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Abstract
This dissertation proposes an integrated measure of credit and market risk for interest rate 
swap portfolios. Our research is based upon the use of EUR interest rate and credit spread 
data for the period 2001 -  2004. There are three self-contained but seemingly related projects 
in this dissertation. The objectives of this research are: 1) to price interest rate sensitive and 
credit spread options under the Longstaff & Schwartz 1992 framework; 2) to devise an 
integrated measurement approach of credit and market risk; 3) to extent the proposed 
integrated approach in measuring economic loss and compare it with the current standard 
approach.
The mean reverting and GARCH characteristics of EUR credit spread indices were 
investigated between 2001 and 2004. We find evidence of significant GARCH effects in the 
EUR credit spread indices and mean reversion which is dependent on the frequency of the 
time series. These properties of the EUR credit spread indices suggest a stochastic term 
structure volatility model would be suitable to model their evolution. The model of choice 
was used to estimate discount curves based upon the observed interest rate term structure. The 
range of yield curve shapes fitted accurately was extensive suggesting the model would be 
suitable in fitting the more complex credit spread curves. The estimation of yield curves over 
a period of time suggested that the volatility of the model parameters is reduced substantially 
with the use of weekly data. The model was able to match the market implied volatility in 
pricing interest rate options with greater accuracy in the pricing of short-term options. The LS 
model was quite successful in the fitting of various credit spread curves Although the pricing 
of credit spread options using the LS model is internally inconsistent evidence suggested that 
it prices short term spread options with good accuracy. The direct link between credit spreads 
and default probabilities was fully exploited by estimating implied default probabilities. 
Evidence suggested that the implied default probabilities did not violate the no-arbitrage 
conditions of credit risk pricing. A time series examination showed only in one occasion that 
a lower rating had a lower probability of default than its immediate higher rating. Also the 
historical transition matrix of S&P proved to be quite far from the expectations of the credit 
markets.
A dynamic approach to manage the risks associated with 10 different rated hypothetical 
interest rate swap portfolios was proposed based upon a hedging methodology. The proposed 
dynamic hedging of the swaps default risk is done by taking offsetting exposure related 
positions in respective credit spread index options. The efficiency of the hedging 
methodology shows strong linkages between the swap exposures and the credit spread index 
options. The integrated measure is proved to be higher at all times than the market VaR of 
swaps. Evidence suggest that the credit risk part of the integrated measure is not correlated 
with its respective market risk. The approach illustrates in a single overall market VaR 
measure both the market and the implicit credit risk run by a portfolio of swaps over a 
specified time horizon and confidence level.
The proposal of the integrated measure was put further to the test by performing a comparison 
between the existing methodology of integrated credit risk measurement and the proposed 
analytic “integrated” methodology. The comparison was performed on an actual swap 
portfolio taken from a medium sized European Bank. The comparison yielded similar results 
with the integrated approach measuring higher economic loss. The link of the expected credit 
exposure to the credit spread index option was evident. The use of historical simulation (HS) 
over a multi-step Monte Carlo (MC) simulation to measure expected credit exposures over a 3 
month period is proved to be less accurate but not substantially different across all cases 
suggesting that over small time intervals the HS method is a fast and efficient way of 
measuring expected credit exposures.
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CHAPTER 1 Introduction and Review of Literature

1.1 Introduction

This dissertation is a quantitative study whose primary objective it to propose an 

integrated measure of credit and market risk of derivatives portfolios with a special 

focus in interest rate swaps. Our research is based primarily upon the use of interest 

rate, credit spread index and credit spread data in the Euro area for the period 2001 to 

2004. The first chapter of the dissertation introduces the background of the study, 

specifies the problems of the study and describes its significance

1.2 Background of the study

Financial risk quantification, analysis and control have evolved dramatically over the 

last decades. Significant advances in academic theory have had a major impact on 

practical risk measurement and financial institutions around the world are investing 

heavily in systems and personnel for measuring risks. The main driving forces behind 

this phenomenon arises from the demand for up-to-date information for regulators, 

shareholders and of course senior executives. The question “how much risk we are 

running” is one that most executives fail to answer without producing a set of figures 

rather than a single one. There should be a point where this question should be 

answered by a single figure.

After most major financial crises the regulators and the financial markets participants 

worked together to agree on procedures and measures that will safeguard the financial 

system. This led to the identification of most common risks associated with the 

financial markets. Following that, common and well-thought measures were devised 

to capture each one particular risk. However, none o f these measures account for the 

interaction of different risks. Ever since the introduction of derivatives in the financial 

marketplace, the complexity of risks being introduced among market participants has
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increased exponentially. As a result each type of risk affects the magnitude and the 

direction of other risks. For example, the lack o f liquidity in a traded stock which 

could appear out of the investor’s preference could have a serious effect on the market 

price o f the stock. The lack o f transparency on a company’s accounts could lead to the 

deterioration of both its credit rating and stock/bond price.

The integration of risks in the financial marketplace has intensified since the 

beginning o f the 1990s. The introduction of credit derivatives has facilitated 

substantially the active risk management of “traditional” loan books and bond 

portfolios. On the other side, it introduced the “pass the parcel” or in this case “pass 

the risk” mentality to someone else rather than the originator o f credit risk creating 

process i.e. the lender. Even before credit derivatives made their appearance risks 

were integrated. For example the interest rate swaps market is the biggest OTC 

derivatives market by turnover. Swaps bear both market and credit risk for both 

parties entering the deal. The market risk of a swap is quite straightforward. The 

existence of credit risk is due to the possibility o f one party defaulting, then it will not 

be able to fulfil its obligations to the other i.e. payments. When dealers which often 

represent financial institutions enter into swap agreements, they usually hedge the 

market risk of the swap either by entering into an offsetting bond position or by using 

short term interest rate futures and bond futures. By doing that the dealer is trying to 

immunise its positions to adverse movements in the underlying rates. This 

“diversification” of delta risk is the norm among financial institutions, which enter 

into thousands of swap agreements with counterparties of different ratings every day. 

This technique reduces market risk and subsequently dealers can take even larger 

positions creating more exposure for their institution. This results in an increase of 

credit risk that an institution is running. This is managed by setting credit &
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settlement limits usually per counterparty. The process of setting limits is being 

overseen by the credit risk management function of each financial institution. The 

limits are being set using a pool of criteria:

• Credit rating

• Financial ratios

• Company outlook

• Internal rating

• Credit spread of companys’ debt

• Credit analysts’ view

• Nature of business

These are some of the criteria which lead to the internal rating, which leads to the 

allocation o f limits for counterparties. In that way no single dealer can enter into 

unlimited deals with any counterparty, they can only do so subject to the allocated 

limits. This is one way of accounting for credit risk and protecting the institution from 

excess credit risk. Other techniques to protect for credit risk are collateralisation, 

options for early termination and other features in OTC agreements. These techniques 

were introduced in the late 1990s when hedge fund activity and investment grade 

companies activity increased exponentially in the OTC market, especially in the 

interest rate swap market. Up to date there is no single official risk measurement 

which takes into account both market and credit risk in a swap deal.

1.3 The Problem

This dissertation proposes an integrated methodology of market and credit risk 

measurement. In this section we will state the objectives of each o f the four projects 

separately.
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1.3.1 Objectives of the First Research Paper

The main objective in this study is to test the performance of the chosen term 

structure model, which is the Longstaff and Schwartz (1992a) two-factor interest rate 

model. The efficiency with which the model fits observed term structures is examined 

and a time series analysis of estimated model parameters is performed to determine 

the data frequency we need to use for historical simulation purposes.

The efficiency of pricing interest rate options is part of the objective since it will 

provide evidence to price options on LS (1992a) estimated credit spreads. Hence, the 

accurate fitting o f credit spreads is another objective in this study. As a final objective 

we will imply default probabilities under two similar credit risk models of the reduced 

form approach the Jarrow and Turnbull (1995) and Jarrow, Lando and Turnbull

(1997) models. The stability and consistency of the default probabilities will also be 

examined using historical credit spread curves.

1.3.2 Objectives o f the Second Research Paper

Using the LS valuation framework as our pricing engine, an integrated measure of 

credit and market risk will be proposed. The integrated measure is based on a 

dynamic hedging technique which eliminates the default risk of the swap portfolio 

subject to its potential future exposure. The effectiveness o f hedging is evaluated and 

the overall integrated measure is compared to the market VaR of the swap portfolio. 

The final objective is to determine if  the relationship between the two parts of the 

integrated measure are correlated and if there is an alternative to the methodology.
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1.3.3 Objectives of the Third Research Paper

The objective o f this study is to further extend the use of the proposed integrated 

measure by using it to estimate the total economic loss which arises form an actual 

swap portfolio. The total economic loss calculation o f the integrated approach should 

be compared to the standard approach currently employed by some financial 

institutions. The final objective is to determine if the Historical Simulation method of 

calculating credit exposure is comparable to the standard multi-step Monte Carlo 

simulation which is most favoured by practitioners.

1.4 Significance of the study

The aim of this study was to create an integrated measure o f market and credit risk for 

derivatives using a single pricing framework. In the process o f achieving that the 

following were studied separately for the first time:

• Direct fitting o f EUR credit spreads to a two-factor interest rate model (LS).

• Pricing of credit spread options using the LS model.

• The estimation o f implied probabilities of default using credit spreads.

• The estimation of implied rating transition matrix based on credit spreads.

• The integrated approach was formulated.

• The validity of the newly proposed integrated method was tested using a 

hypothetical portfolio.

• The integrated approach was further extended to estimate economic capital.

• Subsequently there was a comparison to current practice based on a realtime 

swap portfolio.

The research significance of each of the self contained projects individually is 

summarised next.
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1.4.1. Significance of the First Research Paper

Interest rate models have been used to model the dynamics o f credit spreads as in 

Duffie and Singleton (1994), who model the evolution o f credit spreads using an 

Omtein-Uhlenbeck process. There are a number o f reasons and all have to do with the 

credit spread characteristics which have been studied extensively. Credit spread series 

show strong mean reversion as in Pringent, Renault, and Scaillet (2001)

The use of the LS model to fit credit spread data is the first model o f this type to 

investigate the evolution of credit spreads and price credit spread options. The first 

factor o f the two-factor model will be the short credit spread rate, or in other words 

the rate at which corporations arrange their short term financing. The second factor 

would be its volatility in the same sense as with interest rate volatility. This way a 

stochastic volatility model will be used as a “spread based” model to price European 

Credit Spread Options (CSOs).

The estimation of the credit spread curves using the LS (1992a) model will help 

further in implying the probabilities of default using the JT (1995) model specification 

and the transition rating matrix using the JLT (1997) model. These implied 

probabilities will be implied using credit spreads rather than bond prices like in JLT

(1997) and Arvanitis, Gregory and Laurent (1999).

1.4.2. Significance of the Second Research Paper

The proposal of the integrated measure in this project is the first o f its kind. Its 

simplicity stands out relative to other current methods of integrating market and credit 

risk Barnhill, Papanagiotou and Schmacher (2002) and Medova and Smith (2003). 

The proposed measure is based upon the dynamic hedging of the default risk o f a
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hypothetical interest rate swap portfolio. The methodology provides a framework of 

active management of both credit and market risks in interest rate swaps.

Since the resulting measure can be estimated by calculating the VaR of the integrated 

portfolio the measure can be used for capital at risk purposes. Furthermore, the 

measure can be extended to measure the economic loss of a swap portfolio.

The integrated measure consists of two parts: the market risk part and the credit risk 

part which is nominally related to the market risk of the portfolio. In practical 

applications the relationship of these two separate risks can be exploited by applying 

limits to the level of co-movement i.e. when the two risks become highly correlated 

then a trigger o f reducing exposure should be given. In this way risk managers can 

better manage their exposures.

1.4.3. Significance o f the Third Research Paper

The work presented in the second project (Chapter 3) is extended to the estimation of 

total economic loss run by an “actual” OTC swap portfolio. There has been very little 

research based on actual OTC transactional data apart from Cossin and Pirotte (1998) 

and Mozumdar (2001), who have used swap transaction data from swap dealers in 

order to estimate the default risk in the swap spread.

The current approach o f integrated credit risk measurement applied by most financial 

institutions Mark (1999) is compared to the extension of the integrated approach 

proposed in Chapter 3. The integrated approach has a number o f advantages over the 

current standard approach. Ease of implementation, time horizons o f less than a year1, 

backtesting is quite easy and all is done under one term structure model. Essentially

1 l-year is usually the time horizon in estimating economic loss since there is a time mismatch between 
market and credit risk. Although this is true, a shorter time would be desirable in order to allocate 
capital more efficient.
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the proposed integrated approach replaces the modeling o f the probabilities of default 

with the modeling of the credit spread indices.

1.5 Organisation of the Dissertation

In the next few sub-sections of chapter 1 we will review the related literature of 

market, credit risk and integrated market and credit risk. Also an essay on Derivative 

credit risk will illustrate the importance of our study. The next chapters are the three 

different but seemingly related projects. In chapter 2 we introduce the LS model and 

using it we price interest rate options and credit spread options. In chapter 3 we will 

propose the integrated approach and in chapter 4 we further extend and test our 

proposed integrated approach.

1.6 Main Risks

Assessing the risks associated with being a participant in the financial markets has 

become the focus o f intense study by a number of institutions. Certain risks such as 

counterparty defaults have always figured at the top o f most banks’ concerns. Others 

such as market risk (the potential loss associated with market behaviour) have only 

gotten into the limelight over the past few years. The sudden interest emanates from 

the significant changes that the financial markets have undergone over the last two 

decades.

There have been significant developments in conceptualising a common framework 

for measuring market risk. The industry has produced a wide variety o f indices to 

measure return, but little has been done to standardise the measure of risk. Over the 

last 15 years many market participants have developed concepts for measuring market 

risks. Over the last 5 years, two approaches have evolved as a means to measure 

market risk. The first approach involves forecasting the portfolios’ return distribution
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using probability and statistical models. The second approach is referred to as 

scenario analysis. The methodology simply re-values a portfolio under different 

values of market rates and prices.

On the other hand, there has also been a lot o f effort along the same lines for credit 

risk. However, as we will see later there are more obstacles to overcome there. These 

are the two main types of risks, which arise from participating in the financial 

markets. Other types o f risks rise due to liquidity constraints and operations and are 

not the focus o f this thesis.

1.7 Market Risk measurement

Measuring the market risk of a financial firm’s book is an essential part o f managing 

the overall risk run by a firm on a daily basis. This section concentrates on how 

institutions capture overall risk arising from unexpected changes in prices or rates as a 

result o f new information. Credit risk is only viewed as a component of market risk 

but in most of the following discussion is assumed to be zero.

The day-to day management of market risk serves the welfare o f shareholders in the 

firm, including employees, pension holders, and others. In due process there are 

specific objectives which need to be achieved:

• Aggregate all outstanding positions and quantify all market risks related with 

them.

• Measure exposure in different aggregates (desk, trader, trade).

• Charge each position a cost of capital appropriate to its market value and risk.

• Provide information on the firm’s financial integrity and risk management 

technology and contractual counterparties, regulators, auditors and rating 

agencies, the financial press an others whose knowledge might improve the
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firm’s terms of trade, or regulatory treatment and compliance Duffie and Pan 

(1997).

• Measure relative performance using capital at risk, to evaluate different risk 

taking units.

• Protect the firm from financial distress costs.

Achieving all the above using a unified risk measure is the dream of every risk 

professional and senior manager. A few years ago a standard benchmark measure 

called Value at Risk (VaR) was adopted. This is a firmwide measure of risk which 

was developed in order to capture the inherent correlations among risks. However, 

this is only one o f the many reasons for the adoption of this unified framework. VaR 

is a benchmark, which is also used by financial institutions to determine if they hold 

sufficient capital. The current regime, which is determined by the Bank for 

International Settlements (BIS), typically sets a 10-day VaR with confidence interval 

of 99%. Many firms use overnight VaR, instead of the 10-day BIS.

1.7.1 Market VaR methodology

“Value at Risk is a singe statistical summary figure which describes the potential 

profit or loss of a portfolio of assets over a specified time horizon (t) at a given 

confidence interval (1-p; BIS p = 99%). “ This is the only definition which should be 

understood fully by any of its users before basing any decisions upon it. VaR is not a 

panacea. It should be used accordingly at each level o f risk management otherwise it 

could lead to misconceptions about the risks one is running.

Approaches to VaR can be basically classified into two groups. The first group is 

based on local valuation; the best example is the delta-normal method. The second 

group uses full valuation. Full valuation is implemented in the historical simulation
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method and the structured Monte Carlo method. Each of these are discussed in the

following sections.

1.7.1.1 Computing VaR

The first step towards the measurement o f VaR is the choice of two quantitative 

factors: the length of the holding horizon, and the confidence level. Both are 

somewhat arbitrary. As an example, the internal model approach of the Basle 

Committee defines a 99% confidence interval over 10 days. Then it’s the choice of 

methodology based on the portfolio content and cost. This will become apparent 

following the description of the different methodologies.

1.7. 1.2 Variance-Covariance Method

This method which is known as variance-covariance (VCV), is a parametric approach 

o f calculating VaR which was first developed by RiskMetrics (JPMorgan). It is a 

linear method which assumes that the portfolio’s profit and loss profile is linear and 

that the portfolio’s returns are normally distributed. Assumptions, which have firstly 

been introduced in Sharpe’s Capital Asset Pricing Model, are used. Some approaches 

have been suggested to avoid using the normal distribution in the Delta-Normal 

model, in order to capture the “fat tails” characteristics displayed by many financial 

time series. For example Wilson (1997) models successfully both financial time series 

and portfolio returns with a student-t distribution, implying that large market rate 

movements will occur with greater frequency than would be predicted by the normal 

distribution. Similar results have been achieved by assuming that market rate 

innovations are generated by a mixture o f normal distributions, also generating 

kurtosis or fat tails in the implied market rate innovation time series.
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Another line o f research focuses on improving the estimate of the covariance matrix 

needed to calculate VaR using single or multi factor GARCH techniques. The RM 

approach uses an exponential weighted moving average (EWMA) approach to 

calculate the VCV matrix.

1.7. 1.3 Historical simulation

This method makes very few assumptions about the market price processes 

generating the portfolio’s returns. The main assumption is that the future movements 

of market rates are being drawn from the same empirical distribution as the historical 

rates. Other assumptions such as the composition o f the portfolio remains static over 

the period of the simulation are not as important as the one mentioned above. Since 

the actual distribution is used there is no associated parametric estimation and the 

steps required to estimate VaR are very simple. However, it’s often difficult to 

implement this methodology in a cost effective manner, since it requires a huge 

amount o f historical data.

The benefits from using a historical distribution is that problems encountered with 

modelling the evolution of market prices are eliminated. Market prices tend to have 

“fatter tails” and be slightly more skewed than predicted by the normal distribution. 

Also, when using this methodology one avoids the assumptions associated with the 

price functions, since the actual price functions are being used. This leads in the 

avoidance o f local approximations, hence model risk is being eliminated in that way. 

Finally, backtesting of this methodology can be facilitated by a simple comparison to 

the variance-covariance approach. This comparison lies in the distributional 

assumptions of the two methods, where the full simulation method uses the actual 

distribution o f market rates in comparison to the VCV method, which assumes
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normality. The difference between the two distributions should be between 2 -  5 % at

all times, since this is the difference at the fat tails of the two distributions.

1.7.1.5 Monte Carlo Simulation

Like to the historical simulation method, the MC simulation method estimates VaR by 

using the same 3-step procedure described earlier, except that this time the evolution 

o f the market rates is drawn from pre-specified distributions. The joint evolution of 

each market risk factor must be modelled in detail in order to implement this method. 

This approach is quite powerful but comes under the same criticism as the VCV 

approach e.g. fat tails, symmetrical distributions, parameter estimation. Furthermore, 

model risk is inherent in this approach since market rates are being generated rather 

than taken as observed. This method is quite challenging to implement both in terms 

o f complexity and systems requirements plus the necessity for skilled resources to 

carry out the implementation.

However, this method is usually applied in practice only when there is an MC 

simulation model already in use to risk manage complicated structures. This is when 

its benefits become apparent to the end-users.

1.7.2 Comparison o f the standard market VaR approaches

The following table will summarise the differences o f each method by considering 

only the main methodologies and not any of their derivatives:

V ariance-Covariance Historical Simulation Monte Carlo Simulation

(Delta Normal)
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• Parametric approach 

based on normality 

assumptions

• Based on the actual 

distribution o f market 

rates

• Choice of distribution 

for the market rates

• Linear Valuation • Uses Full Valuation • Uses Full Valuation

• Only Linear Assets • Handles non Linear • Handles non Linear

Assets Assets

• Extreme events not • Some extreme events • Some extreme events

captured could be captured could be captured

• Ease of computation, • Easy to communicate, • Good for complex

easy to communicate accounts for non structures and non

linearity linearities

• Non linearities can not • Computationally • Difficult to implement,

be accounted for and intensive and costly in inherent model risk

neither extreme events. terms of systems and

maintenance

1.7.3 More recent approaches

There have been other approaches, which estimate market VaR and they are 

somewhat different than the aforementioned. The most popular is the one based on the 

use of asymptotic Extreme Value Theory to calculate VaR. This approach is based on 

modelling directly the extreme value of the price o f a given product or portfolio and 

estimating the relevant parameters directly rather than using a building block 

approach to build the portfolio distribution from the joint distribution of the 

underlying positions.
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Longin (1994) proposes a method for calculating the optimal margining requirement 

for futures markets based on the asymptotic extreme value distribution. The potential 

of the optimal margin requirement is directly related to the concept o f VaR i.e. is the 

amount of capital needed to support a given risky position over some time horizon. 

Longin used extreme value theory that gives the exact form for the asymptotic 

distribution o f the minimum of a random variable, and as such is independent of the 

distribution of daily price changes. Different processes of daily price changes imply 

different parameters, but the same functional form of the asymptotic extreme value 

distribution.

The functional form of the extreme distribution is relatively robust, covering serially 

correlated price changes, innovations that exhibit fat tails, ARCH processes and 

mixtures of jump-diffusion processes. The potential o f this theory is further discussed 

in Bassi, Embrechts and Kafetzaki (1996).

1.8 Credit Risk Models

The initial interest in credit risk models stemmed from the desire to develop more 

rigorous quantitative estimates of the amount o f economic capital needed to support 

the bank’s risk-taking activities. The evolution o f credit risk modelling was facilitated 

by a continuous changing environment, which made its measurement more important 

than ever before. Some of the factors which contributed to that are: l.the increased 

number o f bankruptcies, 2. more competition in the lending business, 3. declining 

value o f firm collateral, 4. a dramatic growth of OTC derivatives.

However, of the above models none has managed to capture the inherent credit risk 

run by an institution when they trade off-balance sheet instruments (swaps, interest 

rate options, credit derivatives) which have seen a dramatic explosion in volumes over
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the last 20 years. Furthermore, an important aspect of economic theory which has not 

yet been captured, not even within the context o f the more recent and sophisticated 

credit risk models, is the fact that market and credit risk are intrinsically related to 

each other and more importantly they are not separable (i.e. if  the market value o f the 

firm’s asset changes, generating market risk, which in turn affects the probability of 

default, consequently generating credit risk). The relation between market and credit 

risk is of great importance, as it affects the risk adjusted return on capital and 

therefore should be treated accordingly.

1.8.1 Recent approaches to Credit Risk Modelling

There is a wide range of practices among financial institutions which varies in terms 

of both methodology and implementation Basle Committee on Banking Supervision 

[9]. In spite, o f the observed methodological differences there are two general 

frameworks for valuing risky claims, each with different approaches to data 

limitations and the economics of default. Both frameworks emanate from the 

pioneering work o f Merton (1974) but they differ substantially in form.

“Structural models” “Reduced form models”

1st Generation Third Generation
Merton (1974) Jarrow & Turnbull (1995)

Black & Cox (1976) Jarrow, Lando & Turnbull (1997)

Second Generation 
Longstaff & Schwartz (1995)
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The first one, is known as the structural because it requires firm-specific inputs to 

model the default process. Typically, the cause o f default is a decline in the value of 

the firms’ assets such that it no longer can pay its fixed claims. The other type of 

framework models default as being an underlying process by a suitable statistical 

distribution. This is called the reduced form approach which estimates the risk-neutral 

probability o f default over a given interval from prevailing credit spreads, without 

reference to the cause o f default.

1.8.2 Structural Approach

Under the structural approach default is related to the underlying assets of the firm. 

This was best explained by Merton (1974), who considers an individual firm as the 

unit of analysis. This firm has a simple capital structure, issuing only one type of debt, 

a zero coupon bond with a face value B and maturity T. Default is assumed to occur 

only if the value o f assets falls below the book value of debt. The equity holders are 

long a call option on the firm’s assets. If the value of the assets at maturity of the debt 

issue is greater than the face value of the debt (resembles the exercise price F, of the 

call option), then the owners of the firm will pay the debt holders and keep the 

remaining value. However, if  assets are insufficient to pay the debt, the owners of the 

equity will exercise their “default option”, and put the remaining assets to the debt 

holders.

Default is not associated with any cost and priority is given in the repayment o f debt. 

Hence, the debt holders take over the firm and the value o f equity is zero, assuming 

limited liability. Based on that, Merton showed that the value of risky debt, is given

by:

V ,(t, T)= F B ( t, T) -  p [V( t )]
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where,

Vi : the value of the risky debt

B(t, T ) : the time value o f a zero coupon bond that pays one dollar for sure at time T 

V(t): the time t value of the firm’s assets, and

p[V(t)]: the value of a European put option on the firm’s assets that matures at time T 

with a strike price of F.

1.8.3 Reduced Form Approach

Reduced form models abstract from firm-specific explanations of default. Instead, 

they describe the process governing the time a default occurs. This type of models 

avoid the problems associated with the structural models like unobservable asset 

values and complex capital structures. However, this simplicity comes at a price, 

since the whole approach relies on credit spread data to estimate the risk-neutral 

probability o f default. The basic reduced-form model relies on an economic argument 

which can be derived using standard arbitrage-free derivatives pricing arguments: 

Bnsky(T) = DFrisk.free(T) * [(1 -  q) * $1 + q * $ER]

Where q is the risk-neutral probability of default prior to maturity and ER is the 

expected recovery rate in case of default prior to maturity.

Reduced-form models demonstrate their elegance in the above pricing equation. 

Assuming that we can construct yield curves using observable data of both risky 

(Brisky) and risk-free bonds (DFriSk.free(T)), and the recovery rate is known, then the 

risk-neutral (market implied) default probability can be obtained as a function of the 

two discount factors. This makes sense since the credit spread contains the markets 

expectation of default. Given enough data, it is possible to relax the assumption of a
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fixed recovery rate and estimate both q and ER as a function o f spreads on different 

classes o f security.

Jarrow and Turnbull (1995) give the earliest example o f this approach. They allocate 

firms to credit risk classes and default is modelled as a point process. As described 

earlier, the term structure of credit spreads is used for each credit class to infer the 

expected loss over (t, t + A t), which is the product of the conditional probability of 

default and the recovery rate under the equivalent martingale (risk-neutral) measure, 

and then price the credit risk derivatives. In order to model the volatility o f credit 

spreads, a more detailed specification is required for the intensity or/and the recovery 

function. The specification of the recovery process is a very important component in 

the reduced form approach. If default occurs i.e. on a zero coupon bond, then the bond 

holder is assumed to receive a known fraction o f the bond’s face value at the maturity 

date. This face value is determined with the default free term structure of interest 

rates.

Further work on the same issue by Das and Tufano (1996) examined a deterministic 

intensity function together with the assumption that the recovery rate is correlated 

with the default free spot rate. They assume that the default rate depends on the state 

of the economy and is subject to idiosyncratic variation. The Das Tufano approach 

can also be generalised be allowing the probability of default to depend upon the 

default free rate o f interest, and they develop an efficient algorithm, in order to infer 

the martingale probabilities o f default.

The main development in the JT (1995) model was performed by Lando (1994) and 

(1997) who assumes that the intensity function depends upon different state variables, 

and this is referred to as a Cox process. Lando derived three main results which all 2

2 When the Cox process is dependent upon state variables acts as a Poisson process.

19



take the form of an expectation operator under the equivalent martingale measure of 

the expected discounted payoff where the discount rate is (sum of risk free interest 

rate and the intensity function) adjusted for the default probability. The three different 

cases represent a security which:

1. pays some random amount X at time T provided that default has not occurred, 

zero otherwise.

2. pays a cash flow X(s) per unit time at time s provided that default has not 

occurred, zero otherwise.

3. pays X(A) if default occurs at time A, zero otherwise.

The recovery rate process is an important component in the reduced form approach, 

since the default free term structure is used to determine the present value o f a bond in 

the event of default. An alternative simple representation for the value of a risky bond 

by assuming that in default the value of the bond is equal to some fraction of the 

bond’s value just prior to default is derived by Duffie and Singleton (1994).

Empirical observations by Duffee (1999), and Das and Tufano (1996), showed that by 

modelling the intensity function as a Cox process, the credit spread depends on both 

the default free term structure and an equity index. In addition, the work of JT (1995) 

Duffee and Singleton (1994), and Lando or JLT (1997) implies that for many credit 

derivatives, only the expected loss needs to be modelled, i.e. the product o f the 

intensity and the loss function.

Further empirical work has revealed relationships between credit spreads and default 

free interest rates Duffee (1998). However, the quality and origin o f the data used has 

to be evaluated carefully at each case since there is evidence that some of these 

results could be biased forcing relationships that don’t exist Longstaff & Schwartz
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(1995). More specifically LS used annual data from 1977 to 1992, to fit the following 

regression:

A Spreadt = b 0 +b] A Yieldt +b2 A I  +e,

where, A Yieldt is the change in the 0.25-year treasury, It is the return on the 

appropriate equity index and et is a zero mean unit variance random term. For Aaa, 

Aa, A and Baa industrial both the estimated coefficients are negative. This is not 

surprising since an increase in the treasury bill rate, increases the expected rate of 

return on a firm’s assets, and hence lowers the probability o f default. This in turn 

increases the price of the risky debt and thus lowers its yield. Irrespective of the 

bond’s maturity , the coefficients bi and b2 increase in absolute magnitude as the 

credit quality decreases. However, as argued by Duffee (1998), Longstaff and 

Schwartz’s results must be treated cautiously as their data includes bonds with 

embedded options which can bias the regression results.

Altman (1992) uses first order differences, and as explanatory variables the 

percentage change in real GNP, the percentage change in the money supply, the 

percentage change in S&P index and the percentage change in the new business 

formation. The results were that there exists a negative correlation between changes in 

these variables and changes in the aggregate number o f business failures. The 

reported R-squares are substantially low.

In conclusion, we can state with certainty that credit spreads are affected by economic 

underlying influences. However, one has to be cautious before arriving to conclusions 

when carrying empirical work, because it can lead to misleading results.
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1.8.4 Recent Developments in Credit Risk Framework

As it was mentioned earlier banks are allowed to use their own internal models for 

assessing capital requirements for market risks. Since Basle 1998 this has been 

extended to allow banks to use internal models, which can assess regulatory capital 

for both market and credit risk. Recently advances have been made in modelling 

credit risk in lending portfolios. These new models are designed to quantify credit risk 

on a portfolio basis, and therefore have applications in control of risk concentration, 

evaluation return on capital at the customer level, and are proved to help more active 

management o f credit portfolios. These models include Credit Metrics (CM) (1997), 

developed by JP Morgan. A portfolio credit risk management model, which uses 

probability transition matrices, in order to measure the marginal impact on individual 

bonds on the risk and return of the portfolio. CM is based on credit migration 

analysis, i.e. the probability of moving from one credit quality to another, including 

default within a period of one year -  chosen arbitrarily. Interest rates are assumed to 

follow a deterministic process. The credit VaR of a portfolio is then derived in a 

similar fashion as for market risk, i.e. it is the percentile o f the distribution 

corresponding to the desired confidence level.

In Credit Risk + (1997), as developed by CSFB, there are only two end of period 

states for the obligor: default and non-default. In the event of default the lender 

suffers a loss o f fixed size, i.e. its exposure to the obligor. CR+ applies an actuarial 

approach for the derivation of the loss distribution o f the loan/loss portfolio. In CR+, 

no assumptions are made about the causes o f default,

The KMV idea o f applying the option pricing model to the valuation of risky bonds 

and loans can be dated back to Merton’s model (1974). He noted that when a bank 

makes a loan its compensation is isomorphic to writing a put option on the assets of
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the borrowing firm. In particular, as there are five variables which enter the Black- 

Scholes-Merton (BSM) model of a put option for stock valuation, the value o f default 

of a loan or bond will also depend on five similar variables3.

The Credit portfolio view (CPV) as presented by McKinsey (1998), is a multi-factor 

model, which is used to simulate the joint conditional distribution of default and 

migration probabilities for different rating categories, belonging to different industries 

and countries, based on a set of macro-economic variables such as the GDP growth, 

the level of foreign exchange and interest rates, the aggregate savings rate and others. 

However, all these named models are inappropriate to measure credit risk for 

derivative products. The main reason for that is that they assume deterministic interest 

rates and exposures. The next generation of models should allow at least for stochastic 

interest rates and relationships between credit events and economic conditions.

1.9 A Brief Comparison of Credit Risk Models

Having mentioned the basic and most influential credit risk models, which have been 

developed in the last years, it would be important to consider difference and 

similarities among those models as well as the advantages and disadvantages o f each 

of those models. The following table summarises the four basic models together with 

their main framework of comparison:

Framework for CM CR+ CPV KMV

comparisons

Basis for Credit risk Market 

Value of

Expected 

Default Rates

Macro-

economic

Market value 

of assets

3 The five variables included in BSM model of a put option are the original interest rate on the 
swap(the strike price), the current interest rate (the current underlying price), the volatility of interest 
rates, the sort term interest rates and the time to maturity of the swap.
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assets variables

Interpretation of 

Risk
MTM

(mark-to-

market)

Default Model
MTM or

Default

Model

MTM or

Default

Model

Volatility of micro 

& macro variables

Constant Variable Variable Variable

Correlation of 

dependent and 

independent 

variables

Multivariate 

Normal 

Asset Return

Expected 

Default Rate 

or

Independence

assumption

Factor

Loadings

Multivariate

Normal

Asset

Returns

Recovery Rates Random Constant 

within a band

Random
Constant or 

random

Numerical Approach Simulation 

or Analytic

Analytic Simulation Analytic

As shown in the table above these models have some similarities and differences. The 

first and most popular model used by most financial institutions was the CM model. 

Subsequently the KMV corporation came up with a model which estimates expected 

default frequencies (EDFs) based on observable data and superseded the CM model 

which was a bit general in the sense that it would provide an accurate picture over 

rating classes rather than individual companies. In particular the next sections discuss 

briefly just that:

1.9.1 Basis of Credit Risk

Both CM and KMV models use the market value of assets and the volatility o f assets 

in order to derive the their credit risk, i.e. they are based on a Merton-type model.

24



CPV’s risk on the other hand is driven by a set of macro-economic variables, while in 

CR+ the risk is driven by the mean level of default and its volatility. However, it 

could be argued that all the above models could be linked to each other, since the 

volatility of the market value of assets as proposed by CM and KMV is linked to 

stock returns. In turn, stock returns are affected by macroeconomic factors -  

systematic -  as well as non-systematic factors. CPV is also driven by a set of macro 

economic factors and unsystematic- shocks- in the economy; while CR+ is driven by 

the mean default rate in the economy, which could also be linked to the state of 

economy. Therefore, each of the above models can be viewed as being linked to some 

macro-economic variables and effectively to the state of the economy -  directly or 

indirectly.

1.9.2 Definition of Risk

Some of the models discussed above calculate the VaR based on changes in market 

values, which are the mark-to-market, and allow for downgrades /upgrades as well as 

defaults; whereas some others concentrate only on two states of the economy the 

default and non-default.

1.9.3 Volatility o f the variables

In CM, the probability of default is assumed to be fixed based on historical data. In 

CR+ the probability of default is assumed to follow a Poisson distribution around a 

mean default rate, which in turn is assumed to follow a gamma distribution, which 

results in fat tailed distributions. CPV models the probability o f default as a logistic 

function of a set of macroeconomic factors and shocks, which follow a normal 

distribution and therefore as the macro economy advances, so will the probability of
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default and the transition matrix. KMV model is based on the EDF which changes as 

new information is absorbed in stock prices.

1.9.4 Correlation of credit events

The correlations, in all the four models could be seen as correlation between an 

individual or portfolio o f loans or bonds, and the state of the economy, as 

aforementioned.

1.9.5 Recovery Rates

Generally speaking, the distribution o f losses and the VaR calculation have proved to 

be rather volatile and dependent not only on the probabilities of default but also in the 

losses, once default has occurred. Therefore, modelling a volatile recovery rate can 

increase the VaR calculation or the unexpected loss rate. The four models view 

recovery rates as follows:

CM allows recovery rates to be random. In the normal distribution version of the 

model, the estimated standard deviation of recovery is included into the VaR 

calculation. In the actual distribution version, recovery rates are assumed to follow a 

beta distribution. In CPV recovery rates are estimated through a Monte Carlo 

simulation, while under CR+ recovery rates are assumed to be constant, but within a 

specified band.

1.9.6 Numerical Approach

CM uses both the analytic and the simulation approach for calculating VaR. This 

happens because since the number of loans in a portfolio increases, the analytic 

approach becomes very complex and thus Monte Carlo simulation approach is more
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advantageous and produces an approximate aggregate distribution o f the portfolio 

loan values and thus VaR.

CPV also uses a Monte Carlo simulation to generate macro shocks and the 

distribution of losses on a portfolio. On the other hand, CR+ based on a Poisson 

distribution for individual loans and a gamma distribution for the mean default rate, 

generates an analytic solution for the probability density function of losses. KMV also 

uses an analytic approach in order to generate the probability density function of 

losses.

The most common assumption made on all the aforementioned credit risk models is 

that o f deterministic interest rates and exposures. This is acceptable for vanilla loans 

and bonds, but when one has to deal with more complex securities than these then 

these models become useless in credit risk measurement. For example, when dealing 

with derivative instruments such as swaps, interest rate options, etc., which are among 

the simplest derivatives in the financial markets, one has to examine the term structure 

of interest rates in order to obtain an accurate estimate o f the real exposure.

A general framework which might be acceptable to account for credit risk for 

derivatives instruments will have to take into account the term structure o f interest 

rates. Hence, new approaches should combine stochastic interest rates with default 

and migration probabilities which will depend on factors such as the level of interest 

rates and other market indices, possibly from the stock markets.

1.10. Derivative Credit Risk

Previous sections have given an overview o f market and credit risk measurement as 

two separate risks. Although these two major types o f financial risk are quite different 

the relationship between them is quite intricate. There have been many examples in 

the past which have shown that the risk of default is directly linked to financial
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markets hence creating market risk and vice versa (Enron, Worldcom in the US and 

Parmalat in Europe just a few of the recent defaults). The two risks are often related 

through observed market variables. There is increasing evidence that corporate yield 

spreads can be explained by a number o f market variables, such as equity indices, 

interest rate spreads, interest rate volatility and in some cases macroeconomic factors 

Dufresne, Goldstein and Martin (2001). The recent examples of Enron and Worldcom 

have also shown that their specific credit spreads were affected by their stock price 

since the stock price slid for a number o f months before the spread started to widen. 

One possibility for that could be that stock market participants had a better view or 

“knowledge” o f each companys’ finances or a simpler reason could be that the easiest 

way to bet on a companys’ default is by selling short its stock. Although this is quite 

recent, it shows the degree o f integration of financial markets across all asset classes 

and all types o f risk. This integration creates residual risks which are not being 

observed directly.

The interest rate market, -a huge market by annual turnover- is a prime example of 

risk integration. Although equity markets react to credit events and -credit events 

could be triggered by a deterioration of companys’ stock or bond price simply 

because credit is a “reputable” business- default risk in the interest rate market is a 

direct issue and needs to be addressed by all market participants on a more frequent 

basis. All OTC contracts are between two parties o f certain credit quality and both 

counterparties bear credit risk to each other. This credit risk is often higher as 

maturity o f the contract increases. Hence, the existence o f term structure o f credit risk. 

The most actively traded instrument in the OTC interest rate market is the interest rate 

swap (IRS). Notably interest rate swaps, which form a major part of the interest rate 

market, bear substantial default risk. In an efficient market, one would expect market
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swap rates to incorporate the risk of default. Hence, one would expect the swap rates 

to be sensitive to the credit ratings of the counterparties. For instance, a swap dealer 

who pays a floating rate and receives fixed payments in exchange would require a 

BBB-rated counterparty to pay a higher fixed rate compared to a AAA-rated 

counterparty. Conversely, the dealer would be willing to make lower fixed payments 

in exchange for floating rate payments to a BBB-rated counterparty than a AAA-rated 

counterparty (Eom Subrahmanyam 1997).

There is little research to suggest that the swap rates quoted in the market vary 

depending on the counterparty credit rating. Duffie & Huang (1998) in their attempt 

to propose a pricing model for valuing claims subject to default by both contracting 

parties, which captures the possibility of default. Swaps were used for illustration 

purposes. According to their proposed framework, counterparty credit rating plays a 

role in swap rates but a lesser one in terms of magnitude. For example, when they 

switched to a lower rating counterparty on an ongoing swap agreement, the swap rate 

increased by roughly one basis point. This credit impact on swap rates was found to 

be approximately linear within a range o f normally encountered credit quality. They 

conclude that the impact o f credit risk on swap rates may be less than indicated by 

their results given industry practices designed to reduce default risk, such as 

collateralisation, and options for early termination among others. Previous to Duffie 

& Huang, others attempted to price swap default risk. For other approaches see Abken 

(1993), Cooper & Mello (1991) and others.

Empirical research on swap credit risk hasn’t been in huge supply apart form Cossin 

& Pirotte (1998) and Mozumdar (2001). Using real-time swap data from two interest 

rate swap dealers with different credit ratings (AAA and A) their aim was to examine 

the relationship between the dealers’ credit rating and the swap bid-offer quotations.
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Their main findings show that spreads between AAA swap offers and Treasury yields 

are significantly positive and they increase significantly with maturities. Also, bid- 

offer spreads o f swap dealers are sensitive to their credit reputations. The A dealers’ 

swap rates appear to be bracketed by the AAA dealers’ swap rates.

Cossin & Pirotte (1998) analyse swap credit risk on actual transaction data provided 

by a medium sized European Bank, a small operator in the swap markets. The primary 

goal o f their study was to examine the presence of credit risk in the pricing o f swap 

deals. They examined 55 IRS (Interest Rate Swap) deals and 201 CS (Currency Swap) 

deals, which took place throughout 1990-1994.

The counterparties involved in the deals were of different credit rating, ranging from 

Aaa to unrated. Their methodology was to compare the transaction data available to 

end o f day bid or offer quotes out of Datastream, which represent quotes to the 

interbank market. Their findings suggest that there is pricing o f credit risk in their 

sample o f IRS especially during 1994. They also find that there is a strong difference 

of spreads with unrated companies. Unrated firms have much less favourable prices 

on the swap market but no worse terms in terms of maturities and amounts. Almost 

the same results were found for the CS. The only major difference between the two is 

that maturity makes a huge difference in CS.

Mozumdar (2001) shows that the impact of default risk should not be taken lightly. 

Most research so far has shown that swaps bear default risk but is quite negligible. For 

example, both Duffiee and Singleton (1997) find only week empirical evidence that 

default risk is important in swap markets. Similarly, as was mentioned earlier, Duffiee 

& Huang (1998) report that a 100 bps difference in debt rates corresponds to lbp 

difference in swap rates, and they estimate the expected annual loss rate to be 

0.00025% of the notional principal. Mozumdar (2001), stipulates that the issue of
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default risk in swaps needs to be addressed by examining the structure of the swap 

market. He shows that the default risk of swap drastically increases if is used for 

speculation in contrast to its use for hedging purposes. He also shows that when firms 

have such private information, price-based mechanisms are unable to control default 

risk. Attempting to compensate the swap dealer for the default risk of speculative 

swaps by raising the cost o f swapping to the counterparty would only increase the 

speculative intent of the pool of counterparties, thereby further increasing default risk. 

The academic literature described has specified that default risk is already in the price 

o f a swap but it seems to be negligible when theoretical models are applied. Empirical 

evidence show that only if the credit rating of a company is below investment grade 

or unrated will affect default risk the swap rates that the company will be quoted by 

dealers. This shows that the industry uses other information and techniques to 

mitigate the default risk of the swaps. However, it doesn’t prove that once a swap 

agreement is entered that default risk is being “priced in”. As Mozumdar (2001) finds, 

dealers need to rely upon additional exposure information or credit enhancement 

devices in order to preserve equilibrium. The main reason for that is that firms can use 

swaps for either speculative or hedging purposes with the former bearing higher risk 

o f default. Therefore, when a dealer looks at the overall risk o f a swap book s/he has 

to assess default risk per counterparty.

Assuming that not all counterparts use credit enhancement devices, simply marking to 

market and netting agreements are not sufficient to mitigate credit risk. Hence, 

additional techniques needs to be applied in order to assess and measure default risk. 

For example, if  the dealer wishes to hedge the swap book in terms of market risk then 

he can probably do so using the liquidity available in both the money markets for the 

short end and the government bond markets for the long end. If the dealer wishes to
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hedge its credit risk there are a number of ways he/she can do it. Collateralisation or 

other margin requirement at the initiation of the swap is a very popular way o f doing 

so, although credit risk is not fully hedged and needn’t be. Triggers for early 

termination in the International Swaps and Derivatives Association (ISDA) (1998) 

agreement, penalties for rating downgrades are less popular due to the intense and non 

standardised legal aspects.

However, recent changes in the regulatory regime, require that dealers measure 

expected and maximum exposures over the life of all their outstanding derivatives 

contracts. They also have to assign initial exposures. A recent survey by the Group of 

30 asked dealers to indicate the initial exposure that would be assigned to a variety of 

derivative transactions with varying maturities. The results reveal that most dealers 

differentiate sharply by the type of transaction and the maturity o f the transaction but 

not according to the credit rating of the counterparty they have the exposure with. The 

fact that credit rating is not an accountable factor by dealers is explained by the actual 

procedure that banks carry on with that part o f their business which is limit setting. 

This is the usual credit process which allows dealers to trade with almost any 

counterparty o f any rating by allocating bigger limit to the highest rated and lower 

limit to the lowest rated or unrated counterparty. O f course this allows for continuous 

and alarmingly increased trading between major dealers.

This is an actual fact and it was flagged up by the Federal Reserve chairman Alan 

Greenspan who expressed concern over the risks posed to financial markets by the 

concentration o f the $142 trillion derivatives in the hands o f a few investment banks 

(Reuters). The same year Warren Buffet warned that large amount of credit risk has 

become concentrated within just a few major dealers (Financial Times). The limit 

setting methodology is tied in with allocating resources based on the relevant

32



exposure, purely the combination of the two resembles the insurance approach. The 

study by the Group of 30 informs us about this resource allocation per derivative 

instrument. For instance, the average dealer assigns an initial exposure of about 22% 

of notional amount fro a 3-year currency swap and about 5% of notional amount fro a 

3-year interest rate swap. This differentiation according to the type o f transaction 

would be expected by the difference in the exposure profiles that the two instruments 

have over time. The study also informs us of how end-users treat exposures like that. 

Twenty-six percent of end-users measure exposure according to the notional amount 

alone. An additional 39% of end-users measure the exposure as a percent of notional 

amount, but differentiate by type and maturity of transaction. Fourteen percent of end- 

users measure exposure on a mark-to market basis.

Evidence such as this lead into taking a closer look on how to measure and manage 

credit risk on a portfolio o f derivatives. Quite recently the “art” o f calculating 

potential and worst case exposure has been in place by most major dealers. Usually a 

Monte Carlo engine will generate potential scenarios which can be projected in the 

future. As a result the potential and worst case exposure can be calculated. This 

technique has been further enhanced by examining the probability by which the 

potential or expected exposure can be achieved. Hence, deriving the expected loss or 

expected worst case loss which is simply the product of the potential exposure 

multiplied by the probability o f default. There are various ways that the probability of 

default can be calculated and often major banks have big credit departments dealing 

with that issue in depth by examining credit spreads, bond ratings and by empirical 

evidence on actual defaults over a long period.

That was a brief description on how credit risk is handled by most major banks of the 

world. However, none of these approaches integrate or take into account the point of
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market and risk integration. The purpose of this study is to identify a technique which 

can evaluate both the market and credit risk elements in interest rate sensitive 

instruments from a theoretical perspective. The idea is that credit risk could be hedged 

if  possible in the same way as market risk by using credit derivatives. However, this is 

quite an expensive procedure and many firms prefer not to hedge unless they feel is 

absolutely necessary. Hedging could be triggered by a number of factors including 

qualitative factors and observed market variables. One observed market variable 

which is almost always used in order to make a hedging decision is the spread 

between the yield of the corporate bond over its respective government bond, simply 

known as the credit spread. By monitoring the level of the credit spread and its 

volatility, dealers can make informed decisions on whether they need to hedge a 

specific exposure or not. Consider a dealer who wants to hedge a credit exposure, or 

in other words transfers the credit risk of his/her portfolio then s/he needs a specific 

credit derivative agreement. The specification of this will match the size and maturity 

o f the exposure without adding any further counterparty risk. Instruments which can 

be used to replicate that range from credit default swaps, to total return swaps and 

credit spread options (CSO)4. Since the risk of default increases as the credit spread of 

the counterparty widens it is logical to use either a CDS or a CSO. The perfect credit 

hedge for a swap would be if  its exposure profile matched the credit spread. In this 

study we examine the use of CSOs as hedging instruments for swap credit risk. The 

natural way to do that is by purchasing credit spread call options, in order to protect 

for any spread widening.

4 Credit spread options (CSOs) are derivative instruments introduced in the beginning of the 1990s. 
CSOs are options on a particular reference credit spread in the loan or bond market over a standard 
rate. One party pays a premium at initiation in return for a payment in the event that the reference 
credits’ spread crosses a certain strike.
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However, as it was mentioned earlier this is a costly technique in an illiquid market. It 

can be used though to calculate the risk of default or the market price o f risk that a 

swap bears throughout its life. By calculating the cost of dynamic hedging of the risk 

o f default, one can probably estimate the market price of risk o f default or otherwise 

how much credit risk a counterpart takes by entering into a swap agreement. 

Furthermore, the portfolio of the swap and the CSO or otherwise the credit hedged 

portfolio can form the basis o f calculating an integrated measure o f market and credit 

spread risk.

By running market VaR on the swap portfolio and market VaR on the spread options 

and then integrating the two by looking either their long-tem relationship one can 

create a single measure for both risks. Another way could be by examining the 

relationship o f the credit hedged portfolio versus the credit spread and the running 

market VaR. In the following sections we will explain the reasons for choosing each 

technique used starting form the choice o f the LS model and why it was suitable for 

fitting credit spread curves. Then w e’ll describe the LS methodology and how it was 

calibrated using market rates in order to price consistently interest rate options and 

credit spread options. The next steps will show a brief statistical analysis on the credit 

spread data following that how the historical simulation VaR was calculated for the 

IRS portfolios and the credit spread options. For the final part o f this analysis the 

relationship between the two VaR figures will be examined in order to draw the 

necessary conclusions.

1.11 Integrated Market & Credit Risk

In general one cannot isolate one risk form the other in pricing and risk management. 

This is quite obvious in corporate bonds which are subject to both credit and market
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risk. In other financial markets such as interest rate derivatives one may face both 

risks and others such as liquidity risk in a more complex way. The academic literature 

usually treats market and credit risk as separate. There are only a few papers which 

attempt to integrate the two risks.

Most o f this type of research is simulation based. Large portfolios which contain a 

number of different financial instruments, ranging from corporate bonds to equity and 

equity derivatives to credit derivatives. Then all market rates directly affecting the 

portfolio are being simulated. Others attempt to integrate market and credit risk using 

a dynamic asset allocation perspective Barnhill, Papanagiotou and Schmacher (2002). 

However, this approach has a slightly different target than the one in this paper. They 

investigate how financial institutions who face both market and credit risk in addition 

to equity risk would allocate their financial resources in a dynamic set-up. Our 

purpose is to deduce a measure which integrates both risks. From a capital allocation 

perspective this would be useful since investors would use capital at risk 

measurements such as this one to deduce their earnings at risk over different time 

horizons. This could also create a dynamic asset allocation framework.

Barnhill, Papanagiotou and Schmacher (2002) present a numerical solution based on a 

simulation model that explicitly links changes in the relevant variables that 

characterize the financial environment and the distribution o f possible future bank 

capital ratios. Their model was applied to the study of the risk profile of various 

hypothetical banks operating in the South African financial environment. Their study 

demonstrated that their model is able to capture the impact o f correlated market and 

credit risk on the potential losses that a bank can suffer due to interest rate, foreign 

exchange rate, equity price and real estate price changes as well as client defaults and
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downgradings. They also find that extreme volatility events (fat tails) were not 

captured and they also haven’t looked at the effect o f large derivative exposures.

A framework o f integrated risk was proposed by Medova and Smith (2003). They use 

a Monte Carlo methodology to introduce a single platform for both market and credit 

risk models. Their methodology is based in calculating distributions of future values 

o f a portfolio at a series of time horizons. They provide examples on a variety of 

instruments including FX swaps. Their methodology is based on having two states in 

the world, default and non-default. They simulate both states and their measure is one 

which discounts default to today at all times. This methodology is simply the 

combination o f Merton’s corporate model together with any other market risk pricing 

model. An interesting feature o f their framework is that the integrated risk measure is 

less than the market risk measure.

The integration o f risks in one measure is something that many researchers envisaged 

achieving. So far most o f the effort has been on the banking book level. The issue of 

derivative credit risk hasn’t been addressed with a joint market and credit risk 

measure. The only way to achieve this for all securities and rates is by simulation only 

according to current research. Our view is that integration o f risks can be achieved 

without carrying out Monte Carlo simulations. We assume that the information 

content o f the credit spread is sufficient to provide an accurate view o f a corporate’s 

status and vice versa. Based on that we will attempt to tie credit exposures to credit 

spreads in such a manner that one is a function of another. This will facilitate in 

creating an integrated measure, which is based on theoretical relationships rather than 

a generated or even historical simulation. Essentially we will create a credit neutral 

portfolio of OTC derivatives where the derivative exposure is linked to a credit
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derivative. By running a market VaR on that portfolio we produce a measure which 

accounts for both the market and credit risk of the OTC derivatives.
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CHAPTER 2: Pricing Interest Rate Sensitive Securities and

Credit Spread Options using the Longstaff & Schwartz 

(1992) Model

Abstract

This study uses the valuation framework of Longstaff and Schwartz (1992a) to price 

European Interest Rate and Credit Spread Options. Credit spreads are assumed to be 

stochastic variables following the two-factor process as proposed by LS (1992a) with one 

factor being the level of the credit spread and the second factor being the volatility. The 

parameters of this process are easily estimated using observable data. The model allows the 

fitting of various curve shapes including the complex credit curves. Calibration of credit 

spread options prices is done using a replicating option strategy. The estimated credit spread 

curves are used to imply default probabilities under the Jarrow and Turnbull (1995) and 

Jarrow, Lando and Turnbull (1997) credit risk models.

2.1 Introduction

2.1.1 Background of the study

The term structure o f interest rates is an important source o f information for market 

participants as well as central banks since it provides information on, among other 

things, the markets’ expectations concerning future monetary policy. Specifically, the 

estimated implied instantaneous forward interest rate curve can, given adequate 

assumptions, be interpreted as the expected short-term interest rate, which is directly 

or indirectly controlled by the central bank. However, implied forward rates do not 

provide any information on the uncertainty associated with the expected future short-

term interest rate.
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Interest rate models serve the purpose of providing accurate estimates of spot yield 

and forward curves in order to perform pricing and risk management functions. 

Interest rate modelling is in a well advanced stage at the moment offering state of the 

art models. A good review of most well known interest rate models can be found in 

Rebonato (1996). The Longstaff and Schwartz (1992a) two-factor interest rate model 

was one of the first equilibrium interest rate models to include a second factor, the 

volatility o f the interest rate. This model has several advantages that make it attractive 

as a candidate for estimating the term structure o f interest rates. First, the two factors 

in the LS model -  the short-term interest rate itself and its volatility -  are intuitively 

reasonable as determinants of the interest rate process, and they have also been found 

to be important in empirical work. Second, the LS model is a general equilibrium 

model which makes it appealing from a theoretical perspective. Third, from a 

practical point o f view, the model belongs to the affine class of models, and therefore 

provides closed-form solutions for zero-coupon bond prices which facilitates 

estimation of the term structure using cross sectional data.

Interest rate models have also been used to model the dynamics o f credit spreads 

Duffie and Sinlgeton (1994), which model the evolution o f credit spreads using an 

Omstein-Uhlenbeck process. There are a number of reasons and for all relate these 

reasons to the credit spread characteristics which have been studied extensively. 

Credit spread series show strong mean reversion Pringent, Renault, and Scaillet 

(2001). In this chapter we will show that most o f our credit spread index data show 

mean-reversion. Furthermore, we successfully fitted the credit spread indices in 

GARCH (1,1) models since it has been noted by academics and practitioners through 

empirical work that the volatility of credit spreads changes over time. Duffie (1999) 

found that the volatilities of yields change continuously i.e. display GARCH-like
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effects. “A stochastic volatility model can capture the skewness naturally embedded 

in credit data” Jacobs K., Li X. (2003). Longstaff & Schwartz (1995) following an 

empirical investigation into credit spreads proposed a mean reverting model for the 

logarithm of the credit spread. The specification of the model is such that it provides 

closed form valuation expressions for risky bonds as well as risky floating rate debt. It 

is a two-factor model where one factor is the default free rate and the second factor is 

the default risk rate. In essence two yield curves can be estimated simultaneously 

based on observed default free and default bond prices. The model allows for 

correlation between the two. However, the term structure of credit spreads has 

multiple and complex shapes. LS 1995 allows for monotone increasing or hump 

shaped curves to be estimated. This feature of the model constrains the fitting of more 

complex shaped curves, whereas the LS 1992 model allows for more complex curve 

shapes to be fitted. The proposition o f using LS 1992 to estimate credit spread curves 

comes at a time that the credit derivative market has grown exponentially over the last 

decade. Volatility is one of the fundamental factors in pricing credit derivatives as 

was noted by Schonbucher (1998). LS 1992 a stochastic volatility model, offers 

closed form valuation expressions for pricing interest rate derivatives.

2.1.2 Problem of the study

Pricing o f a European spread option should resemble the pricing of an interest rate 

option. The payoff function must be dependent on a risk-neutral expectation derived 

from the distribution of the spread. Deriving the distribution o f the spread is the major 

step in deriving a closed formula solution for the pricing of credit spread options. The 

two major credit risk modelling approaches5 fail to provide a closed-form solution for

3 Structural and Reduced Form Approach.
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the spread distribution. For that reason most research into pricing of credit spread 

options has concentrated in obtaining numerical solutions for the spread distribution. 

Using a “spread based” model where the credit spread is modelled as a stochastic 

variable provides a solution to the spread distribution problem. There is a variety of 

models that can be used to capture the evolution of credit spreads. Modelling the 

credit spread as a stochastic variable is internally inconsistent. However, it is the 

quickest and less complicated way of to price credit spread options.

2.1.3 Significance of the study

The LS model will be used to fit cross sectional credit spread data in order to estimate 

the term structure o f credit spreads and their respective volatilities. The first factor of 

the two-factor model will be the short credit spread rate, or in other words the rate at 

which corporations arrange their short term financing. The second factor would be its 

volatility in the same sense as with interest rate volatility. This way a stochastic 

volatility model will be used as a “spread based” model to price European Credit 

Spread Options. The fact that the LS (1992) model is used to price credit spread 

options provides a unified pricing framework for both interest rate sensitive and credit 

sensitive securities.

The estimation of the credit spread curves using the LS (1992) model will facilitate 

further in implying the probabilities o f default using the JT (1995) model specification 

and the transition rating matrix using the JLT (1997) model. The major difference to 

Arvanitis, Gregory and Laurent (1999) is that the implied probabilities will be 

estimated using credit spreads rather than bond prices.
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This chapter is organised as follows: (a) a brief statistical and econometric analysis of 

the credit spread index data (b) a description of the economic justifications of the 

model plus the main assumptions and steps to its derivation, (c) implementation of the 

model using a cross section of interest rate data, (d) pricing of interest rate derivatives, 

(e) a comparison in using daily and weekly data to estimate yield curves, something 

that will facilitate our analysis in chapter 4, (f) estimation of credit spread curves and 

pricing of credit spread options, (g) estimation of implied default probabilities and of 

implied rating transition matrix.

2.2 Methodology

2.2.1 EUR Credit Spread Indices

Credit spread indices have been analysed in empirical work over the past few years to 

determine their dynamics. Empirical research in corporate credit spreads has been 

increasingly revealing on what determines their evolution and behaviour. One of the 

first papers, which initialised a wave of empirical papers was by Pedrosa and Roll

(1998). They analysed a variety of corporate bond credit spread indices pooled by 

rating and sectors. They examined US corporate credit spread indices supplied by 

Bloomberg for a number of years. Their main findings were:

• Most of the series examined showed non-stationarity in levels.

• When the 60 different credit spreads were examined together, they showed a 

high degree o f cointegration.

• Credit spread changes exhibit non-Gaussian distributional properties.

• Credit spreads can be modelled using Gaussian mixtures.

2.1.4 Overview o f the study
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• In most credit spreads, the persistence o f volatility is quite simple; for a few 

series, however, there is evidence o f longer-term volatility persistence.

That was the first paper which showed that there is systematic risk in corporate bond 

credit spreads and it argues that credit spread risks are not diversifiable. Others tried 

to identify the underlying factors which explain credit spread movements.

Christiansen (2000) stipulates that during macroeconomic announcement days credit 

spreads and interest rates are uncorrelated whereas, in general, credit spreads and 

interest rates are negatively correlated. An interesting result, which can be seen in our 

results as well is that the process for the conditional variance o f the credit spread is 

highly persistent. Huang J., Kong W. (2003), examined monthly and weekly US 

credit spread data in relation to major financial market variables such as the Russell 

2000 index historical return volatility and the Conference Board composite leading 

and coincident economic indicators. They showed that these variables have significant 

power in explaining credit spread changes especially for high yield indexes. 

Furthermore, they showed that in total eight variables can explain approximately 68% 

and 61% of credit spread changes for the B- and the BB- rated indexes, respectively. 

Finally their analysis showed that credit spread changes for high-yield bonds are more 

closely related to equity market factors.

In others similar studies, Brown (2001) examined the explanatory power o f the 10- 

year Treasury yield, consumer confidence, the VIX6 index and a Treasury bond 

liquidity measure on credit spread changes. His findings show that these variables can 

explain approximately up to 33% of spread changes. Kao (2000), shows that implied 

volatility o f OTC interest rate options, the yield curve slope, the interest rate level and

6 VIX is an implied volatility index based on the S&P500 cash index options.
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the Russell 2000 index return have significant explanatory power for changes in the 

credit spread index level.

This section will serve as a primer to what follows in this chapter. We will illustrate 

the major statistical properties of Credit Spread Indices. The area of interest is the 

Euro area. The FMC function in Bloomberg was used to collect credit spread indices 

of various ratings (Appendix 1). The length o f the data is not as long as we would 

have liked but is sufficient to provide a good insight into their dynamics. By 

examining the dynamics o f EUR credit spread indices we will be able to decide if a 

theoretical interest rate model such as that of LS (1992a) is appropriate to model their 

evolution.

2.2.1.1 GARCH in EUR Credit Spread Indices

The volatility of credit spreads is reported to be time varying Pedrosa and Roll []. 

Volatility seems to be increasing when past innovations are positive but the same is 

not happening when past innovations are negative. Using the collected data we tested 

the 2Y, 5Y and 10Y credit spread indices per rating for GARCH(1,1) effects. The 

PCGive software was used to examine for the existence of GARCH effects using a 

(1,1) specification. This uses an optimisation algorithm to determine the maximum 

likelihood ratio. The optimisation was carried out using the following constraints:

ag> 0, a l  > =  0, J3>= 0 (2.1)

and

a, + 0 , <1(3.2)

r t f-i A G > G  ̂̂ /-i 
~  a 0 a i £ t- \  P ^ t - \  ’

N(0,h,) (3.3) 

(3.4)

where, Qt-i denotes the information set at time t-1.
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2.2.1.2 Testing for mean reversion in EUR Cedit Spread Indices

Mean reversion is a well-known characteristic found in interest rates. For that reason

one of the tests we need to do is the test o f mean reversion in our series. In empirical

research as Credit Spreads, Pedrosa and Roll (1998), and other credit related spreads

such as MBS spreads Koutmos (2002) seem to be non-stationary in levels, clearly

indicating the existence of mean reversion. Testing for mean reversion involves a unit

root test. This test which has been defined by Dickey and Fuller7 8 (DF test) involves

the testing of the following hypothesis for equation (3.5):

Y ^ p Y ^ + u ,  (3.5)
Null Hypothesis if  p  is equal tol 
based on the r (tau) Test statistic.

If the computed absolute value of the t  statistic exceeds the DF absolute critical 

values, then we do not reject the hypothesis that the given time series is stationary. If, 

on the other hand, it is less than the critical value, the time series is non-stationary . 

Usually, for theoretical and practical the DF test is applied to regressions of the 

following form:

m
Ayt = P\ + P it + 8Y,~\ + ai X  ̂ t - i + £t P-6)

1=1

Null hypothesis if  5  = 0 based on the r  (tau) statistic 

When the DF test is applied to models like (3.6) is called augmented DF (ADF) test. 

The ADF statistic has the same asymptotic distribution as the DF statistic, so the same 

critical values can be used9.

7 D. A. Dickey and W. A. Fuller, “Distribution of the Estimators for Autoregressive Time Series with a 
Unit Root, “ Jo u rn a l o f  the A m erican  S ta tis tica l A ssocia tion , vol. 74, 1979, pp . 427-431. See also W.A. 
Fuller, In troduction  to S ta tis tica l T im e Series, John Wiley & Sons, New York, 1976.
8 Since we run the regression in the form of (3.5) the estimated t  statistic usually has a negative sign. 
Therefore, a large negative x value is generally an indication of stationarity.
9 Damodar N. Gujarati, “Basic Econometrics” McGraw-Hill International Editions, 1995.
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The LS model considers a stylised version of the economy as a whole in which 

interest rates are obtained endogenously rather than received from empirical 

observation. In their model agent (investors) are faced, at each point in time, with the 

choice between investing or consuming the single good produced in the economy. If 

C(t) represents consumption at time t, the goal of the representative investor is to 

maximise, subject to budget constraints, his additive preferences o f the form

£’,[exp(("ps)lnc(s),is)] (3.7)

Consumption at time s is ‘discounted’ to the present time t by a utility discounting 

rate p, which present-values the ‘pleasure’ of future consumption C(s). Et[] is the 

conditional expectation operator, i.e. investors maximise their expectation, subject to 

information available up to time t, o f the discounted future consumption. In other 

words, by deferring consumption the investor can reinvest the single good in the 

economy so as to realize a greater consumption at a later time. The utility discount 

factor accounts for the reduction in satisfaction due to delayed consumption. 

Furthermore, a logarithmic utility function is assumed. Consumption or reinvestment 

decisions have to be made subject to budget constraints that, given the assumptions 

above, have the from

dW = W —  -Cdt (3.8)
Q

i.e. the infinitesimal change in wealth W over time dt is due to consumption (-Cdt) 

and returns from the production process (dQ / Q), scaled by the wealth invested in it 

(hence the constant-retum-to-scale technology assumption). The returns on the

2.2.2 The LS (1992a) model
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physical investment (the only good produced by the economy) are in turn described 

by a stochastic differential equation of the form

^ ~  = (juX + 6Y)dt + oXdz, (3.9)

were dzi is the increment of a Brownian motion, p, 9 and a  are constants, and X and 

Y are two state variables (economic factors) chosen in such a way that X is the 

component of the expected returns unrelated to production uncertainty (i.e. to dzi), 

and Y is the factor correlated with dQ. Both X and Y are Wiener processes described 

by stochastic differential equations

dX = ( a -  pX)dt + yXdz2 (3.10) 

dY = (S -£Y )d t + <f>Ydz3 (3.11)

Given the assumptions made, there is no correlation between the processes dz\ and 

dz2 , on the one hand, and between dz2 and dz3 on the other, i.e. E[dz2 dzi] and E[dz2 

dz3] are both equal to zero. It is not easy to find an intuitive interpretation for the two 

factors described above; rather than economic intuition or plausibility, the main 

justification for the description of the economy embedded in equations (3.7) to (3.11) 

is analytical tractability, as will become apparent later on.

If one accepts that the optimal consumption, given the assumption above, is pW (see 

Cox Ingersol and Ross (1985a) for a proof), direct substitution of (3.9) and of the 

optimal consumption in the budget constraint equation (3.8) gives for wealth the 

stochastic differential equation

dW  = {¡uX +6Y - p)Wdt + aWYdz, (3.12)

2.2.2.1 The PDE obtained by contingent claims

Having obtained the stochastic differential equation obeyed by the process for the 

wealth of the representative investor, two results from CIR (1985b) can be drawn
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upon to obtain that the partial differential equation obeyed by any contingent claim H 

is:

d2H x d2H y f . , , 5 / /  rr dH
— r -  + — ^ -  + ( / - & ) —  + ( V +  A)r)— ~ rH = —  (3.13)
ox 1 oy 1 ox oy or

where x = X / c 2 , y  = Y /  f2 , g  = a / c 2 , e = ^ , § = b, r| = d / f2, r is the instantaneous 

riskless rate, and the market price of risk has been endogenously derived to be 

proportional to y, rather than exogenously assumed to have a certain functional form. 

The set of equations and assumptions described above provide a general equilibrium 

model for the economy as a whole. Contingent claims are priced in this framework as 

endogenous components o f the economy, and their prices are therefore equilibrium 

prices. The same cannot be said, in general, for no-arbitrage models, which dispense 

with any description of the economy. While this added feature o f the CER (1985b) and 

LS (1992a) models is certainly intellectually interesting, it should be kept in mind that 

their claim o f providing a general equilibrium model is only valid within the context 

o f the very stylised economy they assume (only one good produced, no role for 

money in the economy, no trade with foreign economies, etc.). As is the case with all 

equilibrium models, the investors’ utility function or, more specifically, the market 

price of risk, will appear in the PDE describing the price o f any contingent claim. 

Since, of course, the parameters (including the market price o f risk) of the model 

cannot in practice be determined a priori, the user will be faced with the need to 

estimate them either by a suitable best-fit procedure to some observable set of data 

(typically a yield curve, but the term structure of volatilities and the correlation 

between rates might also have to be taken into account), or by a means of a mixed 

historical-implied’ approach.
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2.2.2.2 The equilibrium term structure

As mentioned in 3.2.1.1 any security traded in the economy described by the LS 

model must satisfy the PDE (3.13). In particular, this equation will have to be 

satisfied by a zero-coupon bond, i.e. a security with terminal condition F(r, V, 0) = 1. 

When this boundary condition is imposed, and a separation o f variables approach is 

followed, the resulting expression for the value o f a discount bond, F, t years before 

expiry turns out to be given by:

F(r, V, r) = A2y (v)Blri ( r )  exp(*rr + C(z)r + D(r)F) (3.14)

The expression for the continuously compounded yield of a zero-coupon bond, which 

can be directly obtained as the negative o f log(F(T)) / T; a simple calculation gives:

Y(T) =
-t<T + 2y log A(T) + 2q log B(T) + C(T)r + D(T)V

T
(3.15)

2.2.2.3 Term structure of volatilities

For practical option pricing applications, achieving a good fit to the term structure of 

volatilities can be as important as fitting the yield curve correctly. The volatility of 

rates o f different maturities can be obtained by deriving the volatility o f zero-coupon 

bond prices for different maturities, and then applying Ito’s lemma to convert the 

price volatility to yield volatility. Hence the instantaneous volatility of bond returns is

Var[dF(T)] = a 2F(T) a p y /2{e'pT - \ ) A 2 (T) -  a f p 2 (erT -1  )B2(T) 
(p2y/2{ p - a )

-  ay/2 (e*7 -  \)A2(T) -  pcp2(ewT -  l)ff2 (T) " 
cp2y/2( p - a )

+

(3.16)
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2.2.3 Estimation o f the Longstaff-Schwartz Model

The academic literature proposes that a mixed (historical/implied) parametrisation 

Hordahl (2000), Rebonato (1996), procedure should be used for the calibration of the 

LS model, which is the approach used in this study. A purely implied approach is the 

one which regards the two state variables and the six parameters as fitting quantities, 

whereas a historical/implied approach involves the estimation of the short-rate 

volatility using time series and applying to the model regarding only the six 

parameters as fitting quantities.

In practice, this kind of model is frequently estimated using cross-sectional data on 

bills and bonds/swaps at some specific time. This results in a new set o f parameters 

each time the model is estimated. Using cross-sectional data rather than a time series 

approach to estimate the parameters in the model could possibly capture changes in 

the dynamics of the term structure in a much more timely manner. While this 

approach violates the equilibrium set-up of the model, it is nevertheless used in order 

to fit the model to observed bond prices as closely as possible.

2.2.3.1 Estimation

The estimation procedure relies on (3.14), which provides a closed form solution for 

the discount function. Using this expression, the six parameters o f the LS model can 

be estimated with cross-sectional bond price/swap rate data, given initial values of the 

two state variables r and V. As a first step the initial values o f r and V are determined. 

The short rate r, is represented by the average of the yield o f the most liquid short 

term instrument, i.e. a T-bill over the examined period. The next step is to estimate 

the initial value of the variance in interest rate changes. This is done using a simple 

GARCH(1,1) model, assuming a constant conditional mean:
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rt - r M =ju + €n et / n t_l ~N (0,ht) (3.15) 

hf ~ « 0  P t̂- 1 > (3.16)

where, Q t-i denotes the information set at time t-1.

Once the r and V were estimated the next step was to estimate the six model

parameters using cross-sectional data on T-Bills and Bonds across the Euro area for

the specified date, which was the first trading day of May-01. Specifically, the official

3 month T-Bill, a 6 month T-Bill and 11 benchmark bonds o f 1, 2, 3, 4, 5, 6,7, 8, 9, 10

and 15 years maturity, were used in the estimations. Hence a total of around 13

observations along the yield curve were used. A standard bootstrapping approach with

linear interpolation was used to calculate the discount curve implied by the observed

bond prices (for each day from 2 May 2001 -when the ECB main refinancing rate was

4.25%- to 06 June 2001). The reason we used linear rather than cubic spline

interpolation is that we have enough points on the curve in order to estimate it. Also,

previous experience of using cubic spline interpolation has resulted in unusual spikes

in the curve, which didn’t reflect accurately the observed bond yields.

Next, it is assumed that the observed market prices o f these instruments differ from

the prices produces by the LS model by an error term with expected zero value. This

implies an assumption that the LS model provides the true financial form for pricing

bonds, or at least that it is sufficiently flexible to be able to price all bonds correctly.

The estimates for the parameters in the LS model are obtained by minimizing the

distance between the observed market prices and the model’s theoretical prices of

bills and bonds, using the following:

© = a rg m m j^ [E ’ - 7 > ( r , F , 0 ) ] 2 (3.17)
1=1

Pi denotes the observed price of bill/bond(i) among the n available securities with 

different maturities, while Pi (r, V, 0 )  is the corresponding LS price given the current
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This technique allows the factorisation of the solution function H(x,y,t) in the product 

o f a discount function F(x,y,t) and M(x,y,t) where M(.) gives the forward value of the 

claim. The forward value o f the claim is the expectation o f the payoff function 

V(x,y,t), taken over the probability distribution of x and y. For a caplet on the short 

rate, the payoff function has the form

LS show that the dynamics o f (3.10) and (3.11) imply a specific joint density for the 

two state variables x and y (LS 1992a,b), which is a bivariate non-central chi-square 

density with closed form, given initial values o f the state variables as above, where 

/p(.) is the modified Bessel function of order p. By using the transformations:

r = ax + by (3.20)

V = a2x + b2y (3.21)

we can obtain the bivariate non-central chi-squared density o f the two transformed 

variables q(r,V,x / r0 , Vo). Since the variables r and V are correlated, the transformed 

density is more elliptical (in the x -  y plane) then the density o f the two state variables 

x and y which are uncorrelated by construction.

Hence, the joint density o f r and V can be integrated over all values o f V to obtain the 

one-dimensional marginal distribution of the short term interest rate,

ar
q (r ,r /r0) = Jq(r,V,T/ r0V0)dV (3.22)

where the limits of the integral are due to the condition:

ccr<V <P r  (3.23)

which is set in order to avoid complex values of r and V. Hence, by estimating the 

parameters o f the LS model as shown in the previous section, and then using the 

parameter estimates to calculate the above, we can obtain an estimate o f the future 

short term interest rate distribution implied by the underlying process o f r and V.
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However, when this was tried it turned out to be problematic. For some combinations 

of parameters and state variable values, the numerical evaluation of the modified

Bessel function or the numerical evaluation of the bivariate density breaks down. This 

seems to be a known problem also pointed out by Rebonato (1996), pp326. He notes 

that there are combinations of parameter values that make the probability function 

tend to infinity in the limit as one of the arguments goes to zero. Furthermore, it 

appears that this problem occurs frequently when the model is estimated using actual 

data, which suggests that an alternative, more robust approach to the evaluation o f the 

closed-form density expression is warranted in practice.

Consequently, the density was estimated using a different approach Hordahl (2000). 

The strategy employed in that paper is to use a Monte Carlo method instead of the 

closed form solution to obtain the density. This is done by using discretised versions 

of the processes for the short rate and its variance to simulate possible future 

realisations of r and V. Specifically, by using an Euler approximation and assuming 

weekly time steps, discrete versions of the continuous-time dynamics are obtained as 

follows:

where At = 1/52, while £i;t+At , £2,t+At , are drawn from two independent standard 

normal distributions. Note that since we have assumed that the local expectations 

hypothesis holds, the above processes are approximations of the risk neutral dynamics 

o f r and V.
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The above equations were used to simulate future values of r and V, in a recursive 

manner starting form the initial values r0 and Vo, estimated in the previous section. In 

this study, a time horizon of up to half a year is chosen, which means that 26 future 

values o f r and V are simulated, given the choice of At = 1/52. This process is then 

repeated 20,000 times with the same parameter values. Hence, for each o f the 26 

future weeks following the date of estimation, the described procedure produces a 

simulated sample consisting o f 20,000 r ’s and 20,000 V ’s. The next step was to obtain 

an estimate o f the distribution o f the future short-term interest rate at each time, which 

was done by using a simple histogram. Since the simulations were performed using 

the risk neutral dynamics, the resulting density estimate for some forecast horizon is 

the risk neural density, RND, implied by the observed bond prices, and their volatility 

and assuming that the LS model holds.

Using the simulated density o f the short rate we can price European Call and Put 

options on bonds using:

T

C(t,T) = E f [e x p (- |rsi/5)m ax(0,r(r) -  X ) \  (3.25)
t

under the risk neutral measure Q and
T

P{t, T) = E f  [exp(- jVj ds) max(0, X  -  r(T)\ (3.26)

where C(t,T) is the price o f a call and P(t,T) is the price of a put. Hence, using the 

Monte Carlo simulation we can use the discrete approximations o f (3.25) and (3.26) 

to calculate option prices:

C(t,T) = “ ^ e x p  risAt max(0,riT - X ) ,  (3.27)
-/V M v s=t y

P{t,T) = - ^ X exp X risM max(0,X - r iT) (3.28)
i~\ \  S = t  J
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where At is the time step in the Monte Carlo simulation. So using the LS estimated 

parameters and (3.24) the simulation produced the risk neutral distribution o f the short 

rate. Then using (3.27) and (3.28) we obtained prices for 7 different call options using 

the appropriate discounting factors from the LS (1992) estimation as o f the 16/05/01. 

The strikes on the 7 call options were the ATM, which, was the implied forward and 3 

strikes above and below the ATM at 25bp intervals. The prices were compared with 

calculated bond option prices using Black’s formula.

2.2.5 Credit Spread Curves & the LS (1992) model

In chapter 2 it was shown that some credit spreads and credit spread indices exhibit 

characteristics found in default free rates. These are the mean reversion, term 

structure of their respective volatilities, the time variation of their volatility and their 

jump characteristics. Hence, we are going to use the two-factor LS (1992a) to model 

the evolution of the short credit spread. Credit spreads are observed quantities and it is 

possible to fit these observed quantities to an equilibrium model such as the LS. The 

same assumptions10 will be carried forward for the evolution o f the credit spread. This 

approach was first introduced by Ramaswamy and Sundaresan (1996) who used a 

direct assumption about the stochastic process followed by the credit spread. They 

assumed that the credit spread evolves according to the square root model of Cox 

Ingersoll and Ross (1985) and the Local Expectation Hypothesis, according to which 

expected returns on all default-free bonds over an infinitesimally short period of time 

are equal to the risk free rate. In the same context we used the stochastic volatility 

model o f LS 1992 to model the short credit spread. This two-factor model is a near 

perfect tool to capture the dynamics o f credit spreads since it can capture both the 

mean reversion and the time varying volatility o f credit spreads (and credit spread

10 As described in section 3.1 the main assumptions about the economy will hold.
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indices), as observed in chapter 2. Thus, we assume that the level of the short spread 

and its instantaneous volatility follows

(¡spread t = (a -  (5spreadt) + yatdZx t

(3.29)
d<yt = (5 -  6(71) + v<jtdZ21

The next section describes how credit spread curves where estimated by assuming that 

the spread process is a contingent claim satisfying equation (3.13). Using the same 

methodology as in section 3.2 we will estimate credit spread curves based on 

observed bootstrapped spread curves.

2.2.5.1 Estimation of credit spread curves

In this section we estimate credit spread curves using bond prices o f various European 

corporates and EUR denominated government benchmark bonds. A list of the bonds 

obtained from Bloomberg can be found in Appendix 1. The same bootstrapping 

methodology11 as in section 3.2.1 was applied to the benchmark and corporate bonds 

in order to obtain market zero coupon discount factors. Once the discount factors of 

all the bonds were obtained the spread discount factors were calculated by: 

spread zero Disount Factor = P (0 ,T) -  P ' (0, T) should b e > 0  (3.30)

P{0, T) is a risk free zero coupon bond paying 1 at maturity

P ‘ (0, T) is a risky zero coupon bond of rating i under the assumption of 
paying 1 at maturity if  there is no default or 5  (recovery rate) in case of default.

which is the difference between the two discount factors, as observed in the market.

The spread zero discount factor should always be positive. This is mainly insured by

the fact that the benchmark discount curve is usually higher than the risky discount

11 The maturities 1,2,3,4,5,7,8,9 and 10 were used.

58



curves. In cases where this difference is less than zero then a potential mispricing has 

occurred.

Next, the volatilities of the risk free short rate and of the respective short credit 

spreads were estimated using GARCH. The 6M Euro-LIBOR was used as a proxy to 

the risk free short rate . The relevant proxies were used for the short credit spreads. 

They are the observed 6M term spreads at which corporates arrange their short-term 

financing. The volatility of the short credit spread was found to be a few orders of 

magnitude higher than the volatility of the short risk free rate. That was to be expected 

because of the jump characteristics o f credit spreads, rendering abnormal returns in 

the data.

The optimisation was carried out using initial values for all parameters based on the 

volatility condition (3.23). Hence, the parameter values o f alpha and beta were in 

effect determined by the level of the short credit spread and its respective stochastic 

volatility.

2.2.6 Pricing Credit spread options

Credit risk modelling, has been extensively examined and there are two major 

approaches currently12 13. The first approach is called structural approach and the 

second one is the reduced form approach. The structural approach developed by Black 

and Scholes (1973) and Merton (1974) is based on the value o f the company, where 

default is regarded as an endogenous decision made by the holders of the company’s 

equity. These models are often called firm-value models. The default is being 

modelled as an option and as a result the same principles used for option pricing can 

be applied in the valuation o f credit risky instruments.

12 Two years of daily data were collected from Bloomberg for the 6M Euro-LIBOR, 6M AAA, AA+, 
AA-, BBB, BB and B rates.
13 Which have been fully described in chapter 1
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The reduced form approach accounts for default as being both exogenous and a 

surprise in contrast to the firm value models. This group of models, most notably the 

Jarrow-Trunbull (1995) and its extension by Lando (1997) and the Duffie and 

Singleton (1994) model directly the likelihood of default or likelihood of a change in 

rating. Both models are arbitrage free and employ the risk-neutral measure to price 

securities.

There have been other attempts to price credit risk such as spread-based models and 

hazard models. Both models can be considered extensions to the structural approach. 

Spread based models are quite similar to barrier structural models14, where default is 

detected by a bond spread crossing a specific barrier. Default is exogenous in both the 

barrier structural and spread based models and not a surprise. The spread dynamics 

are modelled using a log normal distribution and default is being priced by specifying 

a default boundary in terms o f a spread. Hazard models take an econometric approach 

to derive default probabilities. Shumway (2001) proposed such a model, which 

incorporates both theoretical and empirical factors. The functional form of the model 

is derived by maximising the likelihood function between the survival probability and 

a collection of estimated empirical parameters15.

The pricing of credit derivatives has been as a result been thoroughly studied in the 

literature. The fractional recovery o f Duffie and Singleton (1994), (1997), and 

Schonbucher (1996), (1998) and the other intensity-based models such as the 

pioneering Jarrow and Turnbull (1995), Jarrow, Lando & Turnbull (1997), Madan and 

Unal (1994), are regularly used in order to price credit derivatives. Most of these 

methodologies including Hull and White (2000) are being used for pricing credit

14 Black and Cox [ ] introduced these models by modeling default as a knockout (down and out barrier) 
option where default occurs the moment the firm value crossed a certain threshold.
15 The functional form is f(t,x;9) = h(t,x;9) S(t,x;0) where h is the hazard function and S is the survival 
function and x is a collection of explanatory variables and 0 is a collection of parameters to be 
estimated.
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derivatives such as credit default swaps, total return swaps, credit linked notes, CDOs 

and other second-generation credit derivatives.

Pricing of a European spread option resembles the pricing of an interest rate option. 

The payoff function is dependent on a risk-neutral expectation derived from the 

distribution o f the spread. Hence, if  we are able to derive the distribution o f the spread 

then we can derive its payoff function. In chapter 1, we outlined the Jarrow, Lando & 

Turnbull (1997) model. It can be used to price a range of credit derivatives. Using that 

model and its notation lets consider an example. For a zero recovery, zero-coupon 

bond the survival probability o f default is Fabozzi F.J., Choudhry, Anson and Chen.

(2004) pp 265 -  270:

Q(t,T) = E exp|~- A(m)g?w11 (3.31)

Also from chapter 1 the spread is given by Fabozzi F.J., et. al. pp 265 -  270 (2004):

s(t,T) = - ln Q{t,T) 
T - t

(3.32)

Hence, the intensity parameter of the Poisson process, A,(t), is deterministic if  the 

spread s(t,T) is deterministic Fabozzi F.J., et. al. pp 265 -  270 (2004):

s(t,T) = -  = ^ e x p {Jx(u)du^  (3.33)

Now if we assume that 7,(t), is stochastic, then the distribution of the spread depends 

on the distribution o f the survival probability, Q(t,T). If we assume that X(t) follows a 

mean reverting Gaussian (Omstein-Uhlenbeck) process then the survival probability 

will be log normally distributed. Hence, the spread is normally distributed. The 

normality assumption creates an important problem. If k(t) is normally distributed 

then the survival probability can exceed 100% (for a negative k(t)). This violates the 

no-arbitrage condition Fabozzi F.J., et. al. pp 265 -  270 (2004).
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There have also been attempts to model the intensity process with a square root 

process such as the one proposed by Cox, Ingersoll and Ross (1985), in order to avoid 

negative A,(t). Using a CIR process is feasible to get a closed form solution for the 

survival probability but the distribution of the survival probability is unknown, hence, 

the distribution o f the spread is unknown. Since the spread can be log transformed by 

the survival probability, there is no distribution than can lead to a closed-form 

distribution for the spread Fabozzi F.J., et. al. pp 265 -  270 (2004).

Even if the structural approach is used where the spread o f a zero-coupon bond is:

s(t,T ) = -  In D(t,T)
P(t,T)

= -  ln{zi(0[l -  N(dl)] + P{t, T)KN(d2)} + In P(t, T)
where A(t) is the asset price at time t, K  is the face value of debt and (3.34)

; In A{t) -  In 77 -  In P(t, T) + V 12
4 v

and d2 = d x-  -Jv Fabozzi F.J., et. al. pp 265 270 [27]

The spread variable has no closed-form solution for its distribution. Since neither of 

the two main approaches o f credit risk modelling reach to a closed form distribution 

for the spread most research has concentrated in obtaining numerical solutions for 

spread option prices16.

Thus, opting for simpler “spread based” models would be a relatively sensible idea if 

we are looking for a quick and relatively uncomplicated method. Spread based models 

rely on modelling the spread as a stochastic process. For example, if  we directly 

assume a log normally distributed spread then we can use Black’s (1976) framework 

to price credit spread options. This in fact generates internal inconsistency because we 

have assumed that all spreads irrespective of rating and type (asset swap spreads, 

default swap spreads and bond spreads) are distributed in the same way.

16 See Schonbucher 1999, “A Tree Implementation of a Credit Spread Model for Credit Derivatives” 
where he prices credit spread options using a mean reverting Gaussian process for A(t).
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In the same context we have assumed that credit spreads evolve based on equations 

(3.10) and (3.11) and their implied distribution equates to (3.22). Hence, we will use 

the estimated credit spread curves from section 3.5.1 to price credit spread options. Of 

course the inconsistency mentioned still exists by choosing the LS (1992) models, but 

there is a closed form solution for the distribution o f the spread and also we have 

taken into account the variability of the spreads’ volatility -second factor of LS 

(1992)-.

2.2.7 Pricing of Credit Spread Options using LS (1992)

Credit spread options are contracts, which “bet” on the potential movement of 

corporate bond yields relative to the movement of government bond yields. Credit 

spreads can be thought of as the compensation investors receive to accept all the 

incremental risks inherent in holding a particular bond instead of some “riskless” 

benchmark. Spread options are often used in the market for speculation and hedging 

of credit risk. One needs to keep in mind that they are still rather exotic instruments 

traded OTC only. Moreover the contracts are very rich in detail. Hence, ever since 

credit risk was commoditised they rank low in investors/speculators preferences. Still 

in theory assuming they are well defined contractually they are the best instrument to 

replicate spread movements with controlled downside risk depending on the 

employed hedging strategy. In the following section we will price credit spread 

options which their payoff is dependent on the movement of the underlying spread. 

Using the same methodology as in section 3.4 we attempted to price credit spread 

options. The lack o f credit spread option prices led to the engineering of the payoffs 

of credit spread options. In the same fashion as Abken (1993) proposed the 

decomposition of a given swap into two yield options we assumed that the price o f a
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credit spread option is equivalent when at the money with two vanilla options written 

on two assets. One asset being a government bond and the other asset being a 

corporate bond. Hence, for a call on a credit spread we assumed that the following 

holds at the money:

Spread(i) = yield(i) -yieldBenchmark 

Call on spread(i) = Call on yield(i) + Put on y ie ld sen ch m a rk  (3.35)

This approximation was carried out for calibration purposes only and it holds if both 

the risk free and the defaultable bonds are discounted by the same risk free curve 

Please note that the inverse holds for the bond prices. Using the above relationship we 

were able to examine the pricing power o f the LS model when credit spread options 

were priced.

To illustrate, consider a call on the AA+ spread. This call option would be replicated 

by going long a call on a AA+ corporate yield and long on a put on the respective 

government benchmark yield. This just replicates the position on the underlying 

which is long the AA+ credit spread or just long AA+ calls.

The methodology used in this section could be useless unless it can be replicated by 

using underlying instruments, such as two reference bonds. In our case it is possible to 

do that because we can use the implied default probabilities as obtained in section

2.2.8 and price a corporate bond. Based on that an options portfolio priced using the 

LS 1992 can be replicated by a portfolio of default free and default bonds.

2.2.8 Implied Default and Transition Probabilities

Essentially one of the end results o f credit risk modelling is to imply the survival 

probabilities and hence the associated credit spreads in order to price securities
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subject to credit risk. Credit spreads have been closely linked17 to the survival 

probabilities by many researchers such as Jarrow and Turnbull (1995), Jarrow, Lando 

and Turnbull (1997), Madan and Unal (1994). In these models the intensity process 

which governs the probability of default is specified by a Poisson process. Following 

from Arvanitis, Gregory and Laurent (1999) and Schonbucher (1999) one can use this 

close relationship in order to imply probabilities o f default using as inputs credit 

spread data. However, before we use our estimated credit spreads in order to derive 

the survival probabilities18 we need to specify the credit risk model we are using.

2.2.8.1 An iterative procedure to imply default probabilities from credit spreads 

The credit risk model used is based on Jarrow and Turnbull (1995) and the default

free rate process is based on LS (1992). The model is set up in a filtered probability

space (Q, / , ( / , ) (0SiSr), 0 •  There is a unique Q equivalent martingale measure19 20

making all the default-free and risky zero-coupon bond prices martingales. The

economy is frictionless with a finite horizon [0,x] and trading can be discrete or

continuous. Further assumptions are markets are arbitrage free and complete. We also

assume that the default free spot rate r(t) and the spread s(t) both evolve under the LS

(1992) framework. Let B(t,T) be the time t price of a default-free zero-coupon bond

paying 1 at time T. The money market account accumulates returns at the spot rate as:

f  20 
B(t,T) = exp I r(s)ds in the continuous case (3.36)

Let D(t,T) be the time t price o f a risky zero-coupon bond promising to pay 1 at time t 

if  there is no default before time T and at default it pays the recovery rate 5 < 1. Since

17 In Chapter 1 there is a full description of one of these equivalent recovery models
18 Since in these models first the implied probabilities are being implied and then the credit spreads.
19 Q is an equivalent martingale measure with respect to the money-market account B(t), see Harrison 
and Kreps (1979) or Harrison and Pliska (1980).

t-1
20 In the discrete time case B(t) = e x p (^  r(z))
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we are using the Jarrow and Trunbull (1995) which is an equivalent recovery model, 

the recovery rate 8 is taken to be an exogenous constant. Following the assumption 

that the stochastic process for default-free spot rates and the bankruptcy process are 

statistically independent under Q we arrive at the standard equation:

D(t,T) = Etf  B(t) '
B(T) ^ W , + V > n ) (3.37)

= B (t,T ){\-Q t{t,T) + Q,{t,T)8)

So assuming that default hasn’t already occurred the survival probability is:

1 -D (t,T )/B (t,T )
Qt(t,T) = -

(1 - S )
(3.38)

And since D(t,T) and B(t,T) are two zero-coupon bonds we can rewrite the equation 

by replacing the difference between the two zeros with their instantaneous spread 

s(t,T):

s(t,T)
Qt(t,T) = (3.39)

(1 -S )B (t,T )

in continuous time with a minor re-arrangement this relates the default probabilities 

with the forward credit spreads:

T

-J s{t,r)dr
= ■ (3.40)

Based on (3.32) and (3.33) for a small time dt the short-term credit spreads are 

directly related to local default probabilities q(t,t+dt). Local default probabilities are 

the probability o f default between t and t + dt, conditional on not having defaulted 

before t. In addition, we can relate the probability o f default to the intensities of the 

default process Arvanitis, Gregory and Laurent (1999):

(3.4i)
dt
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Clearly using (3.33) for a small period of time we can use the spread discount factors 

obtained using the LS (1992) model in order to derive the local default probabilities 

and subsequently the conditional default probabilities. The following iterative 

procedure will be used in order to imply the survival probabilities out of the term 

structure of credit spreads.

For t < x < T

=  B(t ,T) -D( t ,T) _  sj t , r)
(1 -S )B (t,r)  (1 -S )B (t,r)

T + l)=  {Bit, t  +1) -  Djt, t  +1)} -  {Bjt, t ) -  D jt, r)} 
{ \-q { t,T ){ \-0 )B {t,r  + \)

_ ^(t,r + l) -5 ( t ,r )
{ \ -q i t , T ) { \ - ô ) B { t , T+ \)

• • • • •
• • • • •

{B(t, T) -  Dit, T)} -  { Y  Bit, t ) -  Dit, t )}
qit,T) = ----------- j --------------- ^ ---------------------

{ Y \ i \ - q i t ,r ) } i \ - ô )B i t ,T )  (3.42)
T = T + 1

______________________ T =  T + 1__________________

{ f l i l - q i t ,T ) } i l - S )B i t ,T )
T - T + l

Following the determination o f the local default probabilities we can now determine 

the cumulative survival probabilities taking into account again the two possibilities at 

each time point: default and no-default.
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Q (t,r )  = q (t,T )

Q(J, r + 1) = q(t, r)  + (1 -  q(t, r))q(t, (t  + 1) (3.43)

Q{t, r + 2) = q(t, t ) + (1 -  q(t, r))q(t, (r  +1) + (1 -  q(t, r))(l -  q(t, r  +1 ))q{t, r + 2)

Next, using the K possible ratings model of Jarrow, Lando and Turnbull (1995) we 

will demonstrate how the current risk premia as estimated using the LS (1992) model 

can be used to derive an implied rating transition matrix.

2.2.8.2 Implying transition probabilities from credit spreads

The simple model of default/no default of Jarrow and Turnbull (1995) was expanded 

to include more rating classes in Jarrow Lando and Turnbull (1997). The credit rating 

dynamics o f K possible credit ratings, are represented by a Markov chain. The first 

state of the Markov chain corresponds to the best credit quality and the (K -l) state the 

worst before default. The Kth state represents default and is an absorbing state, which 

pays the recovery rate 5 times the par value at maturity.

The dynamics of credit ratings are characterised by a set o f transition matrices 

Q ’(t,T)21 ( k x k matrices) for any period between time t and T. Each of the elements 

qij(t,T) o f these matrices represents the probability of migrating from rating i at time t 

to rating j at time T. The last column of Q ’(t,T) (which is the qjk(t,T)) gives the default 

probabilities.

In JLT (1997) and Arvanitis, Gregory and Laurent (1999), the transition probability 

matrix is expressed exponentially:

Q'(t,T) = exv[A (T-t)]  (3.44)

This is based following the specification o f a continuous time Markov chain by JLT 

(1997). Matrix A (a k x k matrix) is called the generator of transition matrices Q’(t,T)

21 The matrix notation has been dropped.
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and is assumed to be diagonalisable . JLT (1997) by assuming that the generator 

matrix under the equivalent martingale probability is:

A (0 = U(t)A(t) (3.45)

The U(t) is the vector o f the risk premia which transform the historical generator 

matrix to the risk neutral. The elements of the generator matrix are directly related to 

the short-term probabilities. The probability of staying to the same rating i from time t 

to t + dt is 1 + kjj dt. The probability o f going from rating i to rating j (fry) is Ay dt and 

the probability from rating i to default is A,jk dt (]>k). The transition probabilities are 

constrained by further assumptions is order to ensure the proper evolution of credit 

spreads22 23.

Since the generator matrix is diagonalisable and using (3.44) we get:

Q\t.T) = Zexp[D(T-t)]Z-' (3.46)

where D represent the eigenvalues of the generator matrix and I  represent its’ 

eigenvectors. Using (3.41) the probabilities of default are being expressed:

(',  ̂ )  = Z  texPK- (r  -  0  -1]
v=i

where or. are the elements o f Z and cr)1 are the elements o f E'1 for 1 < i < K -1 

Hence, using (3.32) and (3.42) we can write:

D(t,T,K) = B{t,T)(l -  qiK (t,T) + qiK (t,T)<5) (3.48)

Using (3.43) and (3.42) we can solve for the credit spread of rating i:

22 For example A = Z D 2 1 where D is a diagonal matrix

23 Xy >= 0 always, The sum of transition probabilities (1 + Tl7) + ^  Ai; =1, j = 1,.... , K , is equal
K

i=i
‘*j

to one. The k-th state is absorbing kkj = 0 and finally state 1+1 is always more ^  S l k u
j i . k  j i . k

risky than a state i
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(3.49)

s ' (?, T, A) = { 5 ~ 1 )B(t, 7 ) X  [exp \d} (T - t ) -1]
7=1

or

= {5 -\)B {t,T )q iK

This is how credit spreads are related to the eigenvectors and eigenvalues of the 

generator matrix. This equation provides the term of credit spreads based on a given 

generator matrix. The estimation o f the current generator matrix is based on the actual 

(historical). JLT (1997) have showed a procedure that is used to estimate such a 

matrix using as inputs market prices o f default free zero-coupon bonds, risky zero- 

coupon bonds and the historical generator matrix. The procedure involves estimating 

the risk premia using the observed market prices and multiplying the risk premia

diagonal matrix (diag(Tii, t t k- i , 1)) to the historical generator matrix. In this way the

Q’(0,t) matrix is calculated and subsequently the Q’(0,t+1) matrix can be calculated 

using:

Q'(t,T) = exp(diag(x],....nk_l ,l)A (T -t))  (3.50)

This iterative procedure produces the risk neutral transition matrix based on current 

risk premia. Their next step was to minimise the risk premia by minimising the 

difference between the theoretical risky zero-coupon bond prices estimated using the 

risk-neutral transition matrix and the observed risky zero-coupon bond prices.

In the same context, following the estimation of the credit spreads (section 3.5.1) we 

minimised the difference between the LS estimated spreads and the spreads derived 

(using 3.41) using the historical transition matrix24 as published in JLT (1997). 

Essentially we used the observed risk premia as derived from the LS spread curves in 

order to derive the risk neutral generator matrix.

24 This is the historical transition matrix as published by Moody’s. Other rating agencies such as S&P 
also publish matrices like that on a regular basis.
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2.3 Data and Description

2.3.1 EUR Credit Spread Indices

Weekly EUR credit spread indices were retrieved covering the period o f first week of 

May 2001 to the first week of May 200425. The S&P ratings for which data was 

available were the following: AAA, AA+, AA, AA-, A+, A, A-, BBB+, BBB, BBB+. 

For each rating, the credit spread for the following maturities was collected: 0.25, 0.5, 

1, 2, 3, 4, 5, 7, 8, 9 and 10 years. The data series comprise o f 205 weekly and 820 

daily observations. Univariate statistics (% week) were calculated across all ratings 

and maturities. The sample we have mainly originates from the financial and 

industrial sectors. The mean o f the daily series and its standard deviation were also 

estimated in order to determine the term structure of credit spread indices and their 

volatility based on our sample of data. Table 2.1 shows the univariate statistics o f the 

credit spread indices.

Table 2.1 (% Week), Univariate Statistics CSI changes May-01 -  May-04
Standard

Mean
Standard

Error
Standard
Deviation Kurtosis Skewness

2YAAA 0.010 0.010 0.147 7.255 1.652
3YAAA 0.048 0.040 0.576 16.964 1.242
4YAAA 0.030 0.025 0.363 14.013 1.071
5YAAA 0.009 0.009 0.125 5.799 0.083
7YAAA 0.005 0.008 0.108 2.967 -0.202
8YAAA 0.004 0.006 0.085 2.007 0.037
9YAAA 0.002 0.006 0.092 1.013 0.124
10YAAA 0.001 0.006 0.085 0.856 0.367
2YAA+ 0.011 0.011 0.158 4.463 1.206
3YAA+ 0.014 0.012 0.170 4.475 0.803
4YAA+ 0.012 0.011 0.159 16.755 1.970
5YAA+ 0.008 0.009 0.123 3.095 0.233
7YAA+ 0.007 0.008 0.119 1.707 0.365
8YAA+ 0.006 0.008 0.112 1.521 -0.026
9YAA+ 0.004 0.007 0.103 1.191 0.168
10YAA+ 0.001 0.006 0.089 1.644 0.233

25 Bloomberg calculates yield curves for different ratings categories by applying cubic splines on a 
daily basis to large cross-sections of similarly rated corporate bonds.
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2YAA 0.006 0.008 0.114 2.949 0.868
3YAA 0.008 0.009 0.132 14.177 1.532
4YAA 0.008 0.010 0.140 43.433 3.940
5YAA 0.004 0.007 0.100 6.349 -0.004
7YAA 0.003 0.006 0.086 3.240 -0.092
8YAA 0.002 0.006 0.079 2.606 -0.276
9YAA 0.001 0.005 0.076 2.161 -0.073
10 YA A -0.001 0.004 0.062 0.441 0.415
2YAA- 0.006 0.008 0.109 2.664 0.839
3YAA- 0.006 0.007 0.104 4.923 0.432
4YAA- 0.005 0.007 0.097 9.413 0.570
5YAA- 0.003 0.006 0.087 5.528 -0.050
7YAA- 0.002 0.005 0.076 3.136 0.175
8YAA- 0.001 0.005 0.074 1.997 0.317
9 Y AA- 0.000 0.005 0.070 1.590 0.207
10YAA- 0.002 0.006 0.087 7.384 0.366
2YA+ 0.008 0.010 0.103 0.676 0.226
3YA+ 0.008 0.012 0.117 3.752 0.205
4YA+ 0.007 0.011 0.107 7.531 0.649
5YA+ 0.002 0.007 0.073 0.746 -0.331
7YA+ 0.003 0.007 0.073 2.336 -0.441
8YA+ 0.004 0.008 0.076 1.197 -0.445
9YA+ 0.003 0.007 0.074 0.104 -0.038
10YA+ -0.001 0.007 0.069 0.873 -0.067
2YA 0.004 0.011 0.098 1.986 -0.081
3YA 0.003 0.011 0.096 1.836 -0.138
4YA 0.000 0.009 0.078 1.395 -0.506
5YA -0.003 0.008 0.070 0.114 -0.083
7YA -0.005 0.008 0.074 0.740 -0.312
8YA -0.006 0.008 0.072 1.054 -0.315
9YA -0.005 0.008 0.076 0.850 -0.139
10YA -0.007 0.007 0.067 1.511 -0.260
2 Y A- 0.002 0.008 0.076 0.808 0.049
3 Y A- 0.001 0.009 0.093 7.579 0.652
4YA- -0.002 0.009 0.090 14.265 1.492
5YA- -0.005 0.006 0.063 -0.208 0.033
7YA- -0.003 0.006 0.064 1.251 0.068
8 Y A- -0.003 0.007 0.069 2.148 0.380
9 Y A- -0.003 0.008 0.076 3.275 0.014
10YA- -0.001 0.011 0.110 13.674 2.214
2YBBB+ 0.001 0.006 0.073 1.297 0.411
3YBBB+ 0.000 0.005 0.066 3.742 -0.162
4YBBB+ 0.000 0.005 0.059 3.129 -0.010
5YBBB+ 0.000 0.004 0.052 3.018 -0.317
7YBBB+ -0.002 0.003 0.039 2.036 -0.484
8YBBB+ -0.002 0.003 0.039 4.807 -1.117
9YBBB+ -0.002 0.003 0.043 2.670 -0.280
10YBBB+ -0.002 0.004 0.051 3.661 0.412
2YBBB 0.002 0.007 0.092 3.984 0.879
3YBBB 0.000 0.007 0.084 4.670 0.281
4YBBB 0.000 0.006 0.076 8.068 -0.120
5YBBB 0.000 0.006 0.073 9.731 -0.133
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7YBBB -0.001 0.005 0.058 17.796 -2.227
8YBBB -0.001 0.005 0.066 16.778 -0.808
9YBBB -0.001 0.006 0.074 14.444 -0.337
10YBBB -0.001 0.006 0.072 15.486 -0.281
2YBBB- 0.006 0.011 0.136 14.688 2.048
3YBBB- 0.008 0.009 0.120 15.410 2.218
4YBBB- 0.007 0.008 0.104 11.703 1.943
5YBBB- 0.006 0.007 0.094 9.949 1.268
7YBBB- 0.005 0.007 0.092 12.674 1.631
8YBBB- 0.005 0.007 0.093 9.160 1.260
9YBBB- 0.005 0.007 0.093 10.587 1.497
10YBBB- 0.004 0.007 0.092 9.411 1.318

The means o f the levels were also estimated over the same period for the weekly data, 

in order to give us a graphic representation of the term of credit spreads.

Table 2.2 Means of Credit Spread Index Levels (Weekly)
0.25 0.5 1 2 3 4 5 7 8 9 10

AAA 5 22 22 28 25 27 33 27 41 26 32
AA+ 8 12 25 28 31 33 36 33 32 33 38

AA 13 17 31 33 37 39 43 39 37 38 49
AA- 17 22 37 39 42 44 48 43 41 43 32
A+ 29 33 49 53 57 62 65 62 61 64 75
A 34 39 54 57 61 67 69 68 68 71 80
A- 47 52 68 78 95 100 102 102 108 111 123
BBB+ 32 38 61 80 90 93 100 113 111 105 104
BBB 47 38 61 80 90 93 100 113 111 105 104

BBB- 208 212 247 289 302 331 334 345 365 358 357

2.3.2 Data description for the LS estimation

The short rate chosen was the most liquid T-bill in issuance at the time the estimation 

was carried out. That was the French 3 month t-bill. The GARCH model was fitted to 

daily changes in the French 3 month T-Bill rate since the repo rate remains constant 

over long periods o f time, making it unsuitable to estimate V. The daily data of the T- 

Bill was collected from Bloomberg (Jun-97 -  Jun-01) and the GARCH model was 

estimated using Micro fit 4.0. The estimated r and V are shown in Table 2.3.
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Table 2.3 GARCH (1,1) and mean of French 3M T-Bill
Mean (Jun-97 -  Jun-01) GARCH (1,1)

3.51% 0.36%

In figure 2.1 the French 3M T-Bill rate is plotted over a 2 year period. The red line 

shows the level of r used for the estimation o f the yield curve. The first trading of 

May-01 was chosen as the start date of our estimation. Cross-sectional data of T-Bills 

and Bonds from the Euro area were collected. Specifically, the 3 month T-Bill rate, 

the 6 month T-Bill and 11 benchmark bonds o f 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 15 years 

maturity approximately. The details of the bonds including the bootstrapping routine 

are shown in Appendix (2).

Figure 2.1 3M French T-Bill Rate Jun-97 -  Jun-01

3M T-Bill

-97 -97 c- r- -98 -98 c- r- -99 -99 c- r- -00 -00 c- r- -01
97 98 98 99 99 00 00 01

Date

2.3.3 Credit Spread Data

This set o f data was used to estimate credit curves using the LS (1992) model. Two 

years o f daily data were collected from Bloomberg between 07/05/02 -  07/05/04 for 

the 6M Euro-LIBOR rate, and 6M AAA, AA+, AA-, BBB, BB, B credit spreads. All 

the corporate bonds where from the industrial sector apart from the AAA which was
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from the financial sector. The date, which we fitted the 6 different credit spread 

curves was the 7th of May 2004. The bonds were stripped to create the zeroes using 

the same bootstrapping procedure as in 3.3.1. All the bonds used to fit the credit 

spread curves are listed in Appendix (1).

Table 2.4 Mean and GARCH (1.1) for 6M credit spreads

Rating Mean GARCH (1,1)
AAA 0.11% 27.72%
AA+ 0.12% 12.87%
AA- 0.14% 12.21%
BBB 0.46% 8.33%
BB 0.72% 10.13%
B 3.44% 5.53%

The GARCH (1,1) was performed using the PCGIVE software this time, as opposed 

to MICROFIT 4.0 in section 3.3.1.

Figure 2.2 6M credit spreads (May-02 -  May-04)

6M Spreads
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In Figure 2.2 the 6M credit spreads are plotted over time. It is quite clear that the 6M 

B spread is the highest o f all. The lower rated spreads such as the 6M AAA and 6M 

AA+, 6M AA- are often quite low, as low as zero. This usually occurs when there is a
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huge amount o f liquidity in the corporate market, which makes the short term 

financing among highly rated institutions “almost” risk free. This increased liquidity 

is related to the monetary policy by the European Central Bank, which reduced the 

level o f interest rates during that period. In periods of low interest rates there is an 

increased risk appetite since the cost o f borrowing is quite low.

2.3.4 Frequency comparison

The first approach that the LS was implemented was done over a small number of 

random consecutive days. It was safely assumed then that the parameters of the LS 

model could well be different. However, when the European discount curves were 

examined more closely on a day-by day basis it was observed that some days had 

quite irregular shape. Unfamiliar humps and twists which are not usually seen with 

European yield curves. A possible reason for this could be a liquidity effect between 

particular maturities on the curve. This is something that occurs often in the short end 

part of the yield curve where the short term financing o f central banks and 

corporations takes place, leaving the curve slightly distorted when it occurs. Another 

reason for this could be the volatility o f the short rate, which is quite high when 

examined with daily data.

Running the calibration of the LS model on a daily basis it was observed that the 

volatility of the LS parameters was quite high. Although the unconstrained 

optimisation produced zero SSD (sum of squared differences), the shape of the LS 

yield curve was not exactly the same as the market discount curve. For example, there 

were points on the curve that over- or underestimated the bond yield at long or short 

end o f the yield curve. Based on that we run a constrained optimisation where the 

volatility condition of the model was preserved, hence the initial parameters of alpha
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and beta were easy to deduce based on the r and V of the particular day. This helped 

to produce better fitting o f the market discount curve to the LS model.

Table 2.5 Squared Differences_________________________________________________

0.25 year 0.5 year 1 year 2 years 3 years 4 years 5 years 7 years 8 years 9 years 10 years Sum

Unconstrained 0.000036 0.000059 0.000022 0.000014 0.000047 0.000058 0.000037 0.000021 0.000001 0.000023 0.000081 0.000401

Constrained 0.000000 0.000001 0.000003 0.000000 0.000002 0.000002 0.000003 0.000002 0.000000 0.000001 0.000006 0.0000217

Reduction -99% -98% -84% -99% -97% -96% -91% -91% -99% -95% -93% -95%

The table above shows the improvement in the fitting of the curve, which is improved 

by approximately 100%. Examining the daily charts of the LS parameters over a 

period o f two and a half years showed that their volatility was quite high. This is 

something that affects option pricing using the LS model. The methodology used to 

carry out option pricing would produce complex numbers if  the eta and ni parameters 

are higher then 0.5. This occurred a number o f times using the daily data. This 

produces discontinuity in the historical time series. These missing points would have 

to be interpolated in order to calculate VaR. A simple way to avoid this -unnecessary 

interpolation, which could distort the end result- is to treat the data over a larger time 

interval and compare the two sets o f parameters. Hence, the data was treated over 

weekly time intervals and subsequently compared.

2.3.4.1 The Daily-Weekly comparison

The same methodology was carried out as in section 3.2.1. The only difference is that 

a longer time period was examined. Daily LIBOR and swap (annualised) rates were 

examined for the period 04/08/99 -  04/06/03 for the following terms: 3m, 6m, 1Y, 

2Y, 3Y, 4Y, 5Y, 6Y, 7Y, 8Y, 9Y, 10Y and 15Y. A constrained optimisation was 

performed based on the volatility condition for the short rate:

Ar <= V <= br (3.51)
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All the 6 parameters found acceptable values following the optimisation. It is worth 

noting that since the above constraint is used the alphas and the betas have almost the 

same magnitude as the ratio o f the volatility of the short rate relative to the short rate 

itself. Hence, at periods of high volatility and low rates these two parameters will be 

quite high and vice versa. As the following chart shows these two parameters are fully 

correlated over time and they exhibit quite high volatility. However, the high degree 

o f correlation between the short rate and its volatility was expected since it is and 

Figure 2.3 Daily alpha and beta parameters

intrinsic assumption of the LS model. This is a condition, which needs to be 

maintained, since it’s a precondition for option pricing.

A first view o f figures 2.3 and 2.4 shows that the alpha and beta parameters are 

relatively uncorrelated to the gamma, delta, eta and ni parameters. On a closer look 

we can say that they exhibit higher volatility than the previous two, apart from the eta 

parameter which is not correlated with the movement of the rest of the parameters. 

These results were used to compare the derived LS parameters over weekly time 

intervals in order to deduce which datasets are more volatile.
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The same technique was applied as before, with different datasets. The results show 

that the LS parameters are smoother, less volatile and lack the erratic swings observed 

with the daily LS parameters. The best way to understand how the two datasets differ 

is to calculate and compare their respective descriptive statistics as shown in Tables 

(2.6) and (2.7):

Figure 2.4 Daily parameters gamma, delta and eta
Daily Gamma, Delta & eta

02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/ 02/
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' gamma • delta via Rug

Table 2.6 Descriptive statistics of the 6 LS (1992) parameters (Daily) 
______________________alpha______ Beta Gamma_____delta______ Eta________m
Mean 8.71 12.78 0.53 0.23 -0.34 -1.30
Standard Deviation 6.25 9.14 0.42 0.41 0.27 1.41
Median 7.55 10.84 0.42 0.12 -0.29 -1.16
Kurtosis 183.04 186.11 88.16 26.57 89.12 43.14
Skewness 10.62 11.13 7.47 4.57 -7.52 -3.63

The yield curves were estimated over a period of approximately 4 years (02/08/1999 -  

19/09/2003) for the two different frequencies, daily and weekly. As it can be seen the 

volatility of the daily parameters is quite high as expected relative to the weekly 

parameters.

The standard deviation calculated for all the weekly parameters is approximately 

twice the volatility o f the volatility o f the daily parameters. In addition the range of 

the weekly parameters -m in to max- is much narrower than in the daily parameters.

79



Table 2 .7 D escriptive sta tistics fo r  L S  param eters (W eekly)
alpha beta Gamma delta eta ni

Mean 9.55 14.09 0.46 4.54 -0.33 4.86
Standard Deviation 3.77 5.00 0.16 0.20 0.15 1.85
Median 8.74 13.71 0.43 5.10 -0.29 5.57
Kurtosis 5.19 3.23 -0.87 3.96 -0.65 2.99
Skewness 1.46 0.83 0.41 -2.24 -0.56 -2.14

This justified to us the choice of weekly data in order to run weekly VaR rather than 

daily since it would produce “continuous” -  in other words no missing points in the 

time series- results o f time series. Hence, slightly better VaR results, especially for 

options.

The only disadvantage o f reducing the data size is that the results o f our subsequent 

historical regressions will be less powerful. However, we will still have sufficient data 

points in order to deduce useful conclusions, since the total number o f points will be 

over 100 points. Our point of view is that the more the better, but a good starting point 

in regression analysis is 100 data points. If there is any kind of explanatory power 

between one random variable to the other it will -probably- be revealed.

2.3.5 Transition Rating Matrix and Recovery Rate

The transition rating matrix used was taken form the seminal paper o f Jarrow Lando 

and Turnbull (1997). Its a 1-year historical transition matrix which was estimated by 

Standard and Poor’s Credit Review (1993). JLT (1997) modified this matrix I order to 

remove the “not rated” and created a modified matrix (Table 3.6).

The recovery rate used was the historical recovery rate from Moody’s Special Report 

(1992). That is a weighted recovery rate based on a number of different types o f debt. 

The value of the recovery rate used was 0.3265.
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Table 2.8 1-Year m odified  historical transition m atrix
AAA AA A BBB BB B CCC D

AAA 0.8779 0.1078 0.0087 0.0021 0.0034 0.0001 0.0001 0.0001
AA 0.0144 0.8339 0.1252 0.0166 0.0049 0.0049 0.0002 0.0002
A 0.0016 0.0522 0.8014 0.1165 0.0181 0.0081 0.0002 0.0017

BBB 0.0008 0.0055 0.0854 0.7951 0.0839 0.0208 0.0023 0.0059
BB 0.0002 0.0013 0.0048 0.0459 0.8573 0.0665 0.0081 0.0154
B 0.0001 0.0014 0.0023 0.0052 0.0396 0.8656 0.0333 0.0525

CCC 0.0000 0.0000 0.0035 0.0036 0.0062 0.0258 0.8801 0.0793
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

2.4 Results and Analysis

2.4.1 Term Structure o f Credit Spread Indices

The term structure of credit spreads evident in the means of the respective spreads is 

on average upward sloping (Figure 2.5), unlike their volatilities, which seem to be 

humped. Litterman and Iben (1991) observe the same upward sloping term structure 

based on US data, unlike Sarig and Warga (1989) who examined spreads for US 

corporates over the period Feb-95 to Sep-87. They observed that high and low-quality 

spread curves were respectively upward and downward-sloping and they argued that 

this agreed with the predictions by Merton (1974).

The lower rated spreads seem to exhibit more convexity and also show a bigger slope 

than the rather flatter curves of the higher ratings. Most of the short-term financing of 

the financial institutions occurs over the money markets with little or zero credit risk 

considerations when rates are quoted hence the lack of liquidity in these credit spread 

indices, and as a result huge swings in the respective credit spreads resulting in 

increased volatility. The shapes of the volatility curves are mostly downward sloping 

with the 1Y maturity having the highest and the 10Y the lowest volatility. There is a 

lot o f variability in the volatilities among the medium sized maturitties. The 3 to 5Y 

sector is the most active area in most credit markets and it seems to be the case in the 

European market as well.
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In Figure 2.6 the volatilities of the credit spread indices per maturity sector and rating 

are shown.

Figure 2.5 Term Structure of Credit Spread Indices Means per maturity sector

The volatility term resembles the humped volatility structure observed in interest 

rates. It is quite remarkable that the volatilities vary so little across some different 

ratings categories. The big jump in volatility in the BBB ratings is due to the fact that 

these indices are from the industrial sector whereas all the rest o f the credit spreads 

indices from the financial and banking sector. Plotting the terms of the means and the 

volatilities of credit spread indices is more of a qualitative bit of analysis which gives 

an illustration of the levels o f credit spread indices and their historical volatilities and 

how they differ across ratings and maturities. The observed declining slope of the 

volatility curves is probably due to the liquidity effects found in the credit spread 

index data, indicating a difference between the humped volatility curves of interest 

rates and the importance o f liquidity.
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Figure 2.6 Term Structure of Volatilities of Credit Spreads

2.4.2 Distributional Properties o f EUR Credit Spread Indices

It is quite clear from Table 2.1 that EUR Credit Spread Indices exhibit non-Gaussian 

distributional properties. The skewness and kurtosis of the weekly changes differ 

substantially from the respective moments o f the normal distribution. The indices 

seem to be highly skewed a property also found in credit spreads. The kurtosis per 

rating exhibits a pattern with the first four ratings of AAA, AA+, AA, AA- (Figure 

2.7). The kurtosis decreases with maturity for these ratings with the highest being 

between the 2 -  5Y sector.
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The fact that kurtosis differs across rating and maturity substantially has important 

implications for risk management.

2.4.3 GARCH in credit spread indices

The simple statistical analysis in section 2.3.1 demonstrates that EUR credit spread 

indices exhibit term structure in their historical volatilities. Historical volatilities of 

some ratings present a flat term structure whereas in other ratings the term structure is 

somewhat more complex. Since the historical volatilities are a product of “historical 

averaging” o f observed prices, it avoids identifying important price actions in the past 

since it assigns an equal weight to all the observed prices. Examining the GARCH 

effects of the credit spread indices will give us an indication o f the stochasticity o f the 

series.

Table 2.9 shows a summary of our optimisation results using the PCGive software. 

The first observation is that some of the series examined did not exhibit GARCH(1,1) 

effects since there was no convergence. These series were examined for higher orders 

o f heteroskedasticity (1,2 etc.) but still there was no convergence. However, all series 

converged when the (1,0) was performed. It was somehow surprising that not all 

series did not show heteroskedasticity even at the lowest level (1,1).

Table 2.9 GARCH (1,1) parameters
AAA5Y AA+_2Y AA+_5Y AA-_5Y BB+_2Y BB+J0Y BB_2Y BB_10Y BB-_10Y

X, 0.76488 -0.00936 0.82752 0.75367 0.73668 0.88497 0.87357 0.95732 0.88736

Constant 0.07790 0.28460 0.05791 0.09323 0.12746 0.08574 0.12047 0.02897 0.10833

cto 0.00082 0.00026 0.00000 0.00156 0.00084 0.00000 0.00301 0.00187 0.00419

a. 0.35012 -0.05168 0.03214 0.04186 0.15688 0.00742 0.45855 0.85327 1.02757

P 0.01721 0.79797 0.95353 -0.04186 -0.07536 0.97597 -0.05060 0.14673 -0.02757
Log-

likelihood 140.443 143.734 130.595 130.463 150.046 90.300 83.214 67.938 50.984
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The credit spread indices which proved to follow a GARCH (1,1) process show an 

acceptable log-likelihood ratio. The estimated parameters confirm the volatility trend 

which is higher for higher ratings and higher for longer maturities. The ao and cxi 

have an upward trend starting from AAA 5Y towards BB- 10Y as expected.

The fact that not all the credit spread indices showed generalised ARCH effects 

doesn’t prove that there is no heteroskedacticity in the series and vice versa. It only 

proves that during the period that these indices were examined some o f them (shown 

in the table above) exhibit GARCH effects and others didn’t. Clearly, if  one wants to 

fully characterise the heteroskedasticity effects in credit spread indices a larger 

sample o f data needs to be examined in order to reach a proper conclusion. However, 

I think it is safe to assume that a stochastic volatility model would probably be 

appropriate to model the evolution of credit spreads.

2.4.4 Mean reversion in credit spread indices

Figure 2.8 shows the spread level of the AA 5Y credit spread index. As we can see 

the spread level reverts to the level of 30bp after 3 years. Many spread levels 

examined resembled that one, suggesting just from that pure eyeballing that credit 

spreads exhibit mean reversion.

O f course, the best way to examine that is by performing ADF tests for each of the 

time series. The ADF test results (Table 2.10) at the 95% level of confidence show 

that most of the examined credit spread indices exhibit non-stationarity. Only the 

bolded results in Table 2.10 seem to be an exception to the previous statement 

because the ADF test statistic is higher than the ADF critical value at the 95% level 

(in absolute terms). A possible reason for these exceptions is lack o f liquidity during 

the examined period.
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Figure 2.8 Weekly Plot of the 5Y AA Credit Spread index

Table 2.10 Augmented Dickey-Fuller Tests (weekly data)

Maturity Rating ADF 1 ADF 2
2Y AAA -4.13 -5.20
5Y AAA -2.64 -2.93
10Y AAA -1.01 -2.49
2Y AA+ -3.70 -5.34
5Y AA+ -2.55 -2.98
10Y AA+ -1.16 -2.62
2Y AA -3.64 -5.35
5Y AA -2.40 -2.88
10Y AA -0.66 -2.30
2Y AA- -4.17 -4.78
5Y AA- -2.20 -2.73
10Y AA- -1.09 -1.67
2Y A+ -2.31 -2.45
5Y A+ -1.55 -2.36
10Y A+ -0.91 -3.12
2Y A -2.16 -2.15
5Y A -1.15 -1.75
10Y A -0.39 -2.84
2Y A- -1.35 -2.22
5Y A- -0.43 -2.43
10Y A- -0.46 -2.13
2Y BBB+ -2.49 -3.03
5Y BBB+ -1.72 -3.18
10Y BBB+ -0.60 -3.00
2Y BBB -3.15 -3.46
5Y BBB -2.20 -3.57
10Y BBB -1.51 -3.86
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2Y BBB- -1.85 -1.72
5Y BBB- -2.27 -2.20
10Y BBB- -2.07 -1.98

95% ADF Critical Value -2.88 -3.43
ADF 1 Intercept no trend
ADF 2 Intercept and trend

This clear evidence of existence of mean reversion in credit spread indices was taken 

into account in our choice of interest rate model, hence the main purpose of this brief 

econometric study.

2.4.5 Estimation of LS (1992) May-01 -  Jun-01

The first estimation o f the LS (1992) model was performed using data from the period 

between May-01 to Jun-01. In the course of the minimisation, the coefficients were 

capable o f ‘naturally’ finding acceptable regions. Most o f the fitted parameters 

seemed quite stable over the examined period, especially alpha, beta and eta (Figures

2.9 and 2.10). The gamma and eta parameters show a seasonal pattern, which could 

well be the case or just forcing the model too far. An interesting observation is that 

the parameters exhibit high “volatility” in their levels from day to day. Hence, the 

predictive ability o f the model is constrained to give a more accurate view on the 

market as a whole, rather than being used as a realtime trading tool26 (day in day out). 

More evidence to support that is when one tries to price interest rate options by 

integrating the non-central chi square probability function where the “wrong” 

combination of parameters could result in complex numbers. For example unless the 

gamma and eta parameters are not higher than V2 the modified Bessel function would 

yield a complex number (equation 3.19).

26 This is one of the main reasons why this model hasn’t been used much in practice.
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Figure 2.9 Daily plot o f the beta, gamma and ni LS parameters
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Figure 2.10 Daily plot of the alpha, delta and eta LS parameters

Figure 2.11 shows the observed European benchmark bond curve and the theoretical 

curve as estimated for the 16th of May 2001. The shape of that yield curve is quite 

complex since there are two opposed curvatures within the curve, one at the short end 

and one at the long end. These are signs o f a yield curve which could well steepen as 

soon as there is either monetary easing by the central bank or signs o f reduced
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economic growth. Our interpretation o f the shape of this yield curve (Figure 2.11) is 

that o f an economy at the end of a transitional period.

Figure 2.11 Observed and LS Estimated Euro Benchmark Yield Curve (16/05/01)

The short end of the curve seems to be moving according to the markets expectation 

o f a rate cut by ECB and the long end reflects the current and future expected inflation 

in the euro area. Also, the long end o f the curve is pricing expected growth o f the 

economy in the long run, hence the opposing curvatures.

The term structure of volatility was also obtained using the estimated parameters 

(Figure 2.12). The shape o f the volatility curve has the humped structure where the 

short maturity volatilities are higher than the long term volatilities. The level of 

volatility is quite low for the T-bill/bond market. The reason for this is that these 

volatilities represent the volatility of bond yields, which in reality are quite low, in 

contrast to the volatility o f their prices.

The LS (1992) model makes the assumption of correlation o f 1 between the short rate 

r and its’ volatility V and this is evident in Figure 2.13 where the correlation between 

r and V is plotted against time. The correlation was calculated based on the estimated
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parameters o f the model. This is also an implementation test for the LS (1992) model 

since the dynamics of r and V have been accurately captured in the LS world.

Figure 2.12 Term Structure of Volatility (16/05/01)

Figure 2.13 Correlation between r and V

2.4.5.1 Option Pricing

The LS (1992) has a closed form solution for the pricing of vanilla zero coupon bond 

options (the equivalent of caplets/floorlets). Using a Monte Carlo simulation (section 

3.2.3) we priced a number o f options on a 5Y zero coupon bond. Before we actually
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describe its pricing power we will examine the implied distribution of the r 

conditional on its volatility V. The distributional properties o f both short and long-

term interest rates at 7 days intervals were implied using a Monte Carlo simulation. In 

that way, one can take views on the movement of future interest rates based on that 

information. The density obtained using this approach is also comparable to the more 

common option-implied density, which is also risk-neutral.

The best way to show the results, in relation to the scope o f this thesis, is to plot the 

PDFs for all horizons up to half a year in a three-dimensional as shown below. The 

number of weeks ahead in time is displayed on the x-axis, the level o f the short-term 

interest rate is on the y-axis, and the probability density is on the z-axis. It can be 

clearly seen that the distribution converges as the horizon increases.

The x-axis shows the interest rate and the y-axis the probability that the x-month 

interest rate will be as it is viewed by the market on the day o f the calibration. As it 

can be seen more clearly in Figure 2.14, the 6-month probability distribution is 

broader and the probability that rates could be almost unchanged is much lower 

compared to the 3-month probability distribution. The same shape remains as the 

number of months increasing, demonstrating the stability o f the distribution. Using 

(3.24) and the implied distribution of the short rate we priced European call options of 

various maturities on a 5Y zero coupon bond. The prices obtained were compared 

with option prices calculated using the Black’s formula. In Table 2.11 the implied 

forward rates used for the ATM strikes are listed including the respective volatilities 

and LS option prices. Also the Black’s option prices and their difference is shown. In 

table 2.11, 7 different options prices are shown as estimated using the LS model. 27

27 Probability Density Function
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Figure 2.14 Estimated RND of future short-term interest rate (16/05/01)

Figure 2.15 3M and 6M RND of future short-term interest rate (16/05/01)
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Table 2.11 Com parison o f  Option Prices (16/05/01)
Option Maturity, 
Bond Maturity

5Y Implied 
Forward Rates LS ATM Price Black's price Difference

0.25Y,5Y 4.10% 0.4970 0.496 0.001

0.5Y,5Y 4.14% 0.2978 0.296 0.002

1 Y,5Y 4.24% 0.1856 0.174 0.011

2Y,5Y 4.44% 0.0530 0.090 -0.037

Table 2.12 Option Prices on the 5 Y zero coupon bond (16/05/01)
Option 

Maturity / 
Strike

3.35% 3.60% 3.85% 4.10% 4.35% 4.60% 4.85%

0.25 0.0020 0.0800 0.2744 0.4970 0.8080 1.3180 2.0540

0.5 0.0015 0.0242 0.1446 0.3921 0.5771 1.0190 1.6860

1 0.0011 0.0048 0.0720 0.2832 0.3316 0.5910 1.1770

2 0.0001 0.0006 0.0014 0.1424 0.1045 0.1630 0.7100

There are minor differences (Table 2.11), which indicates that calibration to market 

discount factors could be reliable to price these options. Options o f longer maturity 

seem to have larger differences to the Black’s prices. This could be due to the nature 

of the implied distribution obtained. The implied distribution o f the short rate 

becomes wider and wider as the maturity of the option is increased. As a result the at 

the money (ATM) options tend to become worthless as maturity o f the option 

increases. This makes it impossible to price the full matrix o f all possible 

combinations o f options. This is another reason why practitioners avoid the use of LS 

to calculate the MTM of their books or even to market make in interest rate options. 

However, it has great theoretical attributes and it can still be used for most vanilla and 

non-standard swaps plus short dated options. Using a model such this to price short 

dated options instead of Blacks’ has the advantage o f taking into account stochastic 

volatility and the theoretical term structure of interest rates.
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Figure 2.16 Option Prices surface based on table 3.7 (16/05/01)

2.4.6 Estimating Credit Spread Curves and pricing credit spread options using LS 

(1992).

The date of our analysis is the 7th of May 2004. After a long time of low credit 

spreads and continuous spread tightening we see the first signs o f a reversal in the 

credit markets. The first 5 months o f 2004 have been quite interesting since the 

increased liquidity and the global reflation theme has taken its toll. Investment in 

2004 its not a “sure thing” anymore across all asset classes and especially in credit 

where careful selection o f investments in credit superseded the theme of going long in 

all types of corporate bonds. Thus, the period we examined the credit spread curves 

shows the first signs of spread widening.

Table 2.13 LS (1992) Estimation Parameters
AAA

Finance
AA+

Industrials
AA-

Industrials
BBB

Industrials
BB

Industrials
B

Industrials
Short Spread 0.11% 0.12% 0.14% 0.46% 0.72% 3.44%

V 27.72% 12.87% 12.21% 8.33% 19.55% 5.53%
a 0.114 0.085 0.123 0.089 0.042 0.097
p 18.515 11.973 14.995 21.995 22.000 15.759

_____i ____ 0.070 0.184 0.100 0.167 0.052 0.112
5 -0.179 0.109 -0.086 -0.001 -0.307 -0.432
8 0.001 -0.001 -0.001 -0.002 0.000 -0.001
n 3.459 1.691 2.346 0.768 0.741 -21.009
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The estimation of the credit spread curves was performed in the same way as if  we 

were estimating interest rate curves. The initial spread level and their volatilities are 

shown in Table 3.7, including the estimated parameters.

The alpha and beta parameters are substantially higher than the same parameters 

estimated in section 3.4.1. The main reason for that is the level of the volatilities 

which are a few orders o f magnitude higher than the volatilities of interest rates. The 

rest o f the parameters reflect the characteristics o f the model where the spread reverts 

to its long term mean and so its volatility.

Table 2.14 Squared Differences for EUR AA+ spread curve (07/05/04)

Maturity /years Observed spread Estimated spread Squared Estimated credit
discount Factors discount Factors Difference spreads in %

0.25 0.00051 0.00124 0.00000 0.510%
0.5 0.00093 0.00163 0.00000 0.364%
1 0.00105 0.00170 0.00000 0.211%
2 0.00306 0.00272 0.00000 0.152%
3 0.00514 0.00429 0.00000 0.164%
4 0.00632 0.00708 0.00000 0.189%
5 0.01009 0.00983 0.00000 0.214%
7 0.01352 0.01282 0.00000 0.254%
8 0.01449 0.01436 0.00000 0.268%
9 0.01362 0.01690 0.00001 0.281%
10 0.02210 0.01976 0.00001 0.291%

Table 2.14 shows the estimated spread discount factors and credit spreads based on 

the estimated parameters. The optimisation has worked quite well since the squared 

differences are quite small. In Figure 2.17 we observe the difference between the 

observed B Industrial credit spread curve and the LS (1992) estimated credit spread 

curve.

The fit is surprisingly good even for a complex curve like that, enforcing our choice 

o f model. Liquidity effects on the examined corporate bonds could be responsible for 

that shape or simply a reflection o f expectations.
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Figure 2.17 EUR B Industrial Credit Spread Curve (07/05/04)

Figure 2.18 shows the estimated discount factors per credit spread curve including the 

estimated benchmark discount factor curve. The natural observation is that the spread 

zero discount factors are upward sloping curves instead of downward sloping in 

comparison to the bond discount factor curves. The absence o f monotonically 

decreasing discount functions in the credit spread curves is striking.
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The shape o f the credit curves is quite complex. Possible reasons are liquidity, which 

is always a major factor in the cash market o f fixed income securities and potential 

arbitrage opportunities due to market mis-pricing. All estimated curves however, are 

mainly upward sloping reflecting the term structures o f corporate and government 

bonds.

The estimated credit spreads are also very close to the observed spreads. The only 

serious mis-pricing observed based on our results is on the AAA curve. During the 2 -  

7 year period the spread is higher than AA-. This is something that does not occur in 

the observed credit curves since the level of risk of holding a AAA asset compared to 

a AA- asset is always lower. A possible explanation is that the volatility o f the AA+ 

and AA- curves is quite low relative to the AAA volatility for the period examined 

and vice versa. Another reason could be that the 2 to 7 year parts of the AA+ and AA- 

curves has not moved for some time, i.e. lack of liquidity or even lack of activity. 

Clearly the same estimation should be carried over a period o f time in order to 

establish what might have been the cause, or if  it was just an outlier.

The fact that the part o f the AAA curve yields higher than the AA+ and AA- shows 

that although the LS model can fit complicated (Figure 2.19) curve shapes and takes 

into account the volatility of credit spreads but there is no guarantee that first: the 

credit spread discount curves are strictly positive, second: the premium of holding a 

higher rated security is lower than the premium of holding a lower rated security.

The main reason for that is that the LS model is only concerned with fitting an 

observed credit spread term and its volatilities. However, the high quality o f fitting 

spread curves can be used to our advantage since as we will see later, there is quite a 

lot of information that can be extracted out of the estimated credit spread curves.
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Figure 2.19 Estimated Credit Spread Curves (07/05/04)

LS Estimate Credit Spread Curves EUR 07/05/04
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Figure 2.20 Credit Spread Volatility Curves (07/05/04)
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Furthermore, the estimated credit spread curves can give us good insight in where the 

“equilibrium” of the short credit spread might be and also where the level of the 

forward credit spreads are.
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The estimated credit spread curves were used to provide the forward structure o f the 

credit spread in order to price credit spread options by assuming the spread is a 

stochastic variable which follows the diffusion equations of 3.26. The implied 

probability density for different time intervals behaves in the same way as with the 

risk free rates (Figure 2.21). This is a useful property o f the model because it reflects 

the uncertainty on the spread level as time increases. One o f the advantages of using 

the LS (1992) to model the dynamics of credit spreads is that it combines the level of 

the credit spread with stochastic volatility. This is quite important in option pricing 

applications because the dynamics o f the spread’s volatility can be successfully 

matched. The existence of a closed form solution for European options on bonds 

under the LS (1992) framework is also advantageous, since most o f the credit risk 

models used for pricing don’t provide closed form solutions for spread instruments. 

Using the pricing methodology o f section 3.2.6 we priced options on different credit 

spreads. The “calibration” of the credit spread options was performed via replication. 

The ATM spread options were replicated by buying 1 unit o f an ATM corporate bond 

of rating (i) and buying Vi a unit of a government bond , thus replicating the greeks 

and the payoff of the credit spread options.

The two bonds were chosen to be of similar duration (Table 2.15) and the options 

were struck at the ATM implied forward as estimated from the observed discount 

curve of the 07/05/04. The respective deltas were 0.5009 for the calls and -0.4999 for 

the puts. 28

2.4.6.1 Credit Spread Option Pricing

28 For example the combination of the VMG bond and the OBL government bond options will yield a 
Total Delta = (lx Duration(i) x Delta of option) + (0.5 x Duration x Delta of Option), i.e. Total Delta of 
strategy = 1 x 2.574 x 0.5009 + 0.5 x 2.276 x (-0.499) = 0.50254, which is matched but the ATM 
spread option. For different option moneyness the appropriate weights should be used to match the 
delta.
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Figure 2.21 RND of future short credit spread AA+ Industrials (07/05/04)

Spread

The underlying maturity o f the bonds were approximately 3Y and 2Y. The option 

maturities examined were 3M. The credit spread options priced were 3M options on 

3Y and 2Y underlying respectively. The spread options were struck at the same 

spread strike as the replicating strategy and the option implied volatility of the 

strategy was matched.

Table 2.15 Underlying Government and Corporate Bonds

Strike Call Strike Put Government
Bond Coupon Corporate

Bond Coupon Duration
Government

Duration
Corporate

2.61 2.52 OBL 4 VMG 4 2.574 2.276

2.77 2.57 BKO 2 Total 3.875 1.728 1.864

2.96 2.57 BKO 2 Bosch 5.25 1.728 1.964

3.27 2.57 BKO 2 Renault 5.125 1.728 1.972

The total cost o f the strategy (Table 2.16) was expected to be higher than respective 

option prices out of the LS (1992) model. The reason is that the fractional difference 

in the time value between the combination of the two options compared to the single
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spread option would increase the overall premium by almost the same amount. This 

expected price difference between the LS spread options and the strategy is shown in 

table 2.16. The magnitude of the difference is quite small considering we used two 

very different models to price spread options. The advantage o f the LS (1992) over 

Black’s model is mainly that the LS model accounts for the true nature of volatility 

and its stochasticity.

Table 2.16 Credit Spread Option Prices

Rating Option Maturity/ 
Spread Maturity

Price
Difference

LS Price 
(decimals)

Cost of 
Strategy 

(decimals)

Government 
Bond Put 

Option

Corporate 
Bond Call 

Option

Spread 
Strike (bp)

AA 3M3Y 0.008 0.553 0.545 0.499 0.295 9

AA- 3M_2Y -0.006 0.367 0.374 0.315 0.216 20

BBB 3M_2Y -0.003 0.403 0.406 0.315 0.248 39

BBB 3M_2Y -0.013 0.541 0.555 0.315 0.397 70

Longstaff and Schwartz (1995) arrive to an interesting result about credit spread 

options. Based on their proposed model which assumes that credit spreads are 

conditionally log-normally distributed they conclude that the value of call credit 

spread options can be less than the their intrinsic value. Based on our results this not 

true when using the LS (1992) to model the credit spread as a stochastic process. The 

value of the credit spread options is higher than its intrinsic value. The reason is that 

the pricing of the credit spread options is no different than the pricing o f interest rate 

option when using the LS (1992) model.

2.4.7 Implied Probability of Default

By estimating zero-coupon spreads and given a historical recovery rate we implied 

default probabilities in the same way as one would use risky zero-coupon bonds and 

default free zero-coupon bonds. Using the estimated spread curves (section 3.4.2.1),
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the relevant Bloomberg data29 and the weighted recovery rate (0.3265) as used in the 

JLT paper30, we were able to imply the cumulative probabilities o f default. These 

probabilities are based on the two state model of Jarrow and Turnbull [46].

The trend of the cumulative default probabilities follows the risk premia as obtained 

from the estimated spread discount factors. The probability o f default is higher for 

lower ratings and also increases with time. If we take a closer look at Figures 2.22 and 

2.23 as an example we will realise that the probabilities are not straightforward 

exponential curves as one would expect, instead there is a higher level o f convexity. A 

potential reason for that is that the inclusion of the volatility of the spread when the 

curves were estimated (section 3.4.2).

Figure 2.22 Cumulative Default Probabilities

Hence, the shape o f the implied probability of default, which shows that the term of 

default is directly related to the term structure of the credit spread curves.

The evolution of these default probabilities over time should resemble the evolution 

o f credit spreads.

29

30
See appendix 2 since the default probability curves were obtained for the 7th of May 2004.
The level of the weighted recovery rate in the Jarrow, Lando & Turnbull [46] paper.
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Figure 2.23 Implied Cumulative Default Probability Curve o f Rating B

Years

This is easily deduced since our inputs were the credit spreads themselves. In figure 

2.24 weekly time series o f the implied default probabilities are being plotted.

The series show the existence of relative low default risk over the last 2 years. This is 

in accordance with the environment of low interest rates (US and Euro area), which 

allows corporations to borrow money at historical low interest rates, thus making their 

debt servicing cost very low. An interesting observation is that for a brief period of 

time the probability of default of rating BBB+ as implied from the estimated credit 

spreads was lower than the probability of default of rating A which is a lower rating. 

This is clearly violation o f no-arbitrage if one was using a reduced-form model. 

However, in our case this could be a mis-pricing which it didn’t last long. 

Alternatively it could be a case of the market pricing in a rating upgrade event for the 

sample of bonds in question. This could make sense since a number of corporations 

(again fuelled by a low interest rate environment) were placed on a positive outlook 

by major rating agencies.
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Figure 2.24 Time series of 2Y implied default probabilities

2.4.7.1 Implying the Transition Rating Matrix using the LS (1992) estimated credit 

spread curves

In tables 2.16 the 1-year historical transition matrix as obtained from JLT [] is shown. 

Following the JLT (1997) paper and Arvanitis, Gregory and Laurent (1999) we 

implied the transition rating matrix using the spread risk premia as estimated using the

LS (1992) model (section 3.4.2). 

Table 2.16 (see JLT (1997))

AAA AA A BBB BB B CCC D
AAA -0.1154 0.1020 0.0083 0.0020 0.0032 0.0000 0.0000 0.0000
AA 0.0091 -0.1043 0.0787 0.0104 0.0031 0.0031 0.0000 0.0000
A 0.0009 0.0308 -0.1172 0.0688 0.0107 0.0048 0.0000 0.0010
BBB 0.0006 0.0046 0.0714 -0.1711 0.0701 0.0174 0.0020 0.0049
BB 0.0004 0.0023 0.0086 0.0814 -0.2531 0.1181 0.0144 0.0273
B 0.0000 0.0020 0.0034 0.0075 0.0568 -0.1929 0.0478 0.0753
CCC 0.0000 0.0000 0.0126 0.0131 0.0223 0.0928 -0.4319 0.2856
D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

There are striking differences between the two generator matrices especially in the

last column, which is also the implied cumulative probability of default. The historical 

matrix seems to weigh much higher probabilities of default in comparison to the
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implied generator matrix. This is easily explained by the fact that the level of credit 

spreads during the examined date (07/05/04) is very low. The implications is that 

default risk as being viewed by the market (risk premia) is quite low but seems that it 

could be on the increase, since the probabilities of being at the same rating after 1 

year are lower than the historical transition probabilities. Table 2.18 shows the input 

spreads as estimated using the LS (1992) model in comparison to the spreads implied 

using the risk neutral generator matrix (Table 2.17).

The differences are quite small since an optimisation was carried out, but an 

interesting point is that the 1Y spread as implied from the rating matrix is 1 where the 

LS estimated is six and ten times higher.

Table 2.17 Implied Transition Rating Matrix (07/05/04)
AAA AA A BBB BB B CCC D

AAA -0.1302 0.1148 0.0092 0.0022 0.0035 0.0001 0.0001 0.0001
AA 0.0158 -0.1815 0.1370 0.0180 0.0052 0.0053 0.0001 0.0002
A 0.0017 0.0584 -0.2214 0.1298 0.0203 0.0090 0.0002 0.0018
BBB 0.0007 0.0057 0.0954 -0.2292 0.0938 0.0233 0.0027 0.0065
BB -0.0001 0.0013 0.0055 0.0495 -0.1540 0.0718 0.0087 0.0165
B -0.0001 0.0018 0.0025 0.0056 0.0425 -0.1445 0.0356 0.0563
CCC -0.0001 0.0003 0.0043 0.0041 0.0066 0.0275 -0.1278 0.0845
D 0.0000 -0.0001 -0.0001 0.0000 0.0001 0.0001 0.0000 0.0000

However, this is very close to as if  we were using the historical generator matrix. The 

spreads implied using the historical generator matrix are very much different as it can 

be seen by looking at the default probabilities (last column in table 2.16). Using the 

historical generator matrix the implied spreads are very much different from the risk 

neutral spreads.

This shows again that the current risk premia are much different than the historical 

average, hence the big difference between the spreads.
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Table 2.18 Credit Spreads used  fo r  calibration to im ply the Transition Rating  M atrix

Rating

Spread as 
estimated from 

historical matrix in 
bp

Spread as 
estimated 
from risk- 

neutral 
matrix in bp

LS Spread in 
bp

Difference in 
bp

AAA 21 1 7 6
AA 29 1 11 10
A 46 12 12 0
BBB 50 44 41 -3
BB 89 112 107 -5
B 472 386 375 -11
CCC 1698 586 578 -8

This difference between the spreads needs to be thought carefully when one is 

measuring risk and even when one is marking to market. As we’ve seen historical 

default data show that the “fair value” o f credit spreads is much higher than where 

they are at the moment. However, one cannot measure risk based on that “fair value” 

because market rates fluctuate according to market expectations.

Figure 2.25 Weekly time series of eigenvalues

What is mainly important when measuring risk is the time horizon, the volatility of 

the underlying rates over the specified horizon and the details of the risky position 

(maturity, size, direction) the risk is calculated for. Thus we estimated transition
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matrices over a period o f time based on weekly credit spreads as obtained form the LS 

model. The main reason for that is to identify how the risk neutral transition 

probability matrix shapes up over time. The best way to visualise that is by examining 

the eigenvalues over a period o f time as shown in Figure 2.25.

2.5 Summary

The distributional and statistical properties o f the EUR credit spread indices examined 

have given us a fairly accurate picture of their dynamics. They exhibit mean-reversion 

and GARCH effects and they are highly skewed. These observations coupled with the 

empirical literature justifies choosing an interest rate model to model the dynamics of 

credit spread indices, especially a model, which can capture both the evolution of the 

short credit spread index and its volatility. Such a model is the affine two-factor term 

structure model of Longstaff and Schwartz (1992) which was used to fit credit spread 

data directly.

The two-factor interest rate model by LS (1992) was examined in order to test its 

ability to fit yield curves and price interest rate options. It was shown that, as a 

theoretical model it is capable of providing a fairly accurate pricing framework, where 

complex yield curve shapes can be estimated to reflect observed market rates and the 

term of the volatility can also be fitted simultaneously, making the model quite 

appealing for option pricing applications. However, although there is a closed form 

solution for pricing options the complexity o f the final distribution function make it 

difficult to reflect the changes in all the estimated parameters either daily or weekly. 

Features like these make the LS model a great theoretical rather than trading tool to 

the fixed income/interest rate markets.
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The ability o f the LS model to fit complicated curve shapes and to model volatility 

stochastically was explored by fitting credit spreads directly. It was also shown that 

credit spread options can be priced under the LS framework implying that it can be 

used as a “spread based” model. Furthermore the credit spread curves were used to 

imply default probabilities showing an alternative way o f estimating probabilities 

based on spread data rather than bond data.
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CHAPTER 3 Integrated Risk Measurement

Abstract

This study presents a dynamic approach to manage the risks associated with interest rate 

swaps. The proposed methodology reflects the implicit price of default risk implied by a 

hypothetical swap portfolio. The proposed dynamic hedging of the swap default risk by 

taking offsetting positions in credit spread index options provides an integrated measure of 

market and default risk for interest rate swap portfolios. This measure will facilitate in the 

proactive management of the risks associated with interest rate swaps. The methodology can 

be easily extended to cover other financial instruments, which bear both marker and credit 

risk.

3.1 Introduction

3.1.1 Background o f the study

A number of well publicised losses (Table 4.1) due to derivatives have made end 

users and financial practitioners alike to rethink the way they account for their risks. 

Hence, the credit exposure generated from derivative transactions has become the 

focus o f many academics, practitioners and regulators around the world.

Table 3.1 Well publicised derivatives losses____________________________________
Company Loss Amount Related Derivatives
Orange County US$ 1.7 billion Leverage and structures notes
Metallgesellschaft US$ 1.3 billion Oil Futures
Barrings + US$ 1 billion Equity and interest rate futures
Procter & Gamble US$ 157 milion Leveraged Currency Swaps
Air Products & Chemicals US$ 113 milion Leveraged interest rate and currency swaps
Italian Postal Bank ~ US$ 105 milion Leveraged exotic interest rate swaps
Dell Computer US$ 35 milion Leveraged interest rate swaps
Arco Employees Savings US$ 22 milion Money Market derivatives
Gibson Greetings US$ 20 milion Leveraged interest rate swaps
Mead US$ 12 milion Leveraged interest rate swaps

In the past financial institutions and regulators were happy to treat the different types 

of risks separately. However, a number o f reasons has altered this view lately. The 

globalisation and integration of financial markets has led financial institutions to
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consolidate their risk under global integrated measures. The tremendous two-fold 

growth in complexity and turnover of financial products has broken down many 

boundaries between the different types o f risk. A financial institution has the ability to 

eliminate banking risk by swapping credit risk for market risk or even eliminate both 

through tailored made derivatives. A corporation can eliminate market risk from its 

balance sheet by entering into derivatives contracts with financial institutions. It is not 

only large corporations which enter into derivatives contracts with financial 

institutions but all customers with various credit qualities. Prudent risk management 

and understanding of the risks associated with such transactions is of great importance 

to any financial institution who is in the derivatives business.

These changes have transformed financial institutions into the “risk managers” o f the 

financial system as a whole. Hence, their great need to assess, price, hedge, monitor, 

diversify and report all risks accurately across all their business units on an integrated 

basis.

3.1.2 The Problem Statement

There has been a lot o f effort in creating an integrated measure of risk, especially for 

market and credit risk. Jobst and Zenios (2002), Medova and Smith (2003), and Mark

(1999) propose an integrated framework which accounts for both market and credit 

risk factors in portfolios o f derivatives. Both approaches are quite similar in the sense 

that both use a Monte Carlo simulation to generate multiple scenarios of credit states 

and market rates. The difference is that Jobst and Zenios (2002) use an arbitrage-free 

model for credit risk pricing (Jarrow, Lando and Turnbull (1997)), whereas Medova 

and Smith (2003) use option pricing theory to price credit risk (Merton (1974)). Mark 

(1999) suggests that the best way to account for both types of risks simultaneously is
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by simulation. These methodologies if run successfully could give an accurate picture 

o f a financial institution’s (or a portfolio’s) market and credit risks.

Although such techniques could prove to be highly valuable, they do have a number 

o f disadvantages. The computational effort in running all the necessary scenarios and 

understanding the outcome is quite huge in terms of the amount o f time, cost and 

human capital. Because of the distinctive difference o f time horizons between market 

and default risk all these measures are no shorter than one year. And history will tell 

us that default events have been triggered due to substantial unexpected market 

events. So, the time horizon o f a credit event could well be shorter than one year. 

Kealhofer (1999) has suggested that the efficient diversification of a portfolio of 

derivatives requires active rather than passive management because of the dynamic 

nature of the risks. Thus, active management o f risk should be designed to respond to 

market wide commonly held information on the changing nature of default risks. The 

management o f risk could be done in a number o f ways:

• By maintaining margin accounts as in organised exchanges;

• Quick settlement;

• Reduce the time to maturity;

• Actively managing credit exposure by buying or selling;

3.1.3 The Significance o f this Study

The purpose of this study is to propose and evaluate a dynamic hedging methodology 

of the default risk of a hypothetical interest rate swap portfolio. Based on that 

methodology an integrated measure of market and credit risk will be proposed. This 

methodology will assist in the active management of risk in interest rate swaps and 

other financial instruments with similar exposure profiles.
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The methodology is based on taking an opposing position in default risk via a credit 

spread index options. Suitable credit spread index options were priced under the 

LS framework and were used for the proposed hedging methodology. The value of 

that portfolio is sensitive to both the movements of market rates and related credit 

spreads. The correlation between the two types o f market rates is only inherent if  a 

historical simulation is used. Hence, the distribution o f returns of that portfolio is 

directly linked to credit spread risk31 32 33 as they are to market risk. By measuring the 

volatility o f these returns using the VaR measure we are able to deduce a VaR 

measure which accounts for the market risk o f the swap portfolio and the credit spread 

risk which is directly related to default risk. Thus an integrated measure of market and 

credit risk is proposed which can be extended to other financial instruments other than 

swaps.

3.1.4 Overview o f the study

In section 2 the methodology is outlined, in section 3 the data was described and in 

section 4 and 5 the results and conclusions are analysed.

3.2 Methodology

This study presents an integrated measure of market and credit risk for a hypothetical 

interest rate swap portfolio. It is based on the dynamic management of risks over a 

short time horizon. This work utilises the LS (1992) framework which was examined 

in chapter 3.

31 Credit spread indices were mostly available to us rather than credit spread data over a period of time. 
Hence the use of credit spread indices in this analysis.
32 Meaning that options on the available credit spread indices.
33 The term structure of credit spreads is directly related to the term structure of default rates as it was 
explained in chapter 3.
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Interest rates swaps are agreements between two counterparts by which the two 

parties agree to exchange payments based on fixed/floating interest rates periodically 

for a period o f time in the future. By market convention, the fixed-rate payer that has 

a long swap position in a fixed/floating interest rate swap is called the buyer of the 

swap, while the fixed-rate receiver has a short swap position in the fixed/floating 

interest rate swap and is called the seller o f the swap. At the date of contract initiation 

o f a fixed/floating interest rate swap, the swap contract is usually executed at a par 

value (or at-the-money or at-market) swap because there is no initial cash exchange 

between the two counterparts. Thus, at the date o f contract initiation, an interest rate 

swap contract is neither an asset nor a liability to either counterpart. However, 

subsequent to its initial date o f agreement, the market value o f the interest rate swap 

may become positive or negative. These value changes are stochastic in nature and are 

primarily driven by stochastic variations of the term structure o f interest rates. Hence, 

the market value o f the swap position can become positive to one counterpart and 

negative to the other counterpart. For instance, a fall in market rates (r) o f the 

fixed/floating interest rate swaps (expressed in terms of the fixed rate o f interest on a 

swap) will make the existing swap contract a liability to the counterpart with long 

swap position (i.e., the fixed-rate payer in the swap) and an asset to the counterpart 

with a short swap position (i.e., the floating-rate payer in the swap). Conversely, a 

rise in the market rates o f the fixed/floating interest rate swaps will bring a gain to the 

counterpart with a long swap position (the buyer) and a loss to the counterpart with a 

short swap position (the seller).

3.2.1 Dynamic Value o f Interest Rate Swaps

113



The calculation of the swap market values requires the generation o f a discount curve 

and subsequently a forward curve. The swap market value is the discounted difference 

between the fixed and floating payments. In the case that the holder o f the swap is 

receiving floating and paying fixed, equation 3.1 would give us the Swap Value 

(MTM) of the swap34. The unknowns are the discounting rates, which differ between 

fixed and floating in terms of their maturity since the reset times between fixed and 

floating might differ. The future floating rate is also another unknown and it’s the one 

derived off the forward curve. By future floating rate we mean the floating rate, which 

starts after the first fixing.

SwapValue = floating value - fixed value

3.2.2 Pricing o f Interest Rate Swaps

= notional *
V 1=1

Y j rfixe rk5tk

k=\
3.1

rfl = the forward rate 
rfix = the fixed rate

= the disocunt factor for the floating payments 

e = the discount factor for the fixed payments

The observed EUR discount curve was bootstrapped and it was fitted to the LS (1992) 

model. After we estimated the theoretical discount curve (as in chapter 2) we 

subsequently calculated the forward curve using the relationship which relates 

forward rates to discount factors:

f d - j j )
-r,t, ¡ ¿ - r f ,

■t:
for j > i 3.2

34 And if the holder of the swap was paying floating and receiving fixed then equation 4.1 would be 
Swap Value = fixed value -  floating value
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The forward curve was used to derive the appropriate forward rates for each swap in 

the portfolio. Hence all the unknowns of equation 3.1 were recovered and the MTM35 

of the swap portfolio was calculated for that date. The procedure of marking to market 

a swap book is highly automated in many financial institutions if not in all of them.

3.2.3 Historical Simulation Value at Risk

A universally accepted36 way to measure the overall market risk with a single measure 

o f any financial instrument is the use of Value at Risk. The case for interest rate 

swaps is no different, so we using the historical simulation Value at Risk 

methodology we calculated the weekly VaR for the hypothetical swap portfolio and 

the swap sub-portfolios37.

Historical simulation requires a large number o f historical data. Often lack of data 

availability make this methodology quite intensive. In our case, we were able to 

collect the necessary historical data in order to run the simulation for our swap 

portfolio. Historical yield curves were estimated using the LS (1992) model for the 

period 23/02/99 -  07/05/04. The swap portfolio was re-valued for each date and the 

weekly movement was recorded. The historical weekly changes were ordered for 

every 104 data points (2 years) and the second worst (negative) and best (positive) 

weekly movement was recorded. The average o f the two was the weekly VaR at each 

data point at the 99% confidence interval (or 2.33 standard deviations).

In more detail the VaR calculation for the interest rate swaps using historical 

simulation was quite straightforward. Using the time series o f the discount curve, we

35 Mark to market (MTM) is the swap value.
36 By practitioners, academics and regulators especially after Basle (I) in 1998.
37 Swap sub-portfolios as defined in the Data section are portfolios of swaps with counterparts of the 
same rating.
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discounted the fixed cash flows at each time point. Naturally the fixed rate was used 

to generate the fixed cash flows. These cash flows were summed up and then they 

were netted with the floating side cash flows. The floating side cash flows were being 

calculated using the forward curve at each week. Prior to that the forward curve was 

calculated using the discount curve. This is the most laborious way one can use to 

calculate historical NPVs for interest rate swaps. A faster way would be to apply the 

appropriate LIBOR rate for each payment date to the notional and then discount and 

some up all these future cash flows. O f course there is a degree o f error to that which 

increases significantly as the maturity o f the swap increases. The main reason being 

that the LIBOR rate could change substantially between the date the NPV is 

calculated to maturity. Nevertheless this is a quick way of obtaining VaR for a swap. 

Testing if the VaR model in use is working is to backtest its performance. This was 

possible in this study because we assumed that the portfolio had started in the past and 

we now have realised profit and loss (P/L). Since VaR is a type of a “P/L predictor” 

by comparing the weekly VaR and the weekly realised P/L (hypothetical) we can test 

the model’s efficiency. Thus, the weekly P/L was recorded and the weekly VaR was 

run recursively between May-99 to May-04. The use of historical simulation makes 

the backtesting procedure slightly easier since we know what is the acceptable result. 

Historical simulation uses the actual distribution o f market rates to estimate VaR as 

opposed to the risk neutral distribution. The risk neutral distribution is usually the 

normal distribution. The difference between the actual distribution and the normal 

distribution is in the observed fat tails o f the actual distribution. This difference is 

could be between 2 - 5  %. Thus, by backtesting the weekly VaR we would expect the 

weekly P/L to be out o f the weekly VaR “limits” only between 2 -  5% at all times, 

that is art least for 30 weeks.
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3.2.4 Swap Default Risk

In swap contracts, there are two most basic forms o f risk: price risk and default risk. 

The price risk as it was explained earlier arises due to the movement o f the underlying 

index so that the default free present value o f the future payments changes. The price 

risk can be hedged by taking offsetting positions using related derivative instruments, 

like interest rate futures, currency futures, etc. The default risk is defined to be the 

exposure to the risk o f payment failure of the counterpart. Unlike forward contracts, 

swaps are over-the-counter (OTC) contracts so they are not backed by the guarantee 

o f a clearing house or an exchange. Swap default may be due to early termination of 

the swaps contract, or defaulting on some other obligation or filing for bankruptcy. 

Early termination may be due to the non-performance of obligations under the swap 

contract, for example, defaulting on a swap payment. The swap may include clauses 

that trigger early termination, say, the credit rating of either party falling below a 

certain class, or failure to meet margin payment when required on a marking to 

market basis.

Assessment o f termination damages in case o f premature termination is based on the 

replacement cost of the swap. An estimate o f the swap value is obtained from quotes 

from several established swap dealers. The average of these quotes is used as the 

replacement value. The cost of default is related to the replacement cost o f the 

contract, and this depends on the rule for sharing claims in default. There are two 

basic rules of settlement. In the full two-way settlement, if  the swap has positive value 

to the defaulting party, the counterpart pays the full replacement value o f the swap. 

However, in the limited two-way settlement, the non-defaulting party is not liable to 

pay the defaulting party even if  the swap is in-the-money to the defaulting party based 

on the rationale that there has been a breach of contract by the defaulting party. In real
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life, non-defaulting parties have typically settled out of court by paying part of the 

replacement cost to the defaulting parties.

The common tools of default risk analysis of swaps use either the structural models or 

the reduced form models. The structural models o f Cooper and Mello (1991); Li 

(1995) employ the contingent claim approach where the firm values of the swap 

parties are assumed to follow some stochastic processes. Default occurs when either 

firm value cannot meet its liabilities. The payment streams are incorporated as source 

terms in the governing partial differential equation and the settlement rules are 

modeled as auxiliary conditions. In the reduced from models Duffie and Huang

(1998), JT (1995), default arrives suddenly as point process. Valuation of defaultable 

securities is characterized by an effective discount rate, which is above the default 

free rate by a premium that is related to the arrival rate o f default and recovery rate 

upon default.

All theoretical analyzes in search o f a credit spread in swaps show that the difference 

in swap rates between two counterparts of different credit ratings is much less than the 

difference in their debt rates. For example, Duffie and Huang (1998) found that for a 

5- year interest rate swap between a given party paying LIBOR and another party 

paying a fixed rate, the replacement of the given fixed-rate counterpart with a lower 

quality counterpart whose bond yields are 100 basis points higher, increases the swap 

rate by roughly 1 basis point. For a 5-year currency swap, with volatility on the 

exchange rate of 15%, their model shows the impact of credit risk asymmetry on the 

market swap rate to be roughly 10-fold greater than that for interest rate swaps. This is 

consistent with the actual market practices that swap dealers quote the same rates to 

all counterparts, irrespective of their credit ratings. The insensitivity o f swap rates to 

credit ratings may be attributed to the very nature of a swap that it can be either an
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asset or liability to either counterpart. Also, the multi-period nature effectively 

mitigates the impact o f default risk. In real market environment, several non-price 

devices to control default risk are commonly used in swap markets to limit the ability 

of bad firms to shift risk via swaps. Some of these common techniques include credit 

trigger, collateral, netting and marking-to- market.

The overall swap portfolio was examined closely in order to understand how much 

default risk it runs. The first step was to breakdown the portfolio per counterpart 

credit rating. The portfolio was assumed to have exposure to 11 different counterparts 

with different credit ratings. Based on that we created 11 sub-portfolios, which 

contain swaps with counterparts o f the same rating. By summing all the counterpart 

exposures per rating w e’ve made the following assumption. The financial institution 

that holds the hypothetical swap portfolio has netting agreements with all 11 

counterparts. This has been a standardised approach lately among financial 

institutions in order to minimise their exposure within counterparts. In the past 

financial institutions used to measure exposures per deal instead of counterpart. This 

would overestimate the default risk and would lead to inefficient capital allocation. 

Hence, the standardisation of ISDA netting agreements which are being countersigned 

between two parties which are willing to enter into an OTC agreement.

In most financial institutions counterparts are being analysed and assessed by the 

credit departments before any trading or dealings initialise. Credit departments are 

looking at both quantitative and qualitative data in order to assess their 

creditworthiness and rate them according to their internal ratings model. Subsequently 

if they are satisfied they initiate the ISDA agreement negotiations. Once this is done, 

settlement and counterpart trading limits are being set using past trading history of 

similar rated counterparts. One important factor used in that process is the spread,
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which the bonds of that counterpart are trading. If there are no tradable long-term 

borrowings o f that form by the counterpart then a credit spread index of the same 

rating is being used as a reasonable proxy. The volatility o f that index is also quite 

important and especially the choice of maturity. Usually the 10Y sectors are being 

chosen, but in my opinion the 5Y is quite informative since this is the most liquid 

sector of the credit curve38 39. However, a term structure approach would be more 

appropriate unless the majority o f the exposure is concentrated around one maturity. 

The exposures from the sub-portfolios were further analysed and broken down by 

maturity in order to give us a better idea of the extent of the current exposure.

3.2.5 Hedging Swap Default Risk

Many money managers and banks have always tried to find ways to eliminate their 

credit risk so they can increase their capacity to lend. A very popular technique is to 

use credit risk transfer. This technique involves the undertaking of a credit derivative 

deal, which protects or immunises from potential credit events, thus reducing or even 

eliminating credit risk by transferring to someone else. This is highly adopted by 

banks, which try to free up capital for further investments or even for pure credit risk 

management purposes. Money managers who invest in high yield also require 

protection for their portfolios in response to credit events, i.e. in case that credit 

spreads widen or narrow depending on their positioning. There are various credit 

derivative products, which will facilitate the needs of both money managers.

For example, assume the high yield money manager holds a bond portfolio of bonds 

which trade at an X spread to the government bonds. The manager is very bullish on 

that economy and wants to stay in the bonds long-term. However, the money manager

38 If there are no traded default securities under the counterpart’s name, then suitable proxies are being 
carefully chosen to match the dynamics of the missing security.
39 It has been the most liquid part of the credit default swap curve.
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is worried o f short-term event risk, which could lead to spread widening. The way to 

hedge that short-term event risk is by buying spread widening protection. This can be 

done through short-term credit spread options struck either at the money or further out 

depending on the anticipated move. The way this works is by paying an upfront 

premium to a dealer for a spread option, which is exercised at maturity. The 

following diagram illustrates the idea:

D e a le r  p a y s  th e  b o n d  m a n a g e r  a t m a tu r ity  i f  th e  o p tio n  is IT M

Pays y% premium for credit spread option struck at X 

This simple way of protecting against credit spread movements has been used and is 

currently in use by many money managers. This hedging technique is being derived 

using option pricing theory. O f course, this is not a day-to-day practice because credit 

events don’t occur as often plus the cost of hedging could be quite high. So to hedge 

or not to hedge credit risk is not a daily operation performed by money managers. 

However, what is being done daily is the measurement o f their market and credit risk 

exposure. This is done usually by relying on VaR methodologies for both market and 

credit risk.

The previous example o f a bond money manager trying to hedge its credit exposure 

against credit spread movements can be used to draw useful parallels on how the same 

technique can be applied to hedge credit spread risk in our hypothetical swap portfolio 

(section 3.2). In theory, hedging derivative credit risk is not a straightforward process. 

It requires the establishment of a unified pricing framework where both credit risky 

and credit risk free securities can be priced. Beumee, Hilberink, Patel and Walsh
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(1999), have shown how a derivative credit risk can be hedged using the Jarrow and 

Lando (1997) model specification. Using the Black-Scholes-Poisson option pricing 

framework they proposed a hedging methodology which creates a credit risk neutral 

portfolio, assuming of course that the derivative used to hedge the existing exposure 

bears no credit risk.

Assuming that a dealer wants to hedge the default risk of a swap portfolio, the first 

step would be to examine the sensitivity of its aggregate swap exposures per credit 

spread. Likewise to the money manager example the dealer could examine the effect 

that credit spread widening/tightening would have to the swap portfolio. The 

difference between bond and swaps is that credit risk does not come in the pricing 

equation at all. So, it’s not as straightforward to find out the sensitivity to credit 

spread movements as it is for bonds. However, what we can say is that as the swap 

exposure increases so is the credit exposure and thus credit risk and vice versa. What 

it can also be said is that when there is credit spread widening credit risk increases 

even if the swap exposure hasn’t increased over the same period. Based on that 

rationale and the money manager example we propose that if  one would like to hedge 

its current swap exposure in a dynamic setting it can be done by taking an offsetting 

position in credit spreads. This can be done using credit derivatives and in this study 

we used credit spread index options, which “bet” on the future widening or tightening 

of a credit spread index. In that way even if the swap exposure remains unchanged 

and credit spreads widen the current exposure remains default risk free. Even in cases 

where swap exposures decline and eventually become negative -in that case we could 

over-hedge-, if  the credit spread widens the result could still be positive.

At this point a few assumptions have to be made before we continue. Since we will be 

using credit spread indices instead of counterpart credit spreads, the first one is that
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the credit spread of a counterpart is almost fully correlated to its respective credit 

index. The correlation between credit spreads and their respective index is time 

varying according to market forces. Our view is that the correlation is at the highest 

when there is market stress. For example, when a financial crisis is looming or has 

just happened, the correlation among market rates is quite high. At times like these the 

probability of a credit event happening is at the highest. For these reasons we assumed 

that the credit spread index is a suitable proxy to capture individual credit spread 

movements. As an alternative the relationship between corporate spreads and their 

respective indices could be examined at regular time intervals in order to establish if 

the assumption is too strong. However, that should be neither a daily nor a weekly 

procedure.

Some credit risk measurement methodologies require to take into account the 

transition probabilities. This is a matrix of probabilities which describes the 

probability of a counterpart o f a certain rating can be either downgraded/upgraded or 

stay at the same rating over a specified period of time. This matrix can be generated 

using as inputs default free zero coupon bonds, an exogenous recovery rate and a 

historical transitional matrix (usually provided by the major credit rating agencies) 

JLT (1997). The change of credit rating o f a counterpart has a significant effect on its 

debt spread and assets in general. Hence, accounting for credit risk without examining 

the transition probability o f a counterpart would not be sound practice especially 

when one is examining loan or corporate debt exposures. The credit spread o f a 

counterpart operates in a much more efficient market setting. If there is a credit event 

looming a counterpart then the credit spread of its debt is more efficient in pricing the 

event than the efficiency of a rating agency, which will assign lower/higher rating 

since this is a discrete event and the credit spread movements is continuous.
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The second important assumption is that counterparts of the same rating have the 

same rating transition probabilities. This assumption facilitates in aggregating all the 

credit rating related specific exposures to a total and examining the overall spread risk 

o f each sub-portfolio40. It also assists us in using credit spread index options instead 

o f counterpart related credit spread options.

Using credit spread index options as a hedging instrument for swap default risk, it 

directly means that we take additional credit risk with the seller of these options. Of 

course, part o f it can be avoided by selling options rather than buying them. For this 

reason we need to assume that the credit risk of the option seller is much, much 

smaller than the credit risk generated by the swap portfolio, and we will treat it as 

negligent.

Making hedging decisions in any financial market environment is a well thought 

process and often well-timed. We wouldn’t expect any financial manager to be 

hedged at all times -unless they are using passive strategies only- because this is in 

the expense o f its profit and loss. The timing, the amount and the time horizon and the 

financial manager’s view are all important factors in any hedging decisions. The 

timing though has to be the most important of all.

By creating the swap sub-portfolios according to each counterparts rating we could 

examine the swap default risk in a more detailed way. A graphic illustration would 

show the level o f default risk per rating the swap book is running. Relating these swap 

exposures to credit spread movements was part o f our goal. By looking at the 

proposed hedging strategy this is the first step towards it. Taking an offsetting 

position in credit risk by buying credit spread index call options, essentially what you 

do is buying protection against credit spread widening. O f course not all sources of

40 We will call sub-portfolios the portfolios generated by aggregating all exposures with counterparts of 
the same rating. In our hypothetical case we have 11 sub-portfolios.
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credit risk are being hedged using that strategy. For example, the risk of rating 

downgrades isn’t captured, but if  a counterpart is downgraded during the holding 

period of the options then current options are being terminated and lower rating credit 

spread index options are purchased. Alternatively if all the counterparts in our swap 

sub-portfolios have tradable bonds we don’t have to do that because the rating change 

will be reflected in the credit spread of their bonds. This is actually more efficient 

since credit spreads usually discount such events before they actually happen. The 

main reason is that rating agencies are quite inert in announcing rating changes. Since 

we are using credit spread indices we will employ a short-term dynamic hedging 

strategy. Thus we will employ 3M options instead o f longer maturity options. There is 

a very low chance o f a credit event happening more than once a year, let alone four 

times a year41. The choice of the 3M options was also due to the fact that the LS 

model prices more efficiently short-term options than long-term42. In addition, we 

wanted to have as small as possible time value. Also it makes more sense to hedge 

with short-term options in terms of cost. The maturity o f the option underlying is the 

matched to the maturity o f the biggest exposure.

The notional o f credit spread index options, needed to hedge the swap exposures, 

should be a function o f the total exposure and the payoff o f the option. The total 

exposure o f the swap portfolio will be the current swap exposure and the potential 

exposure over the same period that the option is been written i.e. 3 months. For 

example, if  we look at the AA- exposure, which currently stands at approximately 

5.8mio EUR (07/05/04), one would think that hedging that exposure would be an 

expensive strategy. The first step in order to do that is to examine the maturity o f the 

exposure, i.e. when the exposure ceases to become an uncertainty. For the AA-

41 Since we are using 3M options, it means that if the strategy was to be employed dynamically we 
would enter into 4 different option contracts throughout the year.
42 Note the higher price differences as the maturity of the options increases (section 3.6.1).
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exposure this is close to 2 years. Hence, we need to look at the closest spread maturity 

for that rating. The history o f the AA- 2Y spread and its volatility are used in order to 

decide the credit spread index option strike. The strike of the option is simply decided 

by looking at the historical mean of the specific spread index (2Y AA-). In our 

example the long term mean stands at 39bps then the strike of the option would be at 

39bps. This would be a reasonable level since credit spread indices are mean reverting 

(chapter 2) and the spread would fluctuate over time above and below that long term 

mean moving the option from in the money to out of the money. An important point 

to be made is that this is the long-term mean level given the sample o f the observed 

data. Using a larger sample would probably give us a different mean, depending on 

how far back in history one wants to go.

The option notional is an important quantity, which will be linked to the total swap 

exposure o f the portfolio over the 3M period rather than the swap notional as it would 

be the case if we were dealing with corporate bonds. Going back to our example, we 

used the LS (1992) pricing framework and priced 3M call options on the 2Y AA- 

spread index, struck at 39bps. If the price of that option is at Y then the option 

notional is derived by multiplying the value o f the 39bp call option to the total 

potential exposure of the AA- swap sub-portfolio. The total potential exposure is the 

current exposure as of the date in question plus the 2.33SD potential exposure over 

the next 3 months, which is the maturity o f the option.

SwapMTMi + SwapVaR(3M)i = TotalPotentialExposure(3M)

OptionNotional = TotalPotentialExposure(3M)
3 MCreditspreadindexoptionprice

(3.3)
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We used as the potential exposure the weekly VaR scaled by the square root of time43 

in order to get the 3M VaR44. By dividing the total exposure with the option premium 

we arrive at the required notional for the option. This is the amount o f options need to 

be bought in order to hedge the total potential exposure if the counterpart defaults in 

3M time and there is no recovery. The same methodology was carried out for all sub-

portfolios.

However, our calculation o f the required hedging amount was based on the fact that 

the counterpart will default rather than just a credit event happening. If the counterpart 

was defaulting then its credit spread would probably move more than 4SD. In that 

case even if the exposure doesn’t increase, the probability o f default is so high that the 

loss from the exposure in near certainty. Furthermore, if  the spread moves higher than 

its usual volatility over a period of 3M then the option is still in-the-money and would 

still pay for the potential exposure. If the spread moves lower or stays at the same 

level then it means that the counterpart has a much smaller chance o f defaulting.

3.2.6 Integrated Risk Measure

The hedging of swap default risk based on the methodology of section 3.2.5 can be 

used in order to calculate a single risk measure o f market and credit risk for swaps. 

What we mean is by creating a portfolio of swaps and credit spread index options, 

essentially we created a default free portfolio. The part of the portfolio sensitive to 

market risk, which is the swaps can be measured in a straightforward manner by 

calculating a VaR type o f measure. The part o f the portfolio sensitive to default risk, 

which is the credit spread index options represents the associated default risk of the 

swap portfolio and can also be measured by a VaR type o f measure. Hence, by

43 Multiplied by the square root of 12.
44 As calculated in section 4.2.1
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assessing the market value distribution of the overall portfolio we can deduce the 

amount of risk subject to integrated market and credit risk at a given confidence 

interval. Thus, by running a VaR on the overall portfolio we can deduce a VaR 

measure which accounts for both market and credit risk.

The credit spread index option VaR was calculated using the same methodology as in 

section 3.2.3. The data range is 08/02 -  05/04 which overlaps with the swap data used 

to run the VaR for the swap portfolios. Thus, there is an intrinsic correlation among 

all the market rates used to run the VaR for the swaps and the options. The VaR 

results for the option portfolios were also backtested in the same way as the VaR of 

the swap sub-portfolios (section 3.2.3).

Subsequently, the total VaR of each sub-portfolio was run. The total VaR represents 

the maximum amount o f money that could be made or lost in a week’s time with 99% 

probability assuming market rates moves by a maximum of 2.33SD even if the 

counterpart defaults and there is no recovery. The difference to the market risk VaR is 

the amount o f risk that accounts for the swap default risk:

Total VaR = Market VaRj o f Swaps + Market VaRj of CSOs.

(only for historical simulations, since the correlation is the actual)

i = counterpart rating

The first term o f the above expression represents the “predicted” 1-week P/L of the 

swap portfolio of rating (i) due to market risk. The second term represents the amount 

of default risk that the specific swap exposure runs.

However, it would be useful to know if there is any co-dependence between the two 

VaR measures in order to devise a more standardised methodology. That 

standardisation would involve multiplying the swap VaR with the respective credit 

spread index options VaR, without possibly running the credit spreadit index options 

VaR itself. Hence, a simple linear regression was run between the swaps VaR and the

128



CSIOs VaR per rating. The regression was estimated using OLS. The dependent 

variable in that case was the swaps VaR. Effectively what is being examined is the 

“volatility” o f the credit spread against the volatility of the swap exposure.

Swap VaR(i) = a * CSO VaR (i) + e

A different but quite similar way to examine the relationship between the two risks 

would be to look at the two volatilities. The volatility of the respective spreads to the 

volatility of the respective swap spreads. A swap’s NPV is the discounted cash flows 

between the fixed and floating payment side. These cash flows are being determined 

by the forward curve and its relative steepness, flatness or its overall shape. By 

looking at the volatility o f the respective swap spread which reflects the relative shape 

o f the forward curve is the approximately the same to looking at the volatility of swap 

NPVs. Using that is easy to relate to the volatility o f credit spreads. This is only a 

quick method that can be run as an alternative to regressing the two VaRs, in order to 

establish a fair idea of how the two “risks” relate to each other.

3.3 Data and Description

3.3.1 Hypothetical Swap Portfolio

The swap portfolio was constructed in such a way in order to simulate a bank’s 

typical swap portfolio. The hypothesis is that this portfolio belongs to an asset and 

liability department where most o f the positioning is one sided, either long or short 

and not neutral. It was hypothetically initiated throughout 1999-2000 with different 

counterparts -hence, the different fixed rates for similar swap maturities-. The fixed 

strikes were distributed around the actual swap rates at the time and the positioning 

(long/short) was in such a way as to generate positive (credit) exposures. In addition,
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the assumed ratings per counterpart are almost evenly distributed according to the 

overall exposure.

The portfolio was sorted by maturity and is overall short since we are receiving fixed 

in most cases. This means that if  interest rates go up then the portfolio is bound to 

lose more money since the PVBPs (present value of a basis point) are negative for a 

shift in the underlying rate by 1 basis point (bp). Fortunately for the portfolios’ value, 

interest rates moved to historical lows in the EURO area over the holding period that 

the portfolio was examined (02/99 -  05/04). If the portfolio was only partly hedged as 

it often happens (market risk) then a great deal o f profit would be made. However, the 

credit risk of the portfolio was increasing as the NPVs were becoming more positive.

Table 3.2 Hypothetical Swap Portfolio in EUR

Maturity N o t io n a l F ix e d  R a te F ix e d  F r e q u e n c y F lo a t in g  F r e q u e n c y P a y  F ix e d /F lo a t in g

15-Nov-03 9,000,000 4.67% Annual Semi Receive Fixed

15-Nov-03 7,000,000 4.12% Annual Semi Receive Fixed

25-Nov-03 6,000,000 4.32% Annual Semi Receive Fixed

25-Mar-04 7,000,000 5.60% Annual Semi Pay Fixed

09-Jun-04 11,000,000 5.45% Annual Semi Receive Fixed

1 l-Jun-04 12,000,000 4.35% Annual Semi Receive Fixed

10-Jul-04 7,500,000 5.78% Annual Semi Receive Fixed

12-Sep-04 12,000,000 6.00% Annual Semi Receive Fixed

27-Sep-04 10,000,000 4.71% Annual Semi Receive Fixed

14-Oct-04 17,500,000 6.25% Annual Semi Receive Fixed

30-0ct-04 2,000,000 4.65% Annual Semi Receive Fixed

13-Nov-04 1,750,000 4.67% Annual Semi Receive Fixed

03-Apr-05 200,000,000 4.98% Annual Semi Pay Fixed

23-May-05 17,500,000 5.78% Annual Semi Receive Fixed

20-Jul-05 115,000,000 4.11% Annual Semi Receive Fixed

15-Aug-05 2,250,000 4.19% Annual Semi Receive Fixed

22-Aug-05 5.500,000 5.70% Annual Semi Receive Fixed

22-Sep-05 8,500,000 4.78% Annual Semi Receive Fixed

16-Oct-05 14,500,000 4.31% Annual Semi Receive Fixed

23-Feb-06 5,000,000 4.62% Annual Semi Receive Fixed

18-Apr-06 25,000,000 4.43% Annual Semi Pay Fixed
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12-Jun-06 17,500,000 5.96% Annual Semi Receive Fixed

12-Jun-06 5,000,000 5.75% Annual Quarterly Receive Fixed

05-Aug-06 7,500,000 5.34% Annual Semi Pay Fixed

06-Sep-06 5,000,000 5.23% Annual Semi Pay Fixed

20-Nov-06 35,000,000 5.64% Annual Semi Receive Fixed

22-Dec-06 2,500,000 4.50% Annual Semi Receive Fixed

02-Feb-07 50,000,000 4.34% Annual Semi Receive Fixed

03-Feb-07 22,500,000 4.89% Annual Semi Receive Fixed

20-Mar-07 17,500,000 5 .4 5 % Annual Semi Receive Fixed

20-Mar-07 10,500,000 5 .4 3 % Annual Semi Receive Fixed

20-Jun-07 25,000,000 5.12% Annual Semi Pay Fixed

20-J un-07 8,000,000 5.52% Annual Semi Receive Fixed

20-Aug-07 7,500,000 5.23% Annual Semi Receive Fixed

20-Aug-07 6,000,000 5.22% Annual Semi Receive Fixed

12-May-08 2,500,000 4.99% Annual Semi Receive Fixed

3.3.2 Historical Data

The historical data for the simulations were collected from Bloomberg. Cross 

sectional data o f interest rates was collected between 27/08/99 -  07/05/04. The 

interest rates used were the 3M and 6M EUR LIBOR, and the 1Y, 2Y, 3Y, 4Y, 5Y, 

7Y, 8Y, 9Y and 10Y EUR swap rates on a weekly frequency. These rates were used 

to bootstrap the zero discount curves. The short rate used for the LS (1992) estimation 

(chapter 3) was the 3M EUR LIBOR and its GARCH(1,1) volatility at each week. 

The GARCH volatility was estimated using the PCGIVE software.

Credit spread index data were also collected from Bloomberg (chapter 2). The short 

credit spread index used varied from 3M to 2Y since the GARCH estimation wouldn’t 

converge for all the 6M credit spread indices. The respective short credit spread 

indices used were: 6M AAA, 6M AA+, 6M AA, 6M AA-, 3M A+, 6M A, 3M A-, 2Y 

BBB+, 2Y BBB and 1Y BBB-.

The statistical properties o f all these indices can be found in chapter 2. The mean of 

and the GARCH volatility o f the 2Y credit spread indices is shown in Table 3.3.
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Table 3.3 Selected  sta tistics o f  the 2 Y  spread  indices
GARCH (1,1) 2.33 * GARCH (1,1) Mean Mean * (1 + 1SD) Mean * (1 + 2.33SD)

A A A 3 2 .9 7 % 7 6 .8 3 % 28 37 50

A A + 3 3 .0 3 % 7 6 .9 6 % 28 37 50

A A 3 4 .5 4 % 8 0 .4 9 % 33 4 4 60

AA- 32.98% 76.83% 39 52 69
A + 3 3 .2 4 % 7 7 .4 5 % 53 71 94

A 3 3 .2 7 % 7 7 .5 1 % 57 7 6 101

A - 3 8 .4 8 % 8 9 .6 6 % 78 108 148

B B B + 3 5 .8 4 % 8 3 .5 1 % 81 110 149

B B B 4 2 .3 1 % 9 8 .5 9 % 95 135 189

B B B - 6 0 .5 6 % 1 4 1 .1 0 % 3 0 0 4 8 2 723

The mean of the 2Y indices was used as the strike o f the credit spread index options 

in this study. As a description of our credit spread index data we examined the actual 

probability of the 2Y credit spread index movement per rating. Based on the time 

series collected we constructed the following Table 3.4.

Table 3.4 Actual Probability Distribution of 2Y indices
S p re a d  L e v e l b p AAA AA+ AA AA- A+ A A- BBB+ BBB BBB-

10 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

36 82.44% 71.71% 57.07% 2 3 .9 0 % 3 .9 6 % 1 .18% 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

37 7 .8 0 % 1 .95% 9 .2 7 % 6 .8 3 % 1 .98% 2 .3 5 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

42 8 .7 8 % 15 .6 1 % 1 5 .1 2 % 34.15% 18 .8 1 % 9 .4 1 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

52 0 .9 8 % 10 .7 3 % 1 8 .05% 3 2 .2 0 % 3 3 .6 6 % 3 7 .6 5 % 1 2 .8 7 % 0 .0 0 % 0 .0 0 % 0 .0 0 %

71 0 .0 0 % 0 .0 0 % 0 .4 9 % 2 .9 3 % 40.59% 48.24% 3 8 .6 1 % 3 0 .0 0 % 1 2 .4 3 % 0 .0 0 %

76 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .9 9 % 1 .18% 6 .9 3 % 1 4 .12% 8 .2 8 % 0 .0 0 %

108 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 41.58% 54.12% 59.17% 2 .3 7 %

110 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 1 .18% 1 .78% 1 .18%

135 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .5 9 % 1 7 .7 5 % 1 4 .7 9 %

555 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .0 0 % 0 .5 9 % 81.66%

Table 3.4 is a representation of the actual probability distribution for the 2Y spread 

indices. The actual probability is measured using a frequency calculation. It was 

calculated to illustrate how the spreads moved over the period examined and the low 

spread environment. The points o f the highest frequency are also shown in the first 

column. These levels were subsequently chosen to be the strikes for the credit spread 

index options.
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3.4 Results and Analysis

3.4.1 Swap Sub-Portfolios Valuation and Historical Simulation 

The weekly LS (1992) estimated yield curves are being shown in Figure 3.1. A first 

look at the time series of the EUR yield curves shows that interest rates shifted to 

historic lows. That was due to the slowdown in global economic growth, which led 

the major central banks o f the world including the European Central Bank (ECB) to 

lower their benchmark interest rate quite aggressively. Only recently there were signs 

that the major economy of the world (US) and o f the Euro area would rebound hence 

the small rebound in the interest rates. This was fuelled by market expectations of 

where future interest rates might be.

The hypothetical swap portfolio was simulated using the estimated yield curves 

assuming that the portfolio remained unchanged. A time series o f its market value is 

plotted in Figure 3.2.

Figure 3.1 Weekly LS (1992) Estimated Yield Curves
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The sudden drops on the overall NPV is a result o f net cash flows either being paid or 

received which occur either simultaneously for a few swaps in the portfolio or by 

extreme moves o f the yield curve.

During the period Jul-02 to Oct-02 there were two rate cuts by the European Central 

Bank (ECB) which resulted in wild fluctuations in the market value o f the swap 

portfolio. The more recent swing resulted mainly by the reduction of future cash flows 

on the swap portfolio. This is the nature o f the market value of swaps which exhibits a 

specific asymmetry with relation to time to maturity. Examining the market value of 

the swap portfolio over time we can see that it becomes more positive.

As an example we will examine the VaR of a single swap and then we will look at the 

overall swap portfolio. The swap considered was a near 5-year interest rate swap 

between a given party paying floating rate such as the London Inter Bank Offered 

Rate (LIBOR) in EUR and another counterpart paying a fixed rate. The following 

table shows the exact specification of the contract:

Table 3.5 Interest Rate Swap Example
Maturity Notional Fixed Rate Fixed Frequency Floating Frequency Floating Rate
12-Sep-04 12,000,000 6.00% Annual Semi-Annual 6M EURIBOR
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The NPV of the above swap as priced using the estimated discount curve as of the 

19/09/03 was standing at 438,396 EUR, positive to the party receiving fixed and 

negative to the party receiving floating. This is the otherwise known sum of the 

discounted net payments between the two parties o f the swap agreement. As we can 

see from the Figure 3.2, the “moneyness” of the swap increases up to 1 year before 

maturity. The reason for that is that interest rates have been falling since the swap 

agreement was entered. The sudden decreases on the swaps’ NPV reflect the 

reduction of future net cash flows. We would expect the swaps’ value to decrease 

earlier than a year before maturity but the party which receives the fixed rate is so far 

in the money that the market value goes up even after a number o f cash flows go 

through. The sudden drop is a result o f huge cash flow going through on the 12th of 

September of 2003.

In Figure 3.3 the backtesting of the VaR model is performed. The major reason for 

doing this is to check our pricing capability. The weekly P/L is higher/lower than the 

+ weekly VaR/ - weekly VaR only in 6 out of the 172 weeks. This gives is a ratio of 

3.5% which is well within the accepted 2 -  5 % boundaries.

Figure 3.3 Backtesting of Overall Swap Portfolio
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3.4.2 Swap sub-portfolios

The credit exposure increased over time to reach extreme highs (Figure 3.2). Together 

with this huge increase in the swap NPVs the risk of default also reached historic 

highs for the portfolio. However, the risk of default differs for each counterpart since 

each counterpart is of different quality and could well have different credit rating. The 

portfolio constructed is assumed to contain counterparts with at least 10 different 

ratings. In order to quantify the default risk our portfolio is running we need to 

classify and assess the swap exposures as they occur.

The overall exposure is around +80 million EUR, which is a substantial amount 

subject to credit risk. Since, the amount of credit risk is quite large, if  we were to 

allocate capital for that portfolio it would be in the area o f 5 -  10 % of total exposure 

(Group o f 30) throughout the life of the portfolio. This approach though, does not 

discriminate between different counterparts. We know that the relative riskiness of 

each exposure is not the same for all the counterparts. The reason is that they are of 

different credit quality and hence credit rating. Figure 3.4 shows the exposures per 

rating. The total exposure, which is the sum of the individual exposures is quite high. 

The individual exposures are all positive apart from the AA and A+ exposures, which 

are negative. However, since we are dealing with swaps we have to note that these are 

only the current exposures. Swap market values can move quite erratically in any 

direction creating positive NPVs rather fast. Due to the asymmetric nature of the swap 

profile all swap exposures can be treated as potential credit exposures. Hence, 

negative exposures, which currently bear no credit risk could become potentially 

positive subject to the movements and volatility of the underlying rates. This is also a
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major factor affecting counterpart limit-setting decisions45. The volatility of certain 

rates and the properties of some financial instruments together with the size of 

positions are major determinants of potential exposures. Breaking down the exposures 

by maturity gives us a better idea o f the current exposures and also o f the potential 

exposures. Most exposures lies at the 2Y area starting in 1 week up to and including 

the 5Y area. The biggest single swap exposure lies at the 2Y - 3Y maturity sector. 

Figure 3.5 shows the overall exposure by maturity.

If we wanted to hedge the market risk we would do so by taking opposing positions in 

financial instruments which provide negative/positive cash flow at specific times in 

the future. Usually short-term interest rate futures and options are used in order to 

hedge the short-term cash flow of a swap book. The long-term part o f the swap book 

is usually being hedged by taking offsetting positions in government bonds. In 

practice dealers do not hedge their positions all the time depending on their market 

views. Even when they have hedged their market risk they are still exposed to default 

risk.

45 Implying the counterpart limit setting decisions taken by credit risk departments in financial 
institutions.
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Actually the exposure together with the offsetting position could become even bigger 

if  a counterpart defaults because the market risk hedged position becomes more risky 

and in some occasions could become highly unprofitable. It is like having suddenly a 

mismatch between your assets and liabilities.

Hence, dealers -mainly their risk departments- are looking at the dynamic evolution of 

the exposures they are running at all times. This is mainly done by simulating all 

available market rates and applying them on to the current positions. Different

scenarios are produced and their results are analysed in order to derive potential

exposures and the probability of them happening. These techniques are based on 

Monte Carlo simulation. There has not been a full analytic technique so far which 

could measure the replacement cost of financial instruments which create exposures.

Figure 3.5 Exposure by maturity

Current Epxosure by maturity
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In this study we used as potential exposure the 3M VaR per sub-portfolio. We have 10 

sub-portfolios which we run the weekly VaR for each one of them separately using 

the historical simulation method as described in section 3.2.3. In Table 3.6 we show 

the backtesting results per sub-portfolio. That is the number of times the weekly P/L 

was out of the wekly VaR limits. On average the weekly P/L exceeds the weekly VaR
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by 3.87%, which is within the acceptable limits. Hence, the historical simulation 

seems to have worked. The highest divergence out o f the VaR limits occurs with the 

AA- sub-portfolio. The weekly P/L is out o f the weekly VaR 4.07% of the times. 

Figure 3.6 shows just that. The big differences between the P/L and the VaR come 

from the rolling off of cash flows.

Table 3.6 Backtesting Results per sub-portfolio

Swap Portfolio %
AAA 4.00%
AA+ 2.98%
AA 3.91%
AA- 4.07%
A+ 4.02%
A 4.02%
A- 3.97%

BB+ 3.81%
BB 3.89%
BB- 4.02%

Average 3.87%
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3.4.3 Hedging swap default risk with credit spread index options 

Making hedging decisions in any financial market environment is a well thought 

process and often well-timed. We would not expect any financial manager to be 

hedged at all times -unless they are using passive strategies only- because this is at 

the expense of its profit and loss. The timing, the amount and the time horizon and the 

financial manager’s view are all important factors in any hedging decisions. The 

timing though has to be the most important of all.

In Section 3.4.2 we created the swap sub-portfolios according to each counterparts 

rating as seen in Figure 3.4. That illustration shows the current replacement cost 

(MTM) per rating. Relating the current replacement cost and potential exposure to 

credit spread movements was part of our goal.

Figure 3.5 Mean and SD of the 2Y Credit Spread Indices

Most exposures in the swap sub-portfolios are concentrated in the 2Y maturity sector. 

In Figure 3.5 we show the mean o f the 2Y credit spread indices. The mean represents 

the strike of each option we used to hedge the default risk per sub-portfolio. Under the 

LS (1992) framework the respective credit spread index options were priced as o f the
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07/05/04. Table 3.5 shows the option prices in decimal form and also the total 

potential exposure based on the 3M VaR per sub-portfolio. Two o f the sub-portfolios, 

AA and A+, have been omitted since they have negative current exposures and their 

total potential exposures do not exceed the current MTM, hence these are the so 

called wrong way exposures. The hedging amount for these sub-portfolios is currently 

zero. Using equation (3.3) we calculated the option notionals as required to hedge 

default risk assuming there is no recovery rate over a period of 3M (Table 3.7).

Table 3.7 Hedging Strategy

7 -M  a y -0 4 A A A A A + A A - A A - B B + B B B B -

O p tio n  S tr ik e 28 28 39 57 78 81 95 3 00

O p tio n  P rice  
A T M

0 .6 3 3 0 .5 5 9 0.661 0 .7 1 2 0 .511 0 .5 4 6 0 .2 7 0 0 .1 7 7

S w a p  s u b -
p o r tfo lio  
M T M (t)

6 9 7 ,3 0 3 5 ,2 0 7 ,3 3 9 4 ,0 3 3 ,6 4 0 1 ,6 9 5 ,1 2 2 1 ,6 3 4 ,6 8 0 3 7 ,2 9 8 1 ,0 1 8 ,5 0 4 1 ,4 2 7 ,8 2 0

S w a p  s u b -
p o r tfo lio  3M  
V a R  a t 9 9 %

1 9 3 ,2 4 2 1 ,4 4 3 ,1 0 0 1 ,1 1 7 ,8 3 5 4 6 9 ,7 6 6 4 5 3 ,0 1 6 10 ,3 3 6 2 8 2 ,2 5 6 3 9 5 ,6 8 9

T o ta l sw a p  
su b -p o r tfo lio  

e x p o su re
8 9 0 ,5 4 6 6 ,6 5 0 ,4 4 0 5,151,475 2 ,1 6 4 ,8 8 8 2 ,0 8 7 ,6 9 6 4 7 ,6 3 4 1 ,300 ,761 1 ,8 2 3 ,5 1 0

S o  i f
c o u n te rp a r ty  

d e fa u lts  in 
3M  th e  

a m o u n t  o f  
o p tio n s  n e ed  
to  b e  b o u g h t 

to d a y  a re

1 ,4 0 6 ,8 6 5 1 1 ,8 9 7 ,0 3 0 7 ,7 8 8 ,4 7 4 3 ,0 4 0 ,5 7 2 4 ,0 8 8 ,9 4 0 8 7 ,1 7 3 4 ,8 2 2 ,0 2 7 1 0 ,2 8 7 ,8 2 6

In itia l c o s t  o f  
o p tio n s

8 9 0 ,5 4 6 6 ,6 5 0 ,4 4 0 5,151,475 2 ,1 6 4 ,8 8 8 2 ,0 8 7 ,6 9 6 4 7 ,6 3 4 1 ,300 ,761 1 ,8 2 3 ,5 1 0

The initial cost o f options is quite high. This is due to our assumption o f the extreme 

case that counterparts will default and the recovery is zero. This shows the actual 

default risk run by the swap portfolios through the options market or through the 

“protection” market. O f course, exposures can be reduced by termination, through 

structured deals, by posting risk-free collateral etc. etc. But these precautions are 

usually taken once the credit spreads have moved towards to what might be a credit 

event. Hence, this dynamic approach of linking exposures to credit spreads is more
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forward looking than any other current approach. Finally, this hedging approach 

shows what is the market price of default risk of the swap exposures in question.

If we were to run the effectiveness of the hedging strategy we would have to run a 

portfolio o f 3M credit spread index options which rollover until the swap exposure is 

zero. As an example we assessed the cost of the hedging strategy against the AA- 

portfolio. Assuming that transaction costs (bid-offer spreads and commissions) are 

absent and funding occurs at LIBOR flat, then we can price an on the run 3M credit 

spread index option struck at 39bp (for the AA- swap portfolio). The premium for that 

option over a period o f two years is compared with the relative movement of the swap 

portfolio. Since we will be using 3M options we look at the 3M change of the MTM 

of the swap portfolio. In Figure 3.5 we show the history of running a rolling of the 

hedging strategy. The LHS Y-axis shows the relative change of the AA- swap 

portfolio and the RHS Y-axis shows the price of a rolling 3M credit spread call option 

following the 2Y AA- credit spread index. I am using the 3M change o f the swap 

exposure in order to map the time horizon of the protection to the swap exposure. The 

relative market value o f the swap portfolio initially declines as the credit spread 

option price declines (which shows that the credit spread index tightened over the 

same period), showing an overall reduction in credit risk.

This could be purely coincidental since the credit exposure “just happened” to 

decrease at the same time as the specific credit spread tightened. At a later stage the 

swap exposure starts to pick up again whereas the credit spread index seems to be 

relatively stabilised. Just eyeballing Figure 3.5, we can say that the volatility of the 

credit spread index option seems to be comparable to the volatility o f the swap 

exposure.
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Next we examined the 3M movements of the A- swap portfolio which shows 

correlation to the credit spread option price especially when the exposure starts to 

decline towards the end of 2003 (Figure 3.6). Again, this might be coincidental since 

the swap portfolio is mainly receiving fixed in a period o f low global growth where 

interest rates are falling.

Figure 3.6 3M Changes of AA- sub-portfolio vs 3M, 2Y AA- 40C option

Figure 3.7 3M Changes of A- sub-portfolio vs 3M, 2Y A- 70C option
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In that environment where you are overall short in swap rates and corporate debt 

servicing costs are low, swap exposures are increasingly positive and credit spreads 

are tightening.

3.4.5 Integrated Measure of swap market and credit risk

Credit spread index curves were estimated between 04/05/2000 -  07/05/2004 on a 

weekly basis as in Chapter 2 (as an example Figure 3.8 shows the AA spread index 

curves). The credit spread index option VaR was calculated using the same 

methodology as in section 3.2.3. The data range overlaps with the swap data used to 

run the VaR for the swap portfolios. Thus, there is an intrinsic correlation among all 

the market rates used to run the VaR for the swaps and the options. The VaR results 

for the option portfolios were backtested (for example Figure 3.9 shows the BB- 

weekly VaR to be backtested) in the same way as for the VaR of the swap portfolios 

(section 3.2.1). The VaR model seems to work across all cases examined46.

Figure 3.8 LS (1992) estimated AA spread index curves
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-0.60

-0.50

-0.40 -o
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46 Figure4.7 shows the BB- case as an example.
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Since the VaR model works for the credit spread options we can now run the total 

VaR for the overall portfolio per rating. The total VaR represents the maximum 

amount of money that could be made or lost in a week’s time with 99% probability 

assuming market rates moves by a maximum of 2.33SD even if the counterpart 

defaults. In Figure 3.8 the contribution of the spread option market VaR to the overall 

VaR is plotted against the market value of the swap and the underlying 2 Y

Figure 3.9 Backtesting o f weekly VaR of BB- credit spread index options

spread47over time. The 2Y spread index has been relatively stable over a long period 

but during the first 6M of 2004 experienced a sudden increase, and hence the spread 

VaR increased. This is due to the fact that macroeconomic data out o f the US have 

shown that the Federal Reserve is ready to start tightening its monetary policy. This 

had as an effect the unwinding of huge leveraged positions, so called global “carry” 

which affected corporate spreads across the globe. Hence, the theoretical cost of the 

credit spread index options in our portfolios increased substantially signalling that a 

period of low credit spreads may soon be over. This is an important phenomenon

47 The 2Y spread index is also plotted to show how the VaR is moving against it. They are all weekly 
figures.
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since a similar event has happened before . The level of VaR contribution is at its 

highest when the 2Y credit spread index and the swap exposure is at its highest. The 

group of 30 study suggests that most dealers reserve 5 -10%  of the MTM against such 

positions irrespective of the counterparts rating. Based on that methodology dealers 

can now have an overall measure o f exposure which is linked to the volatility o f a 

counterparts credit spread. When the overall figure is substantially higher to the 

market VaR of the swap portfolio it could mean that credit spreads have moved 

substantially higher, suggesting hedging of default risk. O f course this rule of thumb 

should always be scrutinised since the overall VaR could be higher simply because 

the volatility of the credit spread is quite high. The historical average ratio (over the 

same period of the historical simulation) of the credit spread index option VaR to the 

market VaR of the swaps (Table 3.3) differs across ratings since each exposure is 

different and the volatility o f the underlying credit spread index differs. These ratios 

show how much more risk is held by running swap positions with counterparts of 

these ratings. The highest ratio comes with the AA+ rated swap portfolio indicating 

that the volatility o f the spread and /or the exposure is quite high. We have to note that 

these ratios are not increasing exponentially like the probabilities of default and they 

should not, because they are directly linked to the movement o f the underlying 

exposure which is different form rating to rating. A financial manager could assign 

threshold levels on these ratios in order to have a proactive hedging decision model. 

For example, if  the ratio reaches at 50% then the exposure could be under review, and 

if  the ratio reaches 70% then action has to be taken either to reduce the exposure or to 

hedge it. 48

48 The LTCM crisis in 1998, which caused market rates to move in a very small period of time up to 
4SD.
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Effectively what is being examined is the “volatility” of the credit spread against the 

volatility of the swap exposure. It would be very surprising if  the two variables were 

fully correlated since a brief examination between swap spreads i.e. 10Y -  6M was 

not correlated with any credit spread index (Appendix 2).

The swap VaR and the credit spread option VaRs were regressed so that their 

relationship is examined. The regression was carried out on the levels of the series of 

the VaRs. The VaR data counts between 89 and 102 points. The dependent variable is 

the swap VaR and the independent is the CSO:

Swap VaR(i) = a * CSO VaR (i) + e

None of the r-squared values are above 50% showing a weak relationship between the 

two VaRs. The highest one is at 42.36%, which comes with the AA rated swap 

portfolio and the AA credit spread index. There is no particular pattern of relationship 

emerging based on the regressions. We do not observe an increase or decrease 

according to higher or lower rating. However, each swap portfolio behaves differently 

to the respective spreads. This is the point where we observe that the swap exposure is 

linked to the volatility and level o f the credit spread. The average R2 of all the 

regressions is 12.40% (quite low) and only in one case the r-squared is close to 50%. 

The AA+ CSO VaR seems to be the one mostly correlated on the VaR levels. This is 

could be a highly important observation because this could give another signal to the 

dealer/risk manager that the portfolio needs to be hedged since its risks are highly 

correlated. The dependence o f the swap VaR to the VaR resulting from the portfolio 

o f credit spreads is quite important since it illustrates that there is an interdependence 

resulting form both market and credit risk. This relationship needs to be updated at 

regular time intervals in order to keep track on the level o f correlation. The correlation 

of risks is a dangerous issue since this is the point that event risk could actually move
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rates in one direction with a catastrophic result. This is o f course an added advantage 

of using this methodology to capture the default risk o f a swap position. The 

regressions o f the two risks have shown us the relationship (if any) between the 

volatility o f credit spreads and swap exposures. O f course the relationship is not 

perfect and in some cases quite imperfect. However, it is a starting point where the 

swap exposures are being linked and expressed as a function o f credit spreads. Table

3.7 shows the correlation between the 12-week rolling volatility of the 2Y to 6M swap 

spread against the 12-week rolling volatility o f the 2Y respective credit spread index. 

The data period and frequency are as described in section 4.2 The reason that this 

method was not used was simply because the volatility of the credit spread derived by 

using the two factor LS model is not the same to the historical volatility. The LS 

volatility is determined by the model dynamics and is based on the observed market 

rates. Essentially, the described model where we deduce an integrated VaR measure 

was based on the fact that we can accurately price interest rate and credit spread 

options using the current term structure of interest rates, credit spreads and their 

respective stochastic volatility. This methodology is more fundamentally sound than 

just looking at the historical volatility between the two risky variables the swaps 

spreads and the credit spreads.

This regression needs to run at least once every 3-months in order to know the degree 

of correlation between the two risks, i.e. regression-wise. In that way the decision of 

“to hedge or not to hedge” is assisted by two extra important figures which are 

directly related to size, direction (exposure) and the “view” o f the financial market of 

the credit situation of specific counterparts or better still the “view” in the credit 

market. The potential advantage o f using a methodology such as this is that a bank 

could be better prepared before a big event happens. Because when a big event such
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as: LTCM crisis, Russian default, Asian crisis, Enron/Worldconi/Parmalat collapse 

happens, every single financial institution would need to get out o f their positions. 

This immediately creates an overcrowding in the exit resulting in lack o f liquidity, 

which eventually pushes market rates at levels, which no standard VaR model can 

ever predict. All this occurs because as it was mentioned earlier risks are highly 

correlated especially at periods o f extreme market stress. Being proactive and 

informed it could be one way of protecting one’s financial viability.

Figure 3.10 AA- sub-portfolio Market Value vs Spread VaR contribution

Table 3.8 Average Spread VaR contribution per sub-portfolio

Rating AAA AA+ A A - A A- BB+ BB BB-

Average 
Spread VaR 
contribution 

over 2Y

4 .7 8 % 3 2 .7 4 % 9 .5 7 % 2 .9 % 15.7% 17 .3% 10.3% 3 2 .5 %
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Table 3 .9 R -Square Results
R Square SE b a

AAA 13.43% 7,271 112,380 8.43
AA+ 6.63% 39,591 630,803 -0.85
AA 42.36% 5,525 41,975 72.70
AA- 17.05% 26,813 508,474 -1.00

A+ 1.53% 91,573 889,804 -0.20
A 0.53% 18,189 325,868 -0.62
A- 5.55% 16,636 236,885 0.50

BB+ 12.08% 11,059 84,296 -0.72

BB 1.20% 8,732 178,927 0.21

BB- 23.68% 4,244 212,368 0.23

Figure 3.11 Regression between AA+ Swap VaR against the VaR of AA+ CSIO

R e g r e s s io n  o f  S w a p  M a r k e t  V a R  v s  M a r k e t  V a R  o f  A A +  C S O s  ( le v e ls )  a t  th e  9 5 %

3.5 Summary

This study proposed an integrated measure o f credit and market risk for interest rate 

swap portfolios. Using a dynamic hedging methodology we created a portfolio, which 

is sensitive to both market and credit risk factors. The market value distribution of
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that portfolio is the distribution one can use to derive a market VaR measure which 

accounts for both market and credit risk of interest rate swaps.

The hedging methodology was based on hedging the 3M exposure amount which 

arises from the potential future movement o f interest rates. This potential 3M 

exposure was measured using a VaR historical simulation. The simulation was 

performed by fitting observed data to the LS model over time. The instrument of 

hedging the potential exposure is a credit spread index option, which was priced using 

the LS (1992) model. Under the same framework the options were simulated 

historically over the same period to determine the efficiency of hedging to the swap 

exposures. The relative change of the swap market value to the credit spread option 

market value was had low correlation showing that the hedging o f the default risk was 

efficient.

The integrated measure is encapsulated in an overall market VaR figure o f the market 

VaR of swaps plus the market VaR of credit spread index options (for HS only). The 

relationship between the two VaR figures was investigated using a linear regression. 

The relationship proved to be weak but a useful conclusion was drawn. The level of 

correlation per sub-portfolio could provide a “signal” to the risk manager o f the 

degree of correlation between the two risks. This “signal can be used to either set 

trigger points where hedging actually takes place or by reallocating a credit line.
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CHAPTER 4 Integrated Credit Risk Measurement

Abstract

This study presents a comparison between the existing methodology of integrated credit risk 

measurement and the proposed analytic “integrated” methodology (Chapter 3). The current 

approach combines expected credit exposures with default and recovery rates to generate loss 

distributions which are being used in capital allocation decisions. The proposed integrated 

approach combines the expected credit exposures with appropriate credit spread options and 

an exogenous given recovery rate to produce a loss distribution. Effectively the probability of 

default is replaced by an equivalent proxy, the market risk of the credit spread option over a 

pre-specified time horizon, which can be as short as 3 months. The comparison was 

performed on an actual swap portfolio taken from a medium-sized European Bank. The 

difference between using a historical simulation (HS) over a multi-step Monte Carlo (MC) 

simulation to measure expected credit exposures over a 3 month period is also being proven 

to be small but significant, concluding that the multi-step MC is a better tool than the HS to 

calculate expected credit exposures.

4.1 Introduction

4.1.1 Background

Financial institutions greatly need to integrate their approach to risk measurement. 

Under the 1998 Bank of International Settlements (BIS) accord, financial institutions 

are allowed to use their own internal risk measurement models subject to approval. 

Based on their models they are allowed to measure market and credit risk according to 

a VaR style methodology. Financial markets integration, complexity in financial 

products and huge growth of transactions mean that this approach is no longer 

adequate. In 1999 the Capital Adequacy Directive conceptual paper suggests that 

financial institutions need to integrate risk measurement across the trading and 

banking book to ensure that risk is consistent with one overall minimum regulatory
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capital risk management framework. The integration o f market and credit risk 

measurement is inevitable. Both types of risks are computed from the same market 

value distributions taken at selected points in time over the life of a transaction.

Credit risk measurement for derivatives or counterpart credit risk exposure 

measurement has taken many forms and shapes to reach its current form today. The 

first stage was the so-called “notional approach”. This approach defined the credit 

exposure of a transaction in terms of the notional amount. This unrealistic approach 

was quickly superseded by applying a static fixed percentage on the notional value of 

a transaction. The next step was to use a dynamic approach which measured future 

exposures and added to the MTM of the transaction, called the add-on methodology. 

The latest and most sophisticated methodology is the one which utilizes sophisticated 

systems to simulate potential credit exposures in probability terms.

Most financial institutions are measuring exposures using the third methodology (add-

on), generating the add-on using different techniques. A number of institutions also 

use the more sophisticated fourth methodology.

4.1.2 The Problem

Integration in practice comes from the allocation o f credit lines per counterpart or 

otherwise called counterpart exposure limits. These limits are being allocated mainly 

on credit grounds. Hence, if  the exposure limit is being used up then no more 

transactions are being done James J. (1999). The monitoring and measurement of 

exposures is based on the current MTM plus a potential exposure or by simulating 

future exposures -using a Monte Carlo simulation-. Using these simulated exposures 

and probabilities of default a loss distribution is calculated. The resulting loss 

distribution provides the loss amounts at a given confidence interval over a pre-
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specified time period which is always no less than a year. This poses a restriction in 

the active management o f default risk of a derivatives portfolio since capital 

allocation decisions have to be made based on the 1 year loss distribution and not less. 

The speed however of market events and occasionally o f credit events is much faster 

than a year, requiring decisions on capital allocation decisions with a less than 1 year 

time horizon.

Also, there has to be a dynamic setting where financial managers know exactly how 

they can hedge their default risk arising from potential future exposures, which is 

linked to the credit markets.

4.1.3 The Significance o f this Study

The probability of default has a dynamic structure which changes with time. The 

proposed integrated approach (Chapter 3) essentially replaces the probability of 

default with the amount o f risk that the appropriate credit spread option bears. This 

chapter extends this methodology to estimate economic capital. The proposed 

approach in question is being tested for its efficiency by comparing it to current 

approaches o f estimating economic capital.

We will show that the integrated approach gives similar results to current standard 

techniques. Also the ease o f implementation in comparison to running a full Multi- 

step Monte Carlo can set this approach as the number one alternative.

4.1.4 Overview of the study

In this section we will use an actual swap portfolio taken from a medium-sized 

European Bank to extend our methodology in calculating economic loss. First we 

introduce the actual swap portfolio and a historical simulation is run in order to
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examine its market value over time. The portfolio is then split in sub-portfolios which 

contain swap deals with counterparts of the same rating. Using the hedging 

methodology proposed in Chapter 3, we theoretically hedge each of the sub-

portfolios. Finally, we run historical simulation VaR of all the sub-portfolios 

including the credit spread index options used for hedging. In the second part we 

describe how many financial institutions model exposures arising from derivatives 

using a Monte Carlo simulation. In view o f that we describe how financial institutions 

through the use o f sophisticated risk measurement systems implement a multi-step 

Monte Carlo simulation in order to calculate potential future exposures. Subsequently 

we run a multi-step Monte Carlo for the swap portfolio, using the LS (1992) model as 

the diffusion process for the short rate and calculate the exposure profile of the swap 

portfolio. Using the Monte Carlo generated exposures we then calculate the expected 

and unexpected losses on the swap portfolio over a pre-specified time horizon.

The third part calculates the economic losses for the same swap portfolio as they 

would appear if  one was using a VaR type methodology for exposure calculation 

instead of a multi-step Monte Carlo. We also compare the different outcomes of using 

the historical probabilities obtained from Moody’s or the implied probabilities 

obtained using the LS (1992) credit spread curves. Finally we compare how our 

proposed hedging methodology compares in terms of calculating total loss of a swap 

portfolio. The comparison shows that for small time horizons a VaR type approach of 

generating exposures is not as inaccurate as it could be when one is looking at longer 

time horizons

4.2 Methodology
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This section describes the methodology used in order to arrive at the two-fold 

comparison:

1. Between the historical and multi-step Monte Carlo simulations in calculating 

potential exposures.

2. Between the “standard” and “integrated” approaches in calculating economic 

capital.

The first comparison aims to show that based on the simulation set-up the potential 

exposures could vary, hence the amount subject to default risk can vary. The question 

though is by how much. The second comparison which is the main one aims to show 

the structural differences between the proposed approach and the standard approach. 

Furthermore, it is a great test of the integrated approach since the standard technique 

is being used for a number of years. The steps taken to arrive in the two comparisons 

are:

• Historical simulation using weekly data on the swap sub-portfolios.

• Estimation of weekly and 3M VaR for Swaps and Credit Spread Index 

Options.

• Multi-step Monte Carlo of the swap sub-portfolios including the 3M time-step. 

At that point the economic capital measurement calculations are being introduced. 

There is the standard method of estimating Economic Capital and w e’ve called that 

the standard method and is governed by equations (4.10) & (4.11) and the integrated 

approach which is an extension of the proposed integrated approach of Chapter 3. The 

integrated approach is based on the joint distribution49 of the portfolio exposure and 

the price of the credit spread index option to estimate the expected and unexpected

49 Both variables are independent
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loss, where Expected Loss is the mean o f that distribution and the Unexpected Loss is 

its standard deviation.

In the subsequent sections we describe the methodologies used in this Chapter.

4.2.1 Historical Simulation

4.2.1.1 Historical Simulation of Swaps

A historical simulation was carried out using the swap yield curves generated in 

chapter 4. The only difference was that the sample was extended to start from the 1st 

of February 1999 and the end date this time is the 2nd of April 2004 which is the date 

we carried out the Monte Carlo simulation in the subsequent section. The historical 

yield curves were estimated using the LS (1992) model for the period 27/08/99 -  

02/04/04 as described in chapter 2. For each week the 6 parameters were estimated 

using the observed zero discount curve. The observed zero discount curve was 

bootstrapped as explained in chapter 2. For each weekly yield curve the appropriate 

forward curves were calculated using equation 3.2 as in Chapter 3. By appropriate we 

mean the forward curve required to price the swaps of the sub-portfolios. O f course 

the assumption is that the swap sub-portfolios remain unchanged throughout the 

historical simulation.

4.2.1.2 VaR of Credit Spread Index Options

A historical simulation was carried out using the credit spread index curves generated 

in chapter 3. The sample was extended to start from the l sl o f February 1999 and the 

end date this time is the 2nd o f April 2004. Each option was priced using the LS credit 

and volatility curves as in Chapter 2. O f course the assumption is that the swap sub-

portfolios remain unchanged throughout the historical simulation.
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4.2.1.3 Historical Simulation of Implied Default Probabilities

The risk o f default is a dynamic process which takes a different shape every day. It is 

a process which is affected by many factors and is directly linked to credit spreads 

(Chapter 2). Using the same methodology as in chapter 2 o f implying the transition 

matrix based on a given credit spread discount curve and the Moody’s historical 

transition matrix, we implied default probabilities over a period of 2 years using the 

relevant estimated LS (1992) credit spread discount curves (Chapter 2). The historical 

simulation will demonstrate how the probabilities o f default change every week (the 

simulation was performed with weekly data) according to market expectations 

captured by the dynamics of the term of credit spreads.

The implied transition matrix estimated in chapter 2 was with the assumption that 

default might occur only once at every time step i.e. once every year. The transition 

matrix was implied using the risk premia observed in the term of the credit spreads for 

every week between Apr-02 and May-04. For each week the eigenvalues and 

eigenvectors were implied and the respective generator matrices were obtained. A plot 

of the eigenvalues can be found in chapter 2, Figure 2.26. Using the implied generator 

matrices and the eigenvalues for every week it was straight-forward50 to derive the 

implied default probabilities for any maturity just by reading the last column of the 

generator matrices.

4.2.2 Multi-Step Monte Carlo

Monte Carlo simulation is a simulation technique which has been in use for a long 

time in many industries. In the finance and banking industry it is predominantly used

50 Since the eigenvalues can be multiplied by the square root of time we can deduce the probabilities of 
default for any maturity.
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for pricing complex financial products and for scenario generation. The technique has 

been near perfected over that last few years and is being used by a large number of 

financial institution for a number of tasks: pricing o f complex financial instrument 

where there is no closed form solution, Value at risk, scenario generation and for 

calculating expected credit exposures. Using a pure VaR type approach to calculate 

expected credit exposures as in previous sections it poses a few problems. The overall 

VaR figure might not incorporate events which take place in the tails of the 

distribution. Also the VaR figure is usually measured over a static time horizon (1 

week or 1 day) and then multiplied with the square root of time to transform it to a 

VaR over a longer time horizon. This is not exactly correct because by doing that we 

are assuming that all market rates follow a Markov chain. Thus, a Monte Carlo 

simulation is a more appropriate method to use when one is calculating expected 

credit exposures, since its possible to create an abundance of scenarios over many 

different time horizons each time.

There are a few general steps that are taken to ensure a successful result. Here, we 

will describe briefly the industry standard and subsequently we will describe the 

methodology we used to generate scenarios.

4.2.2.1 General Multi-Step Monte Carlo

Monte Carlo scenario generation for market rates is based on a discrete version o f a 

multivariate process o f \og(S( t )) = lo g fV  t)),log(S2(  t)),...log(SN( t )) risk factors 

Sj, j  = 1, 2, ... , N. The risk factors could be anything from interest rates, FX rates to 

equity indices. Their evolution in time is governed by the stochastic differential 

equation

d\og{Sj (t)) = dWj {t) (4.1)
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Here, W is a multivariate Gaussian diffusion process such that, at time t, W(t) has a 

covariance matrix L ■ t , where L is associated with a given correlation matrix p and 

volatilities ay of the log-return of the risk factor Sy. Typically the ay , a i and p are 

estimated historically51 (for a given confidence interval) The correlations among the 

risk factors are incorporated through p.

The discrete-time process is usually determined by the stochastic difference equation 

log(Sj (t + At)) -  log Sj (0) = K j Va 7 (4.2)

The vector K on the right side of equation (4.2) is i.i.d. with K ~ N(0,Q). The main 

task is to simulate this random vector. For eachy',y = 1, 2, ..., N, the random number 

Ky is calculated. The change between the simulated rate and the original rate at this 

risk factor node follows as:

S, (1 + Ai) -  S j(0  = Sj (t)(eK' ^  -1 )  (4.3)

The general approach to generate a random number x from an arbitrary continuous 

distribution with cumulative distribution function F(x) is to generate y  uniformly in 

[0,1] then to solve y=F(x). However, for generating a normal random number, the 

Box-Muller algorithm (Sheldon R (1994)) is used instead o f solving the inverse 

problem. The Box-Muller method was modified using a transformation method in 

order to simplify the calculations Appendix(4).

Since the generated normally distributed numbers are not correlated they need to be 

converted in correlated random numbers (Jacobi method see Appendix 5 for VB 

code). The statistical volatilities and correlation matrix o f the log-returns of the risk 

factors are ay and p, respectively. Set L to be the associated covariance matrix:

51 There are a number of financial software providers which use the RiskMetrics datasets, which are 
volatilities and correlations estimated using an exponential weighted moving average method 
(EWMA).
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L ij = ° i ° j P ÿ  (4-4)

The eigenvalues and eigenvectors of the variance covariance matrix L were

calculated. The decomposition of a symmetric matrix L is given by:

L = VDVt ( 4.5)

where V is an NxN orthogonal matrix, i.e. VVT = I. The VT matrix is the transpose of V

and D is an NxN matrix with the N  eigenvalues o f L along its diagonal and zero 

elsewhere. The eigenvalues need to be checked to see if any negatives are being 

produced and in such cases zero should be used. Next we describe how we run multi- 

step Monte Carlo for our swap sub-portfolios.

4.2.2.2 Multi-Step Monte Carlo using the LS (1992) model

The simulation framework described is used in order to generate different scenarios 

on multiple market risk factors. In our case we would only consider one risk factor, 

which is the short interest rate. In that case equation 4.3 would be different since a 

mean reverting model would be used to simulate the evolution of the short interest 

rate

Equation 4.6 is a one-factor equilibrium model CIR (1985), which is driven by the 

movement of the short interest rate drt . Again the discrete version o f that model

would be used to simulate the change in the short interest rate in order to estimate the 

full yield curve. Often other models with more than one factor are being used to 

simulate for the short rate and in this section we used the LS (1992) two-factor 

equilibrium model as described in Chapter 2. The discretised version o f the model is 

given by:

(4.6)
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(4.7)

where the ex and e2 are normal i.i.d random variables. The two i.i.ds were randomly 

generated using the routine in Appendix 4. The LS model in its nature estimates 

yields curves for any given r and V. In the LS model the r and V are almost fully 

correlated (Chapter 2). For our purposes we will incorporate the actual correlation 

between r and V as observed. Hence, using the 3M EUR-LIBOR and estimating its 

volatility with GARCH(1,1) as described in chapter 2 we obtained a 4 year time series 

o f r and V. It was clear that the correlation between r and V was time-varying. 

However, it was not difficult to observe that it was reverting to a mean level. That was 

the level o f p we used to correlate the randomly generated variables. Using the 

Cholesky decomposition we transformed the two random variables to be correlated. In 

this case where we have two variables is easy to decompose the correlation matrix and 

arrive to the following:

£ \

s 2 =PM\ + ( 1 - /? 2)1/2A2 (48)
where p  is the correlation between s x and e 2 
p  was at 31.32%

The Monte Carlo simulation carried out in Chapter 2 was a single step, providing an 

implied distribution for the short rate conditional on its volatility. Our aim here is to 

produce a distribution o f values at discrete time steps in the future, in order to
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generate yield curve scenarios. These yield curve scenarios were used at each time 

step as it occurs in the future to re-value each swap.

Let to denote the current time, and let T denote the end date o f simulation: T = to + (n - 

1)-At, where At, is the step length and n is the number o f steps. The intermediate 

simulation dates are T = to + (i - l)'At, for i = This is what is otherwise known

as a multi-step Monte Carlo simulation. At each time step 1000, scenarios were 

performed. An important step when one is using a normal distribution to generate 

interest rate yield curves is to check for negative interest rates. This was done after the 

generated curves were estimated and any negative rates produced were removed.

The simulated time step was chosen to be 3 months or to be exact 90 days on a 360 

days per year. The main reason for that choice was to facilitate previous analysis52 

(section 4.1 and chapter 3). Usually financial institutions use different time-steps53. At 

the first step o f the simulation the mean o f the distribution o f the short interest rate 

and its volatility was recorded and values at the 2.3SD. Then two yield curves were 

estimated based on these values and the swaps were revalued based on these 

estimated yield curves, yielding two MTM values. The first one was the average of 

the MTM and the second one was the MTM at 99% confidence interval. The next step 

was similar to the first one with only the time difference being brought forward by 

3M. Hence, all the swaps were re-valued as if the value date was plus 3M. For 

example, a swap with outstanding maturity of approximately 2 years at value date is 

re-valued on the second time-step54 as a swap with time to maturity of 1.75 years 

adjusting for any missing cash flows. Once this is done that forward MTM is

52 We need to have the same time horizon to the historical simulation
53 Usually 2D, 1W, 2W, 1M, 3M, 6M, 9M, 1Y, 2.5Y, 5Y and 10Y. These time-steps closely match the 
time buckets used for measuring market risk for fixed income securities. The 2D scenario is used to 
calculate settlement risk. For our purposes the 3M is being used because we want to make a 
comparison between the Historical Simulation and the Monte Carlo and also because our integrated 
measure is based on 3M intervals.
54 Since the first time-step is the value date.
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discounted to the value date using the value date curve. These steps were repeated 

each time until the date o f the longest maturity o f the swaps sample55. Finally, the 

aggregation was done on the level o f receiving and paying cash flows rather than the 

level o f the overall swap56.

4.2.3 Hedging the swap exposures

Using the same methodology as in chapter 3 we will calculate the option premium 

required to hedge these exposures. The main difference between the example taken in 

chapter 3 is the different maturities. Each sub-portfolio consists of swap deals, which 

mature in half a year to 9 years instead o f the 2 years generic example in chapter 3. 

This poses a practical “problem” in implementing the hedging strategy which is the 

question of which maturity o f credit spread index we have to use in order to carry out 

our methodology. There are two answers to that question. First, we can examine each 

swap separately and hedge that exposure by matching57 its maturity using the 

appropriate tenure of credit spread index. The second answer is instead of matching 

everything deal by deal, we can chose the point where the largest exposure lies and 

match the maturity o f that exposure using a single maturity o f credit spread index. 

The first solution has the advantage that, hedging of the counterpart default risk 

becomes more accurate but in practice it accumulates a number o f credit spread index 

options. Furthermore, implementation becomes more laborious both in practical and 

theoretical terms. The second solution has not the advantages of the first one but it is

55 The longest maturity was in sub-portfolio 5 with 8.91 years.
56 All the paying swaps and all the receiving swaps were pooled separately per sub-portfolio and after 
they were re-priced they were netted.
57 In chapter 4 we explained that the hedging methodology was designed to hedge the movements of 
the swap exposures using 3M options written on X years credit spread indices. The maturity of the 
credit spread index would have to match the maturity of the exposure, i.e. the options were 3M on 2Y 
underlyings.
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also a good approximation in terms of risk management since what we are trying is to 

test if  the integrated measure o f risk works in a real-time example.

Hence, the spread index maturities chosen per sub-portfolio were matched with the 

maturity o f the largest exposure per sub-portfolio (table 4.4). Their long-term mean as 

o f the 2nd of April of 2004 was estimated in order to calculate the option notionals. 

The exposures used were the sum of the exposures up to the highest exposure. For 

example, in sub-portfolio 5 (AA) the total current exposure used is 3,455,018 EUR 

which is the sum of all the swap exposures up to 8.91 years o f maturity. In this case, 

by coincidence the sum of the total current exposure of sub-portfolio 5 is the same 

figure. Hence, the credit spread index maturities used are the 2Y AAA, the 9Y AA, 

the 2Y A and the 2Y BBB.

Running a historical simulation weekly VaR (99% confidence interval) as in chapter 4 

we have calculated the potential movement o f the swap sub-portfolios at the 99% 

confidence interval. By adding the VaR figure to the current MTM, we obtain the 

total potential exposure or the expected credit exposure (E(CE)) o f the 4 sub- 

portfolios in 3M' . These are the exposures we need to hedge o f default risk. Again 

we have to make the following assumption: All counterparts of the same rating bear 

the same probability of default58 59. Hence, using the strike prices (table 5.4), we 

priced60 the following 3M options: 28C on 2Y AAA, 56C on 9Y AA, 78C on 2Y A

58 The weekly VaR is being scaled by the square root of time in order to increase the magnitude of the
weekly VaR to the 3M VaR.
59

This is an unavoidable assumption due to the lack of data. Given the data we wouldn’t use credit 

spread indices but counterpart related credit spread data. The main reason is that this assumption has 

proven to be too rigorous in many occasions. However, using credit spread indices was the only way to 

demonstrate our idea.

60 The pricing was done under the LS (1992) framework.
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and an 81C on the 2Y BBB. Thus, neutralizing the default risk of each sub-portfolio 

we need to buy an equivalent amount of options to the total expected exposure.

This hedging methodology is designed to protect against the worst outcome which is 

full default and zero recovery. However, in reality default is treated in terms of 

probabilities and usually expected losses are measured based on these probabilities. 

Also the loss given default or otherwise known recovery rate is taken into account. If 

we assume that there is recovery under the equivalent recovery model o f JT (1995) 

then we can apply a recovery rate in the total expected exposure and recalculate the 

amount of options need to be bought in order to hedge the swap exposures (Table 

4.5). The amount required -option notional (2)- is substantially smaller across all sub-

portfolios. This is a more realistic assumption since the recovery is not zero, instead 

it’s the weighted recovery rate as calculated by Moody’s over different classes of debt 

on actual historical default.

4.2.4 Economic Capital Measurement

4.2.4.1 Standard Approach

At this stage we need to introduce two measures, which have been used lately by 

practitioners to calculate total economic loss due to credit risk. The total economic 

loss consists o f two components, the expected loss and the unexpected loss. The 

expected loss is governed by the distribution o f three major factors, i.e. credit 

exposure, default rate and recovery rate data. It is generally accepted that if  these 

three distributions are combined then one can integrate across the combined function 

to estimate the expected loss at a given time point:

E L = \ \ J(C£)(PrDef )(1 - RR)F(CE,PrDef,RR) dCE dPrDef dRR (4.9)
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for a single exposure
EL = E{CE) * (1 -  RR) * Pr [D ef{t„tM)]
where E(CE) is the expected credit exposure

where CE is the credit exposure, dCE is the derivative of CE, PrDef is the default rate, 

dPrDef is the derivative o f PrDef, RR is the recovery rate and dRR is the derivative of 

RR and F(CE,PrDef,RR) is the multivariate probability density function. If we assume 

statistical independence between CE, PrDef and RR, then if the recovery rate is zero 

then one can multiply the probability of default to the expected credit exposure to 

calculate the economic loss. If however the assumption is that the probability of 

default is 100% and the recovery rate is x, then the economic loss is the expected 

credit exposure multiplied by (1 - the recovery rate).

The unexpected loss for a binomial event for a single exposure is given by:

UL = ECE* (1 -  RR)* pr{D <tf(t,,IM )](1 -  Pr[Z)e/ (< „ <„,)]) (4.11)

which is the volatility o f the expected loss at a given confidence interval and at a 

given time in the future.

The standard approach61 being used by financial institutions utilises equations (4.10) 

and (4.11) in order to calculate the expected and unexpected losses of the swap sub-

portfolios. Both equations involve the probability of default. The probability of 

default will provide variants o f the standard approach depending on which probability 

is being used. Hence:

• Method 3 uses the probability of default taken from the last column of the 

historical transition rating matrix (Moody’s).

• Method 4 uses the implied probability of default estimated using the 

methodology described in Chapter 2.

61 There is no specific name for this methodology; we will call it the standard approach in order to 
differentiate from the integrated approach.
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• Method 5 uses the 2.3SD implied probability o f default.

4.2.4.2 Integrated Approach

The probability o f default is a factor which can be described by the credit spread of a 

counterpart. In chapter 2 we saw that one can use the term structure of credit spreads 

to imply probabilities o f default using the binomial model o f JT (1995) and the 

Markov chain model of JLT (1997). Hence, any change in the term structure of credit 

spreads is reflected in the probability o f default o f a counterpart.

Our integrated measure, which assumes dynamic hedging of swap exposures using 

credit spread options is an attempt to link the expected credit exposure to the 

probability o f default through the dynamics o f credit spreads. The relationship 

between the two is not statistically significant since the VaR regressions in chapter 4 

yielded low r-squared. However, in terms o f economic loss the exposure and 

probability of default are linked since the likelihood of a loss increases with an 

increase in the credit spread and the size of the loss increases if the exposure 

increases. Thus, the notion of using credit spread options in order to “replace” 

economic loss o f a swap sub-portfolio is quite appealing. Thus expected loss can be 

given by the mean o f the portfolios o f credit spread index options.

As with the expected loss, we will equate the unexpected loss to the potential 

movement of the credit spread index options at a given point in time, i.e. for our 

purposes the 3M VaR of the credit spread index options based on the exposure 

calculated option notionals.

Using option notional (1) (Table 4.5) and option notional (2) we run a historical 

simulation o f each of the credit spread index options in order to calculate the average
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movement and the 2.3SD movement over 3M. The 3M time horizon is chosen

because this is the maturity o f the credit spread index options.

The integrated approach is based on a dynamic hedging methodology which uses 

credit spread options to hedge swap exposures. The idea is that as the exposure 

fluctuates so is the amount o f options required to hedge the exposure. Also, as the 

credit spread widens the moneyness o f the call options used to hedge the credit 

exposure increases protecting from an increasing probability o f default62. The end 

result is a creation o f a portfolio o f swaps and credit spread options which has zero 

default risk when its rebalanced continuously. The market value distribution o f that 

portfolio is sensitive to both market and credit risk factors. The economic capital 

calculation of that portfolio then becomes the total o f the expected and unexpected 

loss due to the credit part of the portfolio. This is due to the fact that the credit part o f 

the portfolio is linked to the potential credit exposure o f the swap portfolio through its 

notional and the probability of default is represented by the price o f the credit spread 

option. The integrated approach has two variants which depend on the recovery rate:

• Method 1 assumes recovery rate o f 1 and

• Method 2 assumes recovery rate of 0.3265.

with the first being a worst-case scenario of zero recovery and the second being the 

standard case where there is recovery.

4.3 Data and Description

There is a data overlap between chapter 4 and this chapter apart from the swap 

portfolio. The swap portfolio was provided by a medium sized European Bank, which 

is active across all asset classes with a substantial business in the EUR interest rate

62 We have previously shown that the probability of default is directly related to the credit spread of a 
counterpart, hence when the credit spread of a counterpart widens then the probability of default 
deteriorates and vice versa.
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swaps market. However, this is not the overall swap portfolio of the bank but is only 

one o f the actively traded books.

4.3.1 Swap portfolio

This study uses a unique actively traded OTC portfolio of swaps taken from a medium 

sized European Bank. The actual swap portfolio contains 53 vanilla interest rate 

swaps denominated in EUR. The reporting currency for the medium sized European 

bank is in EUR hence all the aggregated figures will be in EUR. Overall the portfolio 

is short which means that if  rates move down the portfolio makes money and if rates 

move up then the portfolio loses money. This is observed by looking at the overall 

DV01 (short for the sensitivity o f the swap position to lbp movement in the 

underlying interest rates) in Table 4.1. The portfolio contains deals with various 

European and US counterparts of different rating. Although the bank in question has 

an approved internal rating system63 we used the S&P long-term rating to rate each 

swap deal according to the rating o f the counterpart. In total, there are 15 different 

counterparts with 7 different ratings. They are all rated at the investment grade 

spectrum, i.e. AAA, AA, AA-, A+, A, A- and BBB. The medium-sized European 

bank has netting agreements with all the counterparts in the portfolio. This is 

important because we can sum up all the exposures per counterpart. We also summed 

up all the exposures based on the counterpart rating and created the sub-portfolios 

which we were used to calculate the integrated measure and economic loss. This 

summation was based on the assumption that counterparts o f the same rating follow 

the same default process. The portfolio consists o f deals in EUR currency only and 

the counterparts that the deals have been made with are mainly European. There are

63 According to BIS 1998 banks can use only approved internal rating systems for all their customers if 
and only if they have approved risk management systems. This is done mainly to maintain consistency 
in the way each bank calculates credit risk in their portfolios.
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only 4 US counterparts which issue bonds in their name in both US and Europe. 

Hence, for our subsequent hedging purposes we only need to use European credit 

spread indices.

The market risk per sub-portfolio in terms of parallel yield curve shift o f one bp 

differs across the sub-portfolios. Generally speaking if interest rates move upwards in 

the Euro-area then most of the sub-portfolios will lose money. In contrast, the credit 

exposure of these portfolios will be reduced since the actual credit exposure is defined 

as the maximum of zero or a positive Mark-to-market is at time t, where t is equal to 

the value date64.

Table 4.1 Actual Swap Portfolio taken from Medium Sized European Bank 02/04/04

DV01
(EUR) Sub-Portfolio No S+P rating Notional Long/Short Time to maturity 

(Years) Currency

1 A + 1 5 ,1 1 5 ,9 5 0 L o n g 0 .5 6 E U R

1 A + 2 5 ,5 6 4 ,0 0 0 S h o rt 0 .6 6 E U R

1 A + 1 0 ,2 2 5 ,8 3 8 L o n g 1.52 E U R

1 A + 3 5 ,7 9 0 ,4 3 2 L o n g 4.41 E U R

1 A + 5 ,0 0 0 ,0 0 0 L o n g 4 .5 4 E U R

1 A + 1 5 ,0 0 0 ,0 0 0 S h o rt 4 .7 3 E U R

1 A + 2 5 ,0 0 0 ,0 0 0 S h o rt 5 .74 E U R

1 A + 1 0 ,0 0 0 ,0 0 0 L o n g 0 .0 6 E U R

1 A + 1 0 ,0 0 0 ,0 0 0 L o n g 0 .0 8 E U R

47
5

1 A + 2 5 ,0 0 0 ,0 0 0 S h o rt 0 .63 E U R

1 A + 5 0 ,0 0 0 ,0 0 0 S h o rt 1.01 E U R

1 A + 4 5 ,0 0 0 ,0 0 0 L o n g 3 .08 E U R

1 A + 1 0 ,0 0 0 ,0 0 0 S h o rt 3 .5 9 E U R

1 A 1 0 ,0 0 0 ,0 0 0 L o n g 3 .9 6 E U R

1 A 1 1 ,0 0 0 ,0 0 0 S h o rt 4 .2 3 E U R

1 A 1 0 ,0 0 0 ,0 0 0 S h o r t 4 .9 4 E U R

1 A 1 0 ,0 0 0 ,0 0 0 S h o rt 4 .9 8 E U R

1 A A 1 0 ,0 0 0 ,0 0 0 L o n g 5 .07 E U R

1 A A 5 ,0 0 0 ,0 0 0 L o n g 9 .6 8 E U R

2 A A 3 0 ,0 0 0 ,0 0 0 S h o rt 0 .3 9 E U R

O n
r - 2 A A 2 5 ,0 0 0 ,0 0 0 S h o rt 0 .4 6 E U R

cn 2 A A 5 0 ,0 0 0 ,0 0 0 L o n g 0 .8 9 E U R

2 A A 1 4 ,5 0 0 ,0 0 0 L o n g 1.15 E U R

64 Typically value date is the date at which OTC deals are being settled in each currency. For the EUR 
currency value date is T+2.
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2 A A 1 0 ,0 0 0 ,0 0 0 L o n g 3.21 E U R

2 A A 1 5 ,0 0 0 ,0 0 0 L o n g 4 .5 8 E U R

3 A A 9 ,8 1 0 ,8 3 3 S h o rt 0 .1 4 E U R

'O
o

3 A A 1 4 ,5 3 4 ,5 6 7 L o n g 0.61 E U R

3 A A 7 ,2 6 7 ,2 8 3 L o n g 0 .6 6 E U R

3 A A 14,897 ,931 S h o rt 1 .16 E U R

4 A A A 3 0 ,6 7 7 ,5 1 3 L o n g 0 .8 0 E U R

4 B B B + 2 5 ,5 6 4 ,5 9 4 S h o rt 4 .4 8 E U R

4 A + 9 ,4 4 7 ,4 6 8 L o n g 2 .6 4 E U R

4 A + 1 5 ,9 8 8 ,0 2 4 L o n g 0.61 E U R

4 A + 5 1 ,1 2 9 ,1 8 8 L o n g 1.38 E U R

4 A + 1 0 ,0 0 0 ,0 0 0 L o n g 5 .92 E U R

4 A + 1 0 ,0 0 0 ,0 0 0 L o n g 9 .1 9 E U R

4 A + 1 2 ,0 0 0 ,0 0 0 S h o rt 2 .5 9 E U R

4 A + 2 6 ,0 0 0 ,0 0 0 L o n g 3 .8 3 E U R

4 A + 1 0 ,0 0 0 ,0 0 0 S h o rt 8 .9 0 E U R

5 A + 2 0 ,0 0 0 ,0 0 0 S h o rt 3 .4 4 E U R

5 A + 1 5 ,0 0 0 ,0 0 0 S h o rt 1.41 E U R

5 A + 3 5 ,0 0 0 ,0 0 0 S h o rt 3 .4 4 E U R

5 A + 1 0 ,0 0 0 ,0 0 0 L o n g 3 .9 8 E U R

5 A + 3 0 ,0 0 0 ,0 0 0 L o n g 4 .8 8 E U R

<Noo
<N 5 A 2 0 ,0 0 0 ,0 0 0 L o n g 1.14 E U R
rn
cn 5 A 1 5 ,0 0 0 ,0 0 0 S h o rt 4 .2 5 E U R

5 A 1 0 ,0 0 0 ,0 0 0 S h o rt 4 .8 9 E U R

5 A 1 0 ,0 0 0 ,0 0 0 S h o rt 4 .9 8 E U R

5 A A 1 0 ,0 0 0 ,0 0 0 S h o rt 5 .2 4 E U R

5 A A 1 0 ,0 0 0 ,0 0 0 S h o rt 8.71 E U R

5 A A 1 0 ,0 0 0 ,0 0 0 S h o rt 2 .9 8 E U R

-2 ,2 0 0 6 A A 1 0 ,0 0 0 ,0 0 0 S h o rt 2 .2 0 E U R

-1,551 7 A A 1 0 ,2 2 5 ,8 3 8 S h o rt 1.52 E U R

4.3.2 Historical Yield Curves

The time period of our analysis conveniently overlaps with the time period in Chapter 

3. Market rates used in Chapter 4 were also used in this chapter with one minor 

difference in the final date. In this chapter the time series o f 3M EUR LIBOR, 6M 

EUR LIBOR rates and 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 8Y, 9Y, 10Y EUR Swap rates end in 

02/04/04. The reason is that the 2nd of April o f 2004 was the date that the multi-step 

Monte Carlo was performed.
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4.3.3 Credit Spread Indices and credit spread curves

The credit spread index data collected from Bloomberg as noted in Chapter 4 were 

used. The final date is the 2nd of April 2004 for the reason explained in 5.3.2. 

However, in this chapter we used 4 credit spread indices since we only need to 

measure the default risk o f positive exposures.

Table 4.2 Long-term mean of CSIs and their GARCH(1,1) volatility

Rating / 
Maturity GARCH(1,1) 2.33 Vol Long-term

mean Mean * (1 + 1SD) Mean * (1 + 2.33SD)

AAA 2Y 32.97% 76.83% 28 37 50

AA 9Y 29.76% 69.34% 56 73 95

A 2Y 38.48% 89.66% 78 108 148

BBB 2Y 35.84% 83.51% 81 110 149

4.3.4 Historical Transition Matrix and recovery rate

The historical transition matrix was obtained from the JLT (1997) paper, including the 

recovery rate (Chapter 2).

4.4 Results and Analysis

4.4.1 Historical Simulation

4.4.1.1 Historical Simulation of swap sub-portfolios

For credit risk measurement purposes, if  there were no netting agreements in place we 

would have to disregard the swap deals with a negative net present value (NPV). In 

that case only the positive NPVs would be considered and the risk profile would be 

much different (Table 4.3). The DVOls are much different per sub-portfolio compared 

to the DVOls shown in Table 4.1. All the DVOls are negative indicating that all the
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exposure is one way, thus if interest rates were to go down the overall credit exposure 

would increase rather substantially. However, this is not the case since the netting 

agreements allow negative and positive NPVs to be summed, thus reducing the 

overall exposure.

Table 4.3 Current MTM of Sub-portfolios

Sub-Portfolio No S+P rating Long/Short Currency DV01 Actual Credit Exposure

6 A A A S h o rt G B P -2 ,2 0 0 276,664

4 A A S h o rt E U R -2 3 ,4 4 7 3,452,793

5 A A - S h o rt E U R -2 9 ,6 7 4 -2 ,4 9 0 ,1 0 1

1 A + S h o rt E U R -7 ,4 9 7 -1 ,4 7 8 ,9 6 4

2 A S h o rt E U R -2 ,3 4 3 -1 ,1 5 2 ,4 0 8

3 A - S h o rt E U R -1 ,8 6 9 1,017,100

7 B B B + S h o rt E U R -1 ,551 972,223

At that date only 4 out of the 7 sub-portfolios had an overall positive NPV. The time 

series o f their NPV is shown in Figure 4.1. The sudden drops observed at regular time 

intervals are outgoing cash flows, since we haven’t included any of the accumulated 

accrued or realized P/L o f the swaps. However, all time series seem to be increasing 

over time which is what we would expect. The huge increase o f NPV in the A sub-

portfolio comes from the change in the NPV of a single swap65. Throughout the last 4 

years these swaps were running a positive market value bearing actual credit 

exposure. The time series o f the A- market value is a clear example o f how the swap 

market values can change substantially over time. This is one o f the reasons that 

stochastic interest rates are used in order to model future expected exposures. We can 

also verify the amortisation effect o f the swap exposures by looking the AA swap 

market values. There are regular drops in the market values, which they would have

65 It’s a EUR swap which receives fixed at 5.6% and the LIBOR at that time goes below 2% for the 
first time, making the forward curves to steepen unexpectedly.
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resulted in a zero market value at the maturity of the swaps. But because we have a 

portfolio of swaps with different maturities, the amortisation effect will kick in when 

all the swaps left in the portfolio are passed their half-life. The dramatic increase in 

the NPV of the A sub-portfolio is due to monetary changes by the ECB during that 

period.

Figure 4.1 Time series o f the market value o f sub-portfolios
NPVs in EUR
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The sub-portfolios created following our assumption of netting all exposures which 

arise form counterparts of the same rating are shown in table 4.4. Only 4 of the sub-

portfolios exhibit positive exposure. The other 3 have zero exposure since their 

current mark-to-market is negative. Negative MTM plus potential exposure is termed 

as wrong-way exposure. Not accounting in this study for these exposures does not 

mean that we disregard them completely. It just happens that the total expected credit 

exposure after 3 months is still negative.
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Table 4.4 C urrent credit exposure o f  sub-portfolios

Sub-Portfolio No S+P
rating Notional Long/

Short

Time to 
maturity 
(Years)

Currency Actual Credit Exposure EUR

6 A A A  1 0 ,0 0 0 ,0 0 0 S h o rt 2.20 E U R 276,664

2 7 6 ,6 6 4

5 A A  2 0 ,0 0 0 ,0 0 0  S h o rt 3 .4 4 E U R 7 5 3 ,8 0 6

5 A A  1 5 ,0 0 0 ,0 0 0  S h o rt 1.41 E U R 1 ,0 0 5 ,5 0 2

5 A A  3 5 ,0 0 0 ,0 0 0  S h o rt 3 .4 4 E U R 7 4 9 ,5 3 4

5 A A  1 0 ,0 0 0 ,0 0 0  L o n g 3 .98 E U R -4 4 3 ,3 8 4

5 A A  3 0 ,0 0 0 ,0 0 0  L o n g 4 .8 8 E U R 2 0 8 ,6 1 4

5 A A  2 0 ,0 0 0 ,0 0 0  L ong 1.14 E U R -5 2 3 ,6 4 1

5 A A  1 5 ,0 0 0 ,0 0 0  S h o rt 4 .2 5 E U R 4 2 4 ,7 5 4

5 A A  1 0 ,0 0 0 ,0 0 0  S h o rt 4 .8 9 E U R -7 9 ,2 0 3

5 A A  1 0 ,0 0 0 ,0 0 0  S h o rt 4 .9 8 E U R -6 6 ,2 9 3

5 A A  1 0 ,0 0 0 ,0 0 0  S h o rt 5 .24 E U R 2 2 3 ,6 7 1

5 A  A  1 0 ,0 0 0 ,0 0 0  S h o rt 8.71 E U R 1,099,999

5 A A  1 0 ,0 0 0 ,0 0 0  S h o rt 2 .9 8 E U R 1 0 1 ,6 5 9

3 ,4 5 5 ,0 1 8

3 A  9 ,8 1 0 ,8 3 3  S h o rt 0 .1 4 E U R 4 2 7 ,8 6 2

3 A  1 4 ,5 3 4 ,5 6 7  L o n g 0.61 E U R -2 8 5 ,7 4 0

3 A  7 ,2 6 7 ,2 8 3  L o n g 0 .6 6 E U R -2 6 6 ,2 9 7

3 A  1 4 ,897 ,931  S h o rt 1.16 E U R 1 ,1 3 2 ,6 8 0

1,008,505

7 B B B  1 0 ,2 2 5 ,8 3 8 S h o rt 1.52 E U R 9 6 4 ,7 9 8

9 6 4 ,7 9 8

4.4.1.2 Hedging the Expected Credit Exposure of the swap sub-portfolios and 

estimating economic loss under the integrated measure

The proposed integrated approach as in Chapter 3 was implemented for the swap sub-

portfolios. The expected credit exposure o f each sub-portfolio (E(CE)) is the sum of 

the current MTM plus the 3M VaR of the sub-portfolio. This represents the amount at 

risk in case of default and if  there is no recovery (Method l).The respective amounts
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in options (Option Notional 1 and 2) need to be bought to hedge the default risk of 

each sub-portfolio under the assumption of zero recovery66 and of 0.3265 recovery are 

shown in Table 4.5.

Table 4.5 Hedging Details per sub-portfolio

2-Apr-04 2Y AAA 9Y AA 2Y A 2Y B B B

O p tio n  S tr ik e  (b p ) 28 56 78 81

O p tio n  P rice  (d e c im a ls )  3M 0 .5 8 3 0 .4 8 9 0 .601 0 .6 8 2

M T M 2 7 6 ,6 6 4 3 ,4 5 2 ,7 9 3 1 ,0 1 7 ,1 0 0 9 7 2 ,2 2 3

3 M  V a R  (9 9 % ) 2 6 0 ,7 9 2 1 ,8 4 8 ,8 1 5 76 ,641 10 2 ,8 1 2

E (C E ) (expected credit exposure) 5 3 7 ,4 5 6 5 ,3 0 1 ,6 0 8 1 ,093 ,741 1 ,0 7 5 ,0 3 5

R e c o v e ry  R a te 0 .3 2 6 5 0 .3 2 6 5 0 .3 2 6 5 0 .3 2 6 5

E (C E ) (a f te r  re c o v e ry  ra te ) 3 6 1 ,9 7 7 3 ,5 7 0 ,6 3 3 7 3 6 ,6 3 5 7 2 4 ,0 3 6

O p tio n  N o tio n a l ( l ) 67 9 2 1 ,8 8 0 10 ,8 4 1 ,7 3 5 1 ,8 1 8 ,5 8 9 1 ,5 7 6 ,2 9 8

O p tio n  N o tio n a l (2 )68 6 2 0 ,8 8 6 7 ,3 0 1 ,9 0 8 1 ,2 2 4 ,8 2 0 1 ,0 6 1 ,6 3 7

The total economic loss was then estimated (Table 4.6) fro methods 1 and 2. The total 

economic loss represents the amount of at risk under a certain probability o f default 

and a pre-specified recovery rate. It is the sum of the expected loss and the 

unexpected loss. The expected loss is estimated from the historical simulation of the 

credit spread index options and is equal to the mean of the resulting profit and loss 

distribution. The unexpected loss is 2.33 times the standard deviation o f the same 

distribution. This is the major difference to current practices which model the 

probability o f default separately. In this integrated approach the probability o f default 

and the size of each exposure are “integrated” into the price and the notional o f the

66 We will define this as method (1).
67 Assuming 100% probability of default and recovery rate of 1.
68 Assuming 100% probability of default and recovery rate of 0.3265.
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credit spread index option. The recovery rate is modeled as an exogenous variable as 

in the standard approach and it can vary significantly. We have used a long-term 

historic actual recovery rate.

Table 4.6 Economic Loss comparison between methods (1) and (2) under the 
integrated approach

EUR AAA AA A BBB
EL(1) 133 2,251 633 135
EL (2) 90 1,516 426 91
UL (1) 10,776 28,518 68,781 27,804
UL (2) 7,258 19,207 46,324 18,726

TL (1) 10,909 30,769 69,413 27,939
TL (2) 7,347 20,723 46,750 18,817

4.4.1.3 Historical simulation of implied default probabilities and estimation of 

economic loss under the standard approach

The weekly time series o f the 3M AAA, AA, A and BBB implied default probabilities 

are shown in Figures 4.2 and 4.3. They are quite volatile and it seems that they started 

to rise during the first 6 months of 2004 (Figures 4.2 and 4.3). As explained in chapter 

3 this could be due to massive liquidations of bond portfolios at this time.

Figure 4.2 Time series of 3M implied default probabilities, AAA and AA
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There is an implicit correlation between the time series since the simulation was 

historical. It can also be observed that the implied correlation between the default 

probabilities varies with time.

There is a strong directional correlation in terms of direction between all four 3M 

implied default probabilities, especially in 2004. However, a better way to examine 

their correlation is to estimate it based on the historical data obtained. The correlation 

between the implied default probabilities seems to be quite low when examined in 

levels. When the correlation is calculated using the logarithmic differences the 

correlations is even lower. This suggests that the 3M implied default probabilities in 

our sample have low correlation.

The historical simulation of the default probabilities can give a good indication of 

how the probability of default will fluctuate over a specified period. Since we have a 

two year sample we can measure the level of the implied probability of default at the 

99% confidence interval.

Figure 4.3 Time series of 3M implied default probabilities, A and BBB
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Table 4.7 H istorica l Correlation m atrix o f  the 3M  im plied  probabilities o f  default

Differences Levels

3M A A A A A A BBB 3M A A A A A A BBB

A A A 1 -0 .0 4 2 0 .133 0 .2 1 7 A A A 1 0 .3 0 8 0 .1 4 5 0 .3 2 9

A A -0 .0 4 2 1 -0 .0 4 4 0 .0 5 7 A A 0 .3 0 8 1 -0 .0 1 7 0 .2 1 4

A 0 .1 3 3 -0 .0 4 4 1 -0 .0 6 0 A 0 .1 4 5 -0 .0 1 7 1 0 .0 5 2

BBB 0 .2 1 7 0 .0 5 7 -0 .0 6 0 1 BBB 0 .3 2 9 0 .2 1 4 0 .0 5 2 1

This is probably explained by the fact that the joint probabilities of default are quite 

low. The joint probabilities are utilised when looking at the overall swap portfolio, i.e. 

the sum of the sub-portfolios.

Table 4.8 Implied Default Probabilities 02/04/04

Rating AAA AA A BBB BB B ccc
Prob of Default 0.0026% 0.0028% 0.0312% 0.1345% 0.3651% 1.3720% 2.0959%

Subsequently, we will use the expected credit exposure and equations 4.10 and 4.11 to 

measure the total economic loss. The 2.33SD value of the implied default 

probabilities per rating is listed in Table 4.9 together with the calculations of total 

economic loss. As a comparison we have also calculated the total economic loss using 

the implied probability o f default as of the 2nd o f April of 2004 and the historical 

probabilities o f default as they appear in the Moody’s transition matrix. The 3M 

probabilities of default as implied using the risk premium of the 02/04/04 are shown 

in Table 4.8.

The highest estimated economic loss comes when the 2.3SD implied default 

probability is used since this is the highest default rate over the period of the historical 

simulation. The level of probability of default can differ quite a lot depending on what 

method we used to estimate it whereas the option prices of the credit spread options 

do not differ as much even if  a different model was used for pricing.
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Table 4.9 E conom ic Loss calculations using probabilities o f  default

AAA AA A BBB

3M Moody's Historical Probability of Default (3) 0.0003% 0.0034% 0.0166% 0.0894%

3M Implied Probability of Default as of 02/04/04 (4) 0.0026% 0.0028% 0.0312% 0.1345%

3M 2.3SD Implied Probability of default (5) 0.0076% 0.0472% 0.1022% 0.2340%

E(CE) 537,456 5,301,608 1,093,741 1,075,035

RR 32.65% 32.65% 32.65% 32.65%

EL(3) 1 120 122 648

EL(4) 10 95 230 974

EL(5) 27 1,686 753 1,694

UL(3) 644 20,711 9,477 21,643

UL(4) 1,861 18,408 13,017 26,536

UL(5) 3,155 77,565 23,539 34,981

TL(3) 645 20,831 9,599 22,291

TL(4) 1,870 18,503 13,247 27,510

TL(5) 3,182 79,251 24,291 36,676

In the next section we will replicate the same analysis only this time we will use a 

multi-step Monte Carlo to calculate the expected credit exposures created by the swap 

sub-portfolios.

4.4.2 Multi-step Monte Carlo simulation o f the swap sub-portfolios and economic loss

4.4.2.1 Multi-step Monte Carlo simulation of the swap sub-portfolios

The exposure profiles o f the sub-portfolios are reported in Appendix 5 and Figure 5.4.

Both the diffusion and amortisation effect are observed in the exposure profiles o f all 

4 sub-portfolios. The exposure declines as the swaps in the sub-portfolios reach near 

maturity and eventually goes to 0 when the last swap matures. The highest and 

longest exposure comes from the AA sub-portfolio, which at the starting date
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(02/04/04) the exposure stands at 7,914,055 EUR. This is substantially higher than the 

current MTM, which stands at 3,455,018. In chart 5.4 we can see the difference 

between the mean o f the exposure and its 2.3SD, which is substantially higher.

Figure 4.4 Potential Credit Exposures after netting of AA- sub-portfolio

Figure 4.5 Potential Credit Exposure of AA- sub-portfolio without netting
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Furthermore, this is a netted sub-portfolio, an assumption, which is very clear to 

understand since we have taken into account wrong-way exposures69 as well. If there 

were no netting agreements in place then the exposure profiles would look different, 

since only the positive MTM swap would be taken into account (Figure 4.5).

As we can see the maximum exposure stands at 11,228,652 EUR compared to the 

7,914,055 EUR estimated under the netting assumption. In the next section we will 

calculate the total expected loss that stands after 3M based on the exposure profdes 

obtained from the multi step Monte Carlo. These 3M exposures are listed in Table

4.10. These are the MTM values o f the respective swap sub-portfolios which will be 

used to calculate the total loss per swap sub-portfolio in the next section.

Table 4.10 Expected Credit Exposures per sub-portfolio at 2.33SD

Rating 3M
AAA 433,410
AA 7,838,484
A 626,039

BBB 1,228,376

4.4.2.2 Economic loss based on the Monte Carlo expected exposures

The total loss that can be experienced by a portfolio of derivatives is a function of

three variables (section 4.1.2): the expected credit exposure, the probability o f default 

and the rate of recovery. In this section we will replace the expected credit exposure 

used in section 4.1.2 with the expected credit exposure as obtained form the multi- 

step Monte Carlo (Table 4.10). Based on these new expected credit exposures we will 

apply the same calculations as in section 5.1.2 in order to measure the total economic

69 Wrong-way credit exposure is an exposure with negative current MTM, which could evolve to 
become a positive exposure due to the nature of the instrument i.e. in swaps.
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loss. Thus, by using all five different methodologies70 we will calculate the different 

economic losses. So using the credit spread options methodology and equations 4.1 

and 4.2 for the calculation of the expected and unexpected loss we can calculate the 

total loss o f each swap sub-portfolio in 3M subject to each method. In Table 4.11 we 

show the economic loss calculated using the “integrated approach” which uses credit 

spread index options to measure the economic loss o f the swap sub-portfolios. The 

total losses between the two differ substantially since in method (1) we assume 

recovery rate of 1 and in method (2) we’ve assumed recovery rate of 0.3265.

In Table 4.12 the economic losses based on the default probabilities are calculated. 

The difference in the probabilities o f default makes substantial difference to the 

overall result since the total loss increases substantially.

Table 4.11 Methods (1) and (2) using the MC expected credit exposures

EUR AAA AA A BBB
Option Strike 28 56 78 81
Option Price ATM 0.583 0.489 0.601 0.682
MC ECE 433,410 7,838,484 626,039 1,228,376
MC ECE * (1-RR) 291,902 5,279,219 421,637 827,312
EL(1) 107 3,329 362 154
EL (2) 72 2,242 244 104

U L ( D 8,690 42,164 39,369 31,770
____________ 5,853 28,397 26,515 21,397

T L Q ) 8,797 45,492 39,731 31,924
TL (2) 5,925 30,639 26,759 21,501

This is purely due to the big difference between the two probabilities. This result 

shows that the probabilities of default based on the historical transition matrix 

(chapter 2) are quite far away from the default probabilities as implied by the market 

potential economic loss o f the swap sub-portfolios.

70 Method (1) was merely the one where the option notional were measured based on the ECE 
assuming 100% default rate and 1 as the recovery rate. Method (2) was exactly the same only this time 
the recovery rate was 0.3265. Method (3), (4) and (5) are using default rates instead of credit spread 
options and in particular the Moody’s Historical Probability of Default, the implied probability of 
default as of 02/04/04 and the 2.3SD Implied probability of default respectively.
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Table 4.12 M ethods (3), (4) and  (5) based on the M C  expected credit exposures

E U R AAA AA A BBB

M o o d y 's  H is to r ic a l P ro b a b il i ty  o f  D e fa u lt  (1 ) 0 .0 0 0 3 % 0 .0 0 3 4 % 0 .0 1 6 6 % 0 .0 8 9 4 %

Im p lied  P ro b a b il i ty  o f  D e fa u lt  a s  o f  0 2 /0 4 /0 4  (2 ) 0 .0 0 2 6 % 0 .0 0 2 7 % 0 .0 3 1 2 % 0 .1 3 4 5 %

2 .3 S D  Im p lie d  P ro b a b il i ty  o f  d e fa u lt  (3 ) 0 .0 0 7 6 % 0 .0 4 7 2 % 0 .1 0 2 2 % 0 .2 3 4 0 %

E(CE) 433,410 7,838,484 626,039 1,228,376
R R 3 2 .6 5 % 3 2 .6 5 % 3 2 .6 5 % 3 2 .6 5 %

E L (3 ) 1 120 122 6 48

E L (4 ) 10 95 2 3 0 9 7 4

E L (5 ) 27 1 ,686 7 53 1 ,694

U L (3 ) 644 20 ,711 9 ,4 7 7 2 1 ,6 4 3

U L (4 ) 1,861 18 ,408 13 ,017 2 6 ,5 3 6

U L (5 ) 3 ,1 5 5 7 7 ,5 6 5 2 3 ,5 3 9 34,981

T L (3 ) 645 20 ,831 9 ,5 9 9 22,291

T L (4 ) 1 ,870 18 ,503 13 ,247 2 7 ,5 1 0

T L (5 ) 3 ,1 8 2 79 ,251 24,291 3 6 ,6 7 6

This result also shows that the potential credit loss is proportionate to the credit risk 

premium that the liabilities o f a counterpart bear. Since this extra risk is captured by 

the credit spread, next we will compare the proposed methodology to account for both 

market and credit risk with the total loss calculations performed in this section.

4.4.3 Comparison between the different methodologies

In this section we will perform a two-fold comparison on how the economic loss of 

the swap sub-portfolios can be calculated. The first level of comparison will be the 

difference in using a VaR style approach to estimate expected potential exposure to a 

multi-step Monte Carlo approach. The second level will be a comparison between the 

integrated approach developed in this study versus the standard approach currently 

employed.

As mentioned in the beginning of this section we will perform a two-fold comparison. 

The first one is on how the expected credit exposures and subsequently the total 

economic loss is compared when a VaR style approach (historical simulation) is used 

against the multi-step Monte Carlo. Table 4.13 shows the total economic loss per
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swap sub-portfolio using the different expected credit exposures as derived from the 

historical simulation and the multi-step Monte Carlo.

These two different simulation approaches have given different results as expected. 

For methods (1) and (2), the economic loss for sub-portfolios AA and BBB is higher 

when the Monte Carlo simulated exposures are used and vice versa for methods (3), 

(4) and (5). This is inconclusive since there is no clear pattern if one of the 

simulations yields higher or lower results. The reason is that the time horizon is small 

enough for the historical simulation to produce adequate results.

Table 4.13 HS -  MC comparison

AAA AA A BBB

H S (1 ) 10 ,909 3 0 ,7 6 9 6 9 ,4 1 3 2 7 ,9 3 9

M C  (1 ) 5 ,1 2 9 2 2 ,2 4 6 2 3 ,8 9 5 2 1 ,7 7 2

% Change -19% 48% -43% 14%

H S (2 ) 7 ,3 4 7 2 0 ,7 2 3 4 6 ,7 5 0 18 ,817

M C  (2) 3 ,4 5 4 14 ,982 16 ,093 14 ,663

% Change -19% 48% -43% 14%

H S (3 ) 520 3 0 ,7 9 9 5 ,4 9 4 2 5 ,4 7 0

M C  (3 ) 6 45 20 ,831 9 ,5 9 9 22 ,291

% Change 24% -32% 75% -12%

H S (4 ) 1 ,508 2 7 ,3 5 7 7 ,5 8 2 3 1 ,4 3 4

M C  (4 ) 1 ,870 18 ,503 13 ,247 2 7 ,5 1 0

% Change 24% -32% 75% -12%

H S (5 ) 2 ,5 6 6 1 1 7 ,1 7 4 13,904 4 1 ,9 0 7

M C  (5 ) 3 ,1 8 2 79 ,251 24 ,291 3 6 ,6 7 6

% Change 24% -32% 75% -12%

For longer time horizons, i.e. more than 1 Year the historical simulation would 

probably yield poorer results against the Monte Carlo simulation simply because the 

base of the exposure is the weekly VaR figure extracted from historical time series of 

only two years. In contrast the multi step Monte Carlo generates 1000 scenarios per 

time step i.e. the equivalent o f approximately 20 years.

The next and more important level of comparison is between the two different 

methods of calculating economic capital. We will only look at the figures calculated
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using the Monte Carlo simulation since this seems to be the most appropriate 

simulation methodology to estimate expected credit exposures.

The highest economic loss comes with sub-portfolio AA using method (5). The AA 

sub-portfolio has the highest expected credit exposure and the 3M 2.3SD implied 

default probability stands at 0.0472%, which is a substantial increase from the 

historical default probability estimated by Moody’s which is 0.0034%. Looking at the 

MC(1) and MC(2) results we can say that for a novel methodology the economic loss 

estimates are quite different from the rest (Table 4.14).

Table 4.14 Comparison of the 5 methods using the MC expected credit exposure

A A A A A A B B B

M C  (1 ) 8 ,7 9 7 4 5 ,4 9 2 39 ,731 3 1 ,9 2 4

M C  (2) 5 ,9 2 5 3 0 ,6 3 9 2 6 ,7 5 9 21 ,501

M C  (3) 645 20 ,831 9 ,5 9 9 22 ,291

M C  (4) 1 ,870 18 ,503 13 ,247 2 7 ,5 1 0

M C  (5 ) 3 ,1 8 2 79 ,251 24 ,2 9 1 3 6 ,6 7 6

If we exclude the two most extreme methods, which are (1) and (5) we can easily 

compare the economic loss calculations (Figure 4.6). It is quite clear that methods (3) 

and (4) are very much governed by the upward sloping structure of the default rates, 

since the economic loss profiles are increasing as the credit rating deteriorates. There 

is an exposure effect which can be seen by looking at the AA sub-portfolio where the 

total economic loss is higher than the total economic loss for sub-portfolio A.

This exposure effect, is much more obvious with the integrated method. The highest 

economic loss comes with the AA sub-portfolio which has the highest expected credit 

exposure compared to the rest of the sub-portfolios. We also have to note that using 

the integrated approach the total economic loss per sub-portfolio is higher apart form
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the BBB sub-portfolio. Overall the differences between methods (3) and (4) seem to 

be quite high especially when they are used to calculate the ratio o f capital per sub-

portfolio. This was calculated by dividing the total economic loss to the current MTM 

of the swap sub-portfolios. Only the BBB sub-portfolio has a comparable ratio and 

then the AA sub-portfolio. This means that the integrated approach based on these 

results would allocate a higher capital per swap sub-portfolio, hence reducing the 

return on capital. Although this is not desired by any financial manager it could be 

true. A possible reason is that due to its dynamic nature the proposed integrated 

approach is much faster in capturing changes in the probability of default through the 

evolution of credit spreads.

71

Figure 4.6 Comparison of Total Economic Loss

The integrated approach is a “mixed blessing” because the volatility o f the total 

economic loss figure will be in accordance to the volatility in interest rates and credit 

spreads which is highly advantageous since the volatility o f market rates is captured 71

71 We used (3) and (4) firstly because they’re very similar since in method (2) the option VaR is 
calculated for the 2nd of April of 2004 and the implied default probabilities in method (4) are implied 
using the risk premia for the same date.
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directly, but its not great for capital allocation decisions since a continuous approach 

has to be adopted.

Table 4.15 Comparison of (2) and (4) methods

A A A A A A B B B

M C  (2) 5 ,925 3 0 ,6 3 9 2 6 ,7 5 9 21 ,501

M C  (4 ) 1 ,870 18 ,503 13 ,247 2 7 ,5 1 0

M C  (2 )  /  M T M 2 .1 % 0 .9 % 2 .6 % 2 .2 %

M C  (4 )  /  M T M 0 .7 % 0 .5 % 1.3% 2 .8 %

This new methodology is proven to be comparable to the existing one and one of its 

potential advantages is that back-testing it is quite straightforward. Since we are 

dealing with financial instruments which we can price accurately can always check 

how well the methodology has performed over any time horizon given we have the 

necessary historical data. In contrast the standard methodology, which uses 

probabilities of default is not easy to back-test its efficiency since we need to observe 

actual defaults and calculate the rate at which they happen. This is a process, which 

takes years to implement.

4.5 Summary

The proposed integrated measure is put to the test by estimating the economic loss for 

an actual swap portfolio. The methodology devised in Chapter 4 was designed to 

capture the worst case scenario of full default in 3M time and zero recovery. We 

further extend the methodology to include the recovery rate in the measure. Under the 

proposed integrated measure the three different distributions required to measure 

economic loss are captured by the expected and unexpected movements of the credit 

spread index options. Since the notional o f the credit spread index option is tied with 

the 3M expected credit exposure and its recovery, then by calculating the expected
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exposure of the options and their 2.3SD exposure over 3M we can arrive to the total 

economic loss.

The comparison between the standard approach and the integrated approach proved to 

be interesting. Using the simple proposed method of integrating credit and market risk 

we arrive at very similar results with the use of a single term structure model. 

Furthermore this methodology has the ability to extend or reduce the standard time 

horizon of at least 1-year o f the standard approach. These are of course the main 

advantages o f the integrated methodology. However, there is a disadvantage related to 

our choice o f hedging instrument.

Credit spread index options are not as liquid as one would think. They represent 

approximately 8% of the credit derivatives m arket72 and the bid offer spread is quite 

high. Hence, the cost of dealing in credit spread options is a parameter which might 

need to be taken into account. O f course from a theoretical point o f view is a 

parameter which can be ignored since our methodology assumes hedging of swap 

default risk but not actually doing it unless the necessary signals are there 

Finally the comparison between the HS and multi-step MC to estimate expected credit 

exposures show that for time steps such as 3M the two methods could be comparable. 

However, for longer time periods it would seem that the accuracy of the HS 

simulation to estimate expected credit exposures is decreasing. Hence, the multi-step 

MC is probably the best available method to estimated such future distributions.

72 Various credit derivatives dealers.
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CHAPTER 5 Summary, Discussion and Suggestions for

Further Research

5.1 Introduction

This chapter serves as an aid to the reader by restating the research problems in this 

study. A summary of the results is given and recommendations for future research are 

made.

5.2 Statement of the problem

In chapter 2 we assessed the statistical properties of EUR credit spread indices using 

daily and weekly data. The objective was to decide on a suitable model to capture the 

dynamics of credit spread indices. The appealing features o f the two-factor interest 

rate model by Longstaff and Schwartz (1992) made this choice easier.

In chapter 2 we evaluated the performance of the LS (1992) model, which was used 

for all our pricing applications in chapters 3, and 4. The objectives were:

• To investigate the curve fitting ability o f the LS model based on observed 

bond prices and the stability o f the estimated model parameters over different 

time intervals.

• To test the efficiency of the LS model in pricing interest rate sensitive 

securities, with special focus on European Bond Options.

• To test the ability o f the model to describe the evolution of the short credit 

spread by assuming the credit spread is a stochastic variable.

• To price credit spread options by using the LS model as a “spread based” 

model.
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• To study the ability o f the LS generated credit spread curves to imply 

probabilities of default and rating transition matrices.

In Chapter 3 we analysed the risks inherent in a hypothetical swap portfolio in order 

to devise an integrated measure of market and credit risk. The objective was to use the 

same valuation framework to price the implied default risk of a swap portfolio and 

deduce an integrated measure of market and credit risk.

In chapter 4, the aim was to further extend the use o f the proposed integrated measure 

to provide an integrated credit risk measure for an actual swap portfolio. The second 

objective was to compare this newly proposed measure with current standard 

practices. The final objective was to investigate the efficiency of multi-step MC used 

for exposure calculations over a short time period.

5.3 Summary of the Results

Throughout our research we have implemented a number of methodologies and 

examined a number of empirical issues. This section summarizes the results.

The first study (Chapter 2) “Pricing Interest Rate Sensitive Securities and Credit 

Spread Options using the Longstaff & Schwartz (1992) Model’’, starts by analysing 

statistical and distributional properties o f EUR credit spread indices using weekly and 

daily data between May-01 to May-04.

This analysis suggested that the evolution o f credit spread indices shares many 

properties with the evolution of interest rates. For example, the term structure of their 

volatilities, mean reversion, and the time variation of volatility. The following were 

observed based on the brief statistical analysis of the credit spread indices:

1. EUR Credit Spread Indices are mean-reverting hence for statistical purposes 

the first differences should be used to avoid spurious results.
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2. Their distribution is highly skewed and there is a tendency for the skewness to 

be higher in higher maturities and for kurtosis to be lower in higher maturities 

apart from the lower ratings where there is no clear pattern.

3. The mean o f the one-day percentage changes is highly correlated to the 

respective standard deviation.

4. The kurtosis and the standard deviation have low correlation, suggesting a 

Gaussian probability will not be sufficient for risk management purposes.

5. The volatility o f most credit spread indices exhibit GARCH (1,1) effects. 

Subsequently, the interest rate model (LS 1992) of choice was implemented using 

cross sectional data of short and long-term interest rates. The yield curve estimation 

was performed using the observed discount function. The results show that the LS 

1992 model can fit quite complex yield curve shapes and not just upward, downward 

or humped yield curve shapes. Subsequently, the volatility of the estimated 

parameters was assessed over a period of 4 years, and a comparison between data of 

weekly and daily frequency was performed. The volatility o f the six estimated 

parameters was reduced substantially suggesting the use of weekly data for historical 

simulation purposes.

Interest rate options were priced under the specifications of the LS model. The option 

prices were compared with prices as calculated using the Blacks’ formula yielding 

very low differences for short-term options. Longer-term options exhibited higher 

differences to the option prices obtained using Blacks’ formula.

Using the same estimation methodology we then estimated the spread discount 

function based on observed spread discount factors. Quite complex credit spread 

curves were fitted successfully for different ratings given initial values of the short
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spreads and their GARCH(1,1) estimated volatility. Interestingly, the credit spread 

curve discount function was monotonically increasing.

Subsequently, 3M ATM options on respective credit spreads were priced and they 

were compared to an option strategy with the same delta. The option strategy 

consisted off two bond options: a call on a corporate plus lA a put on a government 

bond. The pricing result proved to be quite accurate relative to the option strategy, 

since small differences were observed.

Based on the estimated credit spread curves and using the JT (1995) model first and 

then the JLT (1997) models we implied default probabilities per rating and maturity. 

The estimation of the spread curves was also performed over a period of over two 

years, providing a time series o f implied default probabilities.

In the next study (Chapter 3) “Integrated Risk Measurement”, using the LS (1992) as 

our pricing framework, an integrated measure of market and credit risk was proposed 

for a hypothetical portfolio o f swaps. The measure is a result o f hedging the default 

risk arising from the 3M exposure of each sub-portfolio. The process of eliminating 

the default risk o f each swap sub-portfolio is quite straightforward and easy to 

implement.

The 3M swap exposure is matched by an offsetting position in respective credit 

spread index options assuming full default and zero recovery. The efficiency of this 

hedging technique was examined through a historical simulation and proved to be 

good. Combining the swap sub-portfolios with their respective CSIOs a portfolio free 

o f default risk was created. The market VaR of which represents the integrated market 

and credit risk measure since the distribution of that portfolio is sensitive to market 

and credit risk factors. Furthermore, the credit part o f the overall portfolio is directly 

linked to the exposure o f the swap sub-portfolio, which is subject to market risk.
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The relationship o f the two types o f risk was further analysed by regressing the 

market VaR of the swap sub-portfolio against the CSIO VaR. The relationship proved 

to be quite weak, hence a standardised approach where a fixed percentage of the swap 

VaR is applied to represent default risk was not possible. The relationship of the 

volatility of swap spreads against the volatility o f credit spread indices was analysed 

as an alternative. The relationship proved to be quite weak.

The next study (Chapter 4) “Integrated Credit Risk Measurement ”, builds upon the 

proposed integrated measure to account for economic loss calculations. The integrated 

approach is compared to current standard practices of calculating the economic loss. 

Current approaches combine the market value distribution of credit exposure with the 

probability o f default and the loss given default (Recovery Rate). These three 

variables are treated as being statistically independent. The expected credit exposure 

is derived from the market value distribution o f the portfolio or position in question, 

whereas the probability of default is modelled using either the structural Merton [] or 

the reduced form approach JLT (1997). The recovery rate is either taken as a constant 

or implied from historical data using pareto distributions. The integrated approach 

proposes the replacement o f the modelling of the probability o f default. Measuring the 

expected credit exposure and applying the recovery rate on that exposure the loos 

amount given default is estimated over any time period in the future without being 

restricted by the 1 year minimum of the standard approach. Subsequently the 

estimated loss amount is used to determine the weight of the CSIO. Using that weight 

(notional) we can measure the expected and unexpected exposure created by the CSIO 

over a pre-specified period o f time. The unexpected exposure can be easily measured 

by the market VaR of the CSIO. Thus, the expected and unexpected loss is the 

expected and unexpected exposure created by the CSIO.
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The comparison between the two methods yielded similar results in the sense that 

total expected loss measure per sub-portfolio was a function o f the credit exposure 

and rating of the counterparts. The level of the losses was different, with the 

integrated approach yielding a higher loss for most of the sub-portfolios. Furthermore, 

the effect of using various default probabilities was examined. When the historical 

default probabilities were used based on the S&P historical rating transition matrix the 

loss increased inversely as the rating counterparts increased. When the implied default 

probabilities were used the same result was observed only this time expected credit 

exposure had much more of an effect to the estimated total loss.

A further comparison was made on the way expected exposures are calculated. The 

3M exposures were measured using a HS and a multi-step MC. The resulting 

exposures were different across all sub-portfolios, with the multi-step MC being 

higher in some cases (AAA and A sub-portfolios) and lower in others (AA and BBB).

5.4 Discussions of the Results

The purpose o f this research was to create an integrated measure which accounts for 

both market and credit risk in derivatives portfolios. As a special case interest rate 

swaps were examined.

The starting point was the evaluation of the characteristics of credit spread indices in 

the Euro area. The study of the properties of the EUR credit spread indices gave us a 

fairly accurate picture of their dynamics. The high persistence o f volatility in their 

time series coupled with their mean reverting characteristics suggested a term 

structure stochastic volatility model which can accurately capture the complicated 

curve shapes formed by credit spread indices and the underlying credit spreads.

The distributional properties of the credit spread indices were also found to be 

deviating from the Gaussian distribution. The high degree of skewness and kurtosis in
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the data as evident in credit spreads as well, Pedrosa & Roll (1998) implies that 

standard risk management techniques such as VaR under the normality assumption 

could be far fro accurate. In essence, this result shows that the market risk is not 

diversifiable using standard portfolio theory.

The next step was to investigate the term structure stochastic volatility model of 

choice. It was quite clear that the LS model can fit many different yield curves 

consistent with the volatility structure. The complex yield curves shapes that can be 

fitted with LS model worked to our advantage since the term structure of credit 

spreads are quite complex, supporting even further the use o f the LS model to 

describe the evolution o f credit spreads. A problem in using such a model for the 

evolution of credit spreads is that in theory lower ratings could have lower spreads 

than higher ratings. The only guarantee is the level o f the short credit spread. If the 

credit spread is always higher for lower ratings then the resulting spread curves will 

be in accordance with the no-arbitrage conditions, which state that for a lower rated 

security a higher level of return is required.

The LS 1992 model proved to be suitable for pricing interest rate options since it 

provides a closed form solution for discount bond options. The closed form solution 

involves the modified Bessel function o f order (r\ -  1/2) and (y -  1/2) where r\ and 

y are two of the six parameters which are easily estimated by fitting the observed 

discount function. However, fitting the observed discount function over a 4 years 

using both weekly and daily data, yielded lower than Vi values for these two 

parameters. Hence, the modified Bessel functions produced complex numbers. Thus, 

a different method, which approximates the dynamics of the short rate was used to 

price interest rate options. The methodology was based on first implying the risk 

neutral probability density o f the short rate conditional to its volatility using a Monte
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Carlo simulation, and then using the implied probabilities to obtain the discounted 

risk neutral option prices. The price comparison to the Black’s formula seemed that 

pricing was quite good especially for short-term options. For longer-term options the 

differences were greater.

The estimate implied default probabilities based on the LS credit spread curves share 

the same volatility with the credit spreads. The time series of implied default 

probabilities show that no-arbitrage conditions are maintained throughout the 

examined period. For example, higher ratings exhibited lower implied probabilities of 

default apart from a very short period of time where the implied probability of default 

of rating A was higher than the BBB and the no-arbitrage condition was violated. The 

interesting issue with this violation is that it can be linked to the period of 

examination. Spread levels were generally quite low, lower than their long term 

averages. This could result in mispricings since investors and financial managers 

become complacent about risk, thinking that this low spread environment could go on 

for a long time, hence arranging their short-term borrowings with different rated 

counterparts than usual, thereby shifting liquidity from their regular counterparts to 

others.

The implied transition matrix was clearly different to the historical and the time series 

of eigenvalues show that there are fluctuations in their values but they are closely 

correlated to the credit market rather than past default history. The use o f the LS 

estimated spread curves to imply transition matrices is rather interesting because both 

the level of credit spread and its volatility are reflected in the result, hence providing 

a more dynamic implied estimate than by simply using corporate bond prices for 

estimation.
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Once the pricing framework was analysed the next step was to devise an integrated 

measure of credit and market risk for derivatives using as an example interest rate 

swaps. In search o f a dynamic approach of managing exposures generated by holding 

IRS portfolios the integrated measure was constructed. The hedging of the exposures 

created by an IRS portfolio was the starting point. The dynamic hedging o f different 

rated swap portfolios with credit spread options provided a new portfolio of swaps 

and credit spread options. The new portfolio consists of the market value of the swaps 

and the implied price o f default risk o f holding the specific swap portfolio relative to 

the counterparts’ credit rating. The swap exposures and the credit rating of a 

counterpart are related through the relevant hedging amount applied to hedge the 

default risk of the swap portfolio. The relationship between the two is proportional 

and dynamic for a given time horizon. The market value distribution of the “new 

portfolio” is sensitive to both market i.e. interest rates and credit risk factors i.e. credit 

spreads. Thus the proposed integrated measure was a VaR measure o f the new 

portfolio for any given time horizon.

The advantage o f this measure is that it is quite easy to implement in theory. The 

reason is that most financial institutions run market VaR as a daily operation so all the 

infrastructure is already in place. The point where the swap exposure is linked to the 

notional of the required option is where the implied default risk of each swap sub-

portfolio is being measured. This method is water tight in many respects because 

default risk is directly linked to the credit spread and the probability of default is 

linked to the credit spread and vice versa. So if  the spread widens the probability of 

default increases and vice versa. Now if  the exposure remains quite low and the credit 

spread widens then the implied probability o f default increases and the option 

premium increases, thus accounting for the increases in the probability of default.
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The relationship between the market VaR of the swap sub-portfolio to the credit 

spread option VaR is quite interesting because it can give signals to a risk manager of 

increasingly high correlation between the two. This would also serve as a signal for 

hedging decisions.

After the proposal of the integrated measure we extended our methodology in 

accounting for the total expected loss of an actual swap portfolio. Up to date the only 

way to account for both market and credit risk in OTC derivatives portfolios is 

through running Monte Carlo simulations for multiple time steps in the future and 

assign counterpart exposure limits. Although, this is an overall accurate way of 

accounting for both types o f risk is also computationally intense and requires vast 

investment in human capital and systems. In comparison the integrated approach 

provides a close result to this standard approach assumed mainly by large financial 

institutions. Both approaches provided closely related results. The structure in both 

approaches was such that the total economic loss was a function o f the expected credit 

exposure and probability o f default, and it was observed by the relevant amounts. This 

means that highest expected loss was observed with the highest expected exposure 

and the probability of default prevailed when the sub-portfolios had similar expected 

credit exposures. The advantage o f the integrated approach is that is a simple and 

quite accurate way (as proved by the comparison) o f estimating expected economic 

losses in IRS portfolios over a number of time horizons. The problem with the 

standard approach is that it solely relies in the method by which the default 

probabilities are estimated whereas the proposed integrated approach relies on the 

accurate pricing o f credit spread options.
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The HS and multi-step MC comparison led us to two conclusions. Multi-step MC 

works better for larger time periods and for shorter time periods i.e. 3M they yield 

comparable results.

The understanding of risks is of primary importance to financial practitioners and 

regulators alike. Ever since BIS 1998 was published and enforced, financial 

institutions and other market participants have been investing heavily in research and 

risk management systems. A different force, which led to this huge investment was 

the increase in the complexity of risks. This growth in complexity was matched by the 

growth of transactions especially in the derivatives OTC market. The new accord, 

which was first published in 2000, was an attempt for creating greater transparency in 

these markets. With transparency came the proposal of more realistic and accurate 

treatment o f all risks associated with transacting in the OTC derivatives markets. It is 

a well-known fact among practitioners and academics that exposures created by OTC 

derivatives are subject to a number of risks including the risk o f default. The 

interaction o f this risk o f default with the market risk of OTC derivatives in particular 

and how it is measured is the focus o f many financial institutions and academics since 

it is one of the main requirements of the new capital accord. This research attempted 

to shed some light in how integrated risk measurement is currently performed and 

also proposed and alternative methodology, which can be implemented by most 

financial institutions with a good degree of accuracy.

5.5 Recommendations o f Further Research

The statistical overview (Chapter 2) should be extended in examining the half-life of 

mean reversion over longer time periods. The evolution o f credit spread indices and 

their underlying credit spreads can be examined even further by using an extended
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version of the Longstaff and Schwartz (1993) model. Koutmos G., (2002) modelled 

the dynamics of MBS spreads using an extended version o f LS (1992) in order to 

facilitate the better management of mortgage portfolios.

Although the LS (1992) model provides a sound theoretical framework for pricing 

interest rate sensitive securities, its calibration is still an important issue. The 

goodness o f fit of the generated theoretical curves to the observed is quite good when 

a mixed historical-implied approach was used. However, using the closed form 

solution to price interest rate options is not always possible by using the estimated 

parameters. Thus, a calibration method, which yields the suitable parameters for the 

option pricing formula should be found. This will facilitate in transforming the LS 

(1992) to a real-time trading tool.

Using an interest rate model to describe the dynamics of credit spreads is something 

that has been tried before. Duffle and Singleton (1994) used the CIR (1985) square 

root process to model the evolution of credit spreads. The use of the LS (1992) model 

for the same purpose provides a better framework since it’s a two-factor mean 

reverting model able to capture the dynamics of credit spreads. It is quite important to 

investigate the model’s ability to price credit spread options by comparing it to 

current approaches o f pricing credit spread options. Schonbucher (1998) used a 

numerical method based on the two-factor Hull and White model incorporating 

stochastic volatility. A comparison between the LS (1992) and the proposed pricing 

methodology by Schonbucher (1998) would be interesting because Schonbucher is 

modelling the intensity function and not the credit spread directly as we did.

Currently there are two methods of estimating joint default probabilities. One is using 

historical equity correlations (structural approach) and the other is by using a 

historical joint rating transition matrix and implying the joint default probabilities

202



based on market prices (reduced form approach). In the same way implied default 

probabilities were estimated based on the spread curves, implied joint default 

probabilities can be estimated based on the implied correlation across the term 

structure of spread curves. This implied estimation will provide a better overall 

picture o f the probability of default as estimated based on the observed spread rather 

than observed bond prices.

Since the main purpose o f this dissertation was to devise an integrated measure for 

derivatives, the methodology proposed should be extended to other asset classes such 

as FX and equity. By using the appropriate stochastic models for the evolution o f the 

respective market rates one should be able to apply the same principles of the 

integrated approach to create an integrated credit and market risk measure for these 

asset classes as well. This will provide a total firm-wide measure o f market and credit 

risk. Furthermore, the relationship between the two risks as being measure in Chapter 

4 should be investigated further using longer time series o f credit spread indices in 

order to fully characterise the relationship from an econometric standpoint.
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Appendices

Appendix 1 List o f Bonds 07/05/04

Coupon Coupon
Frequency Maturity Time to 

Maturity Name Price Moody's
Rating

2 1 2 0 - 0 c t -0 4 1.48 G E R M A N  T R E A S U R Y  B IL L 9 9 .0 6 6 B e n c h m a rk

2.5 1 1 8 -M ar-0 5 1.89 B U N D E S S C H A T Z A N W E IS U N G E N 1 00 .225 B e n c h m a rk

2 1 1 0 -M a r-0 6 2 .88 B U N D E S S C H A T Z A N W E IS U N G E N 98.971 B e n c h m a rk

4 1 1 6 -F eb -0 7 3 .8 4 B U N D E S O B L IG A T IO N 10 2 .7 5 4 B e n c h m a rk

4 .2 5 1 1 5 -F eb -0 8 4 .85 B U N D E S O B L IG A T IO N 103 .42 B e n c h m a rk

3 .25 1 1 7 -A p r-0 9 6 .03 B U N D E S O B L IG A T IO N 9 8 .5 9 6 B e n c h m a rk

5 .3 7 5 1 4 -J a n -1 0 6 .7 6 B U N D E S R E P U B . D E U T S C H L A N D 1 08 .367 B e n c h m a rk

5 .25 1 4 - J a n - l 1 7 .78 B U N D E S R E P U B . D E U T S C H L A N D 107 .77 B e n c h m a rk

5 1 4 -J a n -1 2 8 .79 B U N D E S R E P U B . D E U T S C H L A N D 10 5 .9 9 4 B e n c h m a rk

4 .5 1 4 -Ja n -1 3 9.81 B U N D E S R E P U B . D E U T S C H L A N D 10 2 .0 4 4 B e n c h m a rk

4 .2 5 1 4 -J a n -1 4 10 .82 B U N D E S R E P U B . D E U T S C H L A N D 9 9 .5 5 5 B e n c h m a rk

6 .25 1 4 -J a n -2 4 2 0 .9 6 B U N D E S R E P U B . D E U T S C H L A N D 1 17 .212 B e n c h m a rk

4 .7 5 1 4 -J u l-3 4 31.61 B U N D E S R E P U B . D E U T S C H L A N D 9 6 .1 4 4 B e n c h m a rk

4 .5 1 11 -A u g -0 4 0 .2 7 L E A S E  A S S E T  B A C K E D  S E C S 100 .69 A A A

5 1 2 8 -Ja n -0 5 0 .7 4 V A U B A N  M O B IL IS A T IO N  G A R 101 .94 A A A

7.4 1 13 -A p r-0 5 0 .95 C S S E  D E  R E F  D E  L 'H A B IT A T 104 .54 A A A

3.6 2 5 1 1 9 -S ep -0 5 1.39 C D C  IX IS 101 .47 A A A

2 .75 1 6 -M a r-0 6 1.86 C IF  E U R O M O R T G A G E 100 .07 A A A

6 1 6 -J u n -0 6 2.11 C S S E  D E  R E F  D E  L ’H A B IT A T 106.21 A A A

6 .7 5 1 2 4 -J u l-0 6 2 .2 4 F I M O R T G A G E  S E C U R IT IE S 108 .10 A A A

4 1 3 0 - 0 c t -0 6 2 .52 V A U B A N  M O B IL IS A T IO N  G A R 102 .18 A A A

4 1 3 0 -Ju l-0 7 3 .28 V A U B A N  M O B IL IS A T IO N  G A R 101 .98 A A A

3.5 1 12-NOV-07 3 .57 C IF  E U R O M O R T G A G E 100 .74 A A A

5.3 7 5 1 2 8 -J a n -0 8 3 .78 V A U B A N  M O B IL IS A T IO N  G A R 106.43 A A A

5 1 2 5 -A p r-0 8 4 .03 C S S E  D E  R E F  D E  L 'H A B IT A T 105 .67 A A A

2 .75 1 2 6 -J u n -0 8 4 .2 0 C D C  IX IS 9 7 .2 2 A A A

5 1 15 -Ju l-0 8 4 .25 C O L O N N A D E  S E C U R IT IE S  B V 105 .49 A A A

4 .4 1 9 -O c t-0 8 4 .4 9 C D C  F IN A N C E  - C D C  IX IS 102 .98 A A A

4.5 1 2 8 -O c t-0 8 4 .5 4 V A U B A N  M O B IL IS A T IO N  G A R 103.41 A A A

4 .7 5 1 2 9 -O c t-0 8 4 .5 4 C IF  E U R O M O R T G A G E 104 .76 A A A

4.5 1 12-NOV-08 4 .5 8 S A G E S S 103 .44 A A A

4 .3 7 5 1 2 8 -A p r-0 9 5.05 V A U B A N  M O B IL IS A T IO N  G A R 102 .27 A A A

4 .2 5 1 1 5 -Ju l-0 9 5 .2 6 C O L O N N A D E  S E C U R IT IE S  B V 101.91 A A A

5.8 1 2 1 -J u l-0 9 5 .28 C D C  F IN A N C E  - C D C  IX IS 109 .16 A A A

4 1 2 5 -O c t-0 9 5 .55 C A IS S E  R E F IN A N C E  H Y P O T H E 100 .67 A A A

5.8 7 5 1 15 - A p r -10 6 .03 C O L O N N A D E  S E C U R IT IE S  B V 109 .96 A A A

5.75 1 2 5 - A p r -10 6 .05 C S S E  D E  R E F  D E  L 'H A B IT A T 108 .76 A A A

3.6 2 5 1 1 6 -Ju l-1 0 6 .28 C IF  E U R O M O R T G A G E 98.21 A A A

6 .1 2 5 1 2 -A u g -1 0 6 .33 C D C  IX IS  C A P IT A L  M A R K E T S 110 .48 A A A

4 .3 7 5 1 2 5 - A p r -11 7 .0 7 C R E D IT  D 'E Q U IP E M E N T  P M E 102 .04 A A A

4 .2 1 2 5 -A p r - l  1 7 .0 7 C S S E  D E  R E F  D E  L 'H A B IT A T 100 .59 A A A

5 .25 1 2 7 -A p r - l  1 7 .07 S A G E S S 106 .46 A A A

5 .3 7 5 1 6 - J u l- l  1 7 .27 C D C  IX IS 107 .37 A A A

6 1 2 8 -O c t- l  1 7 .5 8 V A U B A N  M O B IL IS A T IO N  G A R 11 0 .7 9 A A A

9 1 4 -Ju n -1 2 8 .1 9 C D C  F IN A N C E  - C D C  IX IS 131 .62 A A A
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5 .25 1 3 0 -Ju l-1 2 8 .35 V A U B A N  M O B IL IS A T IO N  G A R 105 .69 A A A

4 .6 2 5 1 11 -O c t - 12 8 .55 C IF  E U R O M O R T G A G E 102.22 A A A

4 .2 5 1 2 5 -F e b -1 3 8 .93 S A G E S S 9 8 .4 6 A A A

3 .7 5 1 2 9 - J u l - l  3 9 .3 6 V A U B A N  M O B IL IS A T IO N  G A R 9 4 .0 7 A A A

5 1 2 5 -O c t-1 3 9.61 C S S E  D E  R E F  D E  L 'H A B IT A T 104.11 A A A

4 .6 2 5 1 2 9 -O c t-1 3 9 .6 2 G E  C A P IT A L  E U R O  F U N D IN G 100 .35 A A A

4.5 1 1 0 -D e c -13 9 .73 C IF  E U R O M O R T G A G E 100 .30 A A A

4 .2 5 1 2 5 -O c t-1 4 10 .62 C S S E  D E  R E F  D E  L ’H A B IT A T 9 7 .5 4 A A A

5.6 2 5 1 5 -O c t-0 4 0 .4 2 T O T A L  S .A . 101 .27 A A +

5 .3 7 5 1 2 -Ju n -0 5 1.09 T O T A L  S .A . 1 0 2 .9 7 9 7 A A +

5.75 1 2 9 -S e p -0 5 1.42 T O T A L  S .A . 1 0 4 .1 9 9 4 A A +

3 .8 7 5 1 5 -M a y -0 6 2 .02 T O T A L  S .A . 1 0 2 .0 2 5 6 4 6 A A +

3.5 1 2 8 -Ja n -0 8 3 .78 T O T A L  C A P IT A L  SA 1 0 0 .3 9 7 2 A A +

6 .75 1 2 5 -O c t-0 8 4 .53 T O T A L  S .A . 1 1 2 .359751 A A +

4.5 1 2 3 -M a r-0 9 4 .95 E L F  A Q U IT A IN E 1 0 3 .1 6 0 1 1 1 5 A A +

5 .1 2 5 1 21 -Ju l-0 9 5 .28 T O T A L  S .A . 1 0 5 .8 5 2 5 4 0 2 A A +

3 .75 1 11-F e b -10 5.85 T O T A L  C A P IT A L  S A 9 8 .8 4 6 1 8 A A +

6 1 1 5 -Ju n -1 0 6 .1 9 D E U T S C H E  B A H N  F IN A N C E  B V 1 1 0 .0 9 5 8 1 9 A A +

5 .3 7 5 1 3 1 - J u l -12 8 .35 D E U T S C H E  B A H N  F IN A N C E  B V 1 0 6 .2 9 0 6 8 3 A A +

4 1 15 -J u l- l  3 9 .32 C O R E S 9 6 .0 7 0 4 7 3 2 5 A A +

5 .1 2 5 1 2 8 -N o v -1 3 9 .70 D E U T S C H E  B A H N  F IN A N C E  B V 1 0 4 .1 9 4 6 4 2 A A +

4 .2 5 1 8 - J u l - l  5 11.33 D E U T S C H E  B A H N  F IN A N C E  B V 9 5 .4 0 9 1 8 5 A A +

4 .7 5 1 1 4 -M ar-1 8 14.05 D E U T S C H E  B A H N  F IN A N C E  B V 9 9 .0 6 2 5 A A +

5.75 1 2 5 -Ju l-0 5 1.23 B A S F  A G 1 0 3 .7 6 3 3 A A -

5 1 4 -J u l-0 6 2 .1 9 S IE M E N S  F IN A N C IE R IN G S M A T 1 0 4 .1 4 0 3 A A -

5 .25 1 1 9 -Ju l-0 6 2 .23 R O B E R T  B O S C H  G M B H 1 0 4 .6 6 1 2 A A -

5.5 1 12 -M a r-0 7 2 .8 9 S IE M E N S  F IN A N C IE R IN G S M A T 107 .501 A A -

6 1 12-NOV-09 5 .60 A G B A R  IN T E R N A T IO N A L  B V 1 0 9 .5 8 0 7 9 4 5 A A -

6 .1 2 5 1 9 -Ju n -1 0 6 .18 E N I S P A 1 1 1 .2 3 6 4 0 4 5 A A -

3.5 1 8 -Ju l-1 0 6 .2 6 B A S F  A G 97 .0 8 9 3 1 A A -

5 .75 1 4 - J u l - l  1 7 .2 6 S IE M E N S  F IN A N C IE R IN G S M A T 1 0 6 .0 4 9 1 0 8 5 A A -

5 .25 1 3 -Ju l-1 2 8 .28 P O S T E  IT A L IA N E  S P A 1 0 6 .1 7 5 3 2 8 5 A A -

4 .6 2 5 1 3 0 -A p r-1 3 9.11 E N I S P A 100 .43 A A -

4 .3 7 5 1 8 -Ju I-1 3 9 .30 S C H IP H O L  N E D E R L A N D  B .V . 9 8 .3 4 5 8 6 8 5 A A -

5 1 1 2 -Ju l-0 4 0 .1 8 M E T R O  F IN A N C E  B V 1 0 0 .4 5 9 4 9 4 B B B

4 .3 7 5 1 1 5 -Ju l-0 4 0 .1 9 L A F A R G E 100 .1 3 2 5 B B B

5.1 1 3 -F eb -0 5 0 .7 6 L A F A R G E 1 0 1 .7 7 2 8 8 3 7 B B B

4 .6 2 5 1 4 -M a r-0 5 0 .8 4 L A F A R G E  SA 1 0 1 .6 6 2 2 8 7 B B B

5 .8 7 5 1 1 4 -A p r-0 5 0 .95 C A S IN O  G U IC H A R D  P E R R A C H 1 02 .823 B B B

5 .8 7 5 1 4 -J u l-0 5 1.18 C O C A  C O L A  E R F R IS C H U N G E T R 1 0 4 .3 2 5 1 3 9 B B B

4 .7 5 1 8-NOV-05 1.53 V E O L IA  E N V IR O N N E M E N T 1 0 2 .8 8 3 2 9 4 B B B

5 .1 2 5 1 1 6 -D ec -0 5 1.63 W O L T E R S  K L U W E R  N V 1 0 2 .7 5 5 0 1 3 B B B

5.8 1 2 0 -D e c -0 5 1.64 R E N A U L T  S .A . 1 0 4 .3 2 6 6 9 B B B

5.75 1 9 -M a r-0 6 1.86 M E T R O  F IN A N C E  B V 1 0 4 .4 9 8 8 3 2 5 B B B

5.125 1 2 6 -J u n -0 6 2 .1 7 L A F A R G E  SA 1 0 4 .0 0 2 8 0 9 B B B

5 .75 1 5 -Ju l-0 6 2 .1 9 A C C O R 1 0 4 .8 0 9 0 9 3 5 B B B

4 .7 5 1 6 -J u l-0 6 2 .1 9 C A S IN O  G U IC H A R D  P E R R A C H 1 0 3 .2 5 3 6 9 8 B B B

5.25 1 1 4 -Ju l-0 6 2 .22 T H Y S S E N K R U P P  F IN A N C E  B V 1 0 3 .2 7 3 2 8 8 B B B

5 .1 2 5 1 21 -Ju l-0 6 2 .2 4 R E N A U L T  S .A . 1 0 4 .0 9 5 0 8 9 5 B B B

5.75 1 4 -D e c -0 6 2.61 R E P S O L  IN T L  F IN A N C E 1 0 5 .9 3 4 7 2 7 B B B

5 1 2 0 -D e c -0 6 2 .6 6 A C C O R 1 0 3 .521971 B B B

6 1 7 -M a y -0 7 3 .04 IM E R Y S S A 1 0 6 .9 5 7 0 2 1 5 B B B
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6 .25 1 1 l- J u n -0 7 3 .14 W O L T E R S  K L U W E R  N V 1 0 5 .6 4 6 1 7 4 B B B

6 .3 7 5 1 2 6 -J u l-0 7 3 .2 6 L A F A R G E  SA 1 0 8 .0797 B B B

6 .3 7 5 1 19 -O c t-0 7 3 .50 R E N A U L T  S .A . 1 0 8 .6 5 0 0 3 4 B B B

5 .8 7 5 1 23-N O V -07 3 .60 C A S IN O  G U IC H A R D  P E R R A C H 106 .73 B B B

5.4 1 3 -F e b -0 8 3 .80 L A F A R G E  SA 1 0 5 .2 1 3 7 5 2 B B B

5 .1 2 5 1 1 3 -F eb -0 8 3 .83 M E T R O  A G 104 .23 B B B

6 1 6 -M a r-0 8 3 .8 9 C A S IN O  G U IC H A R D  P E R R A C H 107 .75 B B B

6 .1 2 5 1 1 0 -A p r-0 8 3 .98 A R C E L O R  F IN A N C E 107.31 B B B

5 .8 7 5 1 2 7 -Ju n -0 8 4 .2 0 V E O L IA  E N V IR O N N E M E N T 1 0 7 .6 1 1 9 B B B

5 .8 7 5 1 6 -N 0 V-O8 4 .5 7 L A F A R G E  SA 1 0 7 .2 1 6 4 B B B

4.5 1 19-NOV-08 4 .6 0 S E S  G L O B A L  SA 1 0 2 .1875 B B B

4 .8 1 2 2 -D e c -08 4 .6 9 L O T T O M A T IC A  S P A 1 0 0 .2 6 3 2 4 9 5 B B B

6 .1 2 5 1 2 6 -J u n -0 9 5.21 R E N A U L T  S .A . 1 0 8 .7 2 2 7 B B B

5 .8 7 5 1 1 0 -Ju l-0 9 5 .25 S O C IE T E  D E S  C IM E N T S  F R A N 1 0 6 .7 6 6 8 6 B B B

6 .35 1 1-O c t-0 9 5 .48 U P M -K Y M M E N E  C O R P 1 0 9 .4 4 3 9 3 7 B B B

5 .25 1 2 8 -A p r-1 0 6 .0 6 C A S IN O  G U IC H A R D  P E R R A C H 1 0 3 .8 9 5 2 B B B

6 1 5 -M a y -1 0 6 .08 R E P S O L  IN T L  F IN A N C E  B .V . 108 .08 B B B

4 .6 2 5 1 2 8 -M a y -1 0 6 .1 4 R E N A U L T  S .A . 1 0 1 .1 3 9 4 B B B

5 .1 2 5 1 2 4 -S e p -1 0 6 .48 A R C E L O R  F IN A N C E 1 0 2 .1968 B B B

6 .1 2 5 1 2 3 -J a n -1 2 7 .83 U P M -K Y M M E N E  C O R P 1 0 8 .1 6 5 7 7 6 B B B

5 .8 7 5 1 1-F e b -12 7 .85 V E O L IA  E N V IR O N N E M E N T 1 0 7 .2 9 2 2 B B B

6 1 2 7 -F e b -1 2 7 .92 C A S IN O  G U IC H A R D  P E R R A C H 1 0 6 .6 2 4 5 B B B

4 .8 7 5 1 2 8 -M a y -1 3 9 .1 9 V E O L IA  E N V IR O N N E M E N T 9 9 .4 4 1 5 4 B B B

5 1 2 2 - J u l - 13 9 .3 4 R E P S O L  IN T L  F IN A N C E 9 9 .9 9 B B B

5 .4 4 8 1 4 -D e c -13 9 .72 L A F A R G E  SA 10 2 .5 6 B B B

5 .3 7 5 1 2 8 -M a y -18 14.26 V E O L IA  E N V IR O N N E M E N T 9 8 .7 5 B B B

6 .1 2 5 1 25-N O V -33 29 .9 8 V E O L IA  E N V IR O N N E M E N T 9 9 .7 6 B B B

Appendix 2 FMC definition (Bloomberg)

FMC curves are created using prices from new issue calendars, trading/portfolio 

systems, dealers, brokers, and evaluation services which are fed directly into the 

specified bond sector databases on an overnight basis. All prices are used.

All bonds for each sector are then subject to option adjusted spread (OAS) analysis 

and the option-free yields are then plotted to from the fair market yield curve without 

any yields being distorted by embedded calls, puts, or sinks. This allows bonds with 

very different structures to be compared on an equivalent basis. A best fit curve is 

then drawn from the option-free yields, resulting in a specific yield curve for each 

bond category.

Debt issues are divided into hundreds o f sectors that are grouped by several variables 

such as rating or industry type. The sectors are numbered, and an option-free yield
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curve is constructed daily for each sector. The ratings categories for each sector are 

expressed as Bloomberg Composite Ratings, which are blends o f Moody’s Investor 

Service and Standard & Poor’s ratings.

COMP MOODY’S S&P

AAA Aaa AAA

AA1 Aal AA+

AA2 Aa2 AA

AA3 Aa3 AA-

A l A1 A+

A2 A2 A

A3 A3 A-

BBB1 Baal BBB+

BBB2 Baa2 BBB

BBB3 Baa3 BBB-

BB1 Bal BB+

BB2 Ba3 BB

BB3 Ba3 BB-

B1 B1 B+

B2 B2 B

B3 B3 B-

CCC1 Caal CCC+

CCC2 Caa2 ccc
CCC3 Caa3 ccc-

Appendix 3 Bonds and Bootstrapping

Bond List used for the 16/05/01 LS estimation:

Bloomberg Code Coupon Coupon Frequency Currency Maturity Time to Maturity/Years
EC236643 Corp 4.5 Annual EUR 15-Mar-02 0.88
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EC357165 Corp 4.25 Annual EUR 14-Mar-03 1.89
EC103285 Corp 3.25 Annual EUR 17-Feb-04 2.84
EC 199471 Corp 4.25 Annual EUR 18-Feb-05 3.86
EC284146 Corp 5 Annual EUR 17-Feb-06 4.87
GG729023 Corp 6 Annual EUR 4-Jan-07 5.76
GG729377 Corp 5.25 Annual EUR 4-Jan-08 6.78
EC085455 Corp 3.75 Annual EUR 4-Jan-09 7.79
EC 189167 Corp 5.375 Annual EUR 4-Jan-10 8.81
EC300211 Corp 5.25 Annual EUR 4-Jan-l1 9.82
ZZ207101 Corp 6 Annual EUR 20-Jun-16 15.36

Bootstrapping of coupon Bonds:

Pt  is the price o f the coupon bond. First we compute the P(t,T) and since the coupon 

frequency is annual and the face value 100:

P(tT) = X
c 100

( l  +  _yr ) r

where, y T is the yield to worst and c is the coupon. Then:

/> = (c  + 100)£>F(l)

P{2) = cDF( 1) + (c + 100)£>F(2)

F(10) = cDF{ 1) + cDF( 2) + .... + (c + 100)F>F(10)

For the 11, 12, 13 and 14 maturities we used linear interpolation. After that we 

calculated the 15Y zero coupon bond.

Appendix 4 Random Number Generation

The following are two uniform random numbers in [-1,1]:

vj = 207-1 v, = 2F -1  (5.7)

The following was performed in order to generate the required standard normal 

numbers.
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S = vf + vl
if  S > 1 start again

if S < 1 then v2 ̂ /((-2 In S) / S)

both v ,^/((-2  In / *S) and v, ̂ /((-2 In 5) / -S) arei.i.d

Appendix 5 VB code of Jacobi Function

Option Explicit 
Option Base 1

Function Matrixldentity(n As Integer)
' Returns the (nxn) Identity Matrix 

Dim i As Integer 
Dim Imat() As Double 
ReDim Imat(n, n)
For i = 1 To n 

Imat(i, i) = 1 
Next i
Matrixldentity = Imat 

End Function

Function MatrixTrace(Xmat)
' Returns the trace of a matrix (sum of elements on leading diagonal) 

Dim sum
Dim i As Integer, n As Integer 
n = Xmat.Columns.Count 
sum = 0 
For i -  1 To n

sum = sum + Xmat(i, i)
Next i
MatrixTrace = sum 

End Function

Function MatrixUTSumSq(Xmat)
' Returns the Sum of Squares of the Upper Triangle o f a Matrix 

Dim sum
Dim i As Integer, j As Integer, n As Integer 
n = Sqr( Application. Count(Xmat)) 
sum = 0 
For i = 1 To n 

For j = i + 1 To n 
sum = sum + (Xmat(i, j) A 2)
Next j 

Next i
MatrixUTSumSq = sum 

End Function
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Function Jacobirvec(n As Integer, Athis)
' Returns vector containing mr, me and jrad
' These are the row and column vectors and the angle of rotation for the P matrix 

Dim maxval, jrad
Dim i As Integer, j As Integer, mr As Integer, me As Integer 
Dim Awork() As Variant 
ReDim Awork(n, n) 
maxval = -1 
mr = -1 
me = -1 
For i = 1 To n 

For j = i + 1 To n
Awork(i, j) = Abs(Athis(i, j))
If Awork(i, j) > maxval Then 

maxval = Awork(i, j) 
mr = i 
me = j 

End If 
Next j 

Next i
If Athis(mr, mr) = Athis(mc, me) Then 

jrad = 0.25 * Application.Pi() * Sgn(Athis(mr, me))
Else

jrad = 0.5 * Atn(2 * Athis(mr, me) / (Athis(mr, mr) - Athis(mc, me)))
End If
Jacobirvec = Array(mr, me, jrad)

End Function

Function Jacob iPmat(n As Integer, rthis)
' Returns the rotation Pthis matrix 
' Uses Matrixldentity in 
' Uses Jacobirvec fn 

Dim Pthis As Variant 
Pthis = Matrixldentity(n)
Pthis(rthis(l), rthis(l)) = Cos(rthis(3))
Pthis(rthis(2), rthis(l)) = Sin(rthis(3))
Pthis(rthis(l), rthis(2)) = -Sin(rthis(3))
Pthis(rthis(2), rthis(2)) = Cos(rthis(3))
JacobiPmat = Pthis 

End Function

Function JacobiAmat(n As Integer, Athis)
' Returns Anext matrix, updated using the P rotation matrix 
' Uses Jacobirvec fn 
' Uses JacobiPmat fn

Dim rthis As Variant, Pthis As Variant, Anext As Variant 
rthis = Jacobirvec(n, Athis)
Pthis = JacobiPmat(n, rthis)
Anext = Application.MMult(Application.Transpose(Pthis),

Application.MMult(Athis, Pthis))
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Jacobi Amat = Anext 
End Function

Function Eigenvaluesevec(Amat, atol)
' Uses the Jacobi method to get the eigenvalues for a symmetric matrix 
' Amat is rotated (using the P matrix) until its off-diagonal elements are minimal 
' Uses MatrixUTSumSq fn 
' Uses JacobiAmat fn

Application.Volatile (False)
Dim asumsq
Dim i As Integer, n As Integer, r As Integer 
Dim evec() As Variant 
Dim Anext As Variant 
n = Sqr(Application.Count(Amat)) 
r = 0
asumsq = MatrixUTSumSq(Amat)
Do While asumsq > atol

Anext = JacobiAmat(n, Amat) 
asumsq = MatrixUTSumSq(Anext)
Amat = Anext 
r = r + 1 

Loop
ReDim evec(n)
For i = 1 To n

evec(i) = Amat(i, i)
Next i
Eigenvaluesevec = evec 

End Function

Function JacobiVmat(n As Integer, Athis, Vthis)
' Returns Vnext matrix
' Keeps track o f the eigenvectors during the rotations 
' Uses Jacobirvec fn 
' Uses JacobiPmat in

Dim rthis As Variant, Pthis As Variant, Vnext As Variant 
rthis = Jacobirvec(n, Athis)
Pthis = JacobiPmat(n, rthis)
Vnext = Application.MMult(Vthis, Pthis)
JacobiVmat = Vnext 

End Function

Function EigenvectorsEmat(Amat, atol)
' Uses the Jacobi method to get the eigenvectors for a symmetric matrix
' Similar to eigenvalue function, but with additional V matrix updated with each
rotation
' Uses MatrixUTSumSq fn 
' Uses JacobiAmat fn 
' Uses JacobiVmat fn 
' Uses Matrixldentity fn 

Application.Volatile (False)

211



Dim asumsq
Dim n As Integer, r As Integer
Dim Anext As Variant, Vmat As Variant, Vnext As Variant 
n = Sqr(Application.Count(Amat)) 
r = 0
Vmat = Matrixldentity(n) 
asumsq = MatrixUTSumSq(Amat)
Do While asumsq > atol

Anext = JacobiAmat(n, Amat)
Vnext = JacobiVmat(n, Amat, Vmat) 
asumsq = MatrixUTSumSq(Anext)
Amat = Anext 
Vmat = Vnext 
r = r + 1 

Loop
EigenvectorsEmat = Vnext 

End Function

Function PDcheck(evec)
' Checks definiteness o f symmetric matrices using their eigenvalues 
' Returns 1 (+ve def), 0.5 (+ve semi-def), -0.5 (-ve semi-def), -1 (-ve def) 

Dim pd, sa, smin, smax 
Dim i As Integer, n As Integer, p As Integer 
Dim svec() As Variant 
n = Application. Count(evec)
ReDim svec(n)
For i = 1 To n

svec(i) = Sgn(evec(i))
Next i
sa = Application.sum(svec) 
smin = Application.Min(svec) 
smax = Application.Max(svec)
If sa = n Then 

pd = 1
Elself sa = -n Then 

pd = -1
Elself sa >= 0 And smin >= 0 Then 

pd = 0.5
Elself sa <= 0 And smax <= 0 Then 

pd = -0.5 
Else

P = 0
End If
PDcheck = pd 

End Function

Appendix 6 Multi-Step MC Exposures
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Sub-portfolio 6 5 3 7

Rating AAA AA A BBB
2-Apr-04 1,324,400 12,537,757 1,544,618 690,159

l-Jul-04 1,125,740 10,657,093 1,004,001 448,603
29-Sep-04 1,069,453 9,591,384 652,601 291,592
28-Dec-04 802,090 9,111,815 619,971 393,649
28-Mar-05 521,358 8,656,224 588,972 338,538
26-Jun-05 182,475 8,223,413 559,524 291,143
24-Sep-05 27,371 6,989,901 0 0
23-Dec-05 1,369 5,941,416 0 0
23-Mar-06 1,163 5,644,345 0 0
21-Jun-06 0 4,797,693 0 0
19-Sep-06 0 3,598,270 0 0
18-Dec-06 0 2,338,875 0 0
18-Mar-07 0 1,988,044 0 0
16-Jun-07 0 1,689,838 0 0
14-Sep-07 0 1,436,362 0 0
13-Dec-07 0 1,220,908 0 0
12-Mar-08 0 1,037,771 0 0
10-Jun-08 0 882,106 0 0
8-Sep-08 0 749,790 0 0
7-Dec-08 0 637,321 0 0
7-Mar-09 0 541,723 0 0
5-Jun-09 0 460,465 0 0
3-Sep-09 0 391,395 0 0
2-Dec-09 0 332,686 0 0
2-Mar-10 0 282,783 0 0

31-May-10 0 240,365 0 0
29-Aug-10 0 204,311 0 0
27-Nov-10 0 173,664 0 0
25-Feb-l 1 0 26,050 0 0

26-May-l 1 0 22,142 0 0
24-Aug-l 1 0 18,821 0 0
22-Nov-l 1 0 15,998 0 0
20-Feb-12 0 13,598 0 0

20-May-12 0 11,558 0 0
18-Aug-12 0 9,825 0 0
I 6 - N 0 V - I2 0 0 0 0
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Appendix 7 Figures o f Multi-Step MC Exposures
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