

model with Normal copula. This is to allow monitoring the quality of the Monte Carlo. In Tables 

4.11 to 4.19 we compare the differences between the Merton and the Survival model where the 

Elliptical copulae are used. Finally, the differences in the Clayton copulae are reported in Tables 

4.20 to 4.22.

4.5.1 Survival model with Normal copula and analytic formula,

with default time correlation equal to 0

In Table 4.8, we can read the Monte Carlo values, standard errors and computational time of the 1st, 

2nd and 3rd to default, calculated with Survival model with Normal copula when default time 

correlation p { z i , t  ■) is zero.

As we did in section 4.3.3, we want to check whether the analytic values in Table 4.2 are in 

the range of the simulation values ± their standard errors. When we built those ranges with the 

values and standard errors from Table 4.8, most of the analytic values lie outside. We believe this is 

so, since the analytic formula models the exact time of default, whereas in this numerical example, 

we model the quarter when default occurs. This translates in lower values of default payment leg.

4.5.2 Survival model with Normal and Marshall-Olkin copula

To compare the Survival model with the Marshall-Olkin copula of section 4.3.3, we look at the 

values in Tables 4.9 and 4.10, and in Tables 4.3 to 4.6. The values of the 1st, 2nd and 3rd to default are 

higher when we use the Marshall-Olkin copula. This is true for the three contracts. In part this can be 

explained with the same argument used earlier with the analytic model, that is, with the Marshall- 

Olkin copula we simulated the time of default and not the quarter when default occurs. A secondary 

reason depends on how default time correlation is modelled: the Marshall-Olkin copula models 

default time correlation through a joint intensity rate (the systematic factor), whereas the Survival 

approach models correlated default times through correlated random variates.
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An important advantage of the Normal copula over the Marshall and Olkin copula is the much 

lower time necessary to simulate the times of default. For example, in a portfolio of fifty credits we 

need more than 250 secs, with the Marshall-Olkin copula versus only 11 seconds, when we use the 

Normal copula.

4.5.3 Survival and Merton model

Tables 4.11 to 4.19 show the values of the 1st, 2nd and 3rd to default calculated with the two models. 

When the default time correlation p(zi,zj ) is zero there is virtually no difference between the 

values of the 1st, 2nd and 3rd to default, calculated with the two models.10
With the default time correlation p(zt,z j) equal to 0.25 and 0.50, the Merton model

overvalues the 1st to default and the 2nd to default in all cases. It undervalues the 3rd to default until 

the number of credits is 9. From 10 to 50 credits, the 3rd to default is overvalued as well. In 

summary, the losses are distributed differently between the 1st, the 2nd and the 3rd to default as long 

as the number of credits in the reference portfolio is not greater than 9. With much larger collateral, 

the Merton model hugely overvalues the losses.

4.5.4 Normal and /-Student copulae with the Survival model

Tables 4.11 to 4.19 show that accounting for joint extreme events with the 1-Student copula has some 

important implications for the values of the 1st, 2nd and 3rd to default, if compared with the values 

calculated with the Normal copula.

When the default time correlation p(zi, Zj ) is 0, we cannot find any meaningful difference

in the values of the 1st, 2nd and 3rd to default calculated by the 1-Student copula with 100, 12, 8 and 4 

degrees of freedom. This confirms what was anticipated earlier.

With the default time correlation p(zi,zj ) = 0 .2 5  and p(zl,zj ) = 0 .5 ,  the 1-Student

copula increases the values of the 1st, 2nd and 3rd to default as the degrees of freedom drop.

Our findings contradict the results and conclusions of Mashal, Naldi and Zevi (2003) on 

modelling the default times with the 1-Student copula for valuing nlh to defaults. They empirically 

studied the application of the l-Student copula, with 12 d.o.f. on a 1st, 2nd and 3rd to default on a five 

name basket with a maturity of five years. In their work, they used a constant intensity rate at 1% per 

year together with three different levels of default time correlation, very similar to ours, of 0, 0.20

10 We remind that with the Merton model the default time correlation is the asset correlation.
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and 0.50. Their results suggest the Normal copula will generally underestimate the 3rd and the 2nd to 

default and overestimate the 1st to default when compared with the /-Student copula with 12 d.o.f..

Our results do not show the same redistribution of losses from the 1st to default into the 2nd 

and the 3rd to default. One reason for the empirical differences between their findings and ours, and 

we want to emphasise, only where the default time correlation p ( r i,TJ) is 0.25 and 0.50, can be

attributed to the longer maturity they used, five years against two years in our work, and to the lower 

intensity rate they applied, 1% against 10% in our work. We cannot explain the differences between 

our results and theirs where the default time correlation p ( r i ,Tj ) is 0. In our view, the Normal, the 

/-Student and the Clayton copulae ought to calculate the same values since the times of default are 

not really joint together via copulae if p ( z i ,Tj ) = 0 .

From a computational point of view, the /-Student copula is relatively more expensive than 

the Normal copula (see Table 4.23).

4.5.5 Survival model with Clayton copula

The results calculated with the Clayton copula are in Tables 4.20 to 4.22. Reading these results is 

more complex since the default time dependency is captured through the common parameter a , as 

calculated in (3.66), rather than through the default time correlation used for the /-Student copula 

and Normal copula. To make the comparisons with the /-Student copula easier, we have preferred to 

calibrate a on the lower tail dependence XL in (3.66). For example, the results in Table 4.20, 

second column, are obtained with a=5.6E-08, which is calibrated on the /-Student copula with 

XL = 0 , p r(r i ,T ■) = 0 and u = 12. For completeness, we report below all the values of a that 

we used in Tables 4.20 to 4.22, together with the parameters of the /-Student copula.

/-Student copula Clayton copula

P i t i c i ) h Pr(?i>Tj) V
K P t (?ì>Tj ) a

0.25 0.02 0.16 12 0.02 0.082 0.178
0.50 0.06 0.33 12 0.06 0.110 0.246

0 0.01 0 8 0.01 0.07 0.151

0.25 0.05 0.16 8 0.05 0.104 0.231

0.50 0.12 0.33 8 0.12 0.14 0.327

0 0.08 0 4 0.08 0.121 0.274

0.25 0.14 0.16 4 0.14 0.15 0.353

0.50 0.25 0.33 4 0.25 0.2 0.500
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The results in Tables 4.20 to 4.22 show that the Clayton copula is a very powerful tool to use 

to value the 1st, 2nd and 3rd to default. With the choice of the parameter a , we can model the default 

time dependency in the upper left quadrant of the distribution, and generate values either strongly or 

weakly dependent on joint extreme events.

As a increases, the effect on the values depends on the number of credits. With 50 credits, 

the values of the 1st, 2nd and 3rd to default drop. With 5 credits, this is still true for the 1st to default, 

whereas the values of the 2nd and 3rd to default rise as a increases. This shows the significant impact 

that the Clayton copula has on the distribution of losses across the 1st, 2"d and 3rd to default: with 

small reference portfolios, expected losses are redistributed from the 1st to default to the 2nd and 3rd 

to default. This is in line with what happens when we used the Normal or t-Student copulae and 

increased the default time correlation. This point will be further explained in the following section.

The sensitivity to a change in a is more pronounced when the 1bt, 2nd and 3rd to default are 

computed with a larger number of credits.

With a = 5.6E-08, i.e. when the default time dependency between each pair of credits is zero, 

the Clayton copula calculates the same values of the 1st, 2nd and 3rd to default as the Normal and t- 

Student copulae when the default time correlation p { z i , z  •) is 0. This is exactly what we expected.

From a computational point of view, the Clayton copula is the fastest of all approaches so far 

developed. In only one occasion (Table 4.23), the computational time exceeds 1 sec.

4.5.6 Default time correlation with Normal and /-Student 

copulae

Figures 4.15, 4.16 and 4.17 show what happens to the default payment leg of two reference 

portfolios of 5 and 20 credits, as default time correlation changes. In Figure 4.15 the default payment 

leg of 1st to default is always monotonically decreasing in default time correlation. In Figure 4.16 the 

default payment leg of 2nd to default is monotonically decreasing in default time correlation with 20 
credits. With 5 credits, the price is almost flat and has a turning point at a default time correlation of 

0.6. The turning point depends on the initial parameters, but above all on the number of credits in the 

basket. In Figure 4.17 we can draw the same conclusion for 3rd to default for the case of 20 credits. 

With 5 credits, the default payment leg increases as default time correlation increases. This has a 

huge effect on trading strategies. If an investor holds a 3rd to default note, and expects default time 

correlation to move up, the change in value of his investment will depend on the number of credits 

that makes the reference portfolio.

The relationships in Figure 4.15 to 4.17 can be generalised with saying that the l bt to default is 

always long in default time correlation. Otherwise said, when default time correlation goes up, the 

value of the 1st to default goes up as well. As we move up in the time ranking of the credit defaults
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(2nd, 3rd, 4th and so on) the relationship becomes more complex and depends primarily on the number 

of credits.

Another important component of the relationship between value and default time correlation 

is the complexity of the nth to default structure. In many practical cases, the first k defaults are pulled 

together to create the First Loss note; the second group of defaults, k + /, in the same nth to default, 

are pulled together to create the Second Loss note, and so on. In all these cases we can generalise 

and say that only the First Loss is always long in default time correlation. For the other «* Loss 

notes this tends to be untrue. We dedicate section 4.6 to further research the relationship between 

default time correlation and values, and we will do so analysing a typical real-life synthetic CDO.

4.5.7 Number of credits and maturity

We expect that as the number of credits rises, the default payment leg of 1st, 2nd and 3rd to default 

rise as well: the chance of one or more defaults in the next two years increases. All Tables confirm 

this. Figure 4.18 shows that the default payment leg of 1st, 2nd and 3rd to default also grows, as 

maturity rises. Clearly the probability of default rises with time and this rule is reflected in the three 

values.

4.6 Rating synthetic CDOs

As a final comparison of the Survival copula models used in the previous sections, we consider a 

numerical example where we calculate the ratings of the notes of a real-life synthetic CDO.

4.6.1 Moody’s rating methodology

Moody’s bases the rating of correlation products on the concept of expected loss (EL) and standard 

error (SE).11 It uses a proprietary Monte Carlo model to calculate the timing of default and the name 

of the defaulted credits. Different recovery assumptions are applied to the defaulted credits to arrive 

at the CDO notes expected loss and standard errors. The EL and SE are used to determine the final 

rating of the notes as follows: Moody’s takes the EL and the SE of the note and maps their sum to 

the Moody’s idealised cumulative expected losses of Table 2.8 in chapter 2. For example, a note 

with a contractual maturity of 10 years should bear an expected loss no greater than 0.006% to be 

rated as Aaa.

11 Tabe (2002).
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To follow the Moody’s methodology, in each Monte Carlo run, we produce the time and 

amount of losses and discount them back to the present time, using a constant Libor of 5%. In 

addition, to calculate the losses that hit the First Loss, the Second Loss and finally the Third Loss, 

we apply the allocation of losses as written in the contract description that will follow. The expected 

loss and standard errors are calculated as present value in Sterling and in percentage.

4.6.2 Rating arbitrage

We define rating arbitrage as the different rating that Moody’s would grant to the note, had a 

different default time model or correlation assumption been used. There is the risk of calculating 

more beneficial ratings for the Mezzanine and Senior notes, by using generous assumptions for the 

default time correlation. In the numerical example that follows, we will show the effect of the default 

time correlation on the final rating. We will also show how the rating could be different if the 

Clayton or the ¿-Student copula is used.

4.6.3 Expected shortfall

A disadvantage of using the EL for rating synthetic CDO notes is that it is not sensitive to the 

likelihoods of losses in excess of certain confidence level t . For example two different models may 

calculate the same EL, and therefore calculate the same rating, but one may show significantly 

higher likelihood of large losses.

In addition to EL one could measure the unexpected loss UL, which is defined through the 

following12
P(UL, >L ,) = ( l - 0  (4.37)

where L e is the loss at the confidence level i  .

The UL is the maximum loss that will incur at a confidence level i  until the note matures. 

However, it provides no information on the distribution of the \ — t  of losses above this value. With 

this in mind, Arvanitis and Gregory (2001) and Duffie and Singleton (2003) considered a similar 

quantity called expected shortfall defined as

E(l ,|U L ,>L ,) (4.38)

which is the conditional expected loss, given that the loss is at least as large as the loss level L .

The unexpected loss is the actual worst-case loss at a given confidence level, whereas the expected 

shortfall is the average of all losses above this worst-case loss.

12 In Arvanitis and Gregory (2001) p. 100.
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It is still unclear to us how to use the expected shortfall as a substitute of the EL to calculate 

the rating of the synthetic CDO notes. Nevertheless, we believe this is a very important tool to 

compare the quality and performance of the models analysed so far, when used for pricing and rating 

CDO notes.

4.6.4 Contract description

The CDO structure consists of three notes: First Loss Protection, Second Loss Protection and the 

Third Loss Protection.

(1) First Loss Protection or Junior note has a notional of £40,000.

(2) Second Loss Protection or Mezzanine note has a notional of £50,000.

(3) Third Loss Protection or Senior note suffers a loss if the Junior and the Mezzanine notes are 

fully utilised. Its notional is £910,000.

The reference portfolio consists of fifty credits, and it is shown in Table 4.24. For each credit, 

we show the maturity, the par value (or current balance), the rating, the industry classification and 

the CDS premium as implied in the Moody’s idealised cumulative expected losses of Table 2.8 in 

chapter 2 (and using a constant recovery rate of 45%).

The CDO contractual maturity dates are 4 years and the recovery rate is assumed to be 45% for all 

credits. All notes mature at the earliest of their contractual maturity and the date when their notionals 

are exhausted.

4.6.5 Calculating the premium

The First Loss, Second Loss and Third Loss pay Libor plus a premium. To calculate the premiums 

we rely on the formulae derived in section 4.2. Hence, the premium is calculated by putting into 

equivalence the premium leg in (4.10) with the default leg in (4.9).

As we simulate the quarter when default occurs, we assume that the simulated default happens 

midway between quarters. Furthermore, since the default probabilities are calibrated on the Moody’s 

idealised cumulative expected losses of Table 2.8 in chapter 2, rather than on the CDS market 

premiums, our model will not produce risk-neutral prices.13

13 We envisage a natural extension of this exercise: calibrating two sets of default probabilities. A first set, 
on Moody’s idealised cumulative losses of Table 2.8 in chapter 2 to calculate the rating, and a second set 
is calibrated on the CDS market premiums to calculate risk-neutral premiums.
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4.6.6 Rating results

In Tables 4.25 to 4.33, the numerical results are presented. For all three notes, we calculate the 

premium, the EL (in percentage and in value), the standard errors, the Moody’s rating, and the 

expected shortfall with three confidence levels of 97%, 99% and 99.5%. We show the results in 

three tables, one with a default time correlation of 0, a second with a default time correlation of 0.25 

and a third with a default time correlation of 0.50. In each table, the numerical results are calculated 

using the Merton model and the Survival model. For the Survival model we produce the results with 

three copulae: Normal, t-Student and Clayton, whereas the Merton model is used with the Normal 

copula only. With the ¿-Student copula we use two different degrees of freedom V , of 12 and 4. The 

Clayton copula is calibrated on the parameters of the ¿-Student copula with 12, 8 and 6 degrees of 

freedom V .

4.6.7 Survival and Merton model with the Normal copula

With a default time correlation equal to 0, Tables 4.25 and 4.26 show that the Merton model and the 

Survival model calculate the same expected loss and rating for the three notes. However, when we 

look at the expected shortfalls, the Merton model shows a Mezzanine note much riskier than the 

Survival model.

With a default time correlation equal to 0.25 and 0.50, the Merton model overvalues the 

expected loss and the expected shortfalls of the Junior, and undervalues the expected loss and the 

expected shortfalls of the Mezzanine and Senior notes when compared with the Survival model 

(Tables 4.28 to 4.30). We also find their differences increase as the default time correlation moves to 

0.50. This is in line with the numerical results illustrated in section 4.5, and with the results reported 

by Finger (2000).

4.6.8 Default time correlation

• Junior note-First Loss

Tables 4.25, 4.28 and 4.31 show that as default time correlation increases, the premium of the Junior 

note decreases. The relationship between the premium and the default time correlation is reversed 

when looking at the Mezzanine note and the Senior note.

• Mezzanine note-Second Loss

Tables 4.26, 4.29 and 4.32 show the premium of the Mezzanine note increases. The relative change 

(in %) in the premium is greater when the Survival model with the ¿-Student copula with 4 d.o.f. is
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used: it moves from 16.36 bps when default time correlation is zero (Table 4.26, 5th column), to 

101.36 bps when default time correlation is 0.50 (Table 4.32, 5th column).

• Senior note-Third Loss

Tables 4.27, 4.30 and 4.33 show what happens to the Senior note. When default time correlation 

moves from zero to 0.5, the relative change in the premium is greater when the Survival model is 

used together with the /-Student copula and with 4 d.o.f.: the premium moves from 0 bps (Table 

4.27, 5th column) to 2.63 bps (Table 4.33, 5th column).

In summary, high default time correlation has the effect of increasing the probability of joint 

defaults, however, the effect on the premiums is different and depends on the ranking of the note in 

terms of loss allocation. As correlation rises, the protection that the Junior note offers to the 

Mezzanine and Senior notes diminishes. Therefore, a larger premium is required for the Mezzanine 

and Senior notes to offset a greater risk.

With the current structure, the Junior note is long in default time correlation.14 The reverse is 

true for the Senior note. In this structure, the Mezzanine note behaves more as a Senior note, when 

the default time correlation changes.

4.6.9 Normal and /-Student copulae

• EL and Rating

Table 4.25 shows that the /-Student copula has no or little impact on the EL and rating of the Junior 

note. On the other hand, the rating of the Mezzanine note drops one notch (Table 4.26), signalling 

the collateral portfolio is much riskier, but still insufficient to raise the expected loss of the Senior 

note that remains equal to zero.

With the default time correlation of 0.25, the /-Student copula only influences the ratings of 

the Junior and the Mezzanine notes (Tables 4.28 and 4.29). When moving the default time 

correlation to 0.5, the rating of Senior notes drops two notches and becomes A1 from Aa2.

• Expected shortfall

The expected shortfalls show that the /-Student copula changes the risk of the Mezzanine and the 

Senior notes. When we move from the Normal copula to the /-Student copula with 12 d.o.f., the 

expected shortfalls, at all three confidence levels, rise, and signal the drop of the credit quality of the 

collateral portfolio. The credit quality further drops when the /-Student copula with 4 d.o.f. is used.

14 This means that the value of the Junior note increases as correlation increases.
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The exception is the Junior note: Tables 4.25, 4.28 and 4.31 show the expected shortfalls do 

not change when the /-Student copula is used in place of the Normal copula and when the default 

time correlation changes from 0 to 0.5.

6.6.10 Clayton copula

The results of the Clayton copula are presented in Tables 4.25 to 4.33 under the title No (linear) 

default time correlation. To model the dependence, we used nine values for a .

• Clayton copula and Normal and /-Student copulae with zero default time correlation

Table 4.25 shows that, as a moves from 5.6E-08 to 0.198, the EL of the Junior note diminishes and 

the rating improves, from Caa to B3. The effect on expected shortfall, at all three confidence levels, 

is very small.

The effect on the Mezzanine note (Table 4.26) is reversed when a is increased: the EL rises 

and as a consequence, the rating drops.

With regard to the Senior note, when the Elliptical copulae are used, in no circumstance is the 

EL different from 0. JJowever, the Clayton copula with a equal to 0.151 and 0.198 (in Table 4.27), 

would suggest a much riskier note, and with a rating of Aa2 or Aa3.

In summary, the drop of the EL of the Junior note is compensated for an equal increase of the 

EL of the Mezzanine and Senior notes.

• Clayton copula and Normal and /-Student copulae with default time correlation equal to 0.25 

and 0.5

To compare Clayton copula with the Elliptical copulae when default time correlation equal to 0.25 

and 0.5, we have set a at 0.177, 0.231 and 0.274, in Table 4.28 to 4.30, and at 0.246, 0.327 and 

0.391 in Tables 4.31 to 4.33.

This has had no impact on the ratings and on expected shortfalls of the Junior note, which are 

not materially different from those calculated with the Elliptical copulae. However, the effect on the 

EL is significant: it drops as a rises.

The results on the Mezzanine note and the Senior note are drastically different: the tables 

indicate both notes are much riskier when modelled with the Clayton copula. The rating of the 

Mezzanine note drops one notch down, from Bal to Ba2, when a is set at 0.391, whereas, the rating 

of the Senior note drops to Aa3 (in Table 4.30), and further down to A1 (in Table 4.33). The 

expected shortfalls at 99% and 99.5% confidence levels in Tables 4.30 and 4.33, are also much 

larger than the expected shortfalls calculated with the Elliptical copulae.

Looking at the EL, we can notice that as a rises, the EL of the Junior note drops, and this is 

compensated for an equal increase of the EL of the Mezzanine and Senior notes, (see Tables 4.31,
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4.32 and 4.33). This implies that the Normal copula underestimates the fair compensation of the 

Senior and the Mezzanine notes and overestimates the fair compensation of the Junior note.

These results are very important and contradict the work of Meneguzzo and Vecchiato (2002) 

on modelling default times with the Clayton copula in CDO and nth to defaults. They found that the 

Clayton copula does not appear useful, because it is not able to capture the upper tail dependence. In 

their model, they first simulated the survival function and then calculated the exact default time by 

taking the inverse of the survival function. This approach simulated too many survival times and 

fewer default times.

Our approach is to simulate the joint times of default via simulating the quarters when default 

occurs. In this way, we are able to use the Clayton copula and capture the lower tail dependence.

4.6.11 Clayton copula and t-Student copula: our conclusion

When the ¿-Student copula is used, by reducing the degrees of freedom, we are able to calculate a 

Senior note much riskier. However, the consequence on Mezzanine and Junior notes is contained.

When we increase the level of dependence in the lower left quadrant of the distribution 

through the parameter a, the Clayton copula on one hand reduces the risk of the Junior note, on the 

other hand, it makes the Mezzanine and the Senior notes much riskier.

More important, the Clayton copula picks up some extra risk in the Senior note. This is 

confirmed by the expected shortfalls that capture the fatter tails of the loss distribution. For example, 

in Tables 4.27 and 4.30, the expected shortfalls calculated with the ¿-Student copula are much lower 

compared with the values calculated with the Clayton copula. Only when the default time correlation 

is 0.5, do the expected shortfalls become consistent between the two copulae.

These are important results and point towards the Clayton copula as a flexible and important 

tool for structuring and rating purposes, with very useful properties when compared to ¿-Student 

copula for modelling extreme events.

4.7 Schonbucher and Schubert dynamic copula model

This section gives a short overview over the Schonbucher and Schubert (2001) copula modelling 

framework, together with an application to price a real-life synthetic CDO structure. More details 

and proofs can be found in their original article.

Schonbucher and Schubert proposed to use copulae to join default threshold exponential r.v.s 

for a default countdown process. More precisely, a default occurs when the intensity process reaches 

a default threshold which is an exponential r.v. with parameter 1, independent of the intensity
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process. To induce dependency between the times of default, the default thresholds are joint with 

copulae.

Definition 4.4: Let A.f t )  be an ( J -t ) -adapted stochastic process and define the default countdown 

process for credit i as

} ’i ( t )  = exp (4.39)

Definition 4.5: As in the spirit ofLando (1998), the time o f default o f credit i is defined as

r, = m f \ t \ y f t ) < U l } (4.40)

and the default indicator function is indicated as N f t ) = l,r£i, .

Assumption 4.1: The copula C is twice differentiable and its partial derivatives are written as

- f e e  =c„o <4.4i)
o u i

Assumption 4.2: U) s are uniformly distributed on [0,1] and independent o f {ffK ) . Then if  we take 

Z. = -  In U i , Z( is a unit exponential r.v. and it follows that (4.40) is equivalent to (1.106).

Definition 4.6: The filtration I f f tt is the augmented filtration that is generated by N f t )  . It is 

convenient to denote with

^ r ( ^ v ^ 2 / v "-v ^ J  (4-42)

all information about the defaults o f all obligors until time t .

At this point, we have a very flexible model. Firstly, it joins the default thresholds in such a 

way that the single intensities can be calibrated to the term structure of CDS premiums or can be 

made stochastic, while the dependence of the default thresholds can be separately modelled with any 

copula. Secondly, it provides us with a very simple algorithm to simulate the time of default Ti in 

(4.40), as it follows.

(1) Simulate (ul ,u 2,..,un) from the selected copula.

(2) For each credit i , simulate the process f  (t ) , and calculate y i (t ) .

(3) Stop when y f t )  < and take Ti = t t as the time of default.
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Schônbucher and Schubert observed that in this way, the full information available to an agent 

is not completely used. To see what they meant by that, we indicate as hi ( t ) the intensity of credit i

for an agent who has access to the complete information set <gt = f f t v  J~Ct available at time t ,

where f f t represents the information regarding the general state of the economy and J~Ct gives the

information on the default states of all credits. The complete information set is taken into account to 

distinguish the case before default from the case after default. Whenever a default occurs a partial 

derivative of the copula is taken with the respect to the defaulted credit and the value of the 

countdown process in (4.39) is fixed at y f v f ) .  In this way, the survival functions are updated with 

the respect to the full information that arrives in the form of default or survival.

Proposition 4.2 (Survival probabilities before default of credit j  ):15

(1) Under t e , U  , which is the case where an agent has no access to the information

regarding the state o f default or survival o f all credits, on the set z i > t , the individual survival 

probability o f credit i is

r ;. > r | £ , f) = E Q
y  X T )

y M
Qu

\  (
= e q

y
exp -

V
% (4.43)

(2) The intensity o f N f t )  under (git is

g/(0 = lp,.>,}4 (0 (4.44)

(3) Under {(fjt )(6[0J.,, which is the case where an agent can observe all other credits and so has

full access to the information regarding the state o f default or survival o f the other obligors, and no 

default has occurred, the individual survival probability differs from (4.43) and is

'h > r | g , ) =  e <
C ( y f t \ . . , y n( t ))

(4.45)

(4) The intensity o f N f t )  differs under ((?,),e[0 T] and it is

h f t )  = f  f t )  y  f t )

- j f - C ( y f t ) , . . , y n( t) )
o u i

C { y f t ) , . . , y , f t ) )

= U O y f t )  —  l n C ( y f t ) , . . , y n( t ) )
O U -

(4.46)

15 For a proof, see Schônbucher and Schubert (2001).
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not modelled through an exponential distributed time-decay as in Davis and Lo (1999), but flows 

directly from the copula set up.19

4.8 Numerical exercise with Schonbucher and Schubert

dynamic copula model

As anticipated earlier, the Li’s Survival model is a static copula model, where no insight on copula 

dynamics is given. In what follows, we present a numerical exercise which will allow us to highlight 

the different results that Li’s Survival model and Schonbucher and Schubert (2001) dynamic copula 

model would calculate.

For simplicity, the collateral portfolio and the structure are the same as in section 4.6. We 

assume the same alfa parameter of the Clayton copula as in Tables 4.28 to 4.33 and the same interest 

rate of 5%. We also suppose the same time-inhomogeneous pseudo-default intensity rates A f t )  , for

all underlying credits. They are extracted from the Moody’s table of idealised cumulative expected 

losses (Table 2.8), assuming they remain constant through the quarterly payment dates and using a 

recovery rate of 45% equal for all credits. In this way, credits with the same rating are given the 

same pseudo-default intensity rate, but their dynamics hi(t) are different.

All results are in Tables 4.34 to 4.36. We are not surprised to note that the results for Junior 

note are not dissimilar from those in Tables 4.28 and 4.31. However, when we look at the Mezzanine 

and at the Senior notes, their premiums, ELs, Ratings and expected shortfalls are all much worse 

than when they were calculated with the Li’s Survival model (in Tables 4.29-4.30 and 4.32-4.33). 

For example, with a = 0.391 , the premium of the Senior note in Table 4.36 is 26.38 bps, whereas it 

was 2.88 bps in Table 4.33. The highest rating of the Senior note is A l, and it calculated with 

a = 0.177 , whereas with the Li’s Survival model we calculated a rating of Aa2.

Therefore, even with the same initial intensity rates A f t ) , the default mechanisms in Li’s 

Survival model and Schonbucher and Schubert (2001) dynamic copula are very different.

4.9 Conclusion

In this chapter, we studied three types of intensity copula models: Marshall and Olkin exponential 

copula, the Li’s Survival copula model and the Schonbucher and Schubert dynamic copula.

The first of these models provides an easy way to exponentially join the times of default 

where the random arrival times are modelled as time-homogeneous Poisson processes. We also

19 In Schonbucher and Schubert (2001) p. 24.
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tested a Monte Carlo algorithm to price 1st, 2nd and 3rd to default, which proved to be an efficient 

algorithm with 10,000 simulations. However, when it was compared with the Li’s Survival model, 

we found that the latter provided with a faster Monte Carlo algorithm, which could be efficiently 

used to price large collateral portfolio as well.

When modelling correlation products with the Li’s Survival model, we found that their prices 

depend upon the following components: 1) the size of the reference portfolio, 2) the default time 

correlation, 3) the complexity of the structure of the correlation product and 4) the copula that is 

used to join the times of default.

The relationship between premiums and correlation can be generalised with saying that the 1st 

to default is always long in default time correlation. As we moved up in the time ranking of the 

credit defaults (2nd, 3rd, 4th and so on) the relationship become more complex and depended on the 

number of credits. Hence, the size of the reference portfolio is one of the key elements when 

analysing the sensitivity of the premiums to changes in the default time correlation.

Another important component of the relationship between premium and default time 

correlation is the complexity of the structure of the correlation product. High default time correlation 

increases the probability of joint defaults. In addition, the sensitivity on the premiums depends on 

the ranking of the note in terms of loss allocation. In principle, as correlation rises, the protection 

that the Junior note offers to the Senior notes diminishes. Therefore, a larger premium is required for 

the Senior notes to offset a greater risk. However, it is not always easy to say how the Mezzanine 

note premium would react to a change of correlation. With the structure analysed in section 4.6, the 

Junior note was long in default time correlation, whereas the Senior note was short. The Mezzanine 

note behaved more as a Senior note.

Our numerical results of section 4.5 contradicted the results and conclusions of Mashal, Naldi 

and Zevi when modelling with the ¿-Student copula. We did not find the same redistribution of 

losses from the 1st to default into the 2nd and the 3rd to default, when the Normal copula is changed 

with the ¿-Student copula. Our results showed a general increase of their premiums. We also found 

that the Normal, ¿-Student and Clayton copulae calculated the same premiums when the times of 

default were not correlated or dependent, which was not the case in Mashal, Naldi and Zevi.

In section 4.6, we found strong evidence that the Clayton copula is a suitable tool when 

pricing CDO notes. By changing the only available parameter of dependence a , we noticed a 

redistribution of losses from the Junior note to the Mezzanine note and the Senior note. We also 

compared the Clayton copula with the Normal copula and the ¿-Student copula, and we found that 

the Clayton copula overestimated the fair compensation of the Senior and the Mezzanine notes and 

underestimated the fair compensation of the Junior note. More importantly, the Clayton copula 

picked up some extra risk in the Senior note. This was confirmed by an increase of the expected 

shortfalls of the Senior note.
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Our findings contradicted the work of Meneguzzo and Vecchiato on modelling default times 

with the Clayton copula. They used the Clayton copula to simulate the exact default time. In this 

way, they simulated too many survival times and fewer default times. Alternatively, we simulated 

the quarters when default occurred. In this way, we were able to use the Clayton copula and capture 

the lower tail dependence.

Another important advantage of the Clayton copula over Elliptical copulae is that it simplifies 

into nice closed-forms. Therefore, we found easy to apply the Clayton copula into the Schonbucher 

and Schubert dynamic copula framework.

In order to show that the default mechanism implied with the Li’s Survival model is different 

from the Schonbucher and Schubert dynamic copula, we compared these models with a Clayton 

copula, via pricing a real-life CDO. We assumed the same time-inhomogeneous intensity rates for 

the underlying credits and found much larger losses with the dynamic Clayton copula.
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Chapter 5: Structuring and rating cash-flow 
CDOs with rating transition matrices

5.1 Introduction

This chapter presents a time-inhomogeneous intensity model for valuing cash-flow CDOs that 

explicitly incorporates the credit rating of the firms in the collateral portfolio as the indicator of the 

likelihood of default. This model will prove useful for the pricing, structuring, rating and risk 

management of CDO notes in presence of waterfall triggers linked to the credit ratings of the firms 

in the collateral portfolio, that if breached, divert cash due to pay the interests of the more junior 

notes to accelerate the amortisation of the more senior notes.

Moody’s (Cifuentes and O’Connor (1996)), Fitch (2003) and S&P (2002) have developed 

their own in-house models for rating cash-flow CDOs. With the support of these analytical tools, 

they determine the amount of credit risk present in the collateral portfolio. Once the credit risk is 

calculated, it is compared to the credit protection offered by the structure to determine the correct 

rating of the CDO notes. The critique we can move to the rating agency approaches is that the credit 

rating transitions are not fully captured within their models.

Because the rating agency models do not specifically use credit rating information, they 

cannot be used to model CDO notes whose performance directly depends on credit rating changes. 

In our view, the probabilities of downgrade and upgrade ought to be properly modelled, since we are 

not only interested in the risk of default when the CDO is launched, but also how the CDO structure 

performs when the risk profile of the collateral deteriorates over time. For example, quality tests 

would trigger if the average credit quality of the collateral were to drop below a certain rating, 

imposing the CDO manager to sell some of the credits and therefore reduce the internal rate of return 

of the CDO equity investors. In order to measure the risk and value of the CDO notes, we believe it 

is necessary to combine a credit risk model with the exact cash-flow waterfall model of the given 

structure.

Credit rating transitions have been modelled in the past as a finite Markov chain,1 which 

assumes that, the credit rating changes from one rating to another at given time intervals with a 

certain probability. The probabilities of the credit rating form a transition matrix, due to the Markov 

property, the probabilities of future credit rating only depend on the current rating. Jarrow, Lando 

and Turnbull (JLT2 1997) were the first to develop a Rating Transition (RT) model, where the credit 

rating classes evolve according to time-homogeneous and time-inhomogeneous Markov process. In 

the time-inhomogeneous version, the rating transition process was modelled by calibrating the

1 For a review on Markov chain, see Haggstrom (2002) and Norris (1998).2 JLT in the rest of the chapter.
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intensities of the generators over discrete times, with a set of observed default-risky instrument 

prices. Further evolution was Lando (1998a). In a doubly stochastic framework, he allowed for 

stochastic transition matrices to model the effect of the economic environment on the default risk.

Transition matrices can be obtained by the three main rating agencies, Moody’s, Fitch and 

S&P. Flowever, transition matrices published by rating agencies are not suited for valuing default- 

risky financial instruments. They are typically available only for annual frequencies, with the 

shortest period being one year. Many financial instruments have maturities shorter than a year, and 

thus require transition matrices over arbitrary time horizons.3 The approach that obtains transition 

matrices of any arbitrary time horizons involves embedding the discrete-time Markov chain into a 

continuous-time Markov process (Kingman (1962)). Because, for any continuous-time Markov 

process, any transition matrix can be expressed as the exponential of a generator (or intensity) 

matrix, solving the embedding problem essentially means to find a generator matrix (Kreinin and 

Sidelnikova (2001)). To further complicate the valuation of a default-risky financial instrument with 

a rating agency transition matrix, is the fact that its true generator does not exist (Israel, Rosenthal 

and Wei (IRW4 2001)), otherwise said, the rating agency transition matrix is not compatible with a 

continuous-time Markov process. IRW identified a set of conditions under which a valid Markov 

generator exists and presented algorithms for calculating an approximate generator when the true 

one does not exist. We will rely on the algorithms developed by Lando (1998a) and IRW to prepare 

the transition matrices to feed our cash-flow CDO model.

Another issue is to match a transition matrix with historic cumulative default probabilities 

used by rating agencies for rating cash-flow CDO notes. These default probabilities are based on 

cohorts of historically observed default frequencies. Moreover, when they are transformed in 

cumulative multi-year default probabilities, they have a tendency to look like saturated at longer 

maturities.5 Hence, assuming time-homogeneity in the rating transitions (which implies that the 

transition probabilities do not change with time and are constant over the entire time horizon), would 

inevitably leads to large differences between the cumulative multi-year default probabilities as 

calculated with the rating transitions, and the historic cumulative frequencies as reported by rating 

agencies. Besides, given sufficient time, all firms will eventually default in a time-homogeneous 

system (Jafry and Schuermann (2004)), even though the average time of default may be very large 

for some initial rating classes. This long-term pattern is a mathematical artefact caused by the 

simplistic time-homogeneous assumption embedded in the one-year rating agency transition matrix. 

Lando (1998a) further expanded the work of JLT and showed three methods to calibrate the 

generator of the one-year transition matrix to the market prices. In this way, he obtained transition
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3 See Jarrow, Lando and Turnbull (1997) for a discussion on pricing and hedging credit derivatives within 
a Markovian model of rating transition.4 IRW in the rest of the chapter.5 See Bluhm (2003) p. 13.
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matrices for shorter and longer maturities. This makes his research a very valuable one. We will 

borrow from Lando (1998a) to calibrate the transition matrix to historic default probabilities used by 

one of main rating agencies. The agency time-homogeneous transition matrix, after being calibrated, 

will result in a time-inhomogeneous one, and ready to be applied for rating. The introduction of 

time-inhomogeneous system is a very relevant time-evolution feature of our cash-flow CDO model, 

necessary to analyse how the credit risk ages.6 In this way, the transition intensities change as the 

collateral portfolio ages.

The transition matrices used in our model are calibrated to historical default probabilities. 

Because modem financial theory requires that hedging and pricing of option type products takes 

place under a risk-neutral valuation framework, our model will not produce risk-neutral prices. We 

foresee one easy extension of our model: calibrating the default probabilities to those probabilities 

implied in the CDS premiums (as in the spirit of JTT), so to be capable of calculating the rating and 

the price of the CDO notes at the same time. We leave this to another research.

Alternatively, to avoid all the problems embedded with a rating agency transition matrix, the 

preferred approach is to estimate the generator or generators directly, using the original data set, 

which must include the exact time transitions occurred. Then, transition matrices for the required 

period of time can be easily constructed. Such approach is known as the continuous-time approach 

and was taken by Christensen, Hansen and Lando (2002). There is also evidence for non-Markovian 

behaviours of the rating process. Nickell, Perraudin and Varotto (2000), Lando and Skodeberg 

(2002), Christensen, Hansen and Lando (2002), Duffie and Wang (2003) and Hamilton and Cantor 

(2004) showed the presence of non-Markovian behaviours, such as rating drifts,7 industry 

heterogeneity and time variation due in particular to the business cycle. For example, conditioning 

the future rating on the duration of the past rating implies that, two firms, with the same current 

rating, may not be assigned the same distribution of future rating. Instead, our approach does not 

provide a way of computing two different distributions of future rating for firms in the same current 

rating. We do not deny the value of an empirical exercise, which, at the same time, could be capable 

of estimating generators, and testing non-Markovian effects. However, we fear our work would be in 

the area of risk management, with little immediate practical implementation in the area of rating 

structure finance bonds, where we would like this work to belong. For this reason, we will leave this 

study to another time.

To address the issue of modelling migration dependence we rely on the concept of copula. A 

copula is a multivariate distribution function with uniform marginals on the unit intervals. From a 

practical point of view, the copula gives the advantage of selecting first the marginal distributions of
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6 See D’Amico, Janssen and Manca (2004) for a comparison between the credit risk problem and the 
more general problem of the reliability of a stochastic system.7 Meaning that, a firm recently downgraded, for example from A A to B, is more likely to be further 
downgraded than an obligor who was always in B.
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the rating class of the credit in the CDO, and then linked them through the most suited copula to 

represent the dependence among the same components. The use of copulae is certainly not new to 

model portfolios of default-risky instruments.8 Since initiated by Li (1999 and 2000) and further 

developed by Schonbucher and Schubert (2001), many copulae have been proposed as alternative to 

the market standard Normal copula, such as /-Student (Mashal and Nandi (2001) and Frey and 

McNeil (2003)) and Clayton (Schonbucher and Schubert (2001)). Factor copulae (Laurent and 

Gregory (2002)) are also available, and provide faster and alternative algorithms to copula Monte 

Carlo approaches.

We found it surprising that all copula research is concentrated around modelling joint defaults 

and it lacks of the same interest towards modelling joint rating migrations. However, because under 

the new banking regulation (BIS (2004)), capital requirements are driven in part by rating 

migrations, we foresee an increase of interest in combining copulae with the rating migration 

models. Hamilton, James and Webber (2001) were the first to investigate with copulae, dependency 

relationships occurring between rating events in different rating classes. In their model, the credit 

rating process is an observable marked point process, determined by an underlying state variable. 

They calibrated the single-name and the multi-name models by looking at the distribution of rating 

changes through time and using the Moody’s Corporate Bond Default database.

Furthermore, no previous research has so far linked Rating Transition and copula model to the 

actual legal structure of a cash-flow CDO. All past research is in the area of synthetic CDOs, where 

calculating the joint loss distribution of the reference portfolio is sufficient to infer the loss 

distribution of the CDO notes. Our contribution is, when modelling cash-flow CDOs, on measuring 

the impact of modelling credit rating transitions as trigger events which, when breached, divert the 

distribution of cash from the junior to senior notes, so accelerating the repayment of senior notes. In 

our model, the rating process does not dependent on underlying state variables, like in Hamilton et al 

(2001), but it is directly modelled by using actual time-inhomogeneous transition probabilities over 

discrete times. To induce dependence within the collateral portfolio, we propose to use the Normal 

copula function. However, our approach can easily be extended to include other copula functions.

A further innovative feature of our research is the application of the RT-Copula model to 

determine the rating of CDO notes. The rating methodology that we want to develop is based on the 

expected losses that the holder of a rated note would suffer when investing in a cash-flow CDO note. 

Based on both the marginal and the joint probability distribution of the credit rating migrations, we 

propose to calculate the amount of the rated debt by comparing the cumulative expected losses of the 

note with the cumulative expected losses associated with that rating category.

To our knowledge, this is the first model of cash-flow CDOs, which uses a rating agency 

transition matrix, publicly available that we successfully calibrate using historic cumulative default
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Copulae were originally applied in risk management by Embrechts, Lindskog and Straumann (1999).
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rates. Our RT-Copula model is an extension of the time-inhomogeneous JLT model, applied to 

structuring and rating cash-flow CDOs. The model we suggest involves five steps:

(1) For each credit, we model the rating migrating process via time-inhomogeneous Markov 

chains.

(2) In this chapter, we aim to calculate the rating of the CDO notes with the RT-copula model. 

Because of this, we calibrate the S&P’s one-year rating transition matrix on the S&P’s 

cumulative default rates.

(3) Join the n -credit rating migration processes via the Normal copula.

(4) Implement Monte Carlo simulations, whereby correlated simulated paths work out the credits 

that migrate and default.

(5) Losses and recoveries are then allocated to the waterfall, generating notes cash flows.

The RT-Copula model will be numerically compared with Li’s Survival model (1999 and 

2000). The advantage of the Survival model is clearly the saving in the computational time required 

to perform the simulations. This is because the final time of default and not the full migration path 

until maturity or default of the credits is simulated. However, as we will see, we will not be able to 

correctly model the interest and the principal waterfalls.

This chapter develops through the following sections. In section two and three we review the 

JLT model; in section four and five we show an original way to simulate the single-name rating 

migration within a time-inhomogeneous Markov process, the multi-name rating migration processes 

are then joined via the Normal copula; section six shows the way rating agencies estimate transition 

matrices versus alternative and more efficient continuous-time estimators; in section seven we 

review the conditions for a true generator as in IRW; section eight deals with three ways to calibrate 

a transition matrix as in JLT and Lando (1998a); sections nine to eleven report the S&P one-year 

rating transition matrix of which we firstly find an approximated generator, and subsequently, we 

calibrate on the S&P historic default rates; in section twelve we review two benchmark models, the 

Survival and the Merton, that will help us to measure the quality of the RT-Copula model. Section 

thirteen explains the mechanics of interest and principal waterfalls. The correct CDO price strongly 

depends on the correct model of these waterfalls, as much as on the correct model of the default 

dependence.

In the last section, we will provide a numerical example and compare the results of the RT- 

Copula model, based on the probability distribution of joint rating migration, with the Survival 

model and the Merton model, which only model the joint probabilities of default. In this way, it will 

become apparent that the correct model is the RT-Copula when the interest and the principal 

waterfalls of the CDO structure contain trigger events on the credit ratings. Hence, it is required to 

model the full migration path until maturity or default of the credits.
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5.2 Rating transitions

Chapter 5: Structuring and rating cash-flow CDOs with rating transition matrices

In the rating transition approach, the transition probabilities and defaults are modelled by using an 

adapted stochastic process r)(a>,t), on a finite state space S  = {s1,s 2,..,sK} , where 

^ : Q x [ 0 , r ] - > 5  and S  denotes the set of the K  rating classes. The underlying uncertainty is 

represented by a filtered probability space (Q ,P , , where P  is the actual probability measure,

whereas with Q  , we will indicate the risk-neutral probability measure. The dependence on (0 e  Q 

from now on is suppressed.

Definition 5.1: The (K  x K ) transition matrix for the period \t, T ] , under the actual probability 

measure P  , is written as

f  Pu it ,T )  P u ( t t T ) ... p lK (t,T ) ^

P2,x ( tJ )  P i.ii1’7 ) -  P i A ^ 7 )
P (t,T ) =

P x - u i t J )  p K_l2(t,T )  ... p K_hK( t,T )

0 0 0 1

(5.1)

where p hj (t, T )>  0 for all h , j , h * j  and p hh ( t ,T)  = 1 -  J ]  p hj (t, T) .
j=lj*h

In (5.1) the rating classes are ordered by their credit risk: the rating class 1 represents the best credit 

rating, the class AT — 1 is the worst credit rating, and the class K  is the state of default.

Definition 5.2: For all h , the time o f default Th is defined as

r h = in f{5 > t : T](s) = K } , (5.2)

which is the first time the firm credit rating hits the state o f default K , assumed an absorbing state.

Definition 5.3: For all h , j , h  ^  j , p h j {t,T) is the actual probability o f going to state j  from 

state h in the period [ t , T\

P h j i t ’T) = ~P(r](T) = j\rj(t) = h) V h , j  e  S, t < T  (5.3)
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The probabilities in (5.1) are observed at time t0 < t , and they may change over time. Thus, we add 

a third argument t0 to the probability in (5.3) to reflect the time during which the information to 

express those probabilities, becomes available.

Definition 5.4: The probabilities conditional on the information revealed at time t0 are

= = j\ri(t) = h a  f ( t 0j)  V h , j  e S, t0 < t < T  (5.4)

where the probabilities are now conditional on the information revealed at time t0 .

Definition 5.5: For all h,  Fr̂ t)=h (t, T) is the distribution function o f Tj(t) under P  in the period

[tt,T]

FrlW=h(t,T) = Y Jjf,s P h A tJ )  (5-5)

5.3 Jarrow, Lando and Turnbull model

JLT pioneered the RT modelling and provided with the modelling framework in discrete and 

continuous-time. In their approach, the rating transition process rj(t) has the following properties:

(1) Markov property: at any time t , the transition probability to another state until time T  > t , 

depends only on the current state rj{t) of the rating process

Pfo(T) = j \ m )  = P fo(P) = j \ m )  V j  e  S  (5.6)

This is also equivalent to P(t0; t , T ) = P { t,T ) , that is, conditioning on further information 

besides the current rating state rj(t) at time t , does not improve the risk assessment. This 

assumption precludes stochastic changes in the transition probabilities driven by other factors, 

such as the point in the economic cycle, during which the transition probabilities are 

estimated.

(2) Time homogeneity: the transition probabilities depend only on the time interval over which 

the transitions take place, otherwise said, the same matrix is used for larger intervals of time

P(t ,T )  = P(T  - t )  V t < T  (5.7)

In the next two sub-sections, we will first focus on the discrete-time and subsequently on the 

continuous-time model.
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5.3.1 Discrete-time

Assuming that the rating transitions only take place at discrete times, 0 = t0 < t x < ... < t N , there is 

a set of small time intervals, [tn, tn+l ] , for which the rating transition matrices can be specified. The 

intervals are non-overlapping and cover the whole time frame.

Keeping the assumption of time-homogeneity, under the actual probability measure P , all 

one-period transition matrices must coincide to

P ( t n,t„+l) = P  (5.8)

The transition matrix for larger time intervals is then given by taking P  to the power of the 

length of the time interval

P ( t n , t m) = P m-n V n < m < N  (5.9)

Definition 5.6: Under the martingale measure Q  , the one-period transition matrix is written as

Q ( t , t  +1)

/ q u ( t , t  + 1) 

d '2 . \ P  ’ l T 1)
q l 2 ( t , t  + l) ... q l K ( t , t + 1) " 
q 2 2 ( t , t  + \ )  ... q 2 K ( t , t  + \)

+ 1) q K_x2( t , t  + X) ... q  K X K {t , t +  X)

0 0 0 1

(5.10)

K

where q h j ( t , t  + 1) > 0 for all h , j , h  ^  j ,  q hh ( t , t  + 1) = 1 -  I  q h j ( t , t  + 1), and
MJ*h

q h j ( t , t  + 1) is the martingale probability of going to state j  from state h  in the period [t , t +1].

JLT assumed the following relationship between the actual one-period transition probabilities 

in (5.8) and the martingale transition probabilities in (5.10)

qh,j(t,t + l) = 7Zh{t)phj (5.11)

for all h, j ,  h ^  j , where n h (t) is a deterministic function of time.

With (5.11) the martingale transition probabilities are proportional to the actual transition 

probabilities and to the proportionality factor n h ( t ) , which they called the risk premium. 

Furthermore, it is also ensured that the martingale probabilities do not depend on the entire history 

up to the current time t . In this way, the Markov property is satisfied.

In matrix form, (5.11) becomes

Q { t , t  + l ) - I  = U ( t ) [ P - I ]  (5.12)

where /  is a ( K y. K )  identity matrix and Y l { i ) - d i a g { 7 r f t ) , T r 2{ t ) , . . . ,K K_x{ t ) , \ )  is a ( K x K )  

diagonal matrix.
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Given the time dependence of the risk premiums in (5.11), under the martingale measure Q  , 
the time-homogeneous Markov chains are replaced with time-inhomogeneous Markov chains.

5.3.2 Continuous-time intensities
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Definition 5.7: A continuous time-homogeneous Markov chain {77(f) : 0 < t < r} is specified in 

terms o f its (K  x K ) constant generator (or intensity) matrix

'  A,2 -  K k  ^

- ^ 2,1 ^ 2  • "  ^ 2  , K

AP -  ....................................... (5.13)

^ K - 1,1 ^ K - 1,2 • "  ^ K - \ , K

, 0 0 0 0 ,

K

where Ah . > 0 for all h, j ,  h =4 j , and ^  /lA j for /t = 1,2,.., .
j=hj*h

The (K  x K ) transition matrix for t) , of the T — t period, under the actual probability 

measure, is given as

P it, T ) = exp((r -  0 A P )=  £  ( ( r  -  /)A P)"/« ! (5.14)
n=0

In (5.13) the off-diagonal elements are the constant intensities of jumping to rating j  from 

rating h , whereas the diagonal elements are the constant intensities of moving away from rating h . 

The default state K  is again an absorbing state. With the constant generator matrix, the probability 

of remaining in the same rating h continually until some time s > t  is « exp((5 — 

analogous to modelling the survival probability with a constant default intensity.9 If a transition 

occurs, we can interpret « —Ah ■ / Ah as the probability of a move into the rating class j  .

Since the intensities of the generator matrix A1 are constant, the commutative property 

applies,10 and the exponential matrix in (5.14) is calculated using the expression

P(t ,T )  = B e x -p (D (T - t ) )B_1 (5.15)

where D  = d iag idx,d -,,...,dK_x,d K) is a (K  x K )  diagonal matrix, whose entries are the 

eigenvalues of A1, exp{D (T — t)) is simply = diag(exp(dl (T — t)),...,exp(d  K(T  - 1))) and 

the columns of B  are the eigenvectors of AP.

9 Otherwise said, the random times between rating transitions are exponential distributed.10 See Duffle and Singleton (2003) p. 96.
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Similarly to the discrete-time case, JLT transformed the actual probability-generator matrix to 

a risk neutral-generator matrix multiplying the actual probabilities by the risk premium matrix U {t)

Aa (t) = U(t)Av (5.16)

where U(t) = d i a g ( u l ( t ) , u 2( t ) , . . . , u K_l ( t ) , l )  is a (K  x K)  diagonal matrix, whose first K - 1 

entries are strictly positive deterministic function of time t .

In the same way as with the discrete-time case, given the time dependence of the risk 

premiums in (5.16), under the martingale measure Q ,  the Markov chains are now time- 

inhomogeneous.

The (K  x K ) transition matrix for rj, from time t to T , under the risk-neutral probability 

measure Q  , is given as solution to the Kolmogorov ordinary differential equations (ODE)11 12
8 Q ( *’ T )  = - A a ( t ) Q ( t , T )  (5.17)

ot

and
d Q { t , T )

d T
Q { t , T ) A Q ( T ) (5.18)

with the initial condition Q ( t , t ) = I . If the generator matrices A °  ( t)  and AQ (s) commute for all 

t ^  s ,i: then the solution is

(5.19)

Under the commutative property, Lando (1998b) further simplified the solution in (5.19), as 

follows

Q ( t , T )  = B  exp |//(x )Jx  lB 1 (5.20)

where ju(s) are the eigenvalues of A1 in (5.13), modified to account for the risk premiums U (t ) , 

which are assumed strictly positive deterministic function of time.

5.4 Simulating the single-name rating migration

In this section and in the following one, we prepare the Monte Carlo simulation model for rating and 

structuring cash-flow CDOs. We start with developing the simulation model of the single credit, 

where its rating migration is modelled as a continuous time-inhomogeneous Markov chain 77(f) .

11 This is discussed in JLT (1997) p. 496.12 Schonbucher (2003) p. 231.
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We assume in the rest of the chapter that 77(f) is independent of the level of the default-free 

risk interest rate r ( t) . We later, take r(f) to be constant, so in our illustrations correlation effects 

do not materialise.

We begin with defining the credit rating thresholds, which correspond either to the event of 

migrating to another rating class or to the event of staying in the same rating class as at the end of 

the period \t ,t  +1]. To do so, we partition the unit interval [0,1] into K  sub-intervals

1 K-1
0 < b K = p hK(t,t + l )<  bK_x = Y JP h,K-j(t ’t + l ) < - < b i =YjPh,K-j( t ’t + l ) = l (5-21)

j=0 j=0

Definition 5.8: For all h , we call the set

|  \bh  1 ’ b j  U  ^2 A  ] 'U [0> b K ) |  (5-22)

the credit rating thresholds, at time t , for 77(f) .
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We now discuss how to simulate the single-name credit rating 77(f) , which, over the period 

[f,f +1], is distributed according to the distribution function Frĵ )=h (f,f +1) , on a state space S  .

We let 77(f) = y/(U)  , where U  is a uniform random variable [0,1], and the function 

y/ : [0,1] —» S  is given by

Sj fo r  u e [b2,b J  

s 2 fo r  u e  [¿>3, ¿>2)

y/(u)
Sj f o r  u € [bj+1,bj)

(5.23)

f K fo r  u e  [0,6, )

When u e [0 ,bK) , then 77(f) = K , the credit defaults and the simulation stops. Otherwise, 

the credit rating at the end of the period [f,f + 1] is y/{-) , and it is used to simulate the credit rating 

for the following period.
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5.5 Multi-name rating migration: copula model

The multi-name rating migration follows directly from linking the copula function to the single-

name rating migration process.

Any continuous distribution function F{ x i , x 2, .. ,xn) of random variables

r\x (t),..,rjn (t) can be decomposed into a composition of the individual marginal distribution

function F lj (ty(xi) and the copula function C(-) .

Theorem 5.1 (Sklar’s 1959): Let F  be an n-dimensional distribution function with margins 

Frî t)(x l ),F n2̂ )(x2),..,F r] (i)(xn). Then there exists an n-copula C such that for all x in 9?"

F ( x l , x 2 , . . , x n)  = G(Fm ( x {) , F 7l2 (x 2),..,F Vn (x2)) (5.24)

This theorem explains the reason why copula reveals the link between multivariate 

distribution function and its individual margins.

Corollary 5.1:13 14 Let F  be an n-dimensional distribution function with continuous margins 

F,h(t)(x \)>Fn2(t)(x l ),..,Fri (f)(xn) and copula C (where C satisfies (5.24)). Then for any u in

[0,1]"

C ( u x, u 2, . . , u 2) = F ( F ^ t)( u x) , . . , F ^ (t){u n)) (5.25)

where F ~ l{t) (•) denotes the quantile function of F  ^ ( f)  .'4
In this way, the copula is a joint distribution function of uniform variates U i , i = 1,2,..., n ,

each of which has a standard uniform distribution.

There are many choices of copulae available in the literature that would permit various 

dependence structures among the «-credit rating migrations. In our cash-flow CDO model, we will 

consider just the Normal copula. This copula fails to incorporate tail dependence and correlates the 

random variables near the mean and not in the tails. In spite of its limitations, we still prefer this 

copula as we believe it will make the comparison of the results obtained using the RT-Copula model
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13 In Embrechts, Lindskog and McNeil (2001) p. 4.14 See also chapter 3.
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and the Survival model easier. The Normal copula was introduced in chapter 3. In what follows, we 

only report its definition.

Definition 5.9: Let ® denote the standard univariate normal distribution and ® ( denote the 

standard multivariate normal distribution with correlation matrix £ .  Then the multivariate Normal 

copula o f the joint credit rating migrations is defined as follows

C2Af(M1,..,M j = ® "(® -1(MI),..,® -1(M,I)) (5.26)

where ® _1 is the inverse of the standard normal cumulative distribution function.

The vector (ul , u 2,..,un) is used with the function y/{-) to map the credit rating. When 

ui 6 [0,bK) , then Tjft )  = K  , the credit i defaults and the simulation stops. Otherwise, the rating 

of credit i at the end of the period \ t ,t  + 1] is y/(. ), and it is used to simulate the credit rating for 

the following period. To generate correlated uniform numbers (u1,u 2,..,un) we rely upon the 

Cholesky decomposition.

5.6 Estimation of transition intensities: rating agency model

and continuous-time model

The most common method for the estimation of a discrete-time transition matrix of actual 

probabilities is based upon empirical observations of the rating behaviour of groups of firms with the 

same initial rating. For example, for each period of interest, a cohort of existing firms is first defined 

and then tracked through the end of the period.13
We denote by Ch (t ) the total number of firms in class h at time t , and by Ch . (t , t + 1) the

total number of firms in class h at the end of the year, that migrated to the class j  by the end of the 

year. Then, the estimate of the one-year transition probability is

Ch ■ (t , t + 1)
P hJ(t, t  + 1) = hJ ----  with h * j  (5.27)

^ h V )

Assuming time-homogeneous Markov chain dynamics in the rating transitions, the transition 

event from the rating class h , can be seen as the outcome of Ch (t ) independent multinomial 15
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15 Coleman (2002) p. 2.
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trials.16 Hence, we can collect all the observations over different years and prepare the maximum 

likelihood estimator of p h . as17

P h j  =
X « c „(0 with h ri j (5.28)

This is the method that rating agencies use to prepare their one-year transition matrix,18 which 

we call the rating agency approach.19 Of course, rating agencies have access to continuous-time data 

of rating transitions (the exact time that rating transition occurs). However, to our knowledge, they 

do not publish or declare to use continuous-time data when estimating entries in their transition 

matrices.

The rating agency approach has three serious drawbacks.

(1) No model can be solely based on one-year step and more flexibility is required to price 

financial instruments with payoffs occurring at arbitrary points in time.

(2) Rare transitions, which are the migrations from high credit quality rating classes to classes of 

very poor credit quality, are not actually observed in the rating agencies data set, thus, they 

cannot provide meaningful estimate probabilities of those rare transition events (and thus, the 

problems that we will see in sections 5.7.2 and 5.7.3). For example, if the number of firms 

rated AAA at the beginning of a period and defaulted by the end of the same period is zero, 

the estimator in (5.27) would be 0. Furthermore, if there are transitions from AAA to a lower 

rating class and from this class there are defaults by the end of the same period, then the 

estimator of the default probability of AAA would still be 0. However, the continuous-time 

estimator would take this information into account and estimate a positive default probability.

(3) Any rating migration activity that occurs within the period is very unfortunately ignored.

Alternative to the cohort method are continuous-time estimation methods, which follow the 

firm over time as it moves from one rating to another. They are also known as hazard/intensity rate 

approaches, as they extract a hazard rate to model the random time between transitions. Lando and 

Skodeberg (2000) and Christensen, Hansen and Lando (2002) proposed a continuous-time method to

estimate, either the time-homogeneous generator matrix A1 , or the time-inhomogeneous generator 

matrix AP(i) . In order to work, their method, in addition to the cumulative rating transition data, 

also requires the exact point in time at which the rating transition takes place. Following Lando and 

Skodeberg (2000), the estimator under the assumption of time-homogeneous transition intensities is

16 Lando and Skodeberg (2000) and Truck and Ozturkmen (2003).17 Christensen, Hansen and Lando (2002) p. 9.18 An example of a one year credit transition matrix is the S&P matrix in section 5.9.19 This is also known as the cohort method. In the rest of the chapter, we will use cohort method and 
rating agency method as synonymous.
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2h , j  —
M j J t )

t (5.29)

where Yh (s ) is the number of firms in rating class h at time s and M h j(t)  is the total number of

transitions from h to j  , where h =£ j  , over the period t , where M h . (t) > Ch . (t) since M h j (t)

also includes the transitions of firms that entered class h over the period t . Now, the denominator 

counts the number of periods that a firm spends in the rating state and it is continuously updated as 

firms move in and out the rating state. Thus, for a horizon of one year, even if a firm rated AA, 

transits to the rating class A, before ending in the rating class BBB at the end of the year, the portion 

of year rated A, will contribute to estimate the probability p ^  A ,20 Having prepared the generator

Ap , then the transition matrix P  is computed with (5.14).

Where the time-inhomogeneus transition intensities are to be estimated, they proposed to use 

the Aalen-Johansen estimator21 (a non-parametric method which imposes fewer assumptions on the 

data generating process and accounts for all movements within the estimation horizon)

Ahj(t)  = I
{Th J (k)<t} Ah \ Ah , j

\____
(5.30)

where Th ■ (1) < Th .(2) < ... are the observed times of transitions from h to j , and Yh(Th ;.(k ))

counts the number of firms rated h , evaluated just before time t .

Having estimated the time-inhomogeneous intensities, the transition matrix is then computed 

as the following product limit
m _

P(t ,s )  = ] >  + A A p(T(k)))  (5.31)
*=i

where /  is the identity matrix, T(k)  is the time of the jump in the interval ]i,s ], m is the number 

of sub-periods in the same interval and

20 Jaffy and Schuermann (2004) p. 20.21 For details, see Aalen and Johansen (1978) and Lando and Skodeberg (2000).
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AM fT {k ) )  
Yx{T{k))

AM 2' fT ( k ) )

A A \T { k ) )  = Y2(T(k))

A M 12(J (£ ))

YfT(k))
AM 2(Th) 
Y2(T(k ))

AM XK{T{k)) )
Y fT(k))

AM 2K(T(k))
Y2(T(k )) (5.32)

AM KZ ( T ( k ) )  AM KZ ( m )
YKJ T ( k ) )  YKJ T ( k ) )

0 0 0

a a w t o )

YK. f T ( k ) )

The off-diagonal elements count the number of migrations to the rating class j  from class

divided by the number of firms at the beginning of the period, whereas, the diagonal elements count 

the total number of migration away from class h , again divided by the number of firms at the 

beginning of the period. The Aalen-Johansen estimator is essentially the cohort method applied to 

very short time intervals.

Lando and Skodeberg (2000) and Yafry and Schuermann (2004) provided examples to 

analyse the differences between time-homogeneous and time-inhomogeneous transition matrices 

estimated with the continuous-time method and with the rating agency approach. They concluded 

that the differences between the entries of time-homogeneous and time-inhomogeneous transition 

matrices are not dramatically different for larger data set. However, when comparing time- 

inhomogeneous transition matrices with rating agency transition matrices, they found much larger 

differences.

Lando and Skodeberg, and Christensen, Hansen and Lando,2' also summarised the key 

advantages of using the continuous-time method over the rating agency one, which we report below.

(1) It is possible to calculate non-zero estimates of the probabilities of rare transitions that the 

rating agency method estimates as zero.

(2) When estimating the generator of a time-continuous Markov chain, transition matrices for 

arbitrary time horizons can be obtained without incurring in the embedding problem.2"3
(3) It is possible to generate confidence intervals of all transition probabilities.

(4) The continuous-time method allows to model and test non-Markovian behaviours such as, 

rating drift (i.e. dependence on previous rating) and seasoning effects.

(5) The one-year transition matrix, estimated with the rating agency method, strongly depends on 

the starting point in time the rating transitions are observed, whereas, with the continuous-

time model, the results are no longer dependent on the starting period. 22 *

22 Christensen, Hansen and Lando (2002) also developed bootstrap methods to estimate confidence sets 
for transition probabilities.'3 Embedding is defined as determining whether the empirical transition matrix is compatible with a true 
generator, see also next section.
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(6) The dependence on covariates24 25 can be tested and business cycles effects quantified.23

5.7 Finding the generator matrix

Having decided not to estimate a credit transition matrix from a credit rating transition history data 

set, we are left with the rating agency transition matrices. Moving from a discrete-time transition 

model to a continuous time-inhomogeneous transition model, such as the one we are developing, has 

the main advantage of using transition and default probabilities at arbitrary points in time. However, 

since our starting matrix will be a rating agency public available transition matrix, there are some 

problems, which require particular care to be dealt with: embedding, identification, approximation 

and uniqueness of the generator of the rating agency transition matrix.

Singer and Spilerman (1976) defined the embedding as, determining if the empirical transition 

matrix is compatible with a true generator, otherwise said, whether the generator exists. They also 

defined the identification as, seeking the true generator once its existence has been established. 

Approximation addresses those situations where it has been established that the true generator does 

not exist, however, it is still possible to obtain an approximation. In essence, these concepts relate to 

how to choose the correct generator that is most compatible with the bond rating behaviour.26 There 

is also the problem of uniqueness, as an empirical transition matrix may as well have more than one 

valid generator.

Authors such as Arvanitis, Gregory and Laurent (1999), and Lando (1998a and 1998b) simply 

assumed the existence of a generator. The first authors who re-discovered in finance the conditions 

under which the generator does or does not exist were Israel, Rosenthal and Wei (2001). In the four 

sub-sections that follow, we will borrow from their original article.

5.7.1 Finding a candidate generator matrix: e m b e d d in g

Let P(0,1) be the one-period (K  x K ) transition matrix of a time-homogeneous Markov chain. 

From now on, we remove the time dependence.

We are interested in finding a generator A with the properties stated below.

(1) the matrix A is the matrix logarithm of P

P  = e K (5.33)

(2) the off-diagonal elements of A are non-negative

24 Covariates are explanatory variables which describe the duration in the current rating or whether the 
previous rating change was an upgrade or a downgrade.25 See for example, Nickell, Perraudin and Varotto (2000) and Kavvathas (2001).26 From Israel, Rosenthal and Wei (2001) p. 246.
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f h j >0  V h , j  e  S,  h * j (5.34)

(3) the diagonal elements of A satisfy

K . , = - X > v  v  J  e  s (5.35)
h *  j

Under the first property, we are looking for a generator A such that

D A ^  A" A2 A2 
P = e = >  —  = /  + A + —  + —  + .. 

^  n\ 2! 3!
(5.36)

In dealing with (5.36), the first task is to calculate V  with

V = max{(a — l)2 + b2\ a + bi is an eigenvalue of P , a, b £ 31} 

where all the (possible complex) eigenvalues of P  , of the form a + b i , are examined by computing 

the absolute square of the eigenvalues minus 1 and taking the maximum of these.

Theorem 5.2: 7 Let P  be a one-period (K  x K ) transition matrix, and suppose that the condition 

V <1 holds. Then the series

(5.37)

converges geometrically quickly and it is a (K  x K ) matrix, which satisfies the property one and 

the property three exactly2*

Theorem 5.3:29 The convergence o f the power series in (5.37) is guaranteed if  the original matrix 

P , is strictly diagonally dominated,30 i.e. p hh> 0.5 for all h £ S . Then V <1.

IRW noted that, even if some of the diagonal entries were less than 0.5, the series may as 

well converge and may as well have V <1. Thus, convergence does not seem to be a serious 

problem, since most empirical credit transition matrices are strictly diagonally dominated. IRW

pointed out that even if the series A does not converge, P  may still have a true generator. They 

provided with an algorithm to search for a valid generator when (5.37) fails to converge. Thus, we 

can refer to the condition of convergence, as a sufficient but not necessary one. We refer to their 

original article for more about their algorithm.

27 From Israel, Rosenthal and Wei (2001) p. 247.28 For a proof see Israel, Rosenthal and Wei (2001), Zahl (1955) and Singer and Spilerman (1976).29 From Israel, Rosenthal and Wei (2001) p. 247.30 For a proof see Horn and Johnson (1985) p. 302 and Israel, Rosenthal and Wei (2001) p. 247.
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There is a simpler calculation than the power series in (5.37), which can be used if the matrix 

P , or A , can be diagonalised, with all eigenvalues real and positive.

Proposition 5.1:31  *If  there exists a non-singular transformation matrix B and a diagonal matrix 

D p such that

P  = BDPB~X (5.38)

then, the matrix A , with P  — e K , can also be diagonalised with the same transformation matrix 

B , and it is given by

A* = BD a B~' (5.39)

where the diagonal matrices are

Dp = diag{Qyep(df),..,QXY>(dK_x),\} and D h = diag{dx,..,dK_xf)} (5.40)

The expressions in (5.38) and (5.40) are very useful to construct a transition matrix P 

applicable for any small time interval as follows

P (s — f) = BDp~r)B~l with s > t (5.41)

where the diagonal matrix is

D (r ] = d i a g { ( e x p ( d l ))(s~ ° ( e x p ( c /  K_x ))<s"') ,1} (5.42)

5.7.2 The non-negativity condition: a p p ro x im a tio n

Often, there remains unsatisfied the property two in (5.34), that is, it is possible that some off- 

diagonal elements of A are negative. In this case A converges, but it is not a generator matrix. 

Hence, the matrix P  is not a proper Markov transition matrix, because some of its entries will also 

be negative probabilities.

Where this happens, IRW proposed an algorithm to search for all possible generators for P  ,

when P  has distinct eigenvalues.3“ However, if any negative off-diagonal entries of A are quite 

small, they suggested to correct the problem by simply replacing these negative entries with 0, and 

adding the negative values, either back to the diagonal entries, or into all other entries (which have 

the correct sign) on the same row, proportionally to their absolute values. In this way, they replaced
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31 From Schonbucher (2003) p. 234.j2 Israel, Rosenthal and Wei (2001) p. 259. The authors claimed that all one-year rating transition 
matrices are very likely to have distinct eigenvalues. However, where this was not hue, they referred to 
Singer and Spilerman (1976) for guidance.
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A with A , which no longer exactly satisfies P  ^  eA = P  .33 A measure of the approximation is 

L' -  norm of P  — exp(A) ,34
JLT only addressed the issue of the approximation of the generator and obtained an 

approximated generator by assuming that the probability of a credit to make more than one rating 

transition during one year is negligible and thus, could be overlooked. JLT method leads to the 

following algorithm for approximating a generator

?ih,h = ln O M ); Xhj = p hJ lnQ?M )/CpM -1 )  (h *  j ) (5.43)

5.7.3 Other conditions for the non-existence of a valid generator

IRW reported three further conditions, which prevent the existence of a valid generator35
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Theorem 5.4: Let P  be a one-period (K  x K ) transition matrix, and suppose that

(1) det(P) < 0 , or (5.44)

(2) det(/>) > P h.h ’ or (5.45)

(3) there are states h and j  such that j  is accessible from h , but p h ■ = 0 . (5.46)

Then, there does not exist an exact generator for P .

It can be proven that if p h h > 0.5 for all h , then necessarily det(P) > 0 , so (5.44) never 

applies.36
The third condition, in (5.46) is constantly violated in the historical credit transition matrices. 

For example, the one-year default probability of a firm in the rating class of the best credit quality is 

usually zero, even though the default can be reached from lower credit quality classes if future 

downgrades are taken into account. In reality, the historical transition matrices are observations and 

not probabilities, and thus, even for very high credit quality classes the default probability cannot be 

zero, and we should not confuse their historical frequencies with their probabilities of default.

j3 Kreinin and Sidelnikova (2001) presented an alternative algorithm, called quasi-optimisation, which 
was then compared with the simple corrections advanced by IRW. They concluded it produces better 
approximation. They also referred to the approximation issue as Régularisation.34 /.'-norm only provides a relative comparison between two matrices. For more on formal techniques to 
compare matrices see Jafry and Schuermann (2004) pp. 4-18.35 They also referred to the paternity of the three parts of the theorem, respectively to 1) Kingman (1962); 
2) Goodman (1970); 3) Chung (1967).36 For a proof, see IRW p. 249.
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Kreinin and Sidelnikova (2001) examined 32 empirical transition matrices and found the first 

and second conditions, (5.44) and (5.45), were never satisfied, while the third condition, in (5.46), 

was satisfied in the majority of the cases. They concluded that in the majority of the cases, a valid 

generator does not exist.

5.7.4 U n iq u e n e ss  of generator

It is possible that a transition matrix P  has multiple valid generators A . This statement is very 

important, since different generators lead to different values of P (0, t) = exp(iA ), and potentially, 

to arbitrage when pricing default-risky securities.

Cuthbert (1972 and 1973) proved the uniqueness of generators for P , with the following 

theorem.

Theorem 5.5: Let P  be a one-period (K  x K ) transition matrix.

(1) I f  det(P) > 0.5, then P  has at most one generator. (5-47)

(2) I f  det(P) > 0.5 and ||P — /  < 0.5, then the only possible generator for P  is

ln (P ). (5.48)

(3) I f  P has distinct eigenvalues and det(P) > eK, then the only possible generator for P  is

ln (P ). (5.49)

In addition, Singer and Spilerman (1976) observed the following.37

Theorem 5.6: Let P  be a one-period (K  x K ) transition matrix.

(1) I f  all eigenvalues o f P  are positive, then is the only real matrix A , such that P  = exp(A ).

(5.50)

(2) I f  P  has any negative eigenvalues, then there is no real matrix A , such that P  — exp(A ).

(5.51)

IRW combined the results of theorems 5.5 and 5.6, and expressed the conditions for excluding 

multiple valid generators for the transition matrix P  as follows.
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Singer and Spilerman (1976) pp. 29-30.
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Corollary 5.2: Let P  be a one-period (K  x K ) transition matrix such that one of the following 

condition holds:

(1) det(.P) > 0.5 and ||P — /|| < 0.5 , or (5.52)

(2) P has distinct eigenvalues and det(P ) > en , or (5.53)

(3) P has distinct real eigenvalues. (5.54)

If an empirical transition matrix P  has indeed multiple valid generators A , then there is no 

well defined concept to point to that generator that represents the empirical transition matrix P  the 

best. Again, IRW observed that, based on observing many empirical transition matrices, it is 

generally unlikely for a rating to migrate to a remote rating in a short period of time. Based on this 

empirical observation, they proposed to choose, amongst many valid generators, the one with the 

smallest value of

J  = Y u \ j ~ h\K j \  (5-55)
hj

This ensures that the probability of jumping too far in a very short period of time is minimised.

5.8 Methods to modify and calibrate the transition matrix

The last issue we want to review before moving to the empirical analysis, is how to adjust, modify or 

change the empirical transition matrix due to economic reasons or if we need to calibrate the 

empirical transition matrix to market price of default-risky bonds or CDS premiums.

Time-homogeneous transition matrices are not realistic. The changes in the economic cycle, 

due in first place to recession and expansion are well documented and must be incorporated into the 

transition matrices.38 A second issue was described in JLT and concerns how to match the transition 

matrices with the default probabilities implied in the bond prices. A third issue is specifically related 

to our main objective in this chapter, which is to compare the RT model with the Survival model for 

rating purposes. The Survival model, as input to simulate the time of default, uses the S&P’s 

cumulative default rates. Hence, we need to calibrate the transition matrix to the cumulative default 

rates so to make the two models comparable. The effect of calibrating the transition matrices is to 

move to a time-inhomogeneous framework.

To deal with this issue we describe three numerical methods, all originally proposed by JLT 

and Lando (1998a), which can be applied to modify time-homogeneous transition matrices.
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See Jongwoo (1999).
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We assume as given a set of default probabilities for all rating class h and maturity t

Gh(t) = P ( t < T „ ) , h  = {1,2,..,K  -1} and t = {1,2,..,T} (5.56)

The aim is to create a family of time-inhomogeneous transition matrices (P(0, t)) t>l so that the

default probabilities in (5.56) for each maturity, match the entries in the last column of P(0,t)  . We

repeat that the last column of P (0, t ) is the default column, and it is indicated as P(0, t )h K .

We also assume a given one-year transition matrix P  and a generator matrix A , with 

P  = exp(A) , and proceed as follows

(1) Let P(0,0) = / ,

(2) Given P (0, t ) , choose P(0, t +1) , such that

P(0, t) P(t, t + 1) = P (0, t + 1) , where P{0, t + 1)A K = G{t + 1)^, for h = 1,2,.; K -  1
(3) Go to step 2.

In each time step, the generator A is modified such that

P(0,l) = exp(A(0)) (5.57)

P(l,2) = exp(A(l)) (5.58)

h  2 3 )  = exp(A(2)) (5.59)

satisfying the following

P (0,1) P (1,2) = P (0,2) (5.60)

P(0,1)P(1,2)P(2,3) = P(0,3) (5.61)

where A(0) is a modification of A , which depends on the factors I I , = (nx x,l t2 lv .,,nKf ) ,  and

A(l) is a modification of A , depending on the factors f l ,  = (nx , ,7T2 2,..,n K , ) .  Both IT, and

n2 are chosen, satisfying the following conditions

> (0,l)4l* = G 4(l) (5.62)

P(0,2)KK= G h{2) (5.63)
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JLT and Lando (1998a) proposed three different numerical methods, which differentiate on 

how the step 2 is performed.

(1) Modifying the default intensities (Lando (1998a)),

(2) Modifying the rows of the generator matrix (JLT) and

(3) Modifying the eigenvalues of the transition matrix P  (Lando (1998a)).

5.8.1 Modifying the default intensities

With this method, the default column and the diagonal elements of the generator are simultaneously 

modified by letting

2,1,X ~ 7L \ , \ \ , K and M,\ II > 1 1■1) V

2,2 ,K = ^2,1^2,K and 2,2,2 2-2,2 ( ^2,1-1 ) K k (5.64)

such that, with the new transition matrix P (0,1)

~P{ 0,1) = exp(A(0)) = j r  (5.65)
t S  n\

the condition in (5.62) is met, for h —1,2,.., K  — 1. In this way, it is guaranteed that the new 

generator is indeed a generator with rows summing to 0 . At each time step t , for t = {1,2,.., T} , 

the elements in (5.64), {nx 7TK_X t , n K t) , are simultaneously found for the new time step.

With this method, the changes in the generator only take place in the last column (the default 

probabilities) and in the diagonal elements, and most of the probability mass is shifted from the 

default probabilities to the diagonal elements.

5.8.2 Modifying the rows of the generator matrix

The idea is to include in the numerical solution of the previous sub-section, all the columns of the 

generator matrix. The advantage is that the numerical solution again guarantees that the adjusted

generator matrix is indeed a generator. With this method we let A(i) as
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A (0  =

^1,1^1,2 n \ A x

^ 2 ,1 ^ 2 ^ 2 , t ^ 2 ,K

^  K - \ A k -  1,2 ^  k - \ A k - \ , k

{  0 0 0 0

(5.66)

We apply numerical solutions and solve for the transition matrix P (0 ,1 ) , subject to the conditions in 

(5.62) and (5.65), for h = 1,2,.., K  — 1 . The numerical procedures are carried out for all time steps, 

with t = {1,2,..,7} . Unlike the previous method, in this case the probability mass is shifted from the 

default columns to all other columns.

5.8.3 Modifying the eigenvalues of the transition matrix P

The last method is a case studied in Lando (1998a), where the adjustments are carried out by 

modifying the eigenvalues of the transition probability matrix P  . The assumption is that P  and A 

are diagonalisable.

We let B be a matrix of the eigenvectors of P  and A , and let D p be a diagonal matrix of

the eigenvalues of P  . Then, the generator is numerically changed by modifying the eigenvalues as 

follows

P(0,1) = BU(0)DpB~l (5.67)

where B and D p are as defined in (5.38), E1(0) is a diagonal matrix with elements 

(7Tl i ,7r21,..,7rK_l l ,0) such that, for h = 1,2,..,K  - 1 ,  the conditions in (5.62) and in (5.65) are 

met.

To see better this method, we let bi'K denote the (j , K ) th entry of B l , and check that 

bhKbKlK = 1. Then, we define . = bh -b^K and write the probability of survival until the end of 

period 1 as

1 -  Gh (!) = 2  Pkj exPi d j (!)) (5-68)
M

for h = { l , 2 , . . ,K - l }  and where d h(V) -  d hn h x. Since (3h ■ is known for all h and y , this 

system of equations determines d h (1) , and finally 7Th , from the fact that n hx = d h (1) / d h for all 

h .
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For the second period [1,2], we start with extracting the survival probabilities between period 

1 and 2, (1 -  p (\,2 )h) , for h = {1,2,..,K  — 1} , as

1 -  Gh(2) = f > ( 0 , l ) AJ(l -  p( l ,2) j)  (5.69)
7=1

where P (0 ,l)/l . is the time-inhomogeneous transition matrix for the period [0,1] calibrated with 

(5.67) and (5.68).

Following this, we proceed as already illustrated for the previous period and use (5.68), where 

Gh (1) is replaced with p (l,2 )h

K-1
1 -  p (  1,2)h = £ P h, j  e x P (d j ( 2 ) )  (5-7°)

7=1

This system of equation determines d h (2) and Kh 2 as 7lh 2 = d h (2) / d h for all h . The

procedure is then repeated until the last period t = T  . At each time step, it must be checked that the 

generator is indeed a generator.

5.9 S&P’s one-year time-homogeneous transition matrix: the

s ta r t in g  m a tr ix
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Having explained the RT-Copula model and the problems we have to solve when using a rating 

agency transition matrix, we now move to analysing the rating agency transition matrix that will be 

used in the numerical exercise. Table 5.1 shows the historical average one-year rating transition 

frequencies of S&P 1981-2003. The eight columns represent the credit ratings 

S  = {AAA, AA, A ,BBB,BB,B,CCC,Default} . The last column WR indicates the withdrawn 

rating category, which includes the cases where S&P has withdrawn all of an issuer’s rating. Each 

row indicates the rating group at the beginning of a one-period.

The upper left-hand comer indicates, for example, that on average over the period 1981-2003, 

88.31% of AAA’s have remained in the same rating class over one-year period. Apparently, no 

issuer rated AAA, has ever defaulted over one-year period, 5.83% of AAA’s have been downgraded 

to AA, and 0.01% of AA’s have defaulted. However, we cannot read the percentage of AAA’s that 

once downgraded to AA has defaulted.

Moving down the credit spectrum by three notches, at BBB, on average over the period 1981- 

2003, 84.17% of BBB’s have remained in the same rating class over one-year period, 4.59% have 

been downgraded to BB, 0.32% have defaulted, and 0.04% have been upgraded to AAA.
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The likelihood of a rating withdrawal generally increases as the credit quality decreases. 

Typically, with the cohort method, firms withdrawn either are removed from the sample, or are 

given their own rating category. However, with a continuous-time method, the firms withdrawn 

would contribute to estimate the intensities for the portion of time, which they spent in the rating 

class i .

The largest values are along the main diagonal, which indicate that the most recurring event is 

the one of remaining in the same rating at the end of one-year period.
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To Rating

From Rating AAA AA A BBB BB B CCC D \NR

AAA 88.310% 5.830% 0.700% 0.080% 0.080% 0.000% 0.000% 0.000% 5.000%

AA 0.590% 87.270% 7.220% 0.640% 0.070% 0.130% 0.030% 0.010% 4.040%

A 0.070% 2.030% 87.390% 5.390% 0.500% 0.180% 0.040% 0.060% 4.340%

BBB 0.040% 0.210% 4.250% 84.170% 4.590% 0.810% 0.170% 0.320% 5.440%

BB 0.040% 0.090% 0.420% 5.460% 75.830% 7.980% 0.820% 1.310% 8.030%

B 0.000% 0.080% 0.240% 0.310% 4.830% 74.420% 4.390% 5.900% 9.840%

ccc 0.100% 0.000% 0.310% 0.620% 1.550% 8.670% 47.470% 29.410% 11.870%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 1.000% 0.000%

Table 5.1: S&P’s Historical Average One-Year Rating Transition Matrix - 1981-2003.39

Before using this transition matrix, we want to remove the WR category. Our assumption is 

that this category is not informative for the rating process.39 40 This is done by proportionally 

distributing the WR weights to the other frequencies in the same row. We obtain the one-year rating 

transition matrix as shown in Table 5.2.

P  =

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 92.958% 6.137% 0.737% 0.084% 0.084% 0.000% 0.000% 0.000%

A A 0.615% 90.944% 7.524% 0.667% 0.073% 0.135% 0.031% 0.010%

A 0.073% 2.122% 91.355% 5.635% 0.523% 0.188% 0.042% 0.063%

BBB 0.042% 0.222% 4.495% 89.012% 4.854% 0.857% 0.180% 0.338%

BB 0.044% 0.098% 0.457% 5.938% 82.469% 8.679% 0.892% 1.425%

B 0.000% 0.089% 0.266% 0.344% 5.357% 82.533% 4.869% 6.543%

CCC 0.057% 0.057% 0.352% 0.704% 1.759% 9.838% 53.864% 33.371%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.2: S&P’s Historical Average One-Year Rating Transition Freq. 1981-2003 - without WR.

39 From S&P’s, Special Report “Corporate Defaults in 2003 Recede form Recent Highs”, February 2004, 
Table 19 -  Region: US, p. 39, URL: http://www.standardandpoors.com.40 The same assumption was used in Christensen, Hansen and Lando (2002).

165

http://www.standardandpoors.com


C h a pt er 5: Str u ct uri n g a n d r ati n g c as h-fl o w C D Os wit h r ati n g tr a nsiti o n m atri c es

5. 1 0  Fi n di n g t h e g e n e r at o r of t h e S & P’s t r a nsiti o n m at ri x: t h e

a d j u s t e d  m a t r i x

B y t h e c o n diti o n i n ( 5. 4 6), t h e tr a nsiti o n m atri x P  d o es n ot h a v e a v ali d g e n er at or. F or e x a m pl e, 

P a a a ,b  =  0 % > b ut P a a a  a a  = 6. 1 3 7 % a n d p AA B = 0. 1 3 5 % . T his m e a ns t h at t h e r ati n g cl ass

h = A A A, j  = B  wit h P( y = B\ h = A A A ) =  0, c a n b e r e a c h e d vi a  first tr a nsiti n g t o t h e r ati n g

cl ass h = A A A ,j = A A  wit h P( y" = A A\ h = A A A ) =  6. 1 3 7 % , a n d t h e n mi gr ati n g t o

h = A A ,j = B  wit h P( y = B\ h = A A ) =  0. 1 3 5 %.

T h e c o n v er g e n c e of t h e s eri es A is g u ar a nt e e d b y t h e f a ct t h at t h e m atri x i n T a bl e 5. 2 is

di a g o n all y d o mi n at e d. R et ai ni n g fi v e di gits, w e o bt ai n A wit h ( 5. 3 7), w hi c h w e s h o w i n T a bl e 5. 3. 

F urt h er m or e, t h e c o n diti o n i n ( 5. 3 5) is n ot vi ol at e d.

A * =

T o R ati n g

F r o m  R ati n g A A A A A A B B B B B B C C C D

A A A - 0. 0 7 3 2 6 0. 0 6 6 7 4 0. 0 0 5 2 2 0. 0 0 0 4 6 0. 0 0 0 8 8 - 0. 0 0 0 1 2 - 0. 0 0 0 0 2 0. 0 0 0 1 0

A A 0. 0 0 6 6 6 - 0. 0 9 6 1 5 0. 0 8 2 4 9 0. 0 0 4 8 1 0. 0 0 0 4 0 0. 0 0 1 3 9 0. 0 0 0 3 5 0. 0 0 0 0 4

A 0. 0 0 0 7 0 0. 0 2 3 2 2 - 0 . 0 9 2 9 8 0. 0 6 2 3 7 0. 0 0 4 1 8 0. 0 0 1 6 3 0. 0 0 0 4 1 0. 0 0 0 4 7

B B B 0. 0 0 0 4 2 0. 0 0 1 8 4 0. 0 4 9 7 3 - 0. 1 1 9 9 2 0. 0 5 6 4 2 0. 0 0 6 9 3 0. 0 0 1 9 3 0. 0 0 2 6 5

B B 0. 0 0 0 4 7 0. 0 0 0 9 6 0. 0 0 3 3 3 0. 0 6 9 1 9 - 0. 1 9 8 2 9 0. 1 0 4 6 9 0. 0 0 9 1 6 0. 0 1 0 4 9

B - 0. 0 0 0 0 5 0. 0 0 0 9 2 0. 0 0 2 7 0 0. 0 0 1 4 6 0. 0 6 4 4 4 - 0. 2 0 0 0 0 0. 0 7 2 4 3 0. 0 5 8 1 0

C C C 0. 0 0 0 7 9 0. 0 0 0 6 5 0. 0 0 4 4 3 0. 0 0 8 8 7 0. 0 2 0 8 8 0. 1 4 5 7 7 - 0. 6 2 4 9 9 0. 4 4 3 5 8

D 0. 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0 . 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0 0. 0 0 0 0 0

T a b l e 5. 3: t h e g e n er at or A .

B y l o o ki n g at T a bl e 5. 3, t h e c o n diti o n ( 5. 3 4) is vi ol at e d: t h er e ar e t hr e e n o n n e g ati v e off- 

di a g o n al e ntri es, a n d w e c o n cl u d e t h at P  d o es n ot h a v e a tr u e g e n er at or. As a c o ns e q u e n c e o f t his,

w e h a v e t o fi n d a n a p pr o xi m ati o n o f A , s u c h t h at e x p ( A ) is cl os e t o P  . T o d o s o, w e a p pl y t h e

first s ol uti o n a d v a n c e d b y I R W als o e x pl ai n e d i n s e cti o n 5. 7. 2, a n d r e pl a c e A* wit h A (i n T a bl e

5. 4). R et ai ni n g fi v e di gits, A h as o nl y o n e n o n n e g ati v e off- di a g o n al e ntr y a n d still all r o ws s u m u p 

t o 0. W e d e ci d e t o n e gl e ct t h e o nl y n o n n e g ati v e off- di a g o n al e ntr y, si n c e v er y s m all. H o w e v er, wit h

A w e c a n o nl y c o m p ut e a n a p pr o xi m ati o n o f P  , si n c e P ^  P  (i n T a bl e 5. 5), a n d t h us, w e n e e d t o

c al c ul at e t h e 1}  — n o r m o f P  — e x p ( A ) , t o m e a s u r e t h e a p p r o xi m ati o n i n d u c e d wit h t hi s m et h o d,

n o r m [ P -  e x p( A)] = 0. 0 0 1 6 1.

1 6 6
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A =
To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.07333 0.06672 0.00525 0.00040 0.00084 -0.00002 0.00000 0.00015

A A 0.00666 -0.09615 0.08250 0.00484 0.00039 0.00136 0.00034 0.00005

A 0.00070 0.02322 -0.09298 0.06237 0.00419 0.00165 0.00041 0.00043

BBB 0.00042 0.00185 0.04972 -0.11991 0.05640 0.00692 0.00192 0.00267

BB 0.00043 0.00094 0.00333 0.06921 -0.19827 0.10469 0.00916 0.01046

B 0.00000 0.00093 0.00272 0.00145 0.06441 -0.20003 0.07243 0.05809

CCC 0.00080 0.00067 0.00446 0.00385 0.02084 0.14574 -0.62504 0.44367

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Table 5.4: the approximated generator A .

P  =
To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 92.950% 6.138% 0.737% 0.074% 0.078% 0.007% 0.001% 0.016%

A A 0.615% 90.941% 7.526% 0.670% 0.070% 0.130% 0.030% 0.019%

A 0.073% 2.122% 91.351% 5.634% 0.523% 0.190% 0.041% 0.066%

BBB 0.042% 0.223% 4.494% 89.011% 4.853% 0.856% 0.178% 0.343%

BB 0.044% 0.098% 0.457% 5.933% 82.468% 8.677% 0.890% 1.428%

B 0.004% 0.088% 0.267% 0.345% 5.355% 82.530% 4.867% 6.545%

CCC 0.058% 0.060% 0.354% 0.698% 1.752% 9.832% 53.861% 33.383%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.5: the approximated one-year transition matrix P  .

Alternatively, with the JLT’s algorithm in (5.43), we compute the following generator A j l t  , 

which has the conditions in (5.34) and (5.35) satisfied.

A J L T  =

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.07064 0.06162 0.00718 0.00080 0.00083 0.00008 0.00001 0.00011

A A 0.00617 -0.09080 0.07560 0.00649 0.00071 0.00135 0.00031 0.00018

A 0.00073 0.02132 -0.08680 0.05667 0.00509 0.00188 0.00041 0.00070

BBB 0.00042 0.00218 0.04521 -0.11047 0.04912 0.00831 0.00181 0.00341

BB 0.00044 0.00099 0.00443 0.06011 -0.17699 0.08827 0.00877 0.01399

B 0.00003 0.00088 0.00266 0.00318 0.05446 -0.17694 0.05199 0.06374

CCC 0.00060 0.00060 0.00364 0.00725 0.01780 0.10494 -0.48281 0.34797

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
Table 5.6: the approximated generator A j l t  .

We now compute

exp(Ajir)1 — P  J L T
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 92.936% 6.162% 0.718% 0.080% 0.083% 0.008% 0.001% 0.011%

A A 0.617% 90.920% 7.560% 0.649% 0.071% 0.135% 0.031% 0.018%

A 0.073% 2.132% 91.320% 5.667% 0.509% 0.188% 0.041% 0.070%

BBB 0.042% 0.218% 4.521% 88.953% 4.912% 0.831% 0.181% 0.341%

BB 0.044% 0.099% 0.443% 6.011% 82.301% 8.827% 0.877% 1.399%

B 0.003% 0.088% 0.266% 0.318% 5.446% 82.306% 5.199% 6.374%

CCC 0.060% 0.060% 0.364% 0.725% 1.780% 10.494% 51.719% 34.797%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.7: the approximated one-year transition matrix P j l t  =  e x p ( A j i 7 - )  .

Again, with A j l t  we can only compute an approximation of P .  To measure the 

approximation induced with this method and compare it with the previous one, we calculate the

1} — norm of P — exp(A j l t  )  ,

norm[P -  exp(A/zr)] = 0.06037 ,

and we conclude that the approximation in Table 5.5 is a better result.

5.11 Calibrating the generator and the time-inhomogeneous

transition matrix

The aim of this section is to calibrate the approximated one-year transition matrix P  to the S&P 

cumulative default rates,41 reported in Table 5.8. S&P reports the default rates for years only. To 

extract the quarterly cumulative default rates, we assume that the default time is exponential 

distributed between times, and the intensity rates are constant through the quarters.

Gh{t) =

q u a rte r 1 q u a rte r 2 q u a rte r 3 q u a rte r 4 q u a rte r 5 q u a rte r 6 q u a rte r 7 q u a rte r 8 q u a rte r 9 q u a rte r 1 0 q u a r t e r n q u a rte r 12 q u a rte r 13 q u a r t e r n q u a rte r 15 q u a rte r 16

A A A 0 .006% 0 .0 1 1 % 0 .017% 0 .0 2 3 % 0 .033% 0 .0 4 3 % 0 .0 5 2 % 0 .0 6 2 % 0 .0 7 7 % 0 .0 9 1 % 0 .1 0 5 % 0 .1 1 5 % 0 .1 3 7 % 0 .156% 0 .1 7 4 % 0 .1 5 3 %

A A 0 .028% 0 .0 5 6 % 0 .0 8 4 % 0 .1 1 1 % 0 .144% 0 .1 7 7 % 0 2 1 0 % 0 .2 4 2 % 0 .2 8 0 % 0 .3 1 8 % 0 .3 5 6 % 0 .3 5 4 % 0 .4 3 7 % 0 .480% 0 .5 2 2 % 0 .5 6 5 %

A 0 .034% 0 .068% 0 .102% 0 .1 3 6 % 0 .182% 0 2 2 7 % 0 2 7 2 % 0 .3 1 7 % 0 .3 7 3 % 0 .4 2 9 % 0 .4 8 5 % 0 .5 4 2 % 0 .6 0 8 % 0.675% 0 .7 4 1 % 0 .6 0 6 %

BBB 0 .056% 0 .112% 0 .169% 0 2 2 5 % 0 .328% 0 .4 3 2 % 0 .535% 0 .6 3 6 % 0 .7 7 4 % 0 .9 1 1 % 1 .0 4 7 % 1 .1 6 2 *. 1 .3 4 1 % 1 .499% 1 .657% 1 .6 1 4 %

BB 0 .700% 1 .396% 2 .086% 2 .7 7 2 % 3 .4 0 1 % 4 .026% 4 .647% 5.2 6 5 % 5 .828% 6 .3 8 8 % 6 .9 4 5 % 7 .4 5 6 % 8 .0 0 0 % 8.499% 8 .995% 5 .4 6 5 %

B 2 .2 2 1 % 4 .393% 6 .517% 8 .5 5 4 % 1 0 .111% 1 1 .603% 1 3 .071% 1 4 5 1 4 % 1 5 .5 5 3 % 1 6 .5 7 9 % 1 7 .5 9 3 % 1 6 .5 5 4 % 1 9 .3 1 6 % 2 0 .033% 2 0 .7 4 2 % 2 1 .4 4 6 %

CCC 5 .3 7 4 % 1 0 .459% 1 5 2 7 0 % 1 5 .6 2 4 % 2 2 .547% 2 5 .179% 2 7 .721% 30.1 7 6 % 3 1 .634% 3 3 .062% 3 4 .460% 3 5 .6 2 5 % 3 6 .6 5 9 % 3 7 .478% 3 8 .287% 3 5 .0 8 6 %

Table 5.8: S&P’s default rates, in bold original data, otherwise extracted by the author.

41 The S&P’s cumulative default rates are from the CDO Evaluator, version 2.2.
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In section 5.8, we reported three methods to achieve the calibration task. Here, we will use 

them to test which gives the best results. The generator that we aim to calibrate is the one in Table 

5.4, where the entry 2, 6 is corrected to zero.

5.11.1 Calibrating by modifying the default intensities (DI)

This method failed to produce the quarterly transition matrices with the required properties. The

generators A d i (0), of the first quarter, and A di  (1) of the second, are in Tables 5.9 and 5.10 (in the 

Appendix 5). They are valid generators since both the conditions (5.34) and (5.35) are satisfied.

Pz>/(0,1) (Table 5.11 in the Appendix) also has the default column matched with the entries in the

first quarter of Table 5.8, and P d i( 1,2) (in Table 5.12 in the Appendix 5), has no negative entry.

Unfortunately, with P di (0,2) = P di (0,1) P di (1,2 ), we failed to match the default column

P d i(0,2)k  with all entries in the second quarter of Table 5.8. We proceeded with calculating

A di (2) of the third quarter. Again, this is valid generator, but one more time, with P di (0,3) , we 

failed to match its default column with all entries in the third quarter of Table 5.8.

5.11.2 Calibrating by modifying the rows (R)

With this method, we did not encounter any problem. All generators we computed, A x(t) ,  with 

t e {1,2,..,16), are all valid generators with the conditions (5.34) and (5.35) satisfied. At each 

quarterly step, we were also able to built the time-inhomogeneous quarterly transition matrices

P r  (t, t + 1), and in no circumstances, there are negative entries. Besides, all calibrated matrices

P r (0, t ) , with t e  {1,2,..,16) , also have their default column matched with the entries of Table 

5.8.

Tables 5.13 to 5.44 (in the Appendix 6) show the generators and the time-inhomogeneous 

quarterly transition matrices.
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5.11.3 Calibration by modifying the eigenvalues (E)

The generators A,e (0) and A f( l )  are in Tables 5.45 and 5.46 (in the Appendix 7). Unfortunately, 

only the first generator satisfies both conditions (5.34) and (5.35), whereas, the second fails

condition (5.34). When we checked the condition (5.34) for the remaining 14 generators A£(i) ,  

with t  = {3,..,16} , 13 off-diagonal entries have negative values: they are concentrated in the first

seven quarters and are very small, the largest value is — 0.00024 .

Tables 5.47 and 5.48 (in the Appendix) show the calibrated transition matrices for the first

two quarters, P£ (0,1) and P e (1,2) : two entries in /J(l,2) are negative, 0.008% and 0.005% . 

We also calculated the matrices covering the periods up to the end of quarter 16, unfortunately, some 

of them contain negative entries.

Based on these numerical results on the data available, there is evidence that only method two 

is capable of calibrating the generator of Table 5.4 to the cumulative default rates of Table 5.8. 

Therefore, we will only use the time-inhomogeneous transition matrices computed with method two 

in the rest of this chapter.

5.12 Benchmark models: Survival and Merton models

The alternative models to the RT-Copula, are Li’s Survival model and Merton model.

5.12.1 Survival model

Chapter 5: Structuring and rating cash-flow CDOs with rating transition matrices

We let G i h (t ) be the default function of credit i in the rating class h , as published by S&P’s and

shown in Table 5.8. We can calibrate the Li’s Survival model on a vector of correlated standard 

normal random variables (X \ , X 2 X n), where the Normal copula of the default times is written 

as

c " ( u x, u 2, . . , u n) = P(g 1;A(7) < O - 'iX ,) ,. .,  G n;h( T ) < ® - l ( X j )  (5.71)

The Li’s Survival model is used with the following simulation algorithm.

(1) Collect the default function of all n credits.

(2) Draw a correlated standard normal variable and set the default time as
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(3) If Tt > Gi h ( T ) , the credit i, in the rating class h, does not default before the time T . 

Otherwise, we locate the default time in the kth period with Gi h (k - 1) < zi < Gih (k ) .

The correlated X t numbers are drawn with Cholesky factorisation.

5.12.2 Merton model

The Merton approach assumes that the firm value is a stochastic quantity that triggers the default 

when the firm’s asset value A(t) , hits a certain threshold value at , with 0 < a0 < A0 ,42

To simulate the time when the i,h firm’s asset value hits the threshold value and the firm 

defaults, we proceed with the following numerical algorithm:

(1) Collect the cumulative default probabilities (of Table 5.8) as done for the Survival model.

(2) In the first period, we set the threshold values with a n =Q> 1 (Gi h (1)) .

(3) For the subsequent periods, we set the threshold values, a i k, equal to the conditional default 

probability of the kth period, i.e.,

a ik = O
G,h( k ) - G , h( k - 1)

1- G W( * - 1)
(4) In each k  period, we draw correlated standard normal random variables X ik by Cholesky 

decomposition and compared them to the threshold values of the same period a i k, and when

X i k < a ik , the firm defaults.

5.13 The financial product: the cash-flow CDOs

Before moving to the numerical exercise, we will describe the waterfall mechanics of a typical cash-

flow CDO. The loss distribution and the pricing were discussed in chapter 4. Here, we remind that, 

since the transition matrices used in our model are calibrated to historical default probabilities, our 

model will not produce risk-neutral prices.

The expressions in (4.9) and (4.10) say all we need to do to calculate the default and the 

premium payment legs of any given note, is to compute the first moment of the distribution of losses 

of the given note, for example via Monte Carlo simulations. This can be calculated with simulating 

the default times via the chosen copula function. However, this is not fully correct, because to price

42 For more on the Merton model applied to CDO see Arvanitis and Gregory (2001).
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the CDO notes, we need to take into account the interest and principal waterfalls and finally, how the 

defaults and the recoveries are allocated to the notes.

There are many ways CDO waterfalls work in practise, and they primarily differentiate on the 

basis of synthetic and cash-flow CDOs. In synthetic CDOs, the losses hit straight the notes, whereas 

in cash-flow CDOs there are several waterfall diversion elements, such as the use of the excess 

spread to cover the losses before flowing back to the originator, which reduces the impact of losses 

to the CDO note holders.

In this section, we prepare the interest and principal waterfalls of a cash-flow CDO, which we 

intend to use to compare the Survival model with the RT-copula model.

At the interest period t ,  the collateral portfolio pays U(t),  which is used in the interest 

waterfall as follows.

(1) pari-passu to the Trustee and Administrative Fees, and to the Senior Management Fees, which 

we assume to be equal to zero,

(2) Senior Note interests, I SN(t)

f w (t) = m in[U (t)JSN(t)]

(3) Mezzanine Note interests, I MN(t)

Imn (?) = niin[/7(i) — ISN (t), IMN (f)]

(4) Junior Note interests, I JN (t)

I j N  (0 = min[^ (0 -  J SN (0 -  1 MN (0, I j n  (0]
(5) and the remaining to the Equity (which is not a contractual interest).

In the same fashion, with the principal waterfall, we describe how the cash received from the 

amortisation of the collateral portfolio CP(t) , is used to pay down the CDO notes at the interest 

period t .

(1) Senior Note

PRSN(t) = min[CP(0,*W(0]

(2) Mezzanine Note

PRMN(t) = mm[CP(t) -  PRSN(t) ,M N (f)]

(3) Junior Note

PRj n (t) = m in [CP{t) -  PRsn (t) -  PRMN (t), JN(t)]

(4) Equity piece

PREq (t) = CP{t) -  PRsn (0 -  PRmn {t) -  PRj n (t) .
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Typically, in a cash-flow CDO, the interest and principal waterfalls are often linked to quality 

tests, which operate on the collateral portfolio, such as the following tests.

(1) Collateral Test A: when the weighted proportion of the collateral portfolio rated below BB, 

where the weights are the credit current balances, is equal to or lower 20%, the Equity holders 

will not receive any excess spread from point 5 of the interest waterfall until all notes are fully 

redeemed. The excess spread will be used to accelerate the amortisation of the Senior note, 

then of the Mezzanine note, and at last, of the Junior note.

(2) Collateral Test B: when the weighted proportion of the collateral portfolio rated below BBB is 

equal to or lower 30%, the Junior notes will not receive any interest from point 4 of the 

interest waterfall until the Senior and Mezzanine notes are fully redeemed. In this way, the 

interest of the Junior note will be used to accelerate the amortisation of the Senior note and 

then of the Mezzanine note.

Clearly, in a cash-flow CDO, if we do not model the rating migration, we would not be able to 

measure the effect of breaching quality tests on the CDO equity investor return.

5.14 Numerical exercise

In section 5.11, we managed to create a set of time-inhomogeneous transition matrices, calibrated on 

the S&P’s cumulative default rates of Table 5.8. These default rates are the cumulative default rates 

that S&P uses for rating cash-flow CDOs. Therefore, the effect of calibrating the transition matrix on 

the S&P’s cumulative default rates is to preparing a set of transition matrices, which we can use to 

calculate the rating of the CDO notes.

In section 5.4, we set up a Monte Carlo model where the rating migration process of a single 

credit is simulated through time-inhomogeneous transition matrices. In section 5.5 we also extended 

the single-name process to a multi-name one, where n -credit migration processes are joint together 

with the Normal copula. The waterfall mechanics were also illustrated in section 5.13. The RT- 

Copula model is now ready to price and to calculate the rating of a real-life cash-flow CDO.

The underlying collateral consists of fifty floating-rate credits for a total of £lbn, and it shown 

in Table 5.49 (in the Appendix 8). For each credit, the Table shows the maturity, the current balance, 

the spread over the Libor rate, the S&P rating, the industry classification and the geographic 

location. The collateral is used to issue three notes. 1 2 3

(1) Senior note of £.840m, which pays libor plus the premium ySN,

(2) Mezzanine note of £.40m, which pays libor plus the premium yMN ,

(3) Junior note of £.60m, which pays libor plus the premium yJN .
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(4) Then, the Equity piece is 60m.

To calculate the premiums y SN, yMN and y JN that put into equivalence the default leg with

the premium payment leg for each of the three notes, we use the RT-Copula model and simulate n - 

correlated rating migration processes where at each time step, the model works out the credits that 

default or migrate. To analyse the effect of the different default time correlation, we use three 

correlation values of: 0 , 0.25 and 0.5. The number of simulations is 10,000. The libor rate is 

assumed constant at 5%. Throughout, we will use a constant recovery rate of 45%. The time step is 

the quarter. The performance of the Equity piece will be measured with its internal rate of return 

(IRR).

We also compute the final rating of the notes as follows: after calculating their expected loss, 

we map this value to the Moody’s idealised cumulative expected loss (in Table 2.8 in chapter 2). So 

for example, a note with an average life (AL) of 4 years should bear an expected default rate no 

greater than 0.001% to be rated Aaa.

The waterfall mechanics, in section 5.13, include two collateral tests: if either is breached, the 

cash payments to the equity investors are delayed until the three notes are fully redeemed. One 

collateral test also monitors the cash paid to the Junior note holders: if it is breached, it delays 

interest payments to the Junior note holder until the Senior and Mezzanine notes are fully redeemed. 

The prices and ratings of the three notes will be calculated with and without the collateral tests. In 

this way, the comparison of the RT-Copula model with the Survival approach is more transparent. 

The role of the collateral tests could be easily changed by amending the interest waterfall. Clearly, 

this can be done with the RT-Copula model, but it is impossible with the Survival model.

The inputs of the Survival model are the cumulative default rates in Table 5.8, and the default 

times are joint with the Normal copula as explained in section 5.12.1.

The last model we want to use to benchmark the RT-Copula model is the Merton model.

5.14.1 Numerical outputs

We show our numerical results in Tables 5.50-5.56, which are all in the Appendix 8. For the Junior, 

the Mezzanine and the Senior notes, the Tables 5.50-5.52 report their premiums, expected losses, 

standard errors, Moody’s ratings, average lives and expected shortfalls with two confidence levels of 

99.5% and 99.9%. We also include the interest loss, which, where it is greater than zero, indicates 

that the income from the collateral is insufficient to pay the interest to the note holders. We remind 

that in this structure the cash received from the maturity of a credit, is not used to support shortfalls 

of interest. Hence, the only way to cover the interest loss is to reduce the size of the note that is hit 

and increase the Equity.
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The expected loss and the expected shortfalls of the collateral are in Table 5.53, whereas, the 

expected Equity IRR without the collateral tests is in Table 5.54.

In each table, the numerical information is split by the correlation assumption and by the 

model used: RT-Copula model, Survival model and Merton model. Initially, the comparison 

between the results produced with the three models, is done without the collateral tests of section 

5.13. In Tables 5.55 and 5.56, we show the results once the collateral tests are used. The only model 

that can incorporate them is the RT-Copula model.

5.14.2 Results with the RT-Copula model

As correlation increases, the effect on the notes is twofold: the premiums and the expected losses go 

up, whereas the ratings drop. The expected shortfalls unequivocally show that the notes become 

riskier. This is not totally reflected on the expected Equity IRR, which remains little affected by a 

change in correlation. Furthermore, there are shortfalls of interest as correlation rises: the interest 

losses are all greater than zero.

The correlation assumption is the key factor when structuring a deal like this. In this particular 

example, we computed the size of the three notes with a correlation of 0, and calculated their ratings 

as Bal (Junior note), Aal (Mezzanine note) and Aaa (Senior note). However, with a correlation of 

0.50, two points can be underlined: firstly, the correct ratings ought to be Bl, Bal and Aa3, 

secondly, the sizes of the notes ought to be reduced since they suffer interest losses. The latter point 

will also condition the Equity IRR, which would drop.

As correlation rises, all premiums increase. This seems to contradict what we found in the 

numerical example of section 4.6, where the premiums of the Senior and the Mezzanine notes 

increased, whereas the premium of the Junior note dropped. To clarify this point, we look at the 

collateral expected loss and shortfalls, at the Equity and at the Junior note.

(1) The collateral expected loss drops from 3.34%, when correlation is 0, to 3.28%, when 

correlation is 0.25, and to 3.15%, when correlation is 0.5. The collateral expected shortfall, at 

99.5% confidence level, moves from 8.8% to 17.3% when correlation moves from 0 to 0.5. 

This is the same change in the distribution of losses that we observed in the numerical 

example in section 4.6.

(2) In the structure analysed in section 4.6 there was no Equity, and the Junior note of 4%, 

worked as an Equity piece. In the current structure, the Equity is 6% and nearly twice the 

collateral expected loss. We also mentioned earlier, that the Equity IRR holds well when 

correlation rises to 0.5. However, it is difficult to differentiate whether the benefit comes from 

the drop of the collateral expected loss, or rather at expense of the Junior note, which suffers 

large interest losses.
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5.14.3 RT-Copula model Vs Survival and Merton models

When the correlation is 0, we cannot notice any meaningful difference in the premiums, expected 

losses, standard errors, ratings, average lives and expected shortfalls calculated with the RT-Copula 

model and with the Merton model. The results of the Survival model, are very close to those of the 

RT-Copula model, with the only exception of the rating of the Mezzanine note, which is Aaa with 

the Survival model, whereas it drops one notch down to Aal with the RT-Copula model. We also 

notice there is virtually no difference between the collateral expected loss and shortfall (Table 5.53), 

and the Equity IRR (Table 5.54), as calculated with the three models.

When the correlation moves to 0.25, there is no meaningful difference between the values of 

the Senior note as calculated with the three models. For the Mezzanine and the Junior notes, the 

differences are in the ratings. The rating of the Mezzanine note is Baal with the Survival and the 

Merton model and drops one notch down to Baa2 with the RT-Copula model. The rating of the 

Junior note is Ba3 with the RT-Copula and the Merton model and drops one notch down to B1 with 

the Survival model. It is important to note that there remain just small differences between the 

collateral expected loss and shortfalls (Table 5.53), and the Equity IRR (Table 5.54), as calculated 

by the three models.

When the correlation rises to 0.5, there still remain some rating arbitrage opportunities with 

the Mezzanine note.

We would like to stress the remarkable Equity IRR which is achieved with this structure, 

which remains between 27.5% and 28.8% even when correlation is as high as 0.5.

Overall, we could only detect some minor differences among the outcomes of the three 

models used.

5.14.4 RT-Copula model and collateral tests

The advantage of the RT-Copula model over the Survival and the Merton models becomes much 

clearer when we move to analyse the effect of modelling the two CDO collateral tests. From Table 

5.55, we can see that the collateral tests create an additional layer of protection in favour of the 

Junior note. The main effect is to reduce its premium as the expected loss drops, and to accelerate 

the repayment of its principal, as its AL shortens. The protection comes at the expense of the Equity 

piece, whose IRR drops. The results of the Junior note depends on the correlation assumptions: with 

a correlation of 0.25, the Junior note premium drops to 228 bps (from 239 bps), whereas with 

correlation of 0.50, the premium drops further, from 436 bps down to 370 bps.
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The protection that the CDO collateral tests provide to the Mezzanine and Senior notes is 

minor and it translates into an acceleration of the repayment of their principal of few months (see 

their ALs).

The consequences on the ratings are also important in two instances. The Mezzanine note 

rating, when correlation is 0.25, drops one notch down, from Baa2 to Baa3, and when correlation is 

0.5, it moves one notch up, from Bal to Baa3.

The last point is the large drop in the IRR (Table 5.56) suffered by the Equity investor, when 

the collateral tests are introduced to the CDO and properly modelled with the RT-Copula model.

5.15 Conclusion

This chapter presented a new CDO model, RT-Copula, based on time-inhomogeneous transition 

matrices. The model is flexible enough to allow any type of cash-flow waterfall.

As CDO pricing models have become a mainstream research area in finance, we have 

identified two key building blocks to value the CDO notes: the copula function and the rating 

transition matrix.

Since the computation of the transition matrices for arbitrary time periods is based on an 

annual transition matrix, this has not been an easy task. Most of the empirical annual transition 

matrices are not compatible with a continuous Markov process since they do not admit a valid 

generator. Therefore, we computed a modified version of a true generator. The modified generator 

was extracted using the IRW algorithm. By doing this, we calculated the error that occurred when 

substituting the starting matrix, with an adjusted matrix.

Following this, we described and applied three methods, JLT (1997) and Lando (1998a), to 

calibrate the adjusted matrix to the S&P’s probabilities of default. Only with one method, we 

managed to obtain sixteen calibrated transition matrices covering a period of sixteen quarters. The 

others methods were unsuccessful.

Finally, we described how to simulate the credit rating migration of one single credit, and how 

to join n -credit rating migrations via the Normal copula.

Modelling the collateral credit risk in this way is very powerful, since it allows us to take into 

account any quality trigger linked to the performance of the collateral: for example no interest is paid 

to the Equity if the average rating of the collateral drops below a certain rating.

The numerical section, at the end, provided an example of a CDO, which was priced and 

analysed with the RT-Copula model. The RT-Copula results are also comparable with those 

calculated using the Survival and Merton models, and we concluded that, where there is no 

performance trigger linked to the collateral average rating, there is no pricing or rating arbitrage 

between the three models. When there are performance trigger linked to the collateral average rating, 

such as the Collateral Tests A and B, the RT-Copula model perfectly captures the diversion of cash
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from the interest waterfall to the principal waterfall for the benefit of the Senior and Mezzanine 

notes. Thus, there is evidence to conclude that the RT-Copula model is the correct approach to 

model cash-flow CDOs.
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Chapter 6: Pricing and rating CDOs of equity 
default swaps with NGARCH-M copulae

6.1 Introduction

Equity default swaps (EDSs) are similar to CDSs as the protection buyer makes regular payments 

and receives a payment from the protection seller should a trigger event happen. The difference lies 

in how the occurrence of the trigger event is determined. In the CDS the trigger event occurs when 

the reference entity defaults, whereas, in the EDS the trigger event is defined as the drop in the 

equity price of the reference equity below a specified percentage of the equity price, called the 

trigger value, at the beginning of the trade. A further difference is how the settlement is determined. 

In the CDS, it is calculated as the notional amount less the recovery amount, usually calculated at a 

fixed date from the default time, by a way of market bidding process. Thus, the recovery rate is an 

important variable in the pricing model. In the EDS, when the trigger event occurs, the protection 

payment is typically set at a specified percentage of the notional, called the recovery rate. In this 

way, the uncertainty surrounding the recovery value is removed.

While any combination of the trigger value and the recovery rate can be considered, the 

current EDS market seems to be in favour of a trigger value of 30% and a recovery rate of 50% of 

the notional amount. In this respect, EDSs are similar to path-dependent deep-out-of-the money 

equity digital options. Unlike digital options where the premium is paid up front, the premium of the 

EDS is spread until it matures.

More recently, EDSs have found their way onto the CDO market. Odysseus, rated Aa2 by 

Moody’s (2004), was the first example of a private rated single-tranche CDO, with a reference 

portfolio made up of 90% CDSs and 10% EDSs.1 Odysseus is different from a basket of deep-out- 

of-the money equity digital options because the others have never been rated by a rating agency. The 

rating was the prerequisite to bring Odysseus to the credit investors and in our view is the key factor 

for a much larger market for EDSs. Moody’s (2004), S&P (2004) and Fitch (2004) are developing 

rating methodologies for CDOs using EDSs in the reference portfolio. The depth of historic data 

available on the equity markets is seen as the main advantage for the rating process, whereas large 

equity volatilities are the main obstacles for rating CDOs where the reference portfolio exclusively 

includes EDSs. The three rating agencies also agree in denying any cause and effect relationship 

between the 70% drop in share price (1 minus the trigger value of 30%), and the event of default on 

the corporate debt of the issuer.
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1 Others CDOs of EDSs are: Daiwa Securities SMBC US$ 291m (Zest Investments V), Chrome Funding 
ACEO €70m, Fortis Investment Management and SG CIB €30m (GOYA).

179



It seems natural that the large amount of work researchers have put into modelling the 

volatility of equity and index returns should also be very relevant for modelling the prices of EDSs, 

since the default leg and the premium leg of an EDS are linked to the performance of the reference 

equity or index. It is well documented in the literature that the equity returns possess properties such 

as fat-tails, volatility clustering and time-varying variances. Engle (1982) was the first to develop an 

econometric model where those properties were properly modelled and introduced the 

Autoregressive Conditional Heteroskedasticity (ARCH) model. Extensions to this model followed: 

Bollerslev (1986) and Taylor (1986) proposed the generalised ARCH (GARCH), Nelson (1991) the 

exponential GARCH (EGARCH), Engle andNg (1993) the nonlinear GARCH (NGARCH).

With reference to the application of GARCH in the option pricing area, Duan (1995) was the 

first to develop a risk-neutral model within the GARCH framework. His model is also called 

nonlinear GARCH in mean (NGARCH-M). He characterised the transition between the actual and 

the risk-neutral probability distributions if the dynamic of the underlying equity price is given by a 

GARCH process, and thus established the foundation for the valuation of options under GARCH. In 

his model, the risk-neutral option price depends upon a leverage risk premium parameter, and the 

variance is negatively correlated with the past equity returns. Such a negative correlation gives rise 

to a negative skewness in the risk-neutral distribution, which Bates (1996) found to be a key feature 

in the empirical data. The leverage risk premium parameter is estimated directly from the empirical 

data since it is part of the conditional expected return of the underlying equity. Hence, Duan’s model 

generates option prices that are consistent with the observed volatility skew.2 Another feature of the 

Duan’s model (and all GARCH models) is that it is non-Markovian in nature. In particular, the 

option price depends on the information set generated by the past and current prices of the 

underlying equity and its past, current and one-step-ahead values of the conditional variance 

process.3 In a subsequent study, Chaudhury and Wei (1996) compared Duan’s GARCH option price 

model with the Black & Scholes model. They found that Duan’s model is most useful for pricing 

short maturity out-the-money options. The problems with hedging in the GARCH option pricing 

model were further discussed by Garcia and Renault (1998). Other works included Ritchken and 

Trevor (1999) who constructed trinomial trees to price American options under GARCH, Duan, 

Ritchken and Sun (2004) who extended the standard Duan’s option valuation model to include 

jumps, and Heston and Naldi (2000) who developed an analytic formula to price European options 

under a more general GARCH. When comparing Duan model and Heston and Naldi model, Hsieh 

and Ritchken (2000) found that Duan model outperforms Heston and Naldi model, especially in its 

ability to price deep out-the-money options.

More recently, the importance of GARCH option pricing models has expanded due to their 

connection with stochastic volatility models, which are alternative methods to GARCH to model the

2 See Heston and Nandi (2000).
3 See Duan (1995), corollary 2.3.
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time-varying nature of the equity return volatility. Indeed, the GARCH diffusion limits contain many 

well known stochastic volatility models.4 It is in the estimation exercise that GARCH models have a 

distinct advantage over stochastic volatility models. Because the volatility of the equity prices is not 

easily observable, rather it has to be implied from current option prices, the implementation of a 

stochastic volatility model is a very difficult task. This approach requires calculating numerous 

implied volatilities from all option records and from all trading days of the time series of the option 

records.5 The technique adopted by Bakshi, Cao and Chen (1997), is to collect a time series of cross 

section of option data, and to estimate the parameters of the daily volatilities (together with the other 

parameters of the model). Clearly, the computational effort becomes soon severe and prohibitive, as 

the time series grows. In contrast, GARCH models have the advantage that the volatility is 

observable from the history of equity prices, without requiring any information on option prices. In 

addition, Heston and Nandi (2000) emphasised that with GARCH models only a finite number of 

parameters need to be estimated regardless of the length of the time series. Option pricing 

applications under GARCH also benefit from the fact that they are relatively easy to re-estimate. 

Whereas, for stochastic volatility models, it may not be realistic to repeat the estimation procedure 

on a rolling basis, as new option prices become available. The initial popularity of the stochastic 

volatility models over the GARCH models could in part be explained by the existence of closed- 

form solutions6 under the stochastic volatility, which made the calculation of option prices much 

easier than under the GARCH models. Until recently, Monte Carlo simulations were the only 

possible route to implement GARCH models. As we saw before, there is now the analytic formula of 

Heston and Naldi (2000) to price European options under GARCH. Furthermore, numerical trees by 

Ritchken and Trevor (1999) are now available and can be used to price American options as well. 

Duan, Gauthier and Simonato (1999) prepared an analytical approximation of the Duan model to 

price European options. On the other hand, the parameter estimation for stochastic volatility option 

pricing models remains typically demanding and problematic. For all these reasons, we focus on the 

GARCH representation of the time-varying volatility feature of equity returns to price CDOs of 

EDSs.

The pricing model for EDS and CDOs of EDSs that we want to develop, must be capable of 

replicating the observed equity return properties mentioned above. To date, there has been no known 

literature which incorporates nonlinear GARCH in mean (NGARCH-M), and more in general 

GARCH, into the pricing of EDSs. To illustrate our original methodology, we use two nonlinear 

GARCH-M processes: the nonlinear normal-GARCH-M (1,1) and the nonlinear i-GARCH-M (1,1). 

We will also borrow from Duan (1995) to explain the transition between the actual and the risk-
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4 Duan (1996, 1997), Corradi (2000) and Nelson (1990), provided detailed relationships between GARCH 
models and stochastic volatility models.
3 This approach was taken by Bates (1996 andl999) and Nandi (1998).
6 See Heston (1993).
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neutral probability distributions. The Duan’s pricing formulae were originally applied to price 

European and Asian type equity options. This makes his research a very valuable one.

Because the multi-period distribution of the nonlinear GARCH-M process in unknown, we 

need to recur to some numerical procedures. Heston and Naldi (2000) closed-form solutions for 

European options under GARCH, are not applicable in our exercise, since the EDS default payment 

can be triggered before the final maturity.7 Ritchken and Trevor (1999) trinomial trees to price 

American options under GARCH, could be useful only for single-name EDS. Since our research 

deals with CDO of EDSs, the numerical scheme of Ritchken and Trevor will soon become 

impractical as the number of EDSs in the CDO grows. Hence, our model will rely on Monte Carlo 

simulations.

In general, Monte Carlo simulations tend to be a rather numerically intensive method if a high 

degree of accuracy is desired. This is due to the well-known fact that the standard error of a Monte 

Carlo estimate is inversely proportional to the square root of the number of the simulated paths. 

Duan and Simonato (1995) highlighted a less known problem and it is that the simulated option price 

violates rational option pricing bounds and hence it is not a sensible price estimate. In other words, 

the simulated path of the equity price fails to possess the martingale property even though the 

theoretical model does. Duan and Simonato observed that since the equity price dynamics are 

modelled as an exponential semi-martingale, when the martingale property fails, a sort of 

multiplicative propagation effect on the errors is generated, and a very large number of simulations 

are required to reduce simulation errors. As a solution, Duan and Simonato proposed a correction to 

the standard Monte Carlo technique, which ensured that the simulated paths of the equity price are 

empirical martingales. This correction was called the empirical martingale simulation (EMS). Our 

EDS model uses Duan and Simonato EMS-Monte Carlo model, coupled with the standard variance 

reduction technique.

In our model, the dependence within a CDO of EDSs is modelled through copulae. A copula 

is a multivariate distribution function with uniform marginals on the unit intervals. From a practical 

point of view, the copula gives the advantage of selecting first the marginal distributions of the 

components of the basket, and then linked them through the most suited copula to represent the 

dependence among the same components. The use of copulae is certainly not new to price 

multivariate options. Brownian motion frameworks have been used to model multivariate option 

prices for a very long time. However, in the past the dependence among equity returns has been 

represented by a multivariate normal distribution, where correlation has been the measure of 

dependence. More recently, Cherubini and Luciano (2002) addressed the issues of non-normal 

returns, and the dependence in the multivariate contingent pricing problem, was addressed using 

copulae. Van den Goorbergh and Genest (2004) used a dynamic copula model to price multivariate

7 See Hsieh and Ritchken (2000) as a research on the performance of the closed-form solutions of Heston 
and Naldi (2000) and the Duan’s GARCH model with Monte Carlo simulations.
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options where the dependence structure between two equity prices is time-varying over time and 

expressed with copulae. None of these authors linked copulae to a NGARCH-M pricing model.

Our contribution is on measuring the impact of different copula functions on the price of the 

same CDO of EDSs. We propose to use the following copula functions, Normal, /-Student and 

Clayton, within the EMS-NGARCH-M model as follows. To induce dependency within a CDO of 

EDSs, random variates are drawn from the three copulae, and then transformed in return innovations 

using the inverse of the normal and the /-Student distribution. Following this, three notes of CDO of 

EDSs are priced with the EMS-NGARCH-M model, via Monte Carlo simulations.

A further innovative feature of our research is the application of the EMS-NGARCH-M 

copula model to determine the rating of three notes of CDO of EDSs. The rating methodology that 

we want to develop is based on the expected losses that the holder of a rated note would suffer when 

investing in a product whose reference portfolio is made of EDSs. In a single-name EDS, the 

probability of triggering the seller payment is driven mainly by the time-varying volatility of the 

underlying equity price, exactly as for a deep-out-the money equity digital option the probability of 

expiring in the money depends on the same time-varying volatility. In a portfolio of EDSs, where the 

seller payment is triggered by any of the prices of the equities in the reference portfolio dropping 

below the trigger value, the dependence between pairs of equity prices is another important 

component to analyse. Based on both the marginal and the joint probability distribution of the equity 

prices, we propose to calculate the amount of the rated debt as it is done for more general CDO 

tranches, and compare the cumulative expected losses of the note with the cumulative expected 

losses associated with that rating category.

This chapter develops through the following sections: in section two we introduce the /- 

NGARCH-M pricing model, and also review its main properties. In section three and four, the EDS 

product is first described in its single-name version and then as a basket or CDO of EDSs. In section 

five, we show how to link a copula to a NGARCH-M process to simulate dependent trigger events in 

a CDO of EDSs. In the last section, we will provide an empirical and numerical example of a real- 

life CDO of EDSs.

6.2 Modelling equity volatilities with NGARCH-M

We begin by preparing the GARCH pricing model, reviewing its properties and introducing the 

empirical martingale simulation.
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6.2.1 GARCH pricing model

We use the now classical mathematical setting of Harrison and Pliska (1981). Our general model, for 

a market consisting of one equity and one default-free bond, is the following:

Prerequisites:8 We let (Q, J7, P) be a probability space, T a positive real number (the terminal 

time), (Wt )0<?<r a standard Brownian motion on (Q, J 7,!3) , and CF)o<<<r ^ e P -completion of 

the filtration generated by (Wt )0<,<r . We assume J 7 = (fij . The filtration (J 7, ) 0 < ,< r  fulfils the 

usual conditions, which are: J 7̂ contains all null sets of P  and (JF, )0<t<T right continuous.
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We also assume that the equity does not pay any dividend, we denote its price with St , and 

its instantaneous standard deviation as <Jt . The one-period continuously compounded return on the 

default-free bond is indicated with rt . For the rest of this chapter we assume that St and rt are 

independent.

In the nonlinear GARCH-M (NGARCH-M) option model,9 the equity return has a form 

analogous to the framework of Duan (1995), with the difference that Duan used the random variable

s t ~ W(0,1), whereas we prefer the random variable £t ~  i(0,l;u) , where tfi) is the t-Student 

distribution and V is the degrees of freedom.

Assumption 6.1: The equity return and the conditional variance dynamics are modelled with a t- 

NGARCH-M (1,1) process, (leverage GARCH). Under the physical probability measure P , they 

are

and

with

In = R, = r. + A c t , -  — cr,2 + o,£,
L I  l l l lL

cr,2 = co + + ao]_x (e ]_x -  Of

p\Tt-x ~i(0,l;u)

(6.1)

(6 .2)

where A is the constant equity risk premium (per unit of conditional standard deviation), 6 is a non 

negative parameter that captures the negative correlation between the return Rt and the volatility

8 Protter (1990), Theorem 1.4.31.
9 For properties, estimation and tests of GARCH and ARCH models, see Bera and Higgins (1993) and 
Rossi (2000).
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innovations a ] , £t s form an i.i.d. sequence of standard 1-Student random variables under the actual 

probability measure P  , CO, ¡3 and a  are the parameters of the 1-NGARCH-M (1,1) specification. 

CO, ¡3 and a  must remain positive to ensure that the conditional variance stays positive.
2  p

Furthermore, the long run variance implied by the GARCH parameters (7 ' , is constant and is 

given by

<J2’P = ----------—-------— (6.3)
\ - j 3 - a ( \  + 9 2)

For last, to ensure the long run variance <j~' is bounded, the following should be satisfied

P + ct(\ + d 2) < \  (6.4)

The motivation of the nonlinear GARCH is to analyse the asymmetric impact of good news 

and bad news on the volatility cr2, also called the leverage effect. Changes in equity prices tend to

be negatively correlated with changes in volatility, thus implying that volatility is higher after
*negative shocks than after positive shocks of the same magnitude. In other words, a negative s t has

a higher impact on a 2 than a positive value, producing the asymmetric impact on the volatility. The

parameter 9 ,  called the leverage, models the negative correlation between equity returns and 

volatility, and leads to skew the distribution of returns.

Using the leverage GARCH model, the presence of a risk premium and the negative return-volatility 

correlation can be analysed in a time-varying fashion.10

In (6.2), the conditional variance appears in the mean as a return premium. This allows the 

average equity return to depend on the level of risk. The functional form of the risk premium /tcr,+1

prevents arbitrage by ensuring that the equity earns the default-free rate rt_x, when the variance is 

zero. From (6.1), the conditional expectation of gross returns is

Ep (exp(£, )  | J M ) = exp(rf_, + A c t , ) (6.5)

and the expectation exceeds the default-free rate rt_x, by an amount proportional to the square root

of the conditional variance. Hence, at this point we cannot value any option since we do not know 

yet the risk-neutral distribution of the equity price. Duan (1995) provided sufficient conditions to 

apply a risk-neutral valuation methodology: it is sufficient that a representative agent has constant 

relative risk aversion and that returns and aggregate growth rates in consumption have conditional 

normal distribution. This is summarised in the following theorem.11

10 The leverage effect was first discovered by Black (1976) and later substantiated by Christie (1982).
11 In Duan (1995).
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Theorem 6.1: Under the local risk-neutral probability measure Q , the equity price dynamics are

. S, _ 1 2 
m — — = R, = r. , ---- a , + g .s , (6.6)

•Vi 1

and g ] = co + / ic e ,  + c c g 2_ j ( s t_x -  A -  6 )2 (6.7)

with s t \J,_X ~  ¿(0,1; u)

where £t ’s are under the risk-neutral probability measure Q  . The proof of this theorem can be 

found in Duan (1995) and in Heston and Naldi (2000).

The long run variance, under the risk-neutral probability measure G  is now given by

tr 2'Q = -------------- —----------- — (6.8)
p - a ( \  + (A + 9 )2)

which is higher than the long run variance, under the probability measure P . Furthermore, the risk- 

neutral conditional variance in (6.7) will be larger than the corresponding conditional variance under 

P  in (6.2), if A and 6  share the same sign.1“

The leverage GARCH (1,1) process defined in (6.1), (6.2), (6.6) and (6.7) reduces to the 

standard GARCH (1,1) if A = 0 and 0 = 0 . Besides, with (3 = 0 and <2=0, the GARCH 

process reduces to the standard homoskedastic lognormal process of the Black & Scholes model. In 

other words, the Black & Scholes model is obtained as a special case.

Different specifications of the volatility dynamic <7“ , were introduced by Ding, Granger and 

Engle (1993), Hentschel (1995) and compared by Christoffersen and Jacobs (2004). To characterise

different GARCH models, we re-write the volatility in (6.2) as

a ;  = co + ¡3g 2_x + a,G2t_ J { z t_x) (6.9)

where z t_x ~  iV(0,l) and f f z t_f) is the news function. For example, borrowing from 

Christoffersen and Jacobs (2004), the following specification of f  can be considered:

Standard : f ( z t- \) = s t-\ (6.10)

Leverage : ) = (s*_x -  d) (6.11)

News : f ( z t_x) = {/?*_, -  0\ -  k {s *_x -  6»)}' (6.12)

Power : / (zM ) = {s*t_x -  d ] Y (6.13) 12

12 Empirical evidence tells us that A > 0 and 9 > 0 for equities and indices.
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In this way, the extra parameter or parameters give different shapes to the news function f  : 

with the Leverage parameter 0 > 0 , f  would shift to the right, with the News parameter K , f  

would rotate and with the Power parameter y , f  would flatten. We revert to Christoffersen and 

Jacobs (2004) for more on these results.13

6.2.2 Additional kurtosis

Chapter 6: Pricing and rating CDOs o f equity default swaps with NGARCH-M copulae

Another important property of the nonlinear GARCH-M model (and more in general of all GARCH 

models), is the additional kurtosis, leptokurtosis, of the unconditional distribution induced by the 

changing conditional variance.

For any e t =i.i.d.(0,ju1) in (6.1), for which jU2 = E ( £ f )  and ¡u4 = E(£,4) < c o ,  the 

kurtosis of = £t crr is given by14

* f i - n

where K . is the kurtosis of the process s t , y 1 = E(/? + a ( \  + 6 2^)£2) and

y 2 = E^(/? + Ct{\ + 0~)£ '2) j. If we assume that £t ~N (0 ,V ), then the term f t will be 

conditionally normally distributed, f t ~  N (0, u ~) . Consequently, (6.14) becomes

i - ( / ? + g q + g 2))2
\ - i f , a 2{\ + 9 2)2 +2(5a{\ + 0 2) + p 2)

(6.15)

This result has three important implications: firstly, the kurtosis of f t exists if

1 - (3 a 2(1 + O 2)" + 2 / 3 a ( l  + 9~) + f t 2) > 0 , secondly, if (/? + a ( l  + 0 2) ) = l , then the 

NGARCH-M model does not have heavy-tail behaviour, and thirdly, if

(/? + cr(l + # 2)) < 3 a 2 (1 + 6C)2 + 2/3a(f + 6~ ) + f 2 , then the distribution of Çt , and 

consequently of Rt in (6.1), is more heavy-tailed than the normal distribution.

Under the risk-neutral measure Q  , the kurtosis of f t becomes

1 — uf
Kç = Ks 1 — ui

(6.16)

13 Kasch-Haroutounian (2004) presents several random time series with the same unconditional variance, 
where the GARCH effect on returns is illustrated and compared with normal distributed returns with no- 
GARCH effect. The author also shows the news function impact on the conditional variance for several 
GARCH models.
14 See Terasvirta (1996) and Duan (2000).
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where k £ is the kurtosis of the process et , u, = El/?, + J32 (1 + (6 + X )' )£2 ] and 

Our model assumes that St ~Z(0,l;i;), then the temi C)t will be conditionally Z-Student

distributed, f t ~ t(0 ,crf',o) . Expanding on the results of Terasvirta (1996), the kurtosis of 

under the data generating probability measure P  , is

! - ( /?  + a ( l  + 6>2))2________
~ ** \ - [ P 2(\ + 0 2)2k c. + 2 p a { \ + 9 2) + p 2)

(6.17)

where

, (o -2 )
o - 4  ’

v  > 4 (6.18)

and with y 2 now equal to

y 2 = p 2 + 2y5a(l + 6 2) + a 2(1 + 9 2)2k <1 (6.19)

Hence, in our model, the unconditional return Rt , is leptokurtic under the data generating (or

actual) probability measure P  , and remains leptokurtic under the risk-neutral measure Q  . Rt also

has a negative skewness if the sum of X and 9  is positive. Duan and Wei (1999) observed that 

leptokurtosis, when there is no skewness, tends to make an out-the-money option worth more than 

when the same option is priced with a constant-variance model. Negative skewness tends to have the 

same effect. Therefore, an out-the-money option is worth more than what a constant-variance model 

would imply.13 The factors X and 6  together determine the properties of the EDS pricing model, 

given that the EDS is similar to a deep out-the-money put option.

6.2.3 Empirical estimation

The GARCH models are estimated using a maximum likelihood approach. The logic is to interpret 

the density as a function of the parameter set, (j) = \(O,P,a,9,X,<70 }, in (6.1) and (6.2), conditional 

on a set of sample outcomes.

If we assume that £t follows a normal distribution the log-likelihood function15 16 for a sample 

of T  observations is given by

InL = -  —^  (in I n  + In a ]1 +£*2)
2 ,-=i

(6.20)

15 To separate the skewness and leptokurtosis effect, we refer to Duan and Wei (1999).
16 In Lildholdt (2002) p. 7, Christoffersen and Jacobs (2004) p. 61 and Peters (2001) p. 6.
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where £, = ■
t L

R, r,-i +  ~ - ° t

Our model assumes £t ~  ¿(0,1; d ) , then the log-likelihood function17 18 is given by

InZ = In r u + l
In r — ln[^-(u -  2)]

In c r ;+ ( l  + u)ln
1 i=11

1+ S‘
*2 h h

( u - 2 )
(6.21)

JJ

where r(-) is the gamma function. When V  —> co , we have the Normal distribution, so that the

lower the fatter the tails. 18

6.2.4 Empirical Martingale Simulation

From equation (6.6), it follows that the price of the underlying equity at future date T , with T > t , 

is

= St exp r ( r  -  0  -  -  É  + X (6.22)
i= l+1 i= t+1

where we have assumed rt = r .

The conditional distribution of S T given today’s price S t can be analytically approximated,

as in Duan, Gauthier and Simonato (1999). This is useful only to price a European option, where the 

underlying equity follows the process in (6.1) and (6.2). However, the same analytic solution is not 

available for path-dependent options, where it is required to know the probability of S s being above

the trigger value K , anytime before the maturity T . Hence, we have to resort to Monte Carlo 

simulations.

Duan and Simonato (1995), Boyle et al (1995) and Barraquand (1994) pointed out that in a 

standard Monte Carlo simulation, the following martingale property almost always fails in the 

simulated sample.

Theorem 6.2:19 The discounted equity price St is a Q  -martingale, that is for any 0 < s < t , is

BQ[e-r,S t\?s] = e-rsSs = S 0 (6.23)

17 In Peters (2001) p. 7 and Kan and Zhou (2003) p. 10.
18 For a review of estimation procedures for GARCH we refer to Rossi (2000), Lildholdt (2002), 
Christoffersen and Jacobs (2004), and Bera and Higging (1993).
19 Duan and Simonato (1995) p. 3.
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which means that the discounted average of St will be in almost all cases different from S0. The

difference between the sample value and the theoretical value will depend on the number of 

simulations, and it is higher for deep-in and deep-out-of-the money options. Even small differences 

have important effects on the final option price.

Duan and Simonato started from the theoretical expression

C0(t) = e - rtE °[m a x (S , - K , 0 ) \ f 0] (6.24)

and subsequently derived the rational option pricing bound

C 0 (/) > m a x ^  -  Ke~rl ,0) (6.25)

where K  is the exercise price and C0(t) is the current price of the European call option at time 0 ,

maturing at time t . To show the violation of the rational option pricing bound in (6.25), we proceed 

as in Duan and Simonato and define the discounted average of the simulated equity price and the 

simulated option price as follows.

Definition 6.1: 0 The discounted average o f the simulated equity prices at time 0 , simulated up to 

time t , with n sample paths is

S y ,n )  = - e " Y JSK0 (6-26)
n t t

where <S) (t) is the z'th simulated equity price at time t , for i = 1 .

Definition 6.2: The Monte Carlo simulated call option price at time 0 is denoted by C0(t,n ) , and 

it is approximated by

C*0(t,n) = - e - r,y m a x [ 5 *  ( 0 - ^ , 0 ]  (6.27)

* S0(t,n) -  Ke rt if K / S0 is small.

Then, if S0 (t , n) is smaller than S0 , it is possible that the simulated call price C0 (t, n) will be in

violation o f the rational option pricing bound and C 0 (t,n)<  m ax(5'0 — Ke rl ,0) .

The correction advanced by Duan and Simonato imposes the martingale property on the 

collection of the simulated sample paths at a sequence of time points, t1,t2,...,tm , and it is known as 

empirical martingale simulation (EMS). 20
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20 Definitions 6.1 to 6.4 are originally from Duan and Simonato (1995) pp. 3-4.
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are used as part of the reference portfolio in synthetic CDOs, we expect to see them with average 

maturity between four to five years.21
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6.3 Single-name EDS pricing model

EDSs are similar to CDSs as the protection buyer makes regular payments and receives a payment 

from the protection seller should a trigger event happen.

Definition 6.5: We define the random time o f default in a EDS as the time X when the trigger event 

occurs

x  = in f{í > 0 : t e [ 0 , T ] , S  < K } (6.33)

where S t is an J~t — adapted equity price process defined in (6.6), K  is some deterministic

function, or percentage of S 0 , called the trigger value. The trigger value K  does not have the

meaning of a safety covenant on the firm’s debt, which in a structural credit risk model works as a 

protection mechanism for the bondholders against unsatisfactory corporate governance. We also 

share the same view as Fitch (2004), Moody’s (2004) and S&P (2004), and disagree to look at the 

trigger event of 30% as the equity price drop that would also take the issuer to default its corporate 

bond obligations.

If the trigger event occurs, a fixed percentage \ — (p of M  = N S 0 is paid to the protection

buyer at the time X , where (p is the recovery rate, N  is the number of equities and M  is the 

notional amount of the contract. The amount M(1 — cp) is called the default payment. As a matter

of fact, the default payment may also be distributed over time, or at the maturity date T . However, 

for modelling purposes it suffices to consider recovery payment only at the default time X , as other 

possibilities can be reduced to the above by means of forward or backward discounting.

We also indicate the risk-neutral distribution function of the random time X , as

Q ( r  < r )  = F ( t )  (6.34)

and denote of the occurrence of the trigger event with the indicator function

N ( t )  = l {r„ } (6.35)

In this respect, the EDS valuation involves the knowledge of the distribution of X , hence, it is 

not dissimilar to the valuation of the credit risk with the first passage model of Black and Cox 

(1976), with the important difference that S t is now an observable variable. If it is not possible to

21 Four to five years is the most liquid maturity for the CDS market.
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infer the probability in (6.34) through an analytical expression, we would have to recur to Monte 

Carlo simulations.

At the payment dates t j ,  with j  e  {1,2 and tm = T , the protection buyer pays the 

regular payment fee of

sS j l ltjzT} at tj (6.36)

to the protection seller. Here s denotes the EDS rate, S  - is the day count fraction for the interval 

\lj~i, lj ] and is the indicator function that the trigger event has not occurred before the

payment date t j .

Furthermore, at the time r  of the trigger event the protection buyer makes a final payment 

covering the time between the last payment date and the time r  of the trigger event. Let

j  = max { j\tj < t } be the last payment date before the time T . Then the protection buyer pays the

extra fee of

s S A Ut at t  (6.37)
J j  J

to the protection seller. Here 8  . is the day count fraction for the interval [ t.. , r ] .  If we denote

Vp{t) as the value at time t of receiving lbp of fee payments and no fees after the interval 

\tj_ j <T <t j ] ,  then we can write

VP(t) = ME Q V ! ! ( " . /  I . !  I
V7=1

+ B( 0, t ) S Aj‘ f t (6.38)

where E Q (-) denotes the expectation operator under the risk-neutral measure Q  and where 

B(0,t) is the discount factor o f the default-free interest rate, and it assumed a deterministic

function.

If the trigger event occurs before the final payment date tm= T , i.e. if r  <tm= T ,  then the 

protection seller pays to the protection buyer the default amount 1 — (p ■ Thus, the payment is

at 7 (6-39)

We denote the value of the default leg at a time t < t j_l as

VD it) = M E° (B( 0, t )(1 -  cp)\{z<T] \ f t) (6.40)
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Given (6.38) and (6.40), the fair EDS premium rate at time t , is that rate at which the 

premium leg has the same value as the default leg

Chapter 6: Pricing and rating CDOs o f equity default swaps with NGARCH-M copulae

In section 6.2.4, we pointed out that, when St follows the risk-neutral GARCH process in 

(6.6), the probability of St being lower than the trigger value K , anytime before the EDS maturity

T , for T > t , cannot be analytically calculated. As a consequence, we cannot analytically express 

the risk-neutral distribution function of the random time of default T , F ( T )  . Hence, to calculate 

the fair EDS premium in (6.41), we have to resort to the EMS. More precisely, the EMS dynamics of 

St are in (6.28) where S t follows the process in (6.6) and (6.7). When St strikes K , the default 

payment is triggered.

6.4 Baskets and CDOs of EDSs

Baskets and CDOs, where the collateral is represented by credits, were formally introduced in 

chapter four. When the collateral changes from corporate bonds or CDSs to EDSs, the payoff 

mechanics do not change.

In an m out of n EDS default, there is a default payment when the mth EDS triggers, and the 

payout depends on the temporal ranking of the EDS triggers. In CDOs of EDSs, the payout is 

dependent on the percentiles of the loss distribution caused by EDS triggers. Hence, we do not see 

any substantial difference in the payout mechanics of baskets and CDOs, when the EDSs are added 

to their collateral. For this reason, we refer to chapter four for the formal introduction of these 

products.

However, we need to formally define the i trigger events. We consider n equity names, with 

associated random times of the trigger events T1,T 2, . . . ,T n defined on a common probability space

(Q, J5)- We denote by NfiT)  = l jr.<r) for i = 1 the indicator functions denoting of the

occurrence of the trigger events.

Definition 6.6: We define the i h random time o f default in a basket o f EDSs as the time Ti when the 

i h trigger event occurs

r t = in f [t > 0 : t e [0, T ]: Si t < K i} (6.42)
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where Sl t s are J :t -  adapted equity price processes defined in (6.6), and K t is the ith trigger

value.22 The risk-neutral distribution function of the random time r ;-, is indicated as

Q f c  ^ t ) = F f t ) (6.43)

The key determinant in the valuation of a basket or a CDO of EDSs is how to handle the 

dependence between the n random times of default r ; , which, through (6.42), is the dependence

between the n underlying equities. The pricing problem is not elementary, whenever the hypothesis 

of independence of perfect linear correlation between the underlying equities is dropped. It becomes 

more complex when the questionable assumption of joint normality is also abandoned. Copulae are 

the perfect tools to handle multivariate pricing cases, when joint normality is dropped.

In this section, we discuss an algorithm for multi event simulation. Simulation of successive m < n  

dependent times of default r ; is possible by generating a vector ( sx, .. ,sn) of «-random numbers 

from one of the copulae specified in chapter three. The EMS dynamics for (Sl t , . . ,Snt) are then 

simulated and when one of the equity prices strikes its trigger value, the default payment is triggered. 

In our model, we want to generate two vectors (<Sj )  of dependent random numbers, one

where dependent random numbers are /-Student distributed, ~ i (0 , l ;o ) ,  and one where

they are normal distributed, 11 ~  A^(0,1). To do so, we rely upon the following algorithm.

(1) Initialize a vector (ux,u2,..,un) containing a set of independent standard uniform random 

numbers U ~ (0,1) , where n is the number of EDSs in the CDO.

(2) To induce dependency we distinguish whether Elliptical copulae or Clayton copula are used.

(3) With Elliptical copulae, we distinguish the Normal copula from the /-Student copula.

(3.1) If we use the Normal copula, we generate a vector H  = (o  1 (ux ),..,0  1 (un)) of independent 

standard normal distributed numbers.

6.5 CDOs of EDSs pricing model: copula model

(3.2) If we use the /-Student copula, we generate a vector

independent /-Student distributed numbers, with V degrees of freedom.

(3.3) On the elements of the vector H , we apply the Cholesky factorisation and obtain a vector G 

of correlated elements.

22 The valuation of baskets and CDOs of EDSs is done with respect to the reference filtration ^ .
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(3.4) A vector (v,v2,..,vB) of copula dependent numbers is calculated as either

C 1 (V iv .v J  = ( 0 ( g 1) , . . , 0 ( g j ) ,  or as C ^ ( v 1?.., v„) = f c ( g , ) , . . , ^ ( g j ) -

(4) With the Clayton copula, the vector (ul,u 2,..,u n) is used, as explained in chapter three, 

section 3.5.6, to generate a vector (v, v , vn ) of copula dependent numbers.

(5) The vector (s 1,.. ,s n) is calculated as (c I(v i )v j C 1(v b )) if we assume

~^(0 , l ;u ) ,o ras  '(T) ),...,® _1(vn)) if we assume £i t \ j t_x ~  iV(0,l) .

(6) and so on for the next time step and sample path.

6.6 Numerical exercise

As a comparison of the copula models introduced in the previous sections, we consider a numerical 

example where we price and calculate the ratings of a real-life CDO of EDSs.

6.6.1 Contract description

The reference portfolio consists of five EDSs, referenced to five equities. In Table 6.1 we show the 

equity names, prices, and the EDS notionals. The CDO liability consists of three notes, with a 

contractual maturity of 2 years, and with the following notionals.

(1) Junior note notional is of £3.534(mil.), which provides the first loss protection.

(2) Mezzanine note notional of £5.5(mil.), which suffers a principal loss if the junior note is fully

utilised.

(3) Senior note notional of £97.5(mil.), which suffers a principal loss if the junior and mezzanine 

notes are fully utilised.23

6.6.2 Ratings

We also aim to compute the final rating of the notes as follows: after calculating their expected loss 

(EL), we map this value to the Moody’s idealised cumulative expected losses in Table 2.8. For 

example, a note with an average life (AL) of 4 years should have an EL rate no greater than 0.1 bps 

to be rated Aaa. To calculate the EL, in each Monte Carlo run we produce the time and amount of 

losses and discount them back to the present time, using a constant Libor of 5%.

Chapter 6: Pricing and rating CDOs o f equity default swaps with NGARCH-M copulae

23 To simplify the numerical exercise, we assume no equity piece.
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A disadvantage of using the EL methodology, is that it is not sensitive to the likelihoods of 

losses in excess of certain confidence level i  . For this reason, we calculate the expected shortfalls, 

as explained in chapter four. It is still unclear to us how to use the expected shortfall as a substitute 

of the EL to calculate the rating. Nevertheless, we believe this to be a very important tool to compare 

the quality of the models we will analyse, when used for rating CDOs.

There is always the risk to calculate ratings that are more beneficial by using generous 

assumptions for the correlation or a different copula model. In the numerical example that follows, 

we will show the effect of correlation, and the application of different copulae on the final price and 

rating.* 23 24 All Tables with the numerical exercise results are in the Appendix 9.

6.6.3 Empirical results

Our data set consists of the daily equity prices of British Airways, Royal Bank of Scotland (or Rbs), 

Shell, Tesco and Barclays and the 1 month Libor rate. The estimation data spans from 4/1/00 to 

14/1/05, with 1,274 observations. Table 6.2 presents key statistics of the raw data of daily returns. 

Skewness and kurtosis are clearly observed.

Table 6.3 shows the parameter estimates obtained by maximising the log-likelihood function 

in (6.20) for the normal-NGARCH-M, whereas Table 6.4 reports the parameter estimates obtained 

with the log-likelihood function in (6.21) for the /-NGARCH-M. All parameters are statistically 

significant, with the exception of A  of the equity returns of British Airways and Shell. As a 

consequence, in both British Airways’ and Shell’s GARCH models, A is set to zero.

The correlation parameters 67 are substantially positive indicating that shocks to returns and

volatility are indeed strongly negatively correlated.

Looking at the standardised residuals of the normal-NGARCH-M model in Tables 6.3, we

observe that the residual distribution is leptokurtic (see K u r t { s  )), in addition to skewed (see

S k e w ( s  )). This is evidence of a misspecification of the normal-NGARCH-M model. The /- 

NGARCH-M model in Table 6.4, with the extra parameter of the degrees of freedom o , explains 

better the standardised residuals, which remain leptokurtic.

The normal-NGARCH-M and /-NGARCH-M models have heavy-tail behaviour under the 

data generating probability measure P  , and remains heavy-tail under the risk-neutral measure Q  : 

with the exception of the equity returns of Rbs, all ) and are larger than 3.
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24 When calculating the price and rating, we will not take into account the extra fee that the protection 
buyer would pay at the time of default indicated in (6.38).
23 With the following Bloomberg Tickers: BAY LN Equity, RBS LN Equity, SHEL LN Equity, TSCO
LN Equity, BARC LN Equity and BP0001M Index.
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Consequently, the four equity returns, Rt in (6.1), will be more heavy-tailed than the normal 

distribution.
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6.6.4 Our benchmark: Rubinstein and Reiner model

Instead of assuming that the equity returns behave accordingly to a NGARCH-M process, we 

assume they follow the standard homoskedastic lognormal process of the Black & Scholes model. 

Under this assumption, we suggest to price EDSs with the analytic solution for path-dependent 

binary barrier options of Rubinstein and Reiner (1991). In particular, we propose to treat the EDS 

default leg in (6.40) as a down-and-out put option, with the strike equal to zero, the option barrier 

equal to the EDS trigger value K , and the rebate26 equal to the EDS recovery rate 1 — (p. Next, we 

assume that the EDS default occurs at a constant intensity rate and from this, we recover the EDS 

payment leg in (6.38) and the EDS premium. In other words, we assume that the premium of the 

path-dependent binary barrier option is paid over the EDS life as an annuity, rather than at start in 

one instalment.

For the Rubinstein and Reiner model, the only input that is unobservable is the future 

volatility of the underlying equity. The way the market determines this volatility is to select the 

implied volatility of a standard put option. The problem we faced with this approach was that the 

implied volatilities for deep out-of-the-money put options were not available for all five equities. 

Table 6.5 shows what we were able to collect from Bloomberg. Only Shell shows a put option with 

maturity close to two years. Besides, none of the put options has a strike close to the EDS trigger of 

30%. Last important point is that all implied volatilities of Tables 6.5 are substantially lower than the

annualised long run volatilities a  and a  of Tables 6.3 and 6.4. Hence, we expect large 

differences between the EDS premiums calculated with the Rubinstein and Reiner model and the 

same premiums calculated with the NGARCH-M models.

6.6.5 Model inputs

In the numerical exercise, we simulate daily returns from the two NGARCH-M models. Simulations 

are performed with 1,000 sample paths and with daily time steps, under the assumption of 256 

trading days per year. The interest rate is assumed constant at 5%.

We test how sensitive the single-name EDS premiums are to the level of kurtosis in the return 

process model by modelling with two NGARCH-M processes: Normal and ¿-Student distributed.

26 We also assume that the rebate is paid when the barrier is hit.
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For all three notes, we calculate the premium, the EL, the standard errors of the EL, the rating 

and the expected shortfalls with a confidence level of 99%. The random numbers £ , in (6.2) and 

(6.7), are joint with the Normal, i-Student and Clayton copulae.

With the Elliptical copulae, we use three values for correlation: 0, 0.25 and 0.50. With the t- 

Student copula we use two values for the degrees of freedom v  : 6 and 10. The Clayton copula has 

the property of generating strong dependency in the lower tail of the distribution, hence generating 

more dependent negative news. With the Clayton copula, we use two values for a : 1.5 and 3. These 

values will translate into strong global and lower tail dependence.

In no circumstances we expect the three copulae to compute different results when correlation 

is 0 and when the Clayton copula parameter a = 0.001. For this reason, we only use correlation of 

0 with the Normal copula.

6.6.6 Single-name EDS premiums

Tables 6.6 and 6.7 shows the EDS premiums as calculated with the three models. The Rubinstein 

and Reiner model is by far the less conservative and estimates a total expected loss (EL) of £ 13k for 

the five EDSs. Only one EDS has a premium substantially greater than zero, British Airways.

The differences between the EDS premiums, as calculated with the Rubinstein and Reiner 

model and with the t-NGARCH-M model, are indeed very large. A zero premium clearly indicates 

that there is zero probability of trigger a default payment, but the t-NGARCH-M model strongly 

rejects this conclusion. In fact, the f-NGARCH-M model calculates premiums all greater than zero. 

We raised earlier the possibility of finding those large differences. We also explained this with the 

lack of implied volatility data for the very deep out-of-the-money put options, under investigation.

To expand the last point, we have compared the three models in a pure equity option 

environment, and priced five path-dependent binary barrier put options written on the five equities of 

Table 6.5. To do so, we have set the strike equal to zero, the option barrier equal to the EDS trigger 

value K , the rebate“7 equal to the EDS recovery rate 1 — cp, and a maturity of two years. Table 6.6 

shows these results with 10,000 simulation paths. In Table 6.7, we have calculated the implied 

volatility that the Rubinstein and Reiner model requires as inputs, to calculate the same option 

premiums as the t-NGARCH-M model. They range from 31% of Barclays to 46% of Rbs. In our 

experience, those implied volatilities look like the natural extrapolation of the smile to price very 

deep out-of-the-money put options and path-dependent binary barrier put options.

We can also notice differences between the ELs of £915k and 113k in Table 6.6 and the 

option premiums in of £l,096k and £122k in Table 6.7. In the EDS models of Table 6.6, we do not 

take into account the extra fee that the protection buyer would pay at the time of default indicated in

27 We also assume that the rebate is paid when the barrier is hit.
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(6.38), and assume that defaults pay at the end of quarters. These simplifications have opposite effect 

on the EDS premium, but since the latter is stronger, overall the EDS premium results reduced. In 

the models of Table 6.7, we assume that the rebate is paid on the day the barrier is hit. In summary, 

we predicted that the ELs of Table 6.6 would be lower than the option premiums of Table 6.7, and 

this is proven to be the case.

A further point is that Rbs has the largest EDS premium when calculated with the i- 

NGARCH-M model, the largest annualised long run volatilities crQ of 51.31% (Table 6.4), and 

surprisingly, the lowest implied volatility in Table 6.5 (17.25%). The market seems to have forgotten 

that this equity once was a very volatile one.

Last point to mention is that, Table 6.6 can be seen as a basket of EDSs, where the equity 

returns are assumed zero correlated. Under this assumption, we can draw important information 

regarding the marginal contribution of each single EDS to the basket premium. For example, the EL 

of £915k (or 0.86% of £106mil.) is very close to the EL calculated as a weighted average of the three

notes ELs of 11.121% (Table 6.10), 5.583% (Table 6.11) and 0.198% (Table 6.12), where the
28weights are the notes notionals."

6.6.7 i-NGARCH-M and normal-NGARCH-M

In Tables 6.8 to 6.13 the copula results are presented. Tables 6.8 to 6.10 show the results of the 

normal-NGARCH-M model (¿j J 7 ~  Af(0,1)), whereas Tables 6.11 to 6.13 contain the numerical

results of the i-NGARCH-M model, (f| J 7 ~ 7(0,1; o)), where the degrees of freedom v  are as

estimated in Tables 6.4. When the degree of freedom is equal to infinity, the residuals £ are 

normally distributed. In this way, we can measure the effect of moving away from the general 

assumption of normally distributed residuals £ .

The main conclusion we can draw is that the normal-NGARCH-M, when compared with the 

i-NGARCH-M, hugely underestimates the fair compensation and the risk of the senior, mezzanine 

and junior notes. The senior note premiums and ELs calculated with i-NGARCH-M, are up to ten 

times larger than those calculated with normal-NGARCH-M. The rating of the mezzanine note, with 

the i-NGARCH-M, is never above Bl, whereas with the normal-NGARCH-M, it never drops below 

Bal. The same pattern can also be observed for the junior notes.

In section 6.6.3, we also pointed that i-NGARCH-M model fits better the data set of the five 

equities. For this reason, in what follows, we will only comment the results obtained with the i- 

NGARCH-M model.
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28 The difference is due to the different results that each Monte Carlo run returns. In Table 6.7 we used 
10,000 simulated paths, whereas in Table 6.6 the simulated paths were 1,000.
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6.6.8 Correlation

As correlation increases and we model with the Normal copula and the ¿-Student copula with 10 

d.o.f., the premium and the EL of the three notes drop. We also notice an increase in the expected 

shortfall of the senior note and this signals a much riskier note. However, this does not translate into 

a change of its rating as the EL did not rise.

When we use the ¿-Student copula with 6 d.o.f., we can finally observe the redistribution of 

the premium and of the EL from the junior and the mezzanine notes to the senior note.

In summary, as correlation increases, we cannot always observe the redistribution of the 

premium and of the EL from the junior note to the senior note. A high correlation has the effect of 

increasing the probability of joint defaults and this is reflected through an increase of the expected 

shortfalls. The way correlation is felt through the notes premiums, rather depends on the ranking of 

the note in terms of loss allocation, and whether the ¿-Student copula is used and with what d.o.f. 

value.

All this has important consequences for a trader who is pricing this deal with different 

correlation assumptions. If he mistakenly only uses the Normal copula, he would find beneficial to 

increase the correlation.

The consequences for a structurer are as much as important. If he mistakenly only uses the 

Normal copula and the EL methodology to calculate the ratings of the CDO notes, he would observe 

a drop in premiums and thus a potential drop in the note rating. However, he would see a different 

deal if he were to model the deal with the ¿-Student copula with 6 d.o.f. and analyse the rating with 

the expected shortfall. This clearly points out that the EL methodology cannot be the correct 

approach for rating CDO of EDSs.

6.6.9 Normal copula and i-Student copula

With the ¿-Student copula, we have the possibility of using the extra parameter d.o.f. to generate 

higher defaults. As d.o.f. drop, the protection that the junior note offers to the mezzanine and senior 

notes diminishes. Therefore, a larger premium is required for the mezzanine and senior notes to 

offset a larger risk. As expected, the results of the Normal copula and the ¿-Student copula further 

diverge as correlation rises. The larger differences are with the premium and the EL of the junior and 

the mezzanine notes.

Chapter 6: Pricing and rating CDOs o f equity default swaps with NGARCH-M copulae
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6.6.10 Clayton copula

With the Clayton copula, we rely upon the only available parameter a , to capture both the lower tail 

dependence AL and the Kendall’s p z global dependence.

To make understanding the results of the Clayton copula easier, we have added, in all Tables, 

the lower tail dependence XL and Kendall’s p r implied in the parameter a . For example, where

a = 1.5,  we can reach a Kendall’s p T — 0.43 and tail dependence XL -  0.63, hence, modelling

with much stronger dependency than used in the t-Student copula with 6 d.o.f.

The Clayton copula has brilliantly responded and met our expectation. In fact, the Tables 

show that as a moves from 1.5 to 3, the premium and of the EL are redistributed from the junior 

and the mezzanine notes to the senior note. It is also important mentioning there is a much larger 

increase of the notes expected shortfalls. The senior note expected shortfall with a — 1.5, is 

20.24%, which is twice as much as the expected shortfall calculated with any Elliptical copula.

In terms of how the premiums of Clayton copula compare with those of the Elliptical copulae, 

the Clayton overprices the senior note and underprices the junior and the mezzanine notes.

It is also worth mentioning that we found the algorithm to generate Clayton copula dependent 

random numbers as the fastest of those used in our numerical exercise.

6.7 Conclusion

In this chapter, we extended the GARCH option framework of Duan (1995) to price single-name 

EDSs, and to price and calculate the rating of CDOs of EDSs.

Volatility of the underlying equity price is the critical factor affecting option prices. Because 

EDS resembles deep-out-of-the money equity digital options, the correct modelling of volatility is 

vital to price EDSs. In our EDS model, the variance of the equity return follows a nonlinear GARCH 

in mean. Stochastic volatility models are alternative methods to GARCH to model the time-varying 

nature of the equity return volatility. It is in the estimation exercise that GARCH models have a 

distinct advantage over stochastic volatility models. The volatility of the equity prices is not easily 

observable, and it has to be implied from current option prices. This causes the parameter estimation 

for stochastic volatility option pricing models to be demanding and problematic. Option pricing 

applications under GARCH benefit from the fact that they are relatively easy to re-estimate. 

Furthermore, they only need a finite number of parameters to be estimated regardless of the length of 

the time series. For all these reasons, we chose the GARCH representation of the time-varying 

volatility feature of equity returns to price EDSs and CDOs of EDSs.
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When the volatility is modelled as a GARCH process, it is generally not possible to derive the 

future distribution of the underlying equity. Thus, no analytical formula exists, and alternative 

numerical methods, such as Monte Carlo simulation or numerical trees, must be used. Trinomial 

trees could be useful only for the single-name EDS. Since our research deals with CDO of EDSs, the 

numerical trees will soon become impractical as the number of EDSs in the CDO grows. Hence, our 

model relied on Monte Carlo simulations.

Duan and Simonato (1995) highlighted a less known problem of Monte Carlo methods and it 

is that the simulated option price violates rational option pricing bounds and hence it is not a sensible 

price estimate. As a solution, we used the empirical martingale simulation (EMS) originally 

advanced by Duan and Simonato. Monte Carlo methods are typically computer intensive. For this 

reason, we coupled the EMS with the standard variance reduction technique.

When pricing single-name EDS, we proposed two nonlinear GARCH in mean (NGARCH- 

M): normal and /-Student NGARCH-M model. Our set-up can accommodate most observed 

empirical regularities of the equity prices such as, fat tails, volatility clustering and time-varying 

variances. It also allows correlation between the conditional variance and the equity returns. This is 

especially useful considering the existence of a negative correlation with many equity returns (see 

Black (1976) and Christie (1982)).

As a benchmark for the NGARCH-M models, we assumed that the equity returns move 

accordingly to the standard homoskedastic lognormal process of Black & Scholes and priced the 

single-name EDS with the Rubinstein and Reiner model for binary barrier options. For Black & 

Scholes models, the way the market determines the future volatility is to select the implied volatility 

of the option. The problem we found with this approach was that the implied volatilities for very 

deep out-of-the-money put options were not available.

To address the issue of how to price a basket of EDSs, we resorted to the concept of copula. 

With the copula, we were able to decouple the pricing problem: keeping the aspect of modelling the 

marginal distribution of the equity returns via NGARCH-M, totally separate from addressing the 

dependence problem.

A new feature of our model is that, contrary to earlier works on pricing multivariate options, 

the dependence structure is not necessarily multivariate normal, rather it has the flexibility of being 

expressed as Normal, /-Student and Clayton copulae.

As an example of the power of our model, we presented a real-life CDO of EDSs: five EDSs 

were used as a reference portfolio to issue three CDO notes. The CDO notes were priced and rated 

using three copula functions: Normal, /-Student and Clayton copulae. The marginal distributions of 

the five EDSs were also empirically presented and we found evidence of non-normality in the equity 

returns.

Within the same numerical exercise, we showed the limitation of the Black & Scholes 

framework. The option market lacks implied volatility data, for very deep out-of-the-money put
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options, with a maturity of 2 years or longer. Hence, we used implied volatilities of put options with 

different strikes and shorter maturity than we had originally searched for. We also compared these 

implied volatilities with the annualised long run variances implied in the NGARCH-M processes and 

found large differences. Then, we priced EDSs with the Rubinstein and Reiner model, and found all 

premiums substantially lower than those calculated with the NGARCH-M models. As final point, we 

found evidence that the EL methodology is not the correct approach for rating CDO of EDSs.
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Executive Summary

Chapter 7: Conclusions

In this research, we have examined many numerical issues relating to the modelling of correlation 

products with copulae. The results are summarised in this chapter.

7.1 Results of chapter 4

Throughout chapter 4, we searched for answers to the following questions. What happens to the 

premiums of correlation products when the default time correlation changes? What happens to the 

premiums when the times of default are joint with the ¿-Student copula or when we replace the t- 

Student copula with the Clayton copula? What happens to the premiums when we include the 

dynamics of the Clayton copula.

The size of the reference portfolio is one of the key elements when analysing the sensitivity of 

the premiums to changes in the default time correlation. We found that this relationship could be 

generalised with saying that the l bt to default is always long in default time correlation. As we 

moved up in the time ranking of the credit defaults (2nd, 3rd, 4th and so on) the relationship become 

more complex and depended on the number of credits.

Our numerical results of section 4.5 contradicted the results and conclusions of Mashal, Naldi 

and Zevi when modelling l sl to default into the 2nd and the 3rd to default with the ¿-Student copula. 

We did not find the same redistribution of losses from the 1st to default into the 2nd and the 3rd to 

default, when the Normal copula is changed with the ¿-Student copula. Our results showed a general 

increase of their premiums. We also found that the Normal, ¿-Student and Clayton copulae calculated 

the same premiums when the times of default were not correlated or dependent, which was not the 

case in Mashal, Naldi and Zevi.

Another important component of the relationship between premium and default time 

correlation is the complexity of the structure of the correlation product. High default time correlation 

has the effect of increasing the probability of joint defaults. The effect on the premiums depends on 

the ranking of the note in terms of loss allocation. In principle, as correlation rises, the protection 

that the Junior note offers to the Mezzanine and Senior notes diminishes. Therefore, a larger 

premium is required for the Mezzanine and Senior notes to offset a greater risk. With the structure 

analysed in section 4.6, the Junior note was long in default time correlation, whereas the Senior note 

was short. The Mezzanine note behaved more as a Senior note, when the default time correlation 

changed.

The Clayton copula had important consequences on all three CDO notes in section 4.6. As a 

rose, we noticed a redistribution of losses from the Junior note to the Mezzanine note and the Senior 

note. When compared with the Clayton copula, we found that the Normal copula underestimated the
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fair compensation of the Senior and the Mezzanine notes and overestimated the fair compensation of 

the Junior note. More importantly, the Clayton copula picked up some extra risk in the Senior note. 

This was confirmed by an increase of the expected shortfalls of the Senior note.

These findings contradicted the work of Meneguzzo and Vecchiato on modelling default 

times with the Clayton copula. They used the Clayton copula to simulate the exact default time. In 

this way, they simulated too many survival times and fewer default times. We preferred simulating 

the quarters when default occurred. In this way, we were able to use the Clayton copula and capture 

the lower tail dependence.

In order to show that the default mechanism implied with the Li’s Survival model is different 

from the Schonbucher and Schubert dynamic copula, we compared these models with a Clayton 

copula, via pricing the same CDO notes. We assumed the same time-inhomogeneous intensity rates 

for the underlying credits and found much larger losses with the dynamic Clayton copula. This 

raised a red alarm, as the current approach in the financial industry is to rely on static copula models.

7.2 Results of chapter 5

This chapter presented a new model to value the notes of cash-flow CDOs. The model uses both 

copulae and time-inhomogeneous transition matrices. It is also flexible enough to allow any type of 

cash-flow waterfall. We called it Rating Transition Copula.

Since the computation of the transition matrices for arbitrary periods of time is based on an 

annual transition matrix, this has not been an easy task. Most of the empirical annual transition 

matrices are not compatible with a continuous Markov process since they do not admit a valid 

generator. Therefore, we computed a modified version of a true generator. The modified generator 

was extracted using the IRW algorithm. By doing this, we calculated the error, which occurred when 

substituting the starting matrix, with an adjusted matrix.

Following this, we described and applied three methods, JLT (1997) and Lando (1998a), to 

calibrate the adjusted matrix to the S&P’s probabilities of default. Only with one method we 

managed to obtain sixteen calibrated transition matrices covering a period of sixteen quarters. The 

others methods were unsuccessful.

Finally, we described how to simulate the credit rating migration of one single credit, and 

how to join n -credit rating migrations via the Normal copula.

Modelling the collateral credit risk in this way is very powerful, since it allows us to take into 

account any quality trigger linked to the performance of the collateral: for example no interest is paid 

to the Equity if the average rating of the collateral drops below a certain rating.

The numerical section provided an example of a cash-flow CDO that was priced and analysed 

with the RT-Copula model. The RT-Copula results are also comparable with those calculated using 

the Survival and Merton models, and we concluded that, where there is no performance trigger
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linked to the collateral average rating, there is no pricing or rating arbitrage between the three 

models. When there are performance trigger linked to the collateral average rating, such as the 

Collateral Tests A and B, the RT-Copula model perfectly captures the diversion of cash from the 

interest waterfall to the principal waterfall for the benefit of the Senior and Mezzanine notes. Thus, 

there is evidence to conclude that the RT-Copula model is the correct approach to model cash-flow 

CDOs.

7.3 Results of chapter 6

7.3.1 Summary

In chapter 6, we extended the GARCH option framework of Duan (1995) to price single-name 

equity default swaps, and to price and calculate the rating of CDOs of equity default swaps.

Volatility of the underlying equity price is the critical factor affecting option prices and in our 

EDS model, the variance of the equity return followed a nonlinear GARCH in mean. When the 

volatility was modelled as a GARCH process, it was not possible to derive the future distribution of 

the underlying equity. Therefore, our model relied on Monte Carlo simulations. To ensure that the 

simulated option price did not violate rational option pricing bounds, we used the empirical 

martingale simulation originally advanced by Duan and Simonato, coupled with the standard 

variance reduction technique.

When pricing single-name EDS, we proposed two nonlinear GARCH in mean (NGARCH- 

M): normal and i-Student NGARCH-M model. As a benchmark, we assumed that the equity returns 

moved accordingly to the standard homoskedastic lognormal process of Black & Scholes and priced 

the single-name EDS with the Rubinstein and Reiner model for binary barrier options. The problem 

we found with this approach was that the implied volatilities for very deep out-of-the-money put 

options were not available.

To address the issue of how to price a basket of EDSs, we resorted to the concept of copula. 

With copulae, we were able to decouple the pricing problem: keeping the aspect of modelling the 

marginal distribution of the equity returns via NGARCH-M, totally separate from addressing the 

dependence problem.

A new feature of our model is that, contrary to earlier works on pricing multivariate options, 

the dependence structure is not necessarily multivariate normal, rather it has the flexibility of being 

expressed as Normal, i-Student and Clayton copulae.

The numerical findings of chapter 6 can be further broken down in three main areas: empirical 

estimation results, single-name EDS premiums, and copula results.
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7.3.2 Empirical estimation

The empirical estimation carried on by maximising the log-likelihood functions of the normal- 

NGARCH-M and the t-NGARCH-M, suggested that the /-NGARCM-V1 with the extra parameter of 

the degrees of freedom v , fits better the data set. Its parameters are statistically significant, with the 

exception of the parameter of the risk premium of the equity returns of British Airways and Shell. 

The correlation parameters are also substantially positive indicating that shocks to returns and 

volatility are indeed strongly negatively correlated.

7.3.3 Single-name EDS premium

After completing the empirical estimations, we moved to calculating the single-name EDS premiums 

with the three models made available: Rubinstein and Reiner model, normal-NGARCH-M model 

and the t-NGARCH-M model.

We were not surprised to find out that the Rubinstein and Reiner model was by far the less 

conservative of the three models: only British Airways EDS premium was substantially greater than 

zero. Besides, the differences between the EDS premiums as calculated with the Rubinstein and 

Reiner model and with the t-NGARCH-M model were indeed very large. The possibility of finding 

these large differences was expected and explained with the lack of implied volatility data for the 

very deep out-of-the-money put options, under investigation.

We also calculated the implied volatility that the Rubinstein and Reiner model required as 

inputs, to calculate the same option premiums as the t-NGARCH-M model. They ranged from 31% 

of Barclays to 46% of Rbs. Besides, they looked like the natural extrapolation of the smile to price 

very deep out-of-the-money put options and path-dependent binary barrier put options.

As last point, we analysed the marginal contribution of each single-name EDS to the basket 

premium. This was done by assuming a basket of EDSs, where the equity returns were uncorrelated.

7.3.4 Copula results

When we moved to analysing the CDO, we found that the normal-NGARCH-M, when compared 

with the t-NGARCH-M, hugely underestimated the fair compensation and the risk of the senior, 

mezzanine and junior notes.

As correlation increased, we could not always observe the redistribution of the premium and 

of the EL from the junior note to the senior note. All this has important consequences for a trader 

who is pricing a deal with different correlation assumptions. If he mistakenly only uses the Normal 

copula, he would find beneficial to increase the correlation. The consequences for a structurer are as
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much as important. If he mistakenly only uses the Normal copula and the EL methodology to 

calculate the ratings of the CDO notes, he would observe a drop in premiums and thus a potential 

drop in the note rating. However, he would see a different deal if he were to model it with the t- 

Student copula with 6 d.o.f. and analyse the rating with the expected shortfall. This clearly points out 

that the EL methodology cannot be the correct approach for rating CDO of EDSs.

With the ¿-Student copula, we were able to generate more defaults by reducing the d.o.f.. 

When this happened, the protection that the junior note offered to the mezzanine and senior notes 

diminished, therefore a larger premium was required for the mezzanine and senior notes to offset a 

larger risk. The results of the Normal copula and the ¿-Student copula further diverged as correlation 

rose.

The Clayton copula brilliantly responded and met our expectation. In fact, all tables showed 

that, as a increased, the premium and the EL were redistributed from the junior and the mezzanine 

notes to the senior note. In terms of how the premiums of Clayton copula compared with those of the 

Elliptical copulae, the Clayton overpriced the senior note and underpriced the junior and the 

mezzanine notes. As last point, we found the algorithm to generate Clayton copula dependent 

random numbers, the fastest of those used in our numerical exercise.

7.4 Recommendations for further research

This thesis has provided with new insights into modelling correlation products with copulae, but it 

has also raised many new questions. The following areas are recommended for additional research.

Firstly, in our research we have not covered statistical inference for copulae, which deals with 

application to market data, such as calibration to actual risk factors co-movements and VAR 

measurements. We have established the flexibility of the Clayton copula for modelling correlation 

products. However, we do not know how the Clayton copula would fit to an actual sample of credit 

data. A potential problem is the lack of data on which to base this exercise. In any empirical 

exercise, a choice will have to be made with regard to which data series produces the best estimate 

for default probability: historical defaults, equity returns, asset returns, and credit spreads. The 

market consensus is that equity information is the most practical approach. Nevertheless, increasing 

liquidity in the CDS market may provide an interesting alternative and let us use credit spreads. We 

also observe that CDSs are used to delta hedge positions in correlation products. In turn, correlation 

products are priced using equity correlations and hedged using CDSs. Therefore, there may be some 

mismatch in delta hedging correlation products over their life, which a copula empirical exercise, 

based on both equity prices and CDS premiums, may find tme and possible to exploit for arbitrage.

Secondly, we have modelled the same real-life CDO with Li’s Survival Clayton copula and 

Schonbucher and Schubert dynamic Clayton copula. We found large differences in the prices of the 

notes when calculated with the two models. Hence, we have reason to believe that once copula
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dynamics are included, correlation products become riskier and as compensation, would require 

larger premiums. We see two further extensions of our research. Firstly, we welcome an empirical 

study to calibrate dynamic copulae to market credit spreads. Secondly, we would compare different 

dynamic copulae via pricing the same real-life correlation products. Elliptical copulae do not 

simplify into nice closed-forms, hence the challenge is how to efficiently evaluate high-dimensional 

cumulative distribution functions (Normal and ¿-Student).

Thirdly, it would be of interest to extend the work on transition matrices and cash-flow CDOs 

of chapter 5, and to prepare a risk-neutral framework. The transition matrices used in our model 

were calibrated to historical default probabilities. Because modem financial theory requires that 

hedging and pricing of option type products takes place under a risk-neutral valuation framework, 

our model did not produce risk-neutral prices. We foresee one easy extension of our model: 

calibrating the default probabilities to those probabilities implied in the CDS premiums, so to be 

capable of calculating the rating and the price of the CDO notes at the same time.

Fourthly, in chapter 5 we restricted our investigation on using a publicly available rating 

agency transition matrix. We motivated our choice, saying that we wanted to locate our work in the 

area of rating structure finance bonds, and to raise some concern regarding the current approach of 

rating agencies for rating cash-flow CDOs. One important extension of chapter 5 is to estimate the 

generator or generators directly, using the original data set. Such approach is known as continuous-

time approach and was taken by Christensen, Hansen and Lando (2002). In this way, firstly, we 

would find evidence for non-Markovian behaviours of the rating process, and secondly, we would 

test how non-Markovian behaviours influence the price and rating of cash-flow CDOs.

Next, we have proposed a new model to price baskets and CDOs of EDSs. It is still too soon 

to see whether modelling past volatility as a NGARCH-M for EDSs is indeed correct, as this product 

is still in its infancy. Therefore, an empirical investigation of modelling EDSs must be postponed 

until the market develops and more data becomes available.

Lastly, we are very sceptical that the EL methodology is the correct approach when rating 

CDOs of EDSs notes and welcome any future work, which compares VAR measurements with EL 

when rating CDOs of EDSs notes.
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Appendices

Appendices

Appendix 1: Chapter 4 - Numerical exercise in section 4.3
In this appendix, we illustrate the results of the Marshall-Olkin exponential copula applied to the 

numerical example in section 4.3.
Analytic

Value of 1st TD

No. Credits Corr = 0 Corr = 0.25 Corr = 0.5 Corr = 0

1 10% 10% 10% 0.1648
2 20% 16% 13% 0.3008
3 30% 22% 17% 0.4130
4 40% 28% 20% 0.5057
5 50% 34% 23% 0.5823
6 60% 40% 27% 0.6458
7 70% 46% 30% 0.6983
8 80% 52% 33% 0.7420
9 90% 58% 37% 0.7782
10 100% 64% 40% 0.8084
15 150% 94% 57% 0.8993
20 200% 124% 73% 0.9381
25 250% 154% 90% 0.9562
30 300% 184% 107% 0.9658
35 350% 214% 123% 0.9715
40 400% 244% 140% 0.9753
45 450% 274% 157% 0.9782
50 500% 304% 173% 0.9804

Table 4.2: Portfolio Intensity rates of the 1st to default /tQ(/) with default time correlation 0 - 0.25 

and 0.5, with number of assets from 1 to 50; and analytic value of the 1st to default with default time 

correlation of 0.

1st to Default
Corr = 0.25

Analytic Marshall-Olkin copula
No. Credits Value Value SE Time (sec.)

1 0.1648 0.1652 0.000036 8
2 0.2495 0.2455 0.000041 13
3 0.3250 0.3275 0.000044 18
4 0.3922 0.3867 0.000071 22
5 0.4522 0.4522 0.000093 27
6 0.5057 0.4998 0.000113 32
7 0.5534 0.5481 0.000132 37
8 0.5960 0.5876 0.000150 42
9 0.6340 0.6306 0.000166 47
10 0.6680 0.6695 0.000183 52
15 0.7909 0.7912 0.000198 77
20 0.8619 0.8561 0.000214 102
25 0.9037 0.8992 0.000232 127
30 0.9289 0.9303 0.000249 151
35 0.9445 0.9455 0.000266 177
40 0.9547 0.9557 0.000283 203
45 0.9615 0.9613 0.000298 229
50 0.9663 0.9665 0.000314 256

Table 4.3: 1st to default Analytic values and Marshall-Olkin values, with standard errors (SE) and 

computational time, with default time correlation equal to 0.25 and 10,000 sample paths.
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1st to Default
Correlation = 0.50

Analytic Marshall-Olkin copula

No. Credits Value Value SE Time (sec.)

1 0.1648 0.1672 0.000036 7

2 0.2131 0.2134 0.000039 12

3 0.2583 0.2550 0.000041 17

4 0.3008 0.2991 0.000065 22

5 0.3406 0.3431 0.000084 27

6 0.3780 0.3784 0.000101 32

7 0.4130 0.4179 0.000117 37

8 0.4459 0.4469 0.000133 42

9 0.4767 0.4739 0.000147 47

10 0.5057 0.5087 0.000162 51

15 0.6259 0.6253 0.000175 77

20 0.7138 0.7124 0.000190 101

25 0.7782 0.7741 0.000206 127

30 0.8256 0.8228 0.000222 151

35 0.8607 0.8698 0.000238 176

40 0.8869 0.8866 0.000255 201

45 0.9065 0.9066 0.000270 227

50 0.9213 0.9200 0.000286 252

Table 4.4: 1st to default Analytic values and Marshall-Olkin values, with standard errors (SE) and 

computational time, with default time correlation equal to 0.5 and 10,000 sample paths.

M arshall-O lkin copula w ith corr. = 0.25

2nd to Default 3rd to Default

No. C redits Value SE Value SE

1 - - - -

2 0.0778 0.000025 - -

3 0.0988 0.000028 0.0710 0.000024

4 0.1198 0.000043 0.0730 0.000035

5 0.1525 0.000056 0.0811 0.000044

6 0.1832 0.000068 0.0882 0.000053

7 0.2175 0.000080 0.0975 0.000060

8 0.2544 0.000092 0.1146 0.000068

9 0.2912 0.000105 0.1292 0.000076

10 0.3237 0.000117 0.1435 0.000083

15 0.5007 0.000129 0.2618 0.000094

20 0.6303 0.000145 0.3907 0.000107

25 0.7296 0.000162 0.5181 0.000122

30 0.8065 0.000180 0.6237 0.000139

35 0.8568 0.000199 0.7137 0.000157

40 0.8887 0.000218 0.7807 0.000175

45 0.9080 0.000236 0.8205 0.000193

50 0.9244 0.000253 0.8560 0.000211

Table 4.5: 2nd and 3rd to default Marshall-Olkin values, with standard errors (SE) and computational 

time, with default time correlation equal to 0.25, and 10,000 sample paths.
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M arshall-O lkin copula w ith corr. = 0.50

2nd to D efault 3rd to D efault

No. Credits Value SE Value SE

1 - - - -

2 0.1132 0.000030 - -

3 0.1190 0.000031 0.1094 0.000030

4 0.1278 0.000046 0.1120 0.000043

5 0.1433 0.000058 0.1189 0.000054

6 0.1557 0.000069 0.1201 0.000064

7 0.1771 0.000079 0.1237 0.000072

8 0.1848 0.000089 0.1248 0.000079

9 0.1963 0.000098 0.1233 0.000086

10 0.2129 0.000107 0.1325 0.000093

15 0.3106 0.000117 0.1648 0.000100

20 0.4031 0.000129 0.2180 0.000108

25 0.4905 0.000143 0.2712 0.000118

30 0.5722 0.000157 0.3453 0.000128

35 0.6474 0.000172 0.4224 0.000140

40 0.6999 0.000188 0.4830 0.000153

45 0.7524 0.000203 0.5509 0.000166

50 0.7853 0.000219 0.6025 0.000180

Table 4.6: 2nd and 3rd to default Marshall-Olkin values, with standard errors (SE) and computational 

time, with default time correlation equal to 0.5 and 10,000 sample paths.

Com putational Time

Time 25 51 256 385 858 764 1,028 1,276 1,556

Sam ple Paths 5,000 10,000 50,000 75,000 100,000 150,000 200,000 250,000 300,000

Table 4.7: Computational Time (in sec.) to value with the Marshall-Olkin copula 1st, 2nd and 3rd to 

default with sample paths from 5,000 to 300,000.

1st to default - Monte Carlo Values and SE

0.525

0.520

0.515

0.510

0.505

0.500

0.495

M onte Carlo

Figure 4.5: 1st to default Monte Carlo values and SE with sample path (5,000 to 300,000) calculated 

with the Marshall-Olkin copula and with the Analytic expression of section 4.3.
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Figure 4.6: 2nd to default Monte Carlo values and SE with sample path (5,000 to 300,000) calculated 

with the Marshall-Olkin copula.

Figure 4.7: 3rd to default Monte Carlo values and SE with sample path (5,000 to 300,000) calculated 

with the Marshall-Olkin copula.
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Appendix 2: Chapter 4 - Numerical exercise in section 4.5

In this appendix, we illustrate the results of the Merton Normal copula model and the Survival model 

with Normal, i-Student and Clayton copulae of the numerical example in section 4.5.

MCS with Survival model, Normal copula with default time correlation of 0

1st to Default 2nd to Default 3rd to Default

Time (Sec.)No. Credits Value SE Value SE Value SE

1 0.16826 0.00354 0.00000 0.00000 0.00000 0.00000 -

2 0.30044 0.00430 0.03246 0.00166 0.00000 0.00000 -

3 0.42452 0.00459 0.08410 0.00260 0.00638 0.00074 -

4 0.51229 0.00458 0.14205 0.00325 0.02026 0.00131 -

5 0.57926 0.00448 0.20474 0.00375 0.04034 0.00183 -

6 0.65169 0.00425 0.27183 0.00410 0.07245 0.00241 -

7 0.69297 0.00406 0.32848 0.00431 0.10440 0.00284 -

8 0.74013 0.00379 0.39437 0.00444 0.14440 0.00324 -

9 0.78311 0.00346 0.46356 0.00449 0.19029 0.00361 1

10 0.80849 0.00323 0.50718 0.00447 0.23103 0.00386 1

15 0.90398 0.00201 0.71770 0.00373 0.47069 0.00443 1

20 0.93814 0.00135 0.82690 0.00283 0.65552 0.00398 1

25 0.95645 0.00083 0.89000 0.00195 0.77794 0.00316 2

30 0.96468 0.00059 0.92295 0.00130 0.85265 0.00232 3

35 0.97069 0.00037 0.93917 0.00093 0.89147 0.00172 4

40 0.97393 0.00025 0.94977 0.00061 0.91583 0.00121 6

45 0.97657 0.00022 0.95645 0.00049 0.93041 0.00089 7

50 0.97859 0.00017 0.96157 0.00032 0.93988 0.00062 9

Table 4.8: 1st 2nd and 3rd to default MC values (with standard errors SE and computational time)

calculated with Survival model, Normal copula with default time correlation equal to 0.

MCS with Survival model, Normal copula with default time correlation of 0.25

1 st to Default 2nd to Default 3rd to Default

Time (Sec.)No. Credits Value SE Value SE Value SE

1 0.16624 0.00352 0.00000 0.00000 0.00000 0.00000 -

2 0.28750 0.00425 0.04386 0.00192 0.00000 0.00000 -

3 0.37622 0.00452 0.10709 0.00290 0.01747 0.00122 -

4 0.44499 0.00461 0.16074 0.00344 0.04289 0.00190 -

5 0.49758 0.00462 0.21564 0.00384 0.07865 0.00252 -

6 0.55841 0.00454 0.27827 0.00417 0.12093 0.00305 -

7 0.58173 0.00450 0.32050 0.00433 0.15723 0.00340 -

8 0.61706 0.00441 0.35970 0.00444 0.19691 0.00370 -

9 0.65242 0.00428 0.39995 0.00452 0.22899 0.00390 1

10 0.67151 0.00421 0.43108 0.00454 0.25839 0.00405 1

15 0.75845 0.00373 0.56328 0.00447 0.40312 0.00449 1

20 0.80856 0.00334 0.64156 0.00426 0.50093 0.00453 1

25 0.84276 0.00300 0.69478 0.00404 0.56805 0.00444 2

30 0.86579 0.00275 0.74067 0.00378 0.62979 0.00427 3

35 0.88165 0.00256 0.77573 0.00354 0.67739 0.00409 4

40 0.89447 0.00239 0.79749 0.00337 0.70527 0.00396 6

45 0.90375 0.00225 0.81486 0.00323 0.72828 0.00383 7

50 0.91181 0.00212 0.83389 0.00304 0.75555 0.00366 9

Table 4.9: 1st 2nd and 3rd to default MC values (with standard errors SE and computational time) 

calculated with Survival model, Normal copula with default time correlation equal to 0.25.
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MCS with Survival model, Normal copula with default time correlation of 0.5

1 st to Default 2nd to Default 3rd to Default

Time (Sec.)No. Credits Value SE Value SE Value SE

1 0.16397 0.00350 0.00000 0.00000 0.00000 0.00000 -

2 0.26415 0.00415 0.07038 0.00241 0.00000 0.00000 -

3 0.32928 0.00442 0.12838 0.00315 0.03717 0.00178 -

4 0.38932 0.00456 0.18630 0.00366 0.08343 0.00260 -

5 0.42512 0.00461 0.22689 0.00393 0.12006 0.00305 -

6 0.45452 0.00462 0.25304 0.00407 0.14614 0.00332 -

7 0.47707 0.00464 0.28984 0.00424 0.17494 0.00356 -

8 0.50313 0.00463 0.31501 0.00434 0.20802 0.00381 -

9 0.52734 0.00461 0.34533 0.00443 0.23271 0.00395 1

10 0.54681 0.00458 0.36387 0.00448 0.25603 0.00408 1

15 0.61231 0.00446 0.45507 0.00460 0.34679 0.00442 1

20 0.65275 0.00432 0.49785 0.00461 0.40203 0.00455 1

25 0.68514 0.00419 0.54594 0.00457 0.45046 0.00460 2

30 0.71116 0.00407 0.57889 0.00451 0.48826 0.00461 3

35 0.72686 0.00399 0.60672 0.00445 0.52105 0.00459 4

40 0.74588 0.00387 0.62850 0.00439 0.55179 0.00455 6

45 0.75592 0.00381 0.64696 0.00432 0.56679 0.00452 7

50 0.76689 0.00373 0.66209 0.00426 0.58738 0.00449 9

Table 4.10: 1st 2nd and 3rd to default MC values (with standard errors SE and computational time) 

calculated with Survival model, Normal copula with default time correlation equal to 0.5.

Value of 1st to default with MCS and default time correlation of 0

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1 0.16346 0.16826 0.16155 0.16124 0.16523 0.16469
2 0.30478 0.30044 0.29430 0.29912 0.29902 0.29983

3 0.42135 0.42452 0.41838 0.41094 0.41980 0.42247
4 0.50402 0.51229 0.50246 0.50792 0.50294 0.50826

5 0.58578 0.57926 0.58421 0.58200 0.58551 0.58524

6 0.65399 0.65169 0.63869 0.64697 0.64846 0.64557

7 0.69813 0.69297 0.69959 0.69985 0.70054 0.70016
8 0.74570 0.74013 0.74807 0.74111 0.73951 0.73683

9 0.77553 0.78311 0.77864 0.77717 0.78154 0.76828
10 0.81044 0.80849 0.80611 0.80743 0.81575 0.80771
15 0.90073 0.90398 0.90235 0.89709 0.89904 0.89887

20 0.93639 0.93814 0.93847 0.93901 0.93776 0.93717
25 0.95583 0.95645 0.95557 0.95518 0.95512 0.95421

30 0.96358 0.96468 0.96424 0.96436 0.96361 0.96368
35 0.96967 0.97069 0.97010 0.96947 0.97015 0.96992

40 0.97371 0.97393 0.97315 0.97365 0.97334 0.97393
45 0.97587 0.97657 0.97600 0.97601 0.97606 0.97600
50 0.97757 0.97859 0.97772 0.97804 0.97820 0.97777

Table 4.11: 1st to default MC values with default time correlation of 0. Merton and Survival model

with Elliptical copulae.
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Value of 1st to default with MCS and default time correlation of 0.25

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1 0.15763 0.16624 0.16722 0.16586 0.16348 0.16973

2 0.29662 0.28750 0.28306 0.27902 0.27562 0.27998

3 0.39126 0.37622 0.36681 0.37996 0.37143 0.37313
4 0.48237 0.44499 0.43961 0.44429 0.44498 0.44168
5 0.54319 0.49758 0.49586 0.50299 0.50334 0.50801

6 0.60820 0.55841 0.54241 0.54872 0.55778 0.54738
7 0.65376 0.58173 0.57567 0.58802 0.59620 0.60092

8 0.68499 0.61706 0.61650 0.61445 0.62881 0.62866
9 0.72252 0.65242 0.64585 0.64275 0.65134 0.65902
10 0.74976 0.67151 0.67509 0.67319 0.68235 0.68409

15 0.83523 0.75845 0.75683 0.76271 0.76385 0.76902
20 0.88451 0.80856 0.80621 0.81188 0.81770 0.82377
25 0.91405 0.84276 0.83889 0.84722 0.85075 0.86047
30 0.92808 0.86579 0.86417 0.87122 0.87135 0.88543
35 0.94106 0.88165 0.87989 0.88713 0.89321 0.90280
40 0.94744 0.89447 0.89468 0.90246 0.90847 0.91656

45 0.95193 0.90375 0.90570 0.91056 0.91627 0.92765

50 0.95813 0.91181 0.91181 0.92242 0.92939 0.93399

Table 4.12: 1st to default MC values with default time correlation of 0.25. Merton and Survival

model with Elliptical copulae.

Value of 1st to default with MCS and default time correlation of 0.5

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1 0.16460 0.16397 0.16155 0.16124 0.16523 0.16469
2 0.27208 0.26415 0.25607 0.26037 0.26300 0.26277
3 0.37358 0.32928 0.33390 0.33686 0.34020 0.34882
4 0.42892 0.38932 0.37757 0.39269 0.38713 0.39383
5 0.48800 0.42512 0.42195 0.42507 0.43509 0.43895
6 0.53167 0.45452 0.44797 0.46209 0.46793 0.47792
7 0.56488 0.47707 0.48061 0.48909 0.48917 0.51196
8 0.59709 0.50313 0.50948 0.51737 0.51740 0.52840
9 0.63320 0.52734 0.52634 0.53764 0.54319 0.54853
10 0.65781 0.54681 0.54433 0.54717 0.56826 0.57526
15 0.74003 0.61231 0.62038 0.62338 0.62608 0.65727
20 0.79219 0.65275 0.64386 0.66618 0.68278 0.70475
25 0.82157 0.68514 0.68349 0.69832 0.71210 0.74237
30 0.84688 0.71116 0.70914 0.73185 0.74529 0.76896
35 0.85896 0.72686 0.73034 0.75285 0.77239 0.79329
40 0.88332 0.74588 0.74425 0.77514 0.77889 0.81761
45 0.89026 0.75592 0.76297 0.78638 0.79096 0.82989
50 0.89767 0.76689 0.76558 0.79680 0.81327 0.84053

Table 4.13: 1st to default MC values with default time correlation of 0.5. Merton and Survival model

with Elliptical copulae.
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Value of 2nd to default with MCS and default time correlation of 0

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1
2 0.03045 0.03246 0.02764 0.03010 0.02821 0.02774

3 0.07839 0.08410 0.07873 0.07665 0.08120 0.07771
4 0.13546 0.14205 0.13768 0.13746 0.13594 0.13642
5 0.19858 0.20474 0.20328 0.19735 0.20686 0.20577
6 0.26466 0.27183 0.26685 0.25984 0.26536 0.26636
7 0.32750 0.32848 0.33147 0.32701 0.32472 0.33065

8 0.39666 0.39437 0.39774 0.38935 0.38839 0.38763
9 0.44473 0.46356 0.45584 0.44844 0.45441 0.44518
10 0.50515 0.50718 0.49773 0.50483 0.51318 0.50353
15 0.71574 0.71770 0.71896 0.70921 0.70998 0.71252
20 0.82655 0.82690 0.83422 0.82640 0.83430 0.82622
25 0.88793 0.89000 0.88790 0.88819 0.88869 0.88922
30 0.91802 0.92295 0.92171 0.91965 0.92075 0.91970
35 0.93656 0.93917 0.93802 0.93701 0.93749 0.93839
40 0.94952 0.94977 0.94849 0.94903 0.94795 0.94949
45 0.95471 0.95645 0.95611 0.95574 0.95582 0.95602
50 0.95990 0.96157 0.95978 0.96034 0.96066 0.95998

Table 4.14: 2nd to default MC values with default time correlation of 0. Merton and Survival model

with Elliptical copulae.

Value of 2nd to default with MCS and default time correlation of 0.25

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1
2 0.03662 0.04386 0.04479 0.04613 0.04522 0.04979
3 0.08737 0.10709 0.10267 0.10401 0.10943 0.11094
4 0.14711 0.16074 0.16093 0.16744 0.16342 0.16541
5 0.20457 0.21564 0.21373 0.21892 0.22168 0.22204
6 0.27505 0.27827 0.26411 0.26867 0.27508 0.27438
7 0.32393 0.32050 0.30633 0.31690 0.32092 0.33907
8 0.37965 0.35970 0.35523 0.35528 0.36101 0.36276
9 0.43463 0.39995 0.38396 0.38499 0.39526 0.40971
10 0.47427 0.43108 0.43178 0.43082 0.43713 0.44256
15 0.63344 0.56328 0.55496 0.55898 0.56330 0.56371
20 0.73716 0.64156 0.63814 0.64544 0.65496 0.65183
25 0.80378 0.69478 0.69082 0.70749 0.70362 0.71534
30 0.84456 0.74067 0.74060 0.74799 0.74672 0.76158
35 0.87414 0.77573 0.76845 0.78064 0.78252 0.79676
40 0.89577 0.79749 0.79409 0.80876 0.81184 0.82238
45 0.91017 0.81486 0.81707 0.82618 0.83061 0.84318
50 0.92208 0.83389 0.82859 0.84487 0.85005 0.86246

Table 4.15: 2nd to default MC values with default time correlation of 0.25. Merton and Survival

model with Elliptical copulae.
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Value of 2nd to default with MCS and default time correlation of 0.5

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1
2 0.11188 0.12838 0.13377 0.13049 0.13606 0.14338

3 0.16139 0.18630 0.18036 0.18622 0.18008 0.18627

4 0.21663 0.22689 0.22655 0.22215 0.23120 0.23780

5 0.26078 0.25304 0.25841 0.25919 0.26423 0.27280

6 0.30705 0.28984 0.28643 0.29127 0.28626 0.30387

7 0.34578 0.31501 0.31809 0.32746 0.31945 0.32942

8 0.38056 0.34533 0.34414 0.34616 0.34978 0.35489

9 0.42029 0.36387 0.36000 0.36493 0.37674 0.37728
10 0.53520 0.45507 0.45552 0.45128 0.45415 0.47034

15 0.61854 0.49785 0.49686 0.51140 0.52128 0.53607

20 0.68172 0.54594 0.53973 0.54880 0.55866 0.58575

25 0.72368 0.57889 0.57710 0.59153 0.60168 0.62268

30 0.74310 0.60672 0.60468 0.62037 0.63580 0.65071

35 0.78226 0.62850 0.62761 0.65350 0.65239 0.68392

40 0.80045 0.64696 0.65649 0.66378 0.66971 0.70609

45 0.81387 0.66209 0.65593 0.67973 0.70186 0.72598

50 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 4.16: 2nd to default MC values with default time correlation of 0.5. Merton and Survival model

with Elliptical copulae.

Value of 3rd to default with MCS and default time correlation of 0

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1
2
3 0.00535 0.00638 0.00562 0.00481 0.00533 0.00521
4 0.01569 0.02026 0.01647 0.01862 0.01970 0.01772
5 0.04022 0.04034 0.03766 0.03728 0.03786 0.03902
6 0.06684 0.07245 0.06640 0.06757 0.06521 0.06663
7 0.10155 0.10440 0.10166 0.10247 0.10327 0.10356
8 0.14400 0.14440 0.14307 0.13925 0.14450 0.14572
9 0.18455 0.19029 0.19076 0.18856 0.18864 0.18996
10 0.23527 0.23103 0.22579 0.22947 0.23189 0.23309
15 0.46634 0.47069 0.47405 0.46531 0.46422 0.46335
20 0.65155 0.65552 0.65828 0.64976 0.66251 0.65183

25 0.77305 0.77794 0.77155 0.77892 0.77630 0.77656
30 0.83996 0.85265 0.84636 0.84412 0.84808 0.84479
35 0.88919 0.89147 0.88616 0.88726 0.88854 0.89140
40 0.91560 0.91583 0.91294 0.91253 0.91283 0.91632
45 0.92890 0.93041 0.93050 0.92844 0.93048 0.92925
50 0.93818 0.93988 0.93809 0.93795 0.93877 0.93830

Table 4.17: 3rd to default MC values with default time correlation of 0. Merton and Survival model

with Elliptical copulae.
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Value of 3rd to default with MCS and default time correlation of 0.25

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1
2
3 0.00885 0.01747 0.01623 0.01622 0.01947 0.02209
4 0.03146 0.04289 0.04949 0.05156 0.04697 0.05247
5 0.05403 0.07865 0.08226 0.08477 0.08416 0.08843
6 0.09363 0.12093 0.11315 0.12093 0.12505 0.12656
7 0.13211 0.15723 0.14302 0.15555 0.15970 0.17360
8 0.16519 0.19691 0.18798 0.19089 0.19752 0.20050
9 0.21334 0.22899 0.21628 0.22117 0.22924 0.23730
10 0.25403 0.25839 0.26329 0.25856 0.26380 0.27110
15 0.42837 0.40312 0.39771 0.39715 0.40596 0.40286
20 0.57004 0.50093 0.49397 0.50371 0.50733 0.50648
25 0.67290 0.56805 0.56164 0.57804 0.57731 0.58408
30 0.73809 0.62979 0.63023 0.63252 0.63282 0.64146
35 0.78711 0.67739 0.66615 0.67548 0.67496 0.69124
40 0.82784 0.70527 0.70134 0.70921 0.71477 0.73156
45 0.85026 0.72828 0.73469 0.74346 0.74103 0.75378
50 0.87343 0.75555 0.75456 0.76536 0.77014 0.78382

Table 4.18: 3rd to default MC values with default time correlation of 0.25. Merton and Survival

model with Elliptical copulae.

Value of 3rd to default with MCS and default time correlation of 0.5

No. Credits
Merton Normal 

copula
Survival model, 
Normal copula

Survival model, t- 
copula, dof = 100

Survival model, t- 
copula, dof = 12

Survival model, t- 
copula, dof = 8

Survival model, t- 
copula, dof = 4

1
2
3 0.01970 0.03717 0.04145 0.03911 0.04431 0.04569
4 0.05110 0.08343 0.07517 0.08226 0.08292 0.09081
5 0.08399 0.12006 0.11878 0.11746 0.12649 0.13121
6 0.12196 0.14614 0.14339 0.15176 0.15596 0.16483
7 0.15645 0.17494 0.17517 0.18307 0.18171 0.19654
8 0.19288 0.20802 0.20644 0.21346 0.21135 0.21575
9 0.21945 0.23271 0.23225 0.23991 0.24137 0.24834
10 0.25934 0.25603 0.24864 0.25794 0.26349 0.26462
15 0.38532 0.34679 0.34837 0.34057 0.34855 0.36081
20 0.48018 0.40203 0.39902 0.40772 0.41506 0.42600
25 0.55426 0.45046 0.44736 0.44960 0.45874 0.48218
30 0.61000 0.48826 0.48776 0.49550 0.50125 0.51816
35 0.63592 0.52105 0.52062 0.52688 0.54242 0.55027
40 0.68772 0.55179 0.54602 0.56334 0.55968 0.58378
45 0.71607 0.56679 0.57686 0.58058 0.58013 0.60851
50 0.73224 0.58738 0.58163 0.60011 0.61647 0.63485

Table 4.19: 3rd to default MC values with default time correlation of 0.5. Merton and Survival model

with Elliptical copulae.
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Value of 1st to default with Clayton - Copula with different a

No. Credits a = 5.6E-08 a =0.151 a = 0.178 a = 0.231 a = 0.246 a = 0.274 a = 0.327 a = 0.353 a = 0.5

1 0.16409 0.16535 0.16862 0.16415 0.16603 0.16352 0.16409 0.16475 0.16346

2 0.30025 0.29489 0.28351 0.28581 0.27796 0.28301 0.27338 0.27219 0.26263

3 0.41411 0.38162 0.38409 0.36240 0.36112 0.36152 0.34865 0.35080 0.33954

4 0.50259 0.46386 0.45220 0.43088 0.43299 0.42717 0.41062 0.41588 0.37939

5 0.58011 0.52216 0.50756 0.49783 0.48602 0.47315 0.46477 0.45900 0.41470

6 0.65173 0.57329 0.56197 0.53761 0.53416 0.51693 0.50783 0.49469 0.45505

7 0.68975 0.60895 0.59475 0.58633 0.57252 0.55313 0.54610 0.52096 0.47503

8 0.74489 0.64274 0.62003 0.60306 0.59308 0.58794 0.56749 0.55964 0.50696

9 0.77981 0.67457 0.65636 0.63567 0.62416 0.61083 0.59228 0.57833 0.52544

10 0.80974 0.70110 0.68447 0.65025 0.65139 0.63107 0.61378 0.59229 0.53832

15 0.89903 0.78753 0.77129 0.73897 0.73421 0.71985 0.68832 0.66848 0.60574

20 0.93764 0.83549 0.82434 0.79005 0.77770 0.76395 0.73049 0.72591 0.65055

25 0.95545 0.87443 0.85398 0.81876 0.81642 0.79486 0.76149 0.74920 0.68479

30 0.96339 0.89272 0.87119 0.84608 0.83500 0.81653 0.78890 0.77116 0.70457

35 0.96984 0.90577 0.89145 0.85774 0.85122 0.83454 0.80841 0.79743 0.72198

40 0.97333 0.91381 0.90164 0.87405 0.86391 0.85290 0.82206 0.80836 0.73226

45 0.97538 0.92451 0.90964 0.88171 0.87322 0.86185 0.83223 0.82349 0.75310

50 0.97801 0.93051 0.92022 0.89130 0.88374 0.87368 0.84545 0.82703 0.75937

Table 4.20: 1st to default MC values calculated with Survival model and Clayton copula.
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Value of 2nd to default with Clayton - Copula with different a

No. Credits a = 5.6E-08 a =0.151 a = 0.178 a = 0.231 a = 0.246 a = 0.274 a = 0.327 a = 0.353 a = 0.5

1
2 0.02904 0.04374 0.04402 0.05004 0.04956 0.05200 0.05460 0.05540 0.06482
3 0.07863 0.09346 0.10131 0.10387 0.10364 0.10628 0.11725 0.11861 0.13005
4 0.13295 0.15744 0.15395 0.16240 0.16789 0.16467 0.17104 0.17599 0.18008
5 0.19971 0.21858 0.21901 0.22402 0.22034 0.21761 0.22151 0.22180 0.21540
6 0.26878 0.27161 0.27164 0.27067 0.26836 0.26939 0.26709 0.26829 0.25937
7 0.31909 0.31906 0.31878 0.32147 0.31035 0.30717 0.30861 0.30098 0.28403
8 0.39427 0.35992 0.35475 0.35458 0.35794 0.35090 0.34473 0.34040 0.32222
9 0.44745 0.40759 0 39839 0.39315 0.38595 0.37712 0.37281 0.36357 0.34941
10 0.51232 0.44601 0.44188 0.41389 0.42150 0.40120 0.40457 0.38190 0.36204
15 0.71159 0.58385 0.57255 0.54475 0.54027 0.52661 0.50741 0.49472 0.44178
20 0.82757 0.68350 0.66584 0.62218 0.61014 0.60178 0.56912 0.57100 0.50336
25 0.88905 0.74287 0.72286 0.68133 0.66885 0.65125 0.61976 0.60442 0.54721
30 0.92029 0.78307 0.75878 0.72452 0.70878 0.69269 0.65406 0.64600 0.58163
35 0.93818 0.81586 0.79076 0.74946 0.74043 0.72251 0.69056 0.68101 0.60468
40 0.94744 0.83360 0.81338 0.77741 0.76019 0.75494 0.71939 0.70393 0.62530
45 0.95558 0.85511 0.83395 0.79369 0.78184 0.76784 0.72880 0.71944 0.64540
50 0.96049 0.86481 0.84821 0.81091 0.79612 0.78582 0.74940 0.73219 0.65348

Table 4.21: 2nd to default MC values calculated with Survival model and Clayton copula.
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Value of 3rd to default with Clayton - Copula with different a

No. Credits a = 5.6E-08 a =0.151 a = 0.178 a = 0.231 a = 0.246 a = 0.274 a = 0.327 a = 0.353 a = 0.5

1
2
3 0.00494 0.01317 0.01309 0.01682 0.01828 0.01927 0.02406 0.02496 0.03943
4 0.01714 0.03890 0.04119 0.04713 0.04951 0.05468 0.06270 0.06136 0.07504

5 0.03931 0.07251 0.07546 0.08281 0.08508 0.08674 0.09579 0.09779 0.10906
6 0.06693 0.10564 0.11540 0.12285 0.12160 0.12885 0.13058 0.13897 0.14959
7 0.09845 0.14515 0.14428 0.16680 0.15720 0.15813 0.17036 0.16706 0.17671

8 0.13948 0.18109 0.18250 0.20269 0.19769 0.19919 0.20102 0.20149 0.21030
9 0.18461 0.21962 0.21990 0 22608 0.22527 0.23301 0.23270 0.23477 0.23348

10 0.23989 0.25992 0.26550 0.25900 0.26329 0.25566 0.26125 0.25461 0.25070

15 0.46187 0.40956 0.41010 0.38898 0.39285 0.37877 0.37361 0.37083 0.33668

20 0.65700 0.52981 0.51855 0.48899 0.47669 0.47008 0.45273 0.45569 0.40496

25 0.77320 0.61266 0.59149 0.56058 0.55181 0.53524 0.50959 0.49652 0.45953
30 0.84960 0.67571 0.64694 0.61155 0.59835 0.58270 0.55119 0.54667 0.49604

35 0.88797 0.71626 0.69593 0.64729 0.64146 0.62279 0.60111 0.58778 0.52525

40 0.91271 0.74720 0.72852 0.68569 0.67477 0.66567 0.63320 0.61344 0.55285

45 0.92905 0.77671 0.75535 0.71167 0.69861 0.68487 0.64816 0.63705 0.57085

50 0.93951 0.79738 0.77925 0.73647 0.71411 0.70894 0.67442 0.65609 0.58277

Table 4.22: 3rd to default MC values calculated with Survival model and Clayton copula.
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T im e (in seconds)

No. C redits Merton
Surviva l 

Normal copula
Surviva l t- 

S tudent copula
C layton

1 0 - 0 -

2 0 - 1 0

3 0 - 1 0

4 0 - 1 0

5 0 - 2 0

6 0 - 2 0

7 0 - 2 0

8 1 - 2 0

9 1 1 3 0

10 1 1 3 0

15 1 1 5 0

20 2 1 6 0

25 3 2 8 1

30 4 3 9 1

35 6 4 11 1

40 7 6 13 1

45 9 7 14 1

50 11 9 16 1

Table 4.23: Computational times.

0.1 0.3 0.5 0.7 0.9
Correlation

Figure 4.15: 1st to default values calculated with Survival model with Normal 

copula and ¿-Student copula (10 d.o.f.) with 5 and 20 credits.
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Figure 4.16: 2nd to default values calculated with Survival model and Normal copula 

and ¿-Student copula (10 d.o.f.) with 5 and 20 credits.

0.1 0 .3  0 .5  0 .7  0.9
Correlation

Figure 4.17: 3rd to default values calculated with Survival model with Normal copula 

and ¿-Student copula (10 d.o.f.) with 5 and 20 credits.

Figure 4.18: 1st _ 2nd and 3rd to default values calculated with Survival model with 

Normal copula and ¿-Student copula, correlation of 0.25 and with 5 credits.
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Table 4.24: Collateral summary information: 50 obligors, with maturity, par value (current balance), rating, industry classification, and

CDS premium as implied in the rating probabilities of Moody’s idealised cumulative expected losses of Table 2.8, assuming a recovery rate of 45%.

V  -Q

■5 §2  =>-
aCD CD

O bligor M aturity Par Rating Industry CDS Prem ium O bligor M aturity Par Rating Industry

X
P

t

33CL X

Im plied in Rating Prob. CD
OMhj

1 4 years 30,000 Aaa Finance 0.01 26 4 years 30,000 A2 Oil and Gas

we n
sr
P

2 4 years 20,000 Ba1 Beverage, Food and Tobacco 14.65 27 4 years 10,000 Ba1 Banking CZJ
CD ë c

3 4 years 20,000 Ba1 Banking 14.65 28 4 years 30,000 Ba1 Buildings and Real Estate O c
CD V

■—* • r+ -
4 4 years 40,000 A1 Finance 0.01 29 4 years 30,000 Baal Beverage, Food and Tobacco o P CD

5 4 years 10,000 A1 Buildings and Real Estate 0.63 30 4 years 40,000 Baal Personal, Food and Misc Services -1^ CD n

6 4 years 10,000 Aaa Buildings and Real Estate 0.01 31 4 years 20,000 Aa3 Insurance O n 3 *
CD

4 -
1

7 4 years 20,000 Ba1 Machinery 14.65 32 4 years 30,000 A3 Utilities 3
1

'Z
C8 4 years 10,000 Baal Printing, Publishing and Broadcasting 0.01 33 4 years 10,000 Aaa Buildings and Real Estate CD£

9 4 years 10,000 Aaa Printing, Publishing and Broadcasting 2.80 34 4 years 10,000 Baal Retail Stores CD 5
10

11

12

4 years 

4 years 

4 years

20,000

10,000

20,000

Baal

Baa2

A3
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2.80

4.08

0.01

35
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50.000

20.000 
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Baal

Ba1
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T elecommunications

o
3
CD

MO 1-J — . O P
13 4 years 40,000 Baal Chemicals, Plastics and Rubber 0.01 38 4 years 20,000 Ba1 Buildings and Real Estate W

tri rt>
14 4 years 10,000 B1 Beverage, Food and Tobacco 1.15 39 4 years 10,000 Aa2 T elecommunications x X
15 4 years 30,000 B1 Beverage, Food and Tobacco 52.34 40 4 years 20,000 Aa2 Furnishings, Houseware Durable Consumer Prodi o'E-

n
16 4 years 20,000 Baal Retail Stores 2.80 41 4 years 10,000 Ba1 T elecommunications n
17 4 years 20,000 Baal Leisure, Amusement, Motion Pictures, Entertainr 1.15 42 4 years 10,000 Ba2 Banking

p

o C/5-
18
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>
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23 4 years 10,000 Ba1 Buildings and Real Estate 0.01 48 4 years 10,000 Ba1 Oil and Gas
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Junior Note
(Linear) defau lt tim e correlation o f 0 No (linear) defau lt tim e correlation

Merton model Surviva l model
Normal copula Normal copula f-S tudent copula with dof Clayton copula with alfa

12 4 5.6E-08 0.151 0.198
Premium 743.610 bps 758.389 bps 734.162 bps 718.048 bps 745.518 bps 630.188 bps 594.300 bps
EL (£) 10,210.186 10,382.553 10,099.441 9,909.557 10,232.498 8,851.398 8,407.862
SE (£) 107.775 100.718 104.773 105.129 106.248 119.100 121.293
EL (%) 25.5255% 25.9564% 25.2486% 24.7739% 25.5812% 22.1285% 21.0197%
EL+SE (%) 25.7949% 26.2082% 25.5105% 25.0367% 25.8469% 22.4262% 21.3229%
Rating Caa Caa Caa Caa Caa B3 B3

EL|L=97% (£) 37,047.474 36,874.530 37,053.206 37,086.049 37,166.271 38,630.190 38,633.165
EL|L=99% (£) 37,895.033 37,746.769 37,847.423 38,010.503 38,055.192 39,180.680 39,190.245
EL|L=99.5%  (£) 38,320.154 38,354.510 38,356.863 38,525.031 38,506.717 39,375.965 39,416.471

Table 4.25: Junior Note with default time correlation of 0 and with no linear default time correlation

- EL, SE, Premium, Rating and Expected Shortfall.

Mezzanine Note
(Linear) defau lt tim e correlation o f 0 No (linear) defau lt tim e correlation

Merton model Survival model
Normal copula Normal copula t -Student copula w ith dof C layton copula w ith alfa

12 4 5.6E-08 0.151 0.198
Premium 14.764 bps 12.312 bps 15.987 bps 16.357 bps 16.685 bps 67.482 bps 82.585 bps
EL (£) 294.358 245.596 318.661 325.998 332.517 1,330.476 1,623.062
SE (£) 19.721 16.597 21.209 23.047 22.114 61.989 69.876
EL (%) 0.5887% 0.4912% 0.6373% 0.6520% 0.6650% 2.6610% 3.2461%
EL+SE (%) 0.6282% 0.5244% 0.6797% 0.6981% 0.7093% 2.7849% 3.3859%
Rating B aa l A3 B aa l B aa l B aa l Ba1 Ba1

EL|L=97% (£) 9,920.869 8,948.683 11,383.125 11,388.724 11,770.978 36,381.275 40,343.227
EL|L=99% (£) 16,751.168 13,437.048 18,061.386 19,668.812 18,617.327 44,943.069 46,491.089
EL|L=99.5%  (£) 20,991.176 16,954.762 22,620.673 25,022.596 23,586.275 46,663.725 47,637.255

Table 4.26: Mezzanine Note with default time correlation of 0 and with no linear default time

correlation - EL, SE, Premium, Rating and Expected Shortfall.

Senior Note
(Linear) defau lt tim e correlation o f 0 No (linear) defau lt tim e correlation

Merton model Surviva l model
Normal copula Normal copula f-S tudent copula with dof Clayton copula with alfa

12 4 5.6E-08 0.151 0.198
Premium 0.000 bps 0.000 bps 0.000 bps 0.000 bps 0.001 bps 0.481 bps 1.139 bps
EL (£) 0.000 0.000 0.000 0.000 0.290 175.184 414.632
SE (£) 0.000 0.000 0.000 0.000 0.290 30.548 51.193
EL (%) 0.0000% 0.0000% 0.0000% 0.0000% 0.0000% 0.0193% 0.0456%
EL+SE (%) 0.0000% 0.0000% 0.0000% 0.0000% 0.0001% 0.0226% 0.0512%
Rating Aaa Aaa Aaa Aaa Aaa Aa2 Aa3

EL|L=97% (£) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EL|L=99% (£) 0.000 0.000 0.000 0.000 0.000 0.000 36,807.047
EL|L=99.5%  (£) 0.000 0.000 0.000 0.000 0.000 28,032.648 61,833.396

Table 4.27: Senior Note with default time correlation of 0 and with no linear default time correlation

- EL, SE, Premium, Rating and Expected Shortfall.
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Junior Note
(Linear) default tim e correlation o f 0.25 No (linear) default tim e correlation

Merton model Surviva l model
Normal copula Normal copula i-S tudent copula with dof C layton copula with alfa

12 4 0.177 0.231 0.274
Premium 668.572 bps 610.096 bps 651.570 bps 690.575 bps 603.902 bps 564.658 bps 552.150 bps
EL (£) 9,318.461 8,603.906 9,112.501 9,582.839 8,527.187 8,036.474 7,878.367
SE (£) 109.538 110.694 118.196 117.405 119.757 119.822 121.142
EL (%) 23.2962% 21.5098% 22.7813% 23.9571% 21.3180% 20.0912% 19.6959%
EL+SE (%) 23.5700% 21.7865% 23.0767% 24.2506% 21.6174% 20.3907% 19.9988%
Rating B3 B3 B3 Caa B3 B3 B3

EL|L=97% (£) 37,232.394 37,332.685 38,128.156 37,837.359 38,563.832 38,594.275 38,754.624
EL|L=99% (£) 38,153.067 38,121.980 38,731.895 38,475.210 39,097.822 39,187.157 39,253.205
EL|L=99.5% (£) 38,659.036 38,501.176 39,042.436 38,771.273 39,337.939 39,434.465 39,457.255

Table 4.28: Junior Note with default time correlation of 0.25 and with no linear default time

correlation - EL, SE, Premium, Rating and Expected Shortfall.

M ezzanine Note
(Linear) default tim e correlation o f 0.25 No (linear) default tim e correlation

Merton model Survival model
Normal copula Normal copula i-S tudent copula w ith dof C layton copula w ith alfa

12 4 0.177 0.231 0.274
Premium 24.126 bps 34.173 bps 57.805 bps 55.290 bps 75.668 bps 82.598 bps 98.451 bps
EL (£) 480.055 678.518 1,142.028 1,092.920 1,489.291 1,623.327 1,928.435
SE (£) 29.549 39.640 55.743 54.066 66.051 70.597 78.915
EL (%) 0.9601% 1.3570% 2.2841% 2.1858% 2.9786% 3.2467% 3.8569%
EL+SE (%) 1.0192% 1.4363% 2.3955% 2.2940% 3.1107% 3.3878% 4.0147%
Rating Baa2 Baa3 Ba1 Baa3 Ba1 Ba1 Ba1

EL|L=97% (£) 16,065.556 22,590.637 32,359.990 31,205.463 38,328.884 40,848.008 44,160.956
EL|L=99% (£) 24,324.127 33,184.158 42,749.505 42,739.604 45,754.455 46,565.347 46,964.887
EL|L=99.5%  (£) 30,887.255 39,110.784 45,483.333 45,314.706 47,056.863 47,641.176 47,910.784

Table 4.29: Mezzanine Note with default time correlation of 0.25 and with no linear default time 

correlation - EL, SE, Premium, Rating and Expected Shortfall.

Senior Note
(Linear) default tim e correlation o f 0.25 No (linear) defau lt tim e correlation

Merton model Survival model
Normal copula Normal copula i-S tudent copula with dof C layton copula w ith alfa

12 4 0.177 0.231 0.274
Premium 0.010 bps 0.155 bps 0.378 bps 0.420 bps 0.740 bps 1.138 bps 1.754 bps
EL (£) 3.591 56.337 137.745 152.861 269.444 413.969 638.103
SE (£) 1.684 13.633 24.457 26.408 37.336 52.995 63.748
EL (%) 0.0004% 0.0062% 0.0151% 0.0168% 0.0296% 0.0455% 0.0701%
EL+SE (%) 0.0006% 0.0077% 0.0178% 0.0197% 0.0337% 0.0513% 0.0771%
Rating Aaa Aa1 Aa1 Aa1 Aa2 Aa3 Aa3

EL|L=97% (£) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EL|L=99% (£) 0.000 0.000 0.000 0.000 26,210.167 36,934.083 53,218.286
EL|L=99.5%  (£) 0.000 0.000 27,121.569 25,176.045 43,140.417 58,890.570 75,503.750

Table 4.30: Senior Note with default time correlation of 0.25 and with no linear default time

correlation - EL, SE, Premium, Rating and Expected Shortfall.
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Junior Note
(Linear) defau lt tim e correlation of 0.50 No (linear) defau lt tim e correlation

Merton model Survival model
Normal copula Normal copula ( -Student copula w ith dof Clayton copula with alfa

12 4 0.246 0.327 0.391
Premium 589.416 bps 453.668 bps 526.120 bps 583.258 bps 560.322 bps 529.721 bps 506.923 bps
EL (£) 8,346.987 6,604.084 7,546.662 8,270.052 7,981.747 7,592.756 7,299.696
SE (£) 114.235 113.134 120.852 121.155 120.885 120.730 120.714
EL (%) 20.8675% 16.5102% 18.8667% 20.6751% 19.9544% 18.9819% 18.2492%
EL+SE (%) 21.1531% 16.7930% 19.1688% 20.9780% 20.2566% 19.2837% 18.5510%
Rating B3 B2 B3 B3 B3 B3 B3

EL|L=97% (£) 37,932.590 38,173.684 38,485.755 38,305.657 38,716.365 38,650.961 38,777.565
EL|L=99% (£) 38,777.431 38,812.277 38,932.960 38,842.376 39,239.837 39,218.614 39,290.476
EL|L=99.5% (£) 39,331.765 39,158.846 39,180.154 39,110.303 39,410.597 39,467.308 39,483.304

Table 4.31: Junior Note with default time correlation of 0.5 and with no linear default time

correlation - EL, SE, Premium, Rating and Expected Shortfall.

Mezzanine Note
(Linear) defau lt tim e correlation o f 0.50 No (linear) defau lt tim e correlation

Merton model Survival model
Normal copula Normal copula (-S tudent copula w ith dof Clayton copula w ith alfa

12 4 0.246 0.327 0.391
Premium 52.144 bps 72.439 bps 98.007 bps 101.361 bps 91.041 bps 95.921 bps 108.114 bps
EL (£) 1,031.421 1,426.717 1,919.916 1,984.208 1,786.061 1,879.881 2,113.398
SE (£) 53.092 66.160 78.644 80.823 75.016 77.155 84.147
EL (%) 2.0628% 2.8534% 3.8398% 3.9684% 3.5721% 3.7598% 4.2268%
EL+SE (%) 2.1690% 2.9858% 3.9971% 4.1301% 3.7222% 3.9141% 4.3951%
Rating Baa3 Ba1 Ba1 Ba1 Ba1 Ba1 Ba2

EL|L=97% (£) 30,940.703 38,997.012 43,886.210 44,363.745 42,305.976 43,743.028 45,572.718
EL|L=99% (£) 41,891.707 45,603.676 46,326.336 46,311.881 46,718.317 47,333.168 47,632.108
EL|L=99.5%  (£) 45,119.471 46,697.917 47,236.275 47,202.546 47,729.412 48,277.451 48,399.359

Table 4.32: Mezzanine Note with default time correlation of 0.5 and with no linear default time 

correlation - EL, SE, Premium, Rating and Expected Shortfall.

Senior Note
(Linear) defau lt tim e correlation o f 0.50 No (linear) defau lt tim e correlation

Merton model Surviva l model
Normal copula Normal copula (-S tudent copula with dof C layton copula w ith alfa

12 4 0.246 0.327 0.391
Premium 0.420 bps 0.856 bps 1.873 bps 2.626 bps 1.335 bps 2.085 bps 2.873 bps
EL (£) 152.697 311.691 681.330 955.295 485.661 758.642 1,045.242
SE (£) 25.642 39.647 69.904 98.777 57.279 77.553 102.976
EL (%) 0.0168% 0.0343% 0.0749% 0.1050% 0.0534% 0.0834% 0.1149%
EL+SE (%) 0.0196% 0.0386% 0.0826% 0.1158% 0.0597% 0.0919% 0.1262%
Rating Aa1 Aa2 Aa3 A1 Aa3 Aa3 A1

EL|L=97% (£) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EL|L=99% (£) 0.000 28,412.448 57,308.333 75,469.965 41,648.606 66,271.642 79,463.035
EL|L=99.5% (£) 24,341.484 49,196.000 81,711.875 111,693.750 67,554.118 93,651.250 116,818.333

Table 4.33: Senior Note with default time correlation of 0.5 and with no linear default time

correlation - EL, SE, Premium, Rating and Expected Shortfall.
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Appendix 4: Chapter 4 -  Numerical exercise in section 4.8

In this appendix, we illustrate the results of the Schonbucher and Schuber copula model on the 

numerical example in section 4.8.

Junior Note

Schonbucher and Schubert model

Clayton Copula with alfa of

0.177 0.231 0.274 0.246 0.327 0.391
Premium 621.14 568.43 565.78 570.77 520.10 493.62
EL (£) 8,740.24 8,084.01 8,050.55 8,113.41 7,469.49 7,127.41
SE (£) 124.10 124.89 127.07 125.18 125.91 126.06
EL (%) 21.8506% 20.2100% 20.1264% 20.2835% 18.6737% 17.8185%
EL+SE (%) 22.1608% 20.5223% 20.4441% 20.5965% 18.9885% 18.1337%
Rating B3 B3 B3 B3 B3 B3

EL|L=97% (£) 38,749 38,854 39,040 38,972 39,030 39,015
EL|L=99% (£) 39,226 39,260 39,363 39,338 39,379 39,362
EL|L=99.5% (£) 39,403 39,396 39,468 39,484 39,503 39,468

Table 4.34: Junior Note with Schonbucher and Schuber Clayton copula model.

Mezzanine Note
Schonbucher and Schubert model

Clayton Copula with alfa of

0.177 0.231 0.274 0.246 0.327 0.391
Premium 109.99 134.68 158.59 141.42 165.34 184.95
EL (£) 2,149.29 2,618.06 3,067.39 2,745.15 3,193.39 3,557.60
SE (£) 83.84 94.94 104.74 98.23 108.38 115.00
EL (%) 4.2986% 5.2361% 6.1348% 5.4903% 6.3868% 7.1152%
EL+SE (%) 4.4663% 5.4260% 6.3443% 5.6868% 6.6035% 7.3452%
Rating Ba2 Ba2 Ba2 Ba2 Ba2 Ba3

EL|L=97% (£) 45,065 45,998 46,793 46,423 47,243 47,330
EL|L=99% (£) 46,884 47,483 48,083 47,847 48,364 48,267
EL|L=99.5% (£) 47,651 48,198 48,600 48,462 48,861 48,728

Table 4.35: Mezzanine Note with Schonbucher and Schuber Clayton copula model.
Senior Note

Schönbucher and Schubert model

Clayton Copula with alfa of

0.177 0.231 0.274 0.246 0.327 0.391
Premium 2.78 6.21 11.63 8.59 18.26 26.38
EL (£) 1,010.04 2,256.79 4,223.14 3,122.35 6,619.81 9,548.55
SE (£) 95.22 181.22 271.58 219.95 378.29 475.92
EL (%) 0.1110% 0.2480% 0.4641% 0.3431% 0.7275% 1.0493%
EL+SE (%) 0.1215% 0.2679% 0.4939% 0.3673% 0.7690% 1.1016%
Rating A1 A2 A3 A3 B aa l Baa2

EL|L=97% (£) 0 86,066 151,955 116,774 224,759 281,759
EL|L=99% (£) 77,346 160,800 236,825 194,073 302,685 337,727
EL|L=99.5% (£) 109,177 212,708 280,481 239,146 336,952 366,552

Table 4.36: Senior Note with Schonbucher and Schuber Clayton copula model.
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Appendix 5: Chapter 5 - generators and transition matrices calculated 

with modifying the default intensities

A z)/(0) =

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.0732 0.0667 0.0053 0.0004 0.0008 0.0000 0.0000 0.0000

A A 0.0067 -0.0963 0.0825 0.0048 0.0004 0.0014 0.0003 0.0002

A 0.0007 0.0232 -0.0928 0.0624 0.0042 0.0017 0.0004 0.0003

BBB 0.0004 0.0019 0.0497 -0.1176 0.0564 0.0069 0.0019 0.0003

BB 0.0005 0.0009 0.0033 0.0692 -0.1940 0.1047 0.0092 0.0062

B 0.0000 0.0009 0.0027 0.0014 0.0644 -0.1637 0.0724 0.0218

CCC 0.0008 0.0007 0.0045 0.0089 0.0208 0.1457 -0.2397 0.0583

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.9: generator for the period [0,1], with method 1.

A d/(1) =

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.0732 0.0667 0.0053 0.0004 0.0008 0.0000 0.0000 0.0000

A A 0.0067 -0.0963 0.0825 0.0048 0.0004 0.0014 0.0003 0.0002

A 0.0007 0.0232 -0.0929 0.0624 0.0042 0.0017 0.0004 0.0003

BBB 0.0004 0.0019 0.0497 -0.1172 0.0564 0.0069 0.0019 0.0000
BB 0.0005 0.0009 0.0033 0.0692 -0.1924 0.1047 0.0092 0.0046

B 0.0000 0.0009 0.0027 0.0014 0.0644 -0.1622 0.0724 0.0203

CCC 0.0008 0.0007 0.0045 0.0089 0.0208 0.1457 -0.2481 0.0668

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Tables 5.10: generator for the period [ 1 , 2 ] , 'with method 1.

P a r  ( 0 , 1 )  =

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 92.952% 6.160% 0.720% 0.075% 0.079% 0.008% 0.002% 0.006%

A A 0.617% 90.907% 7.561% 0.653% 0.070% 0.134% 0.036% 0.022%

A 0.073% 2.131% 91.333% 5.674% 0.512% 0.194% 0.049% 0.034%

BBB 0.042% 0.219% 4.526% 89.163% 4.927% 0.848% 0.211% 0.064%

BB 0.044% 0.098% 0.444% 6.031% 82.671% 8.993% 1.028% 0.690%

B 0.004% 0.090% 0.275% 0.329% 5.550% 85.465% 6.076% 2.211%

CCC 0.071% 0.071% 0.424% 0.840% 2.070% 12.263% 78.887% 5.374%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Tables 5.11: time-inhomogeneous transition matrices for the period [0,1], with method 1.
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P D I (1,2) =

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 92.952% 6.160% 0.720% 0.075% 0.079% 0.008% 0.002% 0.006%

A A 0.617% 90.907% 7.561% 0.653% 0.070% 0.134% 0.036% 0.022%

A 0.073% 2.131% 91.331 % 5.674% 0.512% 0.194% 0.049% 0.035%

BBB 0.042% 0.220% 4.526% 89.194% 4.931% 0.849% 0.210% 0.028%

BB 0.044% 0.098% 0.445% 6.036% 82.806% 9.005% 1.025% 0.541%

B 0.004% 0.090% 0.275% 0.329% 5.557% 85.597% 6.059% 2.088%

CCC 0.071% 0.071% 0.423% 0.837% 2.065% 12.229% 78.204% 6.101%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Tables 5.12: time-inhomogeneous transition matrices for the period [1,2], with method 1.

Appendix 6: Chapter 5 - generators and transition matrices calculated

with modifying the rows

^ ( 0 ,1 )  =

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 97.194% 2.237% 0.477% 0.045% 0.033% 0.006% 0.001% 0.006%

A A 1.913% 72.308% 23.225% 1.871 % 0.151% 0.399% 0.105% 0.027%

A 0.062% 1.389% 93.802% 4.262% 0.295% 0.125% 0.031% 0.034%

BBB 0.009% 0.037% 0.908% 97.795% 0.999% 0.156% 0.040% 0.056%

BB 0.028% 0.052% 0.218% 4.050% 88.383% 5.970% 0.598% 0.700%

B 0.001% 0.031% 0.105% 0.103% 2.246% 92.711% 2.581% 2.221%

CCC 0.010% 0.008% 0.055% 0.113% 0.257% 1.704% 92.481% 5.374%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.13: time-inhomogeneous transition matrices for the period [0,1], with method 2.

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 98.109% 1.647% 0.198% 0.020% 0.021% 0.002% 0.000% 0.004%

A A 0.658% 90.528% 7.919% 0.660% 0.053% 0.137% 0.036% 0.009%

A 0.057% 1.642% 93.193% 4.593% 0.315% 0.130% 0.033% 0.036%

BBB 0.006% 0.032% 0.701% 98.286% 0.783% 0.118% 0.030% 0.043%

BB 0.024% 0.048% 0.177% 3.429% 90.184% 5.046% 0.503% 0.590%

B 0.001% 0.033% 0.099% 0.094% 2.212% 92.877% 2.516% 2.168%

CCC 0.010% 0.009% 0.055% 0.114% 0.263% 1.729% 92.367% 5.454%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.14: time-inhomogeneous transition matrices for the period [1,2], with method 2.
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 97.459% 2.313% 0.180% 0.016% 0.028% 0.001% 0.000% 0.005%

A A 0.900% 100 .000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000%

A 0.020% 0.663% 97.351% 1.768% 0.122% 0.049% 0.012% 0.014%

BBB 0.006% 0.028% 0.666% 98.391% 0.734% 0.108% 0.028% 0.040%

BB 0.021% 0.044% 0.158% 3.041% 91.290% 4.478% 0.446% 0.523%

B 0.000% 0.034% 0.098% 0.087% 2.198% 92.956% 2.484% 2.142%

ccc 0.010% 0.009% 0.056% 0.115% 0.268% 1.760% 92.232% 5.550%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.15: time-inhomogeneous transition matrices for the period [2, 3].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 97.615% 2.166% 0.172% 0.016% 0.027% 0.001% 0.000% 0.005%

A A 0.033% 99.523% 0.404% 0.029% 0.002% 0.007% 0.002% 0.000%

A 0.027% 0.897% 96.410% 2.400% 0.164% 0.066% 0.017% 0.018%

BBB 0.005% 0.023% 0.534% 98.704% 0.596% 0.085% 0.022% 0.032%

BB 0.017% 0.036% 0.129% 2.536% 92.748% 3.730% 0.370% 0.435%

B 0.000% 0.033% 0.095% 0.080% 2.161% 93.116% 2.423% 2.091%

CCC 0.010% 0.009% 0.057% 0.116% 0.275% 1.791% 92.095% 5.647%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.16: time-inhomogeneous transition matrices for the period [3, 4].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 96.070% 3.361% 0.469% 0.042% 0.045% 0.004% 0.001% 0.008%

A A 0.908% 86.753% 11.174% 0.840% 0.072% 0.191% 0.050% 0.012%

A 0.042% 1.148% 95.183% 3.245% 0.238% 0.094% 0.024% 0.025%

BBB 0.012% 0.057% 1.357% 96.701% 1.516% 0.220% 0.057% 0.081%

BB 0.019% 0.037% 0.150% 2.690% 92.232% 4.029% 0.391% 0.453%

B 0.000% 0.024% 0.074% 0.063% 1.659% 94.695% 1.893% 1.592%

CCC 0.006% 0.006% 0.037% 0.074% 0.173% 1.156% 94.936% 3.612%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.17: time-inhomogeneous transition matrices for the period [4, 5],

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 95.613% 3.941% 0.354% 0.032% 0.049% 0.002% 0.000% 0.009%

A A 0.190% 97.224% 2.349% 0.170% 0.015% 0.040% 0.010% 0.002%

A 0.031% 1.002% 95.964% 2.690% 0.196% 0.077% 0.019% 0.021%

BBB 0.010% 0.051% 1.197% 97.091% 1.339% 0.190% 0.050% 0.071%

BB 0.017% 0.035% 0.131% 2.409% 93.053% 3.602% 0.349% 0.405%

B 0.000% 0.025% 0.073% 0.060% 1.651 % 94.741% 1.874% 1.577%

CCC 0.006% 0.006% 0.037% 0.075% 0.175% 1.169% 94.879% 3.653%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.18: time-inhomogeneous transition matrices for the period [5, 6],
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 96.058% 3.542% 0.319% 0.028% 0.044% 0.002% 0.000% 0.008%

A A 0.189% 97.238% 2.341% 0.166% 0.014% 0.039% 0.010% 0.002%

A 0.028% 0.885% 96.434% 2.379% 0.172% 0.067% 0.017% 0.018%

BBB 0.010% 0.047% 1.109% 97.307% 1.242% 0.174% 0.046% 0.065%

BB 0.015% 0.031% 0.117% 2.167% 93.755% 3.237% 0.313% 0.363%

B 0.000% 0.025% 0.072% 0.057% 1.645% 94.774% 1.860% 1.566%

c c c 0.007% 0.006% 0.037% 0.075% 0.178% 1.183% 94.819% 3.695%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.19: time-inhomogeneous transition matrices for the period [6, 7].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 95.996% 3.630% 0.295% 0.026% 0.045% 0.001% 0.000% 0.008%

A A 0.056% 99.181% 0.695% 0.048% 0.004% 0.012% 0.003% 0.001%

A 0.023% 0.776% 96.896% 2.068% 0.148% 0.058% 0.015% 0.016%

BBB 0.008% 0.040% 0.953% 97.689% 1.068% 0.147% 0.039% 0.055%

BB 0.013% 0.028% 0.104% 1.949% 94.392% 2.907% 0.281% 0.326%

B 0.000% 0.025% 0.071% 0.055% 1.639% 94.809% 1.846% 1.555%

CCC 0.007% 0.006% 0.038% 0.076% 0.181% 1.197% 94.755% 3.741%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.20: time-inhomogeneous transition matrices for the period [7, 8].

To Rating

From Rating A A A A A Â BBB BB B CCC D

A A A 95.255% 4.139% 0.496% 0.042% 0.054% 0.004% 0.001% 0.010%

A A 0.617% 90.956% 7.668% 0.541% 0.047% 0.130% 0.034% 0.007%

A 0.030% 0.873% 96.402% 2.406% 0.181% 0.071% 0.018% 0.019%

BBB 0.014% 0.067% 1.642% 96.022% 1.826% 0.264% 0.069% 0.096%

BB 0.018% 0.036% 0.148% 2.575% 92.533% 3.895% 0.370% 0.425%

B 0.000% 0.018% 0.056% 0.046% 1.248% 96.012% 1.434% 1.186%

CCC 0.004% 0.004% 0.023% 0.047% 0.108% 0.738% 96.785% 2.291%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.21: time-inhomogeneous transition matrices for the period [8, 9].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 94.848% 4.514% 0.521% 0.045% 0.059% 0.004% 0.001% 0.011%

A A 0.555% 91.843% 6.907% 0.497% 0.043% 0.117% 0.031% 0.007%

A 0.032% 0.959% 96.057% 2.639% 0.196% 0.077% 0.019% 0.020%

BBB 0.013% 0.060% 1.448% 96.485% 1.617% 0.232% 0.061% 0.084%

BB 0.017% 0.034% 0.135% 2.411% 93.022% 3.639% 0.346% 0.397%

B 0.000% 0.018% 0.055% 0.045% 1.246% 96.025% 1.429% 1.182%

CCC 0.004% 0.004% 0.023% 0.047% 0.109% 0.743% 96.762% 2.307%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.22: time-inhomogeneous transition matrices for the period [9, 10],
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 94.182% 5.277% 0.427% 0.036% 0.065% 0.002% 0.000% 0.012%

A A 0.048% 99.297% 0.599% 0.040% 0.004% 0.010% 0.003% 0.001%

A 0.020% 0.662% 97.357% 1.755% 0.130% 0.050% 0.013% 0.014%

BBB 0.012% 0.057% 1.374% 96.675% 1.529% 0.217% 0.057% 0.079%

BB 0.016% 0.033% 0.127% 2.280% 93.404% 3.439% 0.327% 0.375%

B 0.000% 0.019% 0.055% 0.044% 1.248% 96.026% 1.428% 1.181 %

c c c 0.004% 0.004% 0.024% 0.047% 0.110% 0.748% 96.742% 2.321%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.23: time-inhomogeneous transition matrices for the period [10, 11],

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 94.290% 5.178% 0.420% 0.036% 0.064% 0.001% 0.000% 0.012%

A A 0.051% 99.242% 0.645% 0.044% 0.004% 0.011% 0.003% 0.001%

A 0.021% 0.711% 97.161% 1.888% 0.138% 0.054% 0.014% 0.014%

BBB 0.010% 0.050% 1.213% 97.061% 1.355% 0.190% 0.050% 0.070%

BB 0.014% 0.031% 0.116% 2.119% 93.881% 3.189% 0.303% 0.348%

B 0.000% 0.019% 0.055% 0.043% 1.249% 96.031% 1.425% 1.179%

CCC 0.004% 0.004% 0.024% 0.047% 0.111% 0.753% 96.719% 2.338%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100 .000%

Table 5.24: time-inhomogeneous transition matrices for the period [11, 12],

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 92.825% 6.228% 0.780% 0.065% 0.082% 0.007% 0.001% 0.015%

A A 0.682% 89.878% 8.602% 0.595% 0.052% 0.146% 0.038% 0.008%

A 0.027% 0.782% 96.765% 2.165% 0.163% 0.065% 0.016% 0.017%

BBB 0.015% 0.069% 1.721 % 95.842% 1.898% 0.283% 0.072% 0.100%

BB 0.020% 0.041% 0.169% 2.928% 91.493% 4.457% 0.416% 0.475%

B 0.000% 0.014% 0.042% 0.036% 0.930% 97.012% 1.082% 0.885%

CCC 0.003% 0.002% 0.015% 0.029% 0.066% 0.461% 98.001% 1.423%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100 .000%

Table 5.25: time-inhomogeneous transition matrices for the period [12, 13],

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 93.523% 5.626% 0.701% 0.058% 0.074% 0.006% 0.001% 0.014%

A A 0.673% 90.035% 8.468% 0.585% 0.050% 0.143% 0.037% 0.008%

A 0.026% 0.763% 96.844% 2.116% 0.157% 0.063% 0.016% 0.016%

BBB 0.013% 0.060% 1.497% 96.383% 1.653% 0.245% 0.063% 0.087%

BB 0.020% 0.040% 0.162% 2.858% 91.715% 4.337% 0.405% 0.463%

B 0.000% 0.014% 0.042% 0.036% 0.934% 97.001% 1.085% 0.888%

CCC 0.003% 0.002% 0.015% 0.029% 0.067% 0.463% 97.995% 1.427%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.26: time-inhomogeneous transition matrices for the period [13, 14],
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 93.523% 5.626% 0.701% 0.058% 0.074% 0.006% 0.001% 0.014%

A A 0.673% 90.035% 8.468% 0.585% 0.050% 0.143% 0.037% 0.008%

A 0.026% 0.763% 96.844% 2.116% 0.157% 0.063% 0.016% 0.016%

BBB 0.013% 0.060% 1.497% 96.383% 1.653% 0.245% 0.063% 0.087%

BB 0.020% 0.040% 0.162% 2.858% 91.715% 4.337% 0.405% 0.463%

B 0.000% 0.014% 0.042% 0.036% 0.934% 97.001% 1.085% 0.888%

ccc 0.003% 0.002% 0.015% 0.029% 0.067% 0.463% 97.995% 1.427%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.27: time-inhomogeneous transition matrices for the period [14, 15].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A 96.087% 3.463% 0.368% 0.029% 0.044% 0.002% 0.000% 0.008%

A A 0.405% 94.058% 5.079% 0.320% 0.027% 0.084% 0.022% 0.004%

A 0.011% 0.345% 98.594% 0.941% 0.068% 0.027% 0.007% 0.007%

BBB 0.010% 0.046% 1.186% 97.148% 1.301 % 0.191% 0.049% 0.068%

BB 0.019% 0.038% 0.150% 2.726% 92.122% 4.121% 0.385% 0.439%

B 0.000% 0.014% 0.042% 0.035% 0.933% 97.010% 1.082% 0.885%

CCC 0.003% 0.002% 0.015% 0.029% 0.067% 0.467% 97.974% 1.442%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.28: time-inhomogeneous transition matrices for the period [15, 16],

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.07333 0.06672 0.00525 0.00040 0.00084 0.00000 0.00000 0.00015

A A 0.00666 -0 .09615 0.08250 0.00484 0.00039 0.00136 0.00034 0.00005

A 0.00070 0.02322 -0.09298 0.06237 0.00419 0.00165 0.00041 0.00043

BBB 0.00042 0.00185 0.04972 -0.11991 0.05640 0.00692 0.00192 0.00267

BB 0.00048 0.00094 0.00333 0.06921 -0.19827 0.10469 0.00916 0.01046

B 0.00000 0.00093 0.00272 0.00145 0.06441 -0.20003 0.07243 0.05809

CCC 0.00080 0.00067 0.00446 0.00885 0.02084 0.14574 -0.62504 0.44367

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.29: generator for the period [0].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.01915 0.01742 0.00137 0.00010 0.00022 0.00000 0.00000 0.00004

A A 0.00694 -0.10011 0.08590 0.00504 0.00040 0.00141 0.00036 0.00006

A 0.00054 0.01781 -0.07131 0.04784 0.00322 0.00127 0.00032 0.00033

BBB 0.00006 0.00027 0.00730 -0.01760 0.00828 0.00102 0.00028 0.00039

BB 0.00025 0.00049 0.00175 0.03627 -0.10391 0.05487 0.00480 0.00548

B 0.00000 0.00035 0.00102 0.00054 0.02404 -0.07467 0.02704 0.02168

CCC 0.00010 0.00009 0.00057 0.00113 0.00265 0.01855 -0.07956 0.05647

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.30: generator for the period [1],
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.02574 0.02342 0.00184 0.00014 0.00029 0.00000 0.00000 0.00005

A A 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

A 0.00020 0.00672 -0.02690 0.01805 0.00121 0.00048 0.00012 0.00012

BBB 0.00006 0.00025 0.00680 -0.01640 0.00771 0.00095 0.00026 0.00036

BB 0.00022 0.00043 0.00154 0.03200 -0.09166 0.04840 0.00423 0.00484

B 0.00000 0.00034 0.00100 0.00053 0.02375 -0.07375 0.02671 0.02142

c c c 0.00010 0.00009 0.00058 0.00115 0.00270 0.01889 -0.08102 0.05751

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.31: generator for the period [2].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.02414 0.02197 0.00173 0.00013 0.00028 0.00000 0.00000 0.00005

A A 0.00033 -0.00481 0.00413 0.00024 0.00002 0.00007 0.00002 0.00000
A 0.00028 0.00915 -0.03663 0.02457 0.00165 0.00065 0.00016 0.00017

BBB 0.00005 0.00020 0.00547 -0.01319 0.00620 0.00076 0.00021 0.00029

BB 0.00018 0.00036 0.00127 0.02644 -0.07574 0.03999 0.00350 0.00400

B 0.00000 0.00033 0.00098 0.00052 0.02316 -0.07193 0.02605 0.02089

CCC 0.00011 0.00009 0.00059 0.00117 0.00275 0.01924 -0.08250 0.05856

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.32: generator for the period [3].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.04025 0.03662 0.00288 0.00022 0.00046 0.00000 0.00000 0.00008

A A 0.00988 -0.14253 0.12230 0.00718 0.00058 0.00201 0.00051 0.00008

A 0.00038 0.01255 -0 .05027 0.03372 0.00227 0.00089 0.00022 0.00023

BBB 0.00012 0.00053 0.01409 -0.03399 0.01599 0.00196 0.00055 0.00076

BB 0.00020 0.00039 0.00137 0.02840 -0 .08136 0.04296 0.00376 0.00429

B 0.00000 0.00025 0.00075 0.00040 0.01770 -0.05496 0.01990 0.01596

CCC 0.00007 0.00006 0.00037 0 .00074 0.00174 0.01214 -0 .05206 0.03695

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.33: generator for the period [4].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.04488 0.04084 0.00321 0.00024 0.00051 0.00000 0.00000 0.00009

A A 0.00196 -0.02831 0.02430 0.00143 0.00011 0.00040 0.00010 0.00002

A 0.00031 0.01036 -0.04148 0.02782 0.00187 0.00074 0.00018 0.00019

BBB 0.00011 0.00046 0.01238 -0.02986 0.01404 0.00172 0.00048 0.00066

BB 0.00017 0.00034 0.00122 0.02528 -0 .07243 0.03825 0.00335 0.00382

B 0.00000 0.00025 0.00074 0.00039 0.01753 -0.05443 0.01971 0.01581

CCC 0.00007 0.00006 0.00038 0.00075 0.00176 0.01228 -0.05266 0.03738

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.34: generator for the period [5],
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To Retting

From Rating A A A A A A BBB BB B CCC D

A A A -0.04024 0.03661 0.00288 0.00022 0.00046 0.00000 0.00000 0.00008

A A 0.00195 -0.02815 0.02415 0.00142 0.00011 0.00040 0.00010 0.00002

A 0.00028 0.00913 -0 .03655 0.02452 0.00165 0.00065 0.00016 0.00017

BBB 0.00010 0.00043 0.01143 -0.02757 0.01297 0.00159 0.00044 0.00061

BB 0.00016 0.00031 0.00109 0.02264 -0.06487 0.03425 0.00300 0.00342

B 0.00000 0.00025 0.00074 0.00039 0.01741 -0.05405 0.01957 0.01570

CCC 0.00007 0.00006 0.00038 0.00075 0.00178 0.01243 -0.05330 0.03783

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.35: generator for the period [6].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.04086 0.03718 0.00293 0.00022 0.00047 0.00000 0.00000 0.00008

A A 0.00057 -0.00826 0.00709 0.00042 0.00003 0.00012 0.00003 0.00000

A 0.00024 0.00790 -0.03165 0.02123 0.00143 0.00056 0.00014 0.00014

BBB 0.00008 0.00036 0.00978 -0.02359 0.01110 0.00136 0.00038 0.00052

BB 0.00014 0.00028 0.00097 0.02026 -0.05805 0.03065 0.00268 0.00306

B 0.00000 0.00025 0.00073 0.00039 0.01728 -0.05365 0.01943 0.01558

CCC 0.00007 0.00006 0.00038 0.00076 0.00180 0.01258 -0.05397 0.03831

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.36: generator for the period [7].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.04873 0.04433 0.00349 0.00026 0.00056 0.00000 0.00000 0.00010

A A 0.00660 -0.09516 0.08165 0.00479 0.00038 0.00134 0.00034 0.00005

A 0.00028 0.00929 -0.03719 0.02495 0.00168 0.00066 0.00017 0.00017

BBB 0.00014 0.00063 0.01702 -0.04104 0.01930 0.00237 0.00066 0.00091

BB 0.00019 0.00037 0.00131 0.02724 -0.07804 0.04121 0.00360 0.00412

B 0.00000 0.00019 0.00056 0.00030 0.01320 -0.04100 0.01485 0.01191

CCC 0.00004 0.00004 0.00023 0.00046 0.00109 0.00763 -0.03273 0.02323

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.37: generator for the period [8].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.05301 0.04823 0.00380 0.00029 0.00061 0.00000 0.00000 0.00011

A A 0.00592 -0.08548 0.07334 0.00430 0.00035 0.00121 0.00031 0.00005

A 0.00031 0.01018 -0 .04077 0.02735 0.00184 0.00073 0.00018 0.00019

BBB 0.00013 0.00056 0.01500 -0.03618 0.01702 0.00209 0.00058 0.00080

BB 0.00017 0.00034 0.00122 0.02539 -0 .07273 0.03840 0.00336 0.00384

B 0.00000 0.00019 0.00056 0.00030 0.01315 -0.04085 0.01479 0.01186

CCC 0.00004 0.00004 0.00024 0.00047 0.00110 0.00769 -0.03296 0.02340

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.38: generator for the period [9].
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.05992 0.05451 0.00429 0.00032 0.00069 0.00000 0.00000 0.00012

A A 0.00049 -0.00709 0.00608 0.00036 0.00003 0.00010 0.00003 0.00000
A 0.00020 0.00672 -0.02693 0.01807 0.00121 0.00048 0.00012 0.00012

BBB 0.00012 0.00053 0.01415 -0.03411 0.01605 0.00197 0.00055 0.00076

BB 0.00016 0.00033 0.00115 0.02395 -0.06860 0.03622 0.00317 0.00362

B 0.00000 0.00019 0.00056 0.00030 0.01314 -0.04082 0.01478 0.01185

ccc 0.00004 0.00004 0.00024 0.00047 0.00111 0.00773 -0.03317 0.02354

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.39: generator for the period [10].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.05878 0.05348 0.00421 0.00032 0.00067 0.00000 0.00000 0.00012

A A 0.00053 -0.00765 0.00656 0.00039 0.00003 0.00011 0.00003 0.00000
A 0.00022 0.00723 -0.02894 0.01941 0.00131 0.00052 0.00013 0.00013

BBB 0.00011 0.00047 0.01248 -0.03009 0.01416 0.00174 0.00048 0.00067

BB 0.00015 0.00030 0.00107 0.02215 -0.06346 0.03351 0.00293 0.00335

B 0.00000 0.00019 0.00055 0.00029 0.01312 -0.04075 0.01476 0.01183

CCC 0.00004 0.00004 0.00024 0.00047 0.00111 0.00779 -0.03341 0.02372

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.40: generator for the period [11],

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.07461 0.06789 0.00534 0.00040 0.00085 0.00000 0.00000 0.00015

A A 0.00742 -0.10712 0.09191 0.00539 0.00043 0.00151 0.00038 0.00006

A 0.00025 0.00835 -0 .03343 0.02242 0.00151 0.00059 0.00015 0.00015

BBB 0.00015 0.00066 0.01781 -0.04295 0.02020 0.00248 0.00069 0.00095

BB 0.00021 0.00042 0.00150 0.03118 -0.08932 0.04716 0.00412 0.00471

B 0.00000 0.00014 0.00042 0.00022 0.00984 -0.03057 0.01107 0.00888

CCC 0.00003 0.00002 0.00014 0.00029 0.00067 0.00471 -0.02022 0.01435

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.41: generator for the period [12].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.06712 0.06106 0.00481 0.00036 0.00077 0.00000 0.00000 0.00014

A A 0.00730 -0.10534 0.09039 0.00530 0.00043 0.00149 0.00038 0.00006

A 0.00025 0.00813 -0.03257 0.02185 0.00147 0.00058 0.00015 0.00015

BBB 0.00013 0.00058 0.01544 -0.03724 0.01752 0.00215 0.00060 0.00083

BB 0.00021 0.00041 0.00146 0 .03032 -0.08685 0.04586 0.00401 0.00458

B 0.00000 0.00014 0.00042 0.00022 0.00988 -0.03068 0.01111 0.00891

CCC 0.00003 0.00002 0.00014 0.00029 0.00068 0.00473 -0.02028 0.01440

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.42: generator for the period [13].
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To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.06712 0.06106 0.00481 0.00036 0.00077 0.00000 0.00000 0.00014

A A 0.00730 -0.10534 0.09039 0.00530 0.00043 0.00149 0.00038 0.00006

A 0.00025 0.00813 -0.03257 0.02185 0.00147 0.00058 0.00015 0.00015

BBB 0.00013 0.00058 0.01544 -0.03724 0.01752 0.00215 0.00060 0.00083

BB 0.00021 0.00041 0.00146 0.03032 -0.08685 0.04586 0.00401 0.00458

B 0.00000 0.00014 0 .00042 0.00022 0.00988 -0.03068 0.01111 0.00891

c c c 0.00003 0.00002 0.00014 0.00029 0.00068 0.00473 -0.02028 0.01440

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.43: generator for the period [14].

To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.03998 0.03638 0.00286 0.00022 0.00046 0.00000 0.00000 0.00008

A A 0.00425 -0.06139 0.05267 0.00309 0.00025 0.00087 0.00022 0.00003

A 0.00011 0.00357 -0.01431 0.00960 0.00065 0.00025 0.00006 0.00007

BBB 0.00010 0.00045 0.01210 -0.02917 0.01372 0.00168 0.00047 0.00065

BB 0.00020 0.00039 0.00138 0.02875 -0 .08236 0.04349 0.00380 0.00435

B 0.00000 0.00014 0.00042 0.00022 0.00985 -0.03058 0.01107 0.00888

CCC 0.00003 0.00002 0.00015 0.00029 0.00068 0.00478 -0.02049 0.01455

D 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table 5.44: generator for the period [15].

Appendix 7: Chapter 5 - generators calculated with modifying the

eigenvalues

A*(0) =
To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.0200 0.0171 0.0026 0.0000 0.0002 0.0002 0.0000 0.0001

A A 0.0017 -0.0254 0.0205 0.0026 0.0000 0.0002 0.0001 0.0003

A 0.0002 0.0058 -0.0239 0.0149 0.0023 0.0003 0.0001 0.0003

BBB 0.0001 0.0008 0.0118 -0.0292 0.0107 0.0045 0.0007 0.0005

BB 0.0001 0.0002 0.0023 0.0130 -0.0412 0.0166 0.0022 0.0069

B 0.0000 0.0002 0.0005 0.0029 0.0102 -0.0415 0.0051 0.0225

CCC 0.0001 0.0002 0.0006 0.0017 0.0034 0.0105 -0.0720 0.0556

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Table 5.45: the generator for the period [0,1]., with method 3.
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A*(l) =
To Rating

From Rating A A A A A A BBB BB B CCC D

A A A -0.0199 0.0173 0.0023 -0.0001 0.0002 0.0002 0.0000 0.0000
A A 0.0017 -0.0255 0.0209 0.0024 -0.0001 0.0002 0.0001 0.0003

A 0.0002 0.0059 -0.0240 0.0151 0.0023 0.0002 0.0000 0.0003

BBB 0.0001 0.0007 0.0120 -0.0294 0.0110 0.0046 0.0007 0.0003

BB 0.0001 0.0002 0.0022 0.0132 -0.0417 0.0170 0.0022 0.0066

B 0.0000 0.0002 0.0005 0.0029 0.0105 -0.0419 0.0052 0.0226

CCC 0.0001 0.0002 0.0006 0.0017 0.0035 0.0107 -0.0730 0.0563

D

Table 5.46:

P*(0,1) =

0.0000 0.0000 0.0000 

the generator for the period [1,2],

0.0000 0.0000 

, with method 3.

To Rating

0.0000 0.0000 0.0000

From Rating A A A A A A BBB BB B CCC D

A A A 98.018% 1.668% 0.268% 0.000% 0.022% 0.016% 0.003% 0.006%

A A 0.168% 97.496% 2.004% 0.270% 0.003% 0.025% 0.006% 0.028%

A 0.022% 0.566% 97.657% 1.451 % 0.233% 0.031% 0.006% 0.034%

BBB 0.012% 0.080% 1.155% 97.141% 1.041 % 0.446% 0.069% 0.056%

BB 0.011% 0.022% 0.228% 1.255% 95.979% 1.595% 0.209% 0.700%

B 0.003% 0.023% 0.052% 0.285% 0.984% 95.947% 0.484% 2.221%

CCC 0.008% 0.015% 0.059% 0.163% 0.331% 0.996% 93.054% 5.374%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.47: 

P 'a (1,2) =

time-inhomogeneous transition matrices for the period

To Rating

[0,1], with method 3.

From Rating A A A A A A BBB BB B CCC D

A A A 98.029% 1.691 % 0.243% -0.008% 0.022% 0.016% 0.002% 0.005%

A A 0.170% 97.490% 2.036% 0.253% -0.005% 0.024% 0.006% 0.027%

A 0.021% 0.574% 97.641% 1.475% 0.229% 0.022% 0.005% 0.032%

BBB 0.011% 0.076% 1.174% 97.115% 1.063% 0.453% 0.070% 0.036%

BB 0.011% 0.020% 0.224% 1.282% 95.933% 1.639% 0.216% 0.675%

B 0.003% 0.023% 0.047% 0.289% 1.011 % 95.905% 0.492% 2.229%

CCC 0.008% 0.015% 0.058% 0.166% 0.340% 1.013% 92.962% 5.438%

D 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 0.000% 100.000%

Table 5.48: time-inhomogeneous transition matrices for the period [1,2], with method 3.
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Appendix 8: Chapter 5 - Numerical exercise of section 5.14

Credit ID
S&P Credit 

Rating Maturity Current
Balance

Current Spread  
over Libor rate

Country
Name S&P Industry

1 AAA 31 -Jul-06 10,000 2.50% USA Aerospace & D efence
2 AA 31-Aug-06 3,000 2.50% USA A ir transport
3 A 30-Sep-06 7,000 2.50% USA A utom otive
4 BBB 31-O ct-06 20,000 2.50% USA Radio & T e lev is ion
5 BB 30-NOV-06 6,000 2.50% USA Radio & T e lev is ion
6 B 31-Dec-06 14,000 2.50% USA C hem ica ls  & p lastics
7 CCC 31-Jan-07 30,000 2.50% USA Financia l in te rm ed iaries
8 AAA 28-Feb-07 9,000 2.50% USA Insurance
9 AA 31-M ar-07 21,000 2.50% USA Oil & gas
10 A 30-Apr-07 40,000 2.50% USA Food products
11 BBB 31-M ay-07 12,000 2.50% USA Rail industries
12 BB 30-Jun-07 28,000 2.50% USA Steel
13 B 31 - Jul-07 50,000 2.50% USA Aerospace & D efence
14 CCC 31-Aug-07 15,000 2.50% USA A ir transport
15 AAA 30-Sep-07 35,000 2.50% USA A utom otive
16 AA 31-O ct-07 10,000 2.50% USA Radio & Te lev is ion
17 A 30-N ov-07 3,000 2.50% USA Radio & Te lev is ion
18 BBB 31-Dec-07 7,000 2.50% USA C hem ica ls  & p lastics
19 BB 31-Ju l-06 20,000 2.50% USA Financia l in te rm ed iaries
20 B 31-Aug-06 6,000 2.50% USA Insurance
21 CCC 30-Sep-06 14,000 2.50% USA Oil & gas
22 AA A 31-O ct-06 30,000 2.50% USA Publish ing
23 AA 30-NOV-06 9,000 2.50% USA Rail industries
24 A 31-Dec-06 21,000 2.50% USA Steel
25 BBB 31-Jan-07 40,000 2.50% USA A erospace & Defence
26 BB 28-Feb-07 12,000 2.50% USA A ir transport
27 AA A 31-M ar-07 28,000 2.50% USA A utom otive
28 A 30-Apr-07 50,000 2.50% USA Beverage & Tobacco
29 AA A 31-M ay-07 15,000 2.50% USA Radio & T e lev is ion
30 AA 30-Jun-07 35,000 2.50% USA C hem ica ls  & p lastics
31 A 31 -Jul-07 10,000 2.50% USA Financia l in te rm ed iaries
32 BBB 31-Aug-07 3,000 2.50% USA Insurance
33 AA A 30-Sep-07 7,000 2.50% USA Oil & gas
34 B 31-O ct-07 20,000 2.50% USA Publishing
35 CCC 30-N ov-07 6,000 2.50% USA Rail industries
36 AA A 31-Dec-07 14,000 2.50% USA Steel
37 AA 31 -Jul-06 30,000 2.50% USA Aerospace & D efence
38 A 31-Aug-06 9,000 2.50% USA A ir transport
39 BBB 30-Sep-06 21,000 2.50% USA A utom otive
40 BB 31 -O ct-06 40,000 2.50% USA Cable & sate llite  te lev is ion
41 B 30-NOV-06 12,000 2.50% USA Radio & Te lev is ion
42 AAA 31-Dec-06 28,000 2.50% USA C hem ica ls  & plastics
43 AA A 31-Jan-07 50,000 2.50% USA Financia l in te rm ed iaries
44 AA A 28-Feb-07 15,000 2.50% USA Insurance
45 AA A 31-D ec-07 35,000 2.50% USA Oil & gas
46 BBB 31-Dec-07 40,000 2.50% USA Industria l equ ipm en t
47 BB 31-Dec-07 12,000 2.50% USA Rail industries
48 B 31-Dec-07 28,000 2.50% USA Steel
49 AA 31-Dec-07 10,000 2.50% USA Financia l in te rm ed iaries
50 AA 31-Dec-07 10,000 2.50% USA Financia l in te rm ed iaries

Table 5.49: Collateral portfolio, with a start date as 1/1/2004 (i.e. 16 quarters until maturity).
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J u n io r  N ote

R ating T ransition Model with Correlation Survival Model with Correlation Merton Model with Correlation
0 0.25 0.5 0 0.25 0.5 0 0.25 0.5

P rem ium 60 .376  bps 239 .613  bps 435.924 b p s 52.273 bps 235.009 bps 531 .447  bps 60 .196  bps 210.124 bps 388.849 bps
In te rest Loss 0 .004% 0.576% 1.321% 0.004% 0.302% 1.854% 0.005% 0.397% 1.235%
AL 3.97 Yrs 3.91 Yrs 3 .8 5  Yrs 3 .97  Yrs 3 .8 9  Yrs 3 .80  Yrs 3 .97  Yrs 3.91 Yrs 3 .8 5  Yrs
EL (%) 1.894% 4.469% 6.726% 1.659% 5.567% 9.480% 1.890% 4.425% 6.390%
S E  (%) 0.073% 0.151% 0.196% 0.066% 0.163% 0.235% 0.075% 0.145% 0.189%
EL+SE (%) 1.967% 4.620% 6.921% 1.724% 5.730% 9.715% 1.965% 4.571% 6.579%
Rating Ba1 Ba3 B1 Ba1 B1 B2 Ba1 Ba3 B1
EL|L=99.5% 61.463% 96.025% 97.785% 56.054% 94.074% 96.986% 63.288% 94.536% 97.486%
EL|L=99.9% 79.136% 98.193% 98.889% 71.673% 96.391% 98.228% 80.064% 97.721% 98.942%

Table 5.50: Junior Note results.

M ezza n in e  N ote

R ating T ransition Model with Correlation Survival Model with Correlation Merton Model with Correlation
0 0.25 0.5 0 0.25 0.5 0 0.25 8

Prem ium 0 .088  bps 3 1 .744  bps 78.875 bps 0 .000 bps 14.263 bps 95.684 bps 0 .086  bps 31.521 b p s 78.265 bps
In terest Loss 0 .000% 0.064% 0.283% 0.000% 0.029% 0.310% 0.000% 0.094% 0.279%
AL 4.0 0  Yrs 3.99 Yrs 3 .97  Yrs 4.00 Yrs 3.99 Yrs 3 .9 6  Yrs 4 .0 0  Yrs 3 .99  Yrs 3 .97  Yrs
EL (%) 0.003% 0.525% 1.246% 0.000% 0.315% 1.951% 0.003% 0.400% 1.127%
S E  (%) 0.002% 0.060% 0.094% 0.000% 0.043% 0.118% 0.003% 0.053% 0.090%
EL+SE (%) 0.005% 0.585% 1.340% 0.000% 0.358% 2.069% 0.005% 0.453% 1.217%
Rating Aa1 B aa2 Ba1 A aa B aa l Ba1 Aa1 B aa l B aa3
EL|L=99.5% 0.000% 78.561% 92.504% 0.000% 54.190% 93.057% 0.000% 68.927% 92.004%
EL|L=99.9% 0.000% 95.064% 97.154% 0.000% 90.055% 96.173% 0.000% 95.245% 97.786%

Table 5.51: Mezzanine Note results.

S e n io r  N ote

Rating T ransition Model with Correlation Survival M odel with Correlation M erton Model with Correlation
0 0.25 0.5 0 0.25 0.5 0 0.25 8

Prem ium 0.000 bps 0 .185 b p s 1.107 bps 0 .000 bps 0.061 bps 1.175 bps 0 .000 bps 0 .278  bps 1.219 b p s
In te rest Loss 0 .000% 0.000% 0.005% 0.000% 0.000% 0.004% 0.000% 0.002% 0.008%
AL 3.24 Yrs 3 .24  Yrs 3 .24  Yrs 3.24 Yrs 3 .24  Yrs 3 .24  Yrs 3 .24  Yrs 3 .24  Yrs 3.24 Yrs
EL (%) 0.000% 0.005% 0.029% 0.000% 0.002% 0.031% 0.000% 0.007% 0.032%
S E  (%) 0.000% 0.002% 0.005% 0.000% 0.001% 0.004% 0.000% 0.003% 0.006%
E L + S E (%) 0.000% 0.006% 0.034% 0.000% 0.002% 0.035% 0.000% 0.010% 0.037%
Rating A aa Aa1 A a3 A aa Aa1 A a3 A aa Aa1 A a3
EL|L=99.5% 0.000% 1.873% 5.379% 0.000% 0.000% 5.005% 0.000% 0.000% 6.063%
EL|L=99.9% 0.000% 3.764% 10.341% 0.000% 0.000% 9.464% 0.000% 6.173% 13.971%

Table 5.52: Senior Note results.

C o lla te ra l

Rating Transition Model with Correlation Survival Model with Correlation M erton Model with Correlation
0 0.25 0.5 0 0.25 0.5 0 0.25 0.5

EL (%) 3.342% 3.277% 3.149% 3.295% 3.182% 3.099% 3.303% 3.299% 3.199%
EL|L=99.5% 8.840% 13.867% 17.339% 8.569% 12.714% 17.880% 8.941% 13.408% 16.994%
EL|L=99.9% 9.367% 15.441% 19.584% 9.059% 13.876% 19.607% 9.542% 15.220% 19.876%

Table 5.53: Expected loss and shortfalls of the Collateral.

E q u ity  IRR

Rating T ransition Model with Correlation Survival Model with Correlation Merton Model with Correlation
0 I 0 .2 5  I 0.5 0 I 0 .25  I 0.5 0 I 0 .25  I 0.5

IRR (%) 30.254%  29.315%  28.842% 30.502%  28.882%  27.523% 30.377%  29.176%  28.832%

Table 5.54: Equity expected internal rate of return (IRR).
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R atin g  T ra n s i tio n  M odel w ith  C o lla te ra l T e s ts

0
Jun io r N ote 

0 .25 0.5 0
M ezzanine Note 

0.25 0.5 0
S en io r Note 

0.25 0.5
Prem ium 57.625 bps 228.028 bps 370.094 bps 0 .104 bps 31.317 bps 62 .490  bps 0 .000  bps 0 .313  bps 1.079 bps
In te rest Loss 0.002% 0.933% 1.541% 0.000% 0.081% 0.261% 0.000% 0.000% 0.005%
AL 3.96 Yrs 3 .89  Yrs 3 .84  Yrs 3 .93  Yrs 3.91 Yrs 3.89 Yrs 3 .10  Yrs 3 .10  Yrs 3 .09  Yrs
EL (%) 1.808% 5.001% 6.452% 0.003% 0.685% 1.041% 0.000% 0.008% 0.027%
S E  (%) 0.071% 0.165% 0.191% 0.003% 0.069% 0.085% 0.000% 0.002% 0.005%
EL+SE (%) 1.879% 5.166% 6.644% 0.007% 0.754% 1.126% 0.000% 0.010% 0.032%
Rating Ba1 Ba3 B1 Aa1 Baa 3 B aa3 Aaa Aa1 A a3
EL|L=99.5% 58.965% 97.288% 99.508% 0.000% 86.494% 92.278% 0.000% 0.000% 5.237%
EL|L=99.9% 76.591% 99.898% 99.899% 0.000% 93.836% 96.654% 0.000% 4.282% 10.696%

Table 5.55: Results with Collateral Tests.

E q u ity  IRR
Rating T ransition Model with Correlation

0 [ 0 .2 5  | 0.5
IRR (%) 21.834%  21.205%  21.199%

Table 5.56: Equity expected internal rate of return (IRR) with Collateral Tests.
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Appendix 9: Chapter 6 -  Numerical exercise in section 6.6

ID EDSs
EDS Notionals 

(000)
Equity

Equity C losing Price 
as at 11/2/05

Q uantity

1 19,964 Tes co 315.50 63,276

2 20,211 Shell 473.75 42,661

3 8,592 Rbs 1,830.00 4,695

4 37,144 British Airways 279.00 133,134

5 20,624 Barclays 606.50 34,005

106,534

Table 6.1: EDSs portfolio.

B ritis h  A irw a y s R bs S he ll T e s c o B a rc la y s

no. o f  ob se r. 1274 1274 1274 1274 1274

m e a n -0.0004 0.0004 -0.0001 0.0004 0.0003

u n co n d . v a r ia n c e 0.0010 0.0005 0.0003 0.0003 0.0005

s k e w -0.0826 -0.2026 -0.2388 0.1650 0.1332

ku rt 6.8162 7.5852 5.3739 5.4902 4.8774

Table 6.2: Data key statistics of daily returns.

B r it is h  A ir w a y s R b s S h e ll T e s c o B a r c la y s

M L 2,681.80 3,206.88 3,401.20 3,413.28 3,158.04

d .o .f. ©0 ©0 cO cO cO

A 0 . 0 0 0 0 0 0 0 0.0057500 0 . 0 0 0 0 0 0 0 0.0499996 0.0521247

s .e . (0.0007969) (0.0008008) (0.0007913)

0 0.5084075 0.8053928 0.4759412 0.7998863 1.3439123

s .e . (0.0051381) (0.0056753) (0.0073503) (0.0111737) (0.0217188)

CO 0.0000209 0.0000052 0.0000073 0.0000199 0.0000138

s .e . (0.0000014) (0.0000003) (0.0000004) (0.0000008) (0.0000008)

a 0.0830184 0.0774882 0.0855389 0.0499976 0.0349075

s .e . (0.0007306) (0.0007119) (0.0008799) (0.0005719) (0.0004883)

P 0.8773169 0.8689995 0.8737772 0.8478198 0.8652952

s .e . (0.0023322) (0.0013999) (0.0021559) (0.0031171) (0.0023978)

cr’ 2 D a ily 0.001147 0.001606 0.000340 0.000283 0.000377

cr” p A n n u a l iz . 0.5419 0.6412 0.2952 0.2693 0.3105

E ( e *) (0.0079) 0.0002 (0.0163) (0.0322) (0.0496)

V a r (e * ) 1.0000 1.0000 1.0040 0.9741 1.0000

S k e w (e * ) (0.0204) (0.1582) (0.4024) 0.1087 0.0032

K u r t(e * ) 5.6498 6.3228 4.3850 4.4547 3.9428

K u r t ( H 8.2901 2.3140 4.5395 4.4911 3.9356

_ _ _ K u r t i O _ _ 8.3051 2.4958 4.5395 4.4973 3.9337

Table 6.3: Parameter estimates obtained by maximising the log-likelihood function in 6.20.

<7 PAnnualiz is calculated under the assumption of 256 trading days per year.
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B r it is h  A ir w a y s R b s S h e ll T e s c o B a r c la y s

M L 3,751.98 4,290.65 4,460.46 4,501 .94 4,235.66

d .o .f. 13.73 13.01 14.00 13.62 13.97

A 0.0000000 0.0139784 0.0040561 0.0186036 0.0039259

s .e . (0.0008103) (0.0007854) (0.0007966) (0.0007862)

0 0.5428737 0.8015425 0.4515041 0.2214606 0.9544907

s .e . (0.0108436) (0.0108912) (0.0110862) (0.0082023) (0.0168560)

(0 0.0000107 0.0000051 0.0000036 0.0000043 0.0000079

s .e . (0.0000017) (0.0000005) (0.0000005) (0.0000004) (0.0000007)

a 0.0579185 0.0740165 0.0709117 0.0776921 0.0550352

s .e . (0.0008454) (0.0009599) (0.0009624) (0.0008301) (0.0007530)

ß 0.9128292 0.8734285 0.9046500 0.9068993 0.8777104

s .e . (0.0028510) (0.0021578) (0.0025166) (0.0024977) (0.0025607)

cr'2 D a ily 0.000876 0.001029 0.000359 0.000370 0.000462

a * p A n n u a l iz 0.4736 0.5131 0.3030 0.3077 0.3440

E ( 0 (0.0100) (0.0079) (0.0193) 0.0090 (0.0035)

V a r (e * ) 1.0466 1.0000 1.0117 1.0000 1.0090

S k e w (e * ) (0.1308) (0.1613) (0.4477) 0.2421 0.0020

K u r t (e * ) 6.3742 6.3253 4.8040 4.7833 4.1000

K u rt(Ç *) 16.0086 1.6395 5.6450 5.3029 4.1320

____K u r t ( 0 16.0236 2.2292 5.6907 5.3565 4.1331

Table 6.4: Parameter estimates obtained by maximising the log-likelihood function in 6.21

0~*p Annualiz is calculated under the assumption of 256 trading days per year.

E qu ity  N am e O ption  T icke r S trike EDS T rigge r M aturity Im pl. Voi. Put O ption M id Price

Tesco TSCO LN 9 P260 Equity 260.00 94.65 16/09/2005 19.662 1.75
Shell SHEL LN 12/06 P330 Equity 330.00 142.13 15/12/2006 20.756 4.25
Rbs RBS LN 9 P1600 Equity 1600.00 549.00 16/09/2005 17.253 19.00

British Airways BAY LN 9 P260 Equity 260.00 83.70 16/09/2005 26.078 11.50
Barclays BARC LN 9 P550 Equity 550.00 181.95 16/09/2005 19.959 16.00

Table 6.5: Implied volatilities, source Bloomberg except EDS Triggers, which are calculated as 30% 

of the equity prices of Table 6.1. All data as at 11/02/2005.

E q u ity  N a m e

S in g le  N a m e  E D S

E D S  N o m in a l 
(00 0 )

t-N G A R C H -M  

P re m iu m  EL (£) (00 0 )

n o rm a l-N G A R C H -M  

P re m iu m  E L  (£ ) (00 0 )

R u b in s te in  &  R e in e r 

P re m iu m  EL (£ ) (000 )

T e s c o 19,964 42.495 bps 159.92 0.000 bps 0.00 0.012 bps 0.05
S he ll 20,211 37.263 bps 142.08 0.000 bps 0.00 0.038 bps 0.15
Rbs 8,592 187.305 bps 299.86 38.241 bps 61.88 0.000 bps 0.00

B ritish  A irw a y s 37,144 35.029 bps 245.39 7.330 bps 51.48 1.746 bps 12.97
B a rc la ys 20,624 17.376 bps 67.70 0.000 bps 0.00 0.016 bps 0.07

106,534 914.95 113.36 13.23

Table 6.6: Single-name EDS premiums and ELs calculated with /-NGARCH-M, normal-NGARCH- 

M and Rubinstein and Reiner models.
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Path-Dependent Binary Barrier Put Option

t-NGARCH-M normal-NGARCH-M Rubinstein & Reiner

Equity Name No.of Options
Option

Premium (000)
EDS

Premium
Option Premium 

(000)
EDS

Premium
Option

Premium (000)
EDS

Premium
Implied Vols 

t-NGARCH-M
Tesco 63,276 220.70 55.623 bps 0.00 0.000 bps 0.05 0.012 bps 0.3704
Shell 42,661 208.10 51.783 bps 1.87 0.462 bps 0.15 0.038 bps 0.3672
Rbs 4,695 323.00 192.053 bps 68.00 39.750 bps 0.00 0.000 bps 0.4570

British Airways 133,134 293.53 39.689 bps 52.11 7.019 bps 12.97 1.746 bps 0.3537
Barclays 34,005 51.05 12.393 bps 0.00 0.000 bps 0.07 0.016 bps 0.3093

277,771 1,096.38 121.97 13.23

Table 6.7: Put option and EDS premiums with Implied Volatilities in i-NGARCH-M. The EDS 

premiums are calculated assuming constant default intensity. To calculate the binary barrier put 

option premium of one equity, divide the option premium by the No. of options.

Junior note with normal-NGARCH-M

Linear Corr. Kendall tau Tail Dep. Premium EL (%) SE (%) EL+SE (%) Rating EL|L=99%
0.00 0.0000 0.0000 91.658 bps 1.717% 0.401% 2.119% Ba3 96.893%

Normal copula 0.25 0.1609 0.0000 81.430 bps 1.527% 0.379% 1.906% Ba2 96.896%
0.50 0.3333 0.0000 86.103 bps 1.615% 0.389% 2.004% Ba3 96.694%

(-Student copula, 0.25 0.1609 0.0261 91.667 bps 1.718% 0.402% 2.119% Ba3 97.373%
d.o.f. 10 0.50 0.3333 0.0819 91.221 bps 1.710% 0.400% 2.110% Ba3 97.155%

(-Student copula, 0.25 0.1609 0.0796 96.570 bps 1.809% 0.411% 2.221% Ba3 97.373%
d.o.f. 6 0.50 0.3333 0.1705 106.905 bps 2.001% 0.432% 2.433% Ba3 97.135%

a-parameter 0.000%
Clayton copula 1.50 0.4286 0.6300 85.592 bps 1.607% 0.387% 1.994% Ba3 96.500%

3.00 0.6000 0.7937 81.646 bps 1.531% 0.380% 1.911% Ba3 96.569%

Table 6.8: junior note results with a normal NGARCH-M (1,1).

Mezzanine note with normal-NGARCH-M

Linear Corr. Kendall tau Tail Dep. Premium EL (%) SE (%) EL+SE (%) Rating EL|L=99%
0.00 0.0000 0.0000 25.241 bps 0.477% 0.168% 0.644% Ba1 29.238%

Normal copula 0.25 0.1609 0.0000 19.660 bps 0.371% 0.140% 0.511% Baa3 27.909%
0.50 0.3333 0.0000 24.322 bps 0.459% 0.165% 0.625% Ba1 34.709%

(-Student copula, 0.25 0.1609 0.0261 25.296 bps 0.478% 0.168% 0.646% Ba1 31.794%
d.o.f. 10 0.50 0.3333 0.0819 25.131 bps 0.475% 0.167% 0.641% Ba1 34.918%

(-Student copula, 0.25 0.1609 0.0796 25.915 bps 0.489% 0.168% 0.657% Ba1 31.709%
d.o.f. 6 0.50 0.3333 0.1705 27.377 bps 0.517% 0.170% 0.686% Ba1 33.343%

a-parameter
Clayton copula 1.50 0.4286 0.6300 28.386 bps 0.536% 0.188% 0.724% Ba1 39.360%

3.00 0.6000 0.7937 23.761 bps 0.449% 0.165% 0.614% Ba1 33.034%

Table 6.9: Mezzanine note results with a normal-NGARCH-M (1,1).

Senior note with normal-NGARCH-M

Linear Corr. Kendall tau Tail Dep. Premium EL (%) SE (%) EL+SE (%) Rating EL|L=99%
0.00 0.0000 0.0000 1.434 bps 0.027% 0.016% 0.043% A3 0.000%

Normal copula 0.25 0.1609 0.0000 0.960 bps 0.018% 0.013% 0.031% A2 0.000%
0.50 0.3333 0.0000 1.416 bps 0.027% 0.015% 0.042% A3 0.000%

(-Student copula, 0.25 0.1609 0.0261 1.440 bps 0.027% 0.016% 0.043% A3 0.000%
d.o.f. 10 0.50 0.3333 0.0819 1.428 bps 0.027% 0.016% 0.043% A3 0.000%

(-Student copula, 0.25 0.1609 0.0796 1.434 bps 0.027% 0.016% 0.043% A3 0.000%
d.o.f. 6 0.50 0.3333 0.1705 1.656 bps 0.031% 0.018% 0.050% A3 0.000%

a-parameter
Clayton copula 1.50 0.4286 0.6300 1.884 bps 0.036% 0.018% 0.053% A3 0.000%

3.00 0.6000 0.7937 1.633 bps 0.031% 0.018% 0.049% A3 0.000%

Table 6.10: Senior note results with a normal-NGARCH-M (1,1).
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Junior note with t-NGARCH-M

Linear Corr. Kendall tau Tail Dep. Premium EL (%) SE (%) EL+SE (%) Rating EL|L=99%

0.00 0.0000 0.0000 616.748 bps 11.121% 0.962% 12.083% Caa 97.671%
Normal copula 0.25 0.1609 0.0000 594.188 bps 10.738% 0.947% 11.686% Caa 97.597%

0.50 0.3333 0.0000 537.139 bps 9.726% 0.908% 10.634% Caa 97.596%
(-Student copula, 0.25 0.1609 0.0261 615.343 bps 11.110% 0.961% 12.071% Caa 97.596%

d.o.f. 10 0.50 0.3333 0.0819 568.753 bps 10.283% 0.930% 11.213% Caa 97.596%
(-Student copula, 0.25 0.1609 0.0796 679.860 bps 12.229% 1.001% 13.230% Caa 97.596%

d.o.f. 6 0.50 0.3333 0.1705 674.086 bps 12.133% 0.998% 13.131% Caa 97.597%
a-parameter 0.000%

Clayton copula 1.50 0.4286 0.6300 436.856 bps 7.997% 0.830% 8.827% B3 97.594%
3.00 0.6000 0.7937 409.128 bps 7.514% 0.806% 8.321% B3 97.591%

Table 6.11 : Junior note results with a f-NGARCH-M (1,1).

Mezzanine note with t-NGARCH-M

Linear Corr. Kendall tau Tall Dep. Premium EL (%) SE (%) EL+SE (%) Rating EL|L=99%

0.00 0.0000 0.0000 301.755 bps 5.583% 0.650% 6.233% B2 96.500%
Normal copula 0.25 0.1609 0.0000 282.047 bps 5.219% 0.627% 5.846% B2 96.493%

0.50 0.3333 0.0000 248.093 bps 4.599% 0.589% 5.187% B2 96.409%
(-Student copula, 0.25 0.1609 0.0261 302.317 bps 5.590% 0.651% 6.240% B2 96.480%

d.o.f. 10 0.50 0.3333 0.0819 269.780 bps 4.995% 0.614% 5.610% B2 96.401%
(-Student copula, 0.25 0.1609 0.0796 328.530 bps 6.065% 0.674% 6.739% B3 96.480%

d.o.f. 6 0.50 0.3333 0.1705 323.376 bps 5.972% 0.668% 6.640% B3 96.402%
a-parameter

Clayton copula 1.50 0.4286 0.6300 229.143 bps 4.262% 0.578% 4.841% B2 96.509%
3.00 0.6000 0.7937 191.128 bps 3.561% 0.522% 4.083% B1 96.618%

Table 6.12: Mezzanine note results with a i-NGARCH-M (1,1).

Senior note with t-NGARCH-M

Linear Corr. Kendall tau Tall Dep. Premium EL (%) SE (%) EL+SE (%) Rating EL|L=99%

0.00 0.0000 0.0000 10.464 bps 0.198% 0.040% 0.238% Baa2 10.418%
Normal copula 0.25 0.1609 0.0000 9.482 bps 0.179% 0.039% 0.218% Baa2 10.321%

0.50 0.3333 0.0000 9.656 bps 0.183% 0.043% 0.225% Baa2 11.764%
(-Student copula, 0.25 0.1609 0.0261 11.396 bps 0.215% 0.044% 0.259% Baa3 10.921%

d.o.f. 10 0.50 0.3333 0.0819 10.200 bps 0.193% 0.043% 0.236% Baa2 11.573%
(-Student copula, 0.25 0.1609 0.0796 11.550 bps 0.218% 0.042% 0.260% Baa3 10.445%

d.o.f. 6 0.50 0.3333 0.1705 14.859 bps 0.281% 0.054% 0.335% Baa3 12.950%
a-parameter

Clayton copula 1.50 0.4286 0.6300 18.532 bps 0.350% 0.081% 0.431% Baa3 20.236%
3.00 0.6000 0.7937 20.048 bps 0.379% 0.089% 0.468% Baa3 24.345%

Table 6.13: Senior note results with a i-NGARCH-M (1,1).
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