

City, University of London Institutional Repository

Citation: Parkinson, E. (2004). Using improvement location and improvement preference

to create meta-heuristics. (Unpublished Doctoral thesis, City, University of London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/30740/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

Using improvement location and improvement
preference to create meta-heuristics

Edward Parkinson

Doctor of Philosophy

City University

Department of Computing

June 2004

Contents

Abbreviations and Terms...8
1) Introduction and overview.. 10

1.1) Definitions and scope... 12
1.2) Key points and overview of thesis.. 14

2) Background and Key Concepts... 18
2.1) The TSP... 19
2.2) Using a hill climber to solve the TSP...20

2.2.1) Vehicle Routing Problem with Time Windows and Capacity Constraints
 23

2.3) NP-hardness... 26
2.4) Heuristics... 27

2.4.1) Construction Heuristics... 27
2.4.2) Local search.. 28

2.5) Summary.. 29
3) Review of Local Search Methods... 30

3.1) Broad overview of major methods...32
3.1.1) Hill Climbers, stochastic and steepest ascent...32
3.1.2) Tabu Search.. 35
3.1.3) Simulated Annealing and Threshold methods.. 38
3.1.4) Evolutionary Algorithms..41
3.1.5) Ant Colonies...45
3.1.6) Iterated Local Search..47

3.2) Enhancements to local search methods..48
3.2.1) Tabu Search Speed Ups..48
3.2.2) Evolutionary Algorithm Hybrids..49
3.2.3) Controlling convergence in SA & EA ..51
3.2.4) Ant Colony Enhancements...52

3.3) Move operator design - Absolute order, relative order & position...............52
3.4) Lin-Kemighan Algorithms... 56
3.5) Summary.. 60

4) New framework for location and preference mechanisms...................................64
4.1) Problem example and hypothesis...66
4.2) Defining the problem concepts..69

4.2.1) A Solution Property..69
4.2.2) Locating improvements..69
4.2.3) Improvement Preference... 70
4.2.4) High quality first & Low quality first...71
4.2.5) Difference between location and preference...72
4.2.6) Number of properties in an improvement...72
4.2.7) Number of properties in an estimate...73
4.2.8) Summary... 73

4.3) Assumptions & hypothesis scope..74
4.3.1) Local Search..74
4.3.2) Combinatorial optimization..74

ii

4.3.3) Locating improvements and preference..74
4.3.4) Construction..74
4.3.5) Solomon VRPTW Benchmarks...75
4.3.6) Using many whole solutions (crossover)..75
4.3.7) Partial solution quality can be estimated.. 76

4.4) The gap in current knowledge..76
4.4.1) Locating improvement and improvement preference............................. 76
4.4.2) Guidance using partial solutions...77

4.5) Reasons for merging local search methods.. 78
4.5.1) Locating improvements using whole and part solutions.......................80
4.5.2) Discarding solutions..84
4.5.3) Improvement preference using whole and part solutions......................85

4.6) Summary...86
5) Experiment Design and Pseudo Code...87

5.1) Designing the hypothesis, the experiments, and what I tried to learn..........88
5.1.1) Creating the Hypothesis..88
5.1.2) Theory verses experiments..90
5.1.3) The 5-opt hill climber..91
5.1.4) Time taken to locate and improvement... 92
5.1.5) Compounded whole 3-opt move...93
5.1.6) Compounded partial solution change..94
5.1.7) Picking the best improvement...94
5.1.8) Control of time quality trade off..95
5.1.9) Preference design...95
5.1.10) Linking experiments back to hypothesis...96
5.1.11) Preference testing..97

5.2) Methodology - Data Sets, Speed and Number of Runs................................ 97
5.2.1) Data Sets..97
5.2.2) Speed...99
5.2.3) Number of Runs..99

5.3) Initial Solutions.. 100
5.4) Finding improvements - Threshold Calculation..102
5.5) Finding improvements - Percentile tail off point....................................... 104
5.6) Guide improvement preference.. 106
5.7) Move operators and combining problem styles..109

5.7.1) Move operator restrictions... 109
5.7.2) Move operator used... 110

5.8) Summary... 111
6) Results of Formative Experiments.. 112

6.1) Saving the neighbourhood at different stages of the hill climb..................113
6.2) Non-changing threshold... 114
6.3) Setting the improvement location thresholds...116
6.4) The misleading compound move edge - Further work.............................. 120
6.5) Using both distance and time window thresholds to guide the search.......122
6.6) Summary... 123

7) Results of the VRP experiments.. 124
7.1) Result Comparison Tables.. 126
7.2) Detailed descriptions of the early VRPTW solutions...................................128

7.2.1) High quality partial distance first did well with large time windows... 128

iii

7.2.2) No preference whole distance moves did well with small time windows
 135

7.3) Detailed descriptions of the best quality VRPTW solutions......................140
7.3.1) Low quality partial distance first did well with large time windows.... 140
7.3.2) Low quality partial distance first did well with small time windows... 144

7.4) Improvement preference - general findings... 146
7.4.1) Damaging effect of very low quality improvements............................ 148
7.4.2) Using low quality distance first to improve quality.............................. 154
7.4.3) Longer execution time of low quality distance first............................. 156
7.4.4) Damaging improvements, the contradiction - Further work................ 157
7.4.5) Using high quality slack time first to improve quality......................... 157
7.4.6) Small reductions in slack time and distance improved quality..............158
7.4.7) Designing an improvement preference... 159

7.5) Locating improvements - general findings... 162
7.5.1) Partial distance changes more naturally suited to improvement location
 162
7.5.2) Speed difference with whole moves and partial changes....................165
7.5.3) Locating improvements using distance, time and distance + time......166
7.5.4) Finding the best tail off thresholds... 167

7.6) Method consistency and value of the results...167
7.6.1) Comparison with other benchmark results..168
7.6.2) Number of Vehicles and Distance.. 169

7.7) Linking the results back to the hypothesis... 169
8) Conclusions... 171

8.1) Criteria for success and overview of what was learned..............................171
8.2) Summary of Contributions... 176
8.3) Future Research - improvement location mechanisms............................... 178
8.4) Future Research - General... 178
8.5) Future Research - other problem types... 179
8.6) Implications for local search meta-heuristics - further work.....................180

8.6.1) Tabu Search - improvement preference.. 181
8.6.2) Simulated Annealing and threshold methods - improvement preference
 182
8.6.3) Evolutionary Algorithms - improvement preference............................ 182

8.7) Summary of what has been covered.. 184
9) Appendix - Standard Deviations... 185
10) References..188

IV

Tables and Figures

Figure 2.1 - TSP solution - one possible route the sales person could take............ 19
Figure 2.2 - 2-opt move operator, changes two edges, producing a new solution... 21
Figure 2.3 - Hill Climber Pseudo Code... 22
Figure 2.4 -Vehicle Routing Problem..25
Figure 2.5 - Greedy Construction Heuristic Pseudo Code....................................... 28
Figure 3.1 - Stochastic Hill Climber Pseudo Code.. 33
Figure 3.2 - Steepest Ascent Hill Climber Pseudo Code... 33
Figure 3.3 - Tabu Search Pseudo Code... 37
Figure 3.4 - Evolutionary Algorithm Pseudo Code... 43
Figure 3.5 - Shift Operator - Reprinted with permission from [Tuson 00]...........54
Figure 3.6 - 2-Opt Operator - Reverse - Reprinted with permission from [Tuson 00]

...55
Figure 3.7 - Swap Operator - Reprinted with permission from [Tuson 00]..........55
Table 3.1 - Meta-heuristics - methods of guiding the search process...................... 62
Table 3.2 - Comparison of meta-heuristics performance on the TSP...................... 63
Figure 4.1 - Improvement location using partial and whole moves......................... 67
Figure 4.2 - Improvement location using non-improving moves.............................82
Table 5.1 - VRPTW Data Sets - Solomon and Extended Solomon......................... 98
Table 5.2 - VRPTW Data Set Descriptions - Solomon and Extended Solomon....98
Figure 5.1 - Creation of initial solutions.. 101
Figure 5.2 - Find improvements to a single solution.. 103
Figure 5.3 - Find improvements to a single solution.. 106
Figure 5.4 - Find improvements to a single solution.. 108
Figure 6.1 - Percentile thresholds used to locate 5-opt improvements....................115
Figure 6.2 - Many partial changes can locate the same improvement................... 118
Table 7.1 - Key - 6 Result Groups.. 125
Table 7.2 - Key - 20 local search guidance methods..127
Table 7.3 - Key - 11 VRPTW Problem Types.. 128
Table 7.4 - Early Solutions, Large Time Windows..130
Table 7.5 - Point at which early solutions are overtaken, Large Time Windows.. 133
Table 7.6 - t-test: Early Solutions, Large Time Windows......................................134
Table 7.7 - Early Solutions, Small Time Windows..137
Table 7.8 - Point at which early solutions are overtaken, Small Time Windows.. 138
Table 7.9 - t-test: Early Solutions, Small Time Windows......................................139
Table 7.10 - Best quality solutions, Large Time Windows................................. 142
Table 7.11 - t-test: Best quality solutions, Large Time Windows...................... 143
Table 7.12 - Best quality solutions, Small Time Windows................................. 145
Table 7.13 - t-test: Best quality solutions, Small Time Windows......................... 146
Table 7.14 - Percentage gain in solution distance with sequence experiments.....148
Graph 7.1 - Location results - damaging effect of low quality improvements.....150
Graph 7.2 - Preference results - speed v quality...161
Table 7.15 - How much partial changes were better than whole.............................163
Table 7.16 - Solomon benchmark results for 5-opt hill climber and [Braysy 02]. 168

v

Acknowledgements

Many thanks to my supervisors Andrew Tuson and Peter Smith. Andrew, your

suggestions and comments have been invaluable, I have lost track of the number to

times you have read drafts for me. Peter thanks for the feedback and especially your

suggestion of having a go at implementing some of the algorithms, it give me a real

feel for the problems.

Thanks to the staff who look after Broomfield Park in north London. Most of the

ideas in the thesis originated while I was in the park.

Thanks to Marcus Andrews, Panos Dafas, Barry Kwam, and Claire Thie for reading

through thesis drafts and giving me feedback. You spotted many mistakes and your

comments help me understand what was and what was not being understood.

Also thanks to the many people who dragged me away from my thesis once in a

while and I would not have got it written without you.

Eddy Parkinson (eddyparkinson@yahoo.co.uk)

University Librarian is allowed to copy the thesis in whole or in part without

further reference to the author. This permission covers only single copies made for

study purposes, subject to normal conditions of acknowledgement.

6

mailto:eddyparkinson@yahoo.co.uk

Abstract

Local search algorithms are used to produce solutions to combinatorial logistics
problems such as the vehicle routing problem. Where the algorithms aim to
minimise the number of vehicles needed to deliver goods.

Local search creates a first solution and that solution is the best until the heuristic
finds a better one, hence it is argued that all existing local search algorithms make a
series of improvements. Different local search algorithms locate these improvements
with different improvement location mechanisms. Local Search also gives
preference to using some improvements rather than others. To make these
preference choices different local search algorithms use different improvement
preference mechanisms.

Current local search algorithms intertwine improvement location and improvement
preference mechanisms, making it difficult to identify if they are both having a
positive impact and the scale of the impact. The thesis hypothesis states
“Distinguishing between improvement location and improvement preference is
feasible and useful when creating local search algorithms”. Distinguishing between
improvement location and preference produced results that suggest how local search
methods in current use can be improved.

The experiments compare methods of locating improvements and improvement
preference. They use both whole non-improving solutions and partial solution
changes, similar to Lin-Kemighan, to locate improvements. They also compare
giving preference to small improvements or large improvements. The comparisons
are done using the Solomon vehicle routing problem benchmarks. Using partial
solution changes to locate improvements and giving preference to small
improvements typically gave the highest quality solutions at the cost of doubling
execution time. The results also show which methods of location and preference do
well when only a small amount of execution time is available.

Keywords: optimisation, search-control, local-search, meta-heuristics, vehicle-
routing-problem, Lin-Kemighan, ant-colonies, genetic-algorithms, simulated-
annealing, tabu-search.

7

Abbreviations and Terms
AC Ant-Colonies - term used to describe local search

methods based on ant pheromones
AI Artificial Intelligence - AI can be seen as an attempt to

model aspects of human thought on computers
Compound Move When one move is combined with another. Instead of a

large number of changes being made in a single move,
two or more smaller moves are used to achieve the same
result.

Construction Heuristics They create new solutions from scratch. A simple
construction method for the TSP is to pick a customer at
random then keep travelling to the nearest unvisited
customer until all the customers have been visited.

EA Evolutionary Algorithm - used to describe evolution based
local search.

Global Optimum

Greedy Heuristic
The best quality solution to a problem.

Has a short-term ‘greedy’ strategy of picking what looks
to be the best element or change available.

Hill Climber Takes a solution to a problem and makes a series of
improvements to it. No guarantees are make about how
good the end solution will be, as it is not designed to
check for all possible improvements.

Improvement Location Takes one of more solutions and uses them to create a new
solution better than the current best.

Improvement Preference Giving preference to using one solution rather than
another to locate improvements.

Iterated Local Search Takes a solution produced by a local search method, then
makes the solution worse, then re-runs the local search
heuristic

Lin-Kemighan Uses partial solution changes to guide its search for
improvements.

Local Optimum A solution that can not be improved by making small
changes to it.

Local Search Takes an existing solution and uses educated guesses to
find ways of improving the solution.

Lower Bound Feasible solutions can not be better than the lower bound.
The lower bound is normally slightly less than the best
solution (when minimising).

Meta-heuristic This is general heuristic that can be applied to more than
one problem. A meta-heuristic is a kind of high level
framework that can be use to create an algorithm for a
specific problem.

8

NP

Opt (k-opt)

OR

Partial Change

SA

SAHC

Threshold methods

TS

TSP

VRP

VRPTW

Whole Move

Non-determini Stic Polynomial - Roughly speaking this
means the time needed to find the best possible solution
to a problem becomes excessively large with larger
problem sizes.

Repeatedly making 2-opt improvements to a solution
typically produces a sub-optimal solution, this solution
is classed as 2-optimal, hence the term 2-opt.

Operational Research - is taking a real-world problem and
creating an optimised solution for it.

Like a whole move except only some of the changes are
implemented.

Simulated Annealing - takes a solution and mostly makes
improvements to it, although occasionally it also makes
the solution worse, it was inspired by processes in
statistical mechanics, in physics.

Steepest Ascent Hill Climber - takes a solution and
implements the best small change it can find and then
repeats the process.

Takes a solution and makes a small change to it, all
improving changes are accepted and the threshold for
accepting non-improving changes is gradually raised.
This means they reject more and more non-improving
changes as the search progresses.

Tabu Search - takes a solution and makes small
improving changes to it. When no more exist it allows
non-improving changes, but only if they have not
recently been undone or redone, this prevents cycling.

Travelling Salesman Problem - a sales-person needs to
visit a number of customers. The aim is to try and work
out the shortest route the salesperson can take in order to
visit each customer once.

Vehicle Routing Problem - the problem of delivering
goods to many different customers using a fleet of
vehicles.

Vehicle Routing Problem with Time Windows - like the
VRP but with restrictions on when the goods can be
delivered to customers.

Taking a complete and valid solution and changing it to
create a new complete and valid solution.

9

1) Introduction and overview
Companies use local search algorithms to reduce costs. They are used on problems

such as organising the delivery of goods using a fleet of vehicles [Rochat 94],

production line scheduling [Dorn 95]. Because of this, improving how these

algorithms work means companies and organisation that use them can reduce costs.

Although there are many local search algorithms [Reeves 93] and companies want to

know which ones suit their optimisation problem.

Local search algorithms take an existing solution and use educated guesses to find

ways of improving the solutions. See the background chapter, Chapter 2, for a

description of local search.

There appears to be a constant stream of new local search algorithms described in

the literature, see [Come 99] “New Ideas in Optimization” for some of the more

recent ones. The problem is, it is hard for companies to work out which of these

local search algorithms is suitable for their optimisation problem. This problem is

summed up by [Papadimitriou 82]:

“...the design of effective local search algorithms has been, and
remains, very much an art.”

To help deal with this problem, a method of classification is proposed and tested that

allows two of the mechanisms of local search algorithms to be separated. This

means the impact of each of these mechanisms on different problems can be

individually measured.

10

The two local search mechanisms are improvement location and preference. Local

search algorithms make a series of improvements. Current local search algorithms

do not distinguish between the mechanisms that locate these improvements and the

mechanisms that give preference to using some of these improvements rather than

others. Distinguishing between the two means the value of each mechanism can be

assessed.

The thesis makes both general theoretical claims and describes practical experiments

that test these claims. The main theoretical claim is that it is worth distinguishing

between improvement location and preference mechanisms. This theoretical claim is

investigated using practical experiments. The practical experiments evaluate the

usefulness and feasibility of distinguishing between the mechanisms using Vehicle

Routing Problem (VRP). The VRP is the problem of delivering goods to customers

using a fleet of vehicles. The experiments test the performance of difference

improvement location and preference mechanisms on variations of the delivery

problem and evaluate which mechanisms work best on which problem variation of

the problem.

The experiments test how long the different mechanisms take to create an acceptable

solution, this is because with large problems it can take a long while to create an

acceptable solution and so mechanisms that reduce the length of time needed are

valuable. The experiments also examine problems with slack and tight delivery

times, this is done to test how well the mechanisms handle difference styles of

delivery problem. The results show how improvement location and preference

11

mechanisms can be matched to the demands of different VRP problem types and

reveal refinements that can be made to the mechanisms.

The results show individual improvement location and preference mechanisms are

suited to some VRP style problems and not others. For example giving preference to

using large improvements in solution quality produced its best solutions in a few

seconds. This is useful when solutions need to be created quickly but when several

minutes or hours are available other methods tended to perform better. The results

also show how refinements made to a commonly used preference mechanism could

simultaneously improve solution quality and execution time, see section 7.4.1.

1.1) Definitions and scope

See chapter 4 and the Lin-Kemighan section of chapter 3 for more detailed

descriptions of each of these: -

Local search takes an existing solution and makes a series of improvements to it.

Only local search methods are examined in depth by this thesis.

Improvement location uses one or more previous solutions to find an improvement.

All local search methods use previous solutions to help locate improvements. This

thesis compares methods of locating improvements. Note: An improvement location

mechanism is a mechanism that locates a solution that is better than the best solution

found so far, this is fundamental to the arguments made in the thesis.

12

Improvement preference gives preference to using one solution improvement

rather than another to locate further improvements. This does not include

improvements that are always rejected, e.g. with the aim of speeding up the

optimisation process. This thesis compares improvement preference choices.

Whole solution is a solution that is both complete and valid. Complete in the sense

that no parts of it are missing and valid in the sense that it looks like it can be

implemented.

Whole move is when a complete and valid solution is changed to create a new

complete and valid solution. The move is whole because both solutions are ‘whole’,

i.e. complete and valid. It is called a move because it is the process of moving from

one solution to another.

Partial change (partial solution change) is exactly like a whole move except only

some of the changes are implemented. Applying two or more partial changes to a

whole solution produces a new whole solution. Using more than two partial changes

to ‘move’ from one whole solution to another means the two whole solutions have

more differences. The partial change concept is based on Lin-Kemighan [Lin 73].

Partial solution is produced when a partial change is applied to a whole solution. A

partial solution is invalid and incomplete. Any partial solution can be converted into

a whole solution using a single partial change, this means a partial solution is never

more than one step away from a whole solution.

13

1.2) Key points and overview of thesis.

Motivation
Many logistics problems exist, for example, organising the delivery of goods using a

fleet of vehicles. Companies use local search algorithms to create solutions to such

logistics problems. The better the local search algorithm, the better the solution, a

better solution means lower costs in terms of both labour and resources.

Research objectives
The aim of the research was to identify which local search methods work well with

which logistics problems. To achieve this the research identifies improvement

location mechanisms and improvement preference mechanisms that exist in local

search methods. These local search methods and the improvement location and

preference that they use are described in depth in Chapter 4. Chapter 7 describes

various improvement location and improvement preference mechanisms and shows

which logistics problems they worked best with.

Summary of objectives and results
• Show it is feasible to distinguish between improvement location and

improvement preference using an existing example logistics problem.

The results show it is feasible to distinguish between improvement location and

preference. See Chapter 5 for details and pseudo code.

• Identify advantages and disadvantages of using different improvement

preference choices.

14

Using a preference choice that is the opposite of what is currently recommended

produced the best quality solutions, see section 7.4.2. This looks to be at the cost of

doubling execution time, see section 7.4.3. Changing the preference allowed

execution time to be decreased, for problems that require a shorter execution time,

see sections 7.2 and 7.4.2.

• Identify advantages and disadvantages of using different improvement location

methods.

The results showed which improvement location methods were suited to which VRP

problems, see sections 7.2 & 7.3. Adjustments to the location method also allowed

execution time to be controlled. This looks to be valuable for fine tuning the

execution time and solution quality, see section 7.4.1.

• Show if Lin-Kemighan [Lin 73] style improvement location can successfully be

used on the Vehicle Routing Problem.

Lin-Kemighan [Lin 73] style improvement location typically created the best or near

best quality solutions, see section 7.3. It tended to perform best when customers

were clustered. Although Lin-Kemighan [Lin 73] style improvement location was

typically less than 2% better than using whole moves to locate improvements.

It proved difficult to model customer delivery times and easy to model distance with

Lin-Kemighan style improvement location. The Lin-Kemighan style methods that

were guided using customer delivery times typically performed badly, see section

7.5.3. The Lin-Kemighan style methods that where guided by distance alone tended

to perform best.

15

General contribution to knowledge
Identifying which methods work well on which logistics problems aids algorithm

design. Distinguishing between improvement location and improvement preference

improves the identification of which methods work with which problems. See

Chapter 4 for a description of how previous solutions are used to locate

improvements and how preference is given to using some improvements rather than

others.

Practical Contribution to knowledge
Reducing the cost of delivering goods is a practical problem. Distinguishing

between improvement location and improvement preference revealed methods that

reduced costs more than the methods currently in use. The results show that different

methods of improvement location and preference are suited to different VRP

problem styles, see results chapter.

Feasibility
Distinguishing between improvement location and improvement preference is

feasible. The experiments show how several methods of improvement location and

preference can be compared. The experiments chapter describes how the

comparisons were done.

16

Gap in knowledge
Current local search methods do not distinguish between improvement location and

improvement preference. They treat improvement location and preference as one.

Chapter 3 describes current methods of improvement location and preference.

Chapter 4 describes how they are currently intertwined.

Current local search methods do not independently compare methods of

improvement location and preference. Current research does not systematically

distinguish between how improvements are located and which improvements are

given preference.

Hypothesis
Distinguishing between improvement location and improvement preference is

feasible and useful when creating local search algorithms.

The hypothesis is discussed in depth in Chapter 4.

17

2) Background and Key Concepts
The vast number of possible solutions to combinatorial optimisation problems

means we sometimes have to use heuristics. A heuristic is in effect an algorithm that

makes a series of educated guesses. Heuristics use educated guesses to enable them

to find good quality solutions within the time available.

Heuristics vary in speed. At one extreme we have greedy algorithms, they produce

solutions very quickly, but the solution quality tends to have plenty of room left for

improvement. Greedy algorithms construct solutions from scratch. They construct

solutions by repeatedly adding what looks to be the best feasible problem element,

until the solution is complete. At the other extreme are local search heuristics that

take a solution and make a series of improvements to it. These typically need more

processing time and tend to produce higher quality solutions.

Different local search methods use different methods of locating improvements.

How these improvements are located affects execution time and solution quality.

While the exact details of how they locate improvements differ from method to

method, they all use solution changes to locate improvements. All local search

methods take an existing solution and change it to create a new solution. The quality

of the new solution and the old solution are then compared. The difference in quality

is used to decide if the new solution should be used to try and locate further

improvements. The benefits of using different methods of locating improvements are

tested in the experiments.

18

Local search methods use different methods of guiding the improvement preference.

Some methods give preference to large improvements while others give preference

to non-improving solutions. The order which improvements are implemented affects

execution time and solution quality. Some local search methods use both improving

and non-improving solutions to guide the improvement preference. They use the

quality of the improving or non-improving change to decide if the change should be

use to locate improvements. Two of the best known local search methods are

Simulated Annealing (SA) and Tabu Search (TS), which use two different methods

of guiding improvement preference, for a description of SA see [Dowsland 93] and

for TS see [Glover 97], The benefits of using different methods of guiding the

improvement preference are tested in my experiments.

This chapter gives a overview of combinatorial problems and the heuristics used to

tackle them.

2.1) The TSP

The Travelling Salesman Problem (TSP) is used as an example problem to explain

the key concepts.

Figure 2.1 - TSP solution - one possible route the sales person could take

19

The Travelling Salesman Problem is a problem where a sales-person needs to visit a

number of customers. The dots in Figure 2.1 indicate customers that the sales-person

needs to visit and each line indicates a journey between two customers. The aim is to

try and work out the shortest route the salesperson can take in order to visit each

customer once and return to the original start point. The Travelling Salesman

Problem (TSP) is a combinatorial optimisation problem and a large number of

heuristics have been created for it. See [Johnson 97] for a review of TSP heuristics.

With large numbers of customers it becomes impossible to search through the huge

number of possible solutions; i.e. ((n-l)!)/2, where n is the number of customers. If

the problem is small enough then methods such as branch and bound can be used,

see [Madsen 98] for an description of branch and bound. Branch and bound does not

search through all ((n-l)!)/2 solutions to find the shortest as it is able to rule out

many possible solutions. Although methods such as branch and bound are unable to

guarantee they will find the shortest route in polynomial execution time. There is not

always enough time to wait for an algorithm to find the shortest route. With large

problems a local search heuristic is often preferred and is used to find a route quite

close in length to the shortest.

2.2) Using a hill climber to solve the TSP

A hill climber is a simple local search heuristic. It takes a solution to a combinatorial

problem and makes a series of improvements to it. The method makes no guarantees

about how good the end solution will be, as it is not designed to check for all

possible improvements.

20

When a change is made to a solution, this is called a move, i.e. we move from one

solution to another. Figure 2.2 shows two solutions, the top one has 2 lines that

cross, by removing these two lines and then completing the TSP solution again by

inserting two new lines a new solution is created. The two inserted lines are shown

in the new improved solution at the bottom of figure 2.2. The solution is an

improvement because with the lower solution the sales-person has a shorter journey.

The path between two customers is known as an edge. This act of removing two

edges (lines) and inserting a different two is known as a 2-opt move. With the TSP,

the simplest, least disruptive move that can be made is a 2-opt move. For a history of

2-opt see [Applegate 99], A 2-opt is when a pair of edges (lines) between customers

is removed and replaced by the alternative pair of edges.

The 2 in 2-opt refers to the number of edges (paths) that are changed when making

improvements to an initial solution. By repeatedly making 2-opt improvements to an

initial solution, a sub-optimal solution is created, this solution is classed as 2-

optimal, hence the term 2-opt. A 3-opt means 3 edges are removed and 3 are inserted

to create a new solution, and an n-opt means n edges are removed and inserted.

Figure 2.2 - 2-opt move operator, changes two edges, producing a new solution

*

21

A 2-opt hill climber will often fail to find the shortest route, but is normally able to

find a solution quite close to the shortest, see [Johnson 97].

/* Hill Climber Example 7

create an initial random solution
note initial solution is best solution so far
WHILE untested small solution changes exist

make a small untried change to the current best solution
IF the small change produces an improvement

make note of new best solution
ENDIF

ENDWHILE

Figure 2.3 - Hill Climber Pseudo Code

The hill climber, see Figure 2.3 for pseudo code, works as follows: First a solution

to the problem is created, any random solution will do. Next a small part of the

solution is changed to create a slightly different solution, if the changed solution is

better than the original then it is used to create new solutions. If it is not better it is

rejected and a different change is made to the original solution. Because only small

changes (moves) are made to the current best solution, at some point none of the

available moves will produce an improvement. When none of the small changes

produce an improvement the solution is known as a local optimum. The search

process is normally stopped when a local optimum is reached.

All the available small changes that can be made to a solution are known as the

neighbourhood of the solution. Local search typically uses small changes as this

keeps the number of solutions in the neighbourhood low.

22

A hill climber is a kind of search control, i.e. it controls the search for new solutions.

It decides which new solutions are used and which are discarded.

When a hill climber is used on a TSP, unless the problem is very small, most of the

time it will not find the shortest route. Optimal solutions, i.e. the shortest routes, are

known as the global optima. A hill climber reaches what is known as a local optima

when it is unable to find further improvements and yet does not find the global

optima. The point of using a hill climber on a TSP is not to find the shortest route, as

this would take too long. A hill climber uses the time available to try and find a

route that is quite close to the shortest.

Because the optimal solution to a TSP forms a polygon and the paths between

customers form the edges of the polygon, the path between two customers is often

referred to as an edge.

2.2.1) Vehicle Routing Problem with Time Windows and Capacity Constraints

The basic VRP is when goods need delivering to many different customers using a

fleet of vehicles, see Figure 5.4. This problem is in some respects similar to the

Travelling Salesman Problem (TSP), but it also has constraints that the TSP does not

have.

• As with the TSP, adjacent customers are used to calculate cost and so we must

control disruptions to adjacency.

23

• Capacity constraints put a limit on the maximum load we can put in each

vehicle, normally a maximum volume or weight. Capacity constraints constrain

which customer deliveries can be grouped together. The problem style becomes

a combination of adjacency and group.

• Time windows occur when each customer has a time slot stating when the goods

can be delivered. This adds yet another dimension to evaluation as the order

customers are visited affects the ability to hit time windows, so we must control

disruptions to precedence. The problem style becomes a combination of

adjacency, grouping and precedence.

24

Figure 2.4 -Vehicle Routing Problem

Other common VRP constraints include more than one depot, multiple time

windows per customer, loads larger than a single vehicle, pickups and driver breaks.

For a real case VRP that uses tabu search see [Rochat 94], which describes in detail

many real constrains and how they were dealt with.

25

2.3) NP-hardness

Roughly speaking this means the time needed to find the shortest route becomes

excessively large with larger problem sizes. The existing methods that guarantee to

find the optimal solution to all TSP problems have a non-polynomial running time.

Because it has not been proved if the TSP can or can not always be solved in

polynomial time, it is in class NP, meaning Non-deterministic Polynomial. When an

algorithm can not execute in polynomial time the term Non-polynomial time is

used, it means the execution time needed by the algorithm is not a polynomial

function of the problem size. There are many optimisation problems that are NP-

hard, including Vehicle Routing Problems, Bin packing problems and Scheduling

problems. More information on NP-hardness and intractability can be found in

[Garey 1979],

The algorithms being considered here are designed to create high-quality non-

optimal solutions. These algorithms are used when there is not enough time

available to find an optimal solution. There are exact methods capable of finding

optimal solutions to problems that are NP-hard [Madsen 98]. Exact methods

execute in a reasonable length of time if the problem is small enough. Although with

many problems that are NP-hard it is not important to find the optimal solution, a

less than optimal solution that is found faster is often preferred. The thesis is only

considering local search methods where the trade off between execution time and

solution quality matters.

26

2.4) Heuristics

Heuristic are experimental rules that are not necessarily provably correct but

typically produce acceptable solutions. Heuristics usually do not guarantee how

close to the global optimum the final solution will be. Instead they use a series of

educated guesses to find high quality solutions. For example a hill climber is a

heuristic that is sometimes able to find acceptable solutions to NP-hard optimisation

problems, see [Reeves 93],

The Artificial Intelligence (AI) community and the Operational Research (OR)

community use slightly different definitions of the word heuristic. In AI an

algorithm is said to use a heuristic to guide the search [Russell 95], whereas in OR a

heuristic is an algorithm that is not guaranteed to find the optimal solution [Reeves

93] (in AI this is termed incomplete search).

The term Meta-heuristic means a general heuristic that can be applied to more than

one problem. A meta-heuristic is a kind of high level framework that can be use to

create a heuristic for a specific problem. There are two main styles of meta-heuristic

for combinatorial problems, construction and local search.

2.4.1) Construction Heuristics

Construction heuristics create solutions from scratch and can be very fast. A simple

construction method for the TSP is to pick a customer at random then keep

travelling to the nearest unvisited customer until all the customers have been visited.

This method is often called a greedy method. This is because it has a short-term

‘greedy’ strategy of picking the best element available when inserting elements into

27

the solution. Figure 2.5 gives example pseudo code for a greedy construction

heuristic.

/* Construction heuristic example 7

start off without any solution properties set, a property is a relationship
between two or more elements of the problem, such as an edge.

DO WHILE solution is incomplete
compare costs of some or all feasible solution properties
add property with least cost

ENDDO

Figure 2.5 - Greedy Construction Heuristic Pseudo Code

More complex construction algorithms exist for the TSP and these are able to create

better quality solutions. A comparison of TSP construction algorithms can be seen in

[Johnson 97] and [Johnson 02], The best construction methods, in terms of solution

quality, for the TSP are variations on Christofides algorithm [Johnson 02], they can

typically get to within 7-9% of the Held-Karp lower bound, see [Held 70], [Held 71]

and [Johnson 96], The Held-Karp lower bound is normally slightly shorter than the

optimal TSP solution, i.e. feasible solutions can not be shorter than the lower bound.

2.4.2) Local search

A method of changing the current solution and a methods of deciding which changes

to accept or reject make up the two basic elements of local search.

Local search heuristics normally change only a small, localised part of the solution,

leaving most of it untouched. They often use a construction heuristic to create one or

28

more initial solutions and then repeatedly attempt to make improvements to the

solution(s).

The aim of local search is to take an existing solution and improve it. Because of this

local search heuristics are some times known as Iterative Improvement heuristics

[Zweben 90], [Zweben 94], They take an existing solution and make a series of

improvements to it.

Hill climbers in contrast with other local search heuristics do not use non-improving

solutions to find improvements. The other local search methods that use non-

improving solutions to find improvements are more complex. Well known local

search methods that use non-improving solutions include Tabu Search, Simulated

Annealing and Evolutionary Algorithms. A description of different ways of

implementing these can be found in [Reeves 93].

2.5) Summary

Local search heuristics construct a solution then make a series of improvements to it.

The focus of my experiments is to compare methods of locating improvements and

guiding the improvement preference. This thesis examines NP-hard problems where

it is important to find the best quality solution possible in the time available rather

than the optimal solution.

29

3) Review of Local Search Methods
Because current methods of local search do not distinguish between the problems of

improvement location and preference it is argued in this chapter and Chapter 4 that

there is a gap in our current knowledge. The review describes how existing local

search meta-heuristics locate improvements and how they give preference to some

improvements rather than others. The methods described do not distinguish between

location and preference making it unclear how much impact each is having.

Emphasis is placed on how similar or different the methods are. Untraditional

descriptions are sometimes used to emphasise similarity. The review roughly

categorises the major methods of location and preference. These categories are then

used to argue that Lin-Kemighan [Lin 73], a very successful method of

improvement location, is under used. Distinguishing between location and

preference helped identify this underused, yet very successful method. This is used

to argue that distinguishing between location and preference is useful.

Local search methods use non-improving solutions to find improvements. The

descriptions have been skewed in order to emphasise how the methods use non-

improving moves. Lin-Kemighan is highlighted because unlike other local search

methods it uses partial solutions to find improvements.

30

This chapter aims to describe the current major methods of guiding the local search

process and covers: -

• Several methods that use whole solutions to guide the search for improvements

and one method that does not.

• Local search methods that show different ways of guiding the search.

• Some recent developments and new ideas that offer ways to improve algorithm

speed and solution quality.

• Move operator design, which relates to the move operators used in the

experiments.

There are many heuristics for tackling combinatorial optimisation problems. One of

the oldest and most successful is Lin-Kemighan [Lin 73], the basic algorithm still

dominates the Travelling Salesman Problem (TSP) as can be seen in [Johnson 02],

Another successful method, Iterated Local Search, is increasingly being used to

improve the final solution quality of existing local search methods when extra time

is available, see [Lorenco 02],

There are many heuristics that have established reputations for being able to find

good quality solutions to combinatorial problems. The major ones are described later

in this chapter; for more in depth descriptions see [Reeves 93], [Johnson 97],

[Dorigo 02]. Ant Colony Optimisation is a more recent heuristic, [Dorigo 91], and it

appears to be receiving quite a bit of attention, for an overview see [Dorigo 99] and

for some recent developments see [Dorigo 02], For the TSP there are hybrids

between population based methods and Iterated Lin-Kemighan that offer further

31

small improvements in quality but this comes at the expense of large increases in

execution time, see [Applegate 99], [Johnson 97].

3.1) Broad overview of major methods

This section aims to show that a large variety of different local search methods exist.

On the surface these methods appear quite different from each other, their competing

differences and similarities are highlighted in this section. The experiments chapter

describes how competing ideas of how to guide the search process are compared.

3.1.1) Hill Climbers, stochastic and steepest ascent

A hill climber is the most basic form of search control, it only allows improvements

to be made to a solution. Different forms of hill climber exist and they use different

rules for working out which improvements to make next. Probably the two most

common are: -

• Stochastic Hill Climber - randomly evaluates moves in the neighbourhood, if the

move is an improvement, it implements it. See Figure 3.1 below.

• Steepest Ascent Hill Climber - is a computationally expensive hill climber as it

involves the evaluation of every move in the neighbourhood and then

implements the most improving. See Figure 3.2 below.

32

create an initial random solution
note initial solution is best solution so far
WHILE untested small solution changes exist

make a small untried change to the current best solution, randomly
selected from the untried changes in the neighbourhood.

IF the small change produces an improvement
make note of new best solution

ENDIF

ENDWHILE

/* Stochastic Hill Climber Example 7

Figure 3.1 - Stochastic Hill Climber Pseudo Code

/* Steepest Ascent Hill Climber Example 7

create an initial random solution
note initial solution is best solution so far
DO

create a list of the entire set of solutions that can be created by making
small changes to the current best solution

make a note of the current best solution so we can tell if an improvement
has been found

DO FOR all small solution changes in list
IF solution is better than best current solution

make solution the best current solution
ENDIF

ENDDO

WHILE improvement found

Figure 3.2 - Steepest Ascent Hill Climber Pseudo Code

Stochastic hill climbers are sometimes used as a benchmark [Juels 94]. Other search

control methods are compared with hill climbers to assess performance. A stochastic

33

hill climber uses random move selection to find the next improvement. This makes it

a handy method for comparing more complex methods against.

In experiments comparing a stochastic hill climber with steepest ascent, stochastic

hill climbing was not only faster but also achieved better quality solutions, see

[Tuson 2000], While this is just a single set of experiments is does show that

steepest ascent is not always the best choice.

Relationship between Hill Climbers and Hypothesis. See section 4.1 for hypothesis,
and see Overview Table 3.1

Stochastic Hill Climber

• Uses the differences between whole solutions to guide the search for

improvements

• Improvements are located using a fixed size move operator

• No preference is given to improving a particular part of the current solution,

resulting in no improvement preference.

Steepest ascent Hill Climber

• Uses the differences between whole solutions to guide the search for

improvements

• Improvements are located using a fixed size move operator

• The most improving part of the neighbourhood is always improved at each step

resulting in improvements being implemented using a largest improvement first

preference.

34

3.1.2) Tabu Search

Tabu Search was devised by Fred Glover, see [Glover 97], and is described as

having four types of memory, Recency, Frequency, Quality and Influence. Recency

and Frequency memory are lists of what has been tried and are used to guide the

search to new areas of the search space. The meaning and use of quality memory

and influence memory is less well defined. [Glover 97] describes Quality memory

and Influence memory as being about more than cost (i.e. solution quality), although

there does not appear to be a detailed description of what is meant by this. The

examples given in [Glover 97] only make use of cost differences.

Tabu Search uses a steepest ascent hill climber until it reaches a local optima, see

Figure 3.3 for pseudo code. It then implements the move with the smallest non-

improving quality in the neighbourhood. It then makes some element of this move

Tabu, so as to stop it being undone, this is stored in the Recency list. It then looks

for and implements any improvements it can find. When there are no more non-

Tabu improvements left in the neighbourhood it will repeat the process,

implementing the smallest non-improving move, make it Tabu, and so on.

A limit is imposed on how long move elements remain Tabu, this allows moves to

be undone and redone. To prevent the search looping Tabu Search uses a Frequency

list to count how many times a move has been made Tabu and prevents the non-

improving move from being made again if the count is too high. Frequency prevents

improving moves from being undone and controls search width. Recency prevents

recent non-improving moves from being undone and controls search depth.

35

Many ideas about Tabu Search and local search heuristics can be found in [Glover

97]. One such idea is candidate lists. When Tabu Search uses steepest ascent it can

be quite slow because it needs to evaluate the entire neighbourhood, candidate lists

are one way of getting round this problem. There is a description of candidate lists

and other ways to improve the speed of Tabu Search later in this chapter.

36

create an initial random solution
note initial solution is current solution
note initial solution is best solution found so far
create an empty list for keeping a record of recent solution changes
create an empty list for keeping a record of the frequency of changes

DO
create a list of the entire set of solutions that can be created by making

small changes to the current best solution

make a note of the current best solution so we can tell if an improvement
has been found

DO FOR all small solution changes in list
IF solution is better than best solution found so far

make note solution is the new best solution found so far
make note solution is also best found so far in neighbourhood

ELSE
IF solution is better than best found so far in neighbourhood

IF solution is better than current solution
IF move was not part of a recent back move

note solution is best found so far in neighbourhood
ENDIF

ELSE
IF move has not been made and undone too frequently

note solution is best found so far in neighbourhood
ENDIF

ENDIF
ENDIF

ENDIF
IF best neighbour is better than current solution

add best neighbour to frequency list
ELSE

add best neighbour to recency list
ENDIF
set current solution to best neighbour in neighbourhood

ENDDO

WHILE typically stop after some fixed number of loops round

Figure 3.3 - Tabu Search Pseudo Code

/* Tabu Search Example 7

37

Relationship between Tabu Search and Hypothesis. See Table 3.1
• Uses the differences between whole solutions to guide the search for

improvements

• Improvements are located using a fixed size move operator and individual whole

non-improving solutions.

• The most improving part of the neighbourhood is always improved at each step

resulting in improvements being implemented using a largest first preference.

Improvements located using non-improving solutions that are of much worse

quality than the current best solution are implemented at the end of the

optimisation process. Improvements located using a large number of

compounded non-improving moves are looked for and implemented at the end of

the optimisation process.

3.1.3) Simulated Annealing and Threshold methods

Simulated Annealing, [Kirkpatrick 83], is a stochastic hill climber that from time to

time also makes non-improving moves inspired by processes in statistical mechanics

in physics. See [Dowsland 93] for a more detailed description of Simulated

Annealing. All improving moves found are implemented and a biased random

selection method is used to work out which non-improving moves to implement.

Selection is biased towards changes that make the solution a little worse. As the

search progresses it increases its bias against moves that are worse than the current

best solution, until it reaches a stage when only improving changes are accepted.

38

Annealing refers to the cooling of some material. The rate at which the bias is

increase against non-improving solutions relates to the speed the temperature is

decreased.

Simulated Annealing Algorithm - for minimisation problem

Where t is the temperature, the initial temperature is set to some value >0, and

gradually reduced to 0.

d = new solution quality - current solution quality

if exp(-d/t) > random number between 1 ..0 then
current solution = new solution

Note if the new solution is an improvement, i.e. d is negative, then it is
always accepted.

The rate at which the temperature is reduced has traditionally been worked out using

trial and error. A method that automatically calculates the temperature reduction rate

and thus the convergence rate for SA and Evolutionary Algorithms, [Poupaert 2001],

is described later in this chapter.

39

Threshold methods
Threshold methods are fairly similar to simulated annealing, but rather than

increasing the bias against non-improving changes they gradually increase an

acceptance threshold. This means they reject more and more non-improving changes

as the search progresses. Various styles of threshold have been experimented with,

methods where the threshold is: -

• Relative to the current solution - Threshold Accepting [Dueck 90]

• Relative to the current best solution - Record To Record Travel [Dueck 93]

• An absolute solution quality threshold - Great Deluge Algorithm [Dueck 93]

Relationship between Simulated Annealing and Hypothesis. See Table 3.1
• Uses the differences between whole solutions to guide the search for

improvements

• Improvements are located using a fixed size move operator and individual whole

non-improving solutions

• All improvements found are implemented, resulting in a bias towards no

improvements implemented preference. Improvements located using non-

improving solutions that are much worse quality than the current best solution

are implemented at the start of the search process. Improvements located using a

large number of compounded non-improving moves are looked for and

implemented at the start of the search process.

40

3.1.4) Evolutionary Algorithms

The term Evolutionary Algorithm (EA) is used in the text as a general term to

describe both Genetic Algorithms and other evolution based algorithms. EAs have

been around for more than 40 years, [Bremermann 62], EAs use a population of

solutions and are broadly based on biological evolution.

Evolutionary Algorithms can be split into three major groups: -

• Genetic Algorithms see [Goldberg 89], [Holland 75]

• Evolutionary Programming see [Fogel 95], [Fogel 66]

• Evolutionary Strategies see [Back 96], [Rechenberg 73]

The following text describes the basic framework of local search style EAs.

Population
This is a pool of solutions used to create new solutions. The initial population of

solutions can be created in a number of ways. Random solutions can be created,

alternatively meta-heuristics such as a greedy construction method or a local search

method can be used to create the initial population. It is important that population

members are different from each other so the method can create better solutions.

Population size affects algorithm speed and solution quality, see the genetic

algorithms chapter in [Reeves 93] for a brief discussion on population size.

Selection
The selection process chooses which solutions to discard and which solutions to use

for reproduction, where reproduction is taking one or more solutions and using the

solutions to create a new solution. The simplest way to choose a solution for

reproduction is to use solution quality, often called fitness. Weaker, low quality

solutions are discarded and better quality solutions are used to create new solutions.

41

One method of selection is to replace the current generation of solutions with a new

generation, this is known as generational replacement [Goldberg 89], This method

sometimes leads to the current best solution being discarded before it has out lived

its usefulness. Another method is to gradually replace weaker members of the

population with new stronger solutions, this is known as steady-state replacement,

see [Back 97].

Selection can also be based on how similar solutions are, i.e. how many solution

properties are the same. When solutions are too similar to other members of the

population they are discarded. Selection can control diversity by using solutions that

are or are not similar to create new solutions.

Crossover
Crossover is a method of reproduction, for example see [Michalewicz 02],

Crossover is when properties are copied from two solutions to create a new solution.

For example, with the Travelling Salesman Problem (TSP) take two solutions that

have slightly different routes. Some of the paths between customers will differ,

allowing us to create a new solution using some paths from one solution and some

from the other. Crossover normally involves using two existing solutions but can

involve more. Properties that are the same in both solutions are normally left

unchanged where possible. It is the properties that are different that are changed and

exchanged in order to create a new solution. The aim is to create better solutions by

combining properties from existing good quality solutions.

42

Mutation
Mutation is a method of reproduction, for example see [Michalewicz 02], Mutation

is when the Evolutionary Algorithm takes a single solution and randomly changes

some of its properties to create a new solution. The mutation does not have to be

random but there is usually some random factor involved. Mutation is used to help

find solutions that are better than the current best solution. These mutations will

sometimes manage to indirectly find improvements but sometimes they will fail to

help improve the current best solution.

/* Evolutionary Algorithm Example 7

create an initial random solution
note initial solution is best solution found so far

create a list to hold current population of solution

put initial solution in the population list

DO

search population for solutions that are worth using cross over on. Note
select these based on number of differences between solutions (move
operator size) and difference in solution quality.

IF solutions for cross over found
create a new solution using cross over

ELSE
select a solution from the population to mutate
use a move (mutation) operator on the solution creating new solution

ENDIF

add the new solution to population list

IF the new solution is better then the current best solution
make note new solution is the current best solution

ENDIF

work through current population list discarding any unpromising solutions

WHILE stop after a fixed number of loops or several failures to find
improvements

Figure 3.4 - Evolutionary Algorithm Pseudo Code

43

Putting it all together
A collection of solutions is created, this collection is called a population. Two

solutions are selected and some of the properties that exist in one of the solutions get

copied into the other to create a new solution. Good quality solutions have some

good quality properties; the idea is to combine compatible good quality properties

into a single better quality solution.

Merging good quality solution properties into one solution has the problem of

convergence. This is when all the best solutions become very similar to each other.

Mutation can be used to control convergence by controlling the introduction of new

solution properties.

Tuning of convergence has traditionally been done by trial and error. This is done by

changing the population size, mutation rate and the way solutions are discarded etc.

A method of controlling convergence for EAs and SA, [Poupaert 2001], is described

later in this chapter.

Evolutionary Algorithm Example
The example given in Figure 3.4 starts off with a single solution, rather than a

population of very different solutions. The pseudo code is able to produce a

population of very different or very similar solutions by controlling the amount of

solution mutation. Thus a population of very different solutions is a design choice

and a population of very similar solutions could be created. This can be seen as

being like the neighbourhoods of Simulated Annealing and Tabu Search.

44

Relationship between Evolutionary Algorithm and Hypothesis. See Table 3.1
• Uses the differences between whole solutions to guide the search for

improvements

• Improvements are located using variable size move operators and many whole

non-improving solutions

• There is typically a bias toward using non-improving solutions that are only a

little worse than the current best solution to locate improvements. Such

improvements tend to be implemented at the start of the search process.

3.1.5) Ant Colonies

Ant Colonies proposed by [Dorigo 91], like EAs, use more than one solution to

create new solutions. Ant Colonies use a model to guide the creation of new

solutions and that model is created using many whole solutions. The term Ant

Colonies (AC) is used in the text as a general term, although different variations of

the method have often been given slightly different names.

AC combine several good quality solutions to produce new solutions. The method

takes several solutions and works out which bits of the solutions are the same. When

many different solutions share a particular property, its value is calculated using the

qualities of all the solutions it is part of. So if five solutions have a solution property

in common then the property is awarded a value based on the qualities of the five

solutions.

For example, with the TSP, if five solutions all use the same edge, that edge is given

a value (weighting) based on the qualities of the five solutions. Solution properties

are given weightings based on the solutions that share the property. When creating

45

new solution, solution properties (edges) are selected on a probabilistic basis,

according to weighting. As a result the knowledge gained from old solutions does

not need to be thrown away, as it can be stored in the weighting. This means a

population of solutions does not need to be maintained, as only the weightings are

needed.

To control convergence, weightings from older solutions are reduced each time new

solutions are created. This encourages new solutions that are slightly worse than the

existing solution to be used. This means the new solutions get used to try and find

improvements.

With EAs there is the problem of working out which solutions to combine together.

The advantage with AC is the appropriate solution properties are available at each

choice point, along with estimates of their value. This removes the problem of

working out which solutions to use to create a new solution. See [Dorigo 99] for a

more complete description of AC.

AC, unlike the other methods described here, store the estimate of a property’s value

for future use. AC, like the other local search meta-heuristics, use the difference in

quality between whole solutions to estimate the value of the properties that are

different. These estimates are then used to guide the search for improvements.

46

Relationship between Ant Colonies and Hypothesis. See Table 3.1
• Uses the differences between whole solutions to guide the search for

improvements

• Improvements are located using variable size move operators and many whole

non-improving solutions.

• There is a bias toward using non-improving solutions that are only a little worse

than the current best solution to locate improvements. Such improvements tend

to be implemented at the start of the search process.

3.1.6) Iterated Local Search

Iterated Local Search has proved a valuable way of further improving solutions

created by local search heuristics, [Lorenco 02], [Johnson 02], [Martin 91]. It takes a

solution produced by a local search heuristic, then uses a ‘kick’ that makes the

solution worse, then re-runs the local search heuristic. For example [Martin 91]

‘kicks’ TSP solutions using a double bridge, essentially this involves splitting the

route into two routes and then joining them together again elsewhere. The kick is

defined by [Martin 91] as, the smallest move that is not easy to create using the

existing move operator. The kick is repeatedly applied to the best solution found so

far, followed by the local search heuristic. While other methods have been tried,

always applying the kick to the current best solution appears to be the most

successful [Lorenco 02], A comparison of different styles of implementing iterated

local search is made in [Lorenco 02],

47

3.2) Enhancements to local search methods

This section describes how some of the most widely used local search methods have

been extended and improved.

3.2.1) Tabu Search Speed Ups

Tabu Search typically evaluates all the solutions in the neighbourhood to find the

best improvement, this is computationally expensive. Instead of re-evaluating the

entire neighbourhood after a move has been implemented speed can be improved by

re-evaluating only the neighbours that are impacted by the change. An examination

of some ways to speed up steepest ascent within Tabu Search can be found in

[Johnson 97]. Even with these speedups Tabu Search appears to be a long way

behind the other TSP heuristics that Johnson looked at. One of the faster Tabu

Search methods looked at by Johnson was about 800 times slower than a 3-opt hill

climber and still ended up with a worse average solution.

Tabu Search interestingly appears to be the local search method of choice for the

Vehicle Routing Problem, [Cordeau 02], although the paper does not give any

reasons as to why it is so popular. Granular Tabu Search, [Toth 98], speeds up the

search process by removing unpromising edges from the problem before it starts the

search process. The method leaves 10-20% of the original edges in the problem. It

appears to be 3-5 times faster than other Tabu Search methods that produce similar

quality solutions, see [Cordeau 02] for a comparison of Vehicle Routing Problem

methods.

48

Glover [Glover 97] suggests the use of candidate lists, where a subset of the

neighbourhood is evaluated and the best of move in the subset is implemented. Any

ascent was able to outperform candidate lists and best ascent in [Anderson 96].

Experimental results, in [Anderson 96], on the TSP suggest candidate lists and best

ascent are less effective than any ascent. This is because repeated use any ascent was

able to find better solutions in less time than repeated use of candidate lists or best

ascent.

3.2.2) Evolutionary Algorithm Hybrids

Many Evolutionary Algorithm (EA) hybrids exist, such hybrids have resulted in

improvements in speed and/or quality see [Chellapilla 98] and [Johnson 97]. In one

paper an EA hybrid failed to outperform an EA. The case was in [Braun 99] and

combines an EA with Simulated Annealing. Although the implementation of the

hybrid is suspect, as the algorithm typically made the initial greedy solution worse

rather than better. Typically EA hybrids appear to improve EA performance.

One of the simplest forms of hybrid is to use a greedy method to create the initial

population. Several different styles of initial solution were used by [Braun 99], The

best quality results were achieved by using the best of the initial solutions.

A hybrid between SA and EA uses SA to control acceptance of EA mutations,

sometimes called SAGA (simulated annealing genetic algorithm). This can be used

to control the convergence rate of the EA, see [Poupaert 01], [Tang 00] and [Braun

99], [Poupaert 01] is described in more depth in the next section.

49

Another EA hybrid involves using a local search method to improve members of the

population after crossover. These range from using simple hill climbers such as in

[Tang 00], to using Iterated Lin-Kemighan (ILK) to improve members of the

population. [Johnson 97] reports this is faster at finding improvements than could be

achieved with repeated use of ILK.

A method that combined Tabu Search, Simulated Annealing and Genetic Algorithms

was created in [Ozdamar 02]. Although it is hard to tell if this offered any benefits as

each of the methods compared had different running times. The methods used Tabu

lists, isolating SA acceptance criteria and multiple population GAs.

Stochastic hill climbers have been used to improve the design of Evolutionary

Algorithms, see [Juels 94]. A stochastic hill climber was created to tackle the

problem and the knowledge gained was used to improve the design of the

Evolutionary Algorithm.

Relationship between SAGA and Hypothesis. See Table 3.1
• Uses the differences between whole solutions to guide the search for

improvements

• Improvements are located using variable size move operators and many whole

non-improving solutions.

• Non-improving solutions that are much worse than the current best solution are

used to locate improvements at the start of the search.

50

3.2.3) Controlling convergence in SA & EA

Using a convergence rule from SA [Poupaert 2001] demonstrated a successful way

of controlling execution time using self-tuning convergence. The convergence rule

from SA says, “the number of accepted SA moves must be constant for each

temperature”, see [Poupaert 2001]. This results in the search having to search

through more and more non-improving solutions as it progresses.

As with traditional SA, the worse a solution’s quality, the higher the chance it will

be discarded, this bias against worse solutions is increased as the search progresses.

Changing the amount of bias against worse solutions, changes execution time. With

Acceptance Driven Selection [Poupaert 2001] you get to enter the desired execution

time. The method will then use the results of past evaluations to work out which

solutions to discard. This allows it to reach convergence at a time close to the

desired execution time. The above convergence rule and past evaluations were used

to create a formula to estimate the acceptance level as the search progressed, see

[Poupaert 2001],

Poupaert compares several different implementations of EA and SA based on this

method of convergence. The method reports to perform better than standard SA and

EA as well as matching the best SA algorithms. The big advantage of the method is

that you state how long you want it to run for and it will adjust its convergence rate

accordingly.

51

3.2.4) Ant Colony Enhancements

One enhancement to ant colonies is to give extra weighting to properties that exist in

the best solution, giving properties of the best solution a higher chance of being used

again, see [Dorigo 02]. Another method along similar lines is to create several

solutions, rank them based on quality and then only use the best of these solutions to

create weightings, biasing the weighing according rank.

One problem is that ants will often select the same properties as each other and end

up building very similar solutions. To get round this a method called Ant Colony

System [Dorigo 97] reduces the weight for a property when it gets used. This means

that other ants will then have a higher chance of using other promising solution

properties not yet used.

3.3) Move operator design - Absolute order, relative order &
position

This section looks at definitions of different types of solution property that are

relevant to sequencing, routing and assignment problems.

Several problem categories have been defined [Bierwirth 1996], [Tuson 2000]. The

relationships between solution elements have been used to categorise different styles

of problem. The quality and feasibility of a solution is calculated based on the

relationships that exist between solution elements. These relationships are the

solution properties that are used to estimate the value of a change to a solution.

52

Different problem styles have different types of solution properties. Three well-

known problem styles are precedence, adjacency & group, see bullet points below.

For an in-depth look at move operator performance on scheduling problems see

[Bierwirth 1996], a discussion of move operators and permutation encoding can be

found in [Tuson 2000]. Absolute order, relative order & position are described in

[Bierwirth 1996] and [Tuson 2000], Asymmetrical adjacency is also described,

although it is similar to precedence.

The move operators described can be used to change a single solution or used when

copying properties from one solution to another.

• Precedence/Absolute order, shift operator - e.g. scheduling

This is deciding what order to do some set of tasks, such as scheduling production

on a production line. The tasks that come before a particular task determine that

task’s possible cost. What matters is the order tasks are completed. So with any two

tasks in the schedule, the relationship that matters is which one comes first. It is this

relationship that local search methods improve. Common constraints include, tasks

being prerequisites of other tasks, desired task completion times. For an example of

experiments that improve scheduling problem quality and various scheduling speed

up methods see [Congram 1998].

Shift operators tend to be used with this kind of problem as they can control the

disruption of which task comes first. A shift operator takes a task in the sequence

and repositions it at a new location. Experiments comparing this kind of operator

53

against others can be found in [Tuson 2000], [Bierwirth 1996] looks at crossover

operators for a scheduling problem.

5 4[2]7 8 shifl - 1 3 5 4 2 6 7 8

Figure 3.5 - Shift Operator - Reprinted with permission from [Tuson 00]

• Adjacency/Relative order, 2-opt - e.g. TSP

Adjacency is common in routing problems, problems such as TSP. It is about

deciding which tasks should be adjacent. Reversing the order of the tasks has no

impact on cost, unlike precedence. It is the pairs of adjacent tasks that determine

cost, so it does not matter which tasks come first.

Scheduling problems can also have this property. A scheduling problem where the

only variable cost is switching from one task to another and the direction of the

switch does not affect cost is also of this type.

A k-opt move operator tends to be used with this style of problem, as it can control

disruption of adjacent tasks. 2-opt reverses a sub section of the route or list, a k-opt

reverses k-1 sub sections. For a description of the history of 2-opt and 3-opt,

developed in the 1950’s and 60’s, see [Applegate 99],

1 3 6

54

3 6 5 4 2 Reverse 1 2 4 5 6 3 7 81 7 8

Figure 3.6 - 2-Opt Operator - Reverse - Reprinted with permission from [Tuson 00]

• Group/Position, swap operator - e.g. assignment

This involves grouping elements or tasks together, such as bin packing or designing

a school timetable. It is which elements end up in the same group that determines

cost. Common constraints include, restrictions placed on group sizes, extra costs

when some tasks are in the same group, tasks having different costs depending on

what group they are in.

A swap operator tends to be used with this style of problem, as it controls disruption

of elements that are in the same group. A swap operator switches elements between

groups.

1 3 [6] 5 4[2] 7 8 Swap » 1 3 2 5 4 6 7 8

Figure 3.7 - Swap Operator - Reprinted with permission from fTuson 00]

• Asymmetrical adjacency, shift operator - ATSP

This concerns the ordering of adjacent tasks. Tasks such as the Asymmetrical

Travelling Salesman Problem (ATSP) where the distance between A and B is

different from the distance between B and A. This could, for example, be caused by

a one way traffic system. Scheduling problems can have this property where the cost

of switching from task A to task B is different cost to the cost of switching from B to

A. This can be seen as being half way between precedence and adjacency, as the

precedence of the adjacent elements matters. It is the order of adjacent elements

determines cost. As with precedence a shift operator is useful for this style of

problem as it can control disruption to the order of adjacent elements.

3.4) Lin-Kernighan Algorithms

The dominance of Lin-Kemighan and Lin-Kemighan hybrids with the TSP can be

seen in [Johnson 97] and [Johnson 02]. When it comes to finding solutions to the

TSP, Lin-Kemighan and Lin-Kemighan hybrids appear to be faster than any of the

other local search algorithms. Construction methods exist that are faster than Lin-

Kemighan but these produce much lower quality solutions. Some construction

methods need less execution time than Lin-Kemighan when producing solutions

worse than 9% below optimal, see [Johnson 02], When creating TSP solutions worse

than 9% below optimal there are a variety of construction algorithms that are able to

construct solutions very fast. For example Spacefill is able to generate solutions 32%

below optimal in 0.06 seconds on a 15000 city problem [Johnson 02], In contrast

Lin-Kemighan achieves less than 2% below optimal in 40 seconds on the same

problem size.

Lin-Kemighan uses partial solutions to guide its search for improvements. See

Figure 4.1, Solution(iv) in Chapter 4 for an example of a Lin-Kemighan partial

solution. A partial solution is created by, taking an existing complete solution,

56

removing one edge and inserting another. This partial solution is then used to create

further partial solutions.

Lin-Kemighan only creates partial solutions that are one step away from a whole

valid solution. This ensures that when the quality of the partial solution is estimated,

the solution that is being used is almost valid. Any partial solutions can be converted

into complete solutions by removing one edge and inserting another. This is what

keeps partial solutions one step away from a whole solution.

Lin-Kemighan discards partial solutions that have a total distance that is more than

that of the original complete solution. This is because all improvements can be

located using only partial solutions that have a total distance less than the original

complete solution. See [Applegate 99] for a description of the reason why.

Lin-Kemighan reduces the CPU time needed to find improvements by ignoring low

quality partial solutions. Lin-Kemighan takes a whole solution and make a series of

small changes to it. If any of the small changes result in a partial solution that is

worse than the whole solution, the small change is treated as low quality and

ignored. When it comes across a partial solution that is worse than the whole

solution this is when it backtracks and makes a different small change. This works

on the TSP because for any improvement there must exist a sequence of improving

partial solution changes that locate the improvement; i.e. at no point does the

sequence of small changes produce a partial solution that is longer than the original

whole solution.

57

Lin-Kemighan is able to locate several improvements using a single pair of edges.

After the first pair of edges has been changed and accepted it begins a process of

looking for improvements. It will use the accepted high quality partial solution to

locate further high quality partial solutions by changing pairs of edges and

backtracking. All of the partial solutions are turned into whole solution to see if they

result in an improvement. The best of these improvements is then implemented.

[Applegate 99] shows that only accepting pairs of edges that improve the best

running total so far can gain further speed; doing this had little effect on the final

solution quality.

One of the aims of the experiments will be to compare methods of estimating the

value of solution properties, where a ‘solution property’ for the TSP is an edge. A

‘solution property’ is being defined as a problem relationship that the move operator

changes, e.g. TSP edges define how TSP cities relate to each other. Lin-Kemighan

appears to be the only current method in the local search literature that estimates

solution property values one property change at a time.

Lin-Kemighan works through the problem city by city looking for improvements.

To avoid evaluating the same set of moves more than once, Lin-Kemighan marks

cities that have not been evaluated and unmarks them after evaluation if only non-

improving moves are found. When it makes an improving move the original Lin-

Kemighan method re-marked all cities. [Bentley 90] used the idea of only re-

marking cities involved in an improvement. This speeds up the search process,

especially when there are a large number of cities.

58

Several methods of restricting the number of cities considered in a move are

compared by [Applegate 99], Restricting searches to the nearest 10 cities worked

well for evenly distributed problems, but did not perform as well when cites were

clustered. Out of the different methods of restricting the number of cities considered,

Delaunay triangulation performed the best, see [Applegate 99],

Iterated Local Search is used as an effective way to improve Lin-Kemighan solution

quality. There has been some confusion over the name, [Martin 91] created the

method and called it “Large-Step Markov Chains”, although Johnson called the

method “Iterated Lin-Kemighan”. The term “Chained Lin-Kemighan” now appears

to have been adopted to describe this style of Lin-Kemighan hybrid, see [Johnson

02], See section 3.1.6 for a description of Iterated Local Search.

Tour merging is reported to be an effective way of finding near optimal TSP

solutions, useful in cases where improvements of a fraction of 1% are worthwhile,

[Applegate 99], [Johnson 97]. TSP tour merging involves creating several solutions

using Chained Lin-Kemighan (CLK). The next step is to look for improvements that

can be made using solution properties that are different. To merge the tours

[Applegate 99] used a Linear Programming based algorithm. This is slow compared

to Chained Lin-Kemighan, around 2 seconds to reach 1% of optimal using CLK and

12 minutes using tour merging to find the optimal solution. These numbers are based

on a 1500 city problem, see [Applegate 99] for a comparison of tour merging.

59

Relationship between Lin-Kemighan and Hypothesis. See Table 3.1
• Uses partial solution changes to guide the search for improvements

• Improvements are located using variable size move operators created using

several partial solution changes.

• No preference is given to a particular initial partial solution but if several

improvements are located using the partial solution, the largest is implemented.

3.5) Summary

The meta-heuristics described have many differences, but they also have two

common threads. All the meta-heuristics described use the difference in solution

quality between whole solutions to locate improvements and they use the difference

in solution quality between whole solutions to choose which improvements to

implement. Lin-Kemighan is not a general heuristic (meta-heuristic) and yet the

evidence in later chapters shows that the Lin-Kemighan improvement location

mechanism can be generalised and combined with different improvement preference

mechanisms.

The methods described make changes to solution to help them find improvements.

Tabu Search uses the difference in quality between whole solutions to work out

which change to make next. Evolutionary Algorithms use the difference in quality

between whole solutions to work out which solutions to merge and which solutions

to discard. Ant Colonies use combined quality differences between whole solutions

to select properties to build new solutions. Simulated Annealing uses the difference

in quality between whole solutions to work out which non-improving changes to

60

make and which to ignore. Lin-Kemighan uses partial solutions to guide changes,

other local search methods depend on whole solutions to guide changes.

Because there are several methods described and many variants of each it raises the

question which one should be used with which problem. The thesis argues that

distinguishing between location and preference will give a useful measure of their

value.

Table 3.1 gives a broad overview of how most of the existing local search methods

guide the search for improvements. The experiments in Chapter 5 show how

location and preference can be compared. This allows the ideas that work well with

a particular problem be identified. Table 3.1 gives a summary of the improvement

location and preference methods used by the local search methods described in this

chapter.

61

Meta-heuristics methods of guiding the search process

Guide using L T S E A S S S
K S A A C A A H

G H C
A C

Guidance objective: Solutions of much worse quality than current best solution at start of search process Y Y
Improve improvement Solutions of much worse quality than current best solution at end of search process Y
preference Large improvements first Y Y

Improvements that have a large move size at the start of search process Y
Improvements that have a large move size at the end of search process Y

Guidance objective: Individual whole non-improving solutions Y Y
Locate improvements Many whole non-improving solutions Y Y Y

Partial solution changes Y
Fixed size move operator(s) Y Y Y Y
Variable size move operators Y Y Y Y

LK - Lin-Kernighan
TS -T a b u Search
SA - Simulated Annealing
EA - Evolutionary Algorithm
AC - Ant Colonies
SAGA - Simulated Annealing Genetic Algorithm
SAHC - Steepest Ascent Hill Climber
SHC - Stochastic Hill Climber
Improve improvement preference - giving preference to using some improvements rather than others improves final solution quality.
Locate improvements - making changes to a solution helps locate improvements, the table lists different kinds of changes that are used.

Table 3.1 - Meta-heuristics - methods of guiding the search process

62

Comparison of performance of meta-heuristics on the TSP
Table 3.2 gives an overview of how well several of the different local search

methods perform on the TSP. The methods in the table include many refinements

and alterations designed to help them produce better TSP solutions. The table is a

simplified view of how the methods perform on the TSP, for a more in depth

examination of different execution times and instance sizes see [Johnson 02] and

[Johnson 97]. The Simulated Annealing and Evolutionary Hybrid results are taken

from [Johnson 97], the rest are from [Johnson 02],

1 0 0 0 0 C ity R a n d o m E u c lid e a n In s ta n c e s fro m [J o h n s o n 021
Local Search Heuristic Excess Over

Lower bound
Execution time

3-opt hill climber 2.88 25% faster than Lin-Kernighan
Lin-Kernighan 2.00 2.06 seconds
Tabu search 1.48 9141 times slower than Lin-Kernighan
Chained Lin-Kernighan 0.90 893 times slower than Lin-Kernighan

F ro m [J o h n s o n 97]
1000 Cities Simulated

Annealing
1.6 2480 times slower than Lin-Kernighan on

the same problem
431 Cities Evolutionary

and Lin-
Kernighan
Hybrid

With 35mins of execution time it was able to
produce better quality solutions than
Chained Lin-Kernighan on the same
problem

Table 3.2 - Comparison of meta-heuristics performance on the TSP

63

4) New framework for location and preference
mechanisms
Current local search methods locate improvements and give preference to using

some improvements rather than others. At the moment it is difficult to see what

impact each one is having on the solution. It is being argued that explicitly

separating these issues will help us better understand which strategies work and

why. The intention is to be able to use what is learned to improve existing local

search heuristics.

All local search methods make use of previous solutions to find improvements.

Because all local search methods use previous solutions it is argued that all

improvement location methods can be described in terms of how they make use of

previous solutions. This section describes how local search methods use previous

solutions to locate improvements.

The methods of guiding the search for improvements that are being looked at in this

thesis. There are some striking differences between how different local search

heuristics guide the search for improvements. It is these differences that the thesis

highlights and that the experiments compare.

64

Existing meta-heuristics and Lin-Kemighan are an example of this, they use

different methods of locating improvements: -

• Existing local search meta-heuristics guide the search using the principle:

Take two whole solutions and use the difference in quality to estimate the value of
the properties that are different.

• Lin-Kemighan [Lin 73] uses the following principle:

Use partial and whole solutions to estimate the value of solution properties that are
different. This enables the method to estimate the value of solution properties one at
a time.

Lin-Kemighan is a TSP heuristic, it is faster and produces higher quality solutions

compared to methods based on the first principle. Yet none of the common meta-

heuristics described in review of local search methods, chapter 3, use the second

principle. A search of the local search literature failed to find any evidence that the

second principle has ever been used on problems other than the TSP.

This case highlights the potential benefits of explicitly testing methods of locating

improvements and improvement preference. Using partial solutions to locate

improvements is just one method of locating improvements. Recognising this means

we no longer treat it as a method only suitable for the TSP. The principle becomes

just another method of locating improvements.

Explicitly testing methods of locating improvements and preference, on optimisation

problems, will help us better understand the relationship between local search

methods and problems.

65

4.1) Problem example and hypothesis

Below two different methods of locating improvements are highlighted. The

example below is used to highlight the need to categorise and compare improvement

location methods and improvement preference choices.

Most local search methods use differences between whole solutions to locate

improvements. Partial solution changes appear to be used by Lin-Kemighan alone

and it dominates the Travelling Salesman Problem (TSP). Figure 4.1 shows how

whole and partial solutions are used to locate improvements.

66

Figure 4.1 - Improvement location using partial and whole moves

Estimation of property values
Solution (i) is the current best, Solution (vi) is optimal,

Solutions (iv) and (v) are partial solutions

Figure 4.1 shows how the value of Travelling Salesman Problem properties (edges)

can be estimated. Look at solutions (i) and (ii) in Figure 4.1, (ii) is much worse than

67

(i) . This means the two properties, i.e. edges, that exist in (ii) and not in (i) are

estimated to have a low value, local search methods would typically throw solution

(ii) away. Most local search methods compare whole solutions such as (i), (ii) and

(iii) to estimate the quality of solution properties that are different.

We can use estimates of the quality of individual properties to decide which

properties to use to build new solutions. If we look at the difference between (i) and

(iii), the solution quality is almost the same. This means the two edges that exist in

(iii) and not in (i) are probably worth using to try and improve the current best

solution. In this example the edge that goes from bottom left to middle is part of the

optimal solution (vi).

When we use two whole solutions to estimate the value of properties, as is the usual

case in local search, the same estimate is given to all the properties that are different.

The two edges that exist in (iii) and not in (i) get classed as having equal value.

Using only two solutions we have no way of guessing which of the edges has the

most value.

When we look at solutions (iv) and (v), the partial solution change (v) has a better

quality than (iv) and is also part of the optimal solution (vi). Using partial solutions

gives a method of estimating which of the edges has the most value.

Estimates can potentially be improved by merging them together. By merging

estimates from solution (i) (ii) and (iii), the edge from bottom left to middle gets a

good estimate and it is part of the optimal solution (vi).

68

The fact that such a valuable method of locating improvements appears to exist in

isolation highlights the potential gains of separating the issues of improvement

location and improvement preference.

Hypothesis:

Distinguishing between improvement location and improvement preference is

feasible and useful when creating local search algorithms.

4.2) Defining the problem concepts

This section defines the hypothesis issues and concepts in more detail. The

descriptions link the hypothesis to the experimental design described in Chapter 5.

4.2.1) A Solution Property

Solution properties are what a move operator changes when it alters a solution. The

move operator changes problem element relationships that need to be known to

calculate fitness and check constraints. For example with a TSP an edge is a

relationship between two cities. These relationships are the solution properties that

the move operator changes and what we estimate the value of.

4.2.2) Locating improvements

We use solutions that are different from each other to estimate the value of the

solution properties that are different. Estimates of the value of solution properties are

used to try and improve the current best solution. Look at solution (i) in Figure 4.1,

there are five edges we could add to it and five we could remove, the problem is

how do we work out which to add and which to remove. We are able to estimate the

69

value of edges and use this to work out which removals and additions are probably

part of an improvement.

The literature review describes several local search methods and how they locate

improvements. These include using non-improving moves, partial moves and

variable size move operators. See table 3.1 for summary.

4.2.3) Improvement Preference

Improvement preference is when preference is given to using some improvements

rather than others. We have to make a choice of whether to implement the first

improvement we are able to locate or give preference to particular improvements. A

simple way of doing this is to give preference to large improvements in quality at the

start of the search, rather than small improvements. As the heuristic progresses the

preference for large improvements can gradually be reduced eventually

implementing all improvements found. This is similar to acceptance criteria,

although does not include moves that are rejected all the way through the search

process.

Preference includes selecting one promising avenue rather than another. For

example if there are two non-improving solutions and the method giving preference

to using one of them rather than the other to try and locate an improvement.

The algorithms that evaluate preference measure the compound effect of

improvement choices. The preference algorithms are not designed to assess the size

of individual improvements or number of individual improvements.

70

4.2.4) High quality first & Low quality first

High quality first (steepest ascent) is implementing only large improvements at the

start of the search. The solutions containing these large improvements are then used

to locate further large improvements. This means large improvements are used to

locate further improvements. At the end of the search when improvements become

few and far between, the method implements all improvements, including

improvements found using non-improving moves.

Low quality first (shallowest ascent) is the other way round. Where improvements

located using non-improving moves are implemented at the start of the search. At

the end of the search, again it implements all improvements.

This gives a sliding scale that can be used to locate improvements. At one end

preference is given to low quality improvements located using non-improving

moves and at the other end preference is given to high quality improvements located

by high quality improvements. The experiments use such a sliding scale and the

results are used to support this thesis.

A different approach is to give preference to improvements in the middle of this

scale instead of giving preference to one end or the other. This involves giving

preference to improvements in the middle of the range, and only allowing high and

low quality improvements to be used at the end of the search. See the results chapter

for a discussion on this.

71

4.2.5) Difference between location and preference

While methods of location find improvements they do not deliberately avoid or

reject improvements. Preference is deliberately avoiding or rejecting improvements.

Preference implements some improvements rather than others at the start of the

search. At the end of the search all improvements found would typically be

implemented.

Preference does not refer to any improvements that are rejected all the way through

the search process. For example if non-improving solutions below some threshold

are never used to locate improvements then these improvements could in theory be

looked for but the method rejects them by never searching for them. Also,

preference does not have anything to do with some improvements being easier to

find than others.

4.2.6) Number of properties in an improvement

We want to improve the current solution, to do this we need to work out which

properties of the solution to change. With whole solutions, the choice of which

combination of solution properties we change is restricted by the fact we want whole

solutions. When we use whole solutions we end up being forced to implement

changes in the non-improving move that do not exist in the eventual improvement.

With partial solutions we can assess which properties to add and remove as we build

up a solution, back tracking as needed. This results in a change that is guided by the

properties that make up the improvement. We use estimates of the value of

properties to work out which properties to include and which to reject. Combining

72

estimates as we build solutions allows variable size move operators. This means we

are deciding the number of changes as we build the move. [Lin 73] builds solutions

in this way, evaluating as it builds. The number of properties in an improvement is

another difference in how methods locate improvements and is a possible avenue of

further research. The experiments in the thesis do not test this.

4.2.7) Number of properties in an estimate

Move size is the number of properties that we change to create a new solution.

Using the difference between whole solutions to estimate the value of properties

looks to cause a problem with choosing move size. The problem is balancing the

objective of finding improvements, against calculating good estimates of property

values. It looks as if the smallest move size gives the most reliable estimate of the

value of a property. This is because the estimate is a combination of fewer

properties. With a larger move size we assign the same estimate to more properties

and so end up with more compound solutions to check. Equally, smallest move size

is not always appropriate as improvements vary in size. Again, the experiments do

not test this, this is being highlighted because it is another difference in how local

search methods locate improvements.

4.2.8) Summary

Local search methods estimate the value of solution properties, the estimates are

used to locate improvements and to guide the improvement preference. The speed

and quality impact of different methods of locating improvements and deciding the

improvement preference are measured.

73

4.3) Assumptions & hypothesis scope

The thesis only looks at local search methods and combinatorial problems, although

the hypothesis may also apply to other methods and problems.

4.3.1) Local Search

The hypothesis focuses on local search methods. There are several names for the

methods that the thesis focuses on, local search, meta-heuristcs and iterative

improvement ([Zweben 90] and [Zweben 94] use the term iterative improvement).

4.3.2) Combinatorial optimization

The hypothesis only extends to combinatorial problems that have a finite number of

possible solutions. Other styles of problem have not been looked at in depth. The

hypothesis may or may not apply to other problems, but such problems are outside

the scope of the thesis.

4.3.3) Locating improvements and preference

This thesis is arguing that the only things local search methods do is locate

improvements and control the improvement preference. The thesis describes local

search methods in terms of how they locate improvements and how they decide

improvement preference. The thesis argues that explicitly separating these strategies

will help identify which strategies work with which problem structures.

4.3.4) Construction

While it is expected that the hypothesis also apply to construction algorithms this is

not examined in detail. Construction methods do locate new incomplete solutions

and give preference to some incomplete solutions rather than others. Construction

74

methods and local search methods locate new solutions and give preference to some

solutions rather than others because of this it is believed the hypothesis applies to

construction as well as local search.

4.3.5) Solomon VRPTW Benchmarks

It is expected that the general aspects of the hypothesis expand to problems beyond

the Vehicle Routing Problem with Time Windows (VRPTW) bench marks used in

the experiments, see [Solomon 87] for the benchmarks. This is because the

hypothesis aims to improve the matching of problems to meta-heuristics rather than

a redesign of how they work. By separating improvement location from preference it

is argued that our knowledge of which method suit which problems will improve.

The no free lunch theory [Wolpert 95] suggests the need to create different meta-

heuristics for different optimisation problems.

4.3.6) Using many whole solutions (crossover)

The experiments use the difference in quality between two solution to guide the

search process and do not cover the use of many whole solutions. Because of this the

thesis only argues on a theoretical level that the hypothesis also applies to using

many whole solutions to locate improvements. The literature review describes how

ants and GAs guide the search process using the difference in quality between many

whole solutions and section 4.1 points out how estimates of quality can be merged to

create a good estimate of solution quality. Further work is needed to better

understand the impact of using many solutions to guide the search process.

75

4.3.7) Partial solution quality can be estimated

Problems where partial solution quality can not be estimated are not considered.

That said, many greedy construction methods estimate the value of partial solutions

when working out what to add next. Because of this, it appears possible to estimate

partial solutions, with many combinatorial problems. Greedy construction methods

exist for many of the well-known combinatorial problems, for TSP see [Johnson 97],

for Scheduling see [Congram 98], for Time-Tabling see [Come 96],

4.4) The gap in current knowledge

This section highlights knowledge gaps that appear to exist in the current local

search literature.

4.4.1) Locating improvement and improvement preference

Current methods of local search treat the problems of locating improvements and

guiding the improvement preference as one task. We can not therefore tell how well

they perform at each. For example at the start of the search Simulated Annealing

searches areas of the search space where the solution quality is much worse than the

current best solution and at the end of its search it tends to avoid such areas.

It is hard to compare the preferences that Simulated Annealing uses with other

methods of deciding what order to search the search space. It is difficult because

Simulated Annealing intertwines how it locates improvements with improvement

preference. They do not need to be intertwined, but intertwining them makes it hard

to see what impact each strategy is having.

76

Tabu Search, searches in the opposite order to Simulated Annealing. Areas of the

search space containing solutions a little worse that the current solution are searched

before those where it is a lot worse.

Evolutionary Algorithms, Ant Colonies, Tabu Search and Simulated Annealing all

make choices about the improvement preference and about where to look for

improvements. The problem is they all merge both into a single task, making it

difficult to compare which method is best at which objective.

Many meta-heuristic methods of locating improvements and guiding the

improvement preference exist. Because there appears to be little agreement on which

of the methods is best with which problem it suggests that we do not know which of

them is best at which objective.

Explicitly separating these issues will help us better understand which strategies

work and why.

4.4.2) Guidance using partial solutions

Current Local Search meta-heuristics use differences in the quality of whole

solutions to guide the search for improvements. Lin-Kemighan [Lin 73] uses TSP

partial solutions to guide the search and outperform all these methods.

Lin-Kemighan estimates the value of edges individually. Other heuristics estimate

the value of several edges at once, assigning each edge the same estimate. These

edges will typically be of different lengths and yet they all get given the same

77

estimate. It is suspected this is one reason why it dominates the TSP. Lin-Kemighan

uses variable size move operators with only a single edge pair difference between

partial solutions.

Lin-Kemighan is designed to work with the Travelling Salesman Problem, and

dominates it, and yet variants of it do not appear to exist for other combinatorial

problems. There appears to be a gap in the research for a general local search

method that locates improvements using a variable size move operator, guided by

partial solutions.

It looks as though little has been done to match methods of improvement location to

problem structure. The fact that such a valuable method of locating improvements

does not exist as a meta-heuristic shows important methods of locating

improvements are being missed. The VRP and TSP are similar in structure and a

search of the VRP and local search literature failed to reveal any evidence that the

Lin-Kemighan method of locating improvements has been used on the VRPTW.

This suggests little has been done to identify methods of locating improvements and

match them to problem structure.

4.5) Reasons for merging local search methods

It is being argued that local search methods should be split into how they locate

improvements and how they give preference to some improvements rather than

others. It is being argued that separating these mechanisms will allow the impact of

each to be better understood allowing location and preference mechanisms that suit

the problem be identified and to be combined together.

78

Local search meta-heuristics appear to use only one depended variable to guide the

search:

• difference in solution quality.

They also use several independent (choices) variables such as:

• move operator

• number of property differences between solutions

• improvement preference

All local search methods use these variables to guide the search. Evolutionary

Algorithms, Ant Colonies, Tabu Search and Simulated Annealing all use these

variables. This makes them look like ideal candidates for merging. Some work on

merging Evolutionary Algorithms and Simulated Annealing has been done by

[Poupaert 2001], The method merges how convergence (preference) is guided.

Several different local search methods exist, there are many variations of each

method and many hybrids. This gives us a large number of possible methods to pick

from and a need for guidelines to help pick a method suited to the problem. The idea

is to gather information about the strengths of different local search methods and

then merge the strengths together to create new methods. Demonstrating the

strengths of local search methods should allow the creation of methods better suited

to the problems.

79

Tabu Search, Simulated Annealing, Ant Colonies and Evolutionary Algorithms all

depend on using the difference in quality of whole solutions to estimate the value of

properties. The experiments compare estimating property values using whole

solutions with estimating property values using partial solutions, comparing speed

and quality. With the aim of demonstrating which methods of estimating property

values work best on the VRPTW.

Local search methods contain a huge variety of search control methods, move

operators and problem styles. Because of this, the focus of the thesis is on merging

guidance methods from well-known local search methods. The experiments will be

restricted to the Vehicle Routing Problem. One reason for running experiments on

the VRP is because it has multiple constraints. The multiple constraints of the VRP

make it a much more realistic problem, as real world problems tend to have many

constraints, see [Rochat 94] for an example.

By comparing methods of using the difference in solution quality to guide the search

the results from the experiments show which methods work best with which

problems.

4.5.1) Locating improvements using whole and part solutions

Current methods of locating improvements

Using a non-improving move to guide the search for an improvement can be seen as

guiding a compound move. The change in solution quality of the first move is used

80

to guide the choice of which compound moves to evaluate. Figure 4.2 shows three

non-improving guide moves, two of which are of acceptable guide quality, so only

these two are used to create compound moves. A compound move is when one move

is combined with another, this means instead of a large number of changes being

made in a single move two smaller moves are used to achieve the same result. This

is designed to save execution time, as the neighborhoods are much smaller so fewer

evaluations are needed.

Local search methods use non-improving solutions in the search process. Non-

improving solutions are used to locate solutions better than the current best solution.

If we have a solution that is slightly worse than the current best solution, then there

is a good chance the solution will have some properties that can be used to improve

the current best solution. Typically if a solution is much worse than the current best

solution than it has a low chance of having properties that can be used to create a

solution better than the current best.

The more property differences that exist between solutions means there is a higher

chance that one or more of the differences can improve the current best solution. The

problem with having more differences is that there are more potential improvement

combinations that need to be checked, as a result more differences may sometimes

be a disadvantage.

81

A Compound Move

£
«
D
O

Guide move

X
Compound Move

□

Figure 4.2 - Improvement location using non-improving moves

Simulated Annealing and Tabu Search make use of non-improving solutions that are

typically very similar to the current best solution. EAs and ACs also make use of a

neighbourhood of non-improving solutions. At the start of the search these solutions

are typically quite different to the current best solution. It would appear this brings

such methods much closer to an exhaustive search style approach.

Both Simulated Annealing and Tabu Search use the properties in non-improving

moves to try and create better solutions. Simulated Annealing and Tabu Search

make non-improving changes and use the reduction in quality to estimate the value

of the properties changed. With Simulated Annealing and Tabu Search the estimate

is typically discarded as soon as the move is made. Evolutionary Algorithms (EAs)

and Ant Colonies are more complex, they can combine properties out of two or more

82

non-improving solutions to try and improve the current best solution. This allows

them to combine several estimates together. For example EAs can take two non-

improving solutions and use properties from each of them to improve the current

best solution. With a non-improving solution, the lower the difference in quality the

higher the estimated property value.

As noted in the literature review chapter, a population can be seen as the

neighbourhood of the current best solution, very much like the neighbourhoods of

Simulated Annealing and Tabu Search. Although the neighbors used in Evolutionary

Algorithms and Ant Colonies tend to have more solution differences.

Evolutionary Algorithms and Ant Colonies use populations of solutions, and these

solutions tend to be created randomly or by using greedy methods. For example,

they start off by creating a population of random solutions. They then select pairs of

solutions and then use the properties that are different to try and create an improved

solution. The odds are the randomly created solutions will have a large number of

properties that are different and so a large number of solutions will probably be

needed to work out which of the property differences is part of an improvement.

When comparing two solutions each of the differences that assigned the same value.

This suggests the larger the number of differences the less accurate the estimate of

their value. Evolutionary Algorithms and Ant Colonies use property values to guide

the search right from the very beginning of the search process when the number of

differences between solutions is sometimes very high. It is suspected this hinders

their ability to locate improvements in the early stages of the search.

83

Rather than discarding estimates of property values, Ant Colonies hold on to some

estimates and merge them together. Evolutionary Algorithms are similar to Ant

Colonies, in that they hold on to several whole solutions, rather than discarding

them, thus holding on to information about the value of solution properties. It should

be possible to test when holding on to property value estimates offers an advantage.

Proposed alternative method of locating improvements

It is proposed that Lin-Kemighan style of estimating the value of one property at a

time is faster and more accurate, and this is one thing that will be tested. The Lin-

Kemighan style of estimation has the advantage of being able to build solutions

according to estimates, rather than building solutions to create estimates.

This thesis argues there is a need to test if partial moves are more effective at

locating improvements than using whole move. Details of how the comparison

between partial solution changes and whole moves was conducted are given in the

experiments chapter, Chapter 5. At the moment there is little known about using

partial moves to locate improvements. Comparing them with the performance of

whole moves should help give an insight into when they are worth using.

4.5.2) Discarding solutions

Maintaining a population offers Evolutionary Algorithms a potential advantage over

Tabu Search and Simulated Annealing, as Evolutionary Algorithms can hold on to

solutions and continue to try and make use of them. Evolutionary Algorithms

however have the problem of deciding if a solution is worth mutating or

84

compounding with another solution, if we are not going to do either we may as well

discard it. Evolutionary Algorithms typically use differences in quality to decide

which solutions to discard. Some EA methods also employ niching techniques, see

[DeJong 75] and [Goldberg 87], where they keep hold of solutions that are different

from each other. Because differences in solution quality and the number of property

differences determine which solutions are discarded, I plan to measure how these

variables affect performance.

Ant Colonies get round the problem of deciding what solutions to discard by

maintaining a list of estimates of property values. Although as with Evolutionary

Algorithms it is unclear at what stage the information becomes obsolete and no

longer worth maintaining.

4.5.3) Improvement preference using whole and part solutions

Search control methods vary in the way they select which areas of the search space

should be improved next. Search controls make choices about which changes to

make when. As noted earlier Simulated Annealing searches the search space

effectively in the opposite order to Tabu Search and it is not clear which order is

better. As with finding solutions worth evaluating, existing search controls use the

difference in quality between whole solutions to guide the improvement preference.

In the same way that search controls use differences in quality of moves to decided

what order the search space should be searched, we can use estimates of the value of

individual solution properties to decide the order the search space should be

searched. The experiments compare different methods of guiding the improvement

85

preference. I will be testing the use of partial changes to guide the preference as well

as whole moves. Just as partial changes can be used to locate improvements they can

be used to work out which improvements are given preference.

4.6) Summary

Local search methods change some properties of whole solutions to create better

solutions. The properties we change are used to create estimates of their value.

Estimates are used to decide which properties get used to locate improvements and

guide the improvement preference. Most local search methods estimate solution

property values by measuring the difference in quality between whole solutions and

assign the same estimate to all the properties that are different. Because of the

success of the Lin-Kemighan [Lin 73] it is being argued in this thesis, that the use of

properties estimated on an individual basis, is likely to outperform the use of

properties estimated with whole solutions, on combinatorial optimisation problems

similar to the TSP such as the VRP.

86

5) Experiment Design and Pseudo Code
The experiments show how is it feasible to evaluate improvement location and

preference. The experiment set-up describes how it is feasible to separate the two so

the value of each can be assessed.

The experiments assess the value of using partial and whole solutions to locate

improvements. They also evaluate the preference of using one improvement rather

than another. The experiments are designed to compare location and preference

methods with the aim of showing that distinguishing between the two is useful.

The experiments aim to show the strengths and weaknesses of methods of locating

improvements and improvement preference. The literature review shows many

methods that use both of these methods of guiding the search for improvements, but

they are intertwined and treated as one method. The experiments show that by

splitting them much can be learned about local search.

The two main experiments are as follows: -

• A hill climber to measure the speed and quality impact of using partial changes

and whole moves to locate individual improvements to a solution.

• A hill climber to measure the speed and quality impact of giving preference to

high quality changes and low quality changes.

The experiments use Solomon benchmarks [Solomon 87] for the Vehicle Routing

Problem with Time Windows (VRPTW).

87

5.1) Designing the hypothesis, the experiments, and what I tried to
learn

The aim here is to describe how I went about designing the hypothesis and the

experiments. The section also describes what the experiments aimed to discover.

The major design choices were based on the following questions: -

• How much will be learned from the experiment?

• How long will it take to test the idea?

• Can the idea be implemented?

• Is the idea useful?

5.1.1) Creating the Hypothesis

Separately testing how improvements are located and the improvement preference

appeared to be worth doing. The algorithms described in the literature review do

work, what is less clear is why and how.

Steps and reasoning that led to the creation of the hypothesis

All local search methods make choices based on available information. In order to

understand why and how they work it was necessary to understand what choices

they make and what information they use to make those choices. The first step was

to create a near comprehensive list of the information the algorithms use and choices

they make.

The next step was to try to pin down which information was having a big impact. It

was difficult to work out if a choice was having any impact on the end result and if

88

so, how much impact. The end result was what really mattered. Because of this it

was assumed that every time an algorithm finds a better solution, a solution better

than its previous best, it has produced something of value. The discovery of a single

improvement, i.e. a new best solution, means something of value had been found.

Because new best solutions matter, it looked as if measuring how good an algorithm

is at finding single improvement (new best solution) was worth doing. It is not about

how long it takes to find many improvements. The aim was to discover how long it

takes an algorithm to find a single improvement, i.e. how long different new best

solutions take to find.

Next a list of different styles of improvement that can be found was created. These

were as follows: -

• A simple 2-opt change, i.e. the smallest change that could be made that could

result in an improvement.

• A 3-opt change that could be located using a 2-opt improvement, i.e. a 2-opt hill

climber would locate it.

• A 3-opt change that could not be located using a 2-opt improvement.

• A 3-opt change that could not be located using a 2-opt improvement but there

existed a 2-opt improvement that could be applied to the solution that would

mean a 4-opt change would be needed to find the improvement.

It was assumed this was scalable, i.e. that a 2-opt change can be used to locate a 3-

opt change and the 3-opt change can be used to locate a 4-opt improvement. This

meant the idea could be scaled up all the way to a complete solution. This can be

89

done by starting with an initial solution and making several improvements to it. The

total time it takes to find these improvements is the total time it takes to create the

solution.

Working backwards it can be seen that local search methods use information to help

locate these improvements. This information would take time to collect, in some

cases a lot of time, and in others only a little. Also the quality of the information can

vary, some information is going to be better at helping locate improvements than

other kinds of information. Both these factors affect the ability of a method to locate

improvements.

The second issue of improvement preference comes about because local search

methods use one improvement, to locate further improvements. They have to choose

which improvements are going to be used to locate further improvements.

Preference could be measured on a small scale, looking at which 2-opt

improvements are good at locating 3-opt improvements. But it is worth knowing the

impact on a large scale. Because of this the experiments examine the compound

effect of using one improvement to locate another to locate another, and so on. This

is covered in more depth later in the chapter.

5.1.2) Theory verses experiments

I had a choice to make regards using theoretical analysis or experiments to test my

theories. I decided to use experiments rather than doing a theoretical method of

testing the hypothesis.

90

There were two reasons for this:

1. There is the problem of, what looks like it should work in theory, does not

always work on the ground when implemented. This is summed up by Smith

[Smith 04]

“Usually, to make something amenable to mathematical analysis it is
necessary to make some simplifying assumptions, and that often
makes the thing unrealistic.”

Because of this it was decided that implementing an actual optimiser would

mean the results would be more representative of how people actually go about

solving combinatorial problems.

2. Second I wanted to go beyond the TSP. I wanted a more complex problem to test

my ideas on. Real world problems tend to have many complicating factors and I

wanted a problem that was closer to a typical real world problem. I felt

modelling a complex problem such as the VRP would be very difficult to do

analytically. For these reasons, and others, the Vehicle Routing Problem (VRP)

was used to test the hypothesis.

5.1.3) The 5-opt hill climber

I wanted to be able to compare the performance of using different methods of

locating improvements. One of the major problems was to compare using partial

changes with using whole moves. The solution that I came up with was to use what

in essence is a 5-opt hill climber. I created experiments in pairs so I could compare

the impact on performance of the difference. I tried to keep both experiments similar

to each other and keep them close to how they would be implemented in reality. All

91

pairs of experiments were able to locate and implement 2, 3, 4 and 5-opt

improvements. They were able to locate all of these improvements in the available

neighbourhood. The way they located improvements and the choices of which

improvements got implemented were compared.

Comparing the ability to locate beyond 5-opt size improvements was considered but

was not implemented. The amount of execution time needed had the potential to sky

rocket. This would have meant limiting the methods in some way to ensure they

could run in a reasonable time. I also looked at allowing the partial change hill

climbers to be able to locate 4-opt improvements that would have been very hard for

the whole move method to locate. In the end I decided not to do this. This is because

it made the coding of the partial change method simpler and the experiments would

be the same in terms of which improvements they could locate.

5.1.4) Time taken to locate and improvement

The algorithms that the experiments compare are in essence 5-opt hill climbers. This

means they are able to all locate more or less the same improvements and thus allow

the time taken to locate these improvements to be evaluated.

It should be noted that a few of the improvements in the neighbourhood are missed

because of the way the algorithms work. The methods use solution changes to locate

improvements and there are some low quality changes that are not used to locate

improvements. This is because there is only a small chance the change will be able

to help locate an improvement.

92

In order to test if one method of locating improvements is better at locating

improvements than another, several experiments were done that continually

recorded execution time and solution quality. Several types of information exist that

can be used to locate improvements. The experiments examine four approaches: -

• Difference in distance

• Arrival time at the customer

• Two styles of combining the difference in distance and arrival time

Partial change and whole solutions are also used to locate improvements. Partial

changes and whole solutions are combined with the other four, giving a total of 8

different methods of locating improvements. These are described in chapter 7, the

results chapter.

5.1.5) Compounded whole 3-opt move

Existing meta-heuristic local search methods use whole moves, i.e. complete

solutions, to locate further whole moves. The experiments are designed to learn how

good whole moves are at locating improvements. The experiments used 3-opt

changes to locate improvements. I designed the experiments so they could use both

improving and non-improving 3-opt moves to locate 4 and 5-opt improvements. The

3-opt move could also create 2-opt moves by removing and then re-inserting the

same edge in a single 3-opt move. The partial change method could also do this as it

meant coding was less complex. I wanted to know the impact of using different

quality whole 3-opt moves to locate improvements. I designed the code so I could

vary the quality of the 3-opt moves used to locate improvements. The aim was to be

able to directly compare different methods of guiding the search for improvements.

93

5.1.6) Compounded partial solution change

Partial change information can also be used to locate improvements. The partial

move operator uses a single edge as a starting point. If changing the edge looks

promising it will use it to build 2, 4 and 5 opt moves. Each time it changes an edge

to increase the size of the potential move it evaluates the change to see if it still

looks promising. As with whole moves the code is designed so the quality of the

edges used to locate improvements can be varied.

5.1.7) Picking the best improvement

The code makes choices about which improvements to implement and which to

ignore. This gives rise to probably the biggest difference between the partial change

and whole move comparisons. Because a single 3-opt whole move can sometimes

locate several compound improvements, I need to decide which of them to

implement. The same goes for part solution changes, one edge change can

sometimes locate several improvements. The problem is the improvements they will

locate will not be the same. This means the choice of which improvements are

picked to be implemented are not going to be worked out in the same way. I can still

control the quality of the change used to locate these improvements which makes

them similar. The problem is a set of improvements located by one method is not

picked in the same way as a set of improvements located by the other method. While

ways round the problem exist I saw little point in solving it. The way I implemented

it made coding simpler and wasted less execution time so was closer to how you

would approach a real world problem.

94

5.1.8) Control of time quality trade off

As noted earlier, we want to find better quality solutions and in less time. Execution

time and solution quality are both important. This means I would like to be able to

alter the amount of time it takes the algorithms to run. I want to do this even if it

means I end up with a worse quality solution. Because I can control the quality of

change used to locate improvements I should also be able to control execution time.

The experiments have been designed to show how much control of execution time

can be gained by using different quality changes to guide the search.

Solution quality and execution time are continually recorded and afterward these

were split into three groups for analysis. The groups are created based on execution

time so the strengths and weaknesses of the different methods can be analysed. The

3 groups are:

• Fast early solutions - for problems when a short execution time is better
• Point at which early solutions are overtaken - point at which to switch

algorithms
• Best quality solutions - for problems when longer execution times are acceptable

5.1.9) Preference design

The experiments look at giving preference to using a low quality change to find an

improvement verses using a high quality change. Because local search methods use

improvements to locate further improvements they sometimes give preference to

using one type of improvement rather than another to locate further improvements.

This preference is based on the quality of the change used to locate the improvement

and also the quality of the improvement itself. The experiments are designed to

show whether using low quality changes to locate improvements is better than using

high quality changes. Because I can control the quality of change that gets used to

95

locate an improvement I can use this to alter the kinds of improvements that are used

to locate further improvements. The code is also designed to let me control which

improvements get implemented. We use a small change to locate a set of several

improvements and we then implement one of them. The code is designed to pick

which of the improvements in the set gets implemented. It can pick either the best

improvement or the worst improvement in the set. This allows me to control if low

or high quality improvements get used to find further improvements. The

experiments have been designed like this so I can measure the impact of using

different kinds of improvements to locate further improvements.

5.1.10) Linking experiments back to hypothesis

The thesis argues that existing local search meta-heuristics use the difference in

quality between two whole solutions to locate improvements. It is the use of this

difference between solutions to find improvements that has been examined. The

experiments do not compare performance against methods such at Tabu Search or

Simulated Annealing. Because meta-heuristics use whole solutions to locate

improvements it is argued the results offer an insight into how solution changes can

be better used to locate improvements.

The experiments are designed to assess the value of using partial changes and whole

solution changes to guide the search. This is done on two levels, first the ability to

locate improvements is tested, second the improvement preference is compared.

The experiments test several aspects of the hypothesis. The experiments compare

using partial changes against using whole moves. To test improvement location and

96

improvement preference, two different sets of experiments were created, both of

which compare using partial changes and whole moves. The first set of experiments

test improvement location methods, the second compare improvement preference.

5.1.11) Preference testing

The experiments are designed to test which kind of improvement preference is better

and also test if partial changes are better at guiding preference than whole solution

changes. This is tested using the VRP. Because the VRP with tight time windows is

similar to a scheduling problem and a VRP with slack time windows is similar to a

TSP it is expected the experimental preference results will generalise to these similar

problems, although the experiments described here do not test this.

5.2) Methodology - Data Sets, Speed and Number of Runs

The reliability and general usefulness of the results is dependent on variables such as

the choice of data sets used and the number of execution runs etc. This section

describes how the experiment set-up aims to maximise the usefulness of the results.

5.2.1) Data Sets

With combinatorial problems a small increase in the number of elements can

produce a large increase in the number of possible solutions. This makes it important

to understand the impact of different sizes of problem on speed and solution quality.

This is because of the potentially large variation in the size of the solution search

space. Two different problem sizes were used in the experiments, 100 customers and

200 customers, see tables 5.1 and 5.2. This allowed the experiments to show how

scaleable the different methods are.

97

V R P T W D a ta S e t D e s c r ip tio n s , L a rg e T im e W in d o w s
N a m e o f
D ata S e t

C2_1 Rc2_1 Rc2_2 R2_1 R2_2

N u m b e r o f
C u s to m e rs

100 100 200 100 200

D is tr ib u tio n
o f

C u s to m e rs

Clustered
Customers

Mix of
Random and

Clustered
Customers

Mix of
Random and

Clustered
Customers

Randomly
Distributed
Customers

Randomly
Distributed
Customers

Table 5.1 - VRPTW Data Sets - Solomon and Extended Solomon

V R P T W D a ta S e t D e s c r ip tio n s , S m a ll T im e W in d o w s
N a m e o f
D a ta S e t

C1_1 C1_2 Rc1_1 Rc1_2 R1_1 R1_2

N u m b e r o f
C u s to m e rs

100 200 1Q0
f

200 100 200

D is tr ib u tio n
o f

C u s to m e rs

Clustered
Customers

Clustered
Customers

Mix of
Random

and
Clustered

Customers

Mix of
Random

and
Clustered

Customers

Randomly
Distributed
Customers

Randomly
Distributed
Customers

Table 5.2 - VRPTW Data Set Descriptions - Solomon and Extended Solomon

For several of the 11 VRP problem types, only 8 benchmark instances were

available. When 10 benchmark instances were available, only the first 8 of these

instances were used. The algorithms were evaluated using the 11 different VRP

problem types listed in tables 5.1 & 5.2. The Solomon benchmark problems,

[Solomon 87], contain two different types of time window constraint and three

different customer distribution styles. The small time window instances are short

haul problems because fewer customers can be fitted into a route. Whereas the large

time window instances longer haul problems because they can contain more

customers per route. The clustered instances mimic towns and cities because the

customers cluster together. The instances that contain a mix of random and clustered

customers tend to be closer to real world VRP problems because not all the

98

customers are clustered. The other style of distribution is simply a random

distribution of customers.

5.2.2) Speed

The experiments measure execution time against solution quality. The experiments

also test how well the methods scale as problem size increases. To test how well

methods scale, two different problem sizes will be used. While the methods that find

the best quality solutions are of interest, the focus is also on measuring the ratio

between speed and solution quality for different problem sizes. The experiments

record the solution quality and execution time as the search progresses, this allows

performance in the early and late stages of the search to be compared.

The computer used was an Intel P3 MMX 450Mhz with 192 MB of RAM running

NT 4. The experiments were implemented in Java and executed using Java 1.3.0.

5.2.3) Number of Runs

Local search methods are often stochastic therefore the more runs that are performed

on each problem instance, the more reliable the average and standard deviation

figures become. Although this is irrelevant with deterministic methods as they

produce the same result every time.

Each algorithm was tested on each problem style 40 times. Both the average and

standard deviation were recorded, but the results for individual runs were not stored,

see appendix for standard deviations. The 40 runs comprise of 5 runs on each of the

99

8 different benchmark instances. This means the experiments use 40 runs per

method type.

5.3) Initial Solutions

The aim is to create several different solutions that can be used for all the

experiments. A fairer comparison can be achieved if the experiments being

compared use exactly the same starting solutions. A set of random initial solutions is

created, and this set is used for all the experiments. Random solutions were used

rather than greedy solutions because I wanted to test the ability of different

algorithms to deal with a more diverse set of starting points.

Algorithms are compared by comparing how much they managed to improve the

initial solution. All the methods use the same initial solutions, they all start from

exactly the same place. The percentage improvement in relation to initial solution

quality is used to compare algorithms. Both solution quality and execution time are

important and the trade off between time and quality can be used to help select an

algorithm. This means to measure the increase in time a fixed point is needed.

Because the lower bounds do not offer a fixed point that can be used to measure the

increase in execution time, both execution time and solution quality are measured

using the completed random initial solution as a starting point.

A different set of initial solutions was created because I wanted to know about how

the problem changed as solution quality improved. Starting with the random initial

solutions and using a hill climber created these solutions. I used a hill climber to

create several initial solutions, at various stages of the hill climb sample solutions

100

were collected and these were used as initial solutions. The aim being to take these

solutions and look at how easily improvements could be found. Running the hill

climber twice picked out the sample solutions. The first run is used to get the

proportion of improvements to non-improvements found in a complete run. The

second run uses the proportion of improvements to non-improvements to work out

what stages to collect the solutions from. The second run saved a copy of the

solution every one fifth of the way through the hill climb, see Figure 5.1. These

solutions were then used by the threshold calculation experiments. The threshold

calculation experiments assess how easy it is to find improvements.

Basic Hill climber
Creates an initial solution and makes a series of improvements to it.
Used to gather set of initial solutions for main experiments.

create an initial random solution

DO WHILE untested small solution changes exist
make a small untried change to the current best solution

IF the small change produces an improvement
IF proportion of improvements to non-improvements > next save point

save the solution to file
set next save point so it saves at regular intervals

END IF
make note of new best solution

END IF

END DO
Figure 5.1 - Creation of initial solutions

101

Local search methods create solutions to help find improvements. The aim here is to

find out the odds that a particular pair of solutions can be used to find an

improvement. The method takes an existing solution, changes it and compares the

quality of the two solutions. The next step is to establish if some parts of the change

can be used to create an improvement. The first small change is checked to see if it

can be used to create a 4 or 5-opt improvement. If the small change can be used to

locate a 4 or 5-opt improvement then the small change quality is recorded so the

average and standard deviation can be calculated. The method calculates the average

and standard deviation of all the smaller changes that can be used to help locate 4

and 5-opt improvements. The change in solution quality of the smaller change can

now be used to locate 5-opt improvement. We can use the resulting average and

standard deviation to work out the odds that a small change will help us locate a 4 or

5-opt improvement. See Figure 5.2

We want to be able to locate improvements when the solution quality is low and

when it is high. We want to be able to locate 4 and 5-opt improvements using small

changes at every stage of the search process. Different quality solutions are used to

calculate the average and standard deviation of using small changes to locate

improvements. Averages and standard deviations are calculated for the various

stages of the hill climb. The initial solution created earlier by the hill climber are

selected based on the proportion of improvements to non-improvements found and

are used to calculate the averages and standard deviations.

5.4) Finding improvements - Threshold Calculation

102

I want to compare the ability of partial changes and whole moves to locate

improvements. Both partial changes and whole moves are able to find all of the 5

opt improvements in the neighbourhood. By not bothering looking for the hard to

find 5-opt improvements we can normally speed up the search with only a small

impact on solution quality. These experiments calculate averages and standard

deviations so I can measure at what point improvements become ‘hard to find’. The

threshold calculation experiments assess the ability of 1, 2, 3 and 4-opt partial

change to locate improvements and the ability of 2 and 3-opt moves to locate

improvements.

/*
Locate improvements - Threshold Calculation
The aim is to work out which small changes can be used to locate
improvements. It works out the odds of 1,2 & 3-opt changes being able to
locate 4 & 5-opt improvements.
Take a single solution and for each type of guidance change that can locate
an improvement calculate average and standard deviation of the guidance
changes.
Do this with the different quality solutions collected from the hill climb.
Note distance and time window slack time are the two estimates of change
quality being used.
7

DO FOR each initial solution of similar quality collected hill climber
DO

make a compound 4 or 5-opt change to initial solution
IF improvement

store quality of 1,2 and 3-opt changes that located the
improvement

END IF
WFIILE more sample compound moves required

calculate average and standard deviation of each 1,2 and 3-opt change
that located an improvement.

END DO

Figure 5.2 - Find improvements to a single solution

103

These experiments are designed to find the quality cut off, below which it is not

worth checking to see if a small change is part of an improvement. These

experiments gradually lower the quality of the small changes that are used to locate

improvements. This is done until improvements in final solution quality tail off. By

changing which solution changes are used to locate improvements we are able to

adjust how many improvements get found. The experiments are run in sequence

starting with a 5% threshold that is able to locate 5% of improvements. A 5%

threshold means the algorithm will avoid evaluating large numbers of non-

improving moves. The algorithm gradually increase the threshold to 95%, this is

able to locate 95% of improvements but also evaluates large numbers of non-

improving moves. The tests are run using a range of percentiles calculated using

average and standard deviation from the previous experiments. The percentile

intervals used are 5%, 10%, 20%, 30% ... 80% 90%, 95%. The experiments run hill

climbers to try to discover the optimal percentile cut off point, see Figure 5.3. The

percentile at which the improvement in solution quality falls below 0.5% is taken to

be the optimal percentile cut off point.

Altering which changes are used to locate improvement affects solution quality and

execution time. These experiments are designed to measure the trade off between

solution quality and execution time. I want to know how the time quality trade off is

affected by using different quality small changes to locate improvements.

5.5) Finding improvements - Percentile tail off point

104

We can locate a single improvement using one of many different small solution

changes. The lower quality small solution changes have a lower chance of being part

of an improvement. The odds are that I can ignore the lowest quality changes and

still find all the 5-opt improvements. Even though some of the low quality changes

could be used to locate 5-opt improvements, better quality changes can normally be

found to locate the same improvements. Because most low quality changes do not

result in the location of an improvement, we save valuable execution time by

ignoring these.

The experiments test if partial changes are more effective at locating improvements

than whole moves. The experiments are designed to show which is more effective in

terms of speed and quality. The aim is to show not only if partial changes are better

at locating improvements, but also to show which kind of information is better at

locating improvements on the VRP. I used the difference in distance, the arrival time

at the customer and a combination of the two, to locate improvements. I wanted to

get a feel for different kinds of information that can be used with partial changes and

whole moves.

105

/*
Locate improvements - Percentile tail off point
The aim is to work out which small changes are worth using to locate
improvements. The experiment is designed to find the cut off point, below
which it is not worth checking to see if the change is part of an improvement.
7

DO FOR each small change percentile, calculated using average and
standard deviation.

DO FOR each random initial solution
DO

make a small change to the current best solution
IF small change is better quality than small change percentile

IF we can use the small change to locate an improvement
implement the improvement, becomes best solution

END IF
END IF

WHILE number of consecutive rejected small changes is still small
END DO
calc average & standard deviation solution quality at several time

intervals

END DO
Find percentile where improvement in final solution quality falls

below 0.5 percent

Figure 5.3 - Find improvements to a single solution

5.6) Guide improvement preference

Local search methods use improvements to help locate further improvements. When

an improvement is located, it does not have to be used to locate further

improvements, instead preference can be given to using other smaller or larger

improvements to locate more improvements. The same applies to non-improving

moves, we can give preference to using small or large non-improving moves to

locate improvements. The experiments aim to show whether using low quality

changes to locate improvements produces better quality improvements than using

106

high quality changes. The question is when should preference be given to using

large improvements to locate further improvements and when should preference be

given to non-improving moves and small improvements. The experiments also look

at the impact of giving no preference at all and so using every improvement found to

locate further improvements.

The main two experiments are low quality changes first and high quality changes

first. Low quality changes first is tested by allowing only the lowest 5% of solution

changes to be used to locate improvements at the start of the hill climb. Eventually

the number of improvements we are able to find tails off. At that point the percentile

is increased so that slightly higher quality changes get used to find improvements.

This results in only low quality changes being used to find and implement

improvements at the start of the search process and leaving the high quality changes

till last. High quality changes first work the other way round.

The aim is to see if using a particular preference offers an advantage in terms of the

time quality trade off. The experiments examine if solution quality can be improved

by using one improvement rather than another to locate further improvements.

These experiments are roughly based on Simulated Annealing and Tabu Search

methods of move selection as described earlier. The experiments use hill climbers to

evaluate different methods of working out what to improve next.

The experiment examines the progress of the hill climber as it finds and implements

improvements. It records the solution quality, execution time and the percentile

107

acceptance threshold as the hill climb progresses. These are used to create an

average and standard deviation of the hill climber’s performance.

/*

Improvement preference
Test if final solution quality is affected by altering the improvement
preference.

Two hill climber preference types are tested: -
Uses small changes of low quality to begin with then gradually expanding

to all.
Uses small changes of high quality to begin with then gradually

expanding to all.

create two lists of small change acceptance thresholds,
one increasing, one decreasing.

DO FOR increasing then decreasing acceptance thresholds
DO FOR each random initial solution

set initial acceptance threshold to first threshold in list
DO WFIILE number of consecutive rejected small changes is still

small
make a small change to the current best solution
IF small change is less than upper acceptance threshold AND

greater than lower acceptance threshold
IF we can use the small change to locate an improvement

implement the improvement, becomes best solution
END IF

ELSE
IF the number of rejected small changes is too big

set acceptance threshold to next threshold in list
END IF

END WHILE
END FOR
calc average & standard deviation solution quality at several time

intervals
END FOR

Figure 5.4 - Find improvements to a single solution

108

5.7) Move operators and combining problem styles.

The following covers some of the issues I took into account when designing the

operators.

Combinatorial problems often have multiple objectives and constraints, this results

in them being made up of a mix of problem styles. For example take a Vehicle

Routing Problem with capacity constraints, both customer adjacency and the vehicle

assigned affect the solution. This causes complications with the move operator as

changes to both adjacent position and absolute position need to be taken into account

when a change is made. For more information on problem styles, see section 3.3

Move Operator Design.

5.7.1) Move operator restrictions

Move operators are restricted to limit which solutions they consider. This appears to

be done in two ways: -

• Restricting move size - this controls how similar new solutions are to an existing

solution.

• Restrictions on legal moves - methods sometimes remove unpromising

properties from the search, such as Granular Tabu Search for the Vehicle

Routing Problem, which removes the longer edges [Cordeau 02],

Changing the restrictions on the move operator can change the number of

evaluations needed to find an improvement. Move operator restrictions affect the

109

proportion of improvements available in the neighbourhood, and the average

improvement size.

5.7.2) Move operator used

A 3-opt shift operator is used to try to maximise the proportion of improvements

found. The 3-opt shift operator moves a customer from one place in the route to

another. The move operator could move a customer to a different position within the

route or to another route. This style of move operator was picked because it allowed

the arrival time at a customer on a route to remain more or less the same. When a

customer is inserted into a route, only the customers after the insertion point are

affected. Their increase in arrival time is dependent on which customer is inserted.

I used a compounded 3-opt shift operator to find 5-opt improvements. The

maximum move size used was a 5-opt. While the code was designed to allow any

number of 3-opt moves to be compounded I prevented it from going beyond a 5-opt.

This was done in order to keep the experiments simple, move operator size was an

extra variable I decided not to test.

Both the partial and whole move methods used a compounded 3-opt shift operator. I

wanted the experiments to have very few differences. While partial moves are

capable of complex 5-opt moves that do not disrupt arrival times very much, I

decided to limit both partial and whole moves to being the same. This made

implementation simpler and allowed more of a like-for-like comparison.

110

The 3-opt move operator allowed a 2-opt to be created and the compounded 3-opt

allowed 4 and 5-opt moves to be created. This was a simple matter of not checking

to see if the edge being inserted or removed was already part of the move. This

meant that extra code did not have to be created to create 2-opt and 4-opt moves.

The down side to this was that the estimate of the moves value was less accurate.

The loss in accuracy is because the edge was being used to create the estimate but

was not being used in the move.

5.8) Summary

The experiments are designed to compare the performance of improvement location

and preference mechanisms in terms of solution quality and execution time. The

experiments test the ability of non-improving solutions and partial solutions to

locate improvements and guide the improvement preference. Speed and solution

quality is measured for different solution sizes.

I l l

6) Results of Formative Experiments
Several design choices were made based on the results of formative experiments.

The formative experiments were designed to try to discover what did and did not

matter when detecting improvements and changing the improvement preference.

The formative experiments saved samples of several neighbourhoods so I could

manipulate them in a spreadsheet to try and work out what mattered. I saved details

of all the 2, 3, 4 and 5-opt improvements in the neighbourhood along with details of

what needed changing to implement the improvements.

The results in this chapter were used to guide the design of the main experiments.

The main experiments make heavy use of acceptance thresholds, for both

improvement location and improvement preference. These results described in

sections 6.2 to 6.4 guided the choice of initial acceptance thresholds and how they

changed. The results described here impacted sections 5.4, 5.5 & 5.6. Section 5.4

describes how the acceptance threshold percentiles were calculated by sampling the

neighbourhood, section 5.5 describes how the lower percentile cut off point was

picked and section 5.6 describes how the preference algorithms changed the

thresholds as the search progressed.

In relation to the hypothesis, the results described in this chapter indicate that

turning off the preference mechanism is a useful method of tuning the acceptance

thresholds.

In most cases the results described in this chapter are based on a small number of

cases. To assume the results described here apply to other instances of the same

112

VRP problem is risky. The formative results may help in our understanding of local

search and the VRP, because of this I described them here. I would recommend

further experiments before making extensive use of the formative results.

6.1) Saving the neighbourhood at different stages of the hill climb

To collect the neighbourhood details hill climber algorithms were used. At various

stages in the climb, information about the solution and neighbourhood were

collected for analysis, see section 5.3 “Initial Solutions” for experiment description

and pseudo code. A 3-opt hill climber was executed twice. The first run was used to

find out how a typical run progressed. The second run saved details of all the

improvement in the neighbourhood at various stages in the search. To work out at

what points to save the neighbourhood several pieces of information about the hill

climb were saved: -

• Number of improvements found.

• Number of non-improvements found.

• Total improved distance since initial solution.

• Total time sat waiting for customer time windows to open.

• For every non-improvement, total of all increases in distance.

• For every non-improvement, total of all time window violations.

• For every non-improvement, total of all improved distances with invalid time

windows.

• For every non-improvement, total of all wait times with non-improving distance.

113

These metrics (variables) were considered when searching for a method for

measuring the progress of the search. The method that was eventually picked was

the proportion of improvements to non-improvements. At the start of the search, the

hill climber was able to find a lot of improvements, as the search progressed,

improvements became harder and harder to find. This meant that simply counting

the number of improvements and non-improvements found gave quite a reliable

method of monitoring progress.

In order to calculate acceptance thresholds, a sample of improving and non-

improving move details was saved for each hill climb stage. There were too many

neighbours in a neighbourhood to save all of them. All of the non-improving moves

would not fit in the spread sheet and they took time to save so I decided to just save

a sub set. I also did the same with improving moves for some of the larger problems.

6.2) Non-changing threshold

As the hill climb progressed it was observed that the thresholds for locating

improvements did not change. The methods use small changes to locate

improvements. The quality of the small changes needed to locate say 70% of the

improvements in the neighbourhood did not change as the hill climb progressed, see

section 5.4 “Finding Improvements - Threshold Calculation” for details of how

acceptance threshold information was collected.

The non-changing threshold observation is based on the results from 3 large time

window problems with clustered customers. Each of these was executed twice,

giving 6 samples to examine. The graph, see Figure 6.1, contains results from 6

114

The results in figure 6.1 are for large time window problems with clustered

customers. The results consisted of a sample population of 6 and results for 6 stages

of each hill climb for each sample. This gave 36 results, all of which were very

similar.

The non-changing threshold suggests that improvement location is unaffected by

solution quality. This suggests that by turning off the improvement preference

mechanism an accurate acceptance threshold can be found, i.e. it allows us to work

out which non-improving solutions can be used to locate improvements. This is

useful because it allows the improvement location mechanism to be tuned before a

preference mechanism is applied.

6.3) Setting the improvement location thresholds

This section describes issues that relate to the setting of an improvement location

threshold. Lin & Kemighan, [Lin 73], point out that different small changes can

locate the same improvement. This means that sometimes there is more than one

promising 3-opt move that can be used to locate a 5-opt improvement. This means

some of the 3-opt changes that can be used to locate improvement can be ignored

and it is still possible to locate all the improvements in the neighbourhood. The

formative experiments were used to get a feel for how effective this idea was. The

formative experiments showed that the best 90% of the partial changes used to

locate improvements could be used to locate all the improvements in the

neighbourhood. See section 5.3 “Initial Solutions” for details of how the

neighbourhood information was collected. Even lowering the threshold to 80% made

116

little difference. The formative experiments suggested that using a threshold that

was 10% below the optimal would make little difference to the final solution quality.

This suggested intervals of 10% could be used to locate the near optimal threshold

cut off point.

117

No. Sequence of removed and inserted edges Change in distance for each pair of edges
removed and added. Negative values are
improvements.
1st 2nd 3rd 4th 5th

1 edges: 109<-87+>98->107<+58->98+>74->100<+0->74+>109 -4565 1516 -49159 2870 12811
2 edges: 109<-87+>98->107<+58->98+>74<-0+>100<-74+>109 -4565 1516 -49159 15681 0
3 edges:109<-87+>98<-58+>107<-98+>74->100<+0->74+>109 -4565 -32129 -15514 2870 12811
4 edges: 109<-87+>98<-58+>107<-98+>74<-0+>100<-74+>109 -4565 -32129 -15514 15681 0
5 edges:74->100<+0->74+>109<-87+>98->107<+58->98+>74 2870 12811 -4565 1516 -49159
6 edges:74->100<+0->74+>109<-87+>98<-58+>107<-98+>74 2870 12811 -4565 -32129 -15514
7 edges:74<-0+> 100<-74+>109<-87+>98-> 107<+58->98+>74 15681 0 -4565 1516 -49159
8 edges:74<-0+>100<-74+>109<-87+>98<-58+>107<-98+>74 15681 0 -4565 -32129 -15514
9 edges:87->109<+74->100<+0->74<+98->107<+58->98<+87 -11114 2870 15027 1516 -44826

10 edges:87->109<+74->100<+0->74<+98<-58+>107<-98<+87 -11114 2870 15027 -32129 -11181
11 edges:87->109<+74<-0+>100<-74<+98->107<+58->98<+87 -11114 15681 2216 1516 -44826
12 edges:87->109<+74<-0+>100<-74<+98<-58+>107<-98<+87 -11114 15681 2216 -32129 -11181
13 edges:98->107<+58->98<+87->109<+74->100<+0->74<+98 1516 -44826 -11114 2870 15027
14 edges:98->107<+58->98<+87->109<+74<-0+>100<-74<+98 1516 -44826 -11114 15681 2216
15 edges:98<-58+>107<-98<+87->109<+74->100<+0->74<+98 -32129 -11181 -11114 2870 15027
16 edges:98<-58+>107<-98<+87->109<+74<-0+>100<-74<+98 -32129 -11181 -11114 15681 2216

> and < indicate the direction travelled
- and + indicate if the edge was removed or added

Figure 6.2 - Many partial changes can locate the same improvement

For an example of how many partial changes can be used to locate a single

improvement consider Figure 6.2. The table contains 16 ways of creating the same

5-opt improvement.

The figure 6.2 works as follows:

• A negative value means the combination of the removed and inserted edge

resulted in an improvement. If we look at row No. 1, it begins by removing the

edge between customer 109 and 87 and inserting an edge between customer 87

and 98. The -4565 tells us how much the distance travelled is reduced.

• The symbols > and < show which customer (node) the vehicle departed from and

arrived at, i.e. the route direction.

• The symbols - and + show if the journey (edge) was added or removed.

118

The best results are achieved by move 15, because it allows the improvement to be

identified using a high quality acceptance threshold. Move 15 begins by removing

the edge that connects 98 to 58 and inserts an edge between 58 to 107, reducing

distance travelled by -32129. The next edge pair removed and added reduce distance

further giving a total reduction of -43310. With moves 15 and 16 the total reduction

never falls below -32129. By using a high quality acceptance threshold of say -

32000 for the total distance reduction, solutions 1-14 can be rejected as soon as the

1st pair of edges is tested. The advantage with this is that all the other solutions that

start with these edge pairs are also rejected at the same time.

Improvements that could only be located by low quality changes turned out to be

very small. As a typical rule of thumb the higher quality the change, the higher

quality the improvement located by the change. This meant that a near optimal

threshold was able to locate almost all the improvements in the neighbourhood.

Even if the threshold fell a little way short of the optimal, most of the improvements

missed would typically be small.

The improvement preference mechanism used in the main experiments gradually

changes the threshold as the search progresses. Eleven threshold intervals were used

in the main experiments. The formative experiments were used to assess how many

thresholds to use and what value each should be set at. Because of the fact that a

single improvement can be located using more than one partial change, a 10%

threshold would only find approximately 10% of the improvements in the

neighbourhood. It turned out that using 10%, 20% ... thresholds produced an even

split of the available improvements. There was a little clustering but it did not follow

119

much of a pattern. Because of this, 10% intervals looked like they would work well

with the main improvement preference and improvement location experiments. At

the high and low end of the scale, 5% and 95% were used, see figure 6.1, giving 11

thresholds in all.

The data described here shows many different solutions can be used to help locate

the same improvement. This means putting all the solutions from a neighbourhood

into a spreadsheet is a difficult way of calculating thresholds, and is not

recommended. The thresholds used in the main experiments were calculated in two

stages: -

• First a hill climber was used and part way into the hill climb the neighbourhood

was analysed to establish which neighbours where able to locate compound

improvements, see section 5.4 for a detailed description and pseudo code. This

produced the 11 thresholds.

• Second the preference mechanism was turned off and each improvement

location mechanism was executed using each of the 11 thresholds, see graph 7.1

for typical results and see section 5.5 for the pseudo code. This allowed the

identification of a good lower threshold.

6.4) The misleading compound move edge - Further work

The formative experiments highlighted one of the problems with using a small move

to locate an improvement. Rather than create a move operator to locate 4-opt moves

I used the 5-opt move operator. The 5-opt move was able to create 4-opt moves by

adding and removing the same edge in a single move. This reduced the amount of

coding needed. The observations here relate to partial changes rather than whole

120

moves, but the findings should apply to both. The problem was that the edge was

inserted and then removed again. When this edge was used to locate improvements

it made it hard to find several of the 4-opt improvements. As far as I was able to

make out, using the edge was having a negative impact. I was able to locate all the

improvements by using a high quality threshold if the extra edge was ignored. If the

extra edge was used to locate improvements, a lower quality threshold was needed,

causing the search to be less effective.

I did not code round the misleading edge problem because using a raised threshold

was a simpler way round the problem. Coding round the problem with whole moves

would also have made the main results less realistic as that is not how existing

whole move methods work.

The misleading compound edge data suggests a possible avenue of further research.

The problem is, when an edge (solution property) is used to help locate an

improvement that it is not part of, it makes the improvement more difficult to locate.

This suggests that the idea behind Lin-Kemighan [Lin 73] of using only solution

properties that look like they will lead to an improvement does offer an advantage in

terms of the trade off between algorithm speed solution quality. It looks like it is

worth exploring the idea of creating a hybrid which uses whole move differences

and partial changes. The difficulties with using slack time to help guide partial

changes described in section 7.5.3 suggest a hybrid is worth looking into.

121

6.5) Using both distance and time window thresholds to guide the
search

The formative experiments tested different ways of combining distance and time

window thresholds to guide the search. The experiments in section 5.3 collected

neighbourhood information allowing different ways of locating improvements to be

evaluated.

The formative results indicated that the combined use of both distance and time

thresholds to guide the search would be effective. Although the main hill climber

results showed that using both thresholds did not offer a consistent advantage. The

impact of combining the two is covered in more depth with main hill climber results

in section 7.2 of the next chapter. The problem, I suspect, was in detecting if both

thresholds were good at rejecting non-improving moves. The data that had been

gathered about the neighbourhoods was good for deciding which thresholds would

locate improvements. But the data could not be used to reliably predict the number

of rejected non-improvements. This was because the 5-opt neighbourhood contained

an excessively large number of non-improving solutions.

Regarding preference, the formative experiments did suggest that using a

combination of the best distance threshold and a changing time window thresholds

was a good way to control the preference. It was suspected this would be a good

method because the analysis of the neighbourhood using the spreadsheet showed an

even split in the number of improvements that each preference stage would be able

to locate. When it came to the main experiments, the results were inconsistent. It

was unclear if either of the two methods of combining the distance and slack time

thresholds was better than the other, see sections 7.2 and 7.3.

122

The discussion above illustrates that putting all the solutions from a neighbourhood

into a spreadsheet to calculate thresholds was difficult and unreliable. A better

alternative was to first use a hill climber to calculate the percentile thresholds and

then turn off the improvement preference mechanism. This was simpler and more

accurate. The results discussed in 7.4.6 go further than this and suggest that the use

of distance and slack time to guide the location and preference mechanisms should

have been evaluated separately before they were combined.

6.6) Summary

The results described in this chapter support the idea of fine-tuning the improvement

location acceptance threshold when the preference mechanism is turned off, this is

described in sections 6.2, 6.3 & 6.5. The location mechanism’s thresholds can be

fine tuned while preference is turned on, although the results in sections 7.4.1 &

7.4.4 suggest that this is best done with the mechanism turned off. This also allows

the impact of giving no preference to particular improvements be assessed.

123

7) Results of the VRP experiments
By distinguishing between the mechanisms of improvement location and preference,

the results presented here show which combinations of location and preference do

well and on which problems. Equally the results show which combinations work

poorly together. Without this distinction it would be difficult to tell if a particular

preference mechanism was having a negative impact on the improvement location

mechanism being used. The reason the results can show which location and

preference mechanisms work well together, is because the algorithms used

distinguish between them. The results support the claim that distinguishing between

location and preference is useful because doing so enabled the mechanisms that

work well together to be identified.

Lin-Kemighan style partial moves were able to outperform the other methods when

time windows were slack. They also offered an advantage when customers were

clustered. Although, partial moves were difficult to implement and the percentage

improvement was small, varying between 0.2% and 5%. Furthermore the results

show that giving preference to small improvements in solution quality works well

with all the VRPTW problem types tested. As with partial moves, the giving

preference to small improvements in solution quality only produced slightly better

final solutions. One good thing about switching to a small improvements first

preference mechanism is, it is relatively easy modification.

Current local search algorithms for the VRPTW do not appear to locate

improvements using Lin-Kemighan style partial moves nor do they appear to give

preference to small improvements in solution quality. These unused location and

124

preference mechanisms produced the best quality final solutions on most of the

VRPTW problem styles tested. The claim that the hypothesis is useful is supported

by the fact that distinguishing between the mechanisms helped reveal the potential

value of the mechanisms.

The first half of this chapter, see sections 7.1 -7.3, gives detailed descriptions of

which methods, did well with which VRPTW problem types. The second half,

sections 7.4 - 7.6, describe general findings, and suggests how existing meta-

heuristics can be improved.

Execution time and the tightness of the Time Windows had the largest impact on

algorithm performance. Based on this observation, the results have been divided into

6 groups, as shown in Table 7.1. The best methods were either very fast to start with

and tailed off early or were slow to start with and produced the best quality final

solutions, see graph 7.2 in section 7.4.7.

F a s t/S lo w T im e w in d o w s ize
B e s t e a r ly s o lu t io n s : some methods were
fast to begin with and tailed off early. These
methods created good quality solutions
earlier than the other slower methods.

L a rg e t im e w in d o w p ro b le m s : some
methods typically did better when time
windows were slack. Large time windows
allow many customers per vehicle and so
needed few vehicles.

B e s t f in a l s o lu t io n s : some methods tailed
off later than others, thus creating higher
quality final solutions. These methods were
typically slower than the best, early solution
methods.

S m a ll t im e w in d o w p ro b le m s : some
methods typically did better when time
windows were tight. Small time windows
resulted in fewer customers per vehicles and
so needed more vehicles.

G iv in g 6 g ro u p s
1. Best early solutions, large time window problems - Table______________
2. Best early solutions, small time window problems____________________
3. Point at which early solutions are overtaken, large time window problems
4. Point at which early solutions are overtaken, small time window problems
5. Best final solutions, large time window problems
6. Best final solutions, small time window problems

Table 7.1 - Key - 6 Result Groups

125

The experiments compared methods of locating improvements and deciding the

improvement preference. The experiments compared both the solution quality and

the speed of the methods.

The results showed that the following performed the best: -

• High quality, partial distance changes first, produce the best early solutions

with the large time window problems.

• No preference, whole distance moves, produce the best early solutions with

the small time window problems.

• Low quality, partial distance changes first, produce the best final solutions

with large time window problems.

• Low quality, partial distance changes first, produce the best final solutions

with small time window problems.

In some cases, the percentage difference between some of the averages was very

small. This is especially true for the methods that produce the best quality final

solutions.

7.1) Result Comparison Tables

The tables 7.4 to 7.13 show which local search methods performed best and on

which problems, t-test results are also shown. The progress of each of the 20 local

search methods is recorded over time. Tables 7.4 & 7.7 compare fast methods, tables

7.10 & 7.12 compare methods that produce the highest quality solutions and tables

7.5 & 7.7 show the point at which the slower methods, that produced higher quality

126

solutions, surpassed the fast methods. Each percentage is an average taken from 40

runs. The key: table 7.2, contains all the method variations used to locate

improvements and how preference was given to particular improvements at the early

stages of the search. The key: table 7.3, contains the 11 types of Vehicle Routing

Problem with Time Windows (VRPTW) benchmarks that were used. Both the

original Solomon benchmarks [Solomon 87] and the some of the extended Solomon

benchmarks were used.

K e y - 2 0 lo c a l s e a rc h g u id a n c e m e th o d s
See the 10 results tables below 7 .4 -7 .1 3

The results tables only shows results for the best tail off thresholds
The methods use the difference in solution distance/time to work out the odds that a 3-
opt move can be used to locate a 4 or 5-opt improvement.__________________________
P re fe re n c e m e th o d s __
N = No preference. Use all 3-opt improvements and some non-improving 3-opt solutions
to find 5-opt improvements.
H = High - Initially use large 3-opt improvements to locate 5-opt improvements,
gradually expanding to all.
L = Low - Initially use small 3-opt improvements and non-improving 3-opt solutions to
locate 5-opt improvements, gradually expanding to all._____________________________
L o c a tio n m e th o d s - N u m b e r o f c h a n g e s u s e d to c re a te a s o lu t io n e s tim a te

P = Part - Uses individual partial solution changes to locate 4 and 5-op improvements.
W = Whole - Uses 3-opt moves used to locate 4 and 5-opt improvements.___________
L o c a tio n m e th o d s - In fo rm a tio n u s e d to d e c id e i f th e s o lu t io n c h a n g e s h o u ld b e u s e d to
try a n d lo c a te a n im p ro v e m e n t.__
D = Distance - Use difference in solution distances to help locate improvements
T = Time - Use difference in solution slack time to help locate improvements
D T = Distance + Time - Uses linked distance and time thresholds. Where both
threshold are a fixed number of percentiles below the optimal tail off point.
B D T = Best Distance + Time - Uses the best distance tail off threshold with different
slack time thresholds.
U s e d to c re a te th e 2 0 a lg o r ith m s : -
N P D N W D H P D H W D L P D L W D
N P T N W T H P T H W T L P T L W T
N P D T
N P B D T

N W D T
N W B D T H P B D T H W B D T L P B D T L W B D T

Table 7.2 - Key - 20 loca search guidance methods

One method is used from each box
e.g. NPD = No preference Partial Distance

127

K e y - 1 1 V R P T W P ro b le m T y p e s
See the 10 results tables below 7.4 - 7.13

C = Clustered
R c = Random Clustered
R = Random

1 = Small time windows
2 = Large Time Windows

_1 =100 Customers
_ 2 = 200 Customers

Table 7.3 - Key -11 VRPTW Problem Types

One problem style is used from each box
e.g. Cl_2 = Clustered. 1 = small time windows, _200 Customers

Two algorithm types were used to produce the results in tables 7.4 to 7.13. The no

preference style, prefixed by N, relates to the algorithm described in section 5.5

"Finding improvements - Percentile tail off point". The High and Low quality first

styles, prefixed by H and L respectively, relate to the algorithm described in section

5.6 "Guide improvement preference".

7.2) Detailed descriptions of the early VRPTW solutions

The focus in this section is on early, fast, solutions and how long it takes the slower

methods to catch up and overtake. These fast methods tailed off early, with

spreadsheet analysis showing they typically tailed off in under 0.5 seconds, the

results are given in tables 7.4 & 7.7 below. The other slower methods that produced

better quality solutions needed up to 150 seconds to catch up, see tables 7.5 & 7.8.

These other methods that produced higher quality solutions are discussed in section

1.3.

7.2.1) High quality partial distance first did well with large time windows

The percentage of improvement was used in the result tables, 7.4 to 7.13, to simplify

the comparison of the results. This is because the actual distances are large, and vary

from problem type to problem type, making them difficult to compare. The result

128

tables are sorted by percentage of improvement, with the methods that produced the

best percentage improvement at the top. To understand the tables, consider the left

column of table 7.4, where C2_l is the problem type, the C = Clustered customers, 2

= large time windows and _1 = 100 Customers. The number at the top of the

column, 1952.6, is the length of the initial randomly constructed C2_l solution that

was used by all the various algorithms. The NPD is one of the 20 algorithms, where

the letter N = No Preference, P = Partial change and D = Distance (the difference in

solution distance). The letters indicate how the algorithm guided the improvement

location mechanism. In this case No Preference mechanism was used, whereas with

HPD, the next one down, both the preference and location mechanisms were guided

by the difference in solution distance. The 0.5 seconds is the execution time, so the

percentage improvement, e.g. the 57.9%, is the percentage improvement of the NPD

method after 0.5 seconds. The 57.9% figure means that the NPD method improved

the initial solution by 57.9%.

129

E a r ly S o lu t io n s , L a rg e T im e W in d o w s
Percentage improvement on initial solutions averaged over 40 runs

Time is in seconds

Initial Random Solution Distances
1952.6 2841.5 9833.7 2652.6 10150.2

C2_1 Time Rc2_1 Time Rc2_2 Time R2_1 Time R2_2 Time
0.5 0.5 0.5 0.5 0.5

NPD 57.9% HPD 50.3% HPD 33.9% HPD 55.5% HPD 47.8%
HPD 57.0% NPD 47.5% NPD 31.3% NPD 50.8% NPD 46.1%
NWDT 50.3% NWDT 46.5% NWD 27.2% NWDT 48.8% NWDT 40.9%
NWBDT 49.0% NPDT 45.8% NWDT 26.8% NWD 46.8% NWD 40.1%
NWD 47.7% NWBDT 44.9% NWBDT 25.8% NWBDT 46.5% NWBDT 39.7%
HWD 47.2% NPBDT 44.0% HWD 24.4% HWD 45.6% HWD 37.7%
NPDT 46.5% NWD 42.7% NWT 21.0% NPBDT 42.1% NWT 31.0%
NPBDT 44.5% HWD 42.2% NPDT 14.6% NPDT 41.7% NPDT 30.3%
NWT 40.5% NWT 38.3% NPBDT 12.3% NWT 40.5% NPBDT 26.8%
HWBDT 33.2% HWBDT 26.4% HWBDT 7.8% HWBDT 24.1% LWBDT 16.2%
LWBDT 26.7% HWT 24.1% HWT 7.5% LWBDT 23.9% HWBDT 15.1%
HWT 25.5% LWBDT 22.9% LWBDT 7.3% HWT 20.8% HWT 13.9%
LWT 20.7% LPBDT 22.4% LWT 5.3% LWT 18.7% LWT 10.8%
LPBDT 15.2% LWT 17.9% NPT 2.9% LPBDT 17.1% NPT 8.0%
NPT 12.3% NPT 13.2% LWD 1.9% NPT 12.7% LPBDT 4.7%
LWD 10.8% LWD 8.5% HPT 0.0% LWD 6.0% LWD 3.8%
LPD 0.8% LPT 5.2% HPBDT 0.0% LPT 3.6% LPT 1.8%
HPT 0.0% HPBDT 4.2% LPD 0.0% LPD 3.5% LPD 0.3%
HPBDT 0.0% LPD 1.5% LPT 0.0% HPT 0.0% HPT 0.0%
LPT 0.0% HPT 0.0% LPBDT 0.0% HPBDT 0.0% HPBDT 0.0%

Table 7.4 - Early Solutions, Large Time Windows

See tables 7.2 & 7.3 for key

The tables 7.4 and 7.7 show solution qualities for very short execution times. The

solution qualities, shown in the tables, were collected just after the fastest methods

tailed off. The fastest methods typically started to tail off in under 0.5 seconds,

although they did continue to gradually improve. Table 7.4 shows results for large

time windows. Large time windows allow more possible solutions, and enable

shorter solutions to be created.

130

The actual solution distances for the results in tables 7.4 - 7.13 can be calculated by

multiplying the initial solution distance by:

(100-percentage) /100

Overview - early solutions with large time windows

Best: HPD

Good: NPD, NWDT, NWD

Bad: LPT, HPT, HPBDT, LPD

Both High quality Partial Distance and No preference Partial Distance (HPD and

NPD) consistently performed the best. Giving preference to High quality Partial

Distance, HPD, always performed the best or near to the best, when giving no

preference, NPD, comes a close second to HPD. The reason partial changes

performed well with large time windows appears to be because the partial change

method is similar to Lin-Kemighan which performs well on the TSP, which is a

similar style of problem. It is similar in that the VRPTW can be turned into a TSP by

removing constraints.

Following closely behind were, whole distance (NWD) and whole distance + time

(NWDT). In some cases giving preference to high quality performed well, but not

giving a preference appears to be more consistent, see NWD and NWDT. With high

quality first, some execution time was spent finding improvements that were

discarded in the early stages. This possibly put the high quality first method at a

slight disadvantage.

131

Using partial time as a guidance methods did not work, see NPT, HPT and LPT.

Using whole moves guided by time did not perform too well either, always lagging

at least 10% behind the best methods. Giving preference to low quality changes also

did badly. It did not matter what guidance method was used when low quality

changes where given preference, they all did badly in the early stages of the search.

Time taken for other methods to catch up

The methods that produce the best early solutions do well right from the start. They

continue to dominate for the first few seconds of the run. Eventually the slower

methods do catch up with the fast methods that tail off early. Table 7.5 shows

solution qualities at the point when the slower methods catch up. It takes them about

10-30 seconds on the 100 customer problems and 1-2.5 minutes on the 200 customer

problems. These slower methods move from the bottom of the table to the top,

compare table 7.4 with 7.10 and 7.7 with 7.12. That is they go from being the worst

performing methods to the best performing in a matter of minutes, or seconds with

the smaller problem.

132

P o in t a t w h ic h e a r ly s o lu t io n s a re o v e r ta k e n , L a rg e T im e W in d o w s
Percentage improvement on initial solutions averaged over 40 runs

Time is in seconds

Initial Random Solution Distances
1952.6 2841.5 9833.7 2652.6 10150.2

C2_1 Time Rc2_1 Time Rc2_2 Time R2_1 Time R2_2 Time
30 10 150 11 50

NPDT 64.1% LPBDT 57.8% HWT 70.1% HPD 61.0% HWBDT 68.0%
HPD 63.9% NPD 57.6% HWBDT 70.0% NPD 60.7% NPD 67.9%
NPD 63.9% HPD 57.4% LPBDT 69.9% HWBDT 60.7% HPD 67.7%
LPBDT 63.7% HWBDT 57.4% NPD 69.8% NWD 60.6% LWBDT 67.6%
HPBDT 63.4% NPBDT 57.3% HPD 69.7% NWDT 60.3% HWT 67.3%
NPBDT 63.3% NWDT 57.2% NPDT 69.6% HWD 60.1% NWDT 67.3%
LWBDT 62.7% NPDT 57.1% HPBDT 69.6% NWBDT 60.1% HWD 67.2%
HWBDT 62.7% NWT 57.1% NWDT 69.5% LWBDT 60.1% NWD 67.2%
LPD 62.6% NWBDT 57.0% NPBDT 69.3% NWT 59.8% NWT 67.1%
HWD 62.4% LWBDT 56.9% LWBDT 69.1% HWT 59.8% NWBDT 66.9%
HWT 62.4% HWD 56.8% HWD 69.1% LPD 59.2% LWD 66.3%
LWT 62.4% NWD 56.8% NWD 68.8% LWT 58.6% LWT 65.9%
LWD 62.2% HWT 56.5% NWBDT 68.8% LPBDT 58.2% LPBDT 62.9%
NWD 62.1% LPD 55.4% NWT 68.6% NPDT 56.9% NPBDT 61.4%
NWBDT 62.1% LWD 55.2% LWD 68.6% NPBDT 56.7% NPDT 61.3%
NWDT 62.1% LWT 55.1% LWT 67.8% HPBDT 55.0% HPBDT 58.8%
NWT 62.0% HPBDT 53.3% NPT 66.3% LWD 54.1% NPT 49.4%
NPT 60.2% NPT 50.1% LPT 42.4% NPT 50.6% LPD 45.7%
LPT 43.4% LPT 32.8% HPT 28.5% LPT 34.2% LPT 34.7%
HPT 32.8% HPT 17.4% LPD 19.6% HPT 24.5% HPT 26.2%
Table 7.5 - Point at which early solutions are overtaken, Large Time Windows

See tables 7.2 & 7.3 for key

Tables 7.5 and 7.8 show the typical execution time needed for the best performing

methods to over take the early front runners. The time taken is mainly dependent on

problem size, 100 customer columns end _1 and 200 customer problems end _2. The

reasons for the difference appear to be mainly down to preference and are discussed

in section 7.4. There is also some variation from problem style to problem style.

There is a consistent difference in performance with the early solution results. The

p-values indicate how similar the methods are, the closer the p-value is to one the

more similar the results of the methods. The statistical difference between the early

133

solutions is typically high, see tables 7.6 & 7.9. This means the methods that did

best should consistently outperform the others. The higher the t-value the more

consistent the difference.

The standard deviations for the results are in the appendix. If desired these can be

used to calculate further p-values.

t-te s t: E a r ly S o lu t io n s , L a rg e T im e W in d o w s
Statistical Difference between the best performing method and the next four

C2_1 Time
0.5

Rc2_1 Time
0.5

Rc2_2 Time
0.5

R2_1 Time
0.5

R2_2 Time
0.5

NPD 57.9% HPD 50.3% HPD 33.9% HPD 55.5% HPD 47.8%

p-values p-values p-values p-values p-values
HPD 0.63 NPD 0.28 NPD 0.16 NPD 0.07 NPD 0.65
NWDT 0.00 NWDT 0.08 NWD 0.00 NWDT 0.00 NWDT 0.01
NWBDT 0.00 NPDT 0.17 NWDT 0.00 NWD 0.00 NWD 0.00
NWD 0.00 NWBDT 0.01 NWBDT 0.00 NWBDT 0.00 NWBDT 0.00

Table 7.6 - t-test: Early Solutions, Large Time Windows

See tables 7.2 & 7.3 for key

With bigger VRPTW problems, with over 200 customers, the expected execution

time can become excessive. The results in this section show which methods can be

used in order to help minimise excessive execution time on VRPTW problems that

have large time windows and large numbers of customers. The results show that

methods using the Partial Distance improvement location mechanism were best able

to minimise execution times but only when combined with either the High quality or

No preference mechanisms. These results support the claim that the hypothesis is

useful because distinguishing between the methods allowed the results to show

which mechanism combinations were best able to minimise execution times with the

large time window VRPTW problems.

134

7.2.2) No preference whole distance moves did well with small time windows

Overview - early solutions with small time windows

Best: NWDT

Good: NWBDT, NWT, NWD

Bad: LPT, HPT, LPD, HPBDT

When the execution time was at 0.5 seconds, one whole move method dominated all

the small time window problems. The dominant no preference method was guided

by both distance and slack time, NWDT, and was faster than the other whole

solution and partial solution methods. After several seconds the slower methods

were able to catch up and over take this faster method.

Even though NWDT dominated, NWBDT, which is very similar, consistently came

a close second. Both methods use a combination of distance and slack time to locate

improvements. With NWDT, both thresholds are a fixed number of percentiles

below the optimal tail off point. NWBDT uses the best distance tail off threshold

with many different slack time thresholds. The one that produced the best quality

solutions is then used in the tables.

With small time window VRP style problems where solutions need to be created in a

few seconds, the results suggest that whole moves are better. It appears finding

improvements using whole moves that use all the constraints to find improvements

is a good way of finding early small time window improvements. This method tailed

after a few seconds allowing some of the slower methods to catch up and overtake.

With the larger 200 customer problems, this took between 30-60 seconds. With the

135

All the methods that used no preference whole moves (N, W) consistently performed

well. Using whole moves guided by distance and time was the fastest, with best

whole distance time coming a close second. These fast performance results were

achieved by not giving a preference to high or low quality solutions.

Whole moves that gave preference to high or low quality time did badly. When no

preference whole time is compared to the two preference methods, both of the

preference methods are outperformed by the no preference method in every case

with early solutions. The no preference method, NWT, stands out because it

consistently outperforms both preference styles rather than because it stands out

from the rest. This could be because the no preference method does not reject

improvements. But if rejection of improvements was the only factor then I would

expect all of the no preference methods to dominate, and yet the reverse is true. It

appears that no preference is better when using slack time to guide the search with

small time windows when a very short amount of execution time is available.

Giving preference to low quality changes caused all methods to perform slowly on

small time window problems.

All the methods guided by partial changes were slow and could not compete in the

early stages of the search. The best two were both guided by distance, one used no

smaller 100 customer problems, it took between 4-12 seconds for the slow methods

to catch up and over take.

136

preference and the other gave preference to high quality changes first. Using partial

time to guide the search also did badly.

E a r ly S o lu t io n s , S m a ll T im e W in d o w s
Percentage improvement on initial solutions averaged over 40 runs

Time is in seconds

Initial Random Solution Distances
2152.9 13000.5 2697.4 9729.7 2780.7 10467.0

C1_1 Time C1_2 Time Rc1_1 Time Rc1_2 Time R1_1 Time R1_2 Time
0.5 0.5 0.5 0.5 0.5 0.5

NWDT 44.9% NWDT 54.3% NWDT 41.2% NWDT 35.1% NWDT 46.6% NWDT 32.8%
NWBDT 41.9% NWBDT 51.4% NWBDT 40.3% NWBDT 31.9% NWBDT 45.5% NWBDT 31.0%
NWT 33.5% NWT 40.9% NWT 35.7% NWD 26.4% NWT 40.0% NWD 24.4%
HPD 33.0% NWD 38.6% NPD 31.4% NWT 26.2% NWD 35.9% NWT 24.1%
NWD 32.2% NPD 33.4% HWBDT 31.0% HPD 25.2% NPD 34.3% NPD 22.8%
NPD 31.8% HWD 29.8% NWD 30.9% NPD 24.7% HWBDT 34.1% HPD 21.9%
HWD 30.4% HPD 28.3% HWT 28.3% NPBDT 19.7% NPBDT 30.4% HWD 21.2%
HWBDT 29.9% LWBDT 25.4% NPDT 28.2% NPDT 19.2% HWT 30.1% NPDT 17.0%
NPDT 27.0% HWBDT 23.4% NPBDT 27.2% HWBDT 14.7% NPDT 29.5% HWBDT 13.1%
NPBDT 24.9% HWT 20.8% LWBDT 23.5% HWD 14.1% HWD 28.9% HWT 12.3%
HWT 23.6% NPBDT 19.4% HPD 21.4% HWT 13.5% HPD 28.5% NPBDT 10.9%
LWBDT 23.3% NPDT 18.7% HWD 20.7% LWBDT 7.5% LWBDT 26.1% LWBDT 8.2%
LWT 17.7% LWT 17.4% LWT 20.0% LWT 7.1% LWT 22.1% LWT 7.5%
LPBDT 16.0% NPT 8.5% LWD 12.5% NPT 4.4% NPT 12.3% NPT 4.9%
LWD 12.7% LWD 7.6% NPT 10.3% LWD 2.6% LWD 11.2% LWD 3.1%
NPT 9.5% LPBDT 1.2% LPBDT 10.0% HPT 2.0% HPBDT 11.1% LPBDT 0.3%
LPT 2.2% HPT 0.0% HPBDT 6.2% LPD 0.6% LPBDT 5.0% HPT 0.0%
LPD 0.1% HPBDT 0.0% LPT 1.2% HPBDT 0.0% LPD 2.0% HPBDT 0.0%
HPT 0.0% LPD 0.0% LPD 1.1% LPT 0.0% LPT 1.3% LPD 0.0%
HPBDT 0.0% LPT 0.0% HPT 0.0% LPBDT 0.0% HPT 0.0% LPT 0.0%

Table 7.7 - Early Solutions, Small Time Windows

See tables 7.2 & 7.3 for key

Table 7.7 shows results for small time windows. The methods with a letter, T, make

use of the amount of slack time between customers with the aim of improving their

ability to deal with time window constraints. Because of this these methods are of

particular interest when time windows are small. Section 7.4.5 shows how giving

preference to small differences in solution slack time improved final solution quality

with the larger 200 customer problems.

137

As with large time window problem, the methods that produce the best early

solutions do well right from the start. Again, eventually the slower methods to catch

up, see table 7.8. The difference with the small time windows is that the slower

methods require much less time to catch up and overtake. It takes them about 4-12

seconds on the 100 customer problems and 38-50 seconds on the 200 customer

Time taken for other methods to catch up

problems.

P o in t a t w h ic h e a r ly s o lu t io n s a re o v e rta k e n , S m a ll T im e W in d o w s
Percentage improvement on initial solutions averaged over 40 runs

Time is in seconds

Initial Random Solution Distances
2152.9 13000.5 2697.4 9729.7 2780.7 10467.0

C1_1 Time C1_2 Time Rc1_1 Time Rc1_2 Time R1 _1 Time R1_2 Time
4 50 12 38 9 40

NWBDT 55.6% NPBDT 75.2% HPD 46.5% HWBDT 65.5% HWBDT 52.3% HPD 62.8%
NWDT 55.3% HWBDT 75.2% HWT 46.2% NPDT 64.9% NPD 52.2% HWBDT 62.6%
NPD 55.0% HWT 75.1% LWBDT 46.1% NPD 64.9% HPD 52.2% NPD 62.2%
NPBDT 55.0% NPD 75.1% NPD 46.1% NWDT 64.7% NWDT 52.1% NWDT 62.0%
HWBDT 54.6% LPBDT 75.0% HWBDT 46.0% LPD 64.7% HWT 52.1% LWBDT 61.9%
NPDT 54.0% LWBDT 75.0% NWT 45.8% HWT 64.6% HWD 52.0% NWD 61.7%
HPD 53.9% HPD 75.0% NWD 45.7% LPBDT 64.5% NWD 51.9% NWT 61.6%
NWD 53.6% NPDT 75.0% HWD 45.7% HPD 64.4% LWBDT 51.9% HWD 61.5%
NWT 53.4% NWBDT 74.8% LWD 45.6% NWBDT 64.4% LPD 51.7% NWBDT 61.4%
HWD 51.6% HWD 74.8% LWT 45.6% NWT 64.0% NWT 51.7% HWT 61.4%
LWBDT 51.3% NWD 74.7% NWBDT 45.5% NWD 63.9% LWD 51.4% LWT 60.2%
LPBDT 50.3% NWT 74.7% NWDT 45.4% NPBDT 63.9% NWBDT 51.4% LWD 58.9%
HWT 49.8% NWDT 74.6% LPD 45.2% HWD 63.4% LWT 51.3% NPDT 50.6%
LWT 45.0% LWD 74.2% LPBDT 45.0% LWBDT 62.2% LPBDT 48.0% NPBDT 50.5%
LWD 40.8% LWT 73.3% NPDT 44.8% LWT 61.3% NPDT 47.9% LPBDT 43.5%
NPT 32.9% NPT 70.0% NPBDT 44.7% LWD 59.4% NPBDT 47.8% NPT 38.6%
LPT 16.0% LPT 33.6% HPBDT 41.5% NPT 55.8% NPT 44.0% HPBDT 32.7%
HPBDT 13.1% HPBDT 30.5% NPT 40.9% HPBDT 39.5% HPBDT 35.5% HPT 21.6%
LPD 9.4% HPT 18.9% HPT 22.3% HPT 19.3% HPT 22.5% LPT 15.9%
HPT 7.3% LPD 18.5% LPT 18.5% LPT 13.4% LPT 18.5% LPD 9.5%
Table 7.8 - Point at which early solutions are overtaken, Small Time Windows

See tables 7.2 & 7.3 for key

138

As pointed out with the large time window solutions, there is a consistent difference

in performance with the early solution results. Because of this, the best of these

methods can be expected to consistently outperform the others tested, this is shown

in table 7.9.

t -te s t: E a r ly S o lu t io n s , S m a ll T im e W in d o w s
Statistical Difference between the best performing method and the next four

C1_1 Time
0.5

C1_2 Time
0.5

Rc1_1 Time
0.5

Rc1_2 Time R1 1
0.5

Time
0.5

R1_2 Time
0.5

NWDT 44.9% NWDT 54.3% NWDT 41.2% NWDT 35.1% NWDT 46.6% NWDT 32.8%

p-values p-values p-values p-values p-values p-values
NWBDT 0.02 NWBDT 0.00 NWBDT 0.60 NWBDT 0.00 NWBDT 0.58 NWBDT 0.09
NWT 0.00 NWT 0.00 NWT 0.00 NWD 0.00 NWT 0.00 NWD 0.00
HPD 0.00 NWD 0.00 NPD 0.00 NWT 0.00 NWD 0.00 NWT 0.00
NWD 0.00 NPD 0.00 HWBDT 0.00 HPD 0.00 NPD 0.00 NPD 0.00

Table 7.9 - t-test: Early Solutions, Small Time Windows

See tables 7.2 & 7.3 for key

Again problems with a large number of customers can have excessive execution

times. The results in this section are for the VRPTW problems that have small time

windows. They show which methods can be used in order to help minimise

excessive execution time. The results show that methods using the Whole Distance

and Time as an improvement location mechanism were best able to minimise

execution times but only dominated when combined with no preference. Again these

results support the claim that the hypothesis is useful. This is because distinguishing

between the methods allowed the results to show which mechanism combinations

were best able to minimise execution times with the small time window VRPTW

problems.

139

7.3) Detailed descriptions of the best quality VRPTW solutions

If an execution time of several minutes is available then the results suggest that the

methods highlighted here will perform well. The slowest of the 200 customer

methods had all tailed off and stopped improving after 22 minutes. The 100

customer methods had all finished in under 1 minute.

With some problems very fast solutions are needed, but with other problems an

execution time of several minutes or even several hours is acceptable. This section

looks at the methods with a high solution quality tail off point. Most of the early

solution methods tail off when solution quality is quite low. This section discusses

the methods that produced the best solution qualities when given more execution

time.

7.3.1) Low quality partial distance first did well with large time windows

Overview - best solutions with large time windows

Best LPD

Good LWD, NPD, HPD

Bad: LPT, HPT

No preference Partial Distance (NPD) and High quality first Partial Distance (HPD)

consistently performed well. These two methods also performed well in the early

stages of the search as well as having a high quality tail off. Low quality Partial

Distance (LPD) did not follow this pattern, it went from being one of the worst

performing methods to being the best, see early and best result tables 7.4, 7.7, 7.10

& 7.12.

140

Low quality first whole moves guided by distance (LWD) also performs well. Like

LPD it starts of slow and eventually overtakes the faster methods that tail off early.

Although for some unknown reason LWD performed badly on one problem style,

large time windows with 100 clustered customers.

In the early stages of the search NWDT was one of the best performing methods but

tailed off early and was over taken.

Methods guided by partial time, LPT, NPT and HPT consistently came last or near

to the last. They performed badly both at the start of the search and when they tailed

off. Out of the three methods, NPT consistently outperformed the other two.

141

B e s t q u a lity s o lu t io n s , L a rg e T im e W in d o w s
Percentage improvement on initial solutions averaged over 40 runs

Time is in seconds

Initial Random Solution Distances
1952.6 2841.5 9833.7 2652.6 10150.2

C2_1 Time
50

Rc2_1 Time
50

Rc2_2 Time
1300

R2_1 Time
50

R2_2 Time
164

NPDT 64.1% LPD 58.9% LPD 70.4% LPD 62.0% LWD 68.5%
LPD 64.0% LWD 58.0% HWT 70.2% LWD 61.9% LPD 68.1%
HPD 63.9% LPBDT 57.8% LWD 70.1% HPD 61.0% HWBDT 68.0%
NPD 63.9% NPD 57.6% HWBDT 70.0% HWT 60.8% NPD 67.9%
LPBDT 63.7% LWBDT 57.6% LPBDT 69.9% NPD 60.7% HPD 67.7%
HPBDT 63.4% HPD 57.4% HPBDT 69.8% HWBDT 60.7% LWBDT 67.6%
NPBDT 63.3% HWBDT 57.4% NPD 69.8% NWD 60.6% HWT 67.6%
LWBDT 62.7% HPBDT 57.3% HPD 69.7% LWT 60.5% NWT 67.3%
HWBDT 62.7% NPBDT 57.3% NPDT 69.6% LWBDT 60.4% NWDT 67.3%
LWT 62.6% NWT 57.3% NWDT 69.5% NWDT 60.3% LWT 67.2%
HWD 62.4% NWDT 57.2% NPBDT 69.3% HWD 60.2% HWD 67.2%
HWT 62.4% NPDT 57.1% LWT 69.3% NWT 60.1% NWD 67.2%
LWD 62.2% HWT 57.1% LWBDT 69.2% NWBDT 60.1% NWBDT 66.9%
NWD 62.1% HWD 57.0% HWD 69.1% LPBDT 58.4% LPBDT 62.9%
NWBDT 62.1% LWT 57.0% NPT 68.9% HPBDT 57.5% HPBDT 61.8%
NWDT 62.1% NWBDT 57.0% NWD 68.8% NPDT 57.0% NPDT 61.6%
NWT 62.0% NWD 56.8% NWBDT 68.8% NPBDT 56.7% NPBDT 61.4%
NPT 61.3% NPT 56.1% NWT 68.7% NPT 56.0% NPT 56.3%
LPT 46.4% HPT 44.1% HPT 66.6% LPT 47.7% LPT 49.0%
HPT 38.9% LPT 42.8% LPT 63.3% HPT 41.0% HPT 36.8%

Table 7.10 - Best quality solutions, Large Time Windows

See tables 7.2 & 7.3 for key
Tables 7.10 and 7.12 show the best quality results. These were collected just after

the methods tailed off. The tail off point was detected by an excessive number of

consecutive failures to find an improvement.

Some methods produced solutions slightly better than those shown in tables 7.10

and 7.12. The worst performing methods often had both excessive execution times

and low quality solutions. These unsuccessful methods had slightly better results

than the ones shown because the solutions were collected before these methods

tailed off.

142

The 5 methods that create the best quality solutions look to be almost the same, see

tables 7.11 & 7.13. In most cases the best performing method cannot be expected to

consistently out perform the other 5. The p-values indicate that there is little to pick

between top few of the best performing methods and several execution runs would

be needed to identify a difference in performance.

t -te s t: B e s t q u a lity s o lu t io n s , L a rg e T im e W in d o w s
Statistical Difference between the best performing method and the next four

C2_1 Time Rc2_1 Time Rc2_2 Time R2_1 Time R2_2 Time
50 50 1300 50 164

NPDT 64.1% LPD 58.9% LPD 70.4% LPD 62.0% LWD 68.5%

p-values p-values p-values p-values
lip |1||§ |
p-values

LPD 0.77 LWD 0.57 HWT 0.75 LWD 0.96 LPD 0.78
HPD 0.74 LPBDT 0.51 LWD 0.61 HPD 0.45 HWBDT 0.74
NPD 0.69 NPD 0.42 HWBDT 0.53 HWT 0.35 NPD 0.67
LPBDT 0.50 LWBDT 0.40 LPBDT 0.42 NPD 0.35 HPD 0.58

Table 7.11 - t-test: Best quality solutions, Large Time Windows

See tables 7.2 & 7.3 for key

Results for large time windows are covered in this section with the focus placed on

methods that produce the best quality final solutions. Using distance to guide both

the improvement location mechanism and the preference mechanism dominated

these results. Using partial changes to locate improvements was able to produce best

or near best results using any of the three preference mechanisms; although giving

preference to low quality changes worked the best with partial changes. If a whole

move improvement location mechanism is used, because they are simpler to

implement than partial changes, then combining it with the low quality preference

mechanism enabled the method to produce results that were among the best.

Distinguishing between the mechanisms allowed the results to show which

143

mechanism combinations were best able to produce the best quality final results with

the large time window VRPTW problems.

7.3.2) Low quality partial distance first did well with small time windows

Overview - best solutions with small time windows

Best LPD, LWD

Good NPD

Bad LPT, HPT

With the small time window results no one method dominates the best quality

results. There is little to choose between Low quality Partial Distance (LPD) and

Low quality Whole Distance (LWD). LPD beats LWD in 4 of the 6 problems.

Following closely behind these two was no preference partial distance NPD. NPD

also perform inconsistently, doing well on some problems as not so well on others. It

appears to perform better on the smaller 100 customer problems than the larger 200

customer problems.

Partial solutions were able to outperform whole on both the 100 clustered customer

problems, C l_l and C2_l. Both LWD and LPD do not perform well on the small

time window version of the 100 clustered customer problem, C l_l. NPD produced

better quality final solutions than all the whole move methods with both large and

small time windows. Also, unlike LWD, LPD performs well with the large time

window version, C2_l.

144

Methods guided by partial time followed the same pattern as large time windows,

with LPT, NPT and HPT consistently coming last or near to the last. Again, out of

the three methods, NPT consistently outperformed the other two. Section 7.5.3

suggests that the poor performance of the partial time methods was because the

estimate of slack time was rough and needed to be more accurate.

B e s t q u a lity s o lu t io n s , S m a ll T im e W in d o w s
Percentage improvement on initial solutions averaged over 40 runs

Time is in seconds

Initial Random Solution Distances
2152.9 13000.5 2697.4 9729.7 2780.7 10467.0

C1_1 Time C1_2 Time Rc1_1 Time Rc1_2 Time R1_1 Time R1_2 Time
50 420 50 240 25 600

NPD 57.9% LPD 76.1% HPD 46.5% LPD 66.2% LPD 53.1% LWD 63.3%
LPBDT 57.8% LWD 76.0% LWD 46.5% HWBDT 65.6% LWD 52.7% HPD 62.9%
NPBDT 57.4% LPBDT 75.9% NPD 46.3% HWT 65.4% HPD 52.5% LPD 62.9%
HPD 57.2% HWT 75.3% HWT 46.2% LWD 65.4% NPD 52.4% HWBDT 62.6%
NPDT 57.0% NPBDT 75.2% LWBDT 46.1% LPBDT 65.2% HWBDT 52.3% NPD 62.5%
LPD 57.0% HWBDT 75.2% HWBDT 46.0% NPD 65.1% HWD 52.1% HWT 62.5%
LWD 56.6% NPD 75.2% LPD 45.9% NPDT 64.9% NWDT 52.1% LWBDT 62.5%
LWBDT 56.6% LWBDT 75.1% NWT 45.8% HPBDT 64.8% LWT 52.1% NWT 62.1%
HPBDT 56.4% HPD 75.0% NWD 45.7% NWDT 64.7% HWT 52.1% LWT 62.1%
LWT 56.4% NPDT 75.0% HWD 45.7% LWT 64.6% NWD 52.0% NWDT 62.0%
NWT 55.7% HPBDT 75.0% LWT 45.6% NWD 64.5% LWBDT 51.9% NWD 61.9%
NWBDT 55.6% NWBDT 74.8% NWBDT 45.5% LWBDT 64.5% NWT 51.8% HWD 61.8%
HWT 55.6% NWT 74.8% NWDT 45.4% HPD 64.4% NWBDT 51.4% NWBDT 61.4%
NWDT 55.6% LWT 74.8% LPBDT 45.0% HWD 64.4% LPBDT 48.5% LPBDT 58.5%
NWD 55.5% HWD 74.8% HPBDT 45.0% NWBDT 64.4% NPDT 48.4% NPDT 57.5%
HWBDT 55.4% NWD 74.7% NPDT 44.8% NWT 64.3% NPBDT 48.1% HPBDT 57.4%
HWD 55.4% NWDT 74.6% NPBDT 44.8% NPBDT 63.9% HPBDT 47.5% NPBDT 56.7%
NPT 55.3% NPT 74.2% NPT 43.9% NPT 62.9% NPT 46.3% NPT 52.6%
LPT 35.2% LPT 62.2% LPT 38.7% HPT 34.2% LPT 31.3% LPT 45.2%
HPT 28.7% HPT 49.6% HPT 38.4% LPT 33.2% HPT 30.1% HPT 41.3%

Table 7.12 - Best quality solutions, Small Time Windows

See tables 7.2 & 7.3 for key

As pointed out with the best quality large time window solutions, the best

performing method can not be expected to consistently outperform the others and

several execution runs would be needed to identify a difference in performance.

145

t - te s t: B e s t q u a lity s o lu t io n s , S m a ll T im e W in d o w s
Statistical Difference between the best performing method and the next four

C1 1 Time
50

C1 2 Time
420

Rc1 1 Time
50

Rc1 2 Time
240

R1 1 Time
25

R1 2 Time
600

NPD 57.9% LPD 76.1% HPD 46.5% LPD 66.2% LPD 53.1% LWD 63.3%

p-values p-values p-values p-values p-values p-values
LPBDT 0.96 LWD 0.65 LWD 0.99 HWBDT 0.50 LWD 0.81 HPD 0.85
NPBDT 0.58 LPBDT 0.40 NPD 0.91 HWT 0.37 HPD 0.72 LPD 0.82
HPD 0.39 HWT 0.03 HWT 0.86 LWD 0.36 NPD 0.70 HWBDT 0.72
NPDT 0.35 NPBDT 0.00 LWBDT 0.83 LPBDT 0.26 HWBDT 0.64 NPD 0.66

Table 7.13 - t-test: Best quality solutions, Small Time Windows

See tables 7.2 & 7.3 for key

Results for small time windows are covered in this section, with the focus placed on

methods that create the best quality final solutions. The mechanisms that produced

the best quality solutions with large time windows also tended to produce the best

quality solutions with small time windows. Again the low quality first preference

mechanism typically produced the best quality solutions and both of the location

mechanisms that were guided by distance tended to dominate. Distinguishing

between the mechanisms allowed the results to show which mechanism

combinations were best able to produce the best quality final results with the small

time window VRPTW problems.

7.4) Improvement preference - general findings

The choice of improvement location and improvement preference mechanism is

dependent on the problem being solved and the how much time can be spent

creating a solution. The results in this section and the following sub sections show

that preference is having an impact on solution quality and execution time. This

146

supports the claim that is it useful to distinguish between the two mechanisms

because it shows that the choice of preference mechanism makes a difference to

solution quality and execution time.

The preference experiments were designed to detect improvements in solution

quality rather than speed. Because of this the speed of the methods that gave a

preference is probably below optimal. Fine-tuning could be done that would

potentially improve speed. The preference experiments gradually change the

acceptance threshold. The rate at which this threshold is changed could be looked at

and potentially improved. It is unclear how much would be gained by doing this.

It was expected that all the methods that gave preference to one improvement rather

than another would be slower than the methods that gave no preference because they

would spend time rejecting improvements that could be implemented. As noted

above in section 7.2.1, giving preference to high quality first was faster with most of

the large time window problems tested.

Better quality solutions were achieved by giving preference to some improvements

rather than others. The experiments tested giving preference to low quality moves

and high quality moves to see what impact this had. The experiments start off by

using only low or high quality moves and gradually increasing to all. This offered a

gain of between 1.05% and 3.26% over using no preference for 100 customer

problems. For 200 customer problems gain of between 2.4% and 4.5% was

achieved. See table 7.14 for details of what was gained by giving preference to high

or low quality changes. These percentages are based on comparing the best solution

147

quality no preference method with the best preference method. The details of which

preference methods produced better quality final results see tables 7.10 & 7.12

above.

W h e n a p re fe re n c e w a s g iv e n to h ig h o r lo w q u a lity c h a n g e s
Clustered
with Large
Time
Windows

Clustered
with Small
Time
Windows

Random &
Clustered
with Large
Time
Windows

Random &
Clustered
with Small
Time
Windows

Random
Distributio
n with
Large
Time
Windows

Random
Distributio
n with
Small
Time
Windows

Average

100 C u s to m e r P ro b le m s - H o w m u c h w a s g a in e d b y g iv in g a p re fe re n c e to
h ig h o r lo w q u a lity c h a n g e s
Whole
Moves

1.36% 1.99% 1.49% 1.23% 3.26% 1.05% 1.73%

Partial
Change

-0.43% 0.00% 2.91% 0.55% 3.36% 1.66% 1.34%

Both
whole and
partial

4.88% 4.93% 3.71% 1.30% 3.45% 2.03% 3.38%

2 0 0 C u s to m e r P ro b le m s - H o w m u c h w a s g a in e d b y g iv in g a p re fe re n c e to
h ig h o r lo w q u a lity c h a n g e s
Whole Moves 4.50% 2.40% 2.47% 3.53% 3.03% 3.18%
Partial Change 0.83% 2.15% 3.15% 0.67% 1.17% 1.60%
Both whole and
partial

5.08% 3.20% 4.28% 3.53% 3.03% 3.82%

Table 7.14 - Percentage gain in solution distance with sequence experiments

7.4.1) Damaging effect of very low quality improvements

Very low quality changes had a negative effect on quality. This occurred when the

methods use low quality previous solutions to locate improvements. When the

acceptance threshold is low the solution quality gets worse. Look at the R2 location

results, graph 7.1, and look at how 0_whole (also see “description of key” below)

does worse than l_whole and 0_Partial does worse than l_Partial. Both of the

methods that do worse, allow more of the available improvements to be

148

implemented. It looks as if allowing lower quality previous solutions to be used

damages solution final quality.

Graph 7.1 (below) description of key
• The leading 0_ .. 10_ indicate the threshold cut off point used. Where _0 means

the method is expected to locate at least 5% of the available improvements in the

neighbourhood, although the 5% that are the easiest to find. The percentages

used are 5% 10% 20% 30% ... 80% 90% 95% these relate to the 0_ 1_ 2_ 3_ ...

8_ 9_ 10_. A more detailed description of percentile tail off can be found in

section 5.5 “Finding improvements - Percentile tail off point”.

• “Whole” indicates that the method used whole previous solutions to locate

improvements and “Partial” indicates that partial solution changes were used to

locate improvements.

• “Vehicles=” indicates the average number of vehicles per solution.

149

Lowering the acceptance threshold causes better solutions to be found, but this

comes at the cost of increasing execution time. This is true for all the thresholds

except the last one, where execution increases and the solution quality gets worse.

Why would allowing more of the available improvements to be implemented cause a

reduction in quality? Because the methods do not implement non-improving moves,

I am concluding that some improvements are damaging solution quality.

This pattern repeats across the no preference results. The R2 results, graph 7.1, are

better than average example of the pattern, but the pattern exists with all methods

apart from one. That method, No preference Partial Time (NPT), consistently

produced the worst no preference solutions and did not contain this pattern. Because

it produced such bad results the method does not look to be of value.

Some improvements look to have a damaging effect on the search process and

should either be left till the end or just not implemented at all. We can see the reason

for this by looking at the no preference results. The results show that the quality of

the final solution was dependent on the acceptance threshold used. As the threshold

percentile got lower more improvements could be found. What is interesting is that

when the threshold was lowered further than the most effective threshold, so the last

few improvements could be found, the final solution quality got worse. I expected it

to be slower and produce the same quality of solution because of the extra time spent

rejecting non-improving solutions, but it got worse. This means that using very low

quality changes to locate improvements had a negative effect on quality.

151

If execution time allows, then it may be worth implementing these damaging

improvements at the end of the search. Because using low quality moves to locate

improvements is slow, it may not be worth spending extra time looking for them.

Using very low quality changes to locate improvements is slow because they also

locate a high proportion of non-improving moves.

The main observation here is that the location methods tested have an optimal

threshold and using improvements below this threshold point had a damaging effect

on final solution quality.

Low quality first works, but the initial threshold matters. The results show that

giving preference to low quality changes improves final solution quality. The results

also show that some low quality improvements have a damaging effect on final

solution quality. We can see from the location experiments that if a lower than

optimal threshold is used then it damages final solution quality. If an execution time

of more than a few seconds is acceptable then the results suggest that using low

quality first with a well-tuned initial threshold would work well.

The preference experiments start by using a threshold cut off that is lower than

optimal identified in the location experiments. I suspect this is having a damaging

effect on the results of the low quality first results. I suspect that the solution quality

is being damaged and the positive effect of giving preference to low quality changes

first is more significant than shown by the results. More experiments would need to

be done to test if preference can have a significant positive impact when using

partial changes.

152

The fact that some improvements have a damaging effect may explain why partial

changes produce better quality solutions than whole. It is possible whole moves are

less able to distinguish between the moves that are good to implement and

improvements that cause further improvements to be more difficult to find. It is

possible the cut off threshold for partial moves is excluding more of the damaging

improvements than the cut off threshold for whole moves. I have little evidence if

this is true or not but it is a possible explanation.

Typically, the amount of damage done to final solution quality by setting the

threshold too low was between 0.5% and 2.5%. There were cases where the amount

of damage was larger than this, in 2 cases the average damage was over 5%. See

graph 7.1 for a typical example.

Comparing methods of locating improvements revealed the existence of damaging

improvements. While this is not one of the things the experiments were setup to

discover it does open up a potential area of research. Damaging improvements do

exist and the method used to examine improvement location was able to suggest

how to recognise them.

We can deal with damaging improvement through using preference or location

methods. Implementing damaging improvements at the end of the search means we

are giving preference to the improvements that have a less destructive effect. But if

we choose not to implement the improvements at all, then there is no point in even

trying to locate them.

153

The results in this section show that some very low quality solutions had a damaging

effect on solutions quality. This suggests that an incorrectly tuned improvement

location acceptance threshold can have a negative impact on both solution quality

and execution time. The results here suggest that turning off the preference

mechanism allows a good acceptance threshold to be identified.

7.4.2) Using low quality distance first to improve quality

This section reinforces the findings described in sections 7.3.1 and 7.3.2. It backs up

the point that with all the VRPTW problems tested, giving preference to low quality

distance tended to produce the best final quality solutions.

Giving preference to low quality distance moves gave the best quality final solution

results for most problems, see tables 7.10 & 7.12. The search was guided by three

different methods. These were distance, slack time and a combination of distance

and slack time. When preference was given to using low quality distance moves to

find improvements the search outperformed other whole move methods most of the

time. Using low quality distance moves first gave the best quality whole move

results for 8 of the 11 problems. With the 3 problems where other methods did

better, the best quality results were achieved by a different method each time.

Using low quality whole or partial distance looks to almost always outperform the

other methods when creating the best final solutions. The major exception to this is

again C2_l, where LWD does not do very well. This problem style is possibly not

that important because it is less realistic than random clustered (RC). RC is more

154

realistic because customers do typically exist in both cities and smaller towns and

villages.

The gain in solution quality looks to have come at a cost of increasing the execution

time needed. In the experiments giving preference to low quality distance first

resulted in longer execution times. Giving preference to low quality distance first

gave consistently lower quality solutions. After V2 a second giving preference to low

quality distance first started to lag behind high quality first and no preference. It took

low quality distance first several seconds to catch up and eventually overtake the

other two methods.

With the experiments, giving preference to low quality moves improved final

solution quality. This looks to be at the cost of doubling execution time.

Giving preference to high quality distance moves looked to make no difference to

final solution quality with small time windows. The final solution quality was about

the same as when no preference was given. With 4 problems it was a little better

than giving no preference and in 5 problems a little worse.

Giving preference to high quality whole distance (HWD) looked to offer no

improvements in speed in the very early stages of the search. After 0.5 seconds the

solution quality of HWD lagged behind giving no preference (NWD) in every case.

Again the scale of the lag could in theory be reduced with fine-tuning. High quality

first did catch up and overtake after several seconds in some cases. In contrast high

quality partial distance (HPD) dominates the large time window problems in the

early stages of the search.

155

7.4.3) Longer execution time of low quality distance first

Giving preference to using Low quality Whole Distance moves, LWD, resulted in a

better quality solution than giving preference to high quality, see tables 7.10 and

7.12. The gain in performance came at a cost of increasing the execution time

needed. At the end of the ‘hill climb’ the solution quality of LWD was between

l.l%-4.8% better than HWD. Apart from C2_l, where low quality first was 0.7%

worse than high quality first.

Giving preference to using low quality distance whole moves first also produced

better final quality solutions than no preference with every problem style tested,

again see tables 7.10 & 7.12.

The gain in solution quality that resulted from giving preference to LWD came at

the expense of approximately doubling execution time.

When using partial changes to guide the search, there was a very notable difference

in speed when giving preference to low quality changes first. Giving preference to

low quality causes about a three and a half fold increase in execution time. At the

start of the search this increase in execution time is much greater, taking more like

ten times as long to reach a solution of similar quality. As the methods begin to

reach a plateau the difference in execution time starts to reduce to 3.5 times as long.

156

Distinguishing between the improvement location and preference mechanisms

allowed this trade off between solution quality and speed to be assessed. If the

algorithms did not distinguish between the two mechanisms then it would be unclear

which mechanism was having what impact.

7.4.4) Damaging improvements, the contradiction - Further work

There appears to be a contradiction between giving preference to low quality

distance changes and the damaging improvements. Giving preference to low quality

distance changes looks to improve final solution quality, see tables 7.10 & 7.12. As

a result I would expect that improvements located using high quality changes would

be the only damaging improvements. It looks as if there are damaging improvements

at both ends of the scale. It is not clear from the results why this is the case.

The preference results contradict the idea that very high quality solutions have a

damaging effect. When they give preference to high quality distance it does not

appear to damage solution quality.

It appears further investigation of the impact of using very high quality

improvements and very low quality improvements in the early stages of the search is

required before damaging improvements can be understood.

7.4.5) Using high quality slack time first to improve quality

The results suggest that using whole move high quality slack time changes first,

offers a benefit with larger problems. The same can not be claimed for partial moves

because partial time methods did badly. With the 200 customer problems, using high

157

quality slack time changes first out performed low quality first. For all 5 of the 200

customer problems looked at, high quality slack time first was faster than low

quality first, see tables 7.10 & 7.12.

There looks to be a cost in execution time with high quality slack time first. At the

start of the search giving preference to high quality slack time lagged behind no

preference to begin with. After one minute high quality slack time changes first had

caught up with and overtaken no preference. High quality first was better in terms of

time and quality than the other two methods after one minute.

The case for 100 customer problems was not so clear cut. High quality first

produced the best quality solutions with 2 of the 6 problems. Which of the slack

time methods performs best maybe be down to chance or it maybe down to problem

type. Either way, there does not look to be a hard and fast rule that fits all of the 100

customer problem results.

7.4.6) Small reductions in slack time and distance improved quality.

When creating the best quality solutions using high quality whole slack time moves

looks to offer an advantage over using low quality, see tables 7.10 & 7.12. This is

not a contradiction to the idea that low quality change first produces better quality

solutions. This is because distance is used to measure fitness and time is a constraint

and thus not used to measure fitness. It is either feasible or unfeasible. This means

my measure of slack time goes from lots of slack time through to negative slack

time. Where negative slack means the change is unfeasible. A typical local search

158

method reduces both distance and route slack time. Reducing both of these by small

amounts looks as if it will produce better quality solutions, although this appears to

be at the cost of increasing execution time.

Giving preference to high quality time, and low quality distance, was not tested. The

results suggest that such method could well outperform other preference methods on

the VRPTW.

This section and section 7.4.5 highlight what can be learned by individually

assessing the impact of different preference choices. Because preference

mechanisms are separated from improvement location mechanisms it allows the

impact of different preference mechanisms to be assessed. These sections describe

how small reductions in the slackness of constraints (slack time) and solution fitness

(distance) appear to improve final solution quality. The results described in these

sections support the clam the distinguishing between location and preference is

useful because doing so has shown which preference mechanisms have had a

positive impact.

7.4.7) Designing an improvement preference

Giving preference to low quality improvements and small reductions in the tightness

of the constraints produces the best quality solutions at the cost of increasing

execution time, see Graph 7.2 and the early and best result Tables 7.4, 7.7, 7.10 &

7.12. The results indicate that very low quality solution changes should be avoided

until the end of the search process and preference should be given to using lower

quality changes to locate improvements.

159

While some improvements located using low quality changes look to damage the

final solution quality, others look to have a positive effect. It looks to be down to

where the cut off point is placed. This makes me wonder if the same is true for high

quality changes. Maybe we should have two thresholds and not use moves below or

above the thresholds until the end of the search. It is being suggested that an upper

threshold may exist on the grounds that a lower threshold looks to exist. Although

further investigation of this is required as these results provide little evidence one

way or the other.

The results also suggest that giving preference to high quality distance typically

speeds up the search but causes the search to tail off early. Giving preference to low

quality distance and high quality slack time approximately doubles execution time

while improving final solution quality.

160

Graph 7.2 description of key
• “Partial_Distance” - partial solution changes and the difference in distance were

used to locate improvements.

• “Whole_Distance” - the method used whole previous solutions and the

difference in distance to locate improvements.

• “Time” indicates the difference in solution slack time was used to locate

improvements.

• “BestDistance+Time” - both the difference in distance and the difference in

slack time were used to locate improvements.

• “High_First” (steep) - large reductions in slack time and/or distance were used

to locate improvements before small reductions and increases were used.

• “Low_First” (shallow) - small reductions and increases were used to locate

improvements before large reductions.

7.5) Locating improvements - general findings

On the whole, using the difference in distance between previous solutions proved to

be a reliable method of locating improvements. Other factors appear to offer a small

benefit. These are partial solution changes, acceptance threshold and using both

distance and time. Details of all these improvement location methods are described

next.

7.5.1) Partial distance changes more naturally suited to improvement location

Because the partial and whole move algorithms were both 5-opt hill climbers it was

expected that they would produce the same quality final solutions, this did not

happen. Partial distance changes typically produced better quality final solution than

whole moves, see table 7.15 and tables 7.10 & 7.12. Although the significance of the

162

difference between the quality of the final solutions produced was small, see t-test

table 7.11 & 7.13.

W ith n o p re fe re n c e g iv e n to h ig h o r lo w q u a lity c h a n g e s
Clustered
with Large
Time
Windows

Clustered
with Small
Time
Windows

Random &
Clustered
with Large
Time
Windows

Random &
Clustered
with Small
Time
Windows

Random
Distributio
n with
Large
Time
Windows

Random
Distributio
n with
Small
Time
Windows

Average

H o w m u c h p a r t ia l c h a n g e s w e re b e t te r th a n w h o le

100
Customers

4.88% 4.93% 0.83% 0.68% 0.19% 0.38% 1.98%

200 Customers 4.28% 1.07% 1.19% 1.75% 1.01% 1.86%
Table 7.15 - How much partial changes were better than whole

The two hill climbers used slightly different methods of locating improvements.

They also differed a little in how they decided which improvement to implement.

There were two notable differences between the hill climbers: -

1. A whole move change locates a different set of improvements than a partial

change. With both partial and whole moves, a single small change was used to

locate several improvements. The best improvement out of the set of available

improvements is then implemented. A partial change is used to locate

improvements that share a single common edge. In contrast, a small whole move

is used to locate improvements that share common edge(s) with the small move.

This means that both methods are selecting the best improvement, but the sets

they are selecting from are not the same. It is not known how often more than

one improvement existed in a set of moves. The low quality first experiments

163

were done the opposite way round. With low quality first, the worst quality

solution out of the set was implemented.

2. Improvements that did not get found: Both methods were designed so that

almost all of the 2-5-opt improvements could be found. The difference was that

the improvements missed by one method would not be the same as those missed

by the other.

The two location mechanisms could have been designed so the 1st difference (1) did

not exist. Instead both methods were designed to take advantage of their strengths.

This resulted in the two differences described above.

The t-test p-values shows that the performance of these two methods is quite similar,

but the fact that partial changes were able to produce better quality solutions with all

11 of the VRPTW problems suggests the pattern is not random. The reason why it is

unclear which of the two differences caused the difference in performance is

because the code did not allow the entire preference mechanism to be turned off, i.e.

(1) above still chooses the best of the set of located improvements. Because of the

damaging impact of very low quality improvement, see section 7.4.1, it would

appear this was a bad design choice, this is because of the potential negative impact

on the choice of acceptance threshold. If the acceptance threshold was impacted by

this design choice then the difference between the high quality and low quality

results could be less as a result.

164

Further work is needed to establish what impact these two reasons had on the

difference in final solution quality. Although there is still a valuable observation to

be made. The two different methods each locate a different natural set of

improvements for implementation. The improvements located by partial changes

produced slightly better quality final solutions. This was done with little processing

time being spent on preference.

Needless to say, further work is needed on a wider range of problem types to

confirm the generality of the positive findings due to partial solution changes.

7.5.2) Speed difference with whole moves and partial changes

When whole moves are compared to partial changes, the solution quality of partial

change improves faster than that of whole move. Look at “Partial Distance Low

First” and “Whole Distance Low First” in Graph 7.2 for a typical example. The

percentage difference in solution quality increased as execution time increased. As

the search progresses the number of improvement in the neighbourhood falls. This

means it gets harder and harder to find improvements. As improvements became

harder to find the benefits of using partial changes started to stand out more. Partial

changes were faster at deciding a change would probably not result in an

improvement being found. In short, using partial changes to locate hard to find

improvements was notably more effective than using whole moves.

165

7.5.3) Locating improvements using distance, time and distance + time

This section links back to the use of high quality slack time in sections 7.4.5 and

7.4.6. Although the focus is on the contrast between the partial change and whole

move results that were guided using slack time.

Four different methods of comparing solutions were used to locate improvements,

Distance (D), Time (T), Distance + Time (DT) and Best Distance + Time (BDT) see

table 7.2. Although two of them were very similar in design, DT and BDT. On the

whole, using distance alone to locate improvements dominated. The exception to

this is the fast solutions created for small time windows. These early solutions were

created by methods that used both distance and slack time to guide the search, see

tables 7.4 & 7.7.

The partial time (PT) methods look as if they could be improved upon. They always

came bottom or near to the bottom in comparison with the other methods, see tables

7.4 to 7.13. The estimate of slack time was simplistic and looks as if it did not create

a good estimate. The problem is that good methods of calculating the estimate look

difficult to code and it remains unclear if they could be made to work. Although the

partial solution change methods still make use of whole solutions and so can take

advantage of using whole move slack time to guide the search.

The results described here suggest that accurate estimates of solution quality are

required if partial solution changes are to be successful. Although the fact the partial

change algorithms create whole solutions as well as partial solutions shows that

166

there is not a black and white distinction between the whole move and partial change

mechanisms.

7.5.4) Finding the best tail off thresholds

This section and section 7.4.5 show that speed can be controlled using both

acceptance thresholds and preference. By distinguishing between the mechanisms,

the amount of difference that each mechanism makes to the execution speed can be

evaluated.

Further speed gains look to be possible by reducing the acceptance thresholds. For

each of the location methods 11 thresholds are compared, the result that is able to

locate the largest improvement in solution quality is then used in the tables and my

comparisons. The location results show that using only the best non-improving

solutions to locate improvements speeds up the search process at the cost of

reducing final solution quality. While the results show that both acceptance

threshold and preference can be used to control speed, this study does not directly

compare the two.

7.6) Method consistency and value of the results.

The experiments identify differences in solution quality and execution time with

improvement location methods and preference styles. The use of partial and whole

solutions was compared and methods of giving preference to high and low quality

changes were compared with the aim of testing the hypothesis.

167

7.6.1) Comparison with other benchmark results

The 5-opt hill climbers look to produce lower quality solutions faster than what is

typical for the Solomon benchmarks. The Table contains average solution qualities

for the Solomon benchmark instances. The VRP solution qualities produced by

[Braysy 02] look to be some of the best available. The [Braysy 02] solutions appear

to have a total execution time of 82.5 minutes for the 56 instances, which would

mean an average of 1.5 minutes per instance, although the paper does not appear to

state if the 82.5min is a total or an average. The “Early Solutions” and “Best

Solutions” are from tables 7.4-7.13 and show average execution times per instance.

The experiments limit improvement size to a 5-opt move. I suspect that increasing

the size of the move operator will increase execution time and allow higher quality

solution to be found, this is because sometimes more than 5 VRP edges to be

changed to escape local optima.

R1_1 R 2„1 C1_1 C2__1 RC1 1 R C 2_1
E a rly
S o lu t io n s

1482.33
0 .5 0 s e c

1 1 7 3 .5 6
0 .5 0 s e c

1177.95
0 .5 0 s e c

821.23
0 .4 8 s e c

1587.40
0.49sec

1412.35
0.49sec

:D is ta n c e
:T im e

B e s t
S o lu t io n s

1302.83
2 6 .3 4 s e c

1007.64
1 6 .0 1 s e c

907.02
1 5 .7 2 s e c

700.26
4 .8 3 s e c

1443.50
15.70sec

1203.87
10.72se
c

¡D is ta n c e
¡T im e

[B ra y s y
02]

1222.12 975.12 828.38 589.86 1389.58 1128.38 ¡D is ta n c e
8 2 .5 m in

Table 7.16 - Solomon benchmark results for 5-opt hi 1 climber and [Braysy 02]

It is unclear if the lower that typical solution quality will have an impact on the

usefulness of distinguishing between improvement location and preference. The

experiment results do not show if distinguishing between improvement location and

preference scales all the way up to very high quality solutions and so do not indicate

168

if distinguishing between the mechanisms still has value with such high quality

solutions. The experiments use 5-opt hill climbers rather than variable size move

operators or compound moves to compare location and preference mechanisms.

Further experiments using variable size move operators or compound moves should

tell us more about the value of the thesis hypothesis with very high quality solutions.

7.6.2) Number of Vehicles and Distance

Real VRP problems typically consider reducing the number of vehicles to be more

important than reducing the distance. The results appear to have a close correlation

between distance and the number of vehicles. This means that the distances

compared are a good indication of the quality of the solution. This approach of

comparing solution distance tends to be used in the literature [Cordeau 02], This is

unsurprising as the results given in this chapter show that as distance went down the

number of vehicles also reduced.

7.7) Linking the results back to the hypothesis

The results show it is useful to distinguish between improvement location and

improvement preference. The results are for the VRPTW and show which methods

work well on which problems. The results suggest preference can be generally used

to control the trade off between speed and solution quality, which is important,

because different problems demand algorithms with different execution times. As

for location, partial changes guided by distance tended to produce the best solutions

with all problems except the early solution small time window problems, although

the whole move distance method tended to follow closely behind.

169

The attached CD contains spreadsheets and source code. The spreadsheets contain

all the raw results data and many graphs similar to Graphs 7.1 and 7.2. The source

includes batch files that execute the code and produce the raw results files used in

the spreadsheets.

A summary of the findings and an overview of what was learned are given in the

conclusion chapter.

170

8) Conclusions
At the moment local search methods intertwine improvement location and

improvement preference mechanisms. This thesis proposes that these mechanisms

should be separated. The results show that explicitly separating improvement

location and improvement preference mechanisms allows better understanding and

control of the impact of each. The separation simplified the identification of location

preference mechanisms that suited the VRPTW problems tested. The results also

highlight how each mechanism can be adjusted to improve execution time or

solution quality.

1. The results show the hypothesis, as stated and described in Chapter 4, is
supported by experimental evidence: as shown in Chapter 7, distinguishing
between improvement location and improvement preference proved feasible and
produced useful results.

2. The principal mechanism of controlling the trade off between execution time and
speed was improvement preference. See 7.4.2, 7.2 & 7.3.

3. The principal mechanism for further improving final solution quality was
improvement location, guided by partial changes. See 7.5.1.

8.1) Criteria for success and overview of what was learned

The hypothesis states that: “Distinguishing between improvement location and

improvement preference is feasible and useful when creating local search

algorithms.”

There appears to be little doubt that it is feasible, as the experiments described do

distinguish between them. As regards usefulness, the results show that

distinguishing between the two allowed the impact of each to be assessed, and

171

showed which of the mechanisms worked well together on which problems. This is

useful because it removes part of the guesswork from the algorithm design process.

The following descriptions give an overview of what was learned and how the

results differed from expectations: -

Slight preference in the location mechanism
The location mechanism used had embedded in it a slight preference for large

improvements in solution quality, see section 7.5.1. This did not appear to cause

problems with the results, i.e., there was a distinct difference between the speed and

quality of the preference mechanisms, see 7.4.2 & 7.4.3. However the damaging

improvements described in 7.4.1 suggest that if this slight preference that was

embedded in the location mechanism had been turned off, the performance of the

algorithms could have potentially been improved. The evidence from sections 7.4.1

- 7.4.3 & 7.5.1 suggests that one of the problems with not distinguishing between

location and preference makes it difficult to work out which of the mechanism

design choices are having a negative impact and which are having a positive impact.

The acceptance threshold is used by both mechanisms, because of this it can be

easier to weaken the link between the mechanisms rather than actually separate

them, but as noted in section 7.5.1 doing so appears to reduce the value of the

results. Therefore when evaluating different location and preference mechanisms it

is recommended that the time is taken to fully separate the mechanisms.

172

The damaging improvements
This is a strange result, as it feels counter intuitive that giving preference to low

quality improvements, improves final solution quality, and yet, giving preference to

extremely low quality improvements damages solution quality. On the surface this

looks to be a difficult problem to get to the bottom of, because it appears to involve

compound moves. Exploring the impact of compound moves can demand a large

amount of computational processing power as it involves making quite a few

changes to the solution.

Impact of partial change
The expected impact of partial changes was less than I expected. Although [Johnson

97] does point out that the difference between using whole changes and Lin-

Kemighan partial changes was only a few percent on the TSP.

Development time
The major extra cost of distinguishing between preference and location methods

looks to be development time. The experience, of developing the partial changes

algorithms, suggests the more complex mechanisms, such as partial changes and

using many solutions to help locate improvements, are difficult to implement and

demand extra development time. The development time was probably about 50%

longer than would be required if little distinction between the mechanisms was

made. Johnson [Johnson 97] also points out that Lin-Kemighan which uses partial

moves is difficult to implement. The extra development time needed for the whole

move algorithms was less extreme, with them taking around 20% longer to develop.

173

Preference and execution time
The actual impact of preference was unexpected, it made a big difference to

execution time, in 0.5 seconds high quality first improved initial solution quality by

around 50% with the large time window problems. Low quality first improved

solution quality by less than 2% with the same amount of execution time.

Difference between solutions and preference
It was assumed small reductions in slack time would have the same impact as large

increases in solution quality. The results show the reverse is probably true. The

results suggest small reductions in slack time and small increases in solution quality

produce better quality final solutions. The invalid assumption probably led to some

of the improvement location mechanisms being badly designed. The mechanisms

that were guided by both slack time and distance could probably have been designed

better if the assumption has not been made. This indicates that independently testing

each of the guidance variables, such as distance (fitness) and slack time (constraints)

before attempting to combine them together is worth doing. Because they could be

pulling in opposite directions, independently testing their impact on the location and

preference mechanisms should help show what impact they have on solution quality

and execution time.

How much does execution time matter?
For problems such as the VRPTW, the odds are that execution times of lOmins or

even 30mins are fine. This means the best early solution methods, that started to tail

off in around 0.5 seconds, for both 100 and 200 customer problems, look to be of

little use for VRPTW problems with less than 200 customers. This is because the

slower methods that produced higher quality solutions all tailed off in between 25

seconds and 25 minutes, see Tables of Best quality solutions. The point is that

174

execution times do matter, but it is the scale of execution time that matters most.

With some problems an execution time of several seconds maybe too long and yet

with others an execution time a several days is acceptable.

Understanding local search
In practical terms dividing the local search methods up into methods of locating

improvements and improvement preference makes the concepts of local search easy

to understand. It is complicated to describe a method such as Tabu Search, whereas,

in comparison, it is simpler to understand the concept of locating an improvement.

People can relate to the fact that there are different methods of locating improvement

and that some will work better than others. Also, the concept of giving preference to

one improvement rather than another is simple to relate to. The results show that

separating location and preference teaches us about how local search works and in

terms simpler to understand and more useful than say TS or GAs.

175

8.2) Summary of Contributions

Practical Contribution to knowledge
By separating the improvement location and improvement preference mechanisms,
the following was learned: -

Q
uality

S
peed What the VRPTW results highlighted

Y Giving preference to lower quality solutions improved the quality of
the final solution. See 7.3, 7.4.2 & 7.4.3

Y Giving preference to higher quality solutions increased the speed of
the algorithm at the cost of slightly reducing quality with the large
time window problems. See 7.2.1 & 7.4.2

Y When the problem had tight constraints and fast execution times
were needed using both constraints and solution quality to guide the
search worked best. See 7.2.2

Y Gradually tightening constraints improved final solution quality. E.g.
gradually reducing the amount of slack time available in the delivery
route improved final solution quality. See 7.4.6

Y Partial solution changes produced slightly better quality solutions
than using whole moves. See 7.5.1

Y Y Disabling the improvement preference mechanism allowed the
identification of a good acceptance threshold, below which few
improvements existed. These improvements had a negative impact
on the final solution quality. Identifying a good acceptance threshold
both reduced execution time and improved solution quality. See 7.4.1

Y Y The more accurate estimates of the value of incomplete solutions
vastly outperformed the rough estimates, in terms of both speed and
solution quality. See 7.5.3

General contribution to knowledge
Asking the following question should help identify any exceptions: “What

information does the method use to help find a new best solution?”

So far, it looks as if the answer can be pinned down to a single variable created

using “the difference in solution quality between two or more solutions”.

176

Considerable effort is sometimes needed to trace decisions back to this variable. For

example look at how an Ant Colony method finds a new best solution to a TSP

problem. It uses the weights of the edges to help it decide which edges to use to help

locate a new best solution. Take a simplified version of the method that uses only

two previous solutions to help find a new best solution. It can be seen that when

choosing between two edges it is the amount of difference between the solutions that

determines the probability that a particular edge will be used and therefore the

probability a particular improvement will be found. Actual Ant Colony methods use

several solutions to help find a new best solution rather than just a single pair of

solutions.

From the cases examined in the literature review it appears the difference in solution

quality between two or more solutions is consistently being used to locate

improvements and to make preference choices. However, far from all local search

methods have been examined here.

It should be pointed out that several independent variables are also used when

locating improvements, such as the move operator, move operator size, and

preference. However the difference in solution quality appears to be the main, if not

the only, dependent one.

177

8.3) Future Research - improvement location mechanisms

Using many whole solutions
There is a sliding scale from using a partial solution change to locate improvements

to using many solutions. The experiments only looked at one end of this scale and

showed that partial solutions only produced the best solutions on some problem

styles and performed less well on others. Examination of the entire sliding scale

looks as if it would tell us more about which methods work with which problem

types.

Construction heuristics
Construction heuristics may well be able to take advantage of the ideas presented

here, as they also employ improvement location mechanisms and improvement

preference mechanisms.

8.4) Future Research - General

Non-changing threshold
The local search methods ability to distinguish between improving moves and non-

improving moves did not change during the hill climb process. This principle has

implications for the choice of cut off threshold. If the principle is false then the task

of identifying a good cut off threshold is made more complicated. This is because if

the ability to distinguish between improving moves and non-improving changes as

the search progresses then the threshold should also change. However, the formative

results suggest the ability to distinguish does not change.

Variable and fix size move operators

178

To locate improvements, meta-heuristics use fixed size move operators or variable

size move operators. The experiments only tested the use of a limited variable size

move operator, which is only able to locate 2, 3, 4 & 5-opt improvements.

Damaging effect of very low quality solutions
Using very low quality solutions to locate improvements had a damaging effect on

final solution quality. While the results showed this was taking place, because it was

unexpected the experiments did not gather information to try and understand why

and when this happens.

8.5) Future Research - other problem types

Partial changes
The experiments show it is feasible to use partial solutions to locate improvements

and make preference choices on the VRPTW. The experiments also show that using

the difference in quality between partial solutions offers a better estimate of the

value of a solution property on the VRPTW, see sections 7.5.1.& 7.5.3. The use of

partial solutions on problems other than the VRPTW was not explored. Because

greedy construction methods typically assess the value of partial solutions when

constructing solutions it looks as if it is feasible to use partial solutions to guide

improvement location and preference on problems other than the VRPTW.

Combinatorial problems come in many forms, scheduling, vehicle routing, time

tabling etc. Many formulas for calculating the quality of a whole solution for these

problems exist. With a partial solution we can not test if all constraints can be

satisfied. The results described in section 7.5.3 suggest that calculation of partial

solution quality needs to take into account possible constraint violations when

estimating solution quality. There is probably a lot more to be learned about

179

evaluating partial solutions. It is still unclear how many problems can successfully

use partial solutions, but the results suggest further experiments on other problem

types are worth doing.

Location and preference mechan isms
Because these mechanisms exist in meta-heuristics already it is suspected that

distinguishing between the two on other problems will produce usable information.

There is still much to be learned about which mechanisms work best with the

VRPTW and other problems. The fact that there were few difficulties separating the

mechanisms in the experiments it suggests the separating the mechanisms on other

problem types will not be difficult to do.

8.6) Implications for local search meta-heuristics - further work

Judging from the results of the VRPTW experiments there looks to be several ways

existing local search meta-heuristics can be improved. The experiments only

produced results for VRPTW problems and it remains unclear if the findings can be

successfully applied to other combinatorial optimisation problems.

Some of the ideas are simple to test out on other problems and some are much more

complex. As a result it may be worth testing out the easy to implement ideas on

existing code. In cases where a major re-write would be needed, the argument that

the idea is worth trying is less convincing. This is because the ideas have not been

tried on other problems and therefore a degree of caution is necessary.

180

8.6.1) Tabu Search - improvement preference

The results suggest solution quality can be improved by giving preference to low

quality solution changes. This is because both Low quality Whole Distance (LWD)

and Low quality Partial Distance (LPD) typically produced the highest quality

solutions across all the VRPTW problem types. Tabu Search typically gives

preference to high quality solution changes. Glover [Glover 97] recommends the use

of steepest ascent or candidate lists. The results described in section 7.4.2 suggest

steepest ascent and candidate lists do not produce the best quality final solutions for

the VRPTW. The results also show that giving preference to High quality (steep

ascent) Whole Distance first (HWD), performed about as well as No preference (any

ascent) Whole Distance (NWD). This suggests that using steepest ascent whole

moves is not worth doing with VRPTW.

Giving preference to low quality increases execution time. If an increase in

execution time is acceptable then changing existing code to give preference to low

quality is probably worth trying. The easiest change to make is probably changing

steepest ascent to smallest ascent. While I do not compare steepest ascent with

smallest ascent, I suspect this will improve solution quality at the cost of execution

time. Although because Tabu Search continues to look for improvements after the

hill climb is complete, it is hard to estimate the impact on execution time and

solution quality.

Judging by the results, the amount of difference in quality will probably be quite

small in most cases.

181

8.6.2) Simulated Annealing and threshold methods - improvement preference

Again, the VRTPW results suggest solution quality can be improved giving

preference to low quality solution changes. Simulated Annealing accepts all

improving moves as and when they are found. It looks like it could be possible to

further improve final solution quality by giving preference to low quality

improvements at the start of the search. It should be noted, that doing this, may more

than double execution time. I am assuming this because, giving preference to low

quality whole moves more than doubled execution time in the experiments in this

study.

The same arguments apply to threshold methods. Threshold methods implement all

improvements as and when they are found. This means they could also potentially

benefit from giving preference to low quality improvements at the start of the

search.

8.6.3) Evolutionary Algorithms - improvement preference

While changes to the improvement preference may improve Evolutionary

Algorithms the evidence one way or the other is very thin. I did not do experiments

to test the use of many solutions to guide the improvement preference. Judging by

the VRPTW results obtained, it looks like giving preference to high quality

improvements offers no benefit to final solution quality. The problem is the

experiments use a small number of property changes to locate improvements.

Evolutionary Algorithms can locate improvements using a large number of property

changes.

182

If using many solutions to guide the search is like using either pairs of whole move

or partial changes, then giving preference to high quality whole solutions has a

potential impact on solution quality and execution time. Evolutionary Algorithms

tend to give preference to high quality whole solutions, rejecting members of the

population with a low solution quality. The VRPTW results suggest this is worth

doing if solutions need to be created within a few seconds. That said the evidence

one way or the other is a little weak because using more than one solution to locate

an improvement was not tested here.

Giving preference to solutions that are only a little better than the solutions used to

create them may offer a benefit with VRPTW and similar problems. Again the

results suggest this would both improve final solution quality and increase execution

time. This is probably the easiest change to make to an existing EA. As with high

quality first, the impact on solution quality is hard to estimate.

It is hard to suggest how to make improvements to Evolutionary Algorithms without

further experiments. The hypothesis argues that methods of using many solutions to

locate improvements should be compared. It also argues that preference styles

should be compared. Without such experiments it is hard to understand the benefits

of using many solutions to locate improvement

183

8.7) Summary of what has been covered

Local search heuristics that use non-improving solutions can be seen as hill climbers

that use the non-improving solutions to help them find improvements. Local search

methods use these non-improving solutions in slightly different ways. Most local

search meta-heuristics make use of non-improving solutions to help locate

improvements: -

• Simulated Annealing uses non-improving solutions biasing its choice towards

solutions that are only a little worse.

• Tabu Search uses the best non-improving solutions in the neighbourhood.

• EAs maintain a neighbourhood (population) of non-improving solutions, as new

solutions are created weaker solutions are discarded.

• Ant Colonies use a neighbourhood (population) of whole solutions biased

towards more recent solutions.

Two mechanisms that exist in local search methods have been highlighted: first is

the mechanism they use to locate improvements; and second is the mechanism used

to give preference to using some improvements rather than others. Current meta-

heuristics merge the measurement both of these mechanisms using a single

performance measure. The experimental results show much can be learned by

independently measuring improvement location and preference.

184

9) Appendix - Standard Deviations

E arly S o lu tio n s , Large T im e W in d o w s
Standard Deviations from 40 runs

Time in seconds
C2_1 Time Rc2 1 Time Rc2 2 Time R2 1 Time R2_2 Time

0.5 0.5 0.5 0.5 0.5
FPD 153 FPD 315 FPD 835 FPD 348 FPD 1803
FWD 114 FWD 227 FWD 375 FWD 211 FWD 381
FPT 224 FPT 230 FPT 619 FPT 228 FPT 512
FWT 147 FWT 148 FWT 474 FWT 138 FWT 291
FPDT 194 FPDT 461 FPDT 1278 FPDT 621 FPDT 2333
FWDT 109 FWDT 172 FWDT 424 FWDT 151 FWDT 393
FPBDT 277 FPBDT 406 FPBDT 532 FPBDT 539 FPBDT 1892
FWBDT 95 FWBDT 156 FWBDT 411 FWBDT 133 FWBDT 369
HPD 175 HPD 346 HPD 785 HPD 270 HPD 1635
HWD 131 HWD 219 HWD 411 HWD 236 HWD 536
HPT 306 HPT 211 HPT 650 HPT 146 HPT 430
HWT 225 HWT 178 HWT 621 HWT 137 HWT 383
HPBDT 306 HPBDT 269 HPBDT 650 HPBDT 146 HPBDT 430
HWBDT 220 HWBDT 145 HWBDT 618 HWBDT 123 HWBDT 358
LPD 306 LPD 211 LPD 650 LPD 155 LPD 427
LWD 330 LWD 192 LWD 662 LWD 124 LWD 517
LPT 306 LPT 187 LPT 650 LPT 152 LPT 438
LWT 242 LWT 180 LWT 584 LWT 124 LWT 457
LPBDT 287 LPBDT 260 LPBDT 650 LPBDT 230 LPBDT 480
LWBDT 208 LWBDT 154 LWBDT 639 LWBDT 128 LWBDT 401

E arly S o lu tio n s , S m all T im e W in d o w s
Standard Deviations from 40 runs

Time in seconds
C1_1 Time

0.5
C1_2 Time

0.5
Rc1_1 Time

0.5
Rc1_2 Time

0.5
R1_1 Time

0.5
R1_2 Time

0.5
FPD 208 FPD 799 FPD 306 FPD 806 FPD 397 FPD 1166
FWD 168 FWD 661 FWD 210 FWD 452 FWD 267 FWD 461
FPT 221 FPT 690 FPT 168 FPT 513 FPT 203 FPT 528
FWT 140 FWT 479 FWT 182 FWT 332 FWT 210 FWT 522
FPDT 239 FPDT 1208 FPDT 301 FPDT 996 FPDT 462 FPDT 1378
FWDT 131 FWDT 389 FWDT 217 FWDT 321 FWDT 236 FWDT 480
FPBDT 219 FPBDT 1319 FPBDT 367 FPBDT 760 FPBDT 397 FPBDT 932
FWBDT 116 FWBDT 308 FWBDT 193 FWBDT 298 FWBDT 220 FWBDT 501
HPD 241 HPD 1454 HPD 330 HPD 755 HPD 408 HPD 945
HWD 157 HWD 1124 HWD 229 HWD 481 HWD 266 HWD 548
HPT 230 HPT 705 HPT 191 HPT 524 HPT 177 HPT 441
HWT 175 HWT 682 HWT 175 HWT 436 HWT 186 HWT 364
HPBDT 230 HPBDT 705 HPBDT 240 HPBDT 534 HPBDT 296 HPBDT 441
HWBDT 160 HWBDT 757 HWBDT 194 HWBDT 468 HWBDT 194 HWBDT 367
LPD 231 LPD 705 LPD 193 LPD 537 LPD 176 LPD 441
LWD 197 LWD 649 LWD 173 LWD 548 LWD 154 LWD 478
LPT 216 LPT 705 LPT 180 LPT 534 LPT 161 LPT 441
LWT 181 LWT 631 LWT 158 LWT 441 LWT 153 LWT 423
LPBDT 221 LPBDT 802 LPBDT 248 LPBDT 534 LPBDT 191 LPBDT 443
LWBDT 200 LWBDT 576 LWBDT 153 LWBDT 464 LWBDT 165 LWBDT 408

185

Standard Deviations from 40 runs
Time in seconds

Point early solutions are overtaken, Large Time Windows

C2_1 Time
30

Rc2_1 Time Rc2 2
10

Time
150

R2_1 Time
11

R2_2 Time
50

FPD 64 FPD 195 FPD 294 FPD 170 FPD 618
FWD 75 FWD 187 FWD 340 FWD 167 FWD 628
FPT 65 FPT 213 FPT 367 FPT 392 FPT 2088
FWT 59 FWT 195 FWT 314 FWT 155 FWT 558
FPDT 53 FPDT 228 FPDT 321 FPDT 347 FPDT 1545
FWDT 71 FWDT 177 FWDT 280 FWDT 159 FWDT 631
FPBDT 59 FPBDT 189 FPBDT 356 FPBDT 345 FPBDT 1560
FWBDT 72 FWBDT 179 FWBDT 367 FWBDT 166 FWBDT 608
HPD 58 HPD 189 HPD 303 HPD 169 HPD 617
HWD 76 HWD 183 HWD 309 HWD 166 HWD 645
HPT 181 HPT 433 HPT 1331 HPT 417 HPT 1589
HWT 83 HWT 194 HWT 317 HWT 145 HWT 600
HPBDT 67 HPBDT 333 HPBDT 322 HPBDT 401 HPBDT 1794
HWBDT 64 HWBDT 207 HWBDT 332 HWBDT 159 HWBDT 657
LPD 128 LPD 239 LPD 1298 LPD 178 LPD 1271
LWD 51 LWD 169 LWD 300 LWD 103 LWD 478
LPT 216 LPT 210 LPT 747 LPT 239 LPT 1105
LWT 60 LWT 178 LWT 315 LWT 159 LWT 539
LPBDT 56 LPBDT 202 LPBDT 295 LPBDT 315 LPBDT 1432
LWBDT 68 LWBDT 165 LWBDT 311 LWBDT 162 LWBDT 606

P o in t early so lu tio n s are o vertak en , S m all T im e W in d o w s
Standard Deviations from 40 runs

Time in seconds
C1_1 Time 4 C1_2 Time

50
Rc1_1 Time

12
Rc1_2 Time

38
R1_1 Time 9 R1_2 Time

40
FPD 87 FPD 202 FPD 200 FPD 415 FPD 231 FPD 840
FWD 83 FWD 191 FWD 196 FWD 446 FWD 241 FWD 887
FPT 173 FPT 240 FPT 202 FPT 446 FPT 316 FPT 2193
FWT 92 FWT 196 FWT 207 FWT 370 FWT 230 FWT 784
FPDT 91 FPDT 213 FPDT 234 FPDT 425 FPDT 333 FPDT 2139
FWDT 61 FWDT 203 FWDT 205 FWDT 401 FWDT 231 FWDT 830
FPBDT 84 FPBDT 167 FPBDT 215 FPBDT 411 FPBDT 332 FPBDT 2085
FWBDT 87 FWBDT 222 FWBDT 210 FWBDT 435 FWBDT 238 FWBDT 882
HPD 119 HPD 188 HPD 204 HPD 405 HPD 239 HPD 815
HWD 111 HWD 220 HWD 193 HWD 415 HWD 231 HWD 843
HPT 268 HPT 2687 HPT 329 HPT 1553 HPT 377 HPT 1484
HWT 102 HWT 228 HWT 196 HWT 295 HWT 232 HWT 759
HPBDT 332 HPBDT 2858 HPBDT 281 HPBDT 1532 HPBDT 444 HPBDT 2050
HWBDT 90 HWBDT 187 HWBDT 208 HWBDT 409 HWBDT 232 HWBDT 856
LPD 247 LPD 2087 LPD 234 LPD 534 LPD 283 LPD 605
LWD 106 LWD 214 LWD 197 LWD 208 LWD 232 LWD 574
LPT 183 LPT 799 LPT 252 LPT 568 LPT 166 LPT 542
LWT 118 LWT 189 LWT 194 LWT 410 LWT 225 LWT 732
LPBDT 113 LPBDT 235 LPBDT 224 LPBDT 451 LPBDT 334 LPBDT 1767
LWBDT 93 LWBDT 206 LWBDT 203 LWBDT 404 LWBDT 236 LWBDT 770

186

Standard Deviations from 40 runs
Time in seconds

Best quality solutions, Large Time Windows

C2_1 Time Rc2 1 Time Rc2_2 Time R2 1 Time R2_2 Time
50 50 1300 50 164

FPD 64 FPD 195 FPD 294 FPD 170 FPD 618
FWD 75 FWD 187 FWD 340 FWD 168 FWD 628
FPT 68 FPT 199 FPT 361 FPT 332 FPT 1794
FWT 59 FWT 198 FWT 319 FWT 163 FWT 577
FPDT 53 FPDT 228 FPDT 321 FPDT 337 FPDT 1484
FWDT 71 FWDT 177 FWDT 280 FWDT 159 FWDT 631
FPBDT 59 FPBDT 189 FPBDT 356 FPBDT 345 FPBDT 1554
FWBDT 72 FWBDT 179 FWBDT 367 FWBDT 166 FWBDT 608
HPD 58 HPD 189 HPD 303 HPD 169 HPD 617
HWD 76 HWD 182 HWD 310 HWD 164 HWD 645
HPT 216 HPT 315 HPT 371 HPT 372 HPT 1725
HWT 83 HWT 205 HWT 322 HWT 154 HWT 621
HPBDT 67 HPBDT 212 HPBDT 300 HPBDT 315 HPBDT 1531
HWBDT 64 HWBDT 208 HWBDT 332 HWBDT 160 HWBDT 657
LPD 50 LPD 206 LPD 335 LPD 156 LPD 578
LWD 51 LWD 195 LWD 343 LWD 163 LWD 643
LPT 176 LPT 260 LPT 625 LPT 251 LPT 1273
LWT 58 LWT 186 LWT 348 LWT 165 LWT 561
LPBDT 56 LPBDT 202 LPBDT 295 LPBDT 309 LPBDT 1432
LWBDT 68 LWBDT 182 LWBDT 321 LWBDT 166 LWBDT 607

B est q u a lity s o lu tio n s , S m all T im e W in d o w s
Standard Deviations from 40 runs

Time in seconds

C1_1 Time
50

C1_2 Time
420

Rc1_1 Time
50

Rc1_2 Time
240

R1_1 Time
25

R1_2 Time
600

FPD 76 FPD 188 FPD 194 FPD 398 FPD 224 FPD 819
FWD 109 FWD 191 FWD 196 FWD 404 FWD 239 FWD 830
FPT 81 FPT 219 FPT 224 FPT 400 FPT 323 FPT 1603
FWT 99 FWT 211 FWT 207 FWT 387 FWT 231 FWT 819
FPDT 92 FPDT 213 FPDT 234 FPDT 425 FPDT 320 FPDT 1357
FWDT 61 FWDT 203 FWDT 205 FWDT 401 FWDT 231 FWDT 830
FPBDT 73 FPBDT 167 FPBDT 212 FPBDT 411 FPBDT 323 FPBDT 1359
FWBDT 87 FWBDT 222 FWBDT 210 FWBDT 436 FWBDT 238 FWBDT 882
HPD 67 HPD 187 HPD 204 HPD 406 HPD 228 HPD 789
HWD 96 HWD 219 HWD 193 HWD 406 HWD 228 HWD 825
HPT 255 HPT 1629 HPT 239 HPT 1411 HPT 345 HPT 1713
HWT 79 HWT 250 HWT 196 HWT 349 HWT 232 HWT 839
HPBDT 85 HPBDT 210 HPBDT 219 HPBDT 418 HPBDT 335 HPBDT 1256
HWBDT 92 HWBDT 187 HWBDT 208 HWBDT 420 HWBDT 232 HWBDT 861
LPD 104 LPD 167 LPD 214 LPD 387 LPD 232 LPD 809
LWD 75 LWD 184 LWD 200 LWD 408 LWD 231 LWD 838
LPT 249 LPT 1641 LPT 237 LPT 994 LPT 174 LPT 860
LWT 80 LWT 193 LWT 194 LWT 373 LWT 228 LWT 824
LPBDT 73 LPBDT 155 LPBDT 224 LPBDT 418 LPBDT 319 LPBDT 1217
LWBDT 84 LWBDT 213 LWBDT 203 LWBDT 410 LWBDT 236 LWBDT 810

187

10) References
[Anderson 96] Theory and Methodology: Mechanisms for local search -

European Journal of Operational Research 88, pages 139-151 - E.J.
Anderson, 1996

[Applegate 99] Finding tours in the TSP - Tech. Rep. TR99-05, Departement
of Computational and Applied Mathematics, Rice University - D.
Applegate, R. Bixby, V. Chvätal, W. Cook, 1999 -
http://www.tsp.gatech.edu/papers/

[Bäck 96] Evolutionary Algorithms in Theory and Practice - Oxford University
Press -T . Back, 1996

[Bäck 97] Handbook of Evolutionary Computation - IOP Publishing Ltd and
Oxford University Press - T. Bäck, D. B. Fogel, and Z. Michalewicz.1997.

[Bentley 90] Experiments on Traveling Salesman Heuristics - in 1st Annual
ACM-SIAM Symp. Discrete Alg. (SODA '90), pages 91-99, San Francisco,
editor: D. S. Johnson - J. L. Bentley, 1990

[Bierwirth 96] On permutation representations for scheduling problems - In
Parallel Problem Solving from Nature, PPSN IV, pages 310- 318, Berlin,
Springer, editors: Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg,
and Hans-Paul Schwefel - Christian Bierwirth, Dirk C. Mattfeld, and
Herbert Kopfer 1996

[Braun 99] A Comparison Study of Static Mapping Heuristics for a Class of
Metatasks on Heterogeneous Computing Systems - In Proceedings of the
8th Heterogeneous Computing Workshop (HCW'99), pages 15-29, - R.D
Braun, H.J. Siegel, N. Beck, L. Boloni, M. Maheswaran, A.I. Reuther, J.P.
Robertson, M.D. Theys, B. Yao, D. Hensgen, and R.F. Freund Apr. 1999

[Bräysy 02] Tabu Search Heuristics for the Vehicle Routing Problem with
Time Windows. - Top 10:2, 211-238, the journal of Spanish operations
research society - O. Bräysy, and M. Gendreau, 2002 -
http://www.sintef.no/static/am/opti/projects/top/publications.html

[Bremermann 62] Optimization through evolution and recombination - in
Sels-organizing systems, Washington, Spartan Books, editors: M. C. Yovits
et al. 93-106 - H. J. Bremermann 1962

[Congram 98] An iterated dynasearch algorithm for the single-machine total
weighted tardiness scheduling problem - Technical report, Faculty of
Mathematical Studies, University of Southampton - R. K. Congram, C. N.
Potts, and S. L. Van de Velde, 1998

188

http://www.tsp.gatech.edu/papers/
http://www.tsp.gatech.edu/papers/
http://www.sintef.no/static/am/opti/projects/top/publications.html
http://www.sintef.no/static/am/opti/projects/top/publications.html

[Cordeau 02] A Guide to Vehicle Routing Heuristics - in Journal of the
Operational Research Society 53:512-522 - J.-F. Cordeau, M. Gendreau,
G. Laporte, J.-Y. Potvin and F. Semet, 2002

[Cordone 01] A Heuristic Algorithm for the Vehicle Routing Problem with
Time Windows - in Journal of Heuristics, 7(2), March 2001 - R. Cordone,
R. Wolfler Calvo, 2001

[Corne 96] Peckish initialisation strategies for evolutionary timetabling - in,
Practice and Theory of Automated Timetabling p227-240 - D Corne, P
Ross 1996

[Corne 99] New Ideas in Optimization - McGraw-Hill, London - D. Corne, M.
Dorigo, F. Glover, (ed.), ISBN: 0077095065, 1999

[DeJong 75] An analysis of the behavior of a class of genetic adaptive
systems - PhD thesis, University of Michigan - K. A. De Jong 1975

[Dorigo 97] Ant colony system: A cooperative learning approach to the
traveling salesman problem - in IEEE Transactions on Evolutionary
Computation, 1 (1):53— 66-M . Dorigo and L. Gambardella 1997.

[Dorigo 99] The ant colony optimization meta-heuristic” - in New ideas in
optimization D. Corne, M. Dorigo, and F. Glover editors - M Dorigo, G Di
Caro 1999

[Dorn 95] Case-based reactive scheduling - in Artificial Intelligence in
Reactive Scheduling - London: Chapman & Hall - Roger Kerr and
Elisabeth Szelke (eds) - pp. 32-50 - Dorn, J 1995.

[Dowsland 93] Simulated Annealing - in Modern Heuristic Techniques for
Combinatorial Problems C.Reeves (editor) - K. Dowsland 1993

[Dueck 90] Threshold Accepting: A General Purpose Optimization Algorithm
Superior to Simulated Annealing - in Journal of Computational Physics,
90:161— 175 - Gunter Dueck and Tobias Scheuer 1990

[Dueck 93] New optimization heuristics: The great deluge algorithm and the
record-torecord -travel . Journal of Computational Physics, 104(1):86-92,
also available as technical report TR 89.06.11, IBM Germany, Heidelberg
Scientific Center - Gunter Dueck 1993

[Fogel 66] Artificial intelligence through simulated evolution. Wiley, New
York. L. J. Fogel, A. J. Owens and M. J. Walsh 1966

[Fogel 95] Evolutionary Computation. Toward a New Philosophy of Machine
Intelligence, IEEE Press - D. Fogel 1995

189

[Garey 79] Computers and Intractability, A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company, New York - M.R. Garey and
D. S.Johnson 1979

[Glover 97] Tabu Search - Kluwer Academic Publishers - F. Glover, M.
Laguna 1997

[Goldberg 87] Genetic algorithms with sharing for multimodal function
optimization. In J. J. Grefenstette, editor, Proceedings of the Second
International Conference on Genetic Algorithms, pages 148-154. San
Francisco, CA: Morgan Kaufmann - D. E. Goldberg and J. Richardson
1987

[Goldberg 89] Genetic Algorithms in Search, Optimization, and Machine
Learning - Addison-Wesley - D. E. Goldberg 1989

[Held 70] The traveling-salesman problem and minimum spanning trees.
Operations Research, 18:1138-1162 - M. Held and R.M. Karp. 1970

[Held 71] The traveling salesman problem and minimum spanning trees: part
II, Mathematical Programming 1 pp. 6-25 - M. Held and R.M. Karp 1971

[Holland 75] Adaptation in Natural and Artificial Systems. Ann Arbor: The
University of Michigan Press - J. H. Holland 1975

[Johnson 96] Asymptotic experimental analysis for the Held-Karp Traveling
Salesman bound. In Proceedings of the 7th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 341-350- D. S. Johnson, L. A. McGeoch,
and E. E. Roghberg. 1996

[Johnson 97] The Travelling Salesman Problem: A Case Study in Local
Optimization - D. Johnson and L. A. McGeoch 1997 in Local Search in
Combinatorial Optimization - John Wiley and Sons - Aarts and Lenstra
(eds)-pp. 215-310-1997

[Johnson 02] Experimental analysis of heuristics for the STSP - to appear in
The Travelling Salesman Problem and its Variations - D Johnson, L
McGeoch 2002 - TSP Challenge http://www.research.att.com/~dsj/chtsp/

[Juels 94] Stochastic Hill-climbing as a Baseline Method for Evaluating
Genetic Algorithms, Technical Report, University of California at Berkeley -
A. Juels , M. Wattenberg 1994 - also in: D. S. Touretzky, M. C. Mozer, and
M. E. Hasselmo, editors, Advances in Neural Information Processing
Systems, volume 8, pages 430-436. 1996

[Kirkpatrick 83] "Optimization by simulated annealing," Science, vol. 220,
pp. 671— 680 - S. Kirkpatrick, C. D. Gellatt, J. Vecchi, and M. P. Vecchi
1983.

190

http://www.research.att.com/~dsj/chtsp/

[Lin 73] - An Effective Heuristics Algorithm for the Traveling Salesman
Problem - in Operations Research 21 pp. 498-516 - S. Lin & B. W.
Kernighan 1973

[Lorenco 02] Iterated Local Search - in Handbook of metaheuristics, F.
Glover and G. Kochenberger, editors - H.R. Lorenzo, O. Martin, and T.
Stuetzle 2002

[Madsen 98] A New Branch-and-Bound Method for Global Optimization -
IMM-REP-1998-05, Department of Mathematical Modeling, Technical
University of Denmark, DK-2800 Lyngby, Denmark - Kaj Madsen and
Serguei Zertchaninov 1998 http://citeseer.ist.psu.edu/madsen98new.html

[Martin 91] Large-step markov chains for the traveling salesman problem -
Complex Systems 5. p299-326. O. Martin, S. Otto, and E. Felten, 1991.

[Michalewicz 02] How to Solve It: Modern Heuristics - Springer Verlag - Z.
Michalewicz and D.B. Fogel 2002.

[Ozdamar 02] New results for the capacitated lot sizing problem with
overtime decisions and setup times - Production-Planning-and-Control.
vol.13, no.1; Jan.-Feb. p.2-10. L. Ozdamar, P.Y. Birbil, M.C. Portmann
2002

[Papadimitriou 82] Combinatorial Optimization: Algorithms and Complexity-
Prentice-Hall - C. H. Papadimitriou and K. Stiglitz 1982.

[Poupaert 01] Acceptance driven selection: an approach to approximate
global search strategies in local search and evolutionary algorithms. -
Proceedings of the Genetic and Evolutionary Computation Conference pp
1173-1180 Morgan Kaufmann - E. Poupaert, Y. Deville 2001

[Rechenberg 73] Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution, Fromann-Holzboog - I.
Rechenberg 1973

[Reeves 93] Modern Heuristic Techniques for Combinatorial Problems -
Blackwell Scientific Publications, Oxford, C.Reeves editor 1993

[Rochat 94] A tabu search approach for delivering pet food and flour in
Switzerland - Journal of the Operational Research Society, 45, 1233-1246
- Y. Rochat, F. Semet 1994

[Russell 95] Artificial Intelligence: A Modern Approach - Prentice Hall,
Englewood Cliffs, NJ. - S. Russell and P. Norvig.1995.

[Smith 04] E-mail correspondence with Peter Smith, Senior Lecturer at City
University, regarding “theory-practice gap". - Peter Smith, March 2004

191

http://citeseer.ist.psu.edu/madsen98new.html

[Solomon 87] Algorithms for the Vehicle Routing and Scheduling Problems
with Time Window Constraints - Operations Research, 35 (2):254-265 -
M.M. Solomon 1987

[Toth 98] The Granular Tabu Search (and its Application to the Vehicle
Routing Problem) - Technical Report, Dipartimento di Elettronica,
Informatica e Sistemistica, Universit di Bologna, Italy - P. Toth, D. Vigo
1998 - also in: INFORMS Journal of Computing, vol. 15, no. 4, pp. 333-346
2003

[Tsang 93] Foundations of constraint satisfaction - Academic press -
Edward Tsang 1993

[Tuson 00] No Optimisation Without Representation: A Knowledge-Based
Systems View of Evolutionary/Neighbourhood Search Optimiser Design -
PhD Thesis, Department of Artificial Intelligence, Edinburgh University -
A.L. Tuson 2000.

[Wolpert 95] No free lunch theorems for search - Technical Report SFI-TR-
95-02-010, Santa Fe Institute - David H. Wolpert and William G. Macready
1995-a lso in: IEEE Transactions on Evolutionary Computation, 1, 1997

[Zweben 90] A framework for iterative improvement search algorithms suited
for constraint satisfaction problems - Technical Report RIA-90-05-03-1,
NASA Ames Research Center, Al Research Branch - M. Zweben 1990 -
also in: Proceedings of the AAAI-90 Workshop on ConstraintDirected
Reasoning, 1990

[Zweben 94] Scheduling and rescheduling with iterative repair - in Intelligent
Scheduling, M. Zweben and M. S. Fox, editors, chapter 8, pages 241-255.
Morgan Kaufmann, San Francisco, CA - M. Zweben, B. Daun, and M.
Deale 1994

192

