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Abstract
Can an interviewer influence the cooperativeness of an intervie-
wee? The role of an interviewer in actualising a successful inter-
view is an active field of social psychological research. A large-
scale analysis of interviews, however, typically involves time-
exorbitant manual tasks and considerable human effort. Despite
recent advances in computational fields, many automated meth-
ods continue to rely on manually labelled training data to es-
tablish ground-truth. This reliance obscures explainability and
hinders the mobility of analysis between applications. In this
work, we introduce a cross-disciplinary approach to analysing
interviewer efficacy. We suggest computational success mea-
sures as a transparent, automated, and reproducible alternative
for pre-labelled data. We validate these measures with a small-
scale study with human-responders. To study the interviewer’s
influence on the interviewee we utilise features informed by so-
cial psychological theory to predict interview quality based on
the interviewer’s linguistic behaviour. Our psychologically in-
formed model significantly outperforms a bag-of-words model,
demonstrating the strength of a cross-disciplinary approach to-
ward the analysis of conversational data at scale.
Index Terms: conversation analysis, automation, interviewing,
communication accommodation theory

1. Introduction
Analysing interviews to deduce how an interviewer may steer
an interviewee in the desired direction is not a new endeav-
our. Harnessing the computational power of machine learning
in favour of this undertaking is a more recent development. Tra-
ditionally, analysis of conversation focused on qualitative study
and required considerable manual effort, limiting the volume of
analysed data. Offsetting time-exorbitant tasks to a computer
presents the promise of scalability, alongside reproducibility
and, debatably, greater objectivity.

Conversational outcomes have been computationally evalu-
ated in domains such as group collaboration [1], job interview-
ing [2], speed-dating [3], hostage negotiation [4], and police in-
terrogation [5]. Typically, computational models rely on man-
ually pre-labelled data to separate the successful interactions
from the non-successful ones. This reliance gives rise to poten-
tial limitations. Notably, the success measure is often not well
defined, hindering the transparency of the model and as a result,
its mobility between applications. In addition, domain-specific
knowledge may be encoded within the labelled data, but it is not
decoded into the model itself, limiting the utility of the model
and any conclusion drawn with respect to the domain of origin.

To address these issues, we must develop and encourage the
use of cross-disciplinary approaches. Ideally, we can capitalise
on domain knowledge and expertise while exploiting the util-
ity of computation. This paper aims to demonstrate the power
of cross-disciplinary analysis by employing social psycholog-

ical insight to engineer automated features and outcome mea-
sures for the benefit of interview analysis. In this paper, we
demonstrate our approach on political interviews. Important in
their own right, political interviews make an excellent model for
conversations where the objectives of the interviewer may be in
tension with the objective of the interviewee.

This paper seeks to answer two main questions: (1) can we
predict, computationally, if a human will regard an interview
as successful without relying on pre-labelled data? (2) Can we
predict the success of an interview from the behaviour of the
interviewer? The latter question originates from existing so-
cial psychological theories [6]. Specifically, communication ac-
commodation theory [7] postulates that speakers modulate their
linguistic behaviour relative to one another to meet particular
objectives. Research has demonstrated that increased accom-
modation activity contributes to social effects such as personal
attractiveness [8], and conversational fluidity [9].

Our contributions are as follows: A flexible framework
for computationally analysing success in non-labeled interview
transcripts, validated by a small-scale study with human partic-
ipants. A set of engineered features, informed by social scien-
tific theory, used to predict success in an interview based on
the behaviour of the interviewer. We demonstrate that these
domain-informed features significantly outperform a bag-of-
words model. In addition, our results feed back to domain
knowledge, corroborating that interviews operate in a manner
consistent with less-adversarial forms of conversation.

2. Methods
2.1. Corpus pre-processing

2.1.1. Dataset

We created a corpus of N=684 political interviews from tran-
scripts of six US cable news networks (CNN, NBC, ABC,
MSNBC, CBS and Fox). We included interview segments com-
prising a single interviewer and a sole interviewee. We con-
sidered an interview political if the interviewee was a govern-
ment member or had a clear affiliation with a political party.
Interviews were conducted between 2013-2020 and featured
261 participants (55 interviewers and 206 interviewees). Tran-
scripts were opportunistically-sampled from online reposito-
ries, stored as plain text files, and spot-checked to ensure ac-
curacy. The length of interviews varied between 549 and 9102
words (M=1883.3, SD=1113.35). In total, the corpus comprised
just under 1.3m words and 28,022 speech turns (M=40.97,
SD=47.46).

2.1.2. Data cleaning

The python script produced to clean and standardise the tran-
scripts is available on GitHub under an MIT licence. All
non-ASCII characters and punctuation symbols were removed



Table 1: Sample of pre-processed text. NG, LC and DR refer to n-gram, lexical category, and dependency relation models, respectively.

Model Example

NG ”The” (unigram), ”Quick” (unigram), ”Brown Fox” (bigram), ”Jumps Over” (bigram), ”The Lazy Dog” (trigram)

LC ”The” (article), ”Quick” (relativity), ”Brown” (perception), ”Jumps” (motion), ”Over” (power), ”The” (article),
”Lazy” (neg emotion)

DR ”The” (determiner), ”Quick” (adjectival modifier), ”Brown” (adjectival modifier), ”Fox” (nominal subject),
”Jumps” (ROOT), ”Over” (preposition), ”The” (determiner), ”Lazy” (adjectival modifier), ”Dog” (preposition object)

along with timestamps, annotations, and prerecorded segments.
We also expanded contracted words using the dictionary pro-
vided in [10]. Transcripts were split into a sequence of speech
turns. Each speech turn ended when the conversational floor
was passed from one speaker to another.

2.2. Outcome metrics

Determining the quality of an interviewee response is challeng-
ing. The literature points us to completeness and truthfulness
[11], and clear articulation [12]. Politicians, however, have
a reputation for equivocation and evasiveness, answering less
than half the questions put to them [13]. Uncooperative politi-
cians have been shown to make superfluous comments [14], or
rely on repetition of key phrases as a diversionary tactic [15].
In this work, we regard an interview successful if the intervie-
wee answered questions fully, directly and clearly. Accordingly,
we have constructed four measures of interviewee responses:
specificity, diversity, relevance, and clarity. These are broadly
influenced by Gricean conversational maxims of quality, quan-
tity, relation and manner [16].

Interviewee speech turns were tokenised, part-of-speech
tagged and lemmatised using the Stanza neural pipeline [17].
Post calculation, all success measures were normalised.

Our measure of specificity, inspired by research in inves-
tigative interviewing [18, 19], quantifies interviewee references
to key details such as people, objects, locations, and temporal
details. We automated this process using spaCy’s [20] Named
Entity Recognizer (NER). To account for differences in inter-
view length, we normalise unique named entity counts over the
number of noun phrases uttered by the interviewee.

Clarity measures the average concreteness of interviewee
speech. Concreteness is a psycholinguistic feature that refers
to the degree of ambiguity of a word. We measure word con-
creteness scores using an established dictionary based on prior
psycholinguistic research [21]. We take the average concrete-
ness score over all interviewee words as our clarity measure.

An unwillingness to engage in conversation can be demon-
strated by self repetition. Conversely, linguistic diversity has
been linked with honesty and trustworthiness [22] [23]. For our
measure of diversity, we use the global type-token ratio of inter-
viewee speech, i.e. we divide the number of unique interviewee
words by the total number of interviewee words.

Relevance reflects the extent an interviewee’s response
shares semantic similarity with the question they were asked.
First, each non-stop-word is transformed into a vector using
pre-trained GloVe word embeddings [24]. We then create a
turn-level vector by averaging over all word embeddings within
a speech turn. We calculate the similarity of each interviewee
response with the preceding question via cosine similarity (the
cosine of the angle between two non-zero vectors). Relevance
is computed as the mean score over all question-answer pairs.

2.3. Features

We set out to predict the success of an interview from the be-
haviour of the interviewer. This approach was informed by
communication accommodation theory, which posits that the
extent speakers converge, maintain or diverge from each other
linguistically correlates with their social goals [7]. Convergence
(also known as mirroring, alignment or entrainment) indicates a
shared understanding between speakers [25], and is associated
with success in collaborative tasks [1], and increased compli-
ance and cooperation [26]. Furthermore, higher-levels of con-
vergence can make an individual more likeable to those they are
mirroring [27]. Conversely, reticence to converge can reflect a
desire to maintain personal identity [7]. Given the dynamics of
an interview, we might expect divergence to play a more promi-
nent role in the interaction; speakers in an interview occupy
particular roles, whereby the interviewer asks questions that the
interviewee is expected to answer. We therefore expect the in-
terviewer to converge on certain linguistic features, relating to
the topic under discussion, and diverge on others, such as inter-
rogatives: who, what, where, why, when.

2.3.1. Local accommodation

We distinguish between two types of interviewer accommoda-
tion: local accommodation and global alignment. For local ac-
commodation (LA), we follow the probabilistic framework de-
scribed in [28]. This approach computes a token-level probabil-
ity of the interviewer mirroring the interviewee by comparing
the probability of the interviewer speaking a word after it was
spoken by the interviewee and otherwise in the conversation:

LAF
(i,j)

∆
= P (TF

i |TF
j , Ti ↪→ Tj)− P (TF

i |Ti ↪→ Tj) (1)

Here, the term on the left, LAF
(i,j) is the local accommo-

dation of feature F by speaker i in relation to speaker j. The
first term on the right is the conditional probability of speaker i,
uttering F , given its previous usage by speaker j. The second
term on the right is the total probability of speaker i uttering
F over all replies to speaker j. We compute a score between
-1 and 1 for each feature. Positive values indicate convergence,
and negative values indicate divergence.

We apply equation (1) to three separate bag-of-features
models: an n-gram (NG) model, where we calculate scores for
unigrams, bigrams and trigrams, restricting unigrams and bi-
grams to 200 features each; a lexical categorization (LC) model,
based on 70 categories generated by the Linguistic Inquiry
Word Count (LIWC) tool [29]; and a dependency relations (DR)
model where we perform dependency parsing via spaCy [20],
and use the dependency relation tags as features. Table 1 pro-
vides an example of pre-processed text for each model.



2.3.2. Global alignment & meta features

We constructed global alignment features based on existing
computational linguistic research:

Global Language Style Matching (gLSM) is a speaker-
independent similarity measure of linguistic style, i.e., speak-
ers’ alignment of semantically neutral function words such as
pronouns, adjectives, and adverbs [30]. We calculate the gLSM
score between the two speakers as outlined in [3], and use the
score as a single feature.

For the four measures defined below, we use the mean, min,
and max scores as features:

Reciprocal Language Style Matching (rLSM) measures
the extent one speaker is matching the linguistic style of another
on a turn-by-turn level. We calculate rLSM per interviewer
speech turn as defined in [31].

Turn length difference is measured in words as the differ-
ence between each interviewer turn and the preceding intervie-
wee turn.

Semantic relatedness measures semantic similarity via co-
sine similarity between each interviewer turn and the preceding
interviewee turn.

Branching factor difference. In a tree-structure, the
branching factor is the average number of child nodes. By per-
forming dependency parsing on each speech turn, the branching
factor becomes a proxy for syntactic depth. We compute the av-
erage branching factor over all sentences in a speech turn, and
calculate the absolute difference between each interviewer turn
and the preceding interviewee turn.

Variables from the meta-data collected for each interview
were also included as one-hot encoded categorical variables.
These included: interview length (in words); host network; po-
litical orientation of each speaker; if the speakers shared a po-
litical orientation; if the speakers were of the same gender.

2.4. Supervised machine learning

To predict each outcome metric from the features described
in section 2.3, we used a forty-tree random forest with de-
fault hyper-parameters. Alternative ensemble-based supervised
learning algorithms including extra trees, gradient boosting, and
XGBoost achieved equal performance. Models were cross val-
idated using K-fold, with k=10. We evaluated model perfor-
mance using the root mean squared error (RMSE). We em-
ploy two baselines: an estimator that repeated the training mean
(B1), and a bag-of-words model based on interviewer word fre-
quency counts (B2).

2.5. Manual validation of computational outcome metrics

We conducted a validation study on the computational outcome
metrics described in section 2.2. Ten interviews were randomly
selected from the corpus, ensuring a varied distribution of out-
come scores. We recruited eight human raters, naive to the pur-
poses of the study, to assess each interview. Raters scored each
interview on a one-to-ten scale per outcome metric. For ex-
ample, to what extent did the interviewer express themselves in
a clear manner? Participants also provided an overall quality
score based on the perceived quality of interviewee responses.
We performed an intraclass correlation (ICC) analysis on each
outcome metric to measure the degree of agreement amongst
our human raters. We consider ICC scores above 0.8 to in-
dicate ‘good’ inter-rater agreement. The normalised computa-
tional scores were then compared to normalised human ratings.
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Figure 1: Normalised distribution of human ratings of overall
interview quality. The overlaid X shows the corresponding nor-
malised computational score.

Table 2: Mean (±SD) RMSE scores per model iteration when
predicting Clarity, Diversity, and Relevance.

Model Clarity Diversity Relevance

B1 0.144±0.016 0.158±0.016 0.142±0.011
B2 0.138±0.017 0.123±0.012 0.129±0.014

Local (All) 0.128±0.013 0.114±0.013 0.125±0.012
NG Only 0.129±0.013 0.115±0.013 0.126±0.013
LC Only 0.134±0.018 0.123±0.007 0.133±0.015
DR Only 0.134±0.015 0.121±0.008 0.137±0.014
Global 0.133±0.016 0.118±0.015 0.120±0.010
Meta 0.160±0.016 0.081±0.008 0.153±0.008
Loc. + Glo. 0.124±0.010 0.108±0.014 0.115±0.010

All 0.124±0.011 0.075±0.007 0.115±0.009

3. Results and discussion
3.1. Analysis of outcome metrics

We observed good agreement (ICC >.8) per outcome amongst
our eight human raters. Comparing the computational scores to
the normalised distribution of human ratings, we find the fol-
lowing percentage of computational scores that fell within one
standard deviation of the mean human score: specificity = 70%,
clarity = 50%, diversity = 80%, relevance = 70%.

To create an overall quality score computationally, we used
a linear regression model to measure how human-raters’ over-
all rating was weighted by their individual ratings for clarity,
diversity and relevance (Specificity was omitted as our com-
putational models did not show improvement over the baseline
(B1)). The appropriate coefficients were extracted and applied
to the computational scores to create an overall success score
(S):

S = 0.23× Clr + 0.39×Div + 0.42×Rel (2)

Figure 1 shows the normalised distribution of overall suc-
cess scores given by human raters per interview, with the com-
putational score marked with an X . We find a 90% agreement
with the mean human score (computational scores within one
SD). Based on the average variance between the mean human
score and the computational score, it would require four human
raters to improve on the computational predictions.
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Figure 2: 2a. (left) - Prediction performance for each model iteration on the overall success measure; 2b (centre) - Correlation of the
top ten features on the All Features model with the overall success score; 2c. (right) - Relationship between rank-ordered ground-truth
and prediction for the Loc. + Glo. model predicting overall interview success.

3.2. Prediction performance

Table 2 reports the RMSE for each model iteration for the
clarity, diversity, and relevance metrics. The performance for
overall success is shown in Figure 2 (a). One-tailed Wilcoxon
signed-rank tests indicated that absolute model errors for clar-
ity, diversity, relevance, and overall success were significantly
lower than B1 and B2 (p < .001), but specificity was not. The
combination of local and global accommodation features (Loc.
+ Glo. model) exceeded both baselines for clarity, diversity, rel-
evance, and overall success. Meta features alone only exceeded
the baseline when predicting diversity. The addition of the
meta features to the local and global features (All model) only
improved performance further for diversity and consequently
for the overall success. When predicting overall success, the
biggest improvement in RMSE is for the combined model (All),
with a 37% improvement on B1 and 19% on B2.

In Figure 2 (b), we report the most important features for
the All model when predicting overall success. Using permuta-
tion feature importance [32], we report the strength and direc-
tion of correlation between each feature and the outcome. No-
tably, Mean rLSM and Semantic Relatedness positively corre-
lated with outcome, and Max. Branching Factor Difference cor-
related negatively. This is consistent with communication ac-
commodation theory and shows that closer linguistic distances
correlated with optimal outcomes.

The Glo. + Loc. model predicts interview success based
on the interviewer’s accommodation alone. To illustrate the af-
fect of this accommodation on the success of an interview, in
Figure 2 (c) we examine the relationship between predictions
based on the Glo. + Loc. model and computational ground-
truth when ranking the entire corpus by overall success. We can
use this form of analysis to identify interviews where high lev-
els of accommodation aligns with interview success (III), and
where it does not (I). We can also spot interviews with a high
success score despite a low level of measured accommodation
(IX). We envision this inquiry helpful when a large corpus re-
quires filtering before further analysis.

4. Conclusions
This paper introduces an automated cross-disciplinary approach
for analysing interviews and successfully demonstrates it on a
corpus of publicly available political interviews.

Our results confirm that we can successfully encode social
scientific knowledge pertinent to interviewing into a computa-

tional analysis. Prudently, this can be harnessed both as a full
analysis or as an initial mapping of a large corpus of conver-
sational transcripts. Our method offers an interpretable and re-
producible alternative to pre-labelled interview transcripts. This
should encourage both computer scientists and social scientists
alike when seeking to analyse conversations at scale.

Our psychologically-informed models significantly out-
perform a simple bag-of-words model, justifying domain-
knowledge inclusion within computer science research. Using
decipherable features also renders the analysis useful for future
research within other domains. We have modelled an array of
linguistic features, however, we note our choice of features is
not exhaustive. Non-linguistic and paralinguistic behaviours
may also contribute to accommodation.

Despite the close alignment between human and computer
scores for specificity, our models did not successfully predict
this measure based on the interviewer’s behavior. This result
may be specific to the political interview domain as establish-
ing specific information is an unlikely goal within political in-
terviewing. We choose to include specificity in this work as it
may be of use for analysing interviews where the objective is
more explicitly focused on information-gathering, for example,
within the context of criminal investigation.

Our results indicate that political interviewing is a worth-
while setting to explore accommodation. A key advantage of
our approach, however, is its transferability to other domains.
We hope this work will lead to further adoption of the suggested
cross-disciplinary approach to analyzing conversation at scale.
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A. Validation study
Here we describe in detail the validation study we performed
and is briefly described in section 2.5 of the paper. The purpose
of this small study was to measure how well our computational
outcome metrics (specificity, clarity, diversity, relevance) cor-
related with analogous interviewee behaviours, as reported by
human raters.

The ten interviews chosen for this work were selected as
following: first, we initially filtered our corpus to only include
video format (YouTube). This meant that our human-raters
would be able to utilize paralinguistic and visual information in
their evaluations in addition to the speakers’ verbal behaviour.
Filtering created a subset of 137 eligible interviews (approxi-
mately 20% of the entire corpus). From this, we grouped in-
terviews into categories based on the host network (no eligible
videos were identified for ABC or MSNBC). We then randomly
selected three interviews from CNN, three from Fox, two from
NBC, and two from CBS. These selections were spot-checked
to ensure we had captured a range of speaker demographics,
and interviews of varying length. See Table A.1 for information
on each of the 10 interviews included in the validation study,
including a link to the video.

Our eight human-raters were known to the first and second
authors and volunteered to take part in the survey, dedicating
roughly two hours to watch and rate the videos. All raters were
adults (18+), and spoke English as a first or second language.
Raters were not paid or reimbursed for their efforts.

An accompanying survey was devised to capture raters
evaluations of each interview. This was conducted online via
SurveyMonkey, under a free basic plan (see https://www.
surveymonkey.com/). For each interview, raters were re-
quired to answer five questions. Four of these questions were
targeted at each outcome metric, with the final question an over-
all assessment of the responses of the interviewee. Answers
could be given on an ascending 1−10 rating scale, where higher
scores indicated a more positive evaluation. Table A.2 details
the questions asked.

All human raters completed the survey, for all 10 inter-
views, generating 80 observations. All rates watched the videos
in the same order. Some rates watched all the videos in a single
sitting and some over the course of several days. See Table A.3
for the anonymised raw data collected.

Figure A.1 reports the normalised distribution of ratings
across the ten interviews for each outcome metric, overlaid by
the corresponding computational score. By comparing the in-
terviews to each other, we can clearly identify those interviews
the human-raters felt were better or worse. For example, the
tenth interview acquired the lowest scores for each of the four
metrics. Inspection of the video file of this interview revealed
that it was characterised by high levels of argumentation and
interruption. We note that the agreement between the overall
computational score and the the overall human rating of the in-
terviews (As shown in Figure 1 in the paper) was better then the
agreement between the computational and human scores of any
of the individual metrics.

B. Comparison of tree-based ensemble
learning algorithms

Here we describe the the alternative models tested in this work.
Our task was characterised as a series of supervised regres-

sions, where each outcome measure would be used as the target
feature. Our predictors, described in Section 2.3 of the paper,

were collated from a large number of features based on bag-of-
words models (see Table B.1). We tested the performance of
four popular decision tree supervised learning algorithms: ran-
dom forest, extra trees, gradient boosting, and XGBoost. We
used the python library Scikit-Learn to implement each
algorithm, using the default hyper-parameters (with the excep-
tion of the number of estimators, which was set at forty), and
validated the models’ performance via K-fold cross validation,
with k=10.

Tables B.2, B.3, B.3 and B.4 report the full set of RMSE
means and standard deviations when features were trained using
a random forest, extra trees, gradient boosting and XGBoost,
respectively.

To compare model performance we used the best perform-
ing model for each algorithm when predicting the overall suc-
cess score. In each case, this was the All features model. Dif-
ferences in mean RMSE between the algorithms was slight,
with random forest, gradient boosting, and XGBoost all gener-
ating an average RMSE=0.095, with extra trees slightly lower
at 0.094. To test for any statistical differences between the algo-
rithms, we performed a one-way analysis of variance (ANOVA)
on the RMSE scores for each fold. The ANOVA was performed
having first confirmed the absence of outliers. The assumption
of normality was satisfied via a non-significant Shapiro-Wilk’s
test (p> .05). Similarly, equality of the variance of differ-
ences between algorithms was assumed via a non-significant
Mauchly’s Test of Sphericity (p> .05). The output of the
ANOVA revealed no statistically significant effect between the
four algorithms: F (3, 27) = 0.273, p > .05. The models were
therefore comparable, and the algorithm reported in the paper is
the random forest.

C. Specificity
Of the four outcome metrics we explored, only our measure
of specificity failed to exceed the baseline (see Table B.2). In
this section we highlight our motivation behind specificity as an
outcome in a political interview, and offer insight into why we
did not observe a reduction in model error when specificity was
the outcome measure.

Our measure of specificity was broadly influenced by work
in police interrogation methods [19]. Here, the success of an in-
terrogation is determined by, amongst other factors, the extent
to which the suspect or witness introduces previously unknown
information (also known as information yield). The yield of the
suspect’s speech is assessed over a sliding fifteen-minute win-
dow, and scored via a Likert-type scale on the degree of specific
information provided. Specific information in this instance per-
tains to references to people, places, times, and dates, and ref-
erences to motive and criminal opportunity.

The time taken to manually identify and label this infor-
mation motivated us to develop an automated solution. Named
Entity Recognition (NER) was chosen as names, places, times,
and dates are types of named entity, and are commonly sought
features in information retrieval tasks. We used spaCy’s pre-
trained NER to identify named entities in interviewee speech
turns. Of the eighteen entity types recognised, we selected
twelve we felt were relevant in a political context (see Ta-
ble C.1). We ignored any repetition of named entities, instead
taking the count of unique references only. To create a nor-
malised score, we divided the count of unique named entities
by the number of noun phrases (a sequence of words where the
head word is a noun) produced by the interviewee. We found
that our computational measure performed comparably with

https://www.surveymonkey.com/
https://www.surveymonkey.com/


Table A.1: Demographic information of the ten interviews used in the validation study, and links to video files

Network Interviewer Interviewee Length (mins:secs) Link (https://www.youtube.com/)

Fox Chris Wallace Stephen Miller 13 : 25 /watch?v=vXUWHk7sqe0
CBS Gayle King Ivanka Trump 7 : 03 /watch?v=XRLdnBpEMAA
NBC Chuck Todd Beto O’Rourke 7 : 53 /watch?v=1ZG6pku pWY
CNN Jake Tapper Rudy Giuliani 15 : 21 /watch?v=Tn7MsHcamdU
CBS John Dickerson Marco Rubio 9 : 17 /watch?v=RsY06MOgXj0
CNN Wolf Blitzer Eric Swalwell 9 : 08 /watch?v=zf7ygAN2vf4
Fox Tucker Carlson Tulsi Gabbard 5 : 56 /watch?v=ZuUaAyYzBwc
NBC Chuck Todd Hakeem Jeffries 8 : 11 /watch?v=v1d1PU9nr24
Fox Chris Wallace Val Demings 10 : 41 /watch?v=leNmghMf5wI
CNN Anderson Cooper Kellyann Conway 25 : 53 /watch?v=-otxWE6dBxk

Table A.2: Manual validation survey questions, high responses, and low responses per outcome measure

Specificity
Question How informative were the interviewee’s responses to the interviewer’s questions?
High Response Provided a lot of specific information
Low Response Did not provide any factual information irrespective of the question

Clarity
Question To what extent did the interviewee express themselves in a clear manner?
High Response Straightforward, easy to understand, only one interpretation is possible
Low Response Vague, ambiguous, impossible to understand, bears no relevance to actual events

Relevance
Question How relevant were the interviewee’s responses to the interviewer’s questions?
High Response Interviewee stayed on track and addressed the question
Low Response Interviewee typically did not address the question

Diversity
Question Were the interviewee’s answers repetitive or diverse?
High Response Interviewee used a broad range of words and phrases
Low Response Interviewee repeated a small number of words or phrases throughout

Overall
Question Considering your previous answers, how would you rate the overall quality of the inter-

viewee’s responses in this interview?
High Response Very high quality, easy to follow, with a consistently high level of information provided
Low Response Very poor quality, difficult to follow, with little relevant or specific information provided
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Figure A.1: Normalised distribution of human ratings for specificity (top left), clarity (top right), diversity (bottom left), and relevance
(bottom right). X refers to the normalised computational score predicted per interview, using all features
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Table A.3: Raw scores provided by each rater per interview on the manual validation task

Interview Participant Specificity Clarity Diversity Relevance Overall

1

1 9 2 10 8 8
1 9 2 10 8 8
2 6 2 3 3 2
3 8 4 9 6 5
4 3 3 7 4 3
5 7 1 7 1 2
6 6 5 9 8 7
7 3 3 9 4 3
8 10 1 8 8 4

2

1 3 8 9 5 6
2 1 2 2 2 2
3 4 4 4 5 4
4 7 10 10 9 9
5 7 7 8 8 8
6 9 8 7 7 9
7 5 7 8 9 6
8 2 2 3 8 1

3

1 9 8 9 6 8
2 5 2 2 3 2
3 5 8 10 5 8
4 8 8 8 8 8
5 8 8 7 9 8
6 7 9 10 7 9
7 10 9 10 10 10
8 5 6 7 4 6

4

1 6 7 5 6 6
2 4 4 3 3 3
3 3 6 3 5 5
4 3 2 5 3 4
5 9 9 9 7 8
6 9 2 1 7 4
7 2 3 1 4 3
8 5 6 10 8 7

5

1 8 10 10 6 8
2 10 10 10 8 10
3 8 9 8 8 9
4 8 7 8 7 8
5 9 8 9 8 8
6 10 8 10 8 9
7 5 5 8 4 5
8 5 1 6 7 5

6

1 8 10 10 6 8
2 10 10 10 8 10
3 8 9 8 8 9
4 8 7 8 7 8
5 9 8 9 8 8
6 10 8 10 8 9
7 5 5 8 4 5
8 5 1 6 7 5

7

1 8 10 10 8 9
2 9 10 10 7 9
3 3 5 7 5 6
4 9 8 8 8 9
5 10 8 10 8 9
6 3 7 7 5 4
7 6 4 7 6 6
8 8 9 9 8 8

8

1 9 10 9 7 9
2 7 10 9 8 8
3 8 10 9 7 9
4 9 9 9 10 9
5 10 8 9 10 9
6 7 8 8 7 7
7 6 7 5 7 6
8 3 4 3 4 4

9

1 5 7 6 5 5
2 6 8 10 8 9
3 1 1 2 2 1
4 8 8 9 7 8
5 8 2 3 5 4
6 4 5 5 7 6
7 4 3 5 6 5
8 2 2 3 3 2

10

1 1 1 3 1 1
2 1 2 3 1 1
3 1 2 4 2 1
4 5 5 7 6 6
5 1 1 2 1 1
6 1 2 1 1 3
7 1 1 1 1 1
8 1 1 3 2 2



Table B.1: Number of features per model

Model Features

Local (All) 640
NG Only 527
LC Only 70
DR Only 43
Global 13
Meta 10
Loc. + Glo. 653
All 663

Figure C.1: Relationship between rank-ordered actual and pre-
dicted values for specificity using all features

how a human-being would evaluate specificity (Figure A.1),
with the computational score falling within one standard devia-
tion of the mean human rating in 70% of cases.

Figure C.1 shows that our specificity measure was not well
predicted by our model. This may be application specific, as
specificity is not a clear objective for the majority of political
interviewers. This is further validated when fitting a linear re-
gression to the normalised human ratings. Removing specificity
did not have a major impact on the fit of the linear regression,
reducing the R2 from 0.92 to 0.91.

We decided to include the specificity measure in the paper
as it may be of use to similar applications under a different do-
main, in particular, criminal justice.

D. Feature analysis for diversity, relevance
& clarity

Figure D.1 illustrate the prominent features for the diversity,
relevance, and clarity metrics. Interestingly, we observed that
the maximum branching factor difference negatively correlated
with both clarity and relevance. This indicates that interview-
ers who matched the syntactic depth of the interviewee gener-
ated clearer, and more relevant responses. Similarly, average
semantic relatedness positively correlated with clarity and rele-
vance, meaning that interviewers who consistently followed the
semantic quality of the interviewee also led to better outcomes.
These findings are consistent with the view that shortened lin-
guistic distances align with collaborative social outcomes.

Curiously, while the maximum branching factor difference
negatively correlated with relevance, minimum branching fac-
tor difference positively correlated. This suggests that becom-
ing too similar, at least on a syntactic level, had a detrimental
impact on how relevant the interviewees’ responses were. Po-
tentially, the minimum branching factor is capturing a linguis-
tic distinction between the two roles, the interviewer is asking
questions, and the interviewee is answering. Our models also
utilise phrases that are highly-specific to the interviewer, such as
the bigrams do you, and you say. Perhaps unsurprisingly, these
features correlate negatively with our outcome measures. This
suggests that divergence of these phrases by the interviewer
aligned with clearer, and more diverse responses from the in-
terviewee.

The most prominent feature over all the models was in-
terview length in relation to the diversity measure. This rela-
tionship is a known consequence of using the type-token ratio
(TTR) to measure language diversity. Additionally, the effect is
likely being amplified by the wide range of interview lengths
within our corpus. Alternative approaches that could be ex-
plored in future, such as content diversity or redundancy, are
detailed in [22].

Figure D.2 compares the predicted and computationally
calculated rank for all interviews for clarity, diversity and rele-
vance. Diversity presents the most linear shape, although this is
most likely due to its strong correlation with interview length.
Both relevance and clarity appear less linear then the overall
success measure shown in Figure C.1.

E. Error analysis
We performed an exploratory error analysis on the model (all
features), plotting the absolute errors against each of the top
ten important features and the score itself. We observed an in-
creased model error at the extremes of the distribution of overall
success scores (see Figure E.1), but no other pattern emerged.
Specifically, we note a concentration of higher error at the top
end of the distribution. This is a result of the random forest
not being able to extrapolate outside of the training set, and the
sparsity of data-points at the tail ends of the distribution.

F. Hyper-parameter tuning
Hyper-parameter tuning was performed on the best performing
model when predicting the overall success measure (All fea-
tures model). We used nested cross-validation (CV) to identify
the optimal settings of the random forest. To prevent data leak-
age between training and testing sets, we performed two sets of
K-fold loops, often referred to as an outer and inner loop. The
outer loop operates in an identical manner to a standard K-fold,
creating K distinct folds from the data. Then, within each outer
fold, we perform another, typically smaller K-fold to optimise
parameters. In this work, we maintained K=10 to evaluate the
model, and set K=3 to define hyper-parameters.

We used the GridSearchCV package from
Scikit-Learn to test a range of possible values for
six random forest hyper-parameters. The search range for each
hyper-parameter (see Table F.1).

We found that the default random forest performed equiv-
alently well as the optimised model (default: M= 0.095,
SD=0.007; optimised: M= 0.094, SD=0.012), indicating we
had reached a point of diminishing returns. Results of a paired-
samples t-test confirmed that there was no statistical difference
between the default and optimised models.



Table B.2: Mean (±SD) RMSE scores per model iteration for Random Forest

Model Specificity Clarity Diversity Relevance Overall

B1 0.157±0.012 0.144±0.016 0.158±0.016 0.142±0.011 0.15±0.014
B2 0.153±0.012 0.138±0.017 0.123±0.012 0.129±0.014 0.117±0.013

Local (All) 0.157±0.012 0.128±0.013 0.114±0.013 0.125±0.012 0.106±0.011
NG Only 0.158±0.013 0.129±0.013 0.115±0.013 0.126±0.013 0.105±0.01
LC Only 0.16±0.01 0.134±0.018 0.123±0.007 0.133±0.015 0.115±0.011
DR Only 0.158±0.01 0.134±0.015 0.121±0.008 0.137±0.014 0.111±0.011
Global 0.162±0.012 0.133±0.016 0.118±0.015 0.120±0.010 0.105±0.009
Meta 0.173±0.013 0.160±0.016 0.081±0.008 0.153±0.008 0.12±0.007
Loc. + Glo. 0.156±0.012 0.124±0.010 0.108±0.014 0.115±0.010 0.101±0.01

All 0.156±0.012 0.124±0.011 0.075±0.007 0.115±0.009 0.095±0.007

Table B.3: Mean (±SD) RMSE scores per model iteration for Extra Trees

Model Specificity Clarity Diversity Relevance Overall

B1 0.157±0.012 0.144±0.016 0.158±0.016 0.142±0.011 0.15±0.014
B2 0.162±0.012 0.138±0.018 0.124±0.012 0.133±0.014 0.118±0.013

Local (All) 0.158±0.013 0.13±0.012 0.111±0.014 0.126±0.013 0.101±0.012
NG Only 0.157±0.013 0.128±0.011 0.114±0.013 0.127±0.014 0.102±0.012
LC Only 0.161±0.01 0.132±0.017 0.124±0.009 0.132±0.014 0.117±0.01
DR Only 0.157±0.009 0.135±0.015 0.119±0.007 0.132±0.014 0.112±0.01
Global 0.162±0.014 0.133±0.013 0.117±0.015 0.117±0.008 0.103±0.01
Meta 0.197±0.014 0.175±0.011 0.089±0.008 0.174±0.013 0.132±0.008
Loc. + Glo. 0.157±0.015 0.123±0.01 0.106±0.013 0.116±0.01 0.1±0.011

All 0.157±0.012 0.124±0.009 0.075±0.007 0.115±0.01 0.094±0.007

Table B.4: Mean (±SD) RMSE scores per model iteration for Gradient Boosting

Model Specificity Clarity Diversity Relevance Overall

B1 0.157±0.012 0.144±0.016 0.158±0.016 0.142±0.011 0.15±0.014
B2 0.153±0.012 0.138±0.017 0.123±0.012 0.129±0.014 0.117±0.013

Local (All) 0.158±0.012 0.135±0.013 0.111±0.012 0.127±0.01 0.104±0.01
NG Only 0.156±0.013 0.133±0.013 0.112±0.013 0.125±0.012 0.106±0.01
LC Only 0.16±0.009 0.133±0.018 0.123±0.006 0.133±0.013 0.114±0.009
DR Only 0.157±0.011 0.132±0.015 0.123±0.007 0.131±0.015 0.11±0.011
Global 0.161±0.013 0.131±0.014 0.118±0.014 0.116±0.011 0.104±0.009
Meta 0.159±0.01 0.143±0.016 0.075±0.007 0.138±0.012 0.109±0.008
Loc. + Glo. 0.156±0.014 0.126±0.011 0.104±0.013 0.118±0.011 0.099±0.01

All 0.157±0.014 0.127±0.01 0.073±0.01 0.117±0.012 0.095±0.006

Table B.5: Mean (±SD) RMSE scores per model iteration for XGBoost

Model Specificity Clarity Diversity Relevance Overall

B1 0.157±0.012 0.144±0.016 0.158±0.016 0.142±0.011 0.15±0.014
B2 0.156±0.011 0.135±0.018 0.123±0.011 0.133±0.01 0.116±0.012

Local (All) 0.161±0.012 0.132±0.011 0.11±0.012 0.124±0.013 0.103±0.008
NG Only 0.16±0.013 0.132±0.012 0.115±0.011 0.126±0.012 0.103±0.008
LC Only 0.16±0.01 0.136±0.017 0.12±0.008 0.135±0.014 0.114±0.013
DR Only 0.161±0.01 0.133±0.014 0.121±0.006 0.129±0.015 0.108±0.011
Global 0.166±0.015 0.138±0.014 0.12±0.012 0.12±0.011 0.106±0.009
Meta 0.164±0.013 0.149±0.016 0.077±0.008 0.143±0.011 0.113±0.007
Loc. + Glo. 0.159±0.013 0.124±0.009 0.104±0.013 0.117±0.011 0.101±0.008

All 0.16±0.013 0.124±0.009 0.076±0.009 0.117±0.012 0.095±0.008



Table C.1: Named Entity classes used to measure specificity

Entity Type Class Label

Person PERSON
Nations, Religions, Political Groups NORP
Infrastructure FAC
Organizations ORG
Countries, States GPE
Non-GPE Locations LOC
Battles, wars EVENT
Named laws LAW
Absolute dates DATE
Times less than a day TIME
Money MONETARY
Measurements QUANTITY

Min BF Diff
Av. Sem. Rel.
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Figure D.1: Correlation of the top ten features for predicting relevance, clarity, and diversity using the ’all features’ model

Figure D.2: Relationship between rank-ordered actual and predicted for clarity (left), diversity (centre), and relevance (right) using all
features
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Figure E.1: Relationship between the absolute model errors (y axis) and actual score (x axis) when predicting overall success with the
all features model

Table F.1: Range of hyper-parameter settings used in the grid-search

Description Parameter Range of Values

Number of trees n estimators 40, 80, 120, 160
Max. depth of trees max depth No Maximum., 10, 15
Max. features to consider when splitting node max features n estimators,

√
n estimators, log2 n estimators

Min. samples to split a node min samples split 2, 3
Min. samples at a leaf node min samples leaf 1, 2, 3
Min. impurity decrease required to split node min impurity decrease 0.0, 0.1



G. A note on diversity as a success measure
in political interviews

Diversity was included as a success measure in an attempt to
capture the degree of openness expressed by the interviewee.
A reduction in lexical diversity has been linked with decep-
tive behaviour in speech [22]. There is also tentative support
to the claim that measures of lexical diversity predict misinfor-
mation [23]. However, we acknowledge that the level of di-
versity does not always reflect the quality of an interviewee’s
verbal behaviour. There are circumstances where political com-
munication is aided by lower rates of linguistic diversity. For
example, repetition of particular phrases may be used to em-
phasise key messages during an election campaign. We might
also expect politicians to deliberately use a smaller vocabulary
in order to appeal to a greater majority of voters. However,
we do not believe this detracts from our overall approach. Our
model is flexible and can easily fit our accommodation features
to an improved measures of conversational outcomes.

H. A note on transcriptions generated from
secondary sources

The transcripts used in this study were secondary sources de-
rived from opportunistic sampling of online repositories. We
have therefore performed additional pre-processing to ensure
both accuracy and consistency. First, we spot-checked the accu-
racy of the transcription against video footage of the interview,
if available on YouTube. Whilst we could only locate video
footage for approximately 20% of the corpus, we were satisfied
with the general quality of the transcripts. We did, however,
remove twelve interviews that had been heavily edited.

We assumed that the networks used different transcription
services to generate the transcripts. We therefore performed
extensive pre-processing to ensure a suitable level of inter-
network consistency within the corpus. All transcripts used an
orthographic method of transcription. This means they used
standard spelling, and did not include any false starts or filler
utterances such as ’er’ or ’umm’. A proportion of the corpus
did include symbols that were used to indicate hesitation or
interruption. For example, a speech turn that was interrupted
was often appended with a ’–’ sequence, and attempts to re-
establish the conversational floor often prepended with the same
sequence. Similarly, a hesitation was often marked with a ’
- ’ sequence. Whilst a possible source of accommodation in
their own right, there was insufficient coverage of these non-
linguistic behaviours to motivate their inclusion in this work.
As such they were removed.

I. Availability of python scripts
The python scripts used in the transcript pre-processing, out-
come and accommodation modelling steps described in sec-
tion 2 can be found at https://github.com/cookie1986/interview-
accommodation under an MIT licence.
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