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Abstract 

Computer programming is fast becoming a required part of School curricula, but 

students find the topic challenging and university dropout rates are high. 

Observations suggest that hands-on keyboard typing improves learning, but 

quantitative evidence for this is lacking and the mechanisms are still unclear. Here 

we study neural and behavioral processes of programming in general, and Hands-

on in particular. In project 1, we taught naïve teenagers programming in a 

classroom-like session, where one student in a pair typed code (Hands-on) while 

the other participated by discussion (Hands-off). They were scanned with fMRI 1-

2 days later while evaluating written code, and their knowledge was tested again 

after a week. We find confidence and math grades to be important for learning, and 

easing of intrinsic inhibitions of parietal, temporal, and superior frontal activation 

to be a typical neural mechanism during programming, more so in stronger 

learners. Moreover, left inferior frontal cortex plays a central role; operculum 

integrates information from the dorsal and ventral streams and its intrinsic 

connectivity predicts confidence and long-term memory, while activity in Broca’s 

area also reflects deductive reasoning. Hands-on led to greater confidence and 

memory retention. In project 2, we investigated the impact of feedback on 

motivation and reaction time in a rule-switching task. We find that feedback 

targeting personal traits increasingly impair performance and motivation over the 

experiment, and we find that activity in precentral gyrus and anterior insula 

decrease linearly over time during the personal feedback condition, implicating 

these areas in this effect. These findings promote hands-on learning and emphasize 

possibilities for feedback interventions on motivation. Future studies should 

investigate interventions for increasing Need for Cognition, the relationship 

between computer programming and second language learning (L2), and the role 

of explicit verbalization of knowledge for successful coding, given the language-

like processing of code.  
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Chapter 1 

General Introduction 

 

1.1.  The impetus to study programming knowledge acquisition 

 

Because we live in an increasingly computerized world where digital 

knowhow plays an ever more dominant role in society, many organizations 

are growing more cognizant of the importance of staying competitive on 

this front in the global community. In 2013 the European Union published 

the ‘International Computer and Information Literacy Study’ (ICILS) 

(Commission, 2014), where they cast doubt on the ‘digital natives’ idea that 

young people having grown up with computers would take more naturally 

to programming (Prensky, 2001). Instead, they emphasized the role of 

schooling in attaining the competencies outlined in the EU ‘Digital 

Competence Framework for Citizens’ (DIGICOMP) (Vuorikari, Punie, 

Carretero, & Van den Brande, 2016). This was followed by the 2017 report 

‘Digital skills in the EU labour Market’ where it was identified that 40% of 

the EU workforce had “little to no digital skill” while predicting a future 

where nearly all jobs will require digital skills (Kiss, 2017). In accordance 

with this view, the Swedish government recently decided to add computer 

programming as a required part of the School curriculum 

(Regeringskansliet, 2017), following the lead of the United Kingdom, 

where computer education was introduced in the 2014 curriculum starting 

all the way down in stage 1 education (age 5-7) (Education, 2014), 

championing concepts such as ‘computational thinking’ (Wing, 2006). We 

have also seen the rise of hugely influential private charity organizations 
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such as www.computingatschool.org.uk and www.raspberrypi.org. This 

means that it is more relevant than ever to understand how we should best 

train our future young programmers, especially given the trouble of high 

dropout rates that is widely thought to have been plaguing computer 

education for the longest time, which we will discuss in the next section. In 

a systematic review of introductory programming, the authors identify the 

need for quantitative studies on learning strategies, and investigations into 

the role of self-efficacy processes such as confidence, stress, and 

motivation (Luxton-Reilly et al., 2018). In addition, the field of education 

calls for interdisciplinary efforts between cognitive neuroscience and 

educational practices; ‘Educational neuroscience’ benefits both from the 

rigorous control of stimuli and tasks necessary in cognitive neuroscience, 

and from the ecological validity found in education research (Ansari, Coch, 

& De Smedt, 2011).  

 

1.2.  The problems in computer education 

 

According to a report Prepared for the European Commission in 2013, the 

average student dropout rate at University level “seems to be at around 

19%” based on Eurostat data of student enrolment between 1999 and 2010 

(Hüsing et al., 2013). This state of affairs seems to be taken as a fact across 

the field of computer science education and a common claim is that there is 

something about the subject itself that sets it apart from other programs, 

even though other schools like engineering seems to be facing similar rates 

(Paura & Arhipova, 2016). This view has led to several attempts to explain 

why this seems to be the case, one example being the debate starting around 

http://www.computingatschool.org.uk/
http://www.raspberrypi.org/
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2010 about whether computer science differs from other subjects by 

illustrating that the students have both higher than usual rates of failing and 

high grades, creating what some argued is a “characteristic” bi-modal 

distribution of grades (Robins, 2010). The author argued against the idea 

that this is caused by an underlying split population of “programmers” and 

“non-programmers” entering the courses and subsequently perform 

according to unknown innate characteristics, as proposed by (Utting et al., 

2013). Since “decades of extensive research” has failed in delivering these 

crucial interpersonal factors, they instead proposed a mechanism dubbed 

‘Learning Edge Momentum’ that attempted to explain the bi-modal 

distribution of grades by proposing that inherent to the subject of computer 

science are nested concepts that build on each-other and that are self-

reinforcing, resulting in a snowball-effect where the most affluent early on 

pulls further and further ahead. This argument places an emphasis on 

learning material and techniques, rather than on the learner themselves. 

 

Since then, the whole issue of bi-modally distributed outcomes of 

introductory computer science courses has been largely abandoned, 

including by the original proponents of it (Fincher & Robins, 2019), but 

this debate did raise some interesting points for consideration that are worth 

discussing here. A 2013 paper brought attention to the way scientists and 

educators look at their data, claiming that it is possible to look at the same 

set of data on correlations between grades on different tests in early 

programming education and have it conform to your theory of choice, be it 

“geek genes”, prior knowledge, “stumbling points” (defined as skills and 

concepts that can have a major impact on progress) or ‘learning edge 
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momentum’, and that furthermore these concepts are not mutually 

exclusive (Ahadi & Lister, 2013). The authors liken this to the fable of the 

blind men and the elephant and suggest that there may in fact be a grander 

view with the potential to see the whole elephant rather than one of its 

parts. Unfortunately, they gave no insight on how to achieve this. The 

simple facts of human biases may well explain much of this whole debate. 

An empirical study of the final grade distributions for every undergraduate 

computer science class at the University of British Columbia between 1996 

and 2013 (30,214 grades) found no statistical evidence for the grades being 

bi-modally distributed, claiming at most 5.8% of the cases examined fit the 

description of bimodality (Patitsas, Berlin, Craig, & Easterbrook, 2016). In 

the same paper they also showed in an experiment asking teachers to rate 

grade distributions as bimodal or not, that labeling ambiguous distributions 

as bimodal significantly correlated with being primed for bi-modality 

beforehand, believing in “geek-genes” and habitually looking at histograms 

of their class grades. Research of this type shows the importance of large 

quantitative analyses and the role of researcher bias in student evaluations. 

 

The bimodality of grades aside, the relatively high dropout rate still remains 

to be explained. For example: A 2015 paper reported a dropout rate of 

32.2% in Estonian first year ‘Information and Communications 

Technology’ (ICT) students, and they found significant differences in 

mathematics, academic achievement, expectations and satisfaction between 

the students that dropped out and those who stayed for the second year 

(Kori et al., 2015). This fits well with long established findings in the 

literature where the described predictors of achievement include 
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mathematics and spatial reasoning tests (Choi-man, 1988), ‘general skills 

test battery’ and mathematics (Erdogan, Aydin, & Kabaca, 2008) and 

Paper-folding tasks, map-sketching and algorithmic thinking (Fincher et al., 

2006). In addition to these performance measures there are a host of other 

environmental variables that could impact student performance such as 

student income impacted by parental aid or working during studies, parental 

education, educational planning, perceived quality of the education, 

satisfaction, stress, marital status, place of residence, demographics, social 

integration on and off campus, and the institutional characteristics of the 

school itself such as finances, faculty and other organizational structures 

(Kori et al., 2015). 

 

Overall, a factor that is frequently associated with learning success in 

programming seems to be mathematically related skills, but factors that 

could be seen as responsive to both internal and environmental mechanisms 

is the degree of confidence (including positive self-assessment) and 

thinking about learning (metacognition) (Bennedsen & Caspersen, 2005; 

Byrne & Lyons, 2001; Holvikivi, 2010; White & Sivitanides, 2003). Next, 

we will discuss the role of internal states on learning improvement and, 

following that, other potential avenues more specific to programming 

language learning. 

 

1.3.  Mindset 

 

One of the biggest recent phenomena in education that has been 

championed as being a “national education priority” (Rattan, Savani, 
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Chugh, & Dweck, 2015) with “profound effects” on educational 

achievement is the so called ‘Growth Mindset’ theory proposed by the 

American psychologist Carol Dweck (Dweck, 2008a, 2008b). In this 

conception, people will fall somewhere in between the two extremes of 

either believing that their innate strengths and ability to learn is ‘fixed’, and 

thus unable to change, or they believe that they have the ability to improve 

with the right amount of effort put into the task (‘growth mindset’). 

Ultimately it boils down to a matter of attribution. When you encounter 

difficulties in your pursuit of a specific learning goal, you will either 

attribute the failure to achieve to your fixed lack of relevant cognitive 

ability, or to simply not having uncovered all the necessary methods and 

steps to arrive at the desired outcome, spurring further attempts according 

to this theory. This means that it is when encountering setbacks that the 

growth mindset theory should be the most applicable. A person with a 

growth mindset would see a setback as an area of opportunity to learn more 

and a new height to aspire to with new skills possible to attain, whereas a 

person with a fixed mindset would see an insurmountable cliff blocking of 

yet another part of progress in life. As for application in education, Dweck 

herself spells out proposed strategies for promoting a growth mindset in 

students in the classroom setting: "praising students for the process they 

have engaged in—the effort they applied, the strategies they used, the 

choices they made, the persistence they displayed, and so on—yields more 

long-term benefits than telling them they are 'smart' when they succeed", 

"the teacher should portray challenges as fun and exciting, while 

portraying easy tasks as boring and less useful for the brain" (Dweck, 

2010). This coupled with explicit growth mindset promotion and the 
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encouragement to introspect with regards to one’s own goals and progress 

to date, with the help of journal writing for instance, to bolster the sense of 

achievement is encouraged. This type of goal-directed tracking of personal 

progress is something that is also promoted in other fields such as 

psychotherapy (Kolb & Boyatzis, 1970) and the broader field of self-help 

(Wright & Chung, 2001) and career coaching (Feldman, 2001). 

 

Dweck was motivated to compile her theory based on her own observations 

going back to the 70:s. Clear ideas about where to focus investigation and 

interventions in the realm of education can be found in publications 

predating her codified work, for example in the paper (originally published 

in 1998) “Inside the Black Box” (Paul Black & Wiliam, 2010). The authors 

put forward ideas such as “Feedback to any pupil should be about the 

particular qualities of his or her work, with advice on what he or she can 

do to improve and should avoid comparisons with other pupils” and “self-

assessment by pupils, far from being a luxury, is in fact an essential 

component of formative assessment”. Here they already present a proto-

view that mirrors the two mindsets proposed by Dweck but calling them the 

“Fixed-IQ” and “un-tapped potential” views. Unlike Dweck who leans 

heavily towards the potential for growth though, they take the position that 

the truth of which of these two views are more accurate in their words, 

“clearly” lies somewhere between these two extremes. They do however 

assert that “the evidence is that ways of managing formative assessment 

which work with the assumptions of ‘un-tapped potential’ do help all pupils 

to learn and can give particular help to those who have previously fallen 

behind.”. This branch of inquiry which focuses on what is called ‘formative 
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assessment’ has since evolved into what is now known as ‘Assessment for 

Learning’ (AfL). AfL is now a “popular term at all levels of education” and 

seen as ”an important way to improve student learning” (McDowell, 

Sambell, & Davison, 2009). It is promoted by well-regarded institutions 

such as the ‘Cambridge International Education teaching and Learning 

team’(https://www.cambridge-community.org.uk/professional-

development/gswafl/index.html). However, Paul Black himself has been 

skeptical of where things have progressed to in regards to AfL, calling it “a 

free brand name to attach to any practice” (P Black, 2006). In addition, 

although the ideas of Dweck; that students with practice derive a significant 

benefit in learning outcomes partly because of the effect of this positive 

outlook on their own capacity for improvement are intriguing, the practical 

effects of mindset, and interventions to promote a ‘growth’ attitude, has 

recently been called into question. A 2018 meta-analysis described the 

impact of mindset as inconsistent, where most analyses yielded small or 

null effects. A relationship between mindset and achievement that the 

authors describe as “very weak” (Sisk, Burgoyne, Sun, Butler, & 

Macnamara, 2018). They even go so far as to argue that there is a strong 

argument to be made that resources might be better allocated away from the 

study and implementation of mindset interventions, focusing instead on 

other avenues of education research. Even if growth mindset might not be 

the strong predictor of outcome one could have hoped for, more cognitive 

neuroscientific studies on the matter could shed light on possible 

differences in processing strategy employed when encountering new 

information or problems to solve. Understanding the neural mechanisms 

https://www.cambridge-community.org.uk/professional-development/gswafl/index.html
https://www.cambridge-community.org.uk/professional-development/gswafl/index.html
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may facilitate developing new tools to optimize education suited for 

different cognitive strategies. 

 

The term ‘Mindset’ does not only refer to the theory proposed by Dweck 

however, but can be referred to more broadly as all the attitudinal and 

motivational states of mind that the student brings with them, including 

their level of stress, and how they relate to learning, captured by 

measurements such as Need For Cognition (NFC) (Petty, Brinol, Loersch, 

& McCaslin, 2009). Some people are more susceptible to stress than others 

(Vollrath, 2001), but it has been known for a long time that stress, and the 

hormones that regulate stress in mammals, have no simple relationship to 

learning and performance. The two types of stress hormone receptors in the 

human brain are not evenly distributed, and this system is set up to 

maximize adaptive behaviors in times of duress (De Kloet, Oitzl, & Joëls, 

1999). What this means is that some level of stress can be beneficial for 

some types of tasks, but more deleterious to others (Schwabe & Wolf, 

2013). NFC is a measurement going back to the paper “An Experimental 

Investigation of Need for Cognition” (Cohen, Stotland, & Wolfe, 1955) and 

has been showed to be a consistent and reliable instrument (Sadowski & 

Gulgoz, 1992). A number of different versions of this scale has been 

created over the years, even as late as 2018 (Lins de Holanda Coelho, HP 

Hanel, & J. Wolf, 2020). Examples of the questions in this 6-item 

instrument are “I would prefer complex to simple problems”, “I really enjoy 

a task that involves coming up with new solutions to problems” and “I 

would prefer a task that is intellectual, difficult, and important to one that is 

somewhat important but does not require much thought”. The nature of 
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these questions is such that they ask whether you enjoy intellectual 

problems rather than if you could become better at them or even if you are 

any good at those types of problems to begin with (even though odds are 

that is the case if you enjoy the challenge). This would seem to sidestep the 

potential issue of biasing by trait neuroticism but might instead be biased 

by other traits such as openness to experience.  

 

Another somewhat overlooked account, which finds a voice in the literature 

primarily up until the 1960s, is the notion that intrinsic motivation and 

confidence are stimulated by hands-on learning (Paris & Turner, 2012). 

Von Wright suggests, in his model of the logic of events, that the way a 

learner acts; how the individual approaches and deals with a task, will 

impact on the personal experience of success and failure (Von Wright, 

1983). Studies find that students’ confidence in lab-tasks is related to their 

reported experience of “the opportunities you get, the will-power you have, 

what you actually do, and what you achieve” including hands-on learning 

(Skogh, 2013; Swafford, Orr, & Hall, 2014). Cortese et al., 2016 find that 

confidence, when dissociated from performance, is reflected in altered 

neural activation of frontoparietal areas which, as the authors argue, implies 

a link between confidence and attention (Cortese, Amano, Koizumi, 

Kawato, & Lau, 2016). To dig deeper into the relevant neural aspects 

specific to these internal states, we first must examine the nature of 

programming itself, which is the focus of the next section. For further 

discussion of the applicability of mindset in general and more specifically 

to our data, please see the relevant sections of the discussion. 
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1.4.  Computer programming and language structures 

 

Different programming languages have been created to fulfill a multitude of 

requirements depending on the preferences of the creators and the purposes 

of the language. At the lowest end are the machine codes used to run 

instructions directly on various pieces of hardware like chips and 

processors, and above that, low-level programming ‘Assembly’ languages 

that are designed to be human-readable but are spartan and are designed for 

one specific computer architecture only. The most familiar programming 

languages like Java, Python, C# and Visual Basic are so-called ‘high-level’ 

languages that offer significant amounts of abstraction of the low-level 

details of actually running the computer, providing the user with a more 

goal-directed way of interacting with the machine and often incorporating 

more natural language-like elements. 

 

Programming languages can be described as built upon three language-

structures: Syntax, Semantics and Logical structures (Sebesta, 2004). The 

syntax is the formal grammar of the language. These are the rules that 

govern what variable names are valid, how brackets, parentheses, and 

operators like adding, subtracting and comparisons work, and in what order 

these elements are interpreted by the compiler that translates the code into 

instructions the computer can understand. The semantics is the meaning of 

each of the program statements that make up the code, dictating the 

outcome when the program is run. Thus, the semantics can be said to flow 

from the Syntax, based on the ordering of the elements in the code and their 

content, and this is ultimately what the programmer is concerned with. 
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Finally, the logical structures of the code are abstractions like ‘do-while’ 

and ‘for’-loops, and ‘if-then-else’ logic. The formal structure of these are of 

course determined by the syntax of the language, but the distinctive aspect 

of these logic structures is that they are what provides the program with the 

ability to ‘branch’ its operation based on certain conditions and change the 

direction of program execution based on previous conditions. Therefore, 

they form the program into more complex linguistic ‘shapes’ than simply 

top to bottom, line by line. Programming languages also require the user to 

engage in logical reasoning more generally since, within the sequences of 

instructions, they need to assign the correct variables and then procedurally 

change the values of these variables accordingly so as to reach the desired 

outcome at the end of execution (Folk, 1973; Louden, 1993). 

 

There are many ideas about how computer programming is best learned, 

what concepts to start with and what to ignore for later (Curricula, 2013), 

and which language to even use in the first place (Mannila & de Raadt, 

2006). One basic distinction to be made regardless of chosen language is 

whether to focus on teaching algorithms and think of programs as more or 

less linear sequences of problems to be solved, or to favor the use of newer 

paradigms like so-called ‘object-oriented’ programming (Nirosh, 2015). In 

the latter mode,  programs are made up of several separate ‘objects’, where 

each can be thought of as its own sovereign program with its own variables 

and functions that, ideally, can only be accessed by other objects via 

dedicated channels by explicit permission. This formal separation is called 

‘encapsulation’ and this paradigm of separate objects where multiple copies 

or ‘instances’ of the same object can exist at the same time is naturally 
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favored for instance in game programming, where it makes intuitive sense 

to think of objects with different characteristics managing themselves more 

or less independently in the larger program that make up the game world 

(Louden, 1993). 

 

One way forward in the pursuit of structuring effective education is to 

attempt to understand exactly how beginners adopt relevant concepts 

(Holvikivi, 2010; Teräs, 2007). According to this research students need not 

only know the syntax and the semantics of the language but may also need 

to adopt a “programming way of thinking” (Holvikivi, 2010). It should be 

clear from this brief introduction to the nature of programming languages 

that your intended ends will to a large extent dictate the means to get there, 

in the same way as starting by learning Latin if your intent is to learn 

English might be helpful in some regards, but not necessarily the most 

optimal for your intended use. However, since the fundamental nature of all 

programming languages is to some extent language-like, it seems only 

natural that one should try to leverage the vast amount of research on 

language processing to inform our teaching of programming languages. To 

this end we will now move into the realm of neuroscience and explore what 

brain researchers have to say, starting with language. 

 

1.5.  Language and the brain 

 

If computer programs are structured in a similar way to other languages, 

then we should reasonably expect to see it processed in the brain by areas 

responsible for the various aspects of natural language learning and 
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production. For a simplified picture of how language processing is 

proposed to work in the brain, we can conceptualize language information 

entering the brain either via the auditory cortex in the temporal lobe or via 

the visual cortex at the back of the brain if in written form. This information 

then travels forward through the brain following two rough pathways 

known as the dorsal and the ventral pathways, respectively, on its way 

towards the frontal lobe that is thought to contribute to our conscious 

experience of whatever we just encountered (Stuss, Picton, & Alexander, 

2001). Two cortical structures particularly important for language 

processing are Wernicke’s area in the temporal lobe, chiefly responsible for 

language comprehension (Mesulam, Thompson, Weintraub, & Rogalski, 

2015), and Broca’s area of the inferior frontal lobe, classically seen as 

responsible for language production (Blank, Scott, Murphy, Warburton, & 

Wise, 2002). 

 

In his 2004 review Ullman looks into the literature of the neuroanatomical 

underpinnings of language processing and proposes a more detailed model 

of language wherein the mental lexicon and knowledge depend on the 

‘declarative memory system’, based primarily on temporal lobe structures, 

and the mental grammar that handles complex rule-based combinations 

depend on frontal, basal ganglia, parietal and cerebellar structures, the 

‘procedural memory system’ (Ullman, 2004). According to the 

Declarative/Procedural (DP) model of language, the Lexical/Declarative 

system is responsible for the learning and use of explicit knowledge with 

conscious access. This includes the largely arbitrary mental lexicon of word 

meanings (semantics), facts about objects and events, and categories and 
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exceptions to rules. This system is supported by medial temporal lobe 

structures, primarily the hippocampus and surrounding regions (subiculum, 

entorhinal cortex, perirhinal cortex, and para-hippocampal gyrus), inferior, 

ventral, and superior temporal cortex but also relies on prefrontal areas, 

primarily Broca’s area in the ventrolateral prefrontal cortex (VL-PFC) 

(Brodmann areas 44, 45 and 47). This system is considered part of the 

ventral stream of visual processing. 

 

The Grammatical/Procedural system on the other hand is responsible for 

implicit, rule-based syntax and grammar processing. This includes 

managing combinations, structures, sequences, and hierarchies. This system 

is thought to primarily be supported by the basal ganglia, especially the 

caudate nucleus, and Broca’s area, but it also includes the premotor cortex, 

the supplementary motor area (SMA) and pre-SMA, parietal cortex, 

especially the supramarginal gyrus (Brodmann area 40), superior temporal 

cortex and parts of the cerebellum (hemispheres, vermis, dentate nucleus) 

that is thought to be important for retrieval of information and attention. 

This system is considered part of the dorsal stream of visual processing. It 

is worth noting that superior temporal cortex and Broca’s area are 

implicated in both the Declarative and Procedural language systems. Thus, 

there could be functionally segregated areas within these regions, or they 

may share connections to the same neuronal populations. Both systems are 

highly interconnected, cooperatively responsible for language processing, 

and can even compensate for one another to an extent (Ullman, 2004). 
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Since Broca’s area is implicated as important for both the Declarative and 

Procedural systems of language in the DP model, it is further hypothesized 

that Broca’s area is part of at least two topographically organized basal 

ganglia thalamocortical circuits (Ullman, 2006); the anterior/ventral, and 

posterior/dorsal parts, corresponding roughly to Brodmann areas 45 and 44 

respectively, where the anterior/ventral portion of Broca’s area receives 

inputs from prefrontal and superior temporal areas and is primarily thought 

to be part of the (explicit) declarative system where its main function is the 

retrieval of lexical and semantic information stored in declarative memory 

and is therefore responsible for handling the understanding of meaning 

(semantics). Based primarily on inferences from animal models, Ullman 

argues that the posterior/dorsal portion of Broca’s area receives inputs from 

parietal cortex and the dentate gyrus of the cerebellum. It is also connected 

to the SMA and pre-SMA (Ford, McGregor, Case, Crosson, & White, 

2010), areas that have been implicated in the processing of sequential motor 

and cognitive information, rule-based grammar, linguistic and musical 

syntax, phonology, motor imagery, action control and temporality (Ullman, 

2004). All these various types of information processes can be described as 

manipulation of sequential information and are thus part of the (implicit) 

procedural system in the DP model. This part of Broca is thought to be 

especially important for the understanding and use of grammar and 

complex structures (syntax) and the learning and processing of rules, 

sequences, and hierarchies. Given the large variation in types of 

information handled, Broca’s area could be considered as a system for 

multimodal processing of memory, where the posterior/dorsal part of 

Broca’s area could be seen as primarily responsible for what Ullman calls 
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‘procedural memory’, a system that  is responsible for the acquisition and 

processing of sequences across multiple domains. The division within the 

Procedural system could thus be that the basal ganglia learn grammar and 

rules, and posterior Broca’s area uses grammar and rules. 

 

If the processing of computer programming language is found to overlap 

with how natural language is processed, then perhaps we can settle whether 

programming should truly be thought of as a language (and hopefully stand 

to benefit from the field of language education) rather than something else 

but with language-like features, or perhaps if this distinction is ultimately 

meaningless. As discussed above, the other primary contender for 

explaining what programming is constituted of is mathematics, which is 

classically thought of as processed mainly in the parietal lobe where 

activity has been found for both arithmetic complexity and mathematical 

competence, and that also correlates with mathematical and numerical IQ 

(Grabner et al., 2007). It is also a long-standing debate as to whether the 

language system plays a role in processing deductive reasoning as argued 

by Mental logic theory (Rips, 1994, 2001), as opposed to probabilistic 

accounts (Oaksford & Chater, 2001, 2007) and Mental model theory 

(Johnson-Laird, 1980). We are therefore positioned to investigate if 

programming elicits activity in the temporal and frontal language areas, the 

parietal mathematics areas, or in both systems. The other major contention 

that we will deal with is regarding the physicality of programming. That is, 

the effects of physically interacting with the code through the medium of 

the computer and keyboard. To this end, we will now explore the field of 

’Embodied Cognition’ research, and how it ties into education. 
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1.6.  Embodied cognition – action, perception, and cognition 

 

In the 2017 paper “The story so far: How embodied cognition advances our 

understanding of meaning-making”, that research on language 

comprehension has the potential to give us “deep insights” into the 

foundational workings of knowledge acquisition and, further, that the  

sensorimotor systems have well-documented impacts on the processing of 

action-related words (Galetzka, 2017). The field of education already seems 

well disposed towards what is known as ‘Embodied cognition’, or 

sometimes ‘Grounded cognition’. At its core, this line of research 

investigates cognition in a multitude of aspects that make up the human 

animal. It starts by postulating that our cognitive faculties are evolved to 

process the physical and social environments that we inhabit, and that they 

spring from the neural systems responsible for processing sensory 

information and goal-directed actions (Kiefer & Barsalou, 2013). 

Approaches to pedagogy based in this view aim to actively incorporate the 

physical body in the activity or multiple senses by including multimedia in 

some form (Leitan & Chaffey, 2014). We will discuss these approaches in 

more detail in the following sections. 

 

The most relevant part of this field for our interests is the various motor 

theories, dealing with the possible ways that motor control (action), 

perception and cognition relate to each other. A 2016 paper proposes a 

system to classify the different models theorized to explain this relationship 

(Gentsch, Weber, Synofzik, Vosgerau, & Schütz-Bosbach, 2016), and they 

call this meta-theoretical framework ‘Grounded Action Cognition’. They 
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suggest sorting theories based on whether action, cognition and perception 

are ‘constitutional’ of one another; that they are needed in full or in part for 

the working of the others, or if they can function independently. It can also 

be the case that one is vital for a healthy acquisition of the other but that 

after this they can function independently. They argue that the only 

“genuine grounding relation” is when one of the faculties is ‘partially 

constituted’ by another, because if they are in a sense one and the same it is 

impossible to say which is grounded in which, and the concept of 

grounding becomes meaningless. 

 

Three categories of models are described: ’Common coding’, ‘Internal’ and 

‘Simulation’ theories. The common coding theories assume that there is 

some commonly coded representation of action that can be shared between 

motor and perceptual systems in order to plan actions. In this category, the 

‘Ideomotor theory’ (Shin, Proctor, & Capaldi, 2010) holds that action and 

perception are separate but can be activated cooperatively, while the theory 

of ‘event coding’ (Hommel, Müsseler, Aschersleben, & Prinz, 2001) 

proposes a common code representing the structure of planned or perceived 

actions where this code is independent of both action and perceptual 

domains, serving instead as an indirect communication between the two 

that can be used to detect when action and perception overlap in their 

outcomes. Neither of these models are considered to be constitutive, 

meaning that perception, cognition and action are treated as separate but 

interacting processes in these frameworks. 
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The internal models propose that the motor system contains anticipatory 

models (Gentsch et al., 2016). This means that action, perception, and 

cognition are informed by their predictions. These anticipatory models are 

generated from motor commands but are not fully constituted by them 

because feedback forms an integral part. In this category, the ‘Motor 

control theory’ (Miall & Wolpert, 1996) holds that anticipatory models of 

what the sensory inputs will be after a planned physical action is calculated 

in the motor cortices, and later compared with the outcomes to optimize the  

movement. These mental models are not the same as the planned motor 

activity though but a separate activity, so this theory is thought of as 

partially constitutive. In ‘Predictive coding’ (Friston, 2005) models 

however, motor control and perceptual inferences are thought to be one and 

the same, but cognition based on exteroceptive modalities, like vision and 

hearing, are thought to be only partially constituted of the motor system. 

This is because it is postulated that unexpected sensory information is 

translated into a motor representation in order to potentially modify 

movement later. The ‘Emulation theory’ (Grush, 2004) on the other hand 

tries to explain the cognition of motor imagery by postulating that we 

emulate our bodies within motor centers, and that there are both dedicated 

and more general systems participating in the generation of this. 

 

Finally, the simulation theories are simply based on the assumption that 

cognition is simulation-like. The ‘Mirror neuron theory’ (Gallese, Fadiga, 

Fogassi, & Rizzolatti, 1996) holds that the same population of neurons are 

responsible for processing both observed behavior in others and execution 

of those same sets of actions for oneself. This is in line with the ‘Motor 
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imagery account’ (Decety, Jeannerod, & Prablanc, 1989), where motor 

imagery is thought of as simulations of possible actions. In the theory of 

‘Perceptual symbol systems’ (Barsalou, 1999) this is carried to its extreme, 

where cognition is thought to consist exclusively of activation patterns in 

our various sensory modalities. Cognition and perception share the same 

representations and is in itself a reactivation of sensory states, both in 

introspective cognition and simulation of the mental states of others. In all 

these three accounts, action and perception are merged in a mechanistic 

way, and they are thus fully constitutive. 

 

Which one (or a combination) of these accounts are correct is presently 

unsettled, but the accumulation of evidence supporting complex 

interactions between perception, action and cognition is substantial 

(Gentsch et al., 2016). Next, we will outline what research into embodied 

cognition has to say specifically about language learning. 

 

1.7.  Motor actions and language learning 

 

The idea that learning is an activity, and that the learning process should 

include practical elements has its roots far back in time. According to 

Comenius (Comenius, 1642) real knowledge and understanding are based 

on the individuals’ own exploration - on their experience of the things 

themselves. “The disciples shall soon learn to express what they know 

using both hand and mouth, therefore you (the teacher) must not leave 

anything until sufficiently absorbed by the disciples’ eyes, ears, mind and 

memory” (Larsson, 2007). Similar ideas crop up regularly in the 
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educational literature as evident from scholarly pieces of Rousseau 

(Rousseau, 1762), Dewey; ‘My pedagogical creed’(Dewey, 1897), and 

Piaget, who points to the importance of students being active, and for them 

to seek learning themselves: "In every field, action comes first, 

classification and conceptualization come later." (Piaget & Bringuier, 

1980). Empirical studies showing greater retention of knowledge when 

students actively manipulate tools in comparison to simply listening to the 

teacher supports this notion (Good, Feekes, & Shawd, 1993; Paris, Yambor, 

& Packard, 1998; Stohr‐Hunt, 1996; Young, 2002), and when it comes to 

language there is evidence showing that gestures can in fact enhance 

memory formation in foreign language learning. Macedonia & von 

Kriegstein (2012) argue that classroom studies on second language learning 

show advantages of so-called ‘multimodal learning’, where the teaching is 

not constrained to reading and listening (Macedonia & von Kriegstein, 

2012). They also describe four ways that gestures could impact language. 

First, that the physical enactment creates a motor trace in the memory-

representation of the verbal information. Second, that doing things in a 

‘wider’ way (involving more cognitive activities) can lead to better verbal 

memory. Third, that motor imagery (kinesthetic representations) is what 

leads to improved performance. And fourth, that the impact is primarily 

caused by increased perceptual- and attention-processes when moving or 

using objects. It should be noted that these are not mutually exclusive 

options.  

Broadly, it could be the case that motor activity forms a part of the 

memory, strengthening it, or it could be that motor activity strengthens the 

memory during learning but does not form a constitutive part after. 
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A 2013 study used functional magnetic resonance imaging (fMRI) to 

investigate how meaningful and irrelevant gestures impacted learning of 

new made-up words, mimicking the process of learning a second language, 

in which the vast majority of the new words were nouns with distinct verb-

usages such as ‘hammer’, ‘violin’, ‘spade’ and so on. They found no 

behavioral effects between the different conditions but performing 

meaningful gestures with each word during training produced larger 

activations in Broca’s area; inferior frontal cortex (BA47) and inferior 

temporal gyrus. Thus, they conclude that their findings challenge the 

existence of an ‘enactment effect’ of gestures, for learning single words at 

least, but that their imaging data shows that gestures lead to “deeper 

semantic encoding of new words”. This study only had people learn to 

associate new words with already memorized meanings however, so how 

gestures affect the learning of new concepts is left unanswered, but it also 

did not rule-out possibly beneficial effect of the motor action. Older studies 

focus not on learning words, but on remembering imperative commands 

like “clap your hands” or “put on the glove” (Bäckman, Nilsson, & 

Chalom, 1986; Nilsson, 2000). These studies are called ‘Subject Performed 

Task’ or ’SPT’ paradigms, where the aim is to examine the effect of 

performing a task rather than simply memorizing the command. Nilsson, 

2000 found that recall in the SPT condition was generally superior, and that 

participants who performed the actions were less impaired by distractions 

that could divide attention. Bäckman et al., 1986 concluded that physical 

movement improves memory if it leads to a stronger integration of the 
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verbs and nouns within the commands the participants were trying to 

remember. 

As detailed above, there exist several proposals as to why sensorimotor 

processes could facilitate cognitive learning (Macedonia & von Kriegstein, 

2012). To re-iterate; One proposal holds that hands-on learning forms 

‘motor traces’ in the memory representation of the item, which strengthen 

the association formation and in turn facilitates retention (Engelkamp & 

Zimmer, 1985; Zimmer & Engelkamp, 1985), and this notion is based in 

Schema theory (Bartlett & Bartlett, 1995), or more specifically the 

multisensory learning theory (Shams & Seitz, 2008), which are theories 

stipulating that we all make sense of new experiences by activating 

associative memory representations, or schemata, where prior multimodal 

experiences enable the reactivation of a range of unisensory components. 

Empirical data in support of this theory include that functional connectivity 

(strength of neural signaling) between various sensory cortices is 

strengthened after multimodal learning, when a simple unisensory stimulus 

is later being processed (Seitz & Dinse, 2007; Von Kriegstein & Giraud, 

2006). Another example is research showing that activity in motor cortex is 

predictive of having learned words enriched by gestures or not when the 

knowledge is later retrieved (Mayer, Yildiz, Macedonia, & von Kriegstein, 

2015). 

 

A second proposal holds that hands-on learning benefits come about 

through enhanced perceptual and attentional processes that would take 

place when objects and actions interact (Bäckman et al., 1986). This idea 

relates to theories stipulating that attention is a limited resource, and that by 
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directing awareness to relevant stimuli, we most efficiently process 

categorization and association of information (Broadbent & Ladefoged, 

1959; Bundesen, 1990; Lavie, 1995; Treisman, 1964). Studies in support of 

this proposal are those that fail to find motor activation during tests of 

retention after hands-on learning, but instead find increased activation in 

task-related areas, such as the left inferior frontal- (Broca’s area) and left 

temporal (Wernicke’s area) regions after language learning with gestures 

(Krönke, Mueller, Friederici, & Obrig, 2013). It is worth noting however, 

that an alternate, closely related theory may account for these findings: The 

levels-of-processing theory (Craik & Lockhart, 1972). This theory 

stipulates that language areas will become more engaged following in-depth 

processing, since more complex learning involves deep analysis of the 

meaning of the study material (i.e. analysis of the semantics) that is 

rehearsed (Nyberg, 2002), which in turn leads to better recall. 

 

Of particular relevance to the current work in this thesis are some recent 

studies that have tried to examine the embodied effects of actually typing 

on keyboards in typical lecture settings, where one study concluded that 

taking notes on a laptop seemed to lead to “shallower processing” 

compared to longhand writing (Mueller & Oppenheimer, 2014). The laptop 

students showed worse performance on both facts and conceptual 

questions, and the authors hypothesize that this could be because of the 

laptop-user’s tendencies to transcribe the lecture verbatim instead of re-

formulating, distilling, or summarizing the concepts themselves. 

Suggestively, this could be explained by the haptic feedback from the 

freehand writing leading to less energy/attention being spent on error-
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detection, thus freeing up mental resources for deeper reflections on the 

content. Another study also showed that free recall of word lists were 

significantly better when the lists were memorized by copying them with 

pen and paper compared to both laptop keyboard and iPad touchscreens 

(Mangen, Anda, Oxborough, & Brønnick, 2015). Participants were tested 

immediately after the memorization, first on free recall and, after that, 

recognition with lists with distraction words mixed in. Only the free recall 

differed significantly depending on whether a pen or a digital device had 

been used during encoding. The authors argue that this is experimental 

evidence for the importance of the sensorimotor attributes of writing and 

that writing is an “embodied process”. Taken together, perhaps this could 

be one of the factors setting computer education apart from other subjects. 

Whatever the case, researchers in the fields of education and embodied 

cognition have been hard at work trying a seemingly endless number of 

approaches to improve learning outcomes. In the next section I will present 

a few of these efforts, including new types of media and technology. 

 

1.8.  Embodied cognition and programming 

 

As we will see, educators are willing to try their hand at creating useful 

learning strategies based on the concepts from embodied cognition 

research, but since the basic science is not quite settled yet it lacks a strong, 

theoretically guided ‘bottom up’ approach, resulting in a lack of compelling 

evidence for effectiveness (P. Howard-Jones, 2014). Let me stress that this 

is by no means unusual when it comes to how science operates, at least in 

the early days of a field, but if we grant that embodied cognition 
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approaches fall under the broader umbrella of education, educators could 

understandably be frustrated by the apparent lack of concrete, readily 

actionable outcomes on this front. Since we are in the digital age, it should 

also come as no surprise that researchers have been trying various 

multimedia solutions in conjunction with embodied paradigms of learning, 

to help students absorb new information. Some have also tried to provide 

approaches to help sort through the resulting mass of studies. In a review, 

the authors presented possible ways of measuring cognitive load of 

different proposed learning approaches, in an effort to discern the most 

optimal ones from the perspective of student experience, and they write that 

“research in embodied cognition has inspired a number of studies on 

multimedia learning and instructional psychology”, and that while both 

subjective and physiological measurements of cognitive load do appear in 

recent studies on embodied cognition, judgements of learning might be 

better predictors of learning than cognitive load measurements 

(Skulmowski & Rey, 2017). An example of a multimedia study is the 2010 

paper by Katai & Toth, where the authors try to integrate as many sensory 

modalities as possible using multimedia and ‘the arts’ (dance, music, 

rhythm and role-playing) in their programming education (Katai & Toth, 

2010). This is an attempt to  convey algorithmic thinking, and they do claim 

to show an improvement in sorting algorithm-knowledge when comparing 

their method with a conventional teaching group, but there is no way of 

discerning what part or parts of their approach is responsible and to what 

extent. It is also worth noting that this type of education is described as 

“time-intensive” by the authors. There has also been attempts to evaluate 

the effectiveness of hands-on education specifically in computer 
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programming (Handur et al., 2016). The authors argue that this has been a 

“less researched area” and that “adequate literature is not available on 

‘hands-on science’ specifically for programming course[sic]”. They also 

concluded that their hands-on course led to improvements in performance, 

problem solving skills and logical thinking in their students. 

 

As we have seen, there is both a demand and the potential for neuroscience 

to supply the basic understanding of the processes relevant for education in 

general, and programming in particular. In her 2010 paper, Jodi 

Tommerdahl lays out a hierarchical model of education science where 

neuroscience is the most basic research that then informs cognitive 

neuroscience, followed by psychological mechanisms, then educational 

theories, and finally, the classroom dynamics at the top (Tommerdahl, 

2010). She wrote that it could take many years or even decades to establish 

what she called “the new science of evidence-based education” and 

predicted that the road between the lab and the classroom will be longer 

than what many researchers think. We have now dealt with learning, 

language, and programming from multiple angles but only in a tangentially 

related fashion. In the penultimate section, we will detail the existing work 

in the specific sub-field of neuroscience of computer programming 

learning. 

 

1.9.  Neuroimaging and computer programming 

 

In neuroimaging more broadly, there are many studies dedicated to the 

formation of different types of memories like short term, long term, 



Towards a Neuroscience of Computer Programming & Education 

 

  51 

 

episodic, visual, motoric and lingual, but to my knowledge only seven 

studies on computer programming has been published as of the writing of 

this thesis (Duraes, Madeira, Castelhano, Duarte, & Branco, 2016; Floyd, 

Santander, & Weimer, 2017; Krueger et al., 2020; Lee et al., 2016; Peitek et 

al., 2018; Siegmund et al., 2014; Siegmund et al., 2017). 

 

The first study to examine programming using neuroimaging methods was 

published in 2014, where the stated aim was to explore whether fMRI could 

be used to measure program comprehension (Siegmund et al., 2014). They 

found significant activity in five regions in the left hemisphere (Brodmann 

areas 6, 21, 40, 44 and 47) when contrasting code comprehension and a 

syntax error task. The authors broadly interpreted their findings as “related 

to working memory, attention and language”. They have since performed 

two follow-ups to their original experiment. The intent of the first one was 

to examine the differences between ‘bottom-up’ comprehension and ‘top-

down’ reading of code using ‘semantic cues’ (helpful variable and function 

names) and ‘beacons’ which are indicators of the purpose of the code 

(Siegmund et al., 2017). They were able to replicate the finding that 

Brodmann area 21 (temporal lobe), 40 (parietal lobe) and 44 (Broca’s area, 

inferior frontal gyrus) in the left hemisphere were activated during code 

comprehension, however they were unable to replicate areas 6 (premotor 

cortex) and 47 (orbital inferior frontal cortex) possibly because of the low 

number of trials compared to the original experiment. They also showed 

bilateral de-activation in area 39 during comprehension with semantic cues 

as compared to bottom-up processing, but not compared to their rest 

condition. The second follow-up in 2018 was essentially a replication of the 
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original study reaffirming the primary conclusions that areas linked to 

working memory, attention, and language processing are active during code 

reading (Peitek et al., 2018). 

 

Another study into the underpinnings of programming aimed at examining 

the act of debugging code, a frequent task of professional programmers 

(Duraes et al., 2016). During fMRI, participants first used a joystick to 

mark lines of code suspected of containing errors, and subsequently decided 

if it was a bug or not by responding using a button. The goal was to 

examine the difference between bug suspicion and bug detection. The 

authors conclude, in accordance with Sigismund et al. 2014, that 

“programming comprehension recruit reading and general language 

processing networks”, and that the medial frontal region is active during 

bug detection (confirmation) while insular cortex was processing suspicion 

more than confirmation. 

 

Programming comprehension in self-reported novice and expert 

programmers has also been investigated using EEG (Lee et al., 2016). They 

focused their analysis on the higher Beta and Gamma frequencies. Using 

the same task developed by Siegmund et al. 2014, they found that 

Brodmann areas 6 (premotor cortex) and 44 (Broca’s area, inferior frontal 

gyrus) were active during programming comprehension, and that the 

experts exhibited higher Beta and Gamma brainwave activation in the F3 

(frontal lobe) and P8 (right parietal lobe) electrodes, which the authors 

interpret as linked to the “superior programming comprehension” of the 

expert group and that they “therefore excels at digit encoding, short-term 
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memory (solving simple programs in a short time), and SME (the ability to 

recall program functions after an extended period of time)”. Though the 

authors expressed some hesitation about their findings, given the relatively 

sparse research in this field, the reported areas of activation are again in line 

with the results from Siegmund et al. 2014. 

 

In the same vein, Floyd et al. 2017 published a paper where they tested 

whether a machine learning classifier could correctly separate code 

comprehension, code review and prose review from fMRI data in experts 

and more novice programmers (Floyd et al., 2017). The classifier could do 

so successfully approximately 80% of the time, and they argue that this 

implies that “largely distinct neural representations” are responsible for 

these tasks. The areas pushing the classifier towards a code task includes 

frontal cortex, occipital cortex, parietal cortex, and ventral temporal cortex. 

They further claim that based on the weights used by the classifier to 

distinguish code tasks from the prose task, that the areas responsible for 

code comprehension and review are highly correlated, meaning that the 

same areas are responsible for both evaluating the meaning of code in 

general and evaluating if a change is warranted or not. Their most 

interesting find, however, was that the classifier did a worse job 

distinguishing between code and prose in the experts, and that the accuracy 

was negatively correlated with computer science grade point averages. The 

authors interpreted this to mean that the more expert the programmer, the 

more language-like the code processing will be. Though intriguing, 

interpretation of these results is somewhat difficult because of the way the 

authors deigned their code tasks, where both code and written commentary 
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on the code were present simultaneously on screen thus blurring the 

distinction between code and prose. 

 

The latest paper to be published in this field is another study focused on 

distinguishing between code and prose and is the first study to investigate 

code being written while in the scanner (Krueger et al., 2020). The authors 

tested both short fill-in-the-blank type questions as well as longer free form 

responses, and they found that while prose writhing activated the classical 

left-hemisphere language areas in line with the previous studies, the long 

form code writing activated right-hemisphere areas associated with 

attention, memory, planning, and spatial ability. They thus concluded that 

writing code is a distinct neural process from code reading. 

 

In addition to being supported by language areas, one would predict that 

hands-on computer programming requires typical action-related 

visuospatial information processing. One of the most influential theories 

within Cognitive Neuroscience; The dual pathway (Goodale & Milner, 

1992) proposes that visuo-spatial actions make use of the ventral and the 

dorsal stream. The ventral stream transfers information from the visual 

cortex to Wernicke’s and Broca’s area about the meaning of objects and 

symbols, while the dorsal stream transfers information from the visual 

cortex to the parietal and superior frontal cortices about spatial mental 

models of relations, functions, and manipulation of objects (Milner & 

Goodale, 1995; Mishkin & Ungerleider, 1982). Although this theory is 

supported by many empirical studies, it is surprising how little is known of 
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how information is integrated between the two streams (McIntosh & 

Schenk, 2009).  

 

All these previous studies agree that solving programming problems does 

depend on language areas. It could however be more informative to focus 

on simple tasks with novice programmers to study early knowledge 

acquisition and processing rather than experts evaluating more complex 

problems. One example of such a benefit is, as Siegmund et al. 2014 

suggests, that experts have a harder time ignoring meaning in code leading 

to less contrast between the syntax- and semantics-tasks. There is also less 

concern about the extent of practice or qualitative differences between the 

experiences of the participants with novices. Taking this into consideration, 

we now have all the pieces in place for designing our study of hands-on 

learning in novice, object-oriented pair-programming. 

 

1.10.  The current project and its rationale 

 

Building a rigid field of study in this fashion, informed from the ground up 

instead of proposing theories ‘top down’ is arduous, but should have the 

potential to eventually produce results robust enough to warrant investing 

in implementing practice derived from them. Previous research in the field 

of programming education by Eckerdal and colleagues, point to learning 

benefits when students are engaged in hands-on learning, i.e. typing on the 

keyboard (Berglund & Eckerdal, 2015; Eckerdal et al., 2007; Höök & 

Eckerdal, 2015). It is often the case in the classroom that students work in 

pairs, where only one student at a time is the keyboard driver, so-called pair 
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programming (Salleh, Mendes, & Grundy, 2011).  However, the 

mechanisms behind any learning effects of physically interacting with the 

keyboard have not been investigated. Previous studies outlined above deal 

with the effects of motor activity on learning outcomes on word-meaning 

associations or actions that are symbolic of the very activity to be 

remembered. Keyboard typing involves potential motor impact when 

learning to associate more abstract knowledge in the absence of a clear 

‘meaningful’ link between the motor actions themselves and the material to 

be learned, such as the case is when learning to program. This forms the 

basis for our project: To investigate the role of keyboard typing when 

learning language-like rules and facts of programming in a pair 

programming-setting. This thesis covers work that is one part of a 

collaborative interdisciplinary effort jointly established by my supervisor 

Sara Bengtsson and my co-supervisor Anna Eckerdal, under the project title 

”Hands-On in Programming Education”, or ”HOPE”, where me and my 

supervisor will attempt to answer the neuroscientific questions, and my co-

supervisor and her Ph.D. student Kristina von Hausswolff will cover the 

more traditional educational perspectives.  

 

By training programming naïve teenagers in a classroom like setting and 

subsequently study their brain activation with fMRI in a systematic, 

hierarchical fashion, this research project attempts to address cognitive 

processes of programming language acquisition. In addition, we have 

investigated if there are any neural processes responsible for any increase in 

learning outcomes gained from physically typing on the computer keyboard 

during learning. More specifically, we have investigated the role of the 
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actual motor involvement on programming knowledge, cognitive 

engagement, motivation, confidence, and long-term memory. I will present 

two studies in this thesis: In chapter 2, I will detail the main study, laying 

the groundwork for this thesis, encompassing several fMRI analysis 

methods in an attempt to answer the core questions in our part of the HOPE 

project. This will then be followed, in chapter 3, by a description of 

findings from the re-analysis of a previous fMRI dataset of a rule-switching 

task with the aim to address questions raised in the main study regarding 

the effect of feedback as a potential intervention on stress reduction and as 

a motivational booster. 
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Chapter 2 

The neural correlates of hands-on computer programming learning  

 

2.1. Hypotheses 

 

This experiment was designed to answer a series of research questions, but 

the primary motivation behind its design was to investigate, in an 

interdisciplinary way,  if the notion that working hands-on leads to better 

outcomes is true, and if so, how this advantage is instantiated in the brain in 

the case of learning to program. Students refer to programming as "writing a 

computer program and to study what happens when the program is executed" 

(Eckerdal, Thuné, & Berglund, 2005). Indeed, a programmer needs both 

theoretical knowledge about rules of syntax and branching logic, in addition 

to mastering the practical skills needed to implement and test new code. 

Whereas the social aspect of peer learning may be beneficial on its own, in 

the current study we address differences in underlying learning mechanisms 

between being hands-on (keyboard typing) and hands-off. 

 

We test the following hypotheses: 

 

(I) Learning computer programming hands-on will lead to better 

performance, better long-term memory for the task, and greater 

confidence for the task, than learning programming hands-off. We 

test if motor cortices, attentional processes, and/or language 

processes yield the additional support to the mental model of 

programming in those who learned the task hands-on.  
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(II) The various aspects required to successfully solve programming 

tasks require a hierarchical recruitment of multiple brain regions. 

 

(III) Neural computations of programming code take place in dual 

streams originating in the visual cortex, and we investigate where 

information between the two streams is integrated. 

 

(IV) The connectivity patterns between the active brain regions are 

relevant in addition to the activity levels of the individual brain 

regions when attempting to explain what constitutes the processing 

of programming knowledge and how other measured variables 

interact with it. 

 

(V) Broca’s area is involved in deduction of logical reasoning. 

 

(VI) Grades in mathematics and the participant’s confidence will 

contribute to predicting learning outcome. 
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2.2. Method 

 

2.2.1. Experiment overview 

 

The experiment consists of two parts: First, a learning session designed to 

teach a beginner the rudiments of Java programming where students work 

in pairs. We randomly ascribe one in the pair to type on the keyboard and 

the other student to sit next to the typist. We then test the acquired 

knowledge on day 1. This is followed by an fMRI session within two days, 

designed to mimic the same type of tasks encountered in the learning 

session while at the same time accommodating the constraints of the fMRI 

setting and the requirements of the planned statistical analyses. Importantly, 

during fMRI scanning, all participants respond with a single button press in 

each trial. Thus, regardless of learning condition, when brain images are 

acquired, the motor output is the same among the hands-on and hands-off 

group. Performance is again measured during fMRI scanning, as well as in 

a long-term memory test seven days after the learning session. In addition 

to performance outcome, we collect data on various intrinsic variables, such 

as stress and confidence (see below for a comprehensive description),and 

the participants’ final grades from their primary education (year 9). 

  

2.2.2. Participants 

 

A total of 53 healthy volunteers with normal or corrected to normal vision 

and without prior programming experience were recruited from four 
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Swedish upper secondary schools around Stockholm in second- and third 

year natural science programs (age 17-18). 7 additional subjects (age 18-22) 

were recruited via an online platform for research volunteers 

(www.studentkaninen.se) in order to reach our desired minimum of 25 

participants in each of our two conditions, since we wanted to ensure that 

our statistical power was higher than the n=17 participants that was used in 

the first ever study of programming using fMRI that found several 

significant activations (p<.05 FDR corrected) in language areas (Siegmund 

et al., 2014). 3 of the subjects later failed to show up for the fMRI 

experiment, a further 2 had to be excluded because of undisclosed dental 

braces and 1 due to equipment failure, making the final number of fMRI 

participants n=54 (age mean ± s.d. 17.7 ± 1.6 years; 31 females). The study 

was approved by the regional ethics committee EPN Uppsala, Sweden, Dnr 

2017-178. 

 

2.2.3. Hands-on vs. hands-off learning session and written test 

 

For a more comprehensive description of the learning session and the 

written test, please see the following publications from our project 

collaborators: (Von Hausswolff & Eckerdal, 2018; Von Hausswolff, 

Eckerdal, & Thuné, 2020). 

 

The experimental paradigm begins with a 4-hour long learning session, 

written by our collaborators in the field of computer science-education, the 

goal of which is for the participants to learn the basics of programming in 

Java using the Dr Java development environment (www.drjava.org). In this 

http://www.studentkaninen.se/
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educational session, the students worked in pairs (one to four pairs per 

session). In a typical programming educational session, it is commonplace 

to work in pairs in a computer lab setting. Often, one of the students will be 

hands-on, (typing) while the other sits next to the driver discussing 

solutions hands-off, then switching places (Williams, Kessler, Cunningham, 

& Jeffries, 2000).  We artificially imposed fixed hands-on or hands-off 

roles upon the participants, randomly assigned. The hands-on students were 

the only ones allowed to interact with the computer and the hands-off 

students had to merely follow along with the exercises and discuss the 

solutions. The final split between the two conditions, after the exclusions 

during the fMRI scanning, ended up as follows: Hands-On, n=25 (age mean 

± s.d. 17.6 ± 1.5 years; 15 female), Hands-Off, n=29 (age mean ± s.d. 17.8 

± 1.7 years; 16 female) 

 

The material in the learning session consisted of a projected pre-recorded 

lecture video that was following along a series of progressively more 

complex programming examples and tasks illustrating core programming 

concepts and examples of problem solving. This was done in the effort to 

make the lesson as similar as possible for all participants. The video was 

paused after each section to allow the students to work through the 

problems one by one and allow the teacher to interject with pointers and 

additional information or help if needed. A printed worksheet was also 

provided to go along with the lecture. The learning session was concluded 

with a written test tailored to evaluate the programming knowledge 

acquired, consisting of both multiple choice- and complete the program-

type questions. We evaluated students’ engagement with the study material 
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by means of video recordings of each working pair. Parts of the videos 

were scored by three independent raters, resulting in a score for each 

participant indicating that they were >60% engaged, <40% engaged or 

about equal compared to their partner. Engagement here being a count of all 

comments, and gestures that were thought to indicated problem solving 

(Von Hausswolff et al., 2020). 

 

2.2.4. Questionnaires 

 

Participants rated their stress and motivation for the task itself, before and 

at the end of the learning session, on a 1-10 Likert scale. They also 

completed the ‘Intrinsic Motivation Index’ (IMI) (Deci & Ryan, 2013) and 

the ‘Need for Cognition’ (NFC) scale before the onset of the lesson day 1 

(Cacioppo, Petty, & Feng Kao, 1984). The participants later filled out the 

‘Dweck Mindset’ scale when they came back for the fMRI scan (Dweck, 

2008b). Behavioral data were analyzed using Microsoft Excel v16.0, IBM 

SPSS Statistics v25 for regression analyses, and IBM SPSS AMOS v21 for 

structural equations modelling. 

 

2.2.5. Long-term memory test 

 

One week after the Learning session (7±1 days), the subjects were 

contacted either by phone or email and asked to take a written test of their 

retained programming knowledge. This test of Long-term Memory (LTM) 

had the exact same structure as the test at the conclusion of the lesson and 
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was designed to be as similar as possible without being a direct copy of the 

same questions. Both the written test day 1 and the LTM test included 11 

questions split into two parts: First, 8 multiple choice questions, and then 3 

written questions where the students had to compose working programs 

from scratch. 

 

2.2.6. fMRI paradigm 

 

Within two days of the learning session the participants came back to 

undertake our fMRI programming tasks. Before entering the scanner, the 

participants were familiarized with the fMRI task by running 9 unique 

demo trials on a PC until they understood the different tasks. We presented 

the participants with a task paradigm that used the same style of 

programming questions included in the learning session and test but 

adapted for the constraints of fMRI and our experimental design. In total, 

we presented 120 trials of binary Yes/No-questions split evenly between 

four conditions (30 trials/condition) of increasing simulation complexity:  

 

1. ‘Syntax’ - Relatively simple code where the participant evaluates 

whether the code could be compiled without errors, or not. There 

were three different possible errors: missing quotation marks, 

terminating semicolons, or variable declarations (“int”/”string”). This 

condition reflects a ‘shallow’ code-reading. 

2. ‘Simulation’ - The exact same code as in the ‘Syntax’ task above but 

without errors and an added output line at the bottom. Participants 

evaluate whether the code generates the stated output, or not. Hence, 
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for successful performance, the participants are required to simulate 

the meaning of the code in this condition.   

3. ‘Spatial Simulation’ – Code is presented together with a still image 

of an object (turtle) in a 2D grid. Here the image serves as the output. 

The participants evaluate whether the output image matches the code 

or not. The code uses function-calls like ‘move’ and ‘turn’ to shift 

the position of turtles on the screen. This condition requires the 

participants to simulate the meaning of the code, including the steps 

of the turtles, to decide if they have ended up in the correct positions. 

4. ‘Iterative Spatial Simulation’ – The same as ‘Spatial simulation 

above but incorporating while-loops in the code. Hence, this 

condition puts more demand on keeping various code elements in 

mind (see figure 2.2). 

 

 

Fig. 2.1. Experimental design of the fMRI experiment. (2x4 factorial 

design) 
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Fig. 2.2. Examples of the four fMRI tasks. A: Syntax. B: Simulation.  

C: Spatial simulation. D: Iterative spatial simulation. 

 

The experiment was divided into 3 sessions of approximately 20 minutes 

each allowing the participant a minute or two of rest in the scanner between 

each session. The questions were presented in pseudorandom order (the 

same for all participants) with a balanced mix of all 4 question types in all 3 

sessions and with equal amounts of ‘Yes’ and ‘No’ as the correct answer. 

Each trial begins with a 200ms written cue heralding the upcoming task, 

where the text “Syntax”, “Meaning”, or “Turtle” was displayed on screen. 

We chose to display the word “Meaning” to denote the simulation task 

since the verbal instruction to the participants was specifically to attend to 

the meaning of the code, unlike in the ‘syntax’ task where they were 
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explicitly instructed to ignore the meaning and only look for the three 

possible errors, which were also explicitly listed for them. We also did not 

distinguish between the two spatial tasks in our instructions for the 

participants, meaning that the cue “Turtle” could be followed by either the 

‘spatial’ or the ‘iterative spatial’ task. Our instruction was simply that the 

“Turtle” cue meant that they were about to be presented with code and an 

image output from the turtle-program they were familiar with from the 

programming lesson. The instructions are followed by a blank screen of a 

variable delay of 4-8 seconds in steps of 444 ms, producing 10 delay 

lengths. The purpose of the variable delay period is to enables us to study 

brain activity related to task preparation, or ‘task set’ (Bengtsson, Haynes, 

Sakai, Buckley, & Passingham, 2009; Sakai & Passingham, 2003). This 

activation should reflect task preparation and is not confounded by 

potentially unbalanced visual stimuli between conditions. The actual 

programming task is displayed for either 13 seconds for ‘simulation’ and 

‘syntax’, or 20 seconds for the two spatial simulation tasks. After the task 

stimuli disappear from the screen, the participant has a 3 second window to 

answer either Yes or No by pressing left or right on a button box according 

to what is prompted on the screen, where what side represents Yes is also 

pseudorandom. This setup increases the likelihood that brain activation 

during task will reflect topic specific problem-solving, without being 

contaminated by response related motor preparation. After the answer 

prompt, a confidence scale of 1-4 is presented for 3 seconds after all 60 of 

the spatial simulation tasks (50% of total trials), asking the participants to 

indicate the confidence in the answer just entered. This is also done on the 

button box: 1=No confidence/guess, 2=Not really sure, 3=Pretty sure, and 
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4=No doubt. Each trial ends with an Inter-Trial Interval (ITI) of either 4 or 

7.5 seconds to keep the trials out of phase with the repetition time of the 

scanning sequence (TR). The total length of a single trial, accounting for 

the variable delay, the two task lengths, the presence or absence of a 

confidence-prompt and the two ITI:s was between 24.5 and 42 seconds. 

During the variable delay and the ITI periods, the screen was black with a 

white fixation cross in the center of the screen. 

 

2.2.7. fMRI data acquisition 

 

Nuclear Magnetic Resonance Imaging was acquired on a 3 Tesla GE 

Discovery MR750 equipped with an 8-channel phased array receiving coil. 

Functional MRI was performed in three session of a gradient echo pulse 

sequence of 612 volumes, using 3 mm isotropic voxels, TE = 30 ms, TR = 

2205 ms, FoV = 23 cm, 47 bottom-up interleaved axial slices, flip angle=70 

deg, for a total of 1836 volumes (~70min.). 3D T1-weighted SPGR 

(Spoiled Gradient Echo pulse sequence) images was acquired with 1 mm 

isotropic voxels, TE = 3.06 ms, TR = 7.9 ms, TI = 450 ms, FoV = 24 cm, 

176 axial slices, flip angle = 12 deg. 

 

2.2.8. Image preprocessing 

 

Conversion of DICOM files into NIFTI-format was done using the dcm2nii 

software (https://www.nitrc.org/projects/dcm2nii/). Preprocessing and all 

subsequent analysis was carried out using SPM12, version 7487 (Penny, 

https://www.nitrc.org/projects/dcm2nii/
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Friston, Ashburner, Kiebel, & Nichols, 2011). The following procedure and 

settings were used: 

1. Realign: Estimate 

Quality: 0.9, Separation: 4mm, Smoothing: 5mm FWHM, Registering all 3 

sessions to the first image in the session 1 time-series, Interpolation: 2nd 

Degree B-Spline. 

2. Realign: Reslice 

All fMRI images and the mean image, Interpolation: 4th Degree B-Spline, 

Masking enabled. 

3. Coregister: Estimate 

Reference image: T1-weighted image, Source image: resliced mean image, 

Other images: Resliced images, Objective function: ‘Normalised Mutual 

Information’, Separation [4 2] mm, Tolerances [0.02 0.02 0.02 0.001 0.001 

0.001 0.01 0.01 0.01 0.001 0.001 0.001], Histogram Smoothing [7 7] mm. 

4. Normalise: Estimate & Write 

Images to align: T1-weighted image, Images to write: Resliced mean image 

& coregistered images (T1 & fMRI sessions), Bias regularisation: 0.0001, 

Bias FWHM cutoff: 60mm, Tissue probability map: spm12\tpm\TPM.nii, 

Affine Regularisation: ‘ICBM space template - European brains’, Warping 

regularisation: [0 0.001 0.5 0.05 0.2], Smoothness: 0, Sampling distance: 

3mm, Bounding box: [-78 -112 -70 ; 78 76 85], Voxel sizes: [2 2 2] mm, 

Interpolation: 4th Degree B-Spline. 

5. Smooth 

Images to smooth: Normalised images, FWHM: [12 12 12] mm, No 

Implicit masking used. 
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2.2.9. GLM analysis 

 

2.2.9.1. First level GLM model 

 

The settings used for building the regressors for our GLM modelling was a 

Microtime resolution of 16 bins, and a Microtime onset of 8 bins. Each 

GLM model consisted of three sessions of 612 TRs of 2205ms each with 

the following conditions: ‘Cue_Syntax’, ‘Cue_Simulation’ and 

‘Cue_Spatial’ (both spatial tasks) modelling the presentation of the cue. Six 

regressors modelling epochs of preparatory activation: after the cue and 

before task stimuli presentation categorized as either short or long: 

‘Delay_4_Syntax’, ‘Delay_8_Syntax’, ‘Delay_4_Semantic’, 

‘Delay_8_Semantic’, ‘Delay_4_Spatial’ and ‘Delay_8_Spatial’ and four 

regressors modelling the epochs of correctly answered events of Task: 

‘Task_Syntax’, ‘Task_Semantic’, ‘Task_Spatial’, ‘Task_Iterative_spatial’. 

Button-presses, i.e., timings for input during the answer and confidence 

prompts were modelled as one regressor, and finally, the six Realignment 

Parameters (RPs) from the SPM realignment preprocessing step to account 

for head movements. The Button-presses and RPs were treated as 

regressors of no interest. As stated above, only correctly answered trials 

were modeled, and we combined the variable delay lengths into high (‘8’) 

and low (‘4’) for simplicity. The conditions labeled ‘Delay_4’ include  

delay periods of 4 to 5.776 seconds, and ‘Delay_8’ includes delays of 6.22 

to 8 seconds. All this adds up to a first level model for each participant with 

63 columns of regressors: 20 conditions, in 3 sessions, plus the three 

columns encoding the session means (see figure 2.3). The SPM settings for 
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model specification and estimation were as follows: High-pass filter: 128 

seconds (~7.8 mHz), to remove low frequency correlated noise. No Global 

normalization of image intensity. Masking threshold: 0.8, to exclude non-

brain voxels from the statistics. Serial correlations accounted for by Auto-

Regressive AR(1) modelling (removes further artefactual correlations from 

cardiac, respiratory, motion and hemodynamic sources). Classical (non-

Bayesian) model estimation was used. 

 

 

Fig 2.3. First level GLM design matrix. 

 

 



Towards a Neuroscience of Computer Programming & Education 

 

  72 

 

2.2.9.2 Second level GLM models 

 

T-contrast maps, either of mean activity for a single condition, or between 

conditions, were brought into a so-called ‘Second level’ analysis, meaning 

analysis of average group-level effects. Peak statistics for Family-Wise 

Error-corrected (FWE) activation clusters were identified for task effects 

(p<0.05). The t-maps were either corrected on a whole brain level or, when 

investigating particular hypotheses, corrected on a region of interest level 

(ROI). To get an insight into how programming knowledge is represented 

in the brain of a programming novice, we investigated the hierarchy of 

processing hypothesis in terms of simulation load: Simulation vs. Syntax, 

Spatial Simulation vs. Simulation, Iterative Simulation vs. Spatial 

Simulation. We did this both for the preparation phase, and the task phase. 

 

2.2.9.3. Region of interest analysis (ROI) 

 

In addition to the whole brain  GLM analysis, hypothesis driven ROI 

analyses were conducted. The ROIs were applied to a contrast of all four 

conditions during task performance (Syntax, Simulation, Spatial 

Simulation, Iterative Spatial simulation) vs baseline: Hands-on vs. Hands-

off. The initial threshold of this image was set to p<0.05 uncorrected, and 

we report findings significant at a p<0.05 family-wise error corrected level. 

 

To test the multisensory theory that motor areas support the retention of 

programming knowledge in the Hands-on group as predicted by the studies 

of language learning discussed in chapter 1.7 to look for activations in 
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motor cortices during task execution. Since no previous study has 

investigated non-overt motor activity on programming language learning, 

and since the participants in the hands-on condition interacted with the 

computer using both hands, we decided to use a bilateral ROI covering the 

whole motor cortex including SMA. We used the primary motor areas 4a 

and 4p from the anatomy toolbox (Eickhoff et al., 2007; Zilles & Amunts, 

2010) in SPM right and left hemispheres combined (size of ROI: 2212 

voxels), as well as the supplementary motor area (SMA) from AAL v3 

(2020) toolbox, L and R (size of ROI: 3856 voxels). Given the size of our 

motor ROI we also tested the premotor coordinate (-24 –19 55) reported in 

(Mayer et al., 2015) to support language learning with both 4mm, and 8mm 

ROIs. 

 

To test the hypothesis that attention towards an object increases in the 

hands-on condition, we created a ROI from the Neurosynth database 

(https://www.neurosynth.org/), a web-based platform for performing 

automated meta-analysis of published fMRI results. By using the search 

term ‘attention’ an image of 3131 voxels was created based on 1831 

studies, spanning the fronto-parietal cortex. 

 

To test the levels-of-processing theory we selected ROIs covering the areas 

reported in the fMRI studies of programming discussed in chapter 1.9 for 

the purpose of testing whether learning hands-on leads to deeper 

processing, manifested as stronger activations during task execution. We 

used left area 44 (838 voxels) and 45 (579 voxels) as defined in the 

anatomy toolbox in SPM to create a ROI for Broca’s area. The temporal 

https://www.neurosynth.org/
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language area in the left hemisphere was specified from the Neurosynth 

database (search term ‘language network’) as this area is not defined in the 

anatomy toolbox. The resulting image was based on 83 studies and 

contained 3687 voxels. One additional ROIs was also created: a parietal 

network ROI to test regions involved in mathematics, defined using the 

keywords ‘rotation’ (102 studies) and a ‘arithmetic’ (96 studies) comprising 

4797 voxels. 

 

2.2.9.4. GLM-behavioral correlations 

 

On the second level, we correlated BOLD activity with confidence ratings, 

task accuracy and long-term memory scores by extracting the first 

eigenvalue from a 4mm radius sphere around the peaks significantly 

activated at the FWE-corrected level in the task contrasts. 

 

2.2.9.5. Finite impulse response modelling (FIR) 

 

It is well known that brain imaging contrasts may be confounded by 

differences in stimuli content between conditions. A way to minimize the 

effect of such confounds is to sample the hemodynamic response of a 

condition during the preparatory phase of the trial, after the cue but before 

the task stimuli is presented. During this phase, the screen is blank, and 

BOLD activation is thought to reflects the so called ‘task set’ activity. We 

investigated if we could confirm any differences between conditions in the 

task set, by conducting FIR analyses within the masks created by the 

statistical maps obtained from the task phase GLM. We implemented a FIR 
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analysis to closely capture the hemodynamic response during the transition 

from the preparatory phase of the trial, after the cue has been shown, going 

into the task phase, where the code is presented, and task-execution takes 

place. A FIR analysis models the level of BOLD activity over time, split 

into any number of so-called ‘time-bins’ instead of modeling the whole 

BOLD response as predicted by events convolved with a hemodynamic 

response-function (Penny et al., 2011). Each time-bin becomes an estimated 

parameter encoding the amplitude of the response in each voxel, at that 

time from the onset of the modeled trial. By combining the parameter 

estimates for all the trials, we get the average response curve for that task, 

and we can then average this over all participants at the second level. We 

settled on ten time-bins of 2.2 seconds each, the smallest time increment we 

could sample, corresponding to the length of one TR, the time it takes the 

scanner to sample the whole brain volume once. Given the longest variable 

delay length of eight seconds, this would mean that the first four time-bins 

would cover the preparatory phase and the remaining six would cover the 

full 13 seconds of the short tasks and 66% of the long tasks. (see figure 2.4)  

 

Fig. 2.4. Temporal map of one hypothetical trial where the onset of the Cue 

coincides with the beginning of a TR, and what parts of the idealized 

hemodynamic response curve would be sampled during the delay phase in 
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our FIR analysis. Top: Green bars show the lengths of the 10 different 

delay lengths and where the task subsequently is presented is shown by the 

red bars and cover 13 seconds (The length of the two short tasks). Middle: 

Timeline in seconds. The 4 first TRs of 2.2 seconds each are shown in 

orange. Bottom: The canonical HRF used in the SPM software package to 

convolve with the GLM models, scaled to match the timeline. 

 

The ten varying delay lengths between the cue and the task presented a 

problem for this type of analysis as we need to pool the activity at each 

time-bin over all participants. The first two time-bins presents no problem 

as all delay lengths are in the delay phase during the first four seconds. 

When we get to the third time-bin however, the trials that had a variable 

delay of only four seconds are now presenting the task, so the activity 

measured at this point cannot be pooled with that of the trials that are still in 

delay. This means that for time-bin three, we only pool the eight highest 

delays, and similarly for time-bin four we only pool the four longest delays. 

Consequently, we lose accuracy in our measurement of BOLD activity as 

we approach the onset of the task because we unfortunately did not match 

the lengths of our trials with this type of modelling in mind when initially 

designing the fMRI experiment. The last time-bins (five to ten) correspond 

to the task as stated above but, as a consequence of the varying delay 

lengths, the activity in the earlier bins for trials with short delays were 

moved up, so that bin three from the two shortest delay trials are pooled 

into bin five (the first bin covering the start of the task phase), and so on. 

The decisions of whether to classify a bin for a trial with a certain delay 

into task or not (shift it up) when pooling the activity was based on where 
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most of the time-bin fell in real time. If more than half the time-bin fell 

after trial onset, it was shifted up. Likewise, time-bins nine and ten fell 

outside of the task for short trials (13s) with shorter delays, so they were not 

pooled into any of the time-bins. 

 

 

Table 2.1. Detailed breakdown of the shifted time-bins used for pooling the 

results of all the trials for each delay length in the FIR analysis. For each 

delay (Y axis) the 10 sampled time points after the cue (X axis) are sorted 

into Delay or Task, depending on the length of the delay. For example: for 

a trial with the 8 second delay, bins 1-4 are covering the delay phase, but 

for trials with the 4 second delay only bins 1 and 2 cover the delay, and the 

majority of the 3:rd time-bin is now sampling the beginning of the task 

presentation. 

 

The first level design for the FIR analysis included only the onsets for 

correctly answered trials, where each set of ten columns (one for each bin 

in the FIR curve) model one trial from the presentation of the cue. In a 

second level group analysis, we used activity in primary visual cortex 

(averaged over all four tasks) as a diagnostic to ensure that the response 

curves we got from the shifted table of time-bins were reasonable for other 
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areas as the visual cortex is supposed to show a strong, characteristic 

response to the onset of visual task-stimuli (Figure 2.13). We also 

compared this response with the canonical Hemodynamic Response-

Function (HRF) used in SPM to convolve the GLM model (Figure 2.4). 

 

2.2.10. Dynamic causal modelling (DCM) 

 

2.2.10.1 Design overview 

 

DCM was implemented to investigate the network dynamics between the 

regions identified in the standard GLM analysis. This not only allows for 

identification of relationships in the flow of neural activity between areas in 

the brain and how it changes with task switching, but also how the 

connections are influenced by other co-variables of interest. The DCM is 

based on a simplified GLM model comprising only three columns, plus the 

six motion parameters. The first column modeled the onsets of all spatial 

conditions. The second column modeled only the iterative trials, and the 

third column modeled the button-press events as a regressor of no interest. 

As each subject run was split into three sessions, the model for every 

subject was temporally concatenated as if part of one long session. The 

reason we chose to focus on the two spatial  tasks was that combined, they 

were the hardest tasks for the participants to solve, while also requiring 

processing in all the brain areas relevant for the ‘Syntax’ and ‘simulation’ 

tasks as well, in addition to the ones specific for the spatial tasks to 

successfully solve the task. They can thus be considered to represent the 
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“full” programming task, combining all the necessary elements learned 

during the teaching session. 

 

 

Fig. 2.5. Example simplified GLM design matrix showing the 2 conditions 

together in column 1, followed by the iterative spatial task alone in column 

2, the button presses in column 3 and then the 6 motion realignment 

parameters followed by the constant term. 

 

2.2.10.2. VOI specification 

 

The data going into the DCM analysis from eight coordinates identified in 

our original GLM analysis was extracted from the simplified GLM model 

for each subject using the SPM Volume Of Interest (VOI) function. Each 

VOI was defined as a sphere of 8mm radius centered on the coordinate for 
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the peak voxel in the thresholded group-level contrast map. A smaller 

sphere of 4mm radius was then automatically centered on the peak voxel of 

the simplified GLM within the larger sphere to allow for individual 

variation between subjects, and then masked to exclude voxels outside the 

brain using the mask automatically generated during preprocessing. The 

data in the VOI for each subject is thus the first eigenvariate of the 

timeseries derived from all  voxels within the 4mm sphere (the time series 

corresponding to this eigenvariate is, in practice, very similar to taking the 

mean voxel time series in the sphere. It’s routinely used instead of the 

mean, however, because oftentimes voxels in a sphere are not all reporting 

on the same computational or neurophysiological process – the eigenvariate 

effectively downweighs atypical voxels). 

 

The eight VOIs were all nodes in the left hemisphere only, since one of our 

primary hypotheses regarded language processing and, in an effort, to 

reduce the size of the DCM, given that we wanted to include all eight nodes 

in a single model. The nodes selected were defined using the following 

coordinates: 

  



Towards a Neuroscience of Computer Programming & Education 

 

  81 

 

 

Area VOI Coordinate 

Broca’s area  -56 10 10 

Medial Temporal Gyrus (MTG)  -52 -50 4 

Middle Occipital Gyrus (MOG)  -32 -88 14 

Superior Parietal Lobule (SPL) -24 -70 44 

Supramarginal Gyrus (SMG) -56 -30 36 

Superior Frontal Gyrus (SFG) -22 2 58 

Inferior Frontal Gyrus pars Opercularis (IFG-op) -40 6 26 

Inferior Frontal Gyrus pars Triangularis (IFG-tri.)  -42 32 16 

Table 2.2. VOI coordinates for the DCM. (x, y, z, mm, MNI space) 

 

 

Fig. 2.6. Position of our 8 VOI nodes for the DCM in the left hemisphere. 

Coordinates are taken from the whole brain GLM analysis (p<0.05 FWE). 

 

2.2.10.3. DCM analysis steps 

 

The analysis steps for the DCM proceeded as follows: Twenty-eight 

different DCM:s (described in more detail in the next section) based on the 

same VOI data, were estimated for each subject, producing parameter 

weights encoding the strength of rate of change-influence exerted by the 
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nodes on the other connected nodes, as defined in that particular model 

configuration (Zeidman, Jafarian, Corbin, et al., 2019). These individual 

DCMs were then combined into a single group-level analysis termed a 

‘GCM’ (Group Causal Model) where the winning model is decided based 

on the relative (complexity-penalized) fit of the different models to the 

fMRI data in the VOIs in terms of log-evidence relative to the worst model. 

This is called ‘Bayesian Model Selection’ (BMS). The winning model was 

then analyzed at the group level using the ‘Parametric Empirical 

Bayes’(PEB) approach in SPM. This provides an estimate of the group 

connectivity, and effects of covariates on those parameters, while still 

taking the variance of the individual parameter estimates from the first level 

DCMs into account (Zeidman, Jafarian, Seghier, et al., 2019). The complete 

PEB model was then further reduced after estimation by utilizing an 

automatic search over nested PEB models to switch off statistically 

unimportant connections (Penny et al., 2011). Eight covariates were added 

to our PEB model based on their relevance as determined by the ANOVA 

and Structural Equation Models of the behavioral data (detailed in the 

Results section). These were: Group (Hands-on/off), score on the long-term 

memory test, stress ratings from after the learning session, average change 

in reported confidence for correctly answered trials between the two 

conditions relevant for the DCM analysis (Confidence IS-S), average 

grades, and final grade in mathematics from high-school education (age 

16), average scores on the tasks during fMRI scanning, and scores on the 

Need for Cognition scale.  
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The final step after identifying interesting parameters in the model is to 

perform ‘Leave-One-Out’ (LOO) cross-validation of the effects of the 

covariates included in the PEB model. The procedure here is to predict 

covariates from DCM parameters, using a leave-one-(subject)-out cross-

validation method to avoid overfitting bias. This produces an unbiased 

estimated of how well the covariates can be predicted from DCM 

parameters (or combinations thereof). Four of our variables could be 

significantly predicted from our model: Group, Confidence loss, Average 

Grade, and LTM (at p=.058 only). After having identified these variables as 

significant, we estimated a new PEB model containing only these four, 

giving us a final model with our most robust parameter estimates. To 

further home in on our most solid findings we chose to only report 

parameters that have an estimated probability of being non-zero equal to or 

greater than 99%. 

 

2.2.10.1 Rationale for DCM model construction 

 

The gross underlying architecture of our DCM:s was based on the concept 

of Dorsal- and Ventral Stream processing, where the task-relevant 

information begins in the visual cortex and spreads forward towards the 

frontal cortices via either a dorsal pathway, concerned primarily with 

spatial relationships, or via a ventral pathway, concerned with object 

identification and processing of semantic information. We specified our 

driving input to the model (the strength of which is captured by “C-

parameters”) as entering into all of the three most caudal regions (SPL, 

MOG and MTG) because we did not explicitly model primary visual cortex 
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in an effort to reduce the number of nodes and thereby the complexity of 

our model. Our first hypothesis to be implemented into the structure of our 

DCMs was to test models where the dorsal and ventral streams connect via 

the most frontal nodes in our models or not, producing one set of closed 

loop models and one set of “open” models. The second consideration was 

the structure internal to the two pathways. We decided to group our nodes 

into a “fronto-parietal” network (SFG, SMG and SPL) and a “language” 

network (IFG-op., -IFG-tri. And Broca), where the connections formed 

triangles. These were then connected to each other via SFG to IFG in the 

front, and SPL to MOG to MTG in the back of the brain. Models with more 

interconnectivity between the two networks were also tested, including a 

“full” model (where all nodes connect to all other nodes for a total of 131 

parameters to estimate) for a completely data-driven baseline for model 

evidence. All enabled connections in the  models were bidirectional. The B-

matrix (encoding which connections may change as a function of task) was 

evaluated by running versions of the basic models with and without B-

parameters for the connections between the two networks and within them, 

and for the connections between MTG and the language network since the 

MTG node is one of the areas identified in previous fMRI experiments of 

programming as relevant to task performance. The results of the Bayesian 

Model Comparisons will be presented with the other results from the DCM 

in the next section, and for a complete account of the structures of the 

twenty-eight models please see appendix IV (Stephan et al., 2010). 
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2.3. Results 

 

2.3.1. Preamble 

 

We will first present statistics for all our variables by group (Hands-

on/Hands-off). We then present relationships between the variables of 

behavioral data that we have collected: correlations, linear regression 

analyses and Structural equation modelling (SEM). Analyses of the fMRI 

data will then follow, beginning with standard GLM analyses, then the FIR 

analysis and finally, DCM modelling. We will present uncorrected t-tests 

for all our variables as a convenient way of representing the differences 

between the hands-on and hands-off groups on any one variable that may 

be of interest. We will also present our SEM to visualize our best model of 

how the variables relate causally to programming knowledge, but to ensure 

statistical robustness we will rely on our linear regression models and fMRI 

results for all our major conclusions. Our measured variables can broadly 

be divided into three categories for convenience: 

 

1. Variables measuring our primary outcomes of the experiment: 

Result on the written test, performance in the fMRI scanner, the 

confidence in the fMRI performance, and Long-term memory 

tests. 

 

2. Secondary variables derived from, or linked to, our primary 

variables: Stress and motivation after lesson, differences in stress 

and motivation beginning to end, score for question categories in 
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our three main tests, and the difference between the first test and 

the long-term memory test one week later. 

 

3. Variables conceptualized as relatively static over our 

experimental timescale: NFC, Growth mindset, self-esteem, 

motivation and stress before the lesson, grades in math, 

languages, and final GPA. 

 

Table 2.3 outlines the number of rows of code containing task-relevant 

information displayed in the four different fMRI conditions and table 2.4 

lists t-tests for all our variables. Recall that the syntax- and simulation tasks 

contain identical code, so the difference in relevant lines here account for 

the addition of the output lines that the subject is tasked with comparing 

their simulated output to. The number of lines of text in the two spatial 

tasks were designed to be as similar as possible in length to preclude any 

observed differences in activity from reflecting reading effort as far as 

feasible. The number of lines between the two conditions was not 

significantly different as measured by a two-tailed t-test (t(45)=-1.472, 

p=0.148). 
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# code lines relevant to task 

solution 

fMRI 

performance 

(%)  

fMRI confidence 

(1-5)  

Task  mean ± SD  mean ± SD   mean ± SD 

Syntax  3.63±1.25 77.4 ±14.5 N/A 

Simulation  4.97±1.52 80.1 ±11.7 N/A 

Spatial simulation  8.33±1.56 81.7 ±16.1 3.1 ± 0.7 

Iterative spatial 

simulation  
9.20±2.82 67.2 ±12.7 2.6 ± 0.6 

Table 2.3. Comparison of average performance and confidence in each of 

the four task conditions and the average number of lines of relevant code on 

screen for each of the tasks. 

 

2.3.2. Primary outcome variables 

 

There was a significant difference in confidence for the Hands-on (M= 

3.05, SD= 0.46) and Hands-off (M= 2.76, SD= 0.63) conditions; t(52)=  

-1.894, p = 0.032 (one-tailed) (See table 2.4). There were no significant 

differences in any of the other primary outcome variables. These results 

suggest that our experimental learning condition does influence the 

confidence in participant’s answers in our fMRI test. Specifically, our 

results suggest that when learning in the Hands-on condition, participants 

were more confident and there is a weak trend towards better performance 

in the long-term memory test as well. 
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2.3.3. Secondary outcome variables 

 

There was a significant difference in the following four variables: 

Confidence on the spatial fMRI test for the Hands-on (M= 3.35, SD= 0.43) 

and Hands-off (M= 3.02, SD= 0.71) conditions; t(52)= -1.894, p = 0.032 

(one-tailed). Confidence on the iterative spatial fMRI test for the Hands-on 

(M= 2.76, SD= 0.55) and Hands-off (M= 2.51, SD= 0.60) conditions; 

t(52)= -2.029, p = 0.024 (one-tailed). Stress after learning for the Hands-on 

(M= 2.28, SD= 2.19) and Hands-off (M= 3.36, SD= 2.09) conditions; 

t(51)= 1.830, p = 0.037 (one-tailed). Simulation score on the LTM test for 

the Hands-on (M= 8.73, SD= 1.32) and Hands-off (M= 7.98, SD= 1.75) 

conditions; t(52)= -1.746, p = 0.043 (one-tailed) (See table 2.4). These 

results again suggest that our experimental learning condition does 

influence the confidence in participant’s answers. Specifically, our results 

suggest that when learning in the Hands-on condition, participants were 

more confident, less stressed and there is also a weak trend towards better 

performance in the long-term memory test here as well. 

 

2.3.4. Covariate variables 

 

No covariates reach significant differences between groups, but one of them 

show a weak trend: self-esteem for the Hands-on (M= 22.20, SD= 5.60) 

and Hands-off (M= 19.59, SD= 5.69) conditions; t(52)= -1.696, p = 0.096 

(two-tailed) (See table 2.4). These results suggest that our learning 

outcomes are not influenced by the self-esteem of our participants. 
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  Hands-on Hands-off       

Primary outcome Variables Mean SD mean SD t p dir. 

Confidence  3.05 0.46 2.76 0.63 -1.894 0.032* 1-t 

LTM 37.7 7.45 34.09 8.57 -1.638 0.053~ 1-t 

Written test score 35.61 9.14 33.2 10.77 -0.878 0.192 1-t 

fMRI score  93.88 14.92 90.76 13.51 -0.807 0.212 1-t 

Secondary Variables               

Confidence on the spatial fMRI 3.35 0.43 3.02 0.71 -1.894 0.032* 1-t 

Confidence on the iterative spatial fMRI 2.76 0.55 2.51 0.6 -2.029 0.024* 1-t 

Stress after learning  2.28 2.19 3.36 2.09 1.83 0.037* 1-t 

Simulation score on the LTM test  8.73 1.32 7.98 1.75 -1.746 0.043* 1-t 

Confidence iterative minus spatial fMRI  -0.59 0.3 -0.51 0.4 -1.616 0.056~ 1-t 

Written answers score on the written test  19.3 3.3 17.16 5.9 -1.608 0.057~ 1-t 

Syntax score on the LTM test  6.33 0.94 5.87 1.31 -1.475 0.073 1-t 

Iterative score on the LTM test  22.64 5.91 20.24 6.19 -1.449 0.076 1-t 

Syntax score on the written test  6.74 1.59 6.11 2.27 -1.169 0.124 1-t 

Iterative spatial score on the fMRI 20.8 4.05 19.76 3.61 -0.999 0.161 1-t 

Syntax score on the fMRI test  23.92 4.68 22.83 4.15 -0.909 0.183 1-t 

Iteration score on the written test  20.66 6.37 19.07 7.13 -0.858 0.197 1-t 

LTM score minus written test score  -2.09 4.84 -0.89 5.49 0.847 0.200 1-t 

Simulation score on the fMRI  24.44 3.95 23.62 3.26 -0.836 0.203 1-t 

Stress before minus after learning  0.68 1.28 0.17 1.93 -1.119 0.268 2-t 

Simulation score on the written test  8.21 1.97 8.03 2.02 -0.338 0.368 1-t 

Multiple choice score on the written test  16.31 6.29 16.04 5.3 -0.169 0.433 1-t 

Spatial score on the fMRI 24.72 4.7 24.55 5.01 -0.127 0.450 1-t 

Motivation after learning  7.8 1.5 7.43 2.1 -0.733 0.467 2-t 

 

Table 2.4… 
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Covariate Variables               

self-esteem  22.2 5.6 19.59 5.69 -1.696 0.096 2-t 
Number of languages studied  3.36 0.64 3.17 0.38 -1.33 0.189 2-t 

Art grade  18.2 1.7 17.5 2.75 -1.102 0.275 2-t 

Sum of language grades  60.1 14.28 56.72 10.94 -0.982 0.33 2-t 

Stress before learning  2.96 2.42 3.48 1.94 0.88 0.383 2-t 

IMI Value/Usefulness  18.87 4.43 20.07 5.64 0.832 0.409 2-t 

IMI Effort/Importance  9.04 4.93 7.89 6.62 -0.691 0.493 2-t 
Motivation before learning  7.16 1.99 6.83 1.67 -0.667 0.508 2-t 

IMI Pressure/Tension  -5.83 4.81 -5.25 5.42 0.397 0.693 2-t 

Math grade  18.1 2.73 18.36 2.43 0.373 0.711 2-t 

Average grades  18.07 1.5 17.99 1.8 -0.158 0.875 2-t 

Growth-mindset  1.84 4.44 1.66 4.2 0.157 0.876 2-t 

IMI Perceived Competence  22.61 5.54 22.32 7.32 -0.155 0.877 2-t 
NFC 19.02 16.96 18.69 16.17 -0.073 0.942 2-t 

IMI Interest/Enjoyment  22.48 5.49 22.36 8.31 -0.06 0.952 2-t 

Average of language grades  17.83 2.02 17.8 1.95 -0.049 0.961 2-t 

 

Table 2.4. t-tests, Hands-on vs. Hands-off. (*=p<.5), (~=p<.6). 

 

2.3.5. Correlations 

 

Here we present the most interesting correlations between our variables 

(table 2.5). (For a complete correlation table, see appendix III) Correlations 

of note: LTM correlates with performance scores, math grades and NFC, 

stress, and confidence (p=0.06). Confidence correlates additionally with 

motivation and stress (neg), NFC, math grades, and day 1 written test scores 

(p=0.06). 
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2.3.6. Structural equation modeling (SEM) 

 

Here we present an exploratory structural equation model, primarily to 

visualize the relationships between our most influential variables. This will 

form the basis for what variables to focus on in our analyses going forward. 

Maximum Likelihood (ML) estimation was used to compute the model. 

Number of distinct sample moments: 105, Number of distinct parameters to 

be estimated: 40, Degrees of freedom (105 – 40): 65, Chi-square = 113.864, 

Degrees of freedom = 65, Probability level = .000. 

 

The model, totaling 25 variables; 14 observed and 11 unobserved (8 of 

which are error terms), allows us to assume that confidence plays a 

significant role in programming learning success. Confidence in our model 

is reflected in the experienced motivation coming into the class, the stress at 

the end of the class, and the confidence scores in the fMRI scanner. We 

note that Hands-on has a slight positive influence on confidence (p=.08). In 

addition, Need for Cognition scores reflect learning success, and we note 

that the math grade has a slight positive impact on programming knowledge 

with a p-value of .08. Programming knowledge in our model is reflected in 

accuracy on tasks in the fMRI scanner and the written test, LTM, and less 

drop in motivation after the class. For the estimated coefficients and 

approximated significance values see figure 2.7-8 and table 2.6. 
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Fig. 2.7. SEM results (standardized). Straight arrows=standardized 

regression coefficients (change in SD / SD change of predictor). Curved 

arrows=correlations. Numbers above variables=R2. 

 

Fig. 2.8. SEM results (non-standardized). Straight arrows=unstandardized 

regression weights (change / single unit change of predictor). Curved 

arrows=covariance. Numbers above variables=variance. 
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Table 2.6. SEM results table. Shows the estimated regression coefficients 

and the associated p-values for the model. 

 

2.3.7 ANOVA, Hands-on vs. Hands-off 

 

We test what the effect of learning condition (learning hands-on vs. hands-

off) is on our 15 variables from our exploratory SEM using analysis of 

variance as an alternative to means testing. Our selected breakdown 

between the two conditions including the means and standard deviations of 

the two groups is presented in table 2.7. (For a table of group statistics, see 

Appendix II. For a full ANOVA table containing all our variables, see 

Appendix VII) Learning computer programming hands-on leads to greater 

confidence in one’s task performance (p=0.032), lower stress after class 

(p=0.036), and better long-term memory scores (p=0.053). Note that all 

these effects were quite weak, so any conservative correction (like for 

instance Bonferroni) would discount these potentially interesting findings. 
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To ensure that our random group assignment did not bias our results going 

forward into our fMRI analyses, we tested engagement scores, NFC, 

Mindset, and grade averages. There were no differences between the two 

groups in engagement during the learning session (p=0.27), nor in scores on 

trait questionnaires (NFC: p=0.47, Mindset: p=0.88) or grades (p=0.88). 
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Variable Hands on 

n=25 (mean±SD) 

Hands off 

n=29 (mean±SD) 

One-way 

ANOVA 

Task confidence 

during fMRI (1-4) 

3.05 ± 0.46 2.76 ± 0.63 *p=0.032 1-t 

Written test score 89.0% ± 22.8% 83.0% ± 27.0% p=0.19 1-t 

fMRI task score  78.3% ± 12.4% 75.7% ± 11.3% p=0.21 1-t 

Long-term 

memory score 

94.3% ± 18.5% 85.3% ± 21.5% *p=0.053 1-t 

 

Motivation before 

learning (1-10) 

7.2 ± 2.0 6.8 ± 1.7 p=0.50 2-t 

 

Stress before 

learning (1-10) 

2.9 ± 2.4 3.4 ± 1.9 p=0.38 2-t 

Stress after 

learning (1-10) 

2.28 ± 2.189 3.35 ± 2.094 *p=0.036 1-t 

Motivation loss 

(Before – After 

learning) 

-0.64 ± 1.8 -0.34 ± 2.2 p=0.30 1-t 

Engagement 

scores (-1,0,1) 

-0.08 ± 0.57 

 

0.10 ± 0.61 

 

p=0.27 2-t 

Need for cognition 

(±72) 

19.0 ± 17.0 18.7 ± 16.2 p=0.47 2-t 

Average grades 

(max 20) 

18.1 ± 1.5 18.0 ± 1.8 p=0.88 2-t 

Mathematics 

grade (max 20) 

18.1 ± 2.7 18.4 ± 2.4 p=0.71 2-t 

Grade sum 

languages  

60.1 ± 14.2 56.7 ± 10.9 p=0.33 2-t 

Grade Art  

(max 20)  

18.2 ± 1.7 17.5 ± 2.8 p=0.28 2-t 

Growth-mindset 

(±10) 

1.8 ± 4.4 1.7 ± 4.2 p=0.88 2-t 

 

Table 2.7. Selected one-way ANOVA results. Means and significance for 

each response variable as influenced by the learning condition factor 

(Hands On / Hands Off). 
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2.3.8. Regression analysis 

 

Here we again selected our most interesting 15 variables, as determined by 

the SEM, and entered them into several regression models attempting to 

explain long-term memory performance, since this is our ultimate outcome 

variable. The variables can be broadly categorized as the main 

experimentally manipulated variable; hands-on, ‘trait’ variables; sex, NFC, 

mindset, motivation before, stress before, grade average, math grade, art 

grade and language grade, and variables shaped during the experiment; 

motivation change, stress change, fMRI confidence, fMRI confidence 

change and Engagement. To investigate which aspects that most contribute 

to successful LTM performance, we ran a stepwise backward regression 

analysis which resulted in 10 models (Adjusted R2=.504, F(6, 47)=9.814, 

p<.000). The state variables best predicting LTM retention are confidence 

in doing the more complex Iterative Spatial task as compared to the Spatial 

task, stress after class, stress reduction after the class, and motivation 

reduction after the class. The ‘trait’ variables best predicting LTM are 

average grades and NFC. Variables that did not contribute to model fit, and 

thus were systematically excluded were motivation before class, average 

task confidence ratings, hands-on, sex, Dweck mindset score, Engagement, 

math-, language- and art grades. Test scores day 1, and performance 

accuracy during fMRI scanning were not included in the model as these are 

highly correlated with LTM scores. Recall that the LTM test was designed 

to be almost identical to the written test at the end of the teaching session 

but administered one week later, and that performance on the LTM test and 

the written test are highly correlated (R=.857, p<.000). 
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Table 2.8. Backwards regression analysis predicting LTM. An automated 

backward removal method was used (criterion: Probability of F-to-remove 

>= .100) resulting in 10 models. Adjusted R2=.504, F(6, 47)=9.814, 

p<.000. Variables excluded: Stress decrease, Grade math, fMRI 

Confidence, Motivation before lesson, Grade Sum of Languages, Female 

sex, Grade art, Hands On, Dweck Mindset, Engagement. 

 

A similar but slightly different result is obtained when using a forward 

regression analysis. The best forward model out of 6 produced from the 

same selection of variables was also highly significant (Adjusted R2=.504, 

F(5, 48)=9.814, p<.000) and is presented here for comparison, together 

with an additional alternative regression comprising only the variables that 

were not self-estimated by the participants. 
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Table 2.9. Forward Regression analysis predicting LTM. An automated 

forward removal method was used (criterion: Probability of F-to-enter  

<=.050). resulting in 5 models. Adjusted R2=.504, F(5, 48)=9.814, 

p<.000. Variables not entered: Hands On, Female sex, Dweck Entity score, 

Motivation before lesson, Grade Math, Grade art, Grade Sum of 

Languages, fMRI Confidence, Engagement. 

 

 

Table 2.10. Linear regression analysis predicting LTM (no self-estimated 

variables). R=.647,R2=.419 (.316 adjusted),SE=6.78295 F(8)=4.06, 

p=.001. 
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2.3.9. GLM & ROI analysis 

 

When the students simulated the output of the code as compared to simply 

looking for syntax errors, left Broca’s area and medial temporal gyrus [-52 -

50 4] were significantly more active (figure 2.11). Note that the only 

difference in stimuli between the conditions was the added output line in 

Simulation trials. Notably, the temporal area was also more active during 

the task-set phase, suggesting that its activation is involved in the 

computation of task rules, rather than simply reflecting specific visual 

stimuli encountered, such as the number, or type of, words read (figure 

2.10). As illustrated in table 2.11 and in the beta values of figure 2.9, the 

amplitude of the activation in Broca’s area was not further increased in the 

two spatial conditions when compared to the simulation task, suggesting 

similar processing across all three conditions and casting doubt on the 

levels-of-processing-theory.  

 

  

Fig. 2.9. Averaged beta-values for each task condition extracted from 

Broca’s area [-58 12 10]. 

Syntax                Simulation                  Spat.               Iterative Spat. 
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The right Cuneus and the occipital lobe were more active when the students 

simulated the output of the code as compared to simply looking for syntax 

errors. Whereas the right Cuneus is only active during task performance 

and not task set, the occipital lobe activation is also involved in simulating 

the upcoming task during the task-set phase, which again suggests that it is 

not simply involved in processing the visual stimuli input, but also relevant 

in more abstract computations (table 2.11, figure 2.10-12). For the 

participants to manage spatial objects, and logical structures such as the 

while-loops, additional activation in occipital, posterior parietal and 

superior frontal cortices are required. However, studying the task-set 

activity, we note that the frontal activations are missing, which suggests 

that these are less relevant for task rule setting, and more relevant for 

specific task execution processes such as keeping items in working memory 

and maintaining attention. It is more posterior activations that are seen 

during task-set; left superior and middle occipital gyrus, including calcarine 

cortex, cuneus, and precuneus, left and right supramarginal gyrus 

(including area 40), and left precentral gyrus (table 2.11, Figure 2.12) 

Figures 2.14-17 further illustrate the task-set activation, based on FIR 

modelling. To further corroborate task relevant activations, we note that 

BOLD amplitude of the left Lingual gyrus, right Cuneus, left and right 

Supramarginal gyrus, left precuneus, left Occipital pole, Left inferior 

frontal gyrus, left and right superior Parietal lobule, left middle frontal 

gyrus, left superior frontal gyrus, left supplementary motor cortex, right 

precentral gyrus, left and right middle Occipital gyrus, and the left inferior 

occipital gyrus correlated significantly with performance scores (fMRI 
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task/LTM task). Significant correlations with confidence were also 

observed for approximately half of these areas. (see table 2.11) 

 

Task 

Contrast  
Area  Peak T 

P 

(FWE) 

Sig. 

Task-set 

activity 

Cor. 

With 

Score / 

LTM 

Cor. 

With 

conf.   

Simulation 

vs. Syntax 

Left Broca’s 

Area 
-56 10 10  4.55  0.040 ns ns ns  

  

Left Middle 

Temporal 

Gyrus  

-52 -50 4  5.40  0.003  svc * ns ns  

  
Left Lingual 

Gyrus  
 -2 -78 0 8.55 0.000 wb *** 

SCORE 

* 
ns 

  

Left 

Superior 

Temporal 

Gyrus 

 -50 -46 

12 
5.00 0.011 ns ns ns 

  
Left 

Precuneus 
 -4 -52 52 4.70 0.026 ns ns ns 

  
Right 

Cuneus  
14 -98 12  

10.8

2  
0.000  wb *** 

SCORE 

* 
ns  

  

Right 

Occipital 

Fusiform 

Gyrus 

28 -76 -14 8.49 0.000 svc ** ns ns 

Spatial 

Simulation 

vs. 

Simulation  

Left 

Superior 

frontal 

Gyrus   

-22 2 58  6.73 0.000  ns ns *   

Table 2.11… 
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Right 

Superior 

frontal Gyrus  

26 12 54  7.47 0.000  ns ns ns 

  

Left 

Supramargina

l Gyrus 

-56 -30 36  6.92 0.000  ns LTM ** ns 

  

Right 

Supramargina

l Gyrus 

60 -28 48  8.21 0.000  ns LTM * ns 

  
Left 

Precuneus  
-10 -52 62  6.20 0.000  ns LTM * ns 

  
Left Lingual 

Gyrus 
-14 -70 -6  

17.4

7 
0.000  wb *** ns ns 

  
Right Lingual 

Gyrus 
10 -72 -4 

10.9

7 
0.000 svc *** ns ns 

  
Left Occipital 

Pole 
 -14 -96 22 

10.0

3 
0.000 wb *** SCORE * ns 

  

Left Middle 

Occipital 

Gyrus 

 -44 -76 18 5.14 0.007 svc *** ns ns 

  

Left Superior 

Parietal 

Lobule 

 -40 -40 54 4.76 0.023 ns ns ns 

  

Left Superior 

Parietal 

Lobule 

 -36 -44 62 4.64 0.032 ns ns ns 

Table 2.11… 
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Right 

cerebellum 

exterior 

34 -42 -40 4.98 0.012 ns ns ns 

  

Right 

Inferior 

frontal Gyrus 

(p.op) 

54 10 16 4.65 0.032 ns ns ns 

Iterative 

Spatial 

Simulation 

vs. Spatial 

simulation  

Left Inferior 

Frontal 

Gyrus (p.op)  

-40 6 26  8.20 0.000  ns ns ns  

  

Left Inferior 

Frontal 

Gyrus (p.tri)  

-42 32 16  7.70 0.000  ns LTM * *  

  

Left Superior 

Parietal 

Lobule  

-24 -70 44  
12.3

0 
0.000  ns 

SCORE 

*** & 

LTM ** 

*  

  

Right 

Superior 

Parietal 

Lobule   

20 -66 52  
10.7

0 
0.000  ns 

SCORE 

*** & 

LTM * 

*  

  

Right 

Superior 

Parietal 

Lobule 

28 -70 42 
10.6

0 
0.000 ns 

SCORE 

*** & 

LTM ** 

* 

  

Left Middle 

Frontal 

Gyrus 

 -26 18 50 5.15 0.009 ns 

SCORE 

*** & 

LTM * 

ns 

  

Right Middle 

Frontal 

Gyrus 

26 6 50 5.63 0.002 ns 

SCORE 

*** & 

LTM ** 

* 

Table 2.11… 
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Right Middle 

Frontal Gyrus 
52 36 26 6.96 0.000 ns 

SCORE 

*** 
ns 

  
Right Middle 

Frontal Gyrus 
40 22 28 5.96 0.001 ns ns ns 

  
Left Superior 

frontal Gyrus 
 -22 6 52 4.89 0.019 ns 

SCORE 

*** & 

LTM ** 

* 

  

Left 

Supplementar

y Motor 

Cortex 

 -4 22 48 6.40 0.000 ns LTM * * 

  

Right 

Precentral 

Gyrus  

42 6 32  6.10 0.000  ns 
SCORE 

*** 
ns 

  

Left Middle 

Occipital 

Gyrus  

-32 -88 14  9.20 0.000  svc *** 

SCORE 

*** & 

LTM ** 

*  

  

Right Middle 

Occipital 

Gyrus 

34 -80 10 9.99 0.000 ns 
SCORE 

*** 
ns 

  

Left Inferior 

Occipital 

Gyrus 

 -42 -68 -4 
10.1

8 
0.000 wb *** 

SCORE * 

& LTM * 
ns 

  

Left 

Cerebellum 

exterior 

 -8 -74 -32 6.86 0.000 ns LTM * ** 

  

Left 

Cerebellum 

exterior 

 -24 -62 -

32 
5.04 0.012 ns LTM ** ** 

  

Right 

Cerebellum 

exterior 

8 -76 -32 5.50 0.003 ns ns ** 

  

Cerebellar 

Vermal 

Lobules VII-

X 

0 -52 -38 5.51 0.003 ns LTM *** * 

Table 2.11. GLM results table, incorporating which activations also show 

significant Task-set activity and/or correlation with Score/LTM and 
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Confidence. Ns=non-significant, wb=whole brain corrected statistics, 

svc=small volume corrected statistics. *=p<.05,**=p<.01,***=p<.001. 

 

  

Fig. 2.10. Significant Task set activity during the delay phase (before task 

presentation). Display threshold: p=0.05 whole brain uncorrected, masked 

by the corresponding p=0.05 FWE-corrected Task activations. A: Semantic 

vs. Syntax contrast. B: Spatial vs. Semantic contrast. 

 

In this first figure of task set activity we can clearly see patterns of 

activation matching the corresponding activity when subsequently solving  

L 

L L 
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the corresponding task (cf. 2.10.A vs. 2.11.A, and 2.10.B vs. 2.11.B). These 

areas in temporal-, parietal- and inferior frontal cortices also agree with the 

previous findings from the fMRI experiments investigating programming 

discussed in chapter 1. 

 

 

Fig. 2.11. Significant Task activity. Display threshold: p=0.05 FWE-

corrected. A: Semantic vs. Syntax contrast. B: Spatial vs. Semantic 

contrast. C: Iterative Spatial vs. Spatial contrast.  

L 

L 
L 

L L 
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To further test our hypothesis of hierarchical, task-dependent processing we 

superimposed the activation clusters from our GLM analyses  in order to 

illustrate the spatial relationships between the various regions significantly 

activated during each of our task contrasts. Note that since these are 

contrasts between our conditions, it means that the new areas of activation 

are added to the previous, not that they take their place when solving the 

more complex tasks.  

 

 

 Fig. 2.12. Superposition of Significant Task set and Task. A: Task set 

activations. Red: Semantic vs. Syntax contrast. Cyan: Spatial vs. Semantic 

L 
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contrast. Display threshold: p=0.05 whole brain uncorrected, masked by 

the corresponding p=0.05 FWE-corrected Task activations. B: Task 

activations. Red: Semantic vs. Syntax contrast. Green: Spatial vs. Semantic 

contrast. Yellow: Iterative Spatial vs. Spatial contrast. Display threshold: 

p=0.05 FWE-corrected. 

 

All our contrasts looking for Hands-on vs. Hands-off differences in our 

initial GLM analysis reported no significant results that survived whole-

brain statistics. Our ROI analysis that attempted to control for this also 

failed to produce any significant clusters that differed between the two 

learning conditions. Our ROI approach attempting to test the multisensory 

theory that motor areas support the retention of knowledge after Hands-on 

learning, gave no significant results in primary motor areas 4a and 4p 

(p>0.05 uncorrected). The premotor coordinate (-24 –19 55) from (Mayer 

et al., 2015) showed t(52)=1.8, p=0.09 (corrected 4mm sphere ROI), 

t(52)=2.3, p=0.076 (corrected sphere 8mm ROI). Testing the hypothesis 

that attention towards an object increases after Hands-on learning, gave no 

significant results in the attentional network ROI (p>0.05 uncorrected). 

Testing the levels-of-processing theory, showed in area 44: t(52)=2.7, 

p=0.14 corrected, area 45: t(52)=2.5, p=0.14 corrected, and the temporal 

language area: p>0.05 uncorrected (4 and 8mm spheres). We will return to 

the question regarding any effects of learning hands-on in the DCM section. 
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2.3.10. FIR analysis 

 

As seen in the table of GLM results above, we matched significant task-set 

results from the preparatory phase with the significant whole-brain results 

from our task contrasts. For the areas where we observed significant task-

set activation where we also observed that the level of activation for each 

subject significantly correlated with one of our primary outcome variables 

(score or LTM) we plotted the results of our FIR model to visualize the 

shape of the BOLD response across the trials. Recall that the FIR time-bins 

cover 2.2s each (1 TR), that bins 1-4 cover the Preparatory phase and bins 

5-10 cover the Task. Note that the classification of time-bins into 

preparatory phase and task is based on real time, i.e., what is displayed on 

the screen at that moment, not based on the delayed BOLD response to the 

stimuli. 

 

The first FIR curve tested was extracted from a peak coordinate in primary 

visual cortex as a control to make sure that the pooling of our time-bins 

produced reasonable data (Fig. 2.13.). The reason for choosing this area is 

that it is known to produce strong, reliable BOLD responses to visual 

stimuli and is the basis for the hemodynamic response model used in the 

SPM statistical package to model fMRI data. 



Towards a Neuroscience of Computer Programming & Education 

 

  111 

 

  

Fig. 2.13. FIR plot of primary visual cortex, used as a control to validate 

that the pooling of time-bins was done correctly. Shows the expected 

pattern of activation that is used as a basis for modelling the hemodynamic 

response in SPM. 

 

We see a strong characteristic rise in activity after the presentation of the 

task stimuli at the start of time-bin 5, rising to a peak around 6.5 seconds 

later, as expected. We next extracted FIR curves for significant peak 

activations in our GLM analysis for all three of the task-contrasts, 

beginning with the simulation vs. syntax condition (Fig. 2.14.), followed by 

the spatial simulation vs. simulation only condition (Fig. 2.15.) and finally, 

the iterative spatial simulation vs. spatial simulation condition (Figs. 2.16-

17.) 
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Fig. 2.14. FIR plots of the Semantic vs. Syntax contrast for Top: Left 

Broca’s area [-56 10 10], Middle: Left Middle Temporal Gyrus [-52 -50 4], 

Bottom: Right Cuneus [14 -98 12]. 
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Unlike in the visual cortex control, we can see an increase of activation 

peaking right before the presentation of the task stimuli, representing the 

task-set activity, followed by a drop before climbing anew while solving 

the actual task. 

 

 

 

Fig. 2.15. FIR plots of the Spatial Simulation vs. Simulation contrast for 

Top: Left Lingual gyrus [-14 -70 6], Bottom: Left Occipital pole [-14 -96 

22]. 

 

As can be seen in this figure of our spatial simulation vs simulation only 

contrast, some areas show stronger preparatory responses than others, even 
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though they were all significantly activated. Our left occipital pole FIR 

model, for instance looks closer to our visual control than it does the 

activation in left lingual cortex, indicating that their processing is probably 

quite distinct. 

 

 

 

Fig. 2.16. FIR plots of the Iterative Spatial Simulation vs. Spatial 

Simulation contrast for Top: Left Inferior Frontal gyrus pars Opercularis [-

40 6 26], Bottom: Left Inferior Frontal gyrus pars Triangularis [-42 32 

16]. 

 



Towards a Neuroscience of Computer Programming & Education 

 

  115 

 

 

 

Fig. 2.17. FIR plots of the Iterative Spatial Simulation vs. Spatial 

Simulation contrast for Top: Left Middle Occipital gyrus [-32 -88 14], 

Bottom: Left Inferior Occipital gyrus [-42 -68 -4]. 

 

These last two figures cover four peaks in the iterative spatial condition. 

While the FIR plots for left MOG and left IOG look quite similar to the rest 

of our models, the shapes of the  two left IFG responses look quite 

different. The starkest difference being that they are primarily inhibited 

during both the preparatory phase and during task processing.   
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2.3.11. DCM analysis 

 

2.3.11.1 Bayesian model selection (BMS) 

 

Here we present the results of our DCM analysis, beginning with model 

design, model comparisons and final model selection, followed by our 

estimated model parameters for our connections and covariates, and finally 

Leave-One-Out-validation of our covariates. As detailed in the methods 

section, our DCM is constructed out of the activation patterns in the 

significant regions identified in the GLM analysis and incorporates testing 

of our hypotheses both by means of comparing several differently 

structured DCMs with each-other, and by later incorporating the most 

promising variables identified in our regression models at a group-level 

DCM analysis called a PEB model. 

  

 

Fig. 2.18. Bayesian Model comparison: First 16 models (Basic structure). 

Probability of model given the data relative to the other models. Model 1 is 

the clear winner. 
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The first step is to run Bayesian Model Selection (BMS) on our list of 

proposed DCMs, where the BMS is based on the relative probability of 

each model given our input data. The winning model turned out to be the 

most complex one (The others can be said to be ‘nested’ models, where 

some connections in model 1 has been turned off). For the full description 

of all the models see appendix IV. 

 

The percent of the variance explained by ‘model 1’ for each subject was 

only 4.53% on average with a standard deviation of 2.87 (min=0, 

max=9.37) which is low, as at least around 10% variance explained is 

recommended as a rule of thumb (Zeidman, Jafarian, Corbin, et al., 2019). 

‘Model 1’ was updated to include 3 driving inputs (MOG, SPL and MTG), 

bidirectional extrinsic connections in the matrix of B parameters 

(connections affected by the task switching) and our input data into the 

model was optimized by adjusting the sampled voxels to the local maxima 

within an 8mm radius for each subject instead of sampling the exact 

coordinate for the fMRI activity at group level. This ‘updated model 1’ with 

individually optimized input data achieved a variance explained of 8% on 

average with a standard deviation of 4.13 (min=1.04, max=15.77) 
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Fig. 2.19. Histograms showing the improvement in the distribution of % 

Variance explained after adjusting our winning DCM (model 1) and the 

input data. Top: initial “model 1”. Bottom: “Improved model 1”. 

 

After having found the winner amongst our first generation of DCMs, as 

well as improved the model fit further by adopting the more flexible 

individual sampling of ROI data, we could design a second generation of 

DCMs to run BMS on, to select our final DCM that would then proceed to 

a group-level analysis. These final 12 models compared were all based on 

the ‘updated model 1’ and were designed to test hypotheses; whether three 

driving inputs was better than one, whether to model the intrinsic B 

                     0-2.7               2.7-5.4             5.4-8.1           8.1-10.8 

                1.04-4.84        4.84-8.64       8.64-12.44     12.44-16.24 
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parameters or not, if a ‘full’ model with all connections turned on (i.e., 

wholly data driven connectivity map) was better than our best ‘model 1’, 

and to test models with more direct communication between the language 

and attention networks. Figure 2.20. shows the result of this final round of 

BMS where, again, our ‘improved model 1’ is the clear winner. Figure 

2.21. illustrates graphically the location of the nodes in our winning DCM 

and what connects are included in it. 

 

 

Fig. 2.20. Bayesian Model comparison: Final 12 models. Probability of 

model given the data relative to the other models. The Improved Model 1 is 

the clear winner. Model descriptions: 1=Improved model 1. 2=one input 

only. 3=three inputs, no intrinsic B parameters. 4=one input only and 

intrinsic B parameters. 5=’Full’ model, all 128 parameters turned on with 

3 inputs. 6=Model with all B parameters matching the A parameters turned 

on. 7=Top 42 highest probability connections from the ‘full’ model only 

(number of parameters matched to our model 1 to compare data driven 

model with same complexity). 8=Top 57 connections from the ‘full’ model 
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(All connections significantly different from zero). 9=Model 1 but without 

the connection between SFG and IFG.op. 10=Model 1 but without 

connections to the SMG node. 11=Model 1 but with a bidirectional 

connection between MTG and SPL. 12=Model 1 but with a bidirectional 

connection between MTG and SFG. 

 

 

 

Fig. 2.21. Winning Model connections for the ‘Improved Model 1’. Left: ‘A 

parameters’ – All connections active during task processing. Right: ‘B 

parameters’  – All connections that change connectivity when switching to 

the spatial tasks. Nodes in the model are all marked with their names. Red 

dots indicate that the parameter modeling self-inhibition for that node is 

present in the model. Arrows indicate a connection between two nodes (bi- 

or unidirectionality indicated by the arrowheads). There are three driving 

inputs into the model (MOG, SPL & MTG). 

 

The Bayesian model comparison showed that our ‘Improved model 1’ 

outperformed the ‘full’ data-driven model, showing that it did not simply 

win by being more complex than its nested competitors. It also 

outperformed the models with some connections removed, demonstrating 



Towards a Neuroscience of Computer Programming & Education 

 

  121 

 

that we lose model evidence if we exclude the influence of the SMG node 

and that the communication between the dorsal network and the language 

network between the SFG and IFG.op node is supported by the model 

evidence. The models testing for more direct communication between the 

MTG and the two dorsal nodes SFG and SPL performed worse than our 

‘model 1’ and so does not support the idea of more strong direct 

connections between the dorsal attention network and ventrolateral 

language areas in the temporal lobe. 

 

2.3.11.2 Parametric empirical Bayes model (PEB) 

 

With our winning DCM selected we proceed to model group-level effects, 

including the effects of covariates on our DCM using Parametric Empirical 

Bayes modelling (PEB). Like the BMS step described above, we did two 

generations of PEB modelling. The first generation was used to identify 

which covariate effects were strong enough to survive the Leave-One-Out 

significance testing (LOO), and a second PEB model was subsequently 

created with only those covariates. The results of our final PEB model 

includes only the four most significant covariables and this is presented 

here in figure 2.22, and table 2.12. (For the results of our initial PEB model 

and LOO validation see appendix V.) Positive parameter values for the 

covariates mean that the effect of the parameter in the DCM is positively 

correlated with the covariate. The contribution of a covariate to the DCM 

parameter is equal to the effect size times the covariate score. Interpretation 

of the parameters of the PEB model works as follows: for intrinsic (self-

inhibitory) connections (e.g., Broca->Broca) a positive parameter means 
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higher inhibition. For extrinsic connections (e.g., Broca->MTG) a positive 

parameter means excitatory connectivity. For the modulatory (B) 

parameters a positive parameter means increased connectivity when 

switching to the iterative spatial task. 

 

 

Fig. 2.22. Matrix of significant DCM PEB parameter estimates. Positive 

values indicate increased effective connectivity as measured in rate of 

change-influence (in Hz) on the connected node. 

 

The results presented here in figure 2.22. is a visual representation of the 

strengths and directions of the PEB parameter estimates presented further 

on in table 2.12. The results are split up into ‘Commonalities’ meaning 

connections shared in common across all subjects and conditions, and then 

the covariates (hands-on learning, LTM score, Confidence decrease and 

average grades), indicating which connections are up or down-regulated in 

accordance with the covariate in question across subjects. Finally the results 

are also split between the ‘A-‘ and ‘B-matrices’ of the DCM, where ‘A’ is 

the common connections active while solving both the spatial tasks and ‘B’ 

encodes the connectivity changes when switching to the iterative task. The 

following images presented in figure 2.23. also illustrate the results of the 
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PEB graphically on the brain for easy comparison with the full model from 

2.21., and for identifying global patterns of connection-directionality easier 

than with just the connectivity matrix in 2.22. Our final interpretations of 

these results and the upcoming LOO validation will ultimately be discussed 

in chapter 2.4.5. 

 

 

 

 

  

Fig. 2.23… 

 

(I) 

(II) 

(III) 
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Fig. 2.23. DCM parameters in the reduced PEB model with >=.99 

probability of being non-zero. Left: ‘A parameters’ – Shared between both 

tasks. Right: ‘B parameters’ – Connections affected when doing the 

Iterative Spatial Simulation task over and above the Spatial Simulation 

condition. Arrows: Indicate the directionality of the extrinsic connections. 

Dots: Signify intrinsic inhibitory connectivity. (I): Effective connectivity 

common to both spatial tasks. (II): Effective connectivity differences in 

subjects that learned Hands On. (III): Effective connectivity differences that 

correlate with LTM performance. (IV): Effective connectivity changes that 

correlate with confidence decrease when switching from the spatial to the 

iterative spatial task. (V): Effective connectivity changes that correlate with 

average grades. 

 

 

 

(IV) 

(V) 
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 Connection  

D

i

r

. 

Common. Hands On LTM 

Confidence 

Decrease (IS-

S)  

Avg. Grades 

A B A B A B A B A B 

Dorsal-

Ventral 

link 

SFG→ 

IFG.op  

f 
0.550 

          neg 

0.184 
  

  
  

b 
neg 

0.143 
          

  
      

Dorsal 

Pathway  
MOG↓                       

  SPL↓   
neg 

0.210 

neg 

0.985 
          

neg 

1.008 
  

neg 

0.346 

  SMG↓   
-

0.162 
  

-

0.075 
          

0.089 
  

  SFG↓   
neg 

0.559 
    0.480             

  
MOG→ 

SPL  

f neg 

0.519 
  

  
      neg 

0.310 
      

b 0.134                   

  
SPL→ 

SMG  

f 
0.099 

  neg 

0.034 
              

b 
neg 

0.344 
  

  
      

0.343 
      

  
SPL→ 

SFG  

f 
0.362 

  neg 

0.060 0.095 
    

0.148 
      

b 
0.825 

neg 

0.626   
        

neg 

0.521 
  

neg 

0.178 

  
SMG→ 

SFG  

f neg 

0.439 
  

0.063 
          

0.044 
  

b 0.065                   

Table 2.12… 
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Ventral 

Pathway  
MTG↓     neg 

0.553 
        neg 

0.285 
  

  
  

  Broca↓   
neg 

0.548 

neg 

1.160 
                

  IFG.op↓   
neg 

0.253 
  

neg 

0.098 
    

0.051 0.418 
  

  

neg 

0.262 

  IFG.tri↓   
neg 

0.072 
    

0.200 
    

neg 

0.195 
      

  MOG→ 

MTG  

f 
neg 

0.138 
                  

  b                 0.140   

  
MTG→ 

Broca  

f 
0.237 

  
0.094 

      
0.247 

      

b 
0.198 

neg 

0.181 0.080 
              

  
IFG.op→ 

Broca 

f 
0.084 

                  

b 
0.088 0.197 

        
0.326 

    
neg 

0.207 

  
Broca→ 

IFG.tri  

f 
0.175 

  
  

    
  

        

b 
neg 

0.135 

neg 

0.159 

neg 

0.059 
      

neg 

0.191 
      

  
IFG.op→ 

IFG.tri  

f 
0.292 

          neg 

0.149 
      

b 
neg 

0.334 
  

neg 

0.077 
      

0.320 
  

neg 

0.039 
 

Table 2.12. Parameter estimates for all parameters with a p≥.99 of being 

non-zero (significantly contributing towards the total model evidence).  

Commonalities: the underlying connection strengths shared by both tasks, 

that is then modulated by the parameters for the covariates included in the 

model. A: Spatial task connection strengths. B: modification of connection 

strength when instead doing the iterative task. Covariates: Hands, LTM 

and Confidence Decrease are covariates in the group DCM (PEB model). 

Legend: ‘→’=Extrinsic connection, f=forward, b=backward. Forward 

direction is defined by the anatomical position of the nodes (y-coordinate) 
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and is indicated by the ‘→‘ arrow. ‘↓’=Intrinsic (Inhibitory) connection. 

‘neg’=negative parameter. 

 

2.3.11.3. Leave one out validation (LOO) 

 

The parameter estimates we presented thus far are all evaluated to be non-

zero with a probability >.99 by means of a Bayesian approach, but as a final 

test of real-world validity the parameter estimates for our covariates can be 

tested further by performing Leave-One-Out-validation. LOO validation is 

an iterative statistical approach by which a new PEB model is calculated for 

each covariate separately, but where one subject is omitted in each iteration. 

The algorithm then compares the DCM connection strengths of the one 

subject to the group PEB model and estimates what the covariate in 

question should be based on the lone subjects’ parameters. The accuracy of 

the estimated covariate values can then be correlated with the real values 

for all the subjects in turn, and this can be interpreted as a test of whether 

the covariates included in the DCM can be predicted from the measured 

connectivity strengths at significantly better than chance levels. As 

mentioned before, our final PEB model with four covariables came out of a 

first-generation LOO validation, and the LOO results of those four 

variables in our final model are presented here in figure 2.24. 
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Figure 2.24. Results of significant LOO analyses and whether they were 

estimated from the B parameters or the A and B parameters. Correlation 

between the subject’s actual variable values and the values estimated from 

their connectivity parameters in the DCM model. Left: Red line=Estimated 

values. Dotted orange line=actual values. Right: Scatter plot of the 

correlation. 

 

The results for our final four covariables in the PEB model showed an 

average correlation of r=.288 (SD=.057) between the estimates and real 

values based on the DCM PEB parameters, indicating that the model has 

some validated predictive power (All showed significant p-values at <.05 

except for LTM at p=.058). As stated before, we will discuss possible 

implications of this further in chapter 2.4.5. 
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2.4. Discussion 

 

2.4.1. Hands-on vs. Hands-off and predicting success 

 

Even with the uniformly high performance of our participants, we did find 

several significant behavioral and neural differences depending on whether 

they had learned programming hands-on or hands-off on the first day of 

training. The most interesting ones being that the students working hands-

on rated their confidence higher in the fMRI task, and they reported less 

stress after the lesson, indicating that they felt more secure in their 

knowledge than the hands-off group. When it comes to actual 

measurements of performance however, we could not find strong support 

for a benefit, but we do see a trend where the hands-on group performed 

slightly better on both LTM score (p=.054) and written test score (p=.057). 

Looking at our regression analyses aimed at predicting LTM scores, we see 

that the group variable ‘hands on’ was excluded from the automatic 

regression analyses, only showing up as significant in our selection of non-

self-estimated variables, indicating that hands on is not a strong predictor of 

LTM performance. It is worth noting however, that in these analyses, 

hands-on is second only to math grade, both in terms of beta value and in 

significance. The model with the most predictive power (the backwards 

regression model) singled out NFC, grade average, and stress before the 

lesson as the best a priori predictors, with motivation decrease across the 

lesson and the confidence decrease when moving to the hardest fMRI task 

as significant predictors. The fact that hands-on shows up as a significant 

predictor of LTM in our curated regression, which is also the one with the 
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least explanatory power at an adjusted R2=.316, can be interpreted as 

meaning that hands-on provides a good enough proxy in leu of better 

predictive variables, like NFC, stress and motivation, at least in the context 

of our relatively short timeframe of a 3-hour learning session. Looking at 

our SEM, we again see confidence and NFC jump out as significant 

contributors to our ‘programming knowledge’ latent variable. Grade 

average and math also show relatively big parameter estimates of 

contribution, but they do not reach significance. Like in the linear 

regressions, language grades, art grades and Growth Mindset contribute 

very little. To summarize these findings, we see that our regression models 

agree with our theoretical conception of the relationships between our 

variables in that the biggest contributors to programming knowledge 

formation seems to be confidence driven by working hands-on, NFC, grade 

average and math grade. This fits with the findings discussed in the 

introduction where mathematics was proposed as a good candidate for 

predicting good programming outcomes for students in multiple papers 

(Bennedsen & Caspersen, 2005; Byrne & Lyons, 2001; Choi-man, 1988; 

Erdogan et al., 2008; Fincher et al., 2006; Holvikivi, 2010; White & 

Sivitanides, 2003; Wilson & Shrock, 2001), even though one could predict 

this to be somewhat task dependent. It is worth noting that both 

mathematical ability and average grades are often used in research as rough 

approximations of IQ (Mitchell et al., 2020), and NFC has been shown to 

be modestly related to fluid intelligence in general (Fleischhauer et al., 

2010). It is also important to stress that we found no significant difference 

in either engagement, self-esteem, or NFC between the groups, meaning 
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that any significant group differences found was not unintentionally 

confounded by our  random assignment of experimental condition. 

 

2.4.2. Motor theories of learning 

 

When it comes to evaluating the various proposals for enhanced learning 

due to using motoric actions during the learning, we cannot see a simple 

answer defeat all other alternatives, but rather a combination of influences. 

The only theory that we can confidently exclude based on our data is the 

schema theory-based ideas of motor traces being laid down in the motor 

cortex and that reactivation of these provide stronger associations and better 

performance (Bartlett & Bartlett, 1995; Shams & Seitz, 2008). We did not 

observe any significant activity in premotor cortex, primary motor cortex or 

the supplementary motor area during task preparation or execution in the 

participants who learned programming hands-on, not even with ROI 

analysis. The theories that predict enhanced perceptual or attentional 

processes are interesting to consider further since, although they came up 

short when it came to directly contrasting our two experimental groups, 

frontal and parietal areas  were found to correlate with confidence, 

suggesting that perhaps over longer learning timespans, significant 

differences between groups would develop as confidence was found to be 

significantly higher in the hands-on group. We did observe several frontal 

regions activate during the more difficult tasks in our GLM that could 

perhaps be linked with enhanced attention, which correlated with fMRI 

score and/or LTM score, showing that they are relevant for successfully 

solving the task. The third theory that intrinsic motivation and confidence is 
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the primary benefit of hands-on learning (Paris & Turner, 2012) is 

supported by our findings. Even though we did not see any significant 

differences between the groups in our GLM, the behavioral measures are in 

line with this theory and, as we will detail later, we did see significant 

effects of confidence and hands-on in our DCM model (detailed below), so 

there is support for relevant changes from our brain imaging data. 

 

2.4.3. Hierarchical recruitment of brain regions 

 

One of the most basic research questions for this project was how the 

programming knowledge required for successfully solving our tasks was 

instantiated in the brain. As shown by our GLM, we managed to replicate 

the preliminary findings from the other groups that pioneered the study of 

programming using fMRI (Duraes et al., 2016; Floyd et al., 2017; Krueger 

et al., 2020; Lee et al., 2016; Peitek et al., 2018; Siegmund et al., 2014; 

Siegmund et al., 2017), showing that at the core of programming are the 

classical language areas of the brain (Middle Temporal Gyrus and Broca’s 

area) together with parts of the occipital lobe. These are then supplemented 

by parietal, and yet more occipital areas when the complexity is increased 

to include visuo-spatial processing. This can thus be described as more of a 

task specific activation. Finally, when moving to the most complex task 

incorporating the iterative code structures, we see the recruitment of further 

parietal areas, but also frontal regions classically associated with working 

memory (D’Esposito, Postle, & Rypma, 2000). Since the more difficult 

tasks involve all the processes of the simpler tasks as well by design, we 

can see this clear hierarchical relationship of complexity emerge as 
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illustrated in figure 2.12, where we recruit more regions in a roughly 

posterior to anterior direction as the tasks become more involved rather 

than see changes in activity within the same structures. It is also important 

to stress that this additional recruitment, especially going from the spatial to 

the iterative spatial task is not simply due to the increasing complexity in 

terms of lines of code containing task-relevant information, as the number 

of lines separating the two spatial tasks are not significantly different. 

  

2.4.4. Task set – not simply language processing 

 

The delay period in our experimental design that we analyzed using both 

standard GLM analysis and FIR modeling allows us to draw further 

inferences regarding the nature of the activity recorded in the areas found to 

activate during processing of the actual tasks themselves. The way this 

works is that if we compare the activations during the delay phase in figure 

2.10 and the activations for the same contrasts during task processing in 

figure 2.11 (A & B), we see that there is an overlap in significant activity 

between the two phases. And when we plot the activity in the most 

significant activations in our FIR analysis, like left Broca’s area and left 

MTG, as seen in figure 2.14, we can see that after the cue has been 

presented, activity in these areas increase before the onset of the task. The 

reason we can call this task-set activity (activity preparing for solving the 

upcoming task) is that it is triggered by the cue word that the participant has 

learned to associate with a particular task, and we then see the same areas 

used when solving that task show up in the delay phase. Perhaps more 

interesting is that since there is no text displayed on screen during the delay 
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phase, we can confidently assert that the activity seen is not the result of 

reading lines of text, and since the classical language areas of Broca and 

Wernicke show this task-set activity, that can be seen as evidence that the 

activity in these areas when solving the task is not simply a reflection of 

reading comprehension, but that these areas are involved in processing the 

meaning and sequential logic of the tasks. As can be seen in figure 2.12A, 

although the task-set activity for the semantic and spatial tasks do overlap 

to some extent, they are by no means identical, showing that this activity is 

task-specific. That areas other than prefrontal or parietal cortexes may be 

involved in the processes of logic and deduction, especially Broca’s area, is 

a relatively recent notion but research into these structures have shown 

evidence that Broca’s area is involved in at least categorical arguments and 

perhaps sequential processing (Prado, 2018; Prado, Chadha, & Booth, 

2011). Further evidence of this is the fact that there is a significant 

difference of activation in this area between the Semantic and the Syntax 

task, while we don’t see more activity in this area in the two spatial tasks, 

as could be predicted if reading was the primary driver of the task related 

activations we observed, since there is more written text displayed in the 

two spatial conditions. We will also touch on this idea further in the next 

section dealing with our DCM results. 

 

2.4.5. DCM & LOO validation 

 

The first hypothesis that we could tackle using DCM was the network 

structure of the regions identified in our GLM analysis. The Bayesian 

model selection over our entire model space selected our ‘improved model 
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1’ as the best fit to our observed data, meaning that our best model followed 

the dual stream hypothesis of a ventral stream flowing forward into the 

classical language network, and a dorsal stream ultimately terminating in 

the frontal cortex. That this model won also indicates that the two streams 

do not significantly interconnect between the more posterior nodes in the 

network, as tested by less successful models connecting MTG to SFG or 

SPL, but that the two meet in the frontal lobe, in our winning model 

represented by the connection between IFG.op and SFG (figure 2.21). It is 

also worth noting that one of the other out-competed models was our ‘full’ 

completely data driven model, meaning that model 1 did not win by simply 

being more complex than its nested competitors by over-fitting. 

 

Looking at the parameter estimates from our PEB model (figures 2.22-3) 

we can see that a slight majority of them are negative (38 neg. vs. 29 pos.), 

normally indicating that they inhibit their target node, but 16 of them are 

estimates of inhibitory ‘intrinsic’ connectivity within the eight nodes, 

meaning that there is an increase in activity due to these influences as they 

decrease the self-inhibition. Only 5 of the estimates for the intrinsic 

connectivity are positive (increased inhibition) meaning that we see almost 

twice as much excitatory connectivity compared to inhibitory during the 

processing of our programming tasks. We can also see that the connectivity 

pattern for confidence, and to a lesser extent hands-on are the closest match 

to the ‘commonalities’ pattern. This could be interpreted as evidence that 

high confidence and learning hands-on has a more ‘global’ effect. In the 

case of Hands-on learning, it means that the mode of learning causes  

connectivity changes in nearly all significant connections in our model. In 
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the case of confidence, it means that the connectivity changes either come 

about as a consequence of the improved confidence from working hands-

on, or that changes in all these connections are what produces the observed 

changes in confidence, as there is no way to determine causality from the 

DCM alone. It is also worth pointing out that both confidence and hands-on 

affects both the ventral and the dorsal pathways. Confidence is reflected in 

altered backward connections of the dorsal stream from superior frontal to 

parietal areas. Participants more confident in the iterative task tend towards 

having greater excitatory communication from parietal to frontal areas, and 

from SMG to SPL. Inhibitory connections are instead seen between some 

of the inferior frontal areas of the ventral stream. We were also able to 

predict whether participants had small or large changes in confidence when 

doing the iterative spatial task as compared to the spatial task with 

significant accuracy from the A and B parameter strengths in the LOO 

validation. For high LTM score we see only one change: Increased 

inhibition in IFG.op (Broca’s area 44). Interestingly, this variable was the 

only one to affect only a single parameter but was also strong enough to get 

very close to significant prediction support from LOO validation at p=.058, 

showing a correlation of R=.22 between predicted and actual values of 

LTM performance. Unlike LTM, the other variables affect the connectivity 

in the frontoparietal network. One way to interpret this is that it does not 

look like it is the case that attentional processes instantiated in the 

frontoparietal network gives any advantage when it comes to long-term 

memory. Instead,  whatever differentiates students with high LTM scores is 

found within the IFG language areas, also agreeing with the correlations we 

found between BOLD activity in left IFG and LTM score in our GLM 
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analysis. Moreover, the DCM shows that greater LTM, confidence, and 

lower stress are all marked by a strengthened inhibition of intrinsic 

activation in the left inferior frontal cortex, Broca’s area, or operculum 

during task performance. Looking closer at the B matrix for the 

commonalities, which indicates changes in connectivity when switching to 

the iterative spatial task, most notably, a change in Broca’s area is 

observed. We see decreased self-inhibition and a reduced connectivity to 

MTG together with a weakened retrograde influence from SFG to SPL as 

well. This can be interpreted as an increase in the communication within the 

inferior frontal lobe, coupled to a reduction in retrograde information 

transfer, indicating that Broca’s area activity is more involved in the 

processing of these iterative sequence tasks. This fits with the idea that IFG 

also processes sequential logic (Prado, 2018; Prado et al., 2011) but not 

producing a big enough change in BOLD response to show up in our GLM. 

For the average grade variable, we again see IFG.op (Broca’s area 44), but 

connections within the dorsal network as well, meaning that grade average 

also has a somewhat more global effect. 

  

Finally, when we return to the main objective of our experiment, namely 

differences when learning hands-on, we do see significant effects in our 

DCM model. Recall that there were no significant differences in BOLD 

amplitude in our whole brain exploratory analysis of hands-on vs. hands-off 

(GLM). However, from our PEB parameters we were able to predict 

whether a participant had learned in the Hands-on or the Hands-off 

condition with significant accuracy from the participants’ B parameter 

strengths: R=.34, p=.005. Hands-on learning led to an increase in forward 
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communication from parietal to frontal areas. In addition, it led to 

bidirectional inhibition between Broca and Wernicke’s area, while there 

was an added excitatory communication from operculum to triangularis in 

the IFG. This means that the language processes in the ventral pathway are 

influenced both by Hands-on learning, and by confidence (as discussed 

above), which indicate that theses variables support depth of learning, an 

interpretation corroborated by the fact that we also see that regulation of 

activity in Broca’s area predicting long-term memory retention of 

programming knowledge. One final reflection regarding our LOO 

validation results is that it is interesting to note that we were able to predict 

from out fMRI data variables separated in time, specifically the learning 

condition from the day before, and then projecting forward, the LTM score 

evaluated one week later. 

 

2.4.6. Limitations 

 

The most straightforward limitation in this study is that our sample size is 

too small for what is typically recommended for producing reliable results 

form a SEM. However, since we primarily used our SEM as a means to 

visualize our theoretical conception of the relationships between our 

variables, and since the results are backed up well by our significantly more 

robust traditional regression analyses, we feel justified in including it. A 

more fundamental issue is the inherent homogeneity of our sample 

population: all high performance, self-selected students from relatively 

affluent schools and regions. This might have been compensated for better 

if we had a better idea of how difficult to make the programming tasks. 
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They were designed from the start to mimic what you would typically find 

in introductory lessons of programming coursework and were even piloted 

in another school setting prior to our experiment, but evidently a slightly 

harder set of tasks could have produced a wider variance in our sample. 

This could possibly account for why we failed to find significant 

differences correlated to fMRI score in our DCM. Perhaps weaker students 

might also stand to benefit more from the benefits of working hands-on. 

Another major limitation is the constraints imposed by the fMRI setting 

itself. Not only does it force our hand in how we can design the tasks 

themselves, but the inherently uncomfortable process of being restrained in 

a prone position within the scanner means that we are automatically in a 

strict economy of time where we are forced to balance the number of 

conditions that we want to test versus how many repetitions we will need to 

secure enough statistical power to detect significant activations. Since we 

expected any differences to be small, we had to err on the side of caution, 

meaning that our experiment pushed the limit of what is tolerable for the 

test subjects. Our ROI analysis of hands-on vs. hands-off learning effects 

made use of rather large and broadly defined regions, especially our ROI 

covering the motor regions in both hemispheres which we attempted to 

partially counteract by including a smaller region centered on a reported 

finding from a previous study of language learning. The number of ROIs 

tested was also a potential issue arising from the exploratory nature of this 

experiment, but since we failed to find any significant results at our un-

thresholded analysis further statistical corrections were irrelevant. Finally, 

we did not design our fMRI paradigm from the start with the intention to 

perform FIR analysis, meaning that our random length delay phases 
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needlessly complicated the pooling of our subjects’ data, necessitating 

further manual interventions that always has the possibility of introducing 

biases or errors that can be hard to identify. 

 

2.4.7. Conclusions 

 

To restate the answers to our research questions; 1: We did not have 

enough statistical power to conclude that learning hands-on produced better 

outcomes in terms of BOLD amplitude. Our strongest finding is that 

confidence is significantly higher in the hands-on group during fMRI 

scanning, and that confidence in turn is predictive of better LTM score. 2: 

Programming recruits a hierarchy of brain regions depending on the type 

and complexity of the task. 3: Processing of computer code takes place in 

dual streams, and information interconnect in the frontal lobe. 4: Language 

areas are involved in processing the logic (deductive output) of the tasks, 

not simply reading comprehension. 5: Average grades and math are 

confirmed as pretty good predictors of future success in programming, but 

NFC is better. 6: Relevant aspects of the programming knowledge are 

partly constituted by the strengths of interconnectivity between the relevant 

brain regions, not just the levels of activity within them. 

 

In this study we have managed to replicate the previous findings showing 

that language areas are the most relevant activated regions when solving 

programming tasks (Duraes et al., 2016; Floyd et al., 2017; Krueger et al., 

2020; Lee et al., 2016; Peitek et al., 2018; Siegmund et al., 2014; Siegmund 

et al., 2017), indicating that programming is indeed more akin to a language 
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rather than pure math, even though math is a good predictor of success. 

This could point a way forward by possibly leveraging the knowledge from 

the various sub-fields of L2 language learning. We have also shown that 

complete programming novices, after only 3 hours of teaching, show 

significant differences in their functional connectivity between task relevant 

brain regions large enough to predict if they learned in the hands-on 

condition or not. A strength of the short timeframe and novice subjects is 

that we eliminate a lot of potential confounds that come with time and 

previous experiences, giving us good ground to stand on when attempting 

to capture the core requirements to learn computer programming. In the 

future we would like to see longitudinal studies of a similar kind to see if 

the small effects we have shown are further amplified over time. We would 

also like to see studies focused on the characteristics captured by the NFC 

scale, and possibly if there are effective interventions possible to promote 

them in students, especially in computer programming since it seems to be 

a good predictor of success and correlates strongly with confidence. From 

the results of this study, we can feel confident to recommend having 

programming students work hands-on, validating the prevailing consensus. 
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Chapter 3 

Effects of feedback interventions on stress and motivation 

 

3.1. Introduction 

 

This chapter details the results from a re-analysis of the behavioral and 

fMRI data from the 2015 paper “Feedback on Trait or Action Impacts on 

Caudate and Paracingulum Activity” by Alva Appelgren and Sara 

Bengtsson. We will summarize the background regarding the experiment 

relevant to our new findings in the following sections, but for a complete 

description, see the original paper (Appelgren & Bengtsson, 2015).  

 

In our programming experiment detailed in Chapter 2, we show that 

attitudinal states are important for successful learning and problem solving. 

We found significant positive correlations between performance on our 

long-term memory test (LTM), low stress, high confidence, and a high need 

for cognition (NFC). Whether NFC is possible to influence, either short 

term or lasting, remains to be explored. According to our theory of 

relationships laid out in our structural equations model (figure 2.9), 

motivation is influenced by confidence, which is itself a downstream 

consequence of innate dispositions, such as NFC, probably factoring in the 

subjective assessment of the student’s current level of aptitudes and 

interests regarding the task in question. If we assume that the current 

aptitude and interest of the students at the start of our programming 

experiment were at least close to equal, given that they were all 

programming naïve and volunteered out of personal interest, any variance 
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in performance not due to more general cognitive abilities such as those 

measured by IQ must be due to continuing motivational factors. Recall that 

our sample was highly skewed with both average grade and math grade 

means around 18 ± 2 out of a maximum of 20 credits (See appendix I). 

With the analyses in this chapter, we investigate the dynamics of 

motivation across an experiment, and test how performance measures vary 

accordingly. Since the data set also incorporates two conditions of different 

feedback types, it has the potential to address feedback interventions on 

motivation and cognitive performance, and whether the two can be linked 

in a compelling way. We have previously shown, using the SEM in Chapter 

2, that both stress and motivation are aspects of confidence. We found that 

motivation and stress were both correlated with performance in our 

programming study, we therefore hypothesize that if feedback can induce 

changes in motivation and/or stress we would expect to see that reflected in 

task performance here in the form of changes in reaction time, and that this 

effect would be compounded over time with more feedback received. We 

have also shown that activity in regions significantly activated during our 

programming task (SFG, IFG, SPL, MOG) were correlated with our 

confidence measures. These same regions, when tested in our DCM, also 

showed changes in interconnectivity correlated with robustness against 

confidence decrease when switching to our hardest programming task. 

Taken together, we therefore also hypothesize that any changes in 

motivation or stress induced by feedback should be reflected in brain 

activity in regions previously identified with confidence in our 

programming experiment.  
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3.1.1. Summary of results from the original paper 

 

The original paper found that the participants displayed both higher 

accuracy and faster reaction times (RT) in the trials without feedback as 

compared to the trials with feedback. This effect seems to be driven by the 

bivalent rule condition, not by the much simpler univalent rule. It was 

found that trait feedback (“You are clever”) could lead to increased 

motivation, but only in people with a growth mindset. On the other hand, it 

was found that task feedback (“Your choice was correct”) led to both a 

higher motivation to continue with the task, and to less stress. Task 

feedback also led to better accuracy in the following non-feedback trials as 

compared to trait feedback. Many of the participants reported after the 

experiment that they found the trait feedback distracting or annoying and 

the article summarizes its finding with the following conclusion: “It turned 

out that trait feedback was less beneficial for motivation and performance 

improvement.” 

 

3.1.2. Hypotheses 

 

(I) Feedback-induced changes in motivation and stress will impact 

reaction times. 

(II) Changes in reaction times will progress over the course of the 

experiment. 

(III) Brain regions previously implicated in confidence will show 

activations that correlate with reaction time changes. 
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3.2. Method 

 

3.2.1. Experimental overview 

 

This experiment was a typical rule-switching task (univalent vs bivalent 

rule), where each participant comes into the fMRI scanning lab for two 

visits with 18.5±6.45 days in between. At each visit, the procedure was the 

same, except that the type of feedback they received was changed for the 

second visit. The design is balanced so that half of the participants received 

the first type of feedback initially and the other half received the second 

type, so in the end all participants receive both types of feedback, meaning 

that this is a within-subject design. The two types of feedback were called 

‘Trait’ feedback (“You are clever”/”wrong”) and ‘Task’ feedback (“Your 

choice was correct”/”Wrong”), making this a type of priming experiment 

(Bengtsson & Penny, 2013). 

 

Each visit begins with a self-rated motivation and stress measurements on 

10-point Likert scales. This was then followed by 100 trials with feedback 

after each response. The participants were then asked to report their 

motivation and stress again. This was followed by a further 50 trials 

without any feedback. Finally, the participants were asked to rate their 

motivation and stress one final time. 

 

There were two trial types in this experiment: ‘Univalent’ (30%) and 

‘Bivalent’ (70%) rule trials. Each trial begins with a rule symbol, denoting 

what the correct response should be given the image subsequently 
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presented in the response phase. For the univalent trials, the correct 

response for the symbol presented was always the same, but for the bivalent 

trials the response to any given image was dependent on which one of two 

possible bivalent rule symbols was presented before. 

 

 

Fig. 3.1. Task description of the different rule- and response symbols. 

Correct responses indicated by the green letter. L=left button, R=right 

button. 

 

3.2.2. Participants 

 

20 healthy volunteers (age 24±5.6, 8 females, 13 native Swedish speakers 

and 7 native English speakers) took part in the study. All participants were 

right-handed and neurologically healthy. The participants completed a 
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practice session until they achieved greater than 60% task accuracy before 

beginning the experiment in proper, with a further 12 practice trials in the 

scanner to familiarize them with the button box and the visual display. The 

study was approved by the local ethics committee in Stockholm (EPN), 

Sweden, Dnr 2014/10-31/2. 

 

3.2.3. Statistical analyses – behavioral data 

 

Behavioral data was analyzed using Microsoft Excel v16.0, and IBM SPSS 

Statistics v25. To look deeper into motivational effect on performance, we 

investigated differences in RT depending on feedback type. Firstly, we 

investigate if the cognitive process of switching between two different rules 

was influenced by the external feedback. That is, if switching from the 

univalent rule to the bivalent rule or vice versa influenced the RT on the 

next trial. Next, we investigate the temporal dynamics of RT across the 

whole experimental session. To this end, we partitioned the session into 10 

time-bins covering 10 trials each (figure 3.2) so we could compare the two 

feedback conditions against each other across time as opposed to in 

aggregate. We also calculated the effects of feedback and time using linear 

regression.  
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3.2.4. fMRI data acquisition 

 

Nuclear Magnetic Resonance Imaging was acquired on a 3 Tesla GE 

Discovery MR750 equipped with an 8-channel phased array receiving coil. 

Functional MRI was performed in two session of echo-planar T2*-weighted 

imaging of 273 volumes, using 2 mm isotropic voxels, TE = 30 ms, TR = 

2600 ms, FoV = 28.8 cm, 40 contiguous oblique slices, flip angle=90 deg, 

for a total of 546 volumes (~70min.). 3D T1-weighted SPGR (Spoiled 

Gradient Echo pulse sequence) images was acquired with 1 mm isotropic 

voxels, TE = 3.06 ms, TR = 7.9 ms, TI = 450 ms, FoV = 24 cm, 176 axial 

slices, flip angle = 12 deg. 

 

3.2.5. Image preprocessing 

 

The re-analysis made use of the already pre-processed images from the 

original study up to and including the first level GLM:s for each individual 

participant. The preprocessing and all subsequent analysis in the original 

paper was carried out using SPM12b (2014) (Penny et al., 2011). 

 

3.2.6. GLM analysis with first order temporal modulation 

 

Second level group GLM re-analysis was carried out using SPM12, version 

7487 (Penny et al., 2011). This type of GLM analysis using what is called 

temporal modulation (t-mod) shows areas that show an activation pattern of 

‘first order’ or linear relationship with time. ROI analysis was carried out 

using the Family-Wise Error-corrected (FWE) task activation clusters from 
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the programming experiment (detailed in Chapter 2) to look for common 

processing patterns. Peak statistics on FWE-corrected activation clusters 

were investigated for areas showing first order temporal correlation (p<.05) 

in our ROI analysis, in addition to uncorrected whole-brain activations 

(p<.001) (see table 3.2).  
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3.3. Results 

 

3.3.1. Reaction time 

 

We found a highly significant difference in RT between switch and stay 

trials: Average RT (ms) for trait feedback: Switch=759.2 ± 209.8 

Stay=693.4 ± 187.5 (t(21)=4.95, p=.0000674***). Average RT (ms) for 

task feedback: Switch=766.8 ± 197.5 Stay=691.2 ± 193.9 (t(21)=5.98, 

p=.0000075***). And if all feedback trials are combined (trait + task): 

Switch=803.6 ± 216.8 Stay=727.1 ± 194.4 (t(21)=7.57, p= 

.0000000011***). However, we did not find any significant differences in 

RT between switch and stay trials when comparing trials of task and trait 

feedback (p>0.3). 

 

Trait feedback slows RT marginally, whereas task feedback leads to 

significantly faster reactions over the time of the experiment. Computing 

the delta RT (task-trait) therefore revealed the following: RT started out 

~30ms slower during task- as compared to trait feedback, but over time this 

relationship flips to instead favor task feedback (figure 3.2). This 

correlation is significant (R= - .733, p = .008**). The same relationship 

holds for both switch- and stay trials (R=.8 p=.003** and R=.591 p=.036* 

respectively), but this is driven solely by the bivalent trials (R=.777 

p=.004**) and not by the univalent trials (R=.099 p=.393). This 

phenomenon thus seems to be the strongest during higher cognitive load.  
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Fig. 3.2. Temporal dynamics of reaction time across 10 time-bins of 10 

trials each. Left: Average RT during trait feedback over time. R=.292, 

p=.206. Right: Average RT during task feedback over time. R=-.676, 

p=.016*. Bottom: Average delta RT (task-trait) over time. R=.732, 

p=.008**. (*=p<.05, **=p<.01) 

 

When comparing RT over time in the two feedback conditions Task and 

Trait, we find a significant negative time*feedback-interaction effect in a 

regression analysis predicting RT (Table 3.1). 
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Table 3.1. Linear regression analysis. Effect of Time, Feedback and 

Time*Feedback-interaction on reaction time. (*=p<.05) 

 

The results from looking at the time-bins shows that reaction time decreases 

over time in the task feedback condition, as would be expected in a 

repetitive learning paradigm; RT during task feedback significantly 

correlates with time: R=-.676, p=.016*. This learning effect is absent in the 

trait feedback condition; RT during trait feedback did not significantly 

correlate with time: R=.292, p=.206 (figure 3.2). 

 

3.3.2. GLM analysis using first order temporal modulation 

 

We used t-mod to look for brain regions that show activations that display a 

negative linear relationship with time (areas where activation strength 

decreases over the experimental session) to link the results of our time-bin 

analysis of RT to the task related activity in the brains of the participants. 

The activity in these areas can thus be implicated in the change in RT over 

the session. We investigated both positive and negative t-mod (increased 

and degreased activity with time, respectively), and in both feedback 

conditions (Trait, and Task). No contrast was significant at the whole-brain 

FWE-corrected statistical threshold. The only contrast showing significant 
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activations in our ROI analysis was the negative t-mod for the bivalent 

Trait feedback condition. The GLM results are presented below in table 3.2 

and figure 3.3-4. We observed significant activations in left precentral 

gyrus when using ROI:s of significant task activations from our 

programming experiment. 
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Area Peak T p (FWE) 

FWE-corrected Task activations form programming experiment ROI 

L precentral gyrus** -60 8 24 4.88 0.000 

L precentral gyrus** -60 10 28 4.85 0.000 

p<0.001 uncorrected peaks 

L precentral gyrus -60 8 24 4.88 0.070 

L precentral gyrus -40 -16 62 4.37 0.304 

R middle frontal gyrus 50 34 18 3.6 0.951 

L superior frontal gyrus -20 -8 74 3.31 0.998 

L inferior frontal gyrus.op -44 16 26 3.7 0.907 

L inferior frontal gyrus.op -58 20 20 3.38 0.994 

L inferior frontal gyrus.op 46 20 26 4.19 0.457 

R inferior frontal gyrus.op 60 20 24 3.42 0.991 

R inferior frontal gyrus.op 32 30 0 4.15 0.497 

L anterior Insula -34 20 0 4.36 0.307 

R anterior Insula 32 22 -6 4 0.648 

L caudate -12 14 4 3.62 0.944 

R caudate 10 16 6 3.95 0.703 

L Putamen -16 10 -6 3.43 0.989 

L Thalamus -8 -12 2 3.62 0.942 

L supramarginal gyrus -50 -28 44 4.44 0.251 

R supramarginal gyrus 38 -32 38 3.37 0.995 

R precentral gyrus 54 14 34 4.02 0.629 

L postcentral gyrus -42 -36 60 3.25 0.999 

L superior parietal lobule -32 -50 66 3.27 0.999 

R occipital fusiform gyrus 34 -64 -14 3.84 0.801 

Table 3.2. Significant FWE-corrected (p<.05)  negative t-mod activations 

after small-volume-correction, using ROI:s from our programming 

experiment. Contrast: Bivalent trials in the Trait feedback condition (70 
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trials). Whole-brain uncorrected results at p<0.001 are also presented. 

(*=p<.05, **=p<.01) 

 

 

 

Fig. 3.3. Glass brain, t-mod GLM, uncorrected (p<.001). Average activity 

during bivalent trials with personal feedback only (70 trials).  
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Fig. 3.4. Selected t-mod GLM results, Average activity during bivalent 

trials with personal feedback only (70 trials). Top: Significant FWE-

corrected ROI activation (p<.05), Left precentral gyrus [-60 8 24]. Bottom: 

Additional non-significant peak of interest (t=4.36), Left anterior Insula  

[-34 20 0].  
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3.4. Discussion 

 

3.4.1. Motivational interventions 

 

The t-mod GLM showed two areas where activation changes over time, 

suggesting that they might be responsible for the shift in RT:s we observed 

over the course of the experiment. The strongest activity was seen in the 

left precentral gyrus, a peak coordinate falling within the Brodmann area 44 

mask of the SPM Anatomy toolbox, denoting part of Broca’s area. This is 

in line with the findings from our experiment in Chapter 2, where we saw 

significant changes in connectivity within Broca’s area in participants that 

recorded a smaller drop in confidence when switching to the hardest 

programming task (table 2.12). The precentral gyrus has been shown to be 

involved in auditory feedback processing (Christoffels, Formisano, & 

Schiller, 2007) as well as successful inhibition of behavior in a stop-signal 

experiment investigating the effect of motivation (in the form of a monetary 

incentive) on how positive incentives may actually impair behavioral 

performance (Padmala & Pessoa, 2010). Taken together these findings 

paint a picture of the precentral gyrus as a region not only evaluating 

auditory feedback, but also involved in balancing behavior in accordance 

with external motivational manipulations in the form of incentives. A 

second interesting area of similar statistical threshold, but not included in 

the activations ROI from our programming experiment, was the left anterior 

insular cortex, a region that is associated with a wide array of cognitive 

processes including interoception, emotions, language processing, 

perception, salience, and consciousness, and aberrations of the insular 
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cortex has also been linked to anxiety and mood disorders (Gasquoine, 

2014). 

 

In our conception from our programming study, stress and motivation are 

both reflected in confidence, one of the measures that significantly 

predicted success in our SEM and ANOVA (tables 2.6-7). As stated in the 

introduction, the previously published findings from this experiment shows 

that feedback interventions have the potential to influence both the stress 

and motivation of the participants, suggesting that they experienced 

decreased confidence, possibly reflected in Broca’s area activity change 

over time. They also expressed annoyance with the trait-based feedback, 

possibly reflected in the activity in insular cortex. That the type of feedback 

is the important factor and specifically, that task-based feedback is 

preferred,  is a point in agreement with the Growth Mindset theory as we 

have discussed in Chapters 1 and 2. 

 

It seems clear that motivational aspects can have both direct and indirect 

effects on performance and that the wrong type of interventions can 

potentially deteriorate a student’s motivation to engage with tasks. Sun & 

Rueda, 2012 investigated if different aspects of engagement (behavioral, 

emotional and cognitive), as measured by a scale developed in 2004 

(Fredricks, Blumenfeld, & Paris, 2004; Moore & Lippman, 2006), are 

influenced by factors such as situational interest, computer self-efficacy, or 

self-regulation. They concluded that situational interest seemed to be key to 

engagement (Sun & Rueda, 2012). These three motivational and learning 

factors have previously been linked to student engagement levels in 
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multiple studies (Bates & Khasawneh, 2007; Dembo, Junge, & Lynch, 

2006; Kanuka, 2005). Engagement is defined as the “quality or effort 

students make to perform well and achieve desired outcomes” (Hu & Kuh, 

2002; J. C. Richardson & Newby, 2006; J. T. Richardson, Long, & Foster, 

2004). In their paper, Sun & Rueda found both that “interest and self-

regulation were significantly correlated with all types of engagement” and 

that “interest was only a significant predictor of emotional engagement; 

self-regulation was a significant predictor of all types of engagement”. 

They suggest that it is important therefore to facilitate emotional 

engagement by increasing student interest, but it is not clear how best to 

achieve this. It might even be argued that that interest follows from 

emotional engagement and not vice versa. It is important to note that this 

study was in the context of online learning where the students had to take 

responsibility for their own education, and so the fact that self-regulation 

significantly predicted all three types of engagement should perhaps come 

as no surprise. It might be that students with a greater ability to self-

regulate either compensate for any lack of interest or perhaps somehow 

‘manufacture’ genuine interest in their effort to reach a higher desired goal, 

like a good passing grade. 

 

3.4.2. Limitations 

 

The primary limitation of this study is the lack of statistical power because 

of the small sample size. Additional measurements of variables like 

confidence and NFC would also have enabled us to draw closer links 

between our two experiments. 
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3.4.3. Conclusions 

 

In conclusion: The type of intervention matters. The wrong type of 

feedback is not only perceived as distracting but manifests as an observable 

decline in motivation, resulting in a performance drop, in this case an 

increased reaction time towards the end of the experimental session. We 

note brain activity in Broca’s area that decreases over time, a region linked 

with confidence in our study of programming. Since this effect was 

observed only when the participants received personal trait feedback, it 

could be the case that direct task-related feedback is one of the contributing 

factors mediating the benefit of hands-on interaction with programming 

observed in chapter 2, or perhaps more likely; That reaction times normally 

improve over the course of the experiment due to repetition, but the 

introduction of trait-based feedback significantly retards this improvement. 

This would also fit with the previous published paper’s finding that reaction 

times were faster in the no feedback-condition. The fact that we observed 

activity changes in Broca’s area and, to a lesser extent, insular cortex, as a 

function of feedback condition suggest that they are involved in the 

processing of motivational aspects, like confidence and stress. Since 

motivation can be significantly affected by interventions in the form of 

written feedback, we would like to see future experiments with more 

longitudinal measures of stress, motivation, and confidence, perhaps 

separated into multiple motivational aspects for greater clarity like those 

discussed above. The purpose of this is ultimately to test additional types of 

interventions on confidence.  
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Chapter 4 

General Discussion 

 

 4.1. Summary of Findings 

 

We have shown that programming knowledge is primarily instantiated in 

the classical language processing areas of the brain, with additional parietal 

and prefrontal areas recruited during spatial and iterative tasks. Learning 

computer programming while typing on the keyboard (hands-on), results in 

better performance on a long-term memory test, and produces higher levels 

of confidence in the participants. This benefit appears to be mediated by 

increased attentional and/or motivational processes rather than involvement 

of the motor cortices. Motivation can in turn be adversely affected by 

external feedback based on personality traits. We also identified the NFC 

construct as a strong predictor of future performance in addition to math 

grade, and grade average, but not Growth Mindset. 

 

 4.2. Theoretical Implications 

 

Since we failed to find any direct links between motor cortex activity and 

learning condition in our programming tasks, we must conclude that any 

benefits observed in our study, must stem from some other source. And, 

since our findings suggest that the benefits are mediated by attention and 

motivation, ultimately manifesting in greater confidence, this gives us at 

least these three variables to use as measures to gauge the effectiveness of 

any other proposed embodied cognition-based intervention. In other words, 



Towards a Neuroscience of Computer Programming & Education 

 

  162 

 

if our findings are correct and transferable, then we would expect to see a 

similar pattern of enhanced attention, motivation and confidence in other 

similar interventions that claim to provide a positive effect on learning 

outcomes. Also, the fact that we were able to distinguish the students that 

had learned in the hands-on condition based on the connectivity patterns in 

their brains, after such a short training session, suggests that this type of 

connectivity analysis may be useful to evaluate students of varying levels of 

expertise and backgrounds. The potential advantage would be the ability to 

detect small but significant changes in brain connectivity after an 

intervention, perhaps regardless of previous experience level, because these 

small changes can then be compared between the groups instead of the 

baseline connectivity. In the next section, we will discuss our findings as 

they relate to the two personality traits included in this study (Growth 

Mindset and NFC). 

 

4.3. Mindset, Antifragility & Need for Cognition  

 

Perhaps the most prominent theory of attitudinal effect on learning is the 

so-called ‘Growth Mindset’ theory proposed by the American psychologist 

Carol Dweck, as discussed in Chapter 1. The central thesis as laid out in the 

book “Mindset: The new psychology of success” has been cited more than 

12000 times according to Google Scholar. It is highly improbable that any 

given educator has not been exposed to the idea of Growth Mindset in one 

form or another. In Sweden for example, Mindset is promoted by the 

national agency for education 

(https://www.skolverket.se/skolutveckling/forskning-och-

https://www.skolverket.se/skolutveckling/forskning-och-utvarderingar/artiklar-om-forskning/berom-for-talang-till-skada-for-motivationen
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utvarderingar/artiklar-om-forskning/berom-for-talang-till-skada-for-

motivationen), the biggest labor unions for teachers, ‘Lärarförbundet’ 

(https://www.lararforbundet.se/bloggar/forstelararbloggen/elever-kan-naa-

sin-fulla-potential-med-hjalp-av-dynamiskt-mindset-paa-alla-nivaaer) and 

‘Lärarnas Riksförbund’ (https://skolvarlden.se/artiklar/tank-ratt-och-lyckas-

i-skolan), together with forces from the private education sector with 

companies offering seminars and other professional development in the 

realm of Mindset such as ‘Lärar Fortbildning AB’ 

(https://www.lararfortbildning.se/grundskola/uppdrag/inspirera/mitt-

mindset) and ‘Medalgon Utbildning AB’ 

(https://www.mynewsdesk.com/se/brainsmart/pressreleases/stort-intresse-

foer-growth-mindset-livslaangt-laerande-1229682). 

The proliferation of corporate entities engaged in the promotion of any 

trend in education should perhaps provoke reflection in the mind of any 

skeptical consumer of research literature. A cursory search online yields 

many sometimes interconnected private companies and think-tanks 

promoting initiatives based on Growth Mindset in any language you care to 

read, like the recently rebranded 2015 organization ‘Mindset Scholars 

Network’ , since March 2021 now known as the ‘Student experience 

research network’ (SERN). They are a partner to the 2010 organization 

‘Project for Education Research that Scales’ (PERTS) whose original 

purpose was to leverage the field of mindset studies in education; “Inspired 

and excited by the potential of these low-cost, low-time interventions, we 

wondered: Why aren’t all schools doing these?” 

(https://www.perts.net/press_kit). Many of these organizations also seems 

to have a clear activist side to them. One  example of this is the spotlight 

https://www.skolverket.se/skolutveckling/forskning-och-utvarderingar/artiklar-om-forskning/berom-for-talang-till-skada-for-motivationen
https://www.skolverket.se/skolutveckling/forskning-och-utvarderingar/artiklar-om-forskning/berom-for-talang-till-skada-for-motivationen
https://www.lararforbundet.se/bloggar/forstelararbloggen/elever-kan-naa-sin-fulla-potential-med-hjalp-av-dynamiskt-mindset-paa-alla-nivaaer
https://www.lararforbundet.se/bloggar/forstelararbloggen/elever-kan-naa-sin-fulla-potential-med-hjalp-av-dynamiskt-mindset-paa-alla-nivaaer
https://skolvarlden.se/artiklar/tank-ratt-och-lyckas-i-skolan
https://skolvarlden.se/artiklar/tank-ratt-och-lyckas-i-skolan
https://www.lararfortbildning.se/grundskola/uppdrag/inspirera/mitt-mindset
https://www.lararfortbildning.se/grundskola/uppdrag/inspirera/mitt-mindset
https://www.mynewsdesk.com/se/brainsmart/pressreleases/stort-intresse-foer-growth-mindset-livslaangt-laerande-1229682
https://www.mynewsdesk.com/se/brainsmart/pressreleases/stort-intresse-foer-growth-mindset-livslaangt-laerande-1229682
https://www.perts.net/press_kit
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video series from SERN described by them as “designed to elevate stories 

of scholars and intermediary organizations using research to promote 

equity and inclusion.”, where they for example praise the decision by the 

University of California Board of Regents to suspend their SAT/ACT 

requirement for applicants until 2024 

(https://www.universityofcalifornia.edu/press-room/university-california-

board-regents-approves-changes-standardized-testing-requirement). That 

many initiatives and companies in this realm are directly or indirectly tied 

to activism in one form or another is perhaps unsurprising given that the 

probable aspirations of the members is to improve the conditions of people 

in education, but it has to be the case that any successful theory of 

intervention should stand on its own merits, and be based in empirical 

evidence of actual effectiveness. Stepping away from quantitative 

performance evaluations in the form of SAT scores for example, as in the 

case of University of California, seems like a bad idea if we want to 

accurately evaluate and/or promote learning. Ideas that center the teacher 

and their methods as the primary determinant of learning outcomes, instead 

of the students and the study material, also run the risk of putting an 

unmanageable load on the shoulders of educators. There is even recent 

evidence from a meta-analysis of teacher evaluations that suggest that 

teacher quality does not seem to play a significant role in producing good 

learning outcomes, at least in university courses (Uttl, White, & Gonzalez, 

2017). They found that the correlation between student’s evaluations of 

their teacher (SET) and learning explain at best 10% of the variance in 

learning outcome, and that previous meta-analyses showed inflated effects 

due to small sample sizes and publication bias. SET scores are also further 

https://www.universityofcalifornia.edu/press-room/university-california-board-regents-approves-changes-standardized-testing-requirement
https://www.universityofcalifornia.edu/press-room/university-california-board-regents-approves-changes-standardized-testing-requirement
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biased by the Dunning-Krueger effect, that is that one’s ability to evaluate 

performance and measure learning is dependent on students' intelligence, 

ability and prior relevant knowledge (Dunning, 2011). They conclude that 

when re-analyzing the datasets, after adjusting for sample sizes, the 

estimated SET/learning correlations in nearly all the reported studies 

dropped to near zero. 

 

Another recent meta-analysis by Sisk et al. focusing specifically of the 

effect of interventions on Growth Mindset also landed in strong critical 

conclusions. They found the correlation of growth mindset with 

achievement to be only r = .1 and the effect of the intervention to promote a 

growth mindset on achievement had an effect size of Cohen’s d = .08 (Sisk 

et al., 2018). 

 

Fig. 4.1. Overlapping normal distributions showing the difference in means 

between treatment and control group produced by an effect size of d=.08. 

“Cohen’s U3”: % of treatment group above the mean of control group. “% 
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Overlap”: area covered by both groups. Probability of Superiority: Odds of 

a randomly selected subject from treatment group scoring higher than a 

randomly selected subject from the control group. “Interpreting Cohen's d 

Effect Size: An Interactive Visualization”, 

(https://rpsychologist.com/cohend/), by Kristoffer Magnusson. 

 

The authors summarize their findings by opposing the claims of previous 

researchers claiming such interventions can lead to “large gains in student 

achievement” and “striking effects on educational achievement” (Yeager & 

Walton, 2011). They conclude that the interventions were “non-significant 

for adolescents, typical students, and students facing situational challenges 

(transitioning to a new school, experiencing stereotype threat)” They did 

however state that there might be weak support for claims that these types 

of interventions could be of benefit to the students with high risk of 

academic failure and/or economically disadvantaged backgrounds. They 

advise caution however, citing a low number of effect sizes contributing to 

this finding, the small insignificant difference between high- and non-risk 

students, and the smaller sample sizes of low SES students as compared to 

the other groups. Interestingly, Carol Dweck herself has recently responded 

to criticism and even levied her own concerns with the directions her field 

has taken in an interview with Jon Severs for tes.com in April of 2020: 

(https://www.tes.com/news/growth-mindset-where-did-it-go-wrong). 

Regarding failures to replicate her findings she responded that “Growth 

mindset is even more complex than we imagined,” adding that the major 

issue with her theory in her own opinion is the problem of how to correctly 

implement it into an effective practice. Dweck even adds “We, as 

https://rpsychologist.com/cohend/
https://www.tes.com/news/growth-mindset-where-did-it-go-wrong
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originators of the concept, believe it could work under certain 

circumstances in the classroom, with the correct implementation, and we 

want to make that journey. We have not completed that journey, but we are 

on it and we have decided to try and work it out with the educators.”, 

indicating that much of the work towards effective implementation 

strategies still lies before us. In our own study, we found that the self-rated 

growth mindset of our sample of students did not correlate with any other 

variable in our experiment, and we were unable to find any significant 

relationship between growth mindset and our outcome variables measuring 

performance on our learning task. We must however be mindful of the 

strong homogeneity of our sample, consisting of self-enrolled, motivated 

students from a school with high grade requirements for acceptance, as 

discussed in chapter 2. Taken together, it seems reasonable to believe that if 

we are to find any meaningful application of the theory of mindset set forth 

by Dweck, it would be among low performance students (for whatever 

reason), since if they are already performing well (by any metric) there is, 

by definition, a smaller window of possible improvement to be gained in 

the first place. It is never a waste of time to thoroughly investigate 

promising new tools and theories. If they are found to have small effects, 

potentially only in certain populations, that at least points the way towards 

more targeted and potentially more refined niche applications with possibly 

greater effects. 

 

Another intellectual trend is the notion of ‘Antifragility’ Put forward in the 

2012 book “Antifragile: Things That Gain From Disorder” (Taleb, 2012), 

and later incorporated into a multitude of applications like physics (Naji, 
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Ghodrat, Komaie-Moghaddam, & Podgornik, 2014), molecular biology 

(Danchin, Binder, & Noria, 2011), risk analysis (Aven, 2015), urban- and 

transport planning (Levin, Brodfuehrer, & Kroshl, 2014), engineering 

(Verhulsta, 2014) and computer science (Jones, 2014), but for our purposes 

the 2018 book “The Coddling of the American Mind: How Good Intentions 

and Bad Ideas Are Setting Up a Generation for Failure” (Haidt & 

Lukianoff, 2018) is the most relevant to the field of education. To 

summarize, the concept of antifragility is that the opposite of something 

being fragile is not that it does not break when stressed, but that it ends up 

stronger than before it encountered the obstacle in the first place. Two 

examples cited of this are bones healing thicker after a fracture and the 

immune system encountering a new pathogen and learning to fight it off. 

Heidt and Lukianoff argue that children are particularly antifragile in more 

ways than one, and that the right kinds of stressors are vital for producing 

well-functioning, psychologically stable adults. This extends to being able 

to handle setbacks and how to not let failure define you, echoing the ideas 

of introspection with regards to personal performance in the growth 

mindset theory. The ideas put forward in “The Coddling of the American 

Mind” is essentially an application of strategies from the field of Cognitive 

Behavioral Therapy, where the goal is to train individuals in how to 

conceptualize and contextualize situations and emotional reactions in such a 

way as to not be a hindrance in achieving whatever goals you have set out 

for yourself beforehand, including learning objectives in an educational 

setting (Beck & Beck, 1995; Schacter, Gilbert, Wegner, & Hood, 2011). 

Once again it seems probable that high-functioning students already apply 

something approaching these methods already, either consciously or by 
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disposition, so once again one could expect any potential gains to be had 

primarily in low-performing populations. 

 

Since the questions in a Dweck mindset instrument are straight to the point, 

asking things like if you believe that intelligence is something that you can 

improve and whether talented people need to have practiced a lot, it stands 

to reason that absent any empirical knowledge in this area the average 

person would have to base their answers on their own experiences and ideas 

that would be influenced by their intrinsic personality traits. A person high 

in trait neuroticism would be expected to give more pessimistic answers in 

general than a person low in neuroticism, rating their own ability to 

improve lower than it probably is (Costa Jr & McCrae, 2008). A different, 

but equally interesting, measure of attitudes towards learning is the Need 

For Cognition scale (NFC). NFC has been found to correlate positively 

with fluid intelligence (Fleischhauer et al., 2010), and although NFC and 

trait openness were found to be strongly related (Fleischhauer et al., 2010; 

Pacini & Epstein, 1999; Sadowski & Cogburn, 1997), they are not entirely 

overlapping constructs, as their correlation patterns to other personality 

traits differ; NFC was found to be more strongly correlated with emotional 

stability (low trait neuroticism) than openness was, and novelty and 

experience seeking was less correlated with NFC than with openness 

(Fleischhauer et al., 2010). NFC can thus be said to measure something 

distinct from the big five personality traits. To our knowledge there does 

not exist any research attempting any type of intervention to modify 

people’s attitudes as measured by the NFC scale. Why this has never been 

attempted when there is such an abundance of research into other seemingly 
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closely related aspects of mindset and personality is unclear. Perhaps it is 

simply based on what gets conceptualized as a potentially flexible mindset 

versus a more fixed personality trait early on in any field of study and 

simply never reflected on again. We found NFC to significantly contribute 

to programming learning in our SEM (table 2.6). NFC also correlated with 

LTM, confidence, written test, fMRI test and lower stress (table 2.5), and it 

was our best predictor of LTM in our regression modeling (table 2.8). 

 

 4.3. Wider Implications & Future Directions 

 

The very much still nascent field of educational neuroscience presents a 

wide array of promising avenues to pursue, as well as a host of questions 

and limitations to address for it to progress into a useful and broadly 

accepted avenue of inquiry.  The application of functional magnetic 

resonance imaging to the study of real-time activity in the human brain only 

started in the 1990s with the first studies of activation in the visual cortex 

(Kwong et al., 1992). The field of brain imaging, and related research by 

cognitive neuroscientists and psychologists has therefore only been around 

for some 30 years, as opposed to the philosophical traditions of say the field 

of education that stretches back hundreds if not thousands of years. Modern 

neuroscience is arguably still in its infancy, with the fundamental operation 

of pretty much all neural processes still largely a mystery, and educational 

neuroscience barely even born yet. To begin to answer the question of what 

brain imaging can bring to a field such as education let us first turn to a 

point of philosophy. If we accept that any and all functioning of our mind is 

the emergent properties of our brain, (and we would argue that all available 
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evidence indicates that this is indeed the case) and if we believe in the 

predictability of physical laws of cause and effect, then it follows that if we 

had the ability to understand how the brain does what it does, that is a full 

mechanistic explanation for how any given population of neurons give rise 

to the cognitive processes (and subjective experiences of what it is like to 

experience their input if they are conscious), we would be able to know 

what the limitations and possibilities of learning is, on average, or for any 

given individual, and consequently what would give us the most workable 

interventions. Our goal should be to strive towards this complete theory of 

mind. I would argue that any sufficiently accurate model of how our brain 

interacts with the world could never lead to adverse outcomes, only equal to 

less informed but nonetheless effective practices or better, and I see no 

credible case to exclude imaging or any other future methodology from 

contributing to education. 

 

Since the 2000:s, a great many papers have delved into what the future 

prospects for education might be, what questions they hope to see 

addressed and what problems they foresee (Ansari & Coch, 2006; Ansari et 

al., 2011; Geake & Cooper, 2003; Goswami, 2006; Howard-Jones, 2010; P. 

Howard-Jones, 2014; P. A. Howard-Jones, 2014; Immordino‐Yang & 

Damasio, 2007; Sousa, 2010; Tommerdahl, 2010; Varma, McCandliss, & 

Schwartz, 2008). The consensus that emerges is that though there have been 

growing calls for collaborations between cognitive neuroscience and 

education and positive expectations overall, the expected scope and 

immediacy of findings that can directly be implemented into practice is 

unrealistic and short-sighted. Instead, authors like Ansari argue that what is 
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needed first and foremost is the implementation of an ‘infrastructure’ of 

collaborations, training, funding, and research program creation of an 

interdisciplinary character. This merging of the two fields is what they call 

“the emerging field of ‘Mind, Brain and Education’”. 

 

When it comes to the inherent methodological limitations of the current 

state of brain imaging the biggest to date is arguably the tradeoff between 

spatial resolution and temporal resolution. There are several ways to 

acquire fMRI images of the brain, but all of them must make sacrifices 

based on what the researcher chooses to focus on. If we know of a restricted 

area of the brain to image, we can leverage the smaller field of view to 

instead increase the spatial resolution (up to the limits set by the magnetic 

field strength of the scanner) meaning smaller voxel sizes. Thus, one 

direction of improvement is moving to scanners with higher field strengths 

(Ladd et al., 2018). The drawback of this being the size and cost of the 

machines going up as a result. As the number of voxels sampled goes up 

the repetition time (TR) between each full volume sampled goes up, 

meaning we lose temporal resolution. The fact that these constraints make 

themselves more felt as the size of the captured volume increases means 

that once whole-brain exploratory experiments have been sufficiently 

evaluated, researchers can (depending on their hypotheses) mitigate them to 

some extent by focusing in on only the previously reported areas. 

 

Another concern with imaging, especially when it comes to fMRI, is 

ecological validity in the laboratory setting. The recent advances in virtual 

reality (VR) technology have been argued to be a potentially powerful tool 
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to both enhance the ecological validity of experiments and enable entirely 

new types of psychological experiments that would be physically and/or 

ethically impossible without this technology (Reggente et al., 2018). Other 

technologies like functional near-infrared spectroscopy (FNIRS) and 

portable versions of magnetoencephalography (MEG) are also constantly 

developed to further combat the physical constraints imposed by traditional 

MEG and MRI machines. If we accept the claim that doing science in a 

naturalistic setting (most commonly in a classroom in the case of 

education), has the advantage of possibly revealing up until then previously 

unthought of questions, possibilities and perspectives that can lead to the 

formation of new scientific hypotheses or amendments to the ideas that the 

researchers went into the classroom to investigate initially, we then have a 

few different angles to consider: First, it is the norm rather than the 

exception in any science that more questions are generally generated than 

answers whatever methodology you apply. One should also consider how 

excited we ought to be at the prospect of discovering unexpected big 

fundamental challenges to our established knowledgebase, given that 

education is such an old and well-studied field. In other words: if any 

groundbreaking issue were to be discovered principally because of the 

nature of classroom studies, it could be viewed as an indictment of the 

shortcomings of previously established theory. Another aspect to consider 

when advocating for ecological validity is the possibility that any 

significant finding could be particular to that setting or combination of 

setting and student population, essentially a form of sampling- or selection 

bias, so in order to account for any such criticism the prudent researcher 

would have to perform the same interventions or information gathering 
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from a large, varied sampling, thus approaching a situation not radically 

different from a controlled experiment anyway. Thus, the major distinction 

between ecological validity and an experimental setting can be viewed as a 

matter of how many or few variables we want to control for. From an 

experimental point of view this is essentially indistinguishable from 

allowing uncontrolled variance into our other variables, thus the tradeoff is 

in effect reduced confidence in the estimates of the effect sizes of whatever 

else we are attempting to measure in the students. If we were to discover 

some previously unknown variable that seems potentially relevant to our 

area of inquiry, we would still have to design a controlled experiment to 

isolate that effect later if we did not have enough information in our current 

study to accurately gauge the relative importance of the new find. A solid 

counterargument is that the complex relationships that emerge out of the 

social interaction of different people, including those between the teacher 

and the student is not easily captured in a controlled laboratory setting. The 

individual expectations and social pressures alone are clearly wildly 

different. One solution to this issue might be that if we accept that 

controlled experiments will eventually have to be performed anyway if we 

want to provide compelling statistical evidence for our results, then we 

should strive for efficiency and transferability of results at the same time, 

by putting effort into designing the type of matching, interdisciplinary 

experiments that we have attempted to do in this project, allowing us to test 

the outcomes both in a classroom setting and under laboratory conditions at 

the same time. The idea being that if we have successfully designed both 

experiments to be as similar as possible and to maximally account for all 

relevant variables known to us at the time, then any disparities between the 
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two setting would automatically give us a hint that something might have 

been lost in translation when moving away from the social setting, but if we 

find that the results do line up, we can be fairly confident in concluding that 

the psychosocial factors linked to the setting does not contribute any 

statistically significant information to our studied phenomena. If we accept 

this then theoretically, given enough information, we should in the future be 

able to device a purely experimental design accounting for enough 

variables to, effectively, rescue the ecological validity that we lost when 

moving into the lab. On this view, ecological validity is a function of 

predictive validity, given enough theoretical knowledge. In practice, this 

will probably not be feasible across the board and, depending on what we 

want to study, there are surely more effective ways to accomplish some 

things in a naturalistic setting. When it comes to brain imaging, it should 

also be mentioned that the association patterns laid down in the brain after 

learning something has been shown to potentially activate in whatever 

circumstance a relevant stimulus appears later, meaning that there is 

evidence indicating that at least some of the insights gained from brain 

imaging are generalizable across settings. Perhaps the most interesting 

example is the study that found the so-called “Halle berry neurons”;   A 

group of neurons around the hippocampus that responded both to images of 

Halle Berry, but also to her name in text on a screen (Quiroga, Reddy, 

Kreiman, Koch, & Fried, 2005). It should be noted however that these 

neurons might be more general and would also have responded to other 

faces or names sharing some similarity to Halle Berry.  
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While fMRI studies of the brain have some 30 years behind them and are 

still considered a relatively new domain of inquiry, an even younger 

domain with the potential to further complicate the fields of cognitive 

neuroscience and psychology is genetics, or more specifically, large-scale 

quantitative analyses of the genetic impact of the combined small effects of 

thousands of individual points of variation in our genome called single 

nucleotide polymorphisms or ‘SNP:s’ (Brookes, 1999) that have gotten 

steadily more reliable as access to bigger and better datasets of genetics 

coupled to outcome variables continue to grow due to the reduction in cost 

of both whole genome sequencing over time (Sboner, Mu, Greenbaum, 

Auerbach, & Gerstein, 2011), and the recent proliferation of consumer-

targeted DNA testing companies like 23andme and Ancestry.com (Even if 

the rising complexity and therefore computational demands of this work 

offsets the overall cost-savings on sequencing somewhat) (Allyse, 

Robinson, Ferber, & Sharp, 2018). A recent indication of what we might 

expect to see more of in the future from this field is the paper “Dissecting 

polygenic signals from genome-wide association studies on human 

behaviour” (Abdellaoui & Verweij, 2021). Genome-wide association 

studies (GWAS) is a way to leverage large data sets of genomics data to 

statistically model the combined effects of all SNP:s in any one subject on 

variables of interest, deriving so-called polygenic scores for each variable. 

Essentially, calculating a probabilistic risk for expressing any given 

outcome that has some amount of explainable genetic etiology (Dudbridge, 

2013). In the paper by Abdellaoui and Verweij they review the field of 

calculating polygenic scores and compare the calculated genetic 

contributions to a multitude of material, psychological and social outcomes 
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with the gold standard of estimating heritability: twin studies (Knopik, 

Neiderhiser, DeFries, & Plomin, 2017). They find that as the statistics gets 

more refined, and more high-quality data is collated, the heritability 

estimates for each trait approaches the values derived from twin-studies 

even though they struggle to reach 50% at present. The heritability 

estimates from twin-studies for most of the reported traits are in the 30-50% 

range with a few notable outliers, namely psychological disorders like 

ADHD, Autism, Bipolar disorder, and schizophrenia around 75% 

heritability and adult IQ approaching 100%. It would be surprising if the 

GWAS and twin-studies numbers would not continue to converge, and as 

more and more traits are investigated, and more and more genetic data is 

gathered we inch closer and closer to enable the long-standing goal of 

‘personalized medicine’ (Hamburg & Collins, 2010), it seems reasonable to 

think that it is also possible to achieve the equivalent ‘personalized 

education’ as a part of your own ‘personal psychology’. 

 

We have already discussed the type of studies we would like to see as a 

follow up to our experiments in chapters 2 and 3, but I should also 

incorporate what has been discussed above in this chapter and summarize 

my concluding visions of the future. I would like to see longitudinal studies 

of computer programming learning to see if the connectivity-changes we 

observed after learning hands-on are robust or only a short-term 

phenomenon. This would also allow us to test if constructs like NFC or 

Dweck’s mindset have effects over long timespans or not. If possible, 

multimodal imaging and future advances in the technology could also allow 

for more specific results, including microstructure analyses of cortical 
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layers and similar internal layout of other brain regions in accordance with 

the advances in the study of learning brain plasticity as discussed in 

“Plasticity in Gray and White” (Zatorre, Fields, & Johansen-Berg, 2012). 

Since we also found that language processing is central to the task of 

programming, I would like to see further research into what lessons can be 

learned from the second language learning (L2) field, even though we did 

not detect any significant benefit of previous language aptitude in the form 

of language grades in our experiment. There is already some support for 

this hypothesis: A recent paper titled “Relating Natural Language Aptitude 

to Individual Differences in Learning Programming Languages” found that 

language aptitude (measured by the Modern Language Aptitude Test 

(MLAT)) was “a robust predictor of all of the Python learning outcomes. 

Specifically, learning rate” (Prat, Madhyastha, Mottarella, & Kuo, 2020). 

Their findings indicate that although programming accuracy is not very 

explainable by the MLAT (explaining less than 10% of the variance), 

learning rate is (at around 40% variance explained). They found that 

general cognition (Fluid reasoning, working memory updating, working 

memory span, and inhibitory control) accounted for the biggest chunk of 

programming accuracy, explaining a little under 60%, which might explain 

why we did not see any effect of language aptitude, as we were evaluating 

our participant’s program accuracy, and they all had to display similar 

enough learning rates to successfully learn during our limited lesson time. 

The MLAT measurement used in their study has been showed to correlate 

with IQ (Cox, Lynch, Mendes, & Zhai, 2019). They summarize previous 

work by saying “In sum, most evidence has suggested a fairly strong 

positive link between nonverbal IQ and aptitude (Biedroń & Szczepaniak, 
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2012; Granena & Long, 2013; Sternberg, Ehrman, & Grigorenko, 2000; 

Xiang et al., 2012)”. In their experiment, which is an investigation into  

Spanish–English bilinguals in the United States, they find positive 

relationships between language proficiency and nonverbal IQ measures, 

specifically with the sub-components of aptitude for grammatical 

inferencing and sound–symbol association measures. They also say 

“Moreover, the same aptitude components also varied with nonverbal IQ, 

demonstrating that nonverbal abilities may also play a role in aptitude in 

uninstructed bilinguals”. Another study also found an aptitude/IQ 

correlation of r= .5, perhaps driven by combined verbal/nonverbal IQ 

measures in the studies he summarized (Li, 2016). These findings indicate 

that the distinction between language aptitude and general cognition in the 

paper by Prat et al. is perhaps not as clear cut as presented, which means 

that future research into the links between L2 learning and programming 

should also ideally take care to thoroughly map out the role of general 

cognitive performance. 

 

4.4. Conclusions 

 

To conclude this thesis, let me first start with a point regarding our findings 

concerning the importance of confidence as a mediator of future 

programming success: In our experimental setup we are unable to 

distinguish whether confidence is the proverbial chicken or the egg. What 

we mean by this is that either working hands-on leads to higher confidence 

through some process, and that confidence produces the connectivity 

changes we detected in the brain, ultimately resulting in increased 
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performance, or working hands-on lead to the changes we observed, and the 

strength of that learned ability is then evaluated introspectively as a high 

confidence by the subjects. From a statistical point of view, the relationship 

is the same, but we would like to see an attempt to clarify the causal chain 

in the future. I would also like to see more research into individual 

differences between students, and how they interact with the course 

material or study techniques. Interventions for traits other than mindset, like 

NFC should also be investigated and language aptitude should be studied 

further, particularly when it comes to making sure that students don’t fall 

behind in the coursework. Finally, our take home messages for educators: 

We recommend hands-on learning in computer programming and 

encourage future research on this front. Building confidence in the students 

is important, and we found links between confidence and attention and 

motivational aspects that warrant future investigation. NFC is a promising 

personality trait for future studies and, since programming is processed like 

a language, look to L2 learning research for possible inspiration for 

pedagogy. 
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Appendix 

Appendix I - Descriptive statistics table 

 



Towards a Neuroscience of Computer Programming & Education 

 

  193 

 

Appendix II - Group statistics table 
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Appendix III - Full correlation table 
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Appendix IV - DCM models 

Detailed description of the A, B & C matrixes of all DCM models entered 

into Bayesian model selection.  

 

First round of BMS (16 models): 

model 1        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 1 0 0 0 

IFG_op 1 0 0 0 0 0 0 0 

IFG_tri 1 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

  

model 2        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 1 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 
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IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 3        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 1 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 1 
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SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 4        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 1 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 1 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 5        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 1 0 1 0 0 0 
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IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 1 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 6        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 1 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 1 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 1 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 
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SFG 0 0 0 0 0 0 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 7        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 8        
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 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 9        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 1 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 
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MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 10        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 1 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       
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SPL 0 0       

model 11        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 1 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 12        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 
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IFG_op 1 0 0 0 0 0 0 0 

IFG_tri 1 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 13        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 0 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 0 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       
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SFG 0 0       

SMG 0 0       

SPL 0 0       

model 14        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 0 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 0 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 15        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 0 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 0 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 



Towards a Neuroscience of Computer Programming & Education 

 

  213 

 

Broca 0 0 0 0 1 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 16        

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 0 0 1 0 0 0 

IFG_op 0 1 1 0 0 1 0 0 

IFG_tri 0 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 1 0 0 0 

IFG_op 0 0 0 0 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 0 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 0 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       
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MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

 

Second round of BMS (12 models): 

 

model 1 Best model: 3 inputs, bidirectional B and diagonal B  
Best Model [DCM_turtle_X_bidirB_centeredU_3C_diagB(full.B.C.null)_m0001] 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 0 0 0 0 0 0 

IFG_tri 1 0 1 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 1 0 0 0 1 0 0 0 

SFG 0 0 0 0 0 1 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 2 1 input, no diagonals     

  [DCM_turtle_X_bidirB_centeredU_3C_diagB(full.B.C.null)_m0002] 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 
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IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 0 0 0 0 0 0 

IFG_tri 1 0 1 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 1 0 0 0 1 0 0 0 

SFG 0 0 0 0 0 1 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       

SPL 0 0       

model 3 3 inputs, no diagonals     

  [DCM_turtle_X_bidirB_centeredU_3C_diagB(full.B.C.null)_m0003] 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 1 1 0 1 0 0 0 

IFG_op 1 0 0 0 0 0 0 0 

IFG_tri 1 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 
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MTG 1 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 4 1 input and diagonals [DCM_turtle_bidirB_centeredU]  

  [DCM_turtle_X_bidirB_centeredU_3C_diagB(full.B.C.null)_m0004] 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 1 1 0 1 0 0 0 

IFG_op 1 0 0 0 0 0 0 0 

IFG_tri 1 0 0 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 1 0 0 0 0 0 0 0 

SFG 0 0 0 0 0 0 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 0 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 0 0       

SFG 0 0       

SMG 0 0       
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SPL 0 0       

model 5 The Monster      

         

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 1 1 1 1 1 

IFG_op 1 1 1 1 1 1 1 1 

IFG_tri 1 1 1 1 1 1 1 1 

MOG 1 1 1 1 1 1 1 1 

MTG 1 1 1 1 1 1 1 1 

SFG 1 1 1 1 1 1 1 1 

SMG 1 1 1 1 1 1 1 1 

SPL 1 1 1 1 1 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 1 1 1 1 1 

IFG_op 1 1 1 1 1 1 1 1 

IFG_tri 1 1 1 1 1 1 1 1 

MOG 1 1 1 1 1 1 1 1 

MTG 1 1 1 1 1 1 1 1 

SFG 1 1 1 1 1 1 1 1 

SMG 1 1 1 1 1 1 1 1 

SPL 1 1 1 1 1 1 1 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 6 DCM_Model1_full_B      

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 
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IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 7 Monster top 42      

    FROM     

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 0 1 1 0 0 0 

IFG_op 0 1 1 1 1 0 0 1 

IFG_tri 0 0 1 1 0 0 0 0 

MOG 0 0 1 1 1 0 1 0 

MTG 0 0 1 1 1 0 0 0 

SFG 0 1 1 1 1 1 0 0 

SMG 0 0 1 1 1 0 1 0 

SPL 0 0 1 1 1 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 1 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 1 0 1 1 1 0 1 

MTG 0 0 0 0 1 0 0 0 

SFG 0 0 0 1 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 1 0 0 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       
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MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 8 Monster top 57 (all prob>0)     

    FROM     

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 0 1 1 1 1 1 0 

IFG_op 1 1 1 1 1 0 1 1 

IFG_tri 1 0 1 1 1 0 0 0 

MOG 0 1 1 1 1 0 1 1 

MTG 1 0 1 1 1 0 0 0 

SFG 1 1 1 1 1 1 0 1 

SMG 0 0 1 1 1 1 1 1 

SPL 0 1 1 1 1 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 0 0 0 0 0 0 0 0 

IFG_op 0 0 0 1 0 0 0 0 

IFG_tri 0 0 0 0 0 0 0 0 

MOG 0 1 0 1 1 1 0 1 

MTG 0 0 0 0 1 0 0 0 

SFG 0 0 0 1 0 0 0 0 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 1 0 0 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       
IFG_tri 0 0       
MOG 1 0       
MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 9 1_cut no conn between SFG and op     

         

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 0 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 0 0 0 0 1 1 1 
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SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 0 0 0 0 0 0 

IFG_tri 1 0 1 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 1 0 0 0 1 0 0 0 

SFG 0 0 0 0 0 1 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 10 1_noSMG       

    FROM     

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 0 

SFG 0 1 0 0 0 1 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 1 0 1 0 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 0 0 0 0 0 0 

IFG_tri 1 0 1 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 1 0 0 0 1 0 0 0 

SFG 0 0 0 0 0 1 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 1 

 Visual Loop       
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Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 11 1_MTGtoSPL      

    FROM     

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 

IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 0 0 1 

SFG 0 1 0 0 0 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 1 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 0 0 0 0 0 0 

IFG_tri 1 0 1 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 1 0 0 0 1 0 0 0 

SFG 0 0 0 0 0 1 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       

model 12 1_MTGtoSFG      

    FROM     

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 1 0 0 1 0 0 
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IFG_tri 1 1 1 0 0 0 0 0 

MOG 0 0 0 1 1 0 0 1 

MTG 1 0 0 1 1 1 0 0 

SFG 0 1 0 0 1 1 1 1 

SMG 0 0 0 0 0 1 1 1 

SPL 0 0 0 1 0 1 1 1 

 Broca IFG_op IFG_tri MOG MTG SFG SMG SPL 

Broca 1 1 1 0 1 0 0 0 

IFG_op 1 1 0 0 0 0 0 0 

IFG_tri 1 0 1 0 0 0 0 0 

MOG 0 0 0 0 0 0 0 0 

MTG 1 0 0 0 1 0 0 0 

SFG 0 0 0 0 0 1 0 1 

SMG 0 0 0 0 0 0 0 0 

SPL 0 0 0 0 0 1 0 1 

 Visual Loop       

Broca 0 0       

IFG_op 0 0       

IFG_tri 0 0       

MOG 1 0       

MTG 1 0       

SFG 0 0       

SMG 0 0       

SPL 1 0       
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Appendix V -  First generation PEB model with corresponding LOO 

validation. 

 

 

PEB Parameter estimates for all parameters with a P>.99 of being non-

zero (significantly contributing towards the model evidence). A dash (-) 

signifies a connection not present in the model. Commonalities: the 

underlying connection strengths shared by both tasks, that is then 

modulated by the parameters for the covariates included in the model. S: 

Spatial task connection strengths (A parameters) I: modification of 

connection strength when switching to the iterative task (B parameters) 
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Commonalities 

 

Hands-on 

 

LTM 
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Stress after lesson 

 

Confidence decrease 

 

Math grade 
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Average grade 

 

 

 

Hands-on A 

 

Hands-on B 
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Hands-on AB 

 

LTM A 

 

LTM B 
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LTM AB 

 

Stress after A 

 

Stress after B 
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Stress after AB 

 

Confidence drop A 

 

Confidence drop B 
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Confidence drop AB 

 

Math A 

 

Math B 
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Math AB 

 

Grades A 

 

Grades B 
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Grades AB  
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Appendix VI - Subject motion analysis 

 

 

 

subject max Δtrans max Δrot max FD # outliers % of 1836 vols 

1 3.69 2.56 6.68 20 1.1 

3 2.26 4.21 9.07 22 1.2 

5 0.88 0.91 1.18 0 0.0 

7 0.45 1.96 0.72 0 0.0 

8 4.40 8.61 18.88 26 1.4 

9 1.32 1.17 0.92 0 0.0 

10 4.97 9.16 17.84 79 4.3 

11 0.68 1.10 1.21 0 0.0 

12 4.10 7.23 10.77 19 1.0 

13 2.17 4.96 11.87 44 2.4 

14 3.46 2.36 11.22 16 0.9 

15 3.58 2.86 8.04 13 0.7 

16 2.20 0.99 3.22 2 0.1 

17 1.33 1.06 2.74 0 0.0 

19 1.41 4.04 5.73 6 0.3 

20 1.15 1.19 0.68 0 0.0 

21 1.19 1.05 3.13 1 0.1 

22 4.68 1.69 3.33 2 0.1 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Subjects

Max frame-wise displacement (FD) 
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23 2.28 1.62 3.87 19 1.0 

24 2.77 4.86 4.33 3 0.2 

25 2.00 4.55 6.87 28 1.5 

26 0.64 0.35 0.49 0 0.0 

27 1.44 1.19 3.11 1 0.1 

28 5.26 2.78 6.88 5 0.3 

29 3.86 6.62 15.60 77 4.2 

30 3.11 5.20 9.26 10 0.5 

31 1.43 1.62 2.58 0 0.0 

32 0.43 0.27 0.56 0 0.0 

33 0.71 1.51 1.89 0 0.0 

34 0.40 1.25 0.42 0 0.0 

35 4.36 1.51 6.62 3 0.2 

36 1.56 0.95 0.33 0 0.0 

37 2.00 2.96 5.64 6 0.3 

38 1.86 1.70 0.45 0 0.0 

39 0.83 0.56 1.54 0 0.0 

40 0.91 0.54 0.15 0 0.0 

41 0.84 0.76 1.37 0 0.0 

42 3.66 1.91 2.49 0 0.0 

43 0.58 1.03 0.71 0 0.0 

44 1.41 1.47 3.56 1 0.1 

45 0.88 1.41 0.35 0 0.0 

46 3.51 3.21 5.88 10 0.5 

47 0.86 0.64 0.71 0 0.0 

48 0.53 0.91 0.75 0 0.0 

49 1.18 1.72 1.52 0 0.0 

50 2.03 0.67 1.26 0 0.0 

51 1.16 0.68 0.42 0 0.0 

52 2.00 1.78 4.58 2 0.1 

53 1.46 1.91 1.08 0 0.0 

54 5.21 5.36 11.62 20 1.1 

55 0.75 1.57 0.33 0 0.0 

56 0.65 0.74 1.19 0 0.0 

57 1.80 1.88 3.49 2 0.1 

58 2.37 1.58 4.20 3 0.2 

59 3.63 4.52 5.36 5 0.3 

Maximum rotation(mm at the surface of the brain) and translation(mm) 

sizes across all three fMRI sessions for each subject. Maximum Frame-wise 

displacement and number of outliers was calculated using the “Motion 
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Fingerprint” SPM extension by Marko Wilke (http://www.medizin.uni-

tuebingen.de/kinder/en/research/neuroimaging/software/) (M. Wilke, 2012; 

Marko Wilke, 2014). Last column shows number of outlier volumes as a 

percentage of the total number of volumes. 

http://www.medizin.uni-tuebingen.de/kinder/en/research/neuroimaging/software/
http://www.medizin.uni-tuebingen.de/kinder/en/research/neuroimaging/software/
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Appendix VII – Full One-way ANOVA table 

  

ANOVA comparing our variables for subjects in the Hands-on versus the 

Hands-off conditions. (one-tailed sig. values reported) 
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