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Slip at the edge of complete contacts

Daniel J Riddoch and David A Hills

Abstract
We describe an asymptotic method for calculating the size of a zone of partial slip at the edge of a complete contact of
arbitrary edge angle and coefficient of friction. Above a critical coefficient of friction the contact remains stuck, and this
critical value is explored. A distributed dislocation method is used and the use of different types of numerical
quadrature is explored. The size of the slip zone, and its dependence on the contact edge angle and coefficient of
friction, are explored.
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Introduction

A complete contact is one whose extent is defined by
a discontinuity in the gradient profile of one of the
contacting surfaces. In layman’s terms, this means
that the edge of the contact is located at the corner of
either of the contacting bodies. This gives rise to a
stress singularity at the edge of the contact1–3 pro-
vided that the contact remains intimate throughout
the initial contact region, that is, the loading is such
that the corner does not lift off. The singularity has
to be relieved, and this can be done by plasticity,4 by
the nucleation and propagation of cracks,5 or by local
frictional slip along the contact interface. This contact
may persist across then entire interface (i.e. two sepa-
rate bodies in contact), or it may be a closed pair of
crack faces,6 we consider the former in this case.

It is the last of these effects which we will consider
here. The creation of a zone of partial slip is depen-
dent on the loading, as described by Riddoch and
Hills7 the intimate contact must be maintained by the
correct signs of the stress intensity factors, and as laid
out by Hills and Dini8 the coefficient of friction must
be lower than the value of the traction ratio implied
within the dominant eigenvector of the Williams
solution.9

Calibrations of external loads to the stress intensity
factors have shown that the contact will tend to
spread outwards under purely normal loading,7,10,11

so initial investigations focus on outward slip.
Applying Coulomb’s friction law throughout, this

analysis will endeavour to model the slip and deter-
mine the size of the slip zone. Furthermore, previous

work has considered only the three-quarter plane
problem,12,13 which applies, for example to the prob-
lem of a square block indenting a half-space. In this
analysis, this will be extended to consider a variety of
indenter angles. Additionally, previously it has been
stated that the size of the slip zone, when normalised
by a value calculated from the Williams solution, is
independent of the coefficient of friction, which has
now been found to be incorrect. Figure 1 shows a
sketch of the resultant system, with the slip zone pres-
ent at the edge of contact.

Asymptotic formulation

It has already been mentioned that the Williams solu-
tion9,14 will be used extensively. This provides an
asymptotic solution to determine the state of stress in
the neighbourhood of the apex of a wedge. This solu-
tion places the origin of a polar coordinate system at
the edge, a feature which is preserved throughout this
analysis.

The state of stress is dominated by two terms,
which are the symmetric (here after referred to as
mode I) and anti-symmetric (hereafter referred to as
mode II) eigensolutions. For a wedge having total
internal angle greater than 180o, the mode I term is
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singular, and for a wedge having total internal angle
greater than 257:4o, the mode II term is also singular.

The stress is described by the formula

sij(r, u)=KIf
I
ij(u)r

lI�1 +KIIf
II
ij (u)r

lII�1:::

+higher order terms:
ð1Þ

where KI and KII are the mode I and mode II stress
intensity factors respectively, fIij and fIIij are the mode I
and mode II eigenvectors, and lI and lII are the mode
I and mode II eigenvalues respectively.

This solution may be used as a bilateral solution,
as an adhered complete contact is equivalent to a
wedge whose internal angle is the sum of a half-plane
and the internal angle of the contacting body.
Therefore, this solution can be used as the basis for
this analysis. At this stage, we will define two con-
stants, that we find from the Williams solution and
which will be useful later.

We begin by recalling the work of Hills and Dini4

and using this to extract the characteristic length
dimension of the problem. Before doing this, how-
ever, it will be useful to align the eigensolution of the
problem to the slip line with new basis vectors along
the interface, as this will allow easier normalisation
later on. Quite simply this is done by applying
multipliers to the vectors; Ko

I =KIf
I
uu(f), and Ko

II=
KIIf

II
uu(f), where KI,KII are the two stress intensity

factors, f is the angle of the interface line to the bisec-
tor of the combined body, and fIuu, f

II
uu are the mode I

and mode II parts of the suu component of the
Williams eigenvector, respectively. So, we can now
extract our length dimension, denoted by d0 and
defined by

d0 =
Ko

I

Ko
II

����
����

1
lII�lI

:

The second important quantity we wish to define
is the implied size of the slip zone, as indicated by the
ratio of the tractions given by the Williams solution.

This is the point where � fcsuu =sru, which is the
Coulomb friction law, where fc is the coefficient of
friction. The Williams solution provides this point,
which we denote as c0, given by

c0 = � (fc � gIru)K
o
I

(fc � gIIru)K
o
II

� � 1
lII�lI

: Therefore ð2Þ

c0
d0

= � fc � gIru
fc � gIIru

� � 1
lII�lI

, ð3Þ

where gIru =
fIru(f)

fI
uu
(f)

, and gIru =
fIIru(f)

fII
uu
(f)

, are the eigenvec-
tor ratios.

Finally, we will use our inherent length scale (d0)
to normalise the problem. This will allow us to relate
problems under different loads or different condi-
tions. Drawing again on the work of Churchman and
Hills10 and Hills and Dini4 we see that we may write
the stresses as

suu(r)

G0
=

r

d0

� �lI�1
+

r

d0

� �lII�1
, ð4Þ

sru(r)

G0
= gIru

r

d0

� �lI�1
+ gIIru

r

d0

� �lII�1
, ð5Þ

where G0 =Ko
I

lII�1
lII�lI

Ko
II

lI�1
lI�lII

:

Dislocation formulation

Turning now to the problem of modelling the actual
extent of slip, we require a knowledge of the size of
the slip zone, and a method of modifying the stresses.
The former will be something we will return to later,
but for the latter, we will use dislocations. Crystalline
dislocations are used in material science to represent
discontinuities in lattice structures, although that is
not how we will use them here.

Instead we are interested in the stress and displace-
ment fields that the dislocations create. The form of
these is well known and understood15–18 and will be
used extensively. These influence functions are known
for a dislocation in an infinite plane, and so a method
must be found to determine the influence of such dis-
locations in a semi-infinite wedge, a system which, as
we have said, is analogous to an adhered complete
contact. This has been done previously by considering
a single dislocation and using distributions of disloca-
tions to clear the free surfaces of induced traction,19–
22 and in this analysis we will use the results calcu-
lated by Riddoch and Hills.22

Denoting the wedge influence of a dislocation by
�Gijk(r, u, j, r), where i corresponds to the Burgers vec-
tor of the dislocation, jk is the stress component
under consideration, r is the observation radius from
the origin (placed at the edge of contact, or apex of

Figure 1. Sketch of a slip zone at the edge of a complete
contact of arbitrary internal angle.
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the wedge), u is the observation angle from the wedge
bisector, j is the radius of the dislocation core from
the origin, and r is the angle of the dislocation core.
We place a distribution of dislocations along the con-
tact interface, from the edge of contact to the actual
slip stick boundary, which we denote by c: The den-
sity of this distribution is denoted by Br: This distri-
bution of dislocations is sketched in Figure 2 which
shows the dislocations placed along the slip interface
of the problem, as shown in Figure 1.

Consequently, the corrected stresses along the con-
tact interface can be written as

sru(r,f)

G0
= gIru

r

d0

� �lI�1
+ gIIru

r

d0

� �lII�1
+ :::

2m

p(k+1)

ðc
0

Br
r

d0

� �
�Grru

r

d0
,f, j,f

� �
dj,

for 04r4c,

ð6Þ

suu(r,f)

G0
=

r

d0

� �lI�1
+

r

d0

� �lII�1
+

2m

p(k+1)
:::

ðc
0

Br
r

d0

� �
�Gruu

r

d0
,f, j,f

� �
dj,

for 04r4c:

ð7Þ

Within the slip region, the Coulomb friction law must
be satisfied, meaning

0= (gIru � fc)~r
lI�1 + (gIIru � fc)~r

lII�1 + :::ðc
0

B̂r(j)( �Grru(~r,f, j,f)� fc �Grru(~r,f, j,f))dj,

for 04r4c,

ð8Þ

where ~r= r
d0

and B̂= 2m

p(k+1)B, for values of
04r4c: Equation 8 is the governing equation, and
the solution to this equation will solve the problem
fully. There are, however, two unknowns in the

problem. The first of these is the dislocation density,
and the second is the size of the slip zone c: The first
may be found by inverting the integral equation, but
the second must be found by some other method.

A numerical inversion

Considering, first, the inversion of the integral equa-
tion, we note that we will require a numerical method.
This is because the dislocation kernels, as found by
Riddoch and Hills22 do not have a closed-form
expression. The kernels are, however, singular in
nature, so equation 8 is a Cauchy singular integral
equation.

Numerical quadrature

Consequently, a Gauss-Chebyshev quadrature will be
employed as described by Erdogan et al.23 This quad-
rature deals with the singularity by separating the
behaviour into a well-behaved unknown function,
denoted by u, and a fundamental function, denoted
v, which encapsulates the power order singularity,
but is well known and can be removed from the equa-
tion by use of the quadrature.

The choice of this fundamental function determines
the type of behaviour that can be expected of the solu-
tion at the end points. However, there are only two
types of behaviour which are accounted for, square
root singular, and square root bounded, and so with
either possible at both ends, giving a total of four dif-
ferent cases, as laid out in Table 2.2 by Hills et al.24

We must consider the state of stress at the edge of
contact and the slip stick boundary. Considering,
first, the latter, in the adhered case, the stress at this
point is bounded, with each component’s value being
a finite number, this will still be true as the contact
slips. So here the corrective term must be bounded.

The question is not so easily resolved at the con-
tact edge end of the interval however. The stresses in
the bilateral solution are singular at the edge of con-
tact, specifically, they are power order singular, and
the power is given by lI � 1: When the interface is
slipping the form may not immediately be so obvious.
However, at a very local level, for r\ \ c, the trac-
tions will be similar in form to those which arise when
the contact is in full sliding. The nature of the trac-
tions when the contact is sliding is known, and they
are asymptotically described by a power order singu-
lar term, with order ls � 1, where ls is an eigenvalue
solution, as described by Conminou.25 We have gen-
erally that lI 6¼ ls, and 0\ lI \ 1, 0\ ls \ 1 so we
can say that, for any L. 0, there exists e . 0 such
that jelI�1 � els�1j.L: This is fairly trivially proven,
and hence no proof is provided here. The implication
of this however, is that the difference between the
adhered and sliding solutions grows without bound
as r approaches 0, the edge of contact. Therefore, a
singular behaviour at the edge of contact is expected.

Figure 2. Sketch showing the distribution of dislocations
along the slip interface.
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Applying singular-bounded quadrature

Consequently, a singular-bounded quadrature is
employed. It should be noted that this is the same
quadrature as was applied by Churchman and Hills.12

Table 2.2 (case II) in Hills et al.24 then gives us a
method for choosing our collocation and integration
points.

Before we can apply the quadrature, we must first
transform the integral. The quadrature requires the
integration range to be ½�1, 1�, so we must find a
transformation from the current range ½0, c�: This is
achieved fairly easily by the applying the transform
~r= c

2
(s+1), for the collocation points, and

j = c
2 (t+1) for the integration points. It is useful at

this stage to note that dj
dt =

c
2 :

Applying these substitutions gives us the integral
equation

(gIru � fc)
c

2
(s+1)

� �lI�1
+ (gIIru � fc)

c

2
(s+1)

� �lII�1

+ :::

ð1
�1

B̂r(t) �Grru
c

2
(s+1),f,

c

2
(t+1),f

� ��

�:::fc �Gruu

c

2
(s+1),f,

c

2
(t+1),f

� �� c
2
dt=0,

for� 14s41:

ð9Þ

At this point it is worth noting that generally
Gijk(r, u, j, r)= 1

g
Gijk(gr, u, gj, r), so we may rear-

range the equation to find

(fc � gIru)
c

2
(s+1)

� �lI�1
+ (fc � gIIru)

c

2
(s+1)

� �lII�1
:::

=

ð1
�1

B̂r(t)( �Gruu(s+1,f, t+1,f)� :::

fc �Grru(s+1,f, t+1,f))dt, for� 14s41:

ð10Þ

This equation is now in a form where the quadrature
may be applied. This leads us to a set of N simulta-
neous equations in N unknowns, which are described
by

(fc�gIru)
c

2
(sk+1)

� �lI�1
+(fc�gIIru)

c

2
(sk+1)

� �lII�1
:::

=
XN
i=1

Wiu(ti) �Gruu(sk+1,f,ti+1,f)� :::ð

fc �Grru(sk+1,f,ti+1,f)Þ
ð11Þ

where Wi is the weight function described by Hills
et al.24 and u is such that v(s)u(s)=Br(s), with v

the fundamental function also described by Hills et al.
The values u(ti) are the N unknowns which we solve
the equations for.

The size of the slip zone

Having in hand this inversion method, we now come
to solve the set of equations. By use of the transforms,
this requires knowledge of the size of the slip zone c:
No condition has been explicitly set out for this, and
the problem is fully specified.

Two constraints. Previous studies12,13 have utilised a
pair of conditions to calculate the size of the slip zone.
This is done by guessing the size of the slip zone, and
then checking these conditions to ensure that the esti-
mated slip zone size satisfies both.

These conditions are derived from two basic phe-
nomena. The first of these is that Coulomb’s law is
satisfied at a given point if and only if the point is in
the slip region. For a point within the slip region, as
specified by equation 8, this condition will be auto-
matically satisfied by any solution to equation 8.
Points outside of the slip zone satisfy this condition:

jsru(r)j\fcsuu(r), for r.c, with suu(r)\0:

ð12Þ

The second condition within the slip region is
derived from the orthogonality condition. This
requires the velocity of a slipping point to have the
same sign as the shear stress at that point. As this
analysis is quasi-static in nature, we do not have a rig-
orous definition of velocity. However, it is a sufficient
approximation to consider instead the slip displace-
ment. Slip displacement is defined as the integral of
the dislocation density, since the dislocations them-
selves represent the displacement discontinuity. We
may write this condition as

sign(h(r)) : =sign

ðr
0

Br(j)dj

� �
=sign(sru(r))

for 04r4c:

ð13Þ

We now have four conditions, summarised in
Table 1. The first of these, condition A, is automati-
cally enforced by the solution of the integral equa-
tions. Similarly, the last of these, condition D, is
automatically true; no dislocations are present along
the interface in the stick region and so no displace-
ment is caused. We can, however, use the remaining
two conditions, B and C, to constrain the solution.

Table 1. Table of conditions in the slip and stick regions.

Slip region Stick region

Tractions jsru(r)j= fcsuu(r)(A) jsru(r)j\
fcsuu(r)(B)

Displacements sgn(h(r)) = sgn(sru(r))(C) h(r) = 0(D)

Riddoch and Hills 3239



These place restrictions on the solution in the slip
region and the stick region, and it may appear that
these conditions are sufficient.

Experience has shown that in this case, the condi-
tions, whilst necessary, are not sufficient to define a
unique size for the slip zone. Figure 3 shows the stres-
ses implied by a slip zone which is too small, accord-
ing to our findings later in the ‘‘Results’’ section. It
can be observed that both conditions described here
are satisfied, the left hand plot shows (solid black line)
that no slip is implied in the slip region. Furthermore,
it can easily be observed that both the shear traction
(solid red line) and the slip displacements(right hand
plot) are positive throughout the slip zone. This would
therefore appear to be a valid solution.

Figure 4 shows the stress in the same contact, but
in this case we specify a slip zone size that we believe
to be too large. Once again, it can be observed that

there is no violation of the slip condition in the stick
region (solid black line, left hand plot) and that slip
displacement and shear stress have the same sign
(right hand plot and solid red line, left hand plot
respectively.) So this too would appear to be a valid
solution.

This is obviously problematic, the constraints are
not only providing multiple solutions, but rather a
range. Experience shows for example that for
c=100c0, both conditions are still satisfied. So,
given the correct solution is not given by the mini-
mum viable solution, nor the maximum, but rather
some point in the middle, we must utilise other con-
straints to determine the solution. This is made more
difficult by the fact that the state of stress is qualita-
tively similar for both cases, as is highlighted in
Figure 5 which overlays the stresses found for each of
these cases.

The sliding solution. As previously mentioned by
Churchman and Hills12 it may be useful to consider
the solution for a sliding block, as developed by
Conminou.25 This gives rise to an eigenvalue, denoted
ls, calculated by finding the solution to

0=cos(pls)(sin(lsf)
2 � l2

s sin(f)
2)+ :::

sin(pls)(sin(2lsf)+ lssin(2f))

2
+ :::

ð14Þ

fcsin(pls)(ls(1+ ls)sin(f)
2): ð15Þ

However, the sliding asymptote is valid only for a
very small region of the slip zone. We do not have to
hand, a bound of the range of validity of this solu-
tion, so we cannot say with any confidence that this
approximation will be accurate at any point a finite
distance from the contact edge. The solution is exact

Figure 4. Plot of the stresses in a slipping square edge
indenter with a slip zone of size c = 3:5c0.

Figure 3. Plot of the stresses in a slipping square edge
indenter with a slip zone of size c = 2:5c0.

Figure 5. Overlay plot showing the stresses produced for
two different slip zone sizes, small being c = 2:5c0, and large
being c = 3:5c0.
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only when r\ \ c, or r
c! 0, neither of which gives

a quantifiable value of r, below which the solution is
always valid, or above which the solution is never
valid. It is therefore difficult to enforce conditions
based on this approximation.

Slip displacements

The orthogonality condition requires the calculation
of the slip displacements, which must be of the same
sign as the shear stress. It is tempting to find other
conditions. Perhaps the most obvious of these to
consider is the prevention of a turning point in the
slip displacements. Intuitively it may seem that
the slip displacements must be strictly increasing from
the slip stick boundary to the edge of contact.

However, this statement has been made without
justification, and no immediate justification is appar-
ent. Slip displacements are calculated from disloca-
tion densities, and hence reference discontinuities, so
no relation between the stress and the strain may be
drawn. So, whilst it may appear at first sight to be
obvious, we cannot say with any certainty that this
will be the case, and so we can not enforce a condi-
tion based on this assumption.

Similarly, it could be argued that the slip displace-
ment should not show singular behaviour at the edge
of contact either. It is tempting therefore to enforce
the condition that the minimum value of the second
derivative of slip displacement with respect to posi-
tion is bounded at the edge of contact. In practical
terms this would mean that the slip length at which
this value is minimised would be the true slip length.
However, this is once again making assumptions
about the form of the slip displacements, which can-
not be rigorously justified. It is, therefore, not possi-
ble to strictly enforce any constraints on the slip
displacements, beyond the use of the orthogonality
condition.

An alternative numerical approach

All of the problems described above present a serious
obstacle to accurately determining the size of the slip
zone. Let us consider a different approach. Earlier, we
described at length, how and why we chose the singu-
lar bounded quadrature. Let us now consider an alter-
native conclusion.

The choice of end point behaviour forces a choice
between square root singular and square root
bounded. The reason that we are forced to make this
choice is so that any singular behaviour can be sepa-
rated. This means that we have one function whose
form is known precisely (the fundamental function)
and the other part of the function, u, which is
unknown, well behaved, and allows us to sample at
chosen points without worrying about singular beha-
viour being missed. However, if the power order
behaviour of the solution is not close to 6 1

2 , then u

will display behaviour that is either near singular or
near bounded.

For this reason, when we find that the power order
behaviour of the solution is not close to either square
root bounded or square root singular, but rather lies
somewhere in between, particularly if the behaviour is
weakly singular (i.e. of power order much smaller
than square root) we can investigate the behaviour as
if the problem is bounded.

We may employ the bounded-bounded quadrature
when investigating the slip problem. The power order
behaviour of the corrective term will be of order
ls � lI, but this is not close to square root singular.
So we apply the same transformations as we did for
the singular-bounded case, albeit with the selection of
collocation, integration and weights being from the
bounded-bounded type. This gives us N+1 equa-
tions in N unknowns, given by

(fc�gIru)
c

2
(sk+1)

� �lI�1
+(fc�gIIru)

c

2
(sk+1)

� �lII�1
:::

=
XN
i=1

Wiu(ti) �Grru(sk+1,f,ti+1,f)�:::ð

fc �Gruu(sk+1,f,ti+1,f)Þ:
ð16Þ

This is a fact that we will use to our advantage
later; for now though it presents a problem. The
method of solution for these equations is to invert a
coefficient matrix. This is only possible if the matrix
to be inverted is square. So, the way we tackle this
problem is to select one of the equations arbitrarily
and remove it. This leaves us N equations, and the
system is invertible once again. This of course is an
approximation, but provided that N is sufficiently
large (in practice anything larger than about 30
appears sufficient) this is an appropriate approxima-
tion to make.

Determining the size of the slip zone

Now having the inversion method in hand, we must
now determine the true size of the slip zone. Once
again this cannot be done using pre-existing condi-
tions, and so an estimate must be used and refined.
We still use the friction law (equation (12)) and the
orthogonality condition (equation (13)) as these
conditions must still be fulfilled. Once again,
though, these conditions prove necessary but not
sufficient.

However, we have another condition that we can
utilise. The equation which we discarded when invert-
ing the system must still be satisfied. This is a far
stricter condition, and enforces the friction law at the
point described by the equation. In practice, this
equation is written as
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� (fc � gIru)
c

2
(sk +1)

� �lI�1
� :::

(fc � gIIru)
c

2
(sk +1)

� �lII�1
+ :::

XN
i=1

Wiu(ti) �Grru(sk +1,f, ti +1,f)� :::ð

fc �Grru(sk +1,f, ti +1,f)Þ,

and the value of this expression is minimised. This
gives us the slip zone size which satisfies the friction
law at this point, which is therefore, the true size of
the slip zone.

Results

Throughout these results, the primary output will be
the size of the slip zone c: For ease of comparison, this
will always be normalised, either by the initial guess
for the size of the slip zone determined from the ‘‘full
stick’’ solution and violation of friction law, c0, or by
the problem’s inherent length dimension, d0:

Let us first examine the problem of a square block
indenting a half plane. This problem has previously
been solved by Churchman and Hills12 who suggested
that the ratio c

c0
=2:4, and does not vary with the

coefficient of friction. However, several issues have
been found with this work, as discussed by Riddoch
and Hills22 and here in ‘‘ Two Constraints’’ section.
Consequently, we do not believe this result to be
accurate, and we have found that for a coefficient of
friction of fc =0:3, the correct value is c

c0
=2:79, to

three significant figures. Figure 6 shows the stresses
that this solution implies and the slip displacements.
It can clearly be seen that both constraints are
satisfied.

The next question we then ask is, ‘‘Was
Churchman right to say that the ratio c

c0
is invariant

with friction?’’ Again, our results would suggest that
this is not true. However, the dependence is weak.
Figure 7 shows how that ratio c

c0
varies for the above

problem when we vary the coefficient of friction
between 0:24fc40:45: These values are chosen care-
fully: for very small coefficients of friction, the slip
zone will be very large, and thus it risks moving out
of the range of validity of the asymptotic solution.
On the other hand, for large coefficients of friction
there will be a very small slip zone. Hills and Dini8

found a bound on this, and as we approach it the size
of the slip zone becomes sufficiently small for prob-
lems to arise, as discussed later in this section.

Next we come to the issue of varying the angles of
the contact defining block involved. In practice it is
unlikely that two sharp corners would meet perfectly,
thus meaning that it makes most sense to consider a
block of differing angle indenting a half-space.
Furthermore, any slip displacements will destroy the
nature of the contact. The method described can
tackle such problems, although they are of little prac-
tical interest. It is worth noting, however, that in the
case where the contacting bodies have the same geo-
metry so the contact interface is colinear with the
wedge bisector, then no slip will occur, as by definiton
only mode I stresses are present, in which case the
ratio of shear to normal stress is invariant with dis-
tance from the origin.

Returning to the problem of a block indenting a
half-plane, turning now to the result when we vary
the angle of the indenter between 0:45p and
0:55p, Figure 8 shows how the ratios c

c0
and c

d0
vary.

We have continued to use a to quantify the variation
of the angle, although in fact what we vary is the
internal angle of the indenter. This is because several
bounds exist on the viable solution region, and these
are most easily expressed using a:

Figure 6. Plot showing the tractions along the slip interface
before (dotted) and after (solid) slip, and the slip
displacements for a square block indenting a half-space with
the coefficient of friction being 0.3.

Figure 7. Plot showing the variation of slip zone size for a
square block indenting a half-space for varying coefficients of
friction.
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The first of these bounds is that the mode II eigen-
solution remains singular in nature. This is only the
case provided that lII \ 1, this is true only for
2a . ’257o =1:4278pc: The second constraint is
related to the value of c0, whose value depends on
the coefficient of friction and the wedge angle,
through the properties of the dominant eigenvector.
As can be seen in Figure 9 as we let a approach 0:8p,
the values of both c0 and c0

d0
approach 0. This means

two things; firstly it means that any small numerical
error becomes very significant; and secondly it means
that the gradient of the stress ratio is small.

When the ratio c0
d0
is small, the Williams solution is

dominated by mode I terms. This means, as a first
order approximation, that we may consider the stres-
ses to be given by just the mode I term,

sij(r)=KIf
I
ijr

lI�1,

meaning that the stress ratio is given by

sru(r)

suu(r)
=

KIf
I
rur

lI�1

KIf
I
uur

lI�1
=

fIru
fIuu

,

and is thus invariant with r, over the range where the
second term really can be neglected. In practice, of
course, there will be an influence from terms in the
expansion other than the mode I terms, but that term
will dominate, and hence the stress ratio will be nearly
constant. This means that any small pertubation, in
either the coefficient of friction or the angle, will lead
to a large change in the apparent value of c0:

The variation of d0, c0, and c0
d0
, with the angle is

shown in Figure 9, and their variation with the coeffi-
cient of friction is shown in Figure 10, although d0
does not vary with coefficient of friction.

Comparison of inversion methods

As we progress with the bounded-bounded quadra-
ture, it is perhaps wise to check that the results that
we get using this method are not dissimilar to those
found using the singular-bounded quadrature, when
supplying that method with the correct size for the
slip zone. Figure 11 shows an overlay plot of the stres-
ses and slip displacements for the two methods for a
square indenter with coefficient of friction fc =0:3:
As can be seen, the results are almost identical for the

Figure 8. Plot showing the variation of slip zone size for
block of various internal angles indenting a half-space.

Figure 9. Plot showing the variation of d0, c0

d0
and c0 with

angle a.

Figure 11. Plot showing an overlay of the stresses calculated
using the bounded-bounded (red) and singular-bounded (blue,
dashed) quadratures.

Figure 10. Plot showing the variation of d0, c0

d0
and c0 with

coefficient of friction.
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stresses, and the offset is only very marginally differ-
ent for the slip displacements. This gives us confidence
in the correctness and value of the method introduced,
as the choice appears to have very little influence on
the calculated result.

Discussion

These results are satisfactory and make sense on an
intuitive level. However, so far several problems have
been left open in this analysis. The first of these, that
we will discuss is, ‘‘Why are the two conditions which
previously were sufficient, now only necessary, these
being the friction law and orthogonality conditions?’’

In attempting to answer this question, let us con-
sider briefly a different problem. Consider the prob-
lem of an semi-infinite incomplete contact, loaded so
as to produce a zone of partial slip at the contact
edge. These problems are not the same: the incom-
plete contact is uncoupled, that is changes in the nor-
mal traction or normal load will not affect the shear
traction and vice versa. Secondly, the contact pressure
is square root bounded at the contact edge. The
adhered shear traction is square root singular, and we
may use a distribution of dislocations to apply a cor-
rective term to model slip.

Happily, on this occasion, a simpler dislocation
kernel may be used, and Moore et al.26 were able to
find a closed form solution by inverting the integral
equation. This also gives us a true size for the slip
zone. However, using a dislocation formulation, we
can observe the state of stress generated if the mod-
elled slip zone size is forced to be either too small or
too large.

We denote the size of the slip zone calculated by
Moore et al. as dM:Figure 12 shows the surface trac-
tions and slip displacements calculated for a slip zone
90% of the true slip zone size. It can readily be seen

that both the friction law and orthogonality condi-
tions are fulfilled here. Similarly Figure 13 shows the
same tractions and displacements for a slip zone
110% the true size, once again both conditions are
fulfilled. Whilst in neither case does the form of the
slip displacement calculated (dashed red line) match
that which is found analytically (solid black line), nei-
ther case violates any of the conditions we are able to
set out. The slip displacements in these plots being
calculated by integrating equation 29 in the paper by
Moore et al.26

For all the reasons previously stated, these prob-
lems are not the same, and the behaviour of the stres-
ses is very different, most notably the corrected
solution is not singular. However, it is noteworthy
that the same problems arise when trying to determine
slip zone size in another semi-infinite contact, using
the same friction law and orthogonality conditions.

Sliding asymptote

We have already stated that the sliding solution may
not be used to constrain the slip solution with any
confidence as we are not able to say over what range
the asymptotic representation is correct. Even once
we have a solution that we are happy with this is a
difficult problem, as we do not have values for the
sliding stress intensity factor.

However, the sliding asymptote may be fitted to
our slip traction at the edge of contact, where an accu-
rate representation is expected. Doing this will obvi-
ously result in a very good match at the points which
we use for the fit, but it is instructive nevertheless, as
it gives an indication of how good an approximation
the sliding asymptote is throughout the slip region.

Figure 14 shows a comparison of the tractions
found using our method described above and the

Figure 12. Plot showing the surface tractions (left hand plot)
and slip displacement (right hand plot) for a slipping
incomplete contact with a slip zone 90% of the true size.

Figure 13. Plot showing the surface tractions (left hand plot)
and slip displacement (right hand plot) for a slipping
incomplete contact with a slip zone 110% of the true size.
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sliding asymptote, fitted at the edge of contact. The
ratio between the two (Figure 14, dashed black line)
is particularly instructive as it shows that the asymp-
totic approximation remains close to the calculated
traction for a large portion of the slip region.

Slip displacements

When discussing the slip displacements calculated
using the singular bounded quadrature, we stated that
we are unable to exclude the possibility of a turning
point in the slip displacement, but in all cases exam-
ined so far no turning point has been present. So the
question may be asked, does a turning point arise, or,
as expected, is no turning point present?

Figure 15 shows a normalised overlay of the slip
displacements found for five different cases for the
coefficient of friction (left hand plot) and for five dif-
ferent angles (right hand plot). It can be seen that the
form of each of these is broadly similar, and none dis-
plays a turning point behaviour. This is by no means
a rigorous proof, or an exhaustive examination, but it

is indicative that it seems extremely unlikely that a
turning point in slip displacement might be observed.

Conclusion

In this analysis, we have determined the size of a zone
of partial slip at the edge of a complete contact. We
have shown how the size of this slip zone varies with
changes in the coefficient of friction, and the contact
angle. This includes a correction of previously pub-
lished results. Furthermore, bounds have been placed
on the range of validity of the asymptotic solution,
and/or the existence of a slip region.

Additionally, we have discussed and explored two
different numerical methods, and the reasons for
choosing either method. Previous conditions used to
determine the size of the slip zone have been investi-
gated, and have proved insufficient. Alternative con-
straints have been explored and ruled out, although
these are shown to also be true, but not enforceable
as constraints. Finally, a method is arrived at using a
feature of one of the numerical methods, although
the choice of numerical quadratures has been shown
not to affect the solution.
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