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Abstract—E-graphs are a data structure that compactly rep-
resents equivalent expressions. They are constructed via the
repeated application of rewrite rules. Often in practical applica-
tions, conditional rewrite rules are crucial, but their application
requires the detection – at the time the e-graph is being
built – that a condition is valid in the domain of application.
Detecting condition validity amounts to proving a property
of the program. Abstract interpretation is a general method
to learn such properties, traditionally used in static analysis
tools. We demonstrate that abstract interpretation and e-graph
analysis naturally reinforce each other through a tight integration
because (i) the e-graph clustering of equivalent expressions
induces natural precision refinement of abstractions and (ii)
precise abstractions allow the application of deeper rewrite rules
(and hence potentially even greater precision). We develop the
theory behind this intuition and present an exemplar interval
arithmetic implementation, which we apply to the FPBench suite
of benchmarks.

Index Terms—abstract interpretation, interval arithmetic,
static analysis, e-graph

I. INTRODUCTION

Equivalence graphs, commonly called e-graphs, provide
a compact representation of equivalence classes (e-classes)
of expressions, where the notion of equivalence is with re-
spect to some concrete semantics [1]. The recent egg tool
introduced e-class analysis, a technique to enable program
analysis over an e-graph, attaching analysis data to each e-
class [2]. This paper formalises some of the concepts required
to produce e-class analyses enabling e-graph growth via con-
ditional rewrites. We show that partitioning expressions into
e-classes gives rise to a natural lattice-theoretic interpretation
for abstract interpretation (AI), resulting in the generation
of precise abstractions. Figure 1 provides an example, in
which interval analysis of two equivalent expressions can be
combined to produce tighter enclosing intervals than either one
alone.

We develop the general theoretical underpinnings of AI
on e-graphs, exploiting rewrites to produce tight abstractions
using a lattice-theoretic formalism. We also provide a sound
interpretation of cycles naturally arising in e-graphs, corre-
sponding to extracting abstract fixpoint equations, and show
that a known interval algorithm, the Krawczyk method, results
as a special case.

This paper extends and generalises a talk abstract presented
at the EGRAPHS workshop [3] in the following ways:
• formalization of AI with e-graphs in a lattice-theoretic

setting

Fig. 1. E-graph containing equivalent real arithmetic expressions x
x+y

and
1

1+(y/x)
in the root e-class (at the top). Intervals are associated with each

e-class. Input constraints are propagated upwards via an e-class analysis.

• relating fixpoints to e-graph cycles to automatically dis-
cover iterative abstract refinement methods,

• an interval arithmetic implementation with associated
expression bounding results.

A short background overview is provided in §II. In §III we
present the theoretical application of AI to e-graphs and then
demonstrate its viability using an interval arithmetic imple-
mentation in §IV. Lastly, in §V we present results generated
by this implementation.

II. BACKGROUND

The e-graph data structure is commonly found in theorem
provers and solvers [4], [5]. It represents multiple expressions
as a graph (e.g. Figure 1), where the nodes represent func-
tions, grouped together into collections of e-classes. Edges
connect nodes to e-classes, as a given sub-expression may
be implemented using any of the nodes found in the child
e-class. E-graphs are often combined with an optimisation
technique called equality saturation [2], [6], [7], which deploys
equivalence preserving transformations to monotonically grow
the e-graph and discover alternative equivalent expressions.
A recent resurgence of e-graph research [2] has seen the
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technique applied to floating point numerical stability analy-
sis [8], mapping programs onto hardware accelerators [9] and
optimizing linear algebra [10]. Some works make heavy use
of conditional rewrites of the form φ ⇒ ` → r, for example
x 6= 0 ⇒ x/x → 1, which require the e-graph construction
algorithm to determine whether the rewrite is applicable in
each case [2], [11].

AI has primarily been applied to static program analy-
sis [12], where computer programs are automatically analyzed
without actually being executed. It uses the theory of abstrac-
tion to consider over-approximations of the program behaviour
using alternative interpretations [13], [14]. Existing tools have
incorporated term rewriting to refine their abstractions [15].
Previous work on abstract congruence closure [16], [17] has
exploited e-graphs to combine different abstract domains [18],
but we are not aware of existing work exploiting the tight
interaction between AI and e-graph construction.

III. THEORY

A. Abstraction

From a theoretical viewpoint, AI [14] is concerned with
relationships between lattices, defined via Galois connections.

Definition 1 (Lattice). A lattice is a partially ordered set
(poset) 〈L,≤〉, such that ∀a, b ∈ L the least upper bound
(join) a t b and the greatest lower bound (meet) a u b both
exist.

Definition 2 (Galois connection). Given a poset 〈C,v〉, cor-
responding to the concrete domain, and a poset 〈A,4〉, corre-
sponding to the abstract domain, a function pair α ∈ C → A,
γ ∈ A → C, defines a Galois connection iff

∀P ∈ C. ∀P ∈ A. α(P ) 4 P ⇔ P v γ(P ),

written 〈C,v〉
α

�
γ
〈A,4〉.

The pair (α, γ) define the abstraction and concretization
respectively, allowing us to over-approximate (i.e. abstract)
concrete properties in C with abstract properties in A.

Definition 3 (Sound abstraction [14]). P ∈ A is a sound
abstraction of a concrete property P ∈ C iff P v γ(P ).

Consider expressions evaluated over a domain D. By impos-
ing a canonical ordering on the variable set, we work within
a defined subset I ⊆ Dn, which encodes a precondition on
the set of (input) variable values. Now consider a (concrete)
semantics of expressions J·K· ∈ Expr→ I → D, where Expr
denotes the set of expressions, so JeKρ denotes the interpreta-
tion of expression e under execution environment (assignment
of variables to values) ρ ∈ I . Let JeK = {JeKρ | ρ ∈ I}.
The e-graph data structure encodes equivalence under concrete
semantics, which we shall now define precisely.

Definition 4 (Congruence). Two expressions ea and eb are
congruent, ea ∼= eb, iff JeaKρ = JebKρ for all ρ ∈ I .

Lemma 1. If ea ∼= eb and P is a sound abstraction of JeaK,
then P is a sound abstraction of JebK.

workqueue = e g r ap h . c l a s s e s ( ) . l e a v e s ( )
whi le ! workqueue . i s e m p t y ( ) :

s = workqueue . dequeue ( )
f o r n in s . nodes ( ) :

s k i p n o d e = f a l s e
f o r c h i l d s in n . c h i l d r e n ( ) :

i f c h i l d s . u n i n i t i a l i z e d :
workqueue . enqueue ( s )
s k i p n o d e = t r u e

i f s k i p n o d e :
c o n t in u e

e l i f s . u n i n i t i a l i z e d :
s . d a t a = make ( n )
s . u n i n i t i a l i z e d = f a l s e
workqueue . enqueue ( s . p a r e n t s ( ) )

e l i f ! ( s . da t a <=meet ( s . da t a , make ( n ) ) ) :
s . d a t a = meet ( s . da t a , make ( n ) )
workqueue . enqueue ( s . p a r e n t s ( ) )

Fig. 2. Pseudocode for abstract property propagation in an e-graph.

Proof. by definition of congruence.

This lemma implies that a sound abstraction of one expres-
sion in an e-class is a sound abstraction of all expressions in
the e-class. Precision refinement relies on the following.

Lemma 2. For any two sound abstractions P a and P b of P ,
the meet P a u P b is also a sound abstraction of P .

Proof. P v γ(P a) (sound abstraction)⇒ α(P ) 4 P a (Galois
connection) and similarly P v γ(P b) ⇒ α(P ) 4 P b.
Therefore α(P ) 4 P a u P b (meet definition) and hence
P v γ(P a u P b) (Galois connection).

B. Application to E-graphs

Consider an e-graph. Let S denote the set of e-classes, and
Ns the set of nodes in the equivalence class s ∈ S. With each
e-class associate an abstraction A ∈ A and write AJsK =
A. Interpreting a k-arity node n of function f with children
classes s1, ..., sk, using the abstracted function f̄ = α ◦ f ◦ γ:

AJnK = f̄(AJs1K, ...,AJskK). (1)

0-arity nodes represent either constants with exact abstractions
in A or variables with user specified abstract constraints.

For acyclic e-graphs, we propagate the known abstractions
upwards using Eqn. 1, taking the greatest lower bound (meet)
across all nodes in the e-class.

AJsK =
l

n∈Ns

AJnK (2)

The propagation algorithm is described in Figure 2, where

make(n) = AJnK and meet(A1, A2) = A1 uA2.

These functions are analogous to those described for an e-class
analysis in [2], but replace their join function with a meet.

In the abstract domain the notion of equivalence is different,
na, nb ∈ Ns 6⇒ AJnaK = AJnbK, which results in tighter
abstractions since the meet corresponds to the most precise



abstraction in A. In the algorithm in Figure 2, by initializing
the workqueue with only the modified e-classes after ap-
plication of a rewrite, the abstract properties of the e-graph
can be evaluated on the fly. On-the-fly evaluation facilitates
conditional rewrite application as more precise properties are
discovered during construction and is used in §IV.

A positive feedback loop is created by combining AI and
e-graphs. A larger space of equivalent expressions is explored
as more rewrites can be proven to be valid at exploration
time. In turn, expression abstractions are further refined by
discovering more equivalent expressions, allowing even more
valid rewrites, and the cycle continues. Additionally, several
equivalent expressions may contribute to the tight final ab-
straction. An example is shown in §IV.

C. Cyclic E-graphs and Fixpoints

Cyclic e-graphs arise when an expression is equivalent to a
sub-expression of itself with respect to concrete semantics, for
example e×1 ∼= e. Let e ∼= e′ where e appears as a subterm in
e′. Treating other subterms as absorbed into the function, let
f : D → D be the interpretation of e′ as a (concrete) function
of JeKρ, so that – in particular – f(JeKρ) = JeKρ due to the
congruence. Abstracting f via a sound abstraction f̄ , yields the
corresponding abstract fixpoint equation a = a u f̄(a) where
the meet operation arises from Equation 2.

Now consider the function f̃(a) = au f̄(a). The decreasing
sequence defined by an+1 = f̃(an) corresponds to applying
the abstract property propagation around a cycle in the e-graph,
given an initial sound abstraction a0 of JeK.

Lemma 3. α(JeK) is a fixpoint of f̃ .

Proof. α(JeK) = α(f(JeK)) (congruence) 4 f̄(α(JeK)) (sound
abstraction). Hence f̃(α(JeK)) = α(JeK)u f̄(α(JeK)) = α(JeK)
(meet definition).

Lemma 4. an is a sound abstraction of JeK for all n ∈ N.

Proof. By induction, JeK v γ(a0) and assume JeK v γ(an).
JeK = f(JeK) v γ(f̄(an)) (sound abstraction of f ). Hence
an+1 = an u f̄(an) is a sound abstraction of JeK (Lemma 2)
for all n.

Collecting these results, for some fixpoint a∗ we have

α(JeK) 4 a∗ 4 . . . 4 a1 4 a0.

Thus computing abstractions around the loop refines the
abstraction and is guaranteed to terminate if the lattice 〈A,4〉
satisfies the descending chain condition, as any finite abstract
domain will [19]. The algorithm in Figure 2 will correctly
apply abstract property propagation around loops, terminating
if the sequence an converges in a finite number of steps.

IV. IMPLEMENTATION

To demonstrate the theory described above, we implement
interval arithmetic (IA [20]) for real valued expressions using
the extensible egg library, as an e-class analysis [2]. We
consider a concrete domain corresponding to sets of extended

TABLE I
ADDITIONAL IA OPTIMIZATION REWRITES.

Class Rewrite Condition
Common Terms ab± ac→ a(b± c) True

Binomial 1/(1− a)→ 1 + a/(1− a) 0 6∈ J1− aK
Frac plus Int b/c± a→ (b± ac)/c 0 6∈ JcK

Division [20] a/b→ 1/(b/a) 0 6∈ JaK ∪ J(b/a)K
a/b→ 1 + (a− b)/b 0 6∈ JbK

Factorise a2 − 1→ (a− 1)(a+ 1) True
Elementary ln(ea)→ a True

real numbers, i.e. C = P(R ∪ {−∞,+∞}) where P de-
notes the power set. We associate each expression with a
binary64 [21] valued interval (a finite abstract domain),

A = {[a, b] | a ≤ b, a, b ∈ binary64} ∪ {∅}.

In this setting the abstraction and concretization functions are
as follows (infima and suprema always exist in this setting):

α(X) = [round down(inf X), round up(supX)] (3)
γ([a, b]) = [a, b] (4)

α(∅) = ∅, γ(∅) = ∅ (5)

To ensure correctness, we use ‘outwardly rounded IA’ which
conservatively rounds upper bounds towards +∞ (round up)
and lower bounds towards −∞ (round down) [20], [22]. For
particular operators, e.g.

√
x, we are unable to control the

rounding mode, so conservatively add or subtract one unit in
the last place for upper and lower bounds respectively. Pro-
vided NaNs do not appear in the input expression evaluation
they are not generated by the e-graph exploration.

The abstraction of a function f is defined as above
f̄ = α ◦ f ◦ γ. We will denote AJsK ∈ A, for class s. Under
this interpretation Eqn. 2 uses the intersection operation, the
meet operation of the lattice of intervals.

AJsK =
⋂
n∈Ns

JnK (6)

This relationship generates monotonically narrowing interval
abstractions. 0-arity nodes represent either constants associated
with degenerate intervals or variables taking user defined
interval constraints.

The classical problem of interval arithmetic is the so-called
‘dependency problem’, arising because the domain does not
capture correlations between multiple occurrences of a single
variables. Consider x ∈ [0, 1], under classical IA:

AJx− xK = [0, 1]− [0, 1] = [0− 1, 1− 0] = [−1, 1]. (7)

Within the e-graph framework we discover, via term rewriting,
x − x ∼= 0 and by Eqn. 6 the expression is now correctly
abstracted by the (much tighter) degenerate interval [0, 0].

For this work we use a set of 39 rewrites, defining equiva-
lences of real valued expressions. The basic arithmetic rewrites
are commutativity, associativity, distributivity, cancellation and
idempotent operation reduction across addition, subtraction,
multiplication and division. Conversion rewrites describe the
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Fig. 3. Relative interval width (optimized width/naive width) and runtime
boxplots to demonstrate the distribution of results on the FPBench suite.

natural equivalence between the power function and multipli-
cation/division. Table I contains the remaining rewrites.

Conditional rewrites such as the first “Division” rewrite are
only valid on a subset of the input domain. By attaching
additional information through an AI we can prove validity
of such rules. Eqn. 8 illustrates how conditional rewrites can
be applied, as IA can confirm that 0 6∈ Jx + yK, in order
to remove multiple occurrences of variables, improving the
expression bound produced by IA.

x+ y

x+ y + 1
→ ...→ 1

1 + 1
x+y

(8)

To show how multiple expressions in an e-class can indepen-
dently contribute to a tight abstraction, consider the following
equivalent expressions for variables x ∈ [0, 1] and y ∈ [1, 2].

1− 2y

x+ y
∈
[
−3,

1

3

]
(9)

∼=
x− y
x+ y

∈ [−2, 0] (10)

∼=
2x

x+ y
− 1 ∈ [−1, 1]. (11)

All three reside in the same e-class within an e-graph with
associated interval [−3, 13 ]∩ [−2, 0]∩ [−1, 1] = [−1, 0]. Thus,
given the first expression 9, we are capable of generating a
tight interval enclosure using two distinct equivalent expres-
sions for the upper (10) and lower (11) bounds.

V. RESULTS

Based on the theory described above we describe a real
valued expression bounding tool in Rust using the egg library.
All test cases were run on an Intel i7-10610U CPU.

A. Benchmarks

We evaluate the implementation using 40 benchmarks from
the FPTaylor [23] supported subset of the FPBench benchmark
suite [24]. We allow four iterations of e-graph rewriting for
these experiments. Figure 3 summarises the distribution of the
results, showing a modest average interval reduction over naive
IA, but a substantial improvement in particular cases. There is
little correlation between the runtime and bound improvement.

Across this benchmark set the inclusion of IA and domain
specific rewrites increased the number of e-graph nodes by 4%
on average but by up to 84% in some cases. This demonstrates

the additional rewrites that have been applied as a result of
combining e-graphs and AI. The overhead of incorporating
IA into the e-graph increased runtimes by less than 1% on
average.

B. Iterative Method Discovery

The Krawczyk method [20] is a known algorithm to gen-
erate increasingly precise element-wise interval enclosures of
solutions of linear systems of equations Ax = b, where A is
an n-by-n matrix and b is an n-dimensional vector. Letting X0

be an initial interval enclosure of the solutions, the Krawcyzk
method uses an update formula of the form

Xk+1 =
(
Y b+ (I − Y A)Xk

)
∩Xk, where Y = mid(A)−1.

mid(A) is the element-wise interval midpoint of the matrix.
This sequence, via interval extension and intersection, corre-
sponds to a sequence of tightening bounds on the solution x,
which converges provided the matrix norm ||I − Y A|| < 1.

We consider a specific instance of this problem,(
1 y
y 1

)(
x1
x2

)
=

(
b1
b2

)
, where y ∈

[
−1

2
,

1

2

]
. (12)

Xk+1
1 =

(
b1 − yXk

2

)
∩Xk

1 , X
k+1
2 =

(
b2 − yXk

1

)
∩Xk

2 . (13)

A naive solution in the concrete domain, x = A−1b, yields,

x1 =
1

1− y2
(b1 − b2y), x2 =

1

1− y2
(b2 − b1y). (14)

Initialising the e-graph with these expressions, the solution
for x1 can be automatically rewritten such that Eqn. 13 arises
in the abstract domain. The “Binomial” rewrite from Table I
introduces a loop into the e-graph, which we combine with
distributivity rules and “Common Terms” from Table I,

x1 = b1 − y
(
b2 + (b2y

2 − b1y)
1

1− y2

)
. (15)

Applying, “Frac plus Int”, and cancelling

x1 = b1 − y(b2 − b1y)
1

1− y2
= b1 − yx2. (16)

When a cycle is introduced, the IA update procedure will
continue to iteratively evaluate the loop, taking the intersection
with the previous iteration as described in §III-C.

VI. CONCLUSION

We present a combination of abstract interpretation and
e-graphs, demonstrating the natural interpretation of e-class
partitions as meet operators in a lattice, resulting in precise
abstractions. Of key importance is the positive feedback loop
between e-graph exploration and abstraction refinement, as the
precision then allows the application of conditional rewrite
rules, which can be applied in many domains and may
further improve abstraction precision. An exemplar interval
arithmetic implementation has demonstrated the value of this
idea, including automated discovery of a known algorithm
for iterative refinement. Future work will explore additional
abstract domains in this setting which can capture variable
relations, using the resulting tool for program optimization.
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