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Although tissues are usually studied in isolation, this situation rarely occurs
in biology, as cells, tissues and organs coexist and interact across scales to
determine both shape and function. Here, we take a quantitative approach
combining data from recent experiments, mathematical modelling and
Bayesian parameter inference, to describe the self-assembly of multiple epi-
thelial sheets by growth and collision. We use two simple and well-studied
continuum models, where cells move either randomly or following popu-
lation pressure gradients. After suitable calibration, both models prove to
be practically identifiable, and can reproduce the main features of single
tissue expansions. However, our findings reveal that whenever tissue–
tissue interactions become relevant, the random motion assumption can
lead to unrealistic behaviour. Under this setting, a model accounting for
population pressure from different cell populations is more appropriate
and shows a better agreement with experimental measurements. Finally,
we discuss how tissue shape and pressure affect multi-tissue collisions.
Our work thus provides a systematic approach to quantify and predict
complex tissue configurations with applications in the design of tissue
composites and more generally in tissue engineering.
1. Introduction
Cells do not live in isolation; instead, they coexist and organize to form tissues
and organs. In particular, during tissue growth, cells do not behave as isolated
individuals, but sense their environment and direct their motion according to
the information they receive. The sum of all individual cells, behaving in a co-
ordinated manner and interacting with each other, can give rise to collective cell
migration, which is essential for many different phenomena in biology, from
wound healing and tumour invasion, to the formation of complex structures
during development [1,2]. Being such a fundamental process, much effort
has been devoted to decipher the basic physical principles behind collective
cell migration, both experimentally and from a modelling perspective [3,4].
Being able to connect models and experimental data is thus essential in order
to confirm the validity of mathematical models, as well as to gain further
mechanistic insights.

At the tissue scale, mathematical models are usually based on a continuum
description, where the cell density evolves according to a partial differential
equation (PDE). Arguably the most famous continuum model of tissue
spreading is the reaction–diffusion Fisher-KPP equation [5], which is based
on the assumption that cell movement is essentially random, and that cells
proliferate according to a logistic growth law. This model and variants of it
have been used to describe a variety of tissue formation experiments [6–8].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2023.0184&domain=pdf&date_stamp=2023-07-19
mailto:falcoigandia@maths.ox.ac.uk
https://doi.org/10.6084/m9.figshare.c.6729998
https://doi.org/10.6084/m9.figshare.c.6729998
http://orcid.org/
http://orcid.org/0000-0001-9832-2697
https://orcid.org/0000-0001-5819-1135
http://orcid.org/0000-0001-8819-4660
http://orcid.org/0000-0002-6304-9333
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230184

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

19
 J

ul
y 

20
23

 

From a biological perspective, however, the random
motion assumption is not very realistic, as cells are able to
sense the pressure exerted by neighbouring cells and direct
their movement according to this information [9]. When popu-
lation pressure is taken into account in continuummodels one
obtains the Porous–Fisher equation, which replaces the con-
stant diffusion coefficient in the Fisher-KPP equation by a
density-dependent function that increases as a power-law of
the density. One of the most interesting features about this
model is the appearance of compactly supported solutions,
which give rise to the sharp invasion fronts observed in
tissue formation experiments [10–13]. Of course, there are
additional effectswhich can play an important role in collective
cell motility and have been modelled using extensions of
the mentioned equations, such as cell–cell adhesion [14–17],
viscoelastic forces [1,18,19], interactions with the extracellular
matrix [20–22], heterogeneity in cell size [23,24] and cell-cycle
dynamics [25].

Mathematical models can thus be more or less complex
depending on the available data and the required level of bio-
logical detail, and they are a powerful tool to explore the impact
of different biologicalmechanisms on collective cellmovement.
So-called identifiability analysis methods [26,27] provide a sys-
tematic approach to relate model complexity to the type and
amount of experimental data, and are a first step towards
the estimation of model parameters. We say that a model is
structurally identifiable if different parameter values yield differ-
entmodel predictions. Hence, this is an intrinsic property of the
model which depends on whether, given infinite ideal data,
one can identify single values for the model parameters.
Such formal structural identifiability analysis is possible for
systems of ordinary differential equations [28,29], and for cer-
tain families of PDEs (e.g. age-structured [30]), but is more
challenging for reaction–diffusion equations. Added to this,
biological data are never infinite nor ideal which limits how
much insight we can gain from structural identifiability.

As a result, herewe explore the question of practical identifia-
bility [26] of two simple reaction–diffusion continuummodels—
namely the Fisher-KPP and Porous–Fisher equations—using
data from recent tissue formation experiments [19,31]. Practical
identifiability deals with finite and possibly noisy data, and
depends on the inference method, but at its core is motivated
by the same question: can we confidently identify estimates
for the different model parameters? Here, we follow the ideas
in [25,32] and use a Bayesian approach in order to obtain pos-
terior distributions for the different model parameters. Poor
identifiability in a Bayesian context is thus associated with
very broad posterior distributions indicating high uncertainty
for the associated parameters [33].

Ourwork reveals that bothmodels can be suitably calibrated
to reproduce the dynamics of freely expanding epithelia, with
the different model parameters being practically identifiable in
all considered settings. However, when tissues are not isolated
from each other and are allowed to collide as a result of motility
and proliferation during tissue growth, only the Porous–
Fisher model, which considers interactions between cells, is
able to describe the experimental data. This model, while
being relatively simple and having only three parameters, also
proves to be useful for understanding the dynamics of multi-
tissue collisions and, hence, for predicting steady-state tissue
configurations with applications in tissue engineering.

We structure the paper as follows; first, we describe the two
continuummodels and the inference approach taken. Then, we
estimate the different model parameters using comprehensive
experimental data of the growth of large, circular epithelia
(Heinrich et al. [19]). After confirming that the two employed
models are practically identifiable and that they can reproduce
data collected from these experiments, we validate our models
onmore complex experimental datasets detailing howmultiple
epithelia interact with each other during collision and healing
experiments (Heinrich et al. [31]). Using the obtained par-
ameter estimates, we explore whether the two models can
reproduce several tissue collisions experiments with very
different initial tissue geometries. Finally, we use the Porous–
Fisher model to quantify and characterize the dynamics of
multi-tissue collisions.
2. Simple models of tissue growth
We start by looking at simple models describing the growth
of a single epithelial monolayer tissue. We denote cell
density in the tissue by a continuous variable ρ(x, t) which
depends on space x and time t. Cell density is assumed to
change due to cell movement and local proliferation. Mass
conservation implies then that the density ρ satisfies the
continuity equation

@trþr � j ¼ rrfðrÞ, ð2:1Þ
where the flux j determines how cells move, r is the prolifer-
ation rate and f (ρ) is a crowding function which regulates
how density-dependent effects reduce net growth. For simpli-
city, we consider logistic growth given by f(ρ) = 1− ρ/K, with
K a saturation density or carrying capacity. Note that epi-
thelial tissues are well characterized to undergo contact
inhibition of proliferation, where cell cycling decreases as
cell density increases [19,34] and hence the logistic growth
assumption is reasonable—see also [35] for other possibilities.

A very simple model can be motivated by assuming that
cells move randomly following Brownian motion, which
corresponds to the well-known Fick’s Law of diffusion,
j ¼ �Drr. In this case, we obtain the Fisher-KPP equation

@tr ¼ DDrþ rr 1� r

K

� �
: ð2:2Þ

This model and related ones are particularly relevant to
describe tissue growth due to the presence of travelling
wave solutions, which are characterized by an invasion
front of fixed shape that propagates at a constant speed [5].

However, a more realistic model should account for the fact
that cell movement is not completely random and can be influ-
enced by the local cell density. A standard approach in order to
incorporate crowding effects into equation (2.1) results from
the assumption that the velocity is proportional to the gradient
of the density, so that cells move down population density
gradients. In other words, we write the flux as j = ρv, where v
represents the cell velocity and now assume that v ¼ �Drr.
This gives the following Porous–Fisher equation:

@tr ¼ Dr � (rrr)þ rr 1� r

K

� �
: ð2:3Þ

When there is no proliferation (r = 0), equation (2.3) corre-
sponds to a specific case of the well-known porous-medium
equation [36]. This equation is also related to Darcy’s Law
which links the velocity with the population pressure:
v ¼ �rPðrÞ. For the general porous-medium equation,
pressure and density are related via the power-law function
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Figure 1. Expansions of single tissues and model predictions. (a) Microscopy images in phase-contrast at different times for the expansion of a circular tissue with
initial diameter of 3.4 mm—taken from [49]. (b) Quantified experimental cell densities for the same expansion—data from [49]. (c) Experimental radial density
profile obtained after averaging the expansions of 11 tissues with the same initial condition—from [19]. (d ) Radial density profile from the Fisher-KPP model given
by equation (2.2). (e) Radial density profile from the Porous–Fisher model given by equation (2.3). Model parameters correspond to the maximum posterior
estimates. All densities thresholded at 10 cells mm−2. See figure 2 for individual density profiles at specific time points.
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P(ρ)∼ ρm−1, depending on the exponent m. During this work
and unless stated otherwise, we will assume m = 2. Note that
in the limit m→ 1, one obtains the linear diffusion case with
P(ρ)∼ logρ.

From a microscopic point of view, where one focuses on
individual cell trajectories, equation (2.2) corresponds to the
continuum limit of a system of non-interacting agents
which move randomly and can proliferate with a density-
dependent probability. The porous-medium equation with
m = 2 can also be derived from microscopic movement rules
when one takes into account volume exclusion [37–39],
starting from on-lattice [40,41] and also from off-lattice
agent-based models [11,42–44]. Further, the case with m = 3
can be identified as the mean-field limit of a system of inter-
acting agents with a particular diffusive scaling [45] and
has also been suggested as the simplest model to relate the
dispersal velocity to both the density and its gradient [46].

In the following, we connect equations (2.2) and (2.3) with
data from recent experiments studying the dynamics
of expanding and colliding epithelial monolayer tissues.
The two suggested models are solved numerically in two
spatial dimensions with the finite-volume numerical scheme
described in [47,48].
3. Single tissue expansions and parameter
estimation

In order to calibrate the two suggested models, we focus on
the experiments by [19]. In these, Heinrich et al. characterized
the expansion dynamics and growth of single circular epi-
thelial tissues using a Madin-Darby canine kidney (MDCK)
cell line. Initially, cells are cultured in a silicone stencil for
18 h and, after the stencil removal, tissues are allowed to
freely expand for 46 h, which enables each cell to undergo
two–three cell divisions given that the cell cycle duration is
around 16 h. Local densities are then quantified by counting
the number of nucleus centroids—for more details, we refer
to [19]. For our analysis, we only consider the measured
cell densities after the first 6 h of the experiment so that effects
caused by the stencil removal are negligible. In figure 1a, we
show snapshots from one such experiment using a circular
tissue with initial diamater of 3.4 mm—see figure 1b for the
quantified densities. The radial density profile resulting
from averaging 11 experimental replicates is shown in
figure 1c. Datasets used to reproduce these figures were
taken from [49]. See figure 2 for individual density profiles
at specific time points.
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Our experimental data then consists of many individual
measurements of the cell densities ρ(x, t), giving rise to the
dataset D ¼ frDðxi, tjÞgi,j. Here, the different measurements
are recorded every 20min, while the positions {xi}i corre-
spond to the centres of small voxels of 115 × 115 μm2. In
practice, and in order to keep the dimensionality of the
data sufficiently low, we will only use the densities corre-
sponding to the time points tj = 16, 26, 36, 46 h. Moreover,
and in order to minimize the effect of the stencil removal,
the model takes as initial condition the quantified density
profile after the first 6 h of the experiment. In order to connect
experimental data and models, we assume that the obser-
vations rD are noisy versions of the model-predicted
density ρ. A common approach in mathematical biology
[25,32] is to impose that the observation errors are additive,
independent and normally distributed with variance σ2. In
other words, we assume the following error model:

rDðxi, tjÞ ¼ rðxi, tjÞ þ 1, 1 � N ð0, s2Þ: ð3:1Þ

While this is a commonly employed approach, it may be
overly simplistic to assume the error model in equation (3.1).
For example, model misspecification is likely to introduce
spatial and temporal correlations [50]. A more comprehensive
quantification of the noise is left as a subject for future
investigation.
3.1. Parameter estimation via maximum likelihood
Both models—equations (2.2) and (2.3)—have three par-
ameters D, r, K to be estimated. Considering the variance of
the observation error as an extra parameter, we can write
them as a vector θ = (D, r, K, σ). With the error model given
by equation (3.1), we can explicitly write the log-likelihood
of observing the measured data

‘ðuÞ ¼ � 1
2

X
i,j

log (2ps2)þ rðxi, tjÞ � rDðxi, tjÞ
s

� �2 !
: ð3:2Þ

A direct approach to estimating the parameters in the
two models consists of maximizing this log-likelihood
as a function of the parameter vector θ, which gives a
maximum-likelihood estimator of the model parameters:
θML = argmaxθℓ(θ). In the case of a fixed noise parameter σ,
this is equivalent to minimizing the mean squared error
between model and data. Note, however, that whenever a
model is non-identifiable, maximizing the likelihood might
lead to misleading results [33]. This is thus only a first step in
our parameter inference analysis.

We perform the likelihood optimization using the par-
ameter inference toolbox pyPESTO [51]. This toolbox allows
for local optimization of the likelihood starting from an initial
guess of θ0. By randomly sampling a large number of initial
vectors θ0, we find the same local maximum in most of the
optimization runs. Additionally, this local maximum also
maximizes the likelihood among all the found local maxima.
In order to generate initial guesses of θ0, we sampled uniformly
on log-scale using the parameter bounds 10−2.5 < r < 101 h−1,
103 <K < 103.5 cells mm−2, 101 < σ < 103.5 cells mm−2, for both
models; and 102.5 <D < 104.5 μm2 h−1 for the Fisher-KPP
model, and 10−1.5 <D < 10−2.5 μm2 (cells h−1), for the Porous–
Fisher model. The maximum-likelihood estimators are
indicated using dashed lines in figures 3 and 4 for the
Fisher-KPP and Porous–Fisher models, respectively.

As stated earlier, only the experimental cell densities
corresponding to the time points tj = 16, 26, 36, 46 h were
used for the likelihood calculation in equation (3.2). This
was done to keep the computational costs of computing the
maximum-likelihood estimate at reasonable levels. Different
choices of these time points yielded similar results for the
maximum-likelihood estimate θML.
3.2. Bayesian inference
Here,we explore the question of practical identifiabilityof the Fisher-
KPP and Porous–Fisher models using a Bayesian approach. In
order to captureuncertainty in themodel parameters,weare inter-
ested inestimating theposteriordistributionPðujrDÞ,whichcanbe
calculated from Bayes’ theorem

PðujrDÞ/ PðrDjuÞpðuÞ,
where PðrDjuÞ is the likelihood of observing the measured data,
and π(θ) is the prior distribution of the parameter vector θ.
We assume the error model given by equation (3.1), and hence
the log-likelihood is given by equation (3.2). The priors for the
two considered models are assumed to be uniform on log-scale
using the bounds given in the previous section.
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In order to infer the posterior distribution, we use a
Metropolis–Hastings Markov chain Monte Carlo (MCMC)
sampler with adaptive proposal covariance, which is also
implemented in pyPESTO [51]. The Metropolis–Hastings
MCMC algorithm is a simple and popular choice for exploring
the parameter space [25,32], in which a Markov chain starts at
position θ, and accepts a potential move to θ* with probability
q ¼ minf1, Pðu�jrDÞ=PðujrDÞg. In this way, the Markov chain
tends to move towards high values of the posterior distri-
bution, while still allowing for transitions to regions of lower
probability in order to move away from local maxima. In this
context, poor identifiability of the parameters can be detected
by Markov chains that fail to converge towards a unimodal
peaked posterior distribution.
We run the MCMC algorithm starting from three different
initial guesses of θ for both models. In all cases, the Markov
chains converge rapidly to narrow and well-defined stationary
distributions—see electronic supplementary material, figures
S1 and S2 for plots of the chains and the univariate Gelman–
Rubin convergence diagnostics. In particular, our typical
Markov chain iterations are of length 12 000. Taking the last
5000 iterations of the three chains in each model, we obtain
the posterior distributions PðujrDÞ. In figures 3 (Fisher-KPP)
and 4 (Porous–Fisher), we show a plot matrix representation
of the univariate and bivariate marginal distributions, with
unimodal and approximately symmetric univariate densities.
We also observe an excellent agreement between the marginal
univariate modes and the maximum-likelihood estimates
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found in the last section. Note that for the twomodels, different
combinations of the parameters D, r, K can result in the same
invasion front speed, which explains the observed correlation
between these parameters in the bivariate densities in figures
3 and 4. However, we observe that there is only one set of par-
ameters maximizing the likelihood, and that these parameters
can be confidently identified given the small variance of the
posterior distribution.

All identified parameters liewithin the biologically feasible
bounds. In the linear diffusion case (Fisher-KPP), the univari-
ate modes are given by (D, r, K, σ) = (1073 μm2 h−1, 0.29 h−1,
5113 cells mm−2, 492 cells mm−2). Using an average density
of approximately 3000 cells mm−2, the estimated proliferation
rate is around approximately 0.1 h−1, which yields an esti-
mated division time around 10 h. This is consistent with the
characteristic division time for MDCK cells of 16–18 h given
that this timescale can vary significantly with cell size [52].
The carrying capacity can also be related to the typical cell
radius for MDCK cells. Although notable variability has been
reported [53], the MDCK cell radius a is estimated to oscillate
between a∼ 6 μmand a∼ 18 μm[54]. Assuming thatmaximum
densities in the monolayer are associated with hexagonal close
packing of cells, the maximum theoretical density is given by
K ¼ 1=ð2 ffiffiffi

3
p

a2Þ [55]. With our estimated carrying capacity
this yields an estimate of a∼ 8 μm, which again is consistent
with previous measurements, at least for cells in the bulk of
the tissue.

In the case of the Porous–Fisher model, we obtain the
univariate modes (D, r, K, σ) = (1.18 μm2 (cells h)−1, 0.21 h−1,
5319 cells mm−2, 427 cells mm−2). Note that the proliferation-
related parameters r, K are very similar to the ones we
estimated for the Fisher-KPP model. In this case, we estimate
a cell divison time around 11 h, and a typical cell radius
of a∼ 7 μm, again within the known ranges. Note that
for the Porous–Fisher model, the diffusion coefficient is
density-dependent—D(ρ) =Dρ. Using an average density of
approximately 3000 cells mm−2, we also estimate an average
diffusion coefficient which is three times larger than in the
linear case. This larger average diffusion can be explained by
accounting for the slower wave speed of the Porous–Fisher
model when compared with that of the Fisher-KPP model.
We also observe that the estimated noise-related parameter σ
is smaller in the Porous–Fisher case.

In summary, both models present well-defined and
narrow posterior distributions for all the model parameters,
with the parameter estimates being consistent with previous
experimental measurements. Thus, we have shown via a
Bayesian approach that all the model parameters appear
to be identifiable. A more sophisticated approach aiming to
use all the available data—instead of measurements every
10 h—could include for instance a mini-batch algorithm
[56]. However, taking a subset of the data highlights that
the models are practically identifiable, suggesting such
approaches are not necessary in this case.

3.3. Almost identical predictions from different
continuum models

Next, we explore to what extent the two considered models
are able to reproduce the observed data. To do so, we solve
numerically equations (2.2) and (2.3) using the parameter
values that we estimated in the previous section. In order
to minimize the possible impact of the stencil removal on
cell motility [19], we use as initial condition the experimental
density profile at time t = 6 h. The resulting radial density
profiles are shown in figure 1c,d—see also figure 2.

First, we observe that both models yield very similar pre-
dictions with minor differences that are only noticeable near
the expansion front. This is basically due to the fact that the
solution of the Porous–Fisher model (2.3) presents a sharp
front, in contrast with the exponential decay in space of the
Fisher-KPP equation (2.2). Note that the Fisher-KPP model
fails to accurately capture the behaviour of cell densities
near the monolayer boundary, but the Porous–Fisher model,
which accounts for population pressure, gives a more
accurate description.

Secondly, we see that both models capture qualitatively the
dynamics and growth of the expansions, but fail to capture the
non-monotonic behaviour of the radial density profile for inter-
mediate timescales. The experiments of Heinrich et al. [19]
observed that this phenomenon is accentuated for smaller
tissues. Moreover, for later times, the experiments report cell
densities that are higher than the estimated carrying capacity.
A quantification of the experimental density profile for
longer timescales could help in estimating the carrying
capacity. Moreover, we emphasize that both our models are
minimal in the sense that they assume cell movement follows
very simple rules. Accounting for cell–cell adhesion, which is
known to play an important role in epithelial dynamics [19],
or even for size variability as cells progress through the cell
cycle [23,57], could yield more accurate results.

All in all, these results show that both models, after being
suitably calibrated, can explain equally well the data. Indeed,
after evaluating the log-likelihood for both models at θ = θML,
we did not report any significant difference. As we will see
next, it is only under more complex experimental conditions,
when one needs to account for a more detailed level of phys-
ical description, that we can distinguish between the models.
4. Quantifying tissue–tissue collisions
Having seen that the two proposed models are practically
identifiable, we now analyse how much mechanistic insight
we can gain from more complex experiments. We consider a
second set of experiments also performed by Heinrich et al.
[31], where tissues are not isolated as in the previous exper-
iments, but are allowed to interact with other tissues. In
particular, Heinrich et al. study the dynamics of multi-tissue
collisions, varying the shape and the number of colliding tis-
sues, and find very complex patterns resulting from basic
cell–cell interactions and mechanical properties. One of the
most interesting observed features is the formation of sharp
boundaries at the collision location, avoiding thus mixing of
cells from different tissues, which is also characteristic of
models that account for population pressure [58,59]. Next, we
follow closely these experiments and attempt to use both
the Fisher-KPP and the Porous–Fisher models to reproduce
different types of collisions.

Although we will always work with homotypic tissues
(i.e. of the same cell type), it is particularly useful to identify
a system consisting of multiple homotypic tissues with a
model that accounts for several interacting cell populations.
In our case, the tissues are composed of the same cell popu-
lations initially seeded at distinct spatial locations. Note,
however, that the models presented below can account also
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for heterotypic tissue experiments. We denote the different
species or tissues by ρi for i = 1,…, n with n being the total
number of species. In the linear diffusion Fisher-KPP
model, we assume that each species follows random motion
and hence the diffusive part in the PDE remains unaffected.
Taking into account that proliferation is limited by the total
population density, we may write for n = 2

@tr1 ¼ DDr1 þ rr1 1� r1þr2
K

� �
@tr2 ¼ DDr2 þ rr2 1� r1þr2

K

� �
:

)
ð4:1Þ

For the nonlinear diffusion Porous–Fisher model, we can
write the total population pressure as P(ρ1, ρ2) =D(ρ1 + ρ2).
With this, the two-species model becomes

@tr1 ¼ Dr � (r1r(r1 þ r2))þ rr1 1� r1þr2
K

� �
@tr2 ¼ Dr � (r2r(r1 þ r2))þ rr2 1� r1þr2

K

� �
:

)
ð4:2Þ

Extensions of these models to an arbitrary number of species,
n > 2, are straightforward. The existence theory for cross-
diffusion systems of the type of (4.2) is studied in [60,61].
Note also that as a result of the population pressure term,
system (4.2) gives sharp boundaries separating both species
for initially segregated data [58,59] which, again, motivates
its use to reproduce the experiments in [31].

4.1. Reproducing experimental tissue collisions
In the next sections, we explore numerically the two proposed
models under different initial conditions.We start with a quali-
tative study of some of the experiments performed byHeinrich
et al. [31] and follow with a more quantitative analysis of
collisions between rectangular tissues.

4.1.1. Simple binary tissue–tissue collisions
We first test the two proposed models in binary tissue–tissue
collisions. In order to do so, here we choose different initial
shapes for the two colliding tissues, namely we study circle–
circle, rectangle–rectangle and circle–rectangle collisions. We
also analyse the case of two colliding circles with different
initial radii. See figure 5a for the experimental initial and final
configurations. We emphasize that, in contrast with all the
shown numerical simulations of our models, the colours in
the experimental snapshots are only used to label each different
tissue and do not quantify cell densities.

We numerically solve equations (4.2) for the four men-
tioned initial conditions and with the parameters that we
estimated from the previous experiments [19]. The numerical
scheme is identical to the one-species case [47,48]. As expected,
in all four studied configurations the Porous–Fisher model
shows sharp boundaries separating the two tissues after
collision, and the observed patterns are nearly identical to
the experimental final configurations after a simulation time
equivalent to around 60 h (figure 5b). Note that in contrast
with the experimental snapshots, figure 5b shows quantitative
cell densities.

When, instead of the Porous–Fisher model accounting for
population pressure (4.2), we use the Fisher-KPP model (4.1),
we still observe patterns that resemble the experimental con-
figurations. However, recall that in this case cells do not sense
local pressure and are free to move in all directions, which
results in a region where cells from both tissues can mix.
Note that in this case, no sharp boundary between tissues
is observed either—figure 5c. Even though the Fisher-KPP
model fails to reproduce density profiles near the collision
boundary, it still can capture qualitatively the density profiles
in the bulk of the tissue, where the population density gradi-
ent becomes more uniform. Hence, after suitable calibration,
both the Fisher-KPP and the Porous–Fisher models show
similar behaviour in this region far from the collision bound-
ary and the propagating front. However, note that the
Fisher-KPP model does not capture any interaction between
colliding tissues and hence fails to describe the observed
behaviour near the collision boundary.

Observe also that collisions shown in figure 5b that occur
between tissues with the same shape (rectangle–rectangle
and circle–circle collisions) were initialized with tissues of
the same density. As reported experimentally in [31], these
initial conditions result in the formation of a fixed sharp
boundary that does not move in time. However, when col-
lisions between tissues with different densities occur, then
the denser tissue pushes the less dense tissue resulting in a
boundary displacement which can be measured experimen-
tally. For collisions between tissues with different shapes
the collision boundary can also show a similar behaviour,
as shown in figure 5. In the next sections we study this
phenomenon quantitatively using the Porous–Fisher model
(4.2). Of course, given that linear diffusion fails to predict a
sharp boundary between colliding tissues, this boundary dis-
placement cannot be estimated from the Fisher-KPP model
(4.1). Before moving to the study of collision boundary
dynamics, we analyse a further set of more complex tissue
collision experiments, which make evident the limitations
of the simple Fisher-KPP model.

4.1.2. Multi-tissue complex collisions
In the previous sections, we have showed that, after suitable
calibration, both the Fisher-KPP and the Porous–Fisher
models show similar behaviour in regions of tissue that are
far from boundaries. However, under more complex exper-
imental conditions where tissue boundary dynamics
become important, the predictive power of the Fisher-KPP
model becomes more limited.

These differences between the Fisher-KPP (4.1) and the
Porous–Fisher model (4.2) become more evident when mul-
tiple tissues collide simultaneously. Here, we focus on the
experiments performed by Heinrich et al. [31] shown in
figure 6, where eight homotypic circular tissues are initially
set apart on a hexagonal lattice. The initial configuration is
also represented in figure 6 alongside the solutions predicted
by the two proposed models after 57 h. From these results, it
becomes evident that the Fisher-KPP model is not suitable to
describe complex interactions between tissues. By contrast,
accounting for population pressure does yield the predicted
behaviour, with a final pattern nearly identical to that
observed experimentally.

The Porous–Fisher model (4.2) can thus predict the behav-
iour observed in complex experimental settings with multiple
tissues colliding. A numerical simulation of an extension of
(4.2) to three species is depicted also in figure 6. This last
experiment mimics the self-assembly of a tri-tissue composite
designed in [31].

4.2. Quantifying collisions between rectangular tissues
As mentioned earlier, collisions between two rectangular tis-
sues result in the formation of a sharp boundary. Whenever
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Figure 5. Reproducing tissue–tissue collisions with different geometries—animated movies available at Figshare repository (https://figshare.com/projects/
Quantifying_tissue_shape_growth_and_collision/157068). Accounting for population pressure correctly predicts the sharp boundaries observed in experiments.
(a) Experimental results for initial conditions with different tissue geometries. Figures adapted from [31] (Creative Commons License). Note that colours are
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(4.2)) at t = 57 h. Colours in the numerical simulations indicate cell densities according to the shown colourbars. (c) Comparison of the Fisher-KPP model
(equation (4.1)) and the Porous–Fisher model (equation (4.2)). Solutions corresponding to the black dashed lines in (b). Parameter estimates given in the previous
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the two rectangles are identical—i.e. have the same shape
and density—the tissue boundary does not move and
coincides with the centroid of the combined tissue. However,
Heinrich et al. observed that using larger or denser tissues
results in a boundary displacement in the direction of the
smaller or less dense tissue—see figure 7a for their exper-
imental data. As shown in the electronic supplementary
material, S2, the Porous–Fisher model also predicts this
boundary displacement when there is a width/density
mismatch between the initial tissues.

Here, we focus on the Porous–Fisher model, and explore to
what extent it can reproduce the observed experimental data. In
order to perform a quantitative comparison of model and
experiments, we calibrate again equations (4.2) by using the
data corresponding to a collision between identical rectangular
tissues (control case in figure 7a). After carrying out parameter
estimation, we explore how the model performs in collisions
of rectangular tissues with relative mismatches in either
the width or number of cells (density and width mismatch
in figure 7a). For simplicity, and after having determined
that our model is practically identifiable, we estimate the par-
ameters using a maximum-likelihood approach, as explained
in previous sections, by comparing experimental and simulated
cell densities. The initial densities are taken from experimental
data, which in the control case (rectangles with equal density
and equal width) are identical to those in figure 5a.

For this set of experiments, the maximum-likelihood
estimate yields (D, r, K) = (3.26 μm2 (cells h)−1, 0.11 h−1,
4077 cells mm−2), which gives an approximate cell radius of
approximately 8 μm. Observe that the diffusion parameter D
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https://s100.copyright.com/AppDispatchServlet?title=Self-assembly%20of%20tessellated%20tissue%20sheets%20by%20expansion%20and%20collision&author=Matthew%20A.%20Heinrich%20et%20al&contentID=10.1038%2Fs41467-022-31459-1&copyright=The%20Author%28s%29&publication=2041-1723&publicationDate=2022-07-12&publisherName=SpringerNature&orderBeanReset=true&oa=CC%20BY
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Figure 6. Reproducing complex tissue collisions observed in Heinrich et al. experiments—animated movies available at Figshare repository (https://figshare.com/
projects/Quantifying_tissue_shape_growth_and_collision/157068). The Fisher-KPP model cannot reproduce complex multi-tissue collisions. (a) Experimental multi-
tissue collisions, adapted from [31] (Creative Commons License). (b) Multi-tissue collision between eight homotypic circles for both the Fisher-KPP (4.1) and the
Porous–Fisher (4.2) models. Density profiles are taken along the black solid lines. Black dashed lines represent the total population density, ρ1 + ρ2. Note that numerical
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and the proliferation rate r show notable differences with
respect to the previous set of experiments. In particular, these
parameters suggest faster migration and slower proliferation,
while the front speed remains more or less constant with
respect to the case of a single tissue expansion. Note, however,
that as we proved in the previous sections, the Porous–Fisher
model is practically identifiable and hence, although different
parameter combinations result in the same invasion speed,
we can confidently identify a set of parameters which
maximizes the likelihood of observing our data.

In fact, the differences in the parameters estimated from
the two experiments [19,31] could be explained by accounting
for the transient regime that occurs immediately after the
stencil removal. This short timescale is estimated to last
around 6–8 h, which we remove in order to calibrate the
model. However, if we only take into account the first 20 h
of the experiment, the maximum-likelihood procedure
yields very different estimates for the model parameters,
which suggests that the experimental collision time could
be smaller than this transient timescale.

After the model is calibrated using the control case data,
we can simulate equations (4.2) under different settings by
varying the initial conditions. We study collisions between
two rectangular tissues with an initial density (2600 versus
1800 cells mm−2) or width (1000 versus 500 μm) mismatch.
In figure 7b, we plot the density profiles obtained from the
numerical simulations, which show an excellent agreement
with the experimental data once both tissues have collided.
At early times, however, and in line with our discussion
above, the model cannot reproduce the observed experimental
dynamics. In particular, tissue–tissue collisions occur around
8 h before they are observed in the experiments. The agreement
betweenmodel and data becomesmore evident upon visualiz-
ing individual snapshots from these density profiles (figure 7c).
Note that here, in the numerical simulation of both the density
and width mismatch cases, we use the parameters estimated
from a collision between identical rectangles.

4.3. Population pressure gradients drive boundary
displacement

As discussed earlier, the Porous–Fisher model produces a
sharp boundary separating the two colliding tissues. When
the two tissues are not identical, there is a population
pressure gradient at this boundary, which yields a net
displacement with velocity v ¼ �rPðrÞ. The nonlinear diffu-
sion model assumes P(ρ)∼ ρ and thus the boundary will
move in the direction of the less crowded tissue. This trans-
lates, of course, into a wider tissue pushing a more narrow
one, or a denser tissue pushing a less dense one.

Our numerical simulations also reveal this behaviour
(figure 7d), giving a larger boundary displacement the larger
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the width/density mismatch. When using parameters inferred
from the control case, the total boundary displacement that the
model predicts falls short with respect to the experimental
measures of Heinrich et al. by around 60–100 mm [31], which
accounts for less than 5%of the final tissuewidth after collision.
We believe that uncertainty associated with the experimental
measures might have a minor impact on these results, as the
boundary location can be determined experimentally up to
subcellular accuracy and is then averaged over the collision
axis—given that different parts of the tissue might not collide
at the same time. However, the transient behaviour that cells
exhibit after stencil removal can have a more significant effect
on the later dynamics [62,63], especially if this timescale is of
the order of the collision time.

Another aspect which could have a more important influ-
ence on tissue boundary dynamics from the modelling
perspective is the choice of the pressure function P(ρ). In
the Porous–Fisher model, cells move following population
pressure gradients, moving away from crowded regions
with a pressure function that is assumed to depend linearly
on the density. However, using a more general pressure func-
tion would also give similar qualitative results but with
possibly different dynamics. Note that a logarithmic depen-
dence P(ρ)∼ logρ [31] is not suitable for this problem as it
corresponds to the case of random cell movement in which
there is no sharp boundary separating the tissues.

More generally, one could consider pressure functions that
grow as a power-law function of the density, P(ρ)∼ ρm−1 for
m > 1. For large values of the exponent m, cells only move
when the density gradient is large, while in the limit m→ 1,
we recover the linear diffusion case. Considering this
pressure–density relationship yields a porous-medium
equation with proliferation for the evolution of the density,
which also produces sharp boundaries between colliding
tissues form > 1. Hence one could ask how does boundary dis-
placement depend on the relationship between pressure and
density—i.e. on the exponent m. For small or no proliferation,
this dependence can be analytically examined in the long-
time regime. For instance, for one-dimensional tissues with
an initial mass mismatch, a power-law pressure function
yields a boundary displacement that grows in time as approxi-
mately t1/(m−1) thus giving a faster boundary motion for
m < 1—see electronic supplementary material, S2. We hence
believe that itwould be interesting to explore the practical iden-
tifiability of the exponent m, and whether considering a more
general pressure–density relationship could givemore accurate
tissue boundary dynamics.
5. Conclusion and outlook
In thiswork,we have focused on twomain aspects of tissue for-
mationmodelling: the practical identifiability of the Fisher-KPP
and Porous–Fisher models using a Bayesian approach, and the
applicability of the two models to describe tissue collisions
experiments. Using data from recent experiments studying
the growth and expansion of single epithelial sheets [19], we
were able to obtain well-defined posterior distributions for
each of themodel parameterswith relatively narrow confidence
intervals. Our work thus adds to a growing literature assessing
the practical identifiability of similar models under a variety of
different experimental conditions [10,25].

In contrast with previous studies, and for the sake of
conciseness, here we opted for using only a Bayesian
MCMC approach. Another commonly used option is the pro-
file likelihood method [25,35], which requires the solution of
an optimization problem. This method, however, can yield
similar results to the MCMC algorithm and significantly
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reduce computational time. Although the Bayesian method
can be very helpful in performing uncertainty quantification,
we believe that studies comparing a larger number of models
may benefit from a likelihood-based approach.

From a modelling perspective, we have proposed a sys-
tematic way to quantify cell densities and boundary locations
in tissue collision experiments. This extends the model by
Heinrich et al. [31], which was able to predict the boundary
location for simple geometries and for tissues of the same
initial density, but not to quantify tissue density. By contrast,
our approach allows for more predictive power under a huge
range of different experimental conditions. As discussed,
being able to quantify and reproduce these tissue collision
experiments is a first step towards the design and assembly
of tissue composites.

This work could be extended by including other biologi-
cal mechanisms in the models, such as more general pressure
functions, cell–cell adhesion [11,16], cell-cycle dynamics [19]
or heterogeneity in cell size [23], all of which could improve
our understanding of how cell interactions impact tissue
collision dynamics. Although accounting for these different
effects should be straightforward, whether the different
model extensions are structural or even practically identifi-
able is not evident. Even simple models, very similar to the
ones we used here, can lead to non-identifiability issues
[25]. Combining more detailed models with appropriate
model selection and identifiability analysis thus seems chal-
lenging but also necessary in order to obtain better insights
from the experimental work.
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