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Abstract 

When Isaac Newton’s Principia Mathematica was published in the summer of 

1687, it met with immediate acclaim. Through a close examination of 

contemporary reading notes, this thesis aims to establish the extent to which 

that acclaim was the result of his peers’ assent to the arguments contained in 

the book. 

 It will demonstrate that, so far as can be reliably inferred from the extant 

documentary evidence, early readers were generally not persuaded by the 

demonstrations in the Principia. Newton’s peers commonly didn’t scrutinise the 

arguments in his book; when they did scrutinise them, they commonly didn’t 

understand them; and when they did understand them, they commonly didn’t 

agree with them. They frequently disputed the composition of his proofs, the 

validity of his methodology, and the articulation of his foundational concepts. 

When circumstances allowed, they communicated these misgivings back to 

Newton, who often altered his text in response, re-working, re-phrasing and re-

structuring his demonstrations. They questioned both the formulation of his 

method of first and last ratios and his mathematisation of force, and none of the 

readers for whom there is reliable evidence assented to the entirety of Newton’s 

proof of the inverse-square law. To the extent that they were persuaded by the 

correctness of Newton’s conclusions, it was either because they were 

successfully able to reconstruct his arguments within their pre-existing 

conceptual frameworks; or because they held face-to-face conversations with 

the author in which they were able to query, contest and negotiate the 

composition of his text. 



 
 

 In other words, the book was very ineffective at persuading readers of the 

validity of the arguments it contained. This means that the acclaim Principia 

received at the moment of publication was unwarranted: it must have had some 

cause other than readers’ assent to its demonstrations. 

  



 
 

Detailed Abstract 

This thesis concerns early readings of Isaac Newton’s Principia Mathematica. It 

argues that the immediate acclaim the book received when it was published in 

the summer of 1687 was not founded on readers’ assent to the arguments 

printed on its pages. So far as can be inferred from the extant primary evidence, 

early readers were in general not persuaded by the arguments they found in the 

book. 

Newton’s peers generally did not scrutinise the details of his mathematical 

demonstrations; when they did, they often did not understand them; when they 

did understand them, they often did not assent to their validity. Notwithstanding 

the immediate acclaim it received at the moment of publication, there is no 

evidence that any of Newton’s readers assented to all the arguments contained 

in the Principia in the years following publication. The text did not convince its 

readers of the validity of the mathematical methods it employed, and it did not 

convince its readers of the physical assumptions on which it was based. 

Readers commonly re-interpreted Newton’s arguments in terms of their own 

pre-existing conceptual frameworks, providing their own reconstructions of 

Newton’s proofs using alternative notation, logic, concepts and methodologies. 

When readers were able to communicate these reconstructions back to 

Newton, he often incorporated them in subsequent editions of the book. To the 

extent that they agreed with Newton’s conclusions, they did so either by 

successfully reconstructing his arguments in their own terms, or by holding 

face-to-face conversations with the author in which they queried, refined and 

negotiated the validity of his proofs. The text that was printed in the book was 



 
 

not sufficient to persuade its readers of the correctness of the arguments it 

contained. 

 These arguments are founded on a close analysis of a number of primary 

sources currently unexamined by the secondary literature. Specifically, this 

thesis will contain new analyses of: the editorial comments Edmond Halley 

made when he read early drafts of Newton’s text; the marginal notes John 

Flamsteed wrote in his presentation copy; the extensive marginalia and reading 

notes composed by Nicolas Fatio de Duillier when he began preparing a second 

edition; the letters Gilbert Clerke sent to Newton a few months after publication; 

the entries John Locke recorded in his commonplace books on the three 

occasions that he read the Principia; the scattered notes made by Christiaan 

Huygens when he studied a selection of Newton’s proofs. It is also based on a 

detailed examination of the opening sections of the two hundred pages of Notae 

composed by David Gregory during his methodical study of the text, and draws 

on existing studies of Gottfried Leibniz’s response to his early engagement with 

the book. It will also make frequent reference to the alterations to the text 

Newton accumulated during the years after the first edition was published, 

which he recorded in two copies kept expressly for that purpose (Cambridge, 

Trinity College, NQ.16.200; Cambridge University Library, Adv.b.39.1). The 

changes collected in these copies formed the basis for Cotes’ second edition of 

1713, and while some edits merely record typographical slips and superficial 

tweaks to the published wording, many comprise significant modifications of the 

original demonstrations. Moreover, Newton often made these changes in direct 

response to the suggestions and criticisms of his readers. In many instances an 

individual alteration of the text can be identified with the specific communication 



 
 

from a reader that provoked it. These edits therefore provide a direct record of 

Newton negotiating the validity of his mathematical arguments with his peers, 

and show that the new mathematical knowledge in the Principia was made by 

means of a dialogue between the author and his readers, who refined the 

articulation of the arguments given in the original text. 

 The extant sources show that Newton’s peers commonly read his book 

piecemeal, examining only isolated passages in idiosyncratic sequence. Most 

early readers left most of the book untouched. Only Gregory appears to have 

completed a close reading of the complete text, although the evidence suggests 

that some others (Locke, Fatio, Halley and possibly Leibniz) skim-read the 

whole thing. The only passages that were routinely examined by early readers 

were the Definitions and Laws, the results on orbital forces in Sections 1–3 of 

Book 1, and Book 3. However, even within these passages the level of scrutiny 

varied, and individual steps in the logical structure of a proof were frequently 

omitted. Evidence exists of only a very small number of readers (Gregory, Fatio, 

Leibniz, plus possibly Halley and Clerke) who can be reasonably said to have 

closely studied the entirety of Newton’s demonstration of the inverse-square 

law. It is also noteworthy that Newton’s proofs concerning mutual attraction (as 

opposed to single, centrally directed forces) at the end of Book 1 received 

almost no attention before Gregory studied them at the end of 1692. Of the 

readers for whom evidence is available, only Leibniz read these passages, and 

even he appears not to have scrutinised the mathematics. This leads to the 

important observation that there is no evidence that any readers undertook a 

detailed examination of Newton’s mathematical demonstrations involving 

universal gravitation until at least five years after the Principia was published. 



 
 

 There was no one way of engaging with the text of the Principia, and 

different readers read different sections in different ways. A crude but useful 

distinction can be made between uncritical skim-reading and close scrutiny of 

Newton’s arguments. The latter necessitated verifying the mathematical 

demonstrations in the text, which almost always involved the reader picking up 

a pen and reconstructing Newton’s connected prose in symbolic form. They did 

this either in the margin of the book, or in separate reading notes. That is, 

reading the Principia was active process of reconstruction rather than a passive 

process of absorption. As they reconstructed Newton’s arguments in order to 

verify them, they generally did so using their own individual pre-existing 

conceptual frameworks. Few of Newton’s readers were persuaded to adopt the 

mathematical and physical framework in which he presented his arguments. 

Instead, most readers reconstructed (or attempted to reconstruct) his 

demonstrations in their own terms. Their reconstructions commonly employed 

different mathematical methodologies, different physical assumptions, and a 

different logical structure. They assented to his claims to the extent to which 

they were successfully able to reconstruct arguments in their support within 

their own framework. Verifying Newton’s proofs thus often involved deriving his 

conclusions by different means. Readers therefore often assented to Newton’s 

claims while disputing the validity of the arguments he provided in their support. 

 As they reconstructed Newton’s arguments in their own terms, readers often 

thought that they had improved them. The act of recreating his demonstrations 

caused them to – as they saw it – simplify, clarify and restructure the original 

explanations, and sometimes extend them to produce new results. In this 

sense, editing the text was integral to the act of reading it. Because readers 



 
 

were obliged to recreate Newton’s arguments in order to verify them, they were 

automatically alerted to ways in which they could be improved. When 

circumstances allowed, readers often communicated these alternatives back to 

Newton. Clerke did so by letter, while Fatio, Gregory and (probably) Halley all 

did so in person. And as the edits he collected in his personal copies show, 

Newton frequently altered his proofs in direct response to this feedback, often 

adopting the proposed alterations verbatim. Some of the changes he made 

comprised small typographical or grammatical corrections, but many did not, 

and Newton refined some of the most important passages in the book in direct 

response to suggestions from his peers. The final text of the second and third 

editions therefore represents more of a group effort than the secondary 

literature has previously acknowledged. 

 Instances when readers straightforwardly verified Newton’s proofs – that is, 

when they were successfully able to reconstruct his arguments in the terms in 

which he presented them – are extremely rare in the primary documentation. 

There were many qualities of Newton’s text that prevented such independent 

reconstruction. Sometimes the prose formulation of his demonstrations was 

difficult to reconstruct symbolically, because his explanations were too 

convoluted to understand, and his printed diagrams too unclear. Sometimes 

Newton left gaps in his proofs that readers were unable to fill in. Sometimes, the 

length of the book discouraged or prevented close scrutiny of his arguments. 

And sometimes the conceptual framework within which a given reader was 

operating could not accommodate Newton’s argument. In addition, Fatio, 

Gregory and (probably) Halley sought face-to-face meetings with Newton in 

which they queried and challenged his proofs. That is, even for Newton’s most 



 
 

careful and attentive peers, the text itself was not sufficient to persuade readers 

of the validity of the arguments it contained. 

 Readers often disputed the validity of Newton’s innovative mathematical 

methodology. Some reinterpreted his geometrical limit proofs in terms of 

infinitesimals, which often led them to misunderstand or deny their validity. Even 

those readers who attempted to engage with Newton’s proofs in the terms that 

they were written frequently disputed their articulation or denied that they were 

sound. In his presentation of the method of first and last ratios in Section 1 of 

Book 1, readers objected to his limit definition in Lemma 1 because Newton’s 

phrasing made the logic of the demonstration unclear; and they denied the need 

for the unusual style of proof he deployed at the heart of his exposition in 

Lemmas 6–9. Newton rewrote these proofs in direct response to his readers’ 

feedback, along with many others. Readers also disputed the validity of his 

innovative physical methodology. Some denied his foundational assumptions, 

with Halley prompting Newton to make significant alterations to the phrasing of 

the Definitions and Laws, and Leibniz preferring his own metaphysics to 

Newton’s. Different readers were used to mathematising orbital motion in 

different ways, and so a number either opposed Newton’s use of centripetal 

rather than centrifugal forces, or explicitly asserted their ambivalence. Probably 

following a conversation with the author, Gregory noted that Proposition 6 

required rewriting owing to a flaw in its logic: the Principia’s most careful reader 

thus judged that all the orbital force theorems in the opening sections of the 

book were invalid. And as stated above, there is no evidence of any readers 

closely scrutinising the mathematical proofs concerning universal gravitation in 

the first five years after publication. 



 
 

 The most that can therefore be said about the response of Newton’s peers 

to his book is that a very small number of readers gave heavily qualified assent 

to a very small number of the arguments it contained. They were routinely 

unpersuaded by the arguments in the form that they were provided in the first 

edition, and often only agreed to their own reconstructions of Newton’s 

arguments, or to modified versions of the text. Even this often only occurred 

after a face-to-face conversation with Newton. It is not even sustainable to 

make the narrow claim that his peers accepted his solution to the planetary orbit 

problem Halley had presented him with in 1684, because the archive does not 

contain evidence of any individuals who assented to the proof of the inverse 

square law that appeared in the first edition. Every reader for whom we have 

reliable evidence denied the validity of one or more steps in Newton’s 

argument. 

 This thesis is therefore an internalist history that reaches an externalist 

conclusion. By a close examination of the reception of Newton’s mathematical 

arguments, I aim to show that his book met with approval for some reason other 

than assent with his mathematical arguments. Public confidence must have 

been generated by alternative means. What these means were, is beyond my 

remit: my purpose here is merely to argue that at the time of publication 

Newton’s peers were not persuaded of the correctness of the arguments they 

found printed in his book. 
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Prologue 

One day during the summer of 1684, probably in August, Isaac Newton received a 

visitor to his rooms in Trinity College, Cambridge. 

 The story has often been told. There is little documentary evidence to substantiate 

the facts of the occasion, but we may imagine Edmond Halley walking through the 

Great Gate of Trinity and turning right towards the Lucasian Professor’s chambers. 

He ascended a staircase on his right, knocked on the door, was shown into a room, 

and sat down. 

 He was there to discuss the mathematics of elliptical orbits. Back in January he, 

Christopher Wren and Robert Hooke had been debating the problem of astronomical 

motion one evening after a meeting of the Royal Society. Halley wanted to know 

whether Newton could prove mathematically that a force that followed an inverse-

square law could account for the elliptical shape of planetary orbits. 

 Newton, so the story goes, claimed that he had already produced a proof but was 

unable to find it. He sent Halley on his way, vowing to deliver him a copy in due 

course. In November of that year Newton made good on his promise, and Halley 

received a short tract containing his derivation. Halley shared it with the Royal 

Society, and then encouraged Newton to expand the tract into a book. That book 

would be published in July 1687. 

     

Almost exactly ten years later, Newton received another visitor. 

 This story is less often told. In May 1694, the Scottish mathematician David 

Gregory walked through the Great Gate, turned right and right again, and ascended 
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the staircase. He knocked on the same door, was admitted to the same room, and 

maybe even sat in the same chair as Halley had a decade earlier. 

 He, too, was there to discuss the mathematics of motion in elliptical orbits. He had 

just finished working through the Philosophiae Naturalis Principia Mathematica, and 

at that moment knew its contents better than anyone other than its author. He had 

carefully examined every page, worked through every proof, and weighed up every 

one of Newton’s arguments. He had been impressed by many of its technical 

achievements, and sought further instruction on many of its methods. But he also 

had questions. 

 These weren’t fussy questions about trivial details. These were direct challenges 

to some of the most fundamental ideas in the book. He wasn’t convinced by 

Newton’s rejection of centrifugal forces. He couldn’t see the purpose of the style of 

proof Newton had used in his method of first and last ratios. He suspected there was 

a major logical flaw in his derivation of the inverse-square law. He was there to 

query, contend and haggle over the validity of the book’s most important 

demonstrations. 

 A full decade had passed since Halley asked Newton to explain the problem of 

orbital motion, but Gregory was not yet convinced by the solution he had given. Ten 

years after Halley had posed the question, Newton’s most attentive reader was still 

not satisfied with his answer. Gregory had paid careful attention to the arguments 

printed on the pages of the Principia, and he thought that many of them were faulty.  

 And he wasn’t the only one. 
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General Introduction 

Motivation of this thesis 

The secondary literature on Isaac Newton’s Principia Mathematica contains two 

distinct narratives about how the first edition was received when it was 

published in July 1687. On the one hand, it reports that Newton’s book met with 

immediate acclaim. According to Richard Westfall’s biography, 

Newton’s book took Britain by storm. Almost at once it became the 

reigning orthodoxy among natural philosophers.1 

The success of the Principia was both instant and spectacular: 

Almost from the moment of its publication, even those who refused to 

accept its central concept of action at a distance recognized the Principia 

as an epoch-making book.2 

Niccolò Guicciardini corroborates this view: 

The book won immediate fame for its author and was adopted by most 

Fellows of the Royal Society as containing the right answer, as well as 

the right method of obtaining it, to the problems concerning cosmology 

and planetary motions which had occupied people such as Hooke, Halley 

and Wren in the early 1680s.3 

In intellectual circles, “the fame and influence of the Principia spread quickly.”4 

Scholars across England, Scotland, Ireland and the European continent 

scrambled to access copies. Laudatory reviews appeared in the Philosophical 

 

1 Westfall, Never at Rest, 472. 
2 Ibid., 469. 
3 Guicciardini, Reading the Principia, 170. 
4 Westfall, Never at Rest, 470. 
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Transactions, the Journal des Sçavans and the Acta Eruditorum, 5  and it 

provided the stimulus for the first Boyle Lectures, given by Richard Bentley in 

1692. In his personal life, too, the book’s publication marked a watershed, as 

Newton’s raised intellectual status was reflected in his changing social 

circumstances. He began to visit London more frequently, dining with the likes 

of the Duke of Devonshire and William of Orange. Westfall wrote that “The 

Newton of 1689 was a different man from the Newton of the 1670s. The 

completion and publication of the Principia and his own realization of its 

significance gave him a new confidence.”6 1689 was the year in which Newton 

was elected to represent Parliament, was proposed for the Provostship of 

King’s College, and sat for portrait by Sir Godfrey Kneller. The speed with which 

his personal renown spread matched that with which his book was acclaimed. 

Unlike, for example, Copernicus in the sixteenth century or Mendel in the 

nineteenth, there was no delay before Newton’s work was approved. There was 

no long period of reflection during which the book’s credibility was considered 

and assessed. The Principia met with “immediate” success, and was 

established as an epoch-making book “from the moment of publication.” This 

happened “almost at once.” It took Britain “by storm.” As soon as the Principia 

was published in the summer of 1687, according to Rob Iliffe, its effect was to 

"quickly cement Newton’s reputation as the greatest natural philosopher of his 

time."7 

 

5 Cohen, Introduction, 145-57; Westfall, Never at Rest, 469-72. All three reviews were unsigned, 
although that in the Philosophical Transactions was composed by Halley, and Cohen suggests 
that the review in the Acta was possibly written by its editor, Otto Mencke. 
6 Westfall, Never at Rest, 488-9. 
7 Iliffe, “Newton: The Making of a Politician.” 
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 But alongside this narrative runs a parallel story. This tells that, when it was 

published, almost no-one read Newton’s book. One anecdote occurs repeatedly 

in the literature: 

A well-known legend says that a student in Cambridge, while Newton 

was passing by, was heard to utter, ‘There goes the man who has writ a 

book that neither he nor any one else understands’8 

The Principia was notoriously difficult to read, according to this story. It 

consisted of a series of impenetrably complicated geometrical demonstrations, 

and at over five hundred pages, was intimidatingly long. Not only that, but its 

proofs depended upon radically novel and unfamiliar mathematical techniques. 

Almost no-one was capable of understanding such a forbidding, technical, 

specialised work. Everybody agreed that this new book was revolutionary in its 

importance, but “Even in the seventeenth century, few essayed to read it.”9   

 A very basic question therefore emerges when these two narratives are set 

side-by-side: if so few people read it, how did the credibility of the Principia 

come to be established so immediately? Given that it was celebrated as 

containing the right answers to the problem of planetary motion almost as soon 

as it was published, how was this authority so rapidly conferred? How did its 

dense thicket of geometrical proofs – based as they were on a new and unusual 

mathematical methodology – come to be validated so quickly? The gap 

between these two narratives is the explanandum for this thesis. 

 It is not impossible for both narratives to be simultaneously true. They can 

be easily reconciled, so long as it can be shown that the technical details of 

 

8  Guicciardini, Reading the Principia, 170, quoting King’s College, Cambridge, MS Keynes 
130.5, no. 2. 
9 Curtis Wilson, writing in Densmore, Newton’s Principia: The Central Argument, xiii. 
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Newton’s text were carefully verified by a small number of contemporaries 

whose judgment was widely trusted. If a few recognised authorities worked 

through and checked his mathematical proofs, then their approval would have 

sanctioned wider assent. This mechanism would constitute the seventeenth-

century equivalent of the modern process of peer-review. The purpose of this 

thesis would therefore appear to be extremely straightforward: to identify this 

handful of trusted readers, and demonstrate that they quickly assented to the 

arguments they found in Newton’s text. 

 The secondary literature has given surprisingly little direct attention to this 

question. There have been many studies of individual responses to Newton’s 

text, but no focussed attempt to identify the group of individuals whose quick 

assent to the mathematical arguments of the Principia caused it to be acclaimed 

so immediately upon publication. Furthermore, I will argue below that much of 

the literature on the reception of Newton’s book employs language and tropes 

which assume that such an investigation is not required, either because it is 

assumed that it has already been established which of Newton’s peers verified 

his proofs, or – which is worse – because it is assumed that Newton’s proofs did 

not need verifying. Here, for example, are Steven Shapin’s most detailed 

published views on Newton’s early readers: 

The book that is said to have marked the culmination of the Scientific 

Revolution and to have changed the way “we” think about the world – 

Isaac Newton’s Principia Mathematica – was probably read in its entirety 

by fewer than a hundred contemporaries, of whom no more than a 

handful were competent to understand it.10 

 

10 Shapin, The Scientific Revolution, 123. 
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These lines are from a general survey written twenty-five years ago, but even 

so the imprecision of Shapin’s claim is striking. “Fewer than a hundred” leaves a 

generous margin of error for the number of people who read the book “in its 

entirety.” It is not specified who the “handful” were, how it has been established 

that they were “competent to understand it,” and why even Shapin was only 

“probably” confident in the supporting evidence. Just as notable is his lack of 

alarm at this uncertainty, which I do not share. The dissonance within the 

secondary literature between the assumption of immediate acclaim and the 

assumption of a vanishingly small readership appears to have gone unnoticed. 

Outline of Sources 

This lack of attention has allowed significant evidence concerning the early 

reception of the Principia to be overlooked, a close examination of which will be 

the foundation of this thesis. Specifically, this study will contain new analyses of 

the following primary sources: 

 the editorial comments Edmond Halley made when he read early drafts 

of Newton’s text; 

 the marginal notes John Flamsteed wrote in his presentation copy; 

 the extensive marginalia and reading notes composed by Nicolas Fatio 

de Duillier when he began preparing a second edition; 

 the letters Gilbert Clerke sent to Newton a few months after publication; 

 the entries John Locke recorded in his commonplace books on the three 

occasions that he read the Principia; 

 the scattered notes made by Christiaan Huygens when he studied a 

selection of Newton’s proofs; 
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 the two hundred pages of Notae composed by David Gregory during his 

methodical study of the text.11  

None of these sources has only recently been identified, and all have been 

either published or available for study in prominent libraries for at least a 

century. All are listed in Cohen’s Introduction to Newton’s Principia of 1971. Yet 

at the time of writing all of them remain largely unexamined by the secondary 

literature. Halley’s, Flamsteed’s and Fatio’s have not been studied at all; those 

of Huygens, Gregory and Clerke have been only partially examined; and 

Locke’s notes have been misdescribed. The only primary source relevant to this 

thesis that has already been fully accounted for is the documentation that 

records Leibniz’s response to his readings of the Principia: this is the subject of 

an existing monograph and papers by Bertoloni Meli, on which I will frequently 

draw.12 

 A detailed examination of these primary sources will refute any unspoken 

assumption that Newton’s peers successfully verified his proofs when the 

Principia was published. On the contrary, they will show that – so far as can be 

reliably inferred from the extant evidence – early readers were in general not 

persuaded by the arguments they found in the book. They demonstrate that 

large sections of the Principia were not studied by early readers; that when they 

did study them, they often did not understand them; and when they did 

understand them, they often did not agree with them. Readers were generally 

not persuaded by Newton’s innovative mathematical and physical 

methodologies, and instead re-interpreted Newton’s arguments in terms of their 
 

11 Gregory’s Notae is the only one of these sources that I cannot claim to have examined in full: 
I have only been able to examine parts of this document, as will be explained in Chapter 1. 
12 Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz; Bertoloni Meli, “Leibniz’s 
Excerpts from the Principia Mathematica.” 
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own pre-existing conceptual frameworks. Notwithstanding the immediate 

acclaim it received at the moment of publication, there is no evidence that any 

of Newton’s readers assented to all the arguments contained in the Principia in 

the years following publication. The best that can be said is that some of its 

readers gave qualified assent to some of its claims. 

 One further primary source will play an important role in this analysis: the set 

of alterations to the text that Newton accumulated over the years after the first 

edition was published. He recorded these edits in two copies of the book kept 

expressly for that purpose, both now in Cambridge. One (the “annotated” copy) 

is in the Wren Library at Trinity College, a page of which is shown below; the 

other (the “interleaved” copy) is in the University Library. 13  The changes 

collected in these copies formed the basis for Cotes’ second edition of 1713, 

and to the extent that they are mentioned in the secondary literature at all – as I 

shall discuss below – they are described as “corrections”. An important aim of 

this thesis is to argue that this label mischaracterises their contents. Some edits 

do indeed merely record typographical slips and superficial tweaks to the 

published wording, but many comprise substantive alterations to the original 

arguments. They represent significant modifications of the printed 

demonstrations. Moreover, Newton often made these changes in direct 

response to the criticisms of his readers. In many instances it will be possible to 

identify an individual alteration of the text with the specific communication from 

a reader that provoked it. These edits therefore provide a direct record of 

Newton negotiating the validity of his mathematical arguments with his peers. 

They comprise a valuable historiographical resource that details how assent to 

 

13 Cambridge, Trinity College, NQ.16.200; Cambridge University Library, Adv.b.39.1. 
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the claims in the Principia was established by means of a dialogue between the 

author and his readers. 

 

Pages from Section 1 of Book 1 of Newton’s annotated copy of the first edition, Cambridge, Trinity 

College, NQ.16.200. 

Methodology 

My analysis of these sources will draw on the secondary literature of the last 

two decades examining reading practices and the reception of scientific and 

mathematical texts. There will be obvious parallels between this thesis on 

readings of Newton’s Principia, and similar studies of readings of Copernicus’ 

De Revolutionibus, Galileo’s Discorsi, and Euclid’s Elements by Owen 

Gingerich, Renée Raphael, and Benjamin Wardhaugh, Philip Beeley and Yelda 

Nasifoglu.14  My approach has been informed by studies of note-taking and 

 

14 Gingerich, An Annotated Census of Copernicus’ De Revolutionibus; Gingerich, The Book 
Nobody Read; Raphael, Reading Galileo; Wardhaugh, “Defacing Euclid: Reading and 
Annotating the Elements of Geometry in Early Modern Britain”; Wardhaugh, “Rehearsing in the 
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marginalia in early modern culture, and there will be a particular resonance with 

Anthony Grafton’s view of texts as unstable artefacts that emerge from a 

collaborative process involving authors, editors and correctors, and which are 

therefore “more social than individual products.” 15  The primary evidence 

considered in this study will reinforce these scholars’ conclusions that different 

readers can approach the same book in a variety of ways, and engage with the 

same text using a range of methods, tools, frameworks and categories. It will 

provide support for the argument prominently articulated by Grafton and Lisa 

Jardine that a single text is capable of inducing a plurality of responses, and my 

analysis will share their assumption that reading is an active rather than a 

passive pursuit.16 

 Specifying the nature of the activity associated with contemporary 

readings of the Principia will not be straightforward. In his study of practical 

geometry, Jim Bennett has borrowed the term “operative knowledge” from 

Robert Hooke to describe how objects such as astrolabes were “instruments of 

doing rather than knowing,” and Boris Jardine has employed this vocabulary in 

his recent studies of instrument books as sites of mathematical practice.17 By 

“practice” Bennett means activities such as map production, canal construction, 

bridge building, but with a little elasticity the knowledge in the Principia can also 

usefully be understood as “operative,” and the margins of the book likewise be 

 

Margins: Mathematical Print and Mathematical Learning in the Early Modern Period”; Beeley, 
Nasifoglu and Wardhaugh, eds. Reading Mathematics in Early Modern Europe. 
15 Yeo, Notebooks, English Virtuosi, and Early Modern Science; Blair, “The Rise of Note-Taking 
in Early Modern Europe”; Jackson, Marginalia: Readers Writing in Books; Grafton, The Culture 
of Correction in Renaissance Europe. The quotation is from Grafton, “Editing Technical Neo-
Latin Texts: Two Cases and Their Implications,” 175. 
16 Jardine and Grafton, “’Studied for Action’: How Gabriel Harvey Read His Livy”; see also 
Frasca-Spada and Jardine, eds. Books and the Sciences in History. 
17 Jardine, “More than a Manual: Early-Modern Mathematical Instrument Books”; Jardine, “The 
book as instrument: craft and technique in early modern practical mathematics”; Bennett, 
“Practical Geometry and Operative Knowledge.” 
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seen as sites of mathematical practice. The primary evidence will certainly show 

that engaging with the Principia could entail doing as well as thinking, as 

readers recapitulated Newton’s techniques in their notes and annotations. 

Wardhaugh has used the term “rehearsing” to describe this process, and it will 

become apparent that contemporary readers of Newton engaged with his book 

by supplementing, editing, correcting, and translating the printed text, just as 

Early Modern readers did with Euclid.18 

 However, the emphasis of my approach will differ from those of Gingerich, 

Raphael and Wardhaugh in two important ways. The first is that I will not aim to 

draw conclusions about the modes of reading of large groups, since the extant 

evidence of early readers of the Principia does not comfortably divide into 

categories. For example, I will not be able to make claims analogous to 

Raphael’s conclusion that an important group of Galileo’s readers engaged with 

his text using traditional bookish methods,19  because among the remaining 

evidence of Newton’s early readers, modes of reading varied too widely to be 

able to make such generalisations. We will see that Locke’s engagement with 

the text, for instance, was very clearly determined by the humanist tradition of 

commonplacing: but I cannot claim that he represented other individuals who 

engaged with the text in the same way, because there is no clear evidence that 

there were any. Likewise, Gregory’s Notae sit firmly within the commentary 

tradition, but no other early reader seems to have processed Newton’s book in 

this way. Leibniz’s Excerpts have something in common with the 

 

18 Wardhaugh, “Rehearsing in the Margins: Mathematical Print and Mathematical Learning in 
the Early Modern Period”; Wardhaugh, “Defacing Euclid: Reading and Annotating the Elements 
of Geometry in Early Modern Britain.” For an articulation of the view that mathematics is 
simultaneously practical as well as propositional, see Netz, The Shaping of Deduction in Greek 
Mathematics. 
19 Raphael, “Reading Galileo’s Discorsi in the Early Modern University.” 
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commonplacing format, but his Notes do not; and Flamsteed’s marginalia and 

Huygens’ notes do not appear to be consistent with any identifiable mode of 

reading. I will draw generalisations in this thesis, but those generalisations will 

be about how early readers of the Principia responded to the arguments they 

found printed on its pages, and not about the reading traditions they 

represented. My primary aim is to understand contemporary responses to the 

claims in Newton’s book, and the reading habits via which these claims were 

accessed are only a means to that end. While my sources are very similar to 

those studied by Raphael, Gingerich and Wardhaugh, therefore, unlike them I 

will not be drawing conclusions about historical modes of reading or reading 

practices. 

 The second difference is more positive. In discussing the “reception” of 

scientific texts, I wish in this thesis to distinguish between two component 

aspects of the process: on the one hand, the means by which the methods and 

conclusions of a new text come to be approved, validated and trusted; and on 

the other, the means by which those methods and conclusions are then 

transmitted to a wider audience. I do not claim that these two components are 

absolutely distinct and easy to disentangle, and acknowledge that in any given 

case they are likely to be interconnected in complicated ways. But I propose 

that this is a useful distinction to make in analyses of the “reception” of a 

scientific publication, since it allows for a more detailed examination of the 

different ways in which such a text can be read. In modern practice these two 

components commonly follow in sequential order, for example. It might 

reasonably be expected that the first phase of the reception of a modern text 

comprises its approval and validation, perhaps by a small group of trusted 
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gatekeepers, which is ordinarily followed by a second phase in which the 

contents of the text are transmitted to the wider community, probably via 

established institutional structures. It might also be expected that these two 

phases entail different modes of reading, and that readers judging the validity of 

a newly published text engage with its contents differently from readers 

assimilating an established text they already have some prior reason to trust. 

The modern reader might expect the latter to take place in an educational 

context, possibly under the guidance of a teacher, whereas the former is maybe 

more likely to take outside an instructional setting, and perhaps more likely to 

be solitary. It might therefore be a valuable goal of a historical investigation to 

establish the extent to which these differences were, or were not, exhibited in 

contemporary readings. It would be profitable to examine the extent to which 

modern expectations about the relationship between these two phases were 

also exhibited in historical practice. At the very least, I suggest that it is helpful 

to recognise that these two components are usually subsumed in the literature 

under the single word “reception”. 

 Following this distinction, the studies referred to above have focussed 

almost exclusively on the second, “transmission” component. Raphael’s output 

is dominated by readings of the Discorsi in educational institutions in the 

decades following publication, and even in her paper on its publication through 

the collaborative efforts of agents and printers, she does not discuss whether 

Galileo had to battle to overcome the incredulity of his correspondents or 

struggle to win their trust. 20  Gingerich similarly establishes patterns of 

 

20 Raphael, “Printing Galileo’s Discorsi: A Collaborative Affair”; Raphael, Reading Galileo, 11–
15. 
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ownership and annotation of the first two editions of the De Revolutionibus in 

the decades after their publication, but the closest he comes to assessing the 

means by which readers validated the arguments in the text is his examination 

of the marginalia of Erasmus Reinhold, who recapitulated some of Copernicus’ 

analysis. 21  The studies of readings of Euclid in early modern Europe are 

likewise concerned with the transmission of a text whose authority had already 

been established. In strong contrast to these, my concern in this thesis is solely 

with the initial “validation” component of the reception of the Principia. Newton 

made a series of surprising claims in his book, and justified them with a new 

and unusual methodology: I am interested in the means by which his readers 

judged the validity of those novel claims, and either did or did not come to trust 

in his conclusions. I am not concerned with how Newton’s ideas were 

subsequently disseminated more widely. That is why my focus is on the text’s 

earliest readers in the years immediately after publication, and why I have 

chosen to frame my investigation with reference to the speed with which it “took 

Britain by storm.” In other words, for the purposes of this thesis I am viewing the 

Principia as a rhetorical rather than a didactic tool, and am interested in 

Newton’s book only as a technology of persuasion, and not as a technology of 

instruction. 

 This study is not the only existing attempt to apply the methods of histories 

of reading practices to the reception of the Principia. Most obviously, this thesis 

is indebted to Guicciardini’s published work over the last three decades, on 

which it will frequently draw. Two particular themes of his work will resonate 

with those explored here: the “equivalence” of outwardly dissimilar 

 

21 Gingerich, An Annotated Census of Copernicus’ De Revolutionibus, 268–78. 
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mathematical methodologies, and the role of scribal publication in Newton’s 

network of correspondents.22 The ways in which my analysis differs from his will 

become apparent in due course. I have examined different primary sources and 

am exclusively interested in early readers of the text, and so our conclusions 

emphasise different aspects of the reception of Newton’s book. On the rare 

occasion that I disagree with Guicciardini on an individual point of interpretation, 

I will state as such and make my case with a suitable degree of caution. My 

work is similarly intended to complement Mordechai Feingold and Andrej 

Svorenčík’s forthcoming census of first editions, which promises to be a 

valuable aid in extending the research presented here.23 What is not yet clear is 

the extent to which Feingold and Svorenčík have been able to examine the 

detail of the marginalia they have discovered, and in particular assess readers’ 

responses to Newton’s mathematical demonstrations. Steffen Ducheyne’s 

recent analysis of Adriaen Verwer’s study of the first edition, while providing 

much useful contextual information about the reception of the Principia in the 

Dutch Republic, requires the reader to take on trust its assertions about 

Verwer’s response to Newton’s proofs, and it may well be that Feingold and 

Svorenčík’s forthcoming publication is likewise not intended to answer the 

questions my study addresses.24 But it will at the very least enable patterns of 

ownership and families of annotations to be identified, and in that sense this 

 

22 See in particular Guicciardini, Reading the Principia, 250–60; Guicciardini, Isaac Newton on 
Mathematical Certainty and Method, 339–64; Guicciardini, “Isaac Newton and the publication of 
his mathematical manuscripts”; and Guicciardini, “David Gregory’s manuscript ‘Isaaci Neutoni 
Methodus fluxionum’ (1694): A study on the early publication of Newton’s discoveries on 
calculus.” 
23 Feingold and Svorenčík, “A preliminary census of copies of the first edition of Newton’s 
Principia (1687).” 
24 Ducheyne, “Adriaen Verwer and the First Edition of Isaac Newton’s Principia in the Dutch 
Republic.” 
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study is intended to complement Feingold and Svorenčík’s work, no less than it 

hopes to be able to accompany Guicciardini’s. 

Summary of Conclusions 

A close examination of the primary sources points towards a conclusion that 

deserves to be stated boldly: notwithstanding the praise it was afforded in 

public, there is no evidence that in the handful of years following publication the 

Principia succeeded in persuading any of Newton’s peers of the arguments it 

contained. The acclaim it received at the moment of publication was not 

founded on assent to its demonstrations. So far as can be reliably inferred from 

the extant documentation, his contemporaries often didn’t engage with the 

details of his proofs, and when they did they often disagreed with them. The text 

did not convince its readers of the validity of the mathematical methods it 

employed, and it did not convince its readers of the physical assumptions on 

which it was based. To the extent that they agreed with Newton’s conclusions, 

they did so either by reconstructing his arguments in their own terms, using 

alternative concepts and methodologies, or by holding face-to-face 

conversations with the author in which they queried, refined and negotiated the 

validity of his proofs. The text that was printed in the book was not sufficient to 

persuade its readers of the correctness of the arguments it contained. 

 Specifically, this thesis will make the following claims. 

Who read it 

There are only eight individuals for whom reliable documentation exists proving 

detailed engagement with the text before the summer of 1694: Edmond Halley, 

David Gregory, Gilbert Clerke, John Flamsteed, John Locke, Christiaan 
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Huygens, Nicolas Fatio de Duillier and Gottfried Leibniz. The list of individuals 

for whom there is specific reason to infer some sort of study, but the record of 

which is no longer extant, is just as short: Robert Hooke, Robert Boyle, John 

Wallis, John Craig, Richard Bentley, Colin Campbell, William Molyneux, William 

Petty, Abraham de Moivre and Edward Paget. Feingold and Svorenčík propose 

a print run of 600–650 copies of the first edition, of which they have located 387. 

Evidence of other engagement with the text will have been lost, but a 

meaningful estimate of the quantity and type of early readings beyond these 

named individuals will have to await the publication of their census. 

 Of these eight, only Leibniz’s response has been adequately analysed by 

historians. The other primary sources this thesis will examine are listed above, 

and I will use them to construct a detailed chronology of known early readings 

of the Principia, such as is currently lacking in the secondary literature. This will 

reveal that Fatio and (probably) Halley paid close attention to substantial 

portions of Newton’s text, and so deserve to be considered among his most 

important readers. Huygens, on the other hand, made no sustained attempt to 

study the text in any structured way, and only examined a handful of isolated 

passages relevant to his own research interests. Locke’s three readings of the 

book have been misdescribed by the secondary literature, in ways that have 

important implications for Locke scholarship: the pervasive story that Locke 

asked Huygens whether he could trust the mathematical demonstrations of the 

Principia needs to contextualised by the evidence strongly suggesting that 

Locke scrutinised the text more closely than Huygens did. Flamsteed and 

Clerke only engaged with a few sections of the book, but their reactions are 

consistent with those of their peers, and so provide valuable case studies of the 
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ways in which the book was read. Gregory provided the most thorough scrutiny 

of Newton’s text when it was published, working through the entire book 

sequentially in two separate phases. However, we will see that Gregory, Fatio 

and (probably) Halley all required face-to-face meetings with Newton to process 

the details of his arguments, in addition to their independent study. 

 In short, this thesis will make the following new claims: 

 the importance of Halley and Fatio as early readers of Newton’s text has 

been significantly under-stated; 

 the importance of Huygens has been significantly over-stated, and there 

is no evidence that he deserved to be trusted when Locke sought his 

opinion as to the validity of Newton’s mathematics; 

 Locke’s three readings of the book have been misdescribed by the 

secondary literature; 

 Gregory is the only early reader for whom there is good evidence of a 

detailed study of the entire book. 

Which passages they read 

The extant sources show that Newton’s peers commonly read the text 

piecemeal, examining only isolated passages in idiosyncratic sequence. Most 

early readers left most of the book untouched. Only Gregory appears to have 

completed a close reading of the complete text, although the evidence suggests 

that some others (Locke, Fatio, Halley and possibly Leibniz) skim-read the 

whole thing. The only passages that were routinely examined by early readers 

were the Definitions and Laws, the results on orbital forces in Sections 1–3 of 

Book 1, and Book 3. However, even within these passages the level of scrutiny 

varied, and individual steps in the logical structure of a proof were frequently 
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omitted. There exists evidence of a very small number of readers (Gregory, 

Fatio, Leibniz, plus possibly Halley and Clerke) who can be reasonably said to 

have closely studied the entirety of Newton’s demonstration of the inverse-

square law.  

 It is also noteworthy that Newton’s proofs concerning mutual attraction (as 

opposed to single, centrally directed forces) at the end of Book 1 received 

almost no attention before Gregory studied them at the end of 1692. Of the 

readers for whom evidence is available, only Leibniz read these passages, and 

even he appears not to have scrutinised the mathematics. This leads to the 

important observation that there is no evidence that any readers undertook a 

detailed examination of Newton’s mathematical demonstrations involving 

universal gravitation until at least five years after the Principia was published. 

 To repeat: 

 most readers engaged with the text piecemeal, studying isolated 

passages out of sequence; 

 the only passages routinely examined by early readers were the 

Definition and Laws, Sections 1–3 of Book 1, and Book 3; 

 most readers left most of the rest of the book unread; 

 there is no evidence that any readers scrutinised the mathematical 

arguments involving universal gravitation during the first five years after 

publication. 

How they read it 

The primary evidence shows that there was no one way of engaging with the 

text of the Principia. Different readers read different sections in different ways. A 

crude but useful distinction can be made between uncritical skim-reading and 
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close scrutiny of Newton’s arguments. The latter necessitated verifying the 

mathematical demonstrations in the text, which almost always involved the 

reader picking up a pen and reconstructing Newton’s prose in symbolic form. 

They did this either in the margin of the book, or in separate reading notes. That 

is, reading the Principia was active process of reconstruction rather than a 

passive process of absorption. 

 In addition, Newton’s peers approached his demonstrations from within a 

variety of conceptual frameworks. Different readers were accustomed to using 

different mathematical and physical methodologies, which meant that as they 

reconstructed Newton’s arguments in order to verify them, they generally did so 

using their own individual pre-existing conceptual frameworks. Few of Newton’s 

readers were persuaded to adopt the mathematical and physical framework in 

which he presented his arguments. Instead, most readers reconstructed (or 

attempted to reconstruct) his demonstrations in their own terms. The proofs 

readers thus generated were often different from those Newton gave in the text. 

Their reconstructions commonly employed different mathematical 

methodologies, different physical assumptions, and a different logical structure. 

They assented to his claims to the extent to which they were successfully able 

to reconstruct arguments in their support within their own framework. Verifying 

Newton’s proofs thus often involved deriving his conclusions by different means. 

Readers therefore often assented to Newton’s claims while disputing the validity 

of the arguments he provided in their support. 

 As they reconstructed Newton’s arguments in their own terms, readers often 

thought that they had improved them. The act of recreating his demonstrations 

caused them to – as they saw it – simplify, clarify and restructure the original 
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explanations, and sometimes extend them to produce new results. In this 

sense, editing the text was integral to the act of reading it. Because readers 

were obliged to recreate Newton’s arguments in order to verify them, they were 

automatically alerted to ways in which they could be improved. When 

circumstances allowed, readers often communicated these alternatives back to 

Newton. Clerke did so by letter, while Fatio, Gregory and (probably) Halley all 

did so in person. And as the edits he collected in his annotated copy show, 

Newton frequently altered his proofs in direct response to this feedback, often 

adopting the proposed alterations verbatim. Some of the changes he made 

comprised small typographical or grammatical corrections, but many did not, 

and Newton refined some of the most important passages in the book in direct 

response to suggestions from his peers. The final text of the second and third 

editions therefore represents more of a group effort than the secondary 

literature has previously acknowledged. 

 In short: 

 different readers read different passages in different ways; 

 a helpful distinction can be made between cursory skim-reading of 

passages and detailed scrutiny of arguments; 

 verification of the mathematical proofs entailed an active process of 

reconstruction: 

o Newton’s connected prose had to be reconstruction in symbolic 

form; 

o readers often reconstructed Newton’s proofs in their own terms, 

using their individual, pre-existing conceptual framework; 
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o their reconstructions were therefore often substantively different 

from the arguments Newton supplied in the text; 

o readers assented to Newton’s conclusions according to whether 

they were successfully able to reconstruct arguments in their 

support in this way; 

o they thus often assented to Newton’s conclusions while disputing 

the validity of the arguments he used to prove them; 

 editing the Principia was therefore integral to the act of reading it: 

o readers automatically produced what they thought were improved 

versions of Newton’s demonstrations; 

o the act of reconstruction in some instances led readers to extend 

Newton’s proofs to generate new mathematical results; 

o when these alternatives and additions were communicated to 

Newton, he often edited his text in response, adopting his readers’ 

suggestions verbatim. 

What they thought of it 

The primary evidence shows that occasions when readers straightforwardly 

verified Newton’s proofs – that is, when they were successfully able to 

reconstruct his arguments in the terms in which he presented them – were 

extremely rare. We shall see that there were many qualities of Newton’s text 

that obstructed such independent reconstruction. Sometimes the prose 

formulation of his demonstrations was difficult to reconstruct symbolically, 

because his explanations were too convoluted to understand, and his printed 

diagrams too unclear. Sometimes Newton left gaps in his proofs that readers 

were unable to fill in. Sometimes, the length of the book discouraged or 
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prevented close scrutiny of his arguments. And sometimes the conceptual 

framework within which a given reader was operating could not accommodate 

Newton’s argument. In addition, we shall see that Fatio, Gregory and (probably) 

Halley sought face-to-face meetings with Newton in which they queried and 

challenged his proofs. This demonstrates that, even for Newton’s most careful 

and attentive peers, the text itself was not sufficient to persuade readers of the 

validity of the arguments it contained. 

 Readers often disputed the validity of Newton’s innovative mathematical 

methodology. Some reinterpreted his geometrical limit proofs in terms of 

infinitesimals, which often led them to misunderstand or deny their validity. Even 

those readers who attempted to engage with Newton’s proofs in the terms that 

they were written frequently disputed their articulation or denied that they were 

sound. In his presentation of the method of first and last ratios in Section 1 of 

Book 1, readers objected to his limit definition in Lemma 1 because Newton’s 

phrasing made the logic of the demonstration unclear; and they denied the need 

for the unusual style of proof he deployed at the heart of his exposition in 

Lemmas 6–9. Newton rewrote these proofs in direct response to his readers’ 

feedback, along with many others. 

 Readers also disputed the validity of his innovative physical methodology. 

Some denied his foundational assumptions, with Halley prompting Newton to 

make significant alterations to the phrasing of the Definitions and Laws, and 

Leibniz preferring his own metaphysics to Newton’s. Different readers were 

used to mathematising orbital motion in different ways, and so a number either 

opposed Newton’s use of centripetal rather than centrifugal forces, or explicitly 

asserted their ambivalence. Either during or soon after his initial reading 
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Gregory objected to the logic of Proposition 6: the Principia’s most careful 

reader thus thought that all the orbital force theorems in the opening sections of 

the book were invalid. And we have seen that there is no evidence of any 

readers closely scrutinising the mathematical proofs concerning universal 

gravitation in the first five years after publication. 

 The most that can therefore be said about the response of Newton’s peers 

to his book is that a very small number of readers gave heavily qualified assent 

to a very small number of the arguments it contained. Even then, this often only 

happened after a face-to-face conversation with Newton. It is not even 

sustainable to make the narrow claim that his peers accepted his solution to the 

planetary orbit problem Halley had presented him with in 1684, because the 

archive does not contain evidence of any individuals who assented to the proof 

of the inverse square law that appeared in the first edition. Every reader for 

whom we have reliable evidence denied the validity of one or more steps in 

Newton’s argument. 

 In summary: 

 readers were often unable successfully to reconstruct his proofs: 

o his prose was often too convoluted to recreate symbolically; 

o Newton sometimes left gaps in his explanations; 

o the length of the book prevented close scrutiny of all its 

arguments; 

o the conceptual frameworks in which some readers operated could 

not always accommodate Newton’s arguments; 

o even very careful readers sought clarification from Newton in face-

to-face meetings; 
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 early readers were in general not persuaded by Newton’s innovative 

mathematical methodology: 

o they often tried to reconstruct his arguments in terms of 

infinitesimals; 

o this often led them to deny or misunderstand Newton’s results; 

o they were not persuaded by his exposition of the method of first 

and last ratios: they found the logic of the limit definition in Lemma 

1 unclear, and did not see the need for the unusual style of proof 

he used in Lemmas 6–9; 

o Newton edited many of his limit-based proofs in response; 

 early readers were in general not persuaded by Newton’s innovative 

physical methodology: 

o they disputed his foundational assumptions and disagreed with 

how he articulated his underlying concepts; 

o many either denied Newton’s rejection of centrifugal forces, or 

remained explicitly ambivalent; 

o Halley made significant alterations to Newton’s phrasing of the 

Definitions and Laws; 

o Gregory disputed the logic of Proposition 6, on which all the orbit 

theorems depended; 

o there is no evidence that any readers closely scrutinised the 

proofs concerning universal gravitation in the five years after 

publication; 

 the most that can be said is that a very small number of readers gave 

qualified assent to a very small number of arguments in the Principia; 
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 even the narrow claim that Newton’s readers accepted his proof of the 

inverse-square law is not supported by the evidence. 

Negotiating the Principia 

I have tried to distil these conclusions into the title of this thesis. The phrase 

“Negotiating the Principia” is intended to convey that assent to the arguments in 

the book was established only to the extent to which readers could successfully 

reconstruct its demonstrations in their own terms. In the cases of those readers 

who had direct contact with Newton, this negotiation is embodied in the archive 

as the edits Newton recorded in his annotated copy of the first edition, some of 

which – as I will demonstrate – were made in direct response to specific, 

identifiable feedback from his peers. Assent was in these instances established 

by means of a dialogue between author and readers, and the process by which 

the text was validated necessitated alterations to the text itself. But even those 

readers who did not have direct contact with Newton are to be understood as 

having undertaken their own private negotiation, in that they reconstructed 

alternative demonstrations that were substantively different from those in the 

book. In both cases Newton’s peers routinely felt unable to assent to his 

arguments in the form that they were printed in the first edition, and could only 

agree to modified versions of the text they themselves generated. Irrespective 

of whether they communicated these modifications back to Newton, readers 

assented not with the demonstrations as they appeared on the page, but with 

their own, alternative reconstructions. This is the sense in which I mean that the 

validity of the arguments in the Principia had to be negotiated with its readers. 

 The subtitle of my thesis, “the failure of Newton’s arguments to persuade his 

readers,” conveys the same information in much stronger language. So far as 
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we can tell from the extant evidence, in general readers did not assent to the 

proofs as they appeared in the printed version of 1687. The book’s readers 

were not persuaded by them. The Principia generally failed to persuade its 

readers to adopt its innovative mathematical methodology, generally failed to 

persuade its readers to adopt its innovative physical methodology, and failed to 

persuade many of its readers of the validity of many of its proofs. It failed to 

persuade any of its documented readers of the correctness of its derivation of 

the inverse-square law. At best, they gave qualified assent to their own 

reconstructions of Newton’s arguments. 

 I wish to clarify that I do not dispute that when it was published in 1687 the 

Principia “took Britain by storm.” The book did indeed win “immediate fame for 

its author”; it did "quickly cement Newton’s reputation as the greatest natural 

philosopher of his time." I merely wish to demonstrate that successful 

verification of the proofs in the text was not the cause of this acclaim. Newton’s 

contemporaries did not grant their approval because they agreed with the 

arguments that were printed in his book. On the contrary, this thesis aims to 

show that Newton’s contemporaries frequently disagreed with the arguments 

that were printed in his book. The acclaim Newton received was, in this specific 

sense, unwarranted. The extraordinary event in the summer of 1687 that 

requires explanation by historians was not the publication of the Principia, but 

the fact that his peers so immediately approved it when they had no good 

reason to do so. Newton’s peers did believe that he had written “an epoch-

making book,” and they did trust that it contained important truths about the 

natural world and the way it should be interrogated, but that trust did not arise 

from their study of the text.  
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 This thesis is therefore an internalist history that reaches an externalist 

conclusion. By a close examination of the reception of Newton’s mathematical 

arguments, I aim to show that his book met with approval for some reason other 

than assent with his mathematical arguments. Public confidence must have 

been generated by alternative means. What these means were, is beyond the 

remit of this thesis: I will make some suggestions in my Conclusion, but these 

will be unevidenced, and intended to guide further research. My purpose here is 

merely to argue that at the time of publication Newton’s peers were not 

persuaded of the correctness of the arguments they found printed in his book. 

Six tropes in the Newton literature this thesis will address 

These conclusions have a number of implications for the secondary literature on 

the reception of the Principia. These consequences are best conveyed with 

reference to six tropes that frequently occur in published studies of the 

reception of Newton’s book. There is value in all of these tropes, and I do not 

wish to make the strong argument that any of them is false. However, it is an 

aim of this thesis to draw attention to their habitual and reflexive use. I wish to 

address the latent assumptions on which they are based, and to encourage 

critical examination of the evidence in their support. These tropes are 

connected and interdependent, but can usefully be specified as follows. 

The Principia was self-evidently “difficult” 

The trope that the Principia was a “difficult” book saturates the secondary 

literature on the reception of Newton’s text. Feingold and Svorenčík refer to its 

“vaunted incomprehensibility” and “recondite nature” in the opening lines of their 



31 
 

preliminary census. 25  Elizabethanne Boran introduces her and Feingold’s 

collection of papers on eighteenth-century readings of the book by 

characterising it as “abstruse” in the first sentence, and explaining that “Many 

early readers (able mathematicians included) complained that it was too 

difficult.”26 Iliffe reports that “the Principia became a byword for impenetrability” 

and that anyone attempting to read it faced the overwhelming challenge of 

“mastering the work’s incredibly abstruse contents.” 27  Newton’s text is so 

routinely described as “difficult” that it is hard to find any studies that do not 

employ this adjective. An extreme instance is Stephen Snobelen’s paper on the 

subject, which opens with the sentence “Isaac Newton’s Principia was a 

notoriously difficult book to read,” is predicated on the book’s reputation for 

being “impenetrable” and “the perceived difficulties of abstraction and 

mathematics,” and concludes that “For most, it remained a veiled and difficult 

treatise, replete with mathematical abstractions and incomprehensible 

geometrical diagrams.”28 

 There is, of course, a great deal of truth in this trope. This thesis will present 

clear documentary evidence that many early readers found the Principia difficult 

to read, and the above accounts are right to emphasise the important 

implications this had for the ways in which Newtonianism was subsequently 

disseminated. But the secondary literature is much less effective at examining 

what this label means. Statements that the book was difficult are not usually 

accompanied by attempts to identify the qualities of Newton’s text that were 

 

25 Feingold and Svorenčík, “A preliminary census of copies of the first edition of Newton’s 
Principia (1687),” 253. 
26 Boran and Feingold, eds. Reading Newton in Early Modern Europe, 1. 
27 Iliffe, Newton: A Very Short Introduction, 102, 105. 
28 Snobelen, “On reading Isaac Newton’s Principia in the 18th century,” 159, 161–3. 
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responsible for its difficulty, or evidence showing how this difficulty affected 

readers’ ability to process individual passages. That the book was mathematical 

need not automatically have rendered it all incomprehensible, for instance, as 

much as Snobelen’s phrasing suggests otherwise. Mathematics is no more 

intrinsically difficult than any other area of knowledge. If historians mean to say 

that some but not all of the mathematics in the book was difficult – that Lemma 

28 of Book 1 on the non-integrability of ovals was particularly complicated, for 

example, or the scholium following Proposition 34 of Book 2 on the solid of least 

resistance – then they should be challenged to identify the offending passages, 

and explain why those particular sections had such a disproportionate effect on 

the reception of the text. The novelty of Newton’s claims is certainly not 

sufficient reason to single out his work as uniquely difficult, since many texts 

contain new ideas without being labelled as inherently difficult to understand. If 

the Principia’s difficulty is thought to be a consequence of the style in which it 

was written, this needs to be reconciled with Newton’s decision to eschew 

contemporary symbolic notation and present his arguments in classical, 

geometrical terms, which on the face of it would have made the book more 

accessible and more easy to understand. And if the book’s difficulty is 

understood by historians to have been a result of its length, that distinction 

should be made clear. But such a distinction would need to acknowledge that 

many of the most eye-catching results – including the proof of the inverse-

square law – are in the first fifty pages, which means that the important parts of 

the Principia are not particularly long at all. It would be useful to establish 

whether readers who studied only the first fifty pages still found it difficult. 
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 The secondary literature contains only scattered gestures at such an 

analysis. Tom Whiteside’s view is that “Quite bluntly, the logical structure of 

Newton’s book is slipshod, its level of verbal fluency none too high, its 

arguments unnecessarily diffuse and repetitive, and its very content on 

occasion markedly irrelevant to its professed theme.”29 But as I understand it, 

this judgement is based on his own readings of Newton’s book rather those of 

Newton’s peers, and as such is anachronistic: the literature lacks a systematic 

examination of the documentary evidence to establish which passages 

contemporary readers found difficult, and how they responded to these 

difficulties. Furthermore, it is yet to explain how, in spite of its 

incomprehensibility, the book nevertheless came to be acclaimed so quickly 

when it was published. The above studies explain very persuasively how 

Newton’s ideas were disseminated in the eighteenth century, but do not 

address how early readers – those individuals who would write rather than read 

the commentaries and popularisations that subsequently spread its ideas more 

widely – overcame the challenges the secondary literature claims were inherent 

in the text. In short, I do not share many historians’ confidence that the book’s 

difficulty requires no further explanation: on the contrary, a detailed 

deconstruction of this term is an important aim of this thesis. 

It could only be read by “experts” 

The narrative that Newton’s text was self-evidently difficult sustains a second 

trope, that it could only be understood by a very small number of “experts” who 

were sufficiently “competent” to read it. Iliffe, for example, reports that 

 

29 Whiteside, “The Mathematical Principles Underlying Newton’s Principia Mathematica,” 116. 
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In its own day, it was couched in a language that few were able to begin 

to read; it was hard going even for the most adept of contemporary 

practitioners, and the number of people who could offer expositions of its 

most abstruse sections was miniscule.30 

Andrew Warwick agrees that “When Isaac Newton published the ‘Principia’ 

three centuries ago, only a few scholars were capable of understanding his 

conceptually demanding work” because “the esoteric demonstrations of 

advanced mathematics were directly accessible only to a tiny and close 

community of experts.”31 Snobelen affirms that “only a handful of exceptionally 

competent scholars could comprehend its involved mathematical physics.” Yet 

the distinction between this tiny, elite group and the mass of common readers 

has never been articulated, and its membership list not specified. Two names 

appear in almost every account of the reception of the Principia, but they are 

only ever included to emphasise their lack of expertise: John Locke, who, 

unable to get very far with the book himself, is said to have asked Huygens 

whether Newton’s mathematics was correct, and Gilbert Clerke, who is 

characterised as an “exasperated” “ageing former Cambridge mathematician” 

who was reduced to writing to Newton to ask for help.32 But Clerke’s letters 

have never been fully examined by the secondary literature, and neither have 

the notes Locke made on the three separate occasions that he read the book. 

Many of the documents recording Huygens’ readings of the Principia have also 

been overlooked, which means that the extent to which he should or should not 

have been trusted to provide assurance is far from clear. 

 

30 Iliffe, “Butter for Parsnips,” 34. 
31 Warwick, Masters of Theory: Cambridge and the Rise of Mathematical Physics, 30. 
32 Guicciardini, Reading the Principia, 176; Snobelen, “On reading Isaac Newton’s Principia in 
the 18th century,” 159. 
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 Whiteside at least attempted to identify this exclusive band of experts:  

The Principia was – and is – accessible in its detail only to the 

mathematically sophisticated. In Newton’s own lifetime only a handful of 

his contemporaries working without distraction at the frontiers of current 

research – maybe only the Dutch scientist Christiaan Huygens, the 

German uomo universale Leibniz, the able Swiss mathematician Johann 

Bernoulli, the French priest Pierre Varignon, the Huguenot expatriate 

Abraham De Moivre and Newton’s most able editor Roger Cotes – had, 

each in his own way, achieved a working knowledge of the Principia’s 

technical content.33 

In this passage Whiteside says he is listing individuals who achieved a working 

knowledge of the book “In Newton’s own lifetime.” This lifetime lasted for forty 

years after publication, and Whiteside provides six names, meaning that on 

average one person with the required expertise to access Newton’s book came 

along every six or seven years. That is a remarkable claim for the undisputed 

scholarly authority on Newton’s mathematics to be making. It is difficult to 

reconcile with the fact that the Principia “took Britain by storm” at the moment 

that it was published. Taking their words at face value, Whiteside and Westfall 

cannot both have been right. Of Whiteside’s six, I have been able to find 

documentary evidence that only two – Huygens and Leibniz – engaged in any 

serious study of the text before 1694. Bernoulli and Varignon, so far as I can 

tell, only began to study the book later in the decade.34 Cotes celebrated his fifth 

birthday the week the book was published. It is noticeable that Whiteside has 

quietly slipped in a “maybe” to modify the strength of his assertions, indicating 

that even he hadn’t convinced himself of the evidence of early readings of the 

 

33 Whiteside, “The Mathematical Principles Underlying Newton’s Principia Mathematica,” 117. 
34 Guicciardini, Reading the Principia, 195–249. 
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book: like Shapin’s “probably” in the passage quoted above, this is a 

disconcerting word to find used by the pre-eminent scholar in his field on a 

matter of such significance. 

 Shapin invokes this trope using different language by impugning the 

“competence” of any individual not capable of understanding the book. This 

uncomfortably whiggish habit of blaming readers for not understanding 

Newton’s arguments still persists in the literature, in large part because Cohen 

and Whiteside – on whose work all subsequent studies have depended – often 

employed such present-centred language. Whiteside described Halley’s reading 

notes as a “not very percipient critique” of Newton’s text, and Clerke’s criticisms 

as a series of “tiresome and near-trivial ‘scruples’.” 35  Cohen declared that 

“Huygens had not really got the message of the Principia” because he “failed to 

discern” the difference between Newton’s mathematical construct and physical 

reality, which “was a distinction that Huygens himself was not able to make, or 

was not willing to make.”36 In a similar way, Hall reported that Fatio “possessed 

mathematical abilities that were considerable though not of the highest order.”37 

Even Bertoloni Meli describes Leibniz’s misgivings with one of the Principia’s 

most important proofs using the words “The extent of Leibniz’s failure here is 

stunning: obviously he read the text superficially.” 38  Taken together, these 

judgements raise uncomfortable questions about the reception of the text: if the 

secondary literature reports that neither Halley, Huygens, Fatio nor Leibniz 

could not be trusted to read Newton’s book properly, it might reasonably be 

 

35 Newton, The Preliminary Manuscripts for Isaac Newton’s 1687 Principia, 1684–1686, xvii; 
Newton, The Mathematical Papers of Isaac Newton, 6:xxi. 
36 Cohen, The Newtonian Revolution, 81–2. 
37 Hall and Hall, Unpublished Scientific Papers of Isaac Newton, 205. 
38 Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz, 244. 
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asked which of his peers was capable of reaching an informed verdict. It might 

legitimately be questioned how, if the text was so intrinsically difficult and its 

readers so reliably incompetent, the Principia came to be trusted at all. 

 In this thesis I will turn this trope on its head: rather than take the 

correctness of the text for granted and ask whether readers understood it, my 

aim is to establish how readers came to trust the results in the text. The 

Principia was capable of being put to many uses – as a teaching textbook, as a 

repository of empirical data, as a signifier of social status – but in this study I 

choose to prioritise its role as a rhetorical device. I wish to assess the extent to 

which it successfully persuaded the author’s peers of the validity of the 

arguments it contained. If the documentary evidence reveals that Newton’s 

intended readers did not fully grasp the full meaning of his arguments, then I will 

assume the balance of responsibility for that failure of communication to lie with 

the author, not the reader. I start from the view that it was the purpose of 

Newton’s book to persuade his readers, and not the duty of his readers to 

understand the book. 

“Understanding” was the only obstacle to assent 

The unexamined assumptions that the Principia was self-evidently difficult and 

could only be read by experts leads directly to a third trope which pervades 

much of the secondary literature: the ability to “understand” the text was the 

only obstacle to agreeing with it. If he was successfully able to “master” the 

mathematical demonstrations in the book, according to this narrative, the reader 

automatically agreed with them. No other barrier to assent with Newton’s 

mathematics is considered. The possibility that a reader might understand but 

still object to the validity of his mathematics is not acknowledged. When the 
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primary evidence inconveniently shows that Newton’s arguments were 

sometimes not approved by his peers, the disparity is explained away – as 

Cohen and Bertoloni Meli’s examples above show – as a failure of 

understanding on the part of the reader. 

 This trope is manifested in accounts of the reception of the Principia in two 

distinct ways. The first is the characterisation of the act of engaging with the text 

as a passive attempt to understand it, and the routine use of the word “master” 

as a synonym for “read.” Feingold, for example, reports that “Craig and other 

early readers of the Principia certainly persisted in their attempts to master the 

book, despite initial difficulties.”39 Ducheyne writes that Verwer “spent most of 

his time mastering the mathematical technicalities of the Principia.”40 Iliffe goes 

further, describing “the Herculean task of grasping the contents of the book” in 

stark terms: 

If Newton’s apparently superhuman labor had led to the book’s creation – 

and it was his own “industry and patient thought” that he himself 

repeatedly stressed – then potential disciples had to work just as hard to 

master its contents. Accordingly, much of the evidence from the period 

points to the sheer toil required to excavate its treasures and young 

acolytes were not lacking to undergo this supreme test. 41 

Iliffe’s characterisation of readers’ engagement with the Principia would appear 

to be a specific instance of his more general view that “the force of the 

demonstration of a mathematical text exerts something like an irresistible 

compulsion on those that are held to comprehend it” a claim which appears 

 

39 Feingold and Svorenčík, “A preliminary census of copies of the first edition of Newton’s 
Principia (1687),” 262. 
40 Ducheyne, “Adriaen Verwer and the First Edition of Isaac Newton’s Principia in the Dutch 
Republic,” 504. 
41 Iliffe, “Butter for Parsnips,” 51–52. 
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explicitly to exclude the possibility that a reader might ever understand a 

mathematical argument but deny its validity.42 I do not disagree that “mastering” 

the details of Newton’s arguments was an important component of the reception 

of his book, as the evidence even from its most attentive readers will make 

clear. But care should be taken not to imply that it was the only or even the 

determining factor, or that act of reading the book was always one of passive, 

uncritical assent to the arguments printed on the page. The connotations of the 

word “master” would seem to preclude the possibilities, for example, that a 

particular demonstration might be disputed, or half-understood, or 

misunderstood. Neither is it clear how the vocabulary of “mastery” would 

categorise a reader who agreed with Newton’s conclusions but not the 

arguments given in their support, or one who processed the conclusions without 

scrutinising the supporting arguments at all. A close examination of the primary 

sources will be required to establish whether any contemporary readers did in 

fact read any passages in this way. 

 The second indicator of the latent assumption that understanding was the 

only obstacle to assent is that histories of the reception of the Principia are 

disproportionately concerned with the means by which the book was rendered 

comprehensible after publication. Newton’s expert intermediaries (they are often 

described as “followers”, “disciples”, or even “acolytes”) first toiled to master the 

 

42  Ibid., 33. This view also entails the assumptions that every mathematical publication is 
“succinct, rigorous, and highly prescriptive with regard to what it expects of its audience” and 
includes “definitions or axioms that are taken for granted” by its readers. Iliffe’s language in this 
paper appears to derive directly from Steven Shapin and Simon Schaffer’s Leviathan and the 
Air-Pump, which reports that in the seventeenth century “geometry yielded irrefutable and 
incontestable knowledge” and provided “the kind of certainty that compelled absolute assent” 
because “the obscure and abstract mathematical format compelled assent… from readers who 
understood the demonstrations” (Shapin and Schaffer, Leviathan and the Air-Pump, 100, 23, 
35). A similar characterisation appears in Shapin, The Scientific Revolution, 112–120; I am not 
confident that it is sustained by the evidence, either in general or with specific reference to the 
Principia. 
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proofs themselves, according to these studies, and then set about 

communicating the results to others. Such narratives thus bypass the stage in 

which those intermediaries came to trust in the validity of Newton’s arguments 

in the first place, because it is taken for granted that understanding the proofs 

was sufficient to be persuaded by them. Both Snobelen and Iliffe’s accounts 

focus in this way on popularisers and disciples who “began early on to produce 

more digestible renditions of the Principia”43 and who could “mediate between 

the meaning of the text and wider publics”44; and Boran and Feingold’s edition 

of papers likewise emphasises the role of textbooks and popularisations, 

framing the reception of Newtonianism it in the context of William Molyneux’s 

call for “a second edition which would make the text more accessible for general 

readers.”45 As explanations of the later dissemination of Newtonianism these 

studies are persuasive, but none of them acknowledge the possibility that there 

might have been obstacles to assent with Newton’s mathematics other than the 

ability to understand it. Their only concern is to establish the means by which 

the Principia came to be understood, and they overlook the possibility that 

Newton’s demonstrations could ever have been contested. By framing the 

reception of the Principia exclusively through efforts to render it 

comprehensible, such narratives unquestioningly assume that once Newton’s 

mathematical arguments were understood, they were automatically agreed with. 

The changes Newton made after publication were “corrections” 

The prevalence of the foregoing tropes has led to an important artefact being 

mischaracterised in the secondary literature: the changes Newton made to the 

 

43 Snobelen, “On reading Isaac Newton’s Principia in the 18th century,” 159–60. 
44 Iliffe, “Butter for Parsnips,” 52. 
45 Boran and Feingold, eds. Reading Newton in Early Modern Europe, 3. 
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text in the years immediately after publication are routinely described as 

“corrections”. A standard reference on this topic is still Hall’s article from over 

sixty years ago, “Correcting the Principia.” This paper discussed the abandoned 

plans for a second edition during the 1690s, and reported that by way of 

preparation Newton “noted corrections in an interleaved copy of the first.” By 

this Hall meant the edition in the Wren Library referred to above; but having 

acknowledged this document’s existence, he was not able to closely examine 

its contents or explore its history. He merely reported that “In remedying 

numerous errors of the first edition” various sections were revised, in an attempt 

“to see the errors… corrected.” After all, “it was not astonishing that mistakes 

should have been made, in so difficult an investigation.” Hall also noted that 

“Fatio de Duillier prepared a long list of emendations,” which is true: Fatio did 

indeed collect a list of changes to the text in the reading notes identified above. 

But Hall was not able to inspect this document, and so did not establish its 

provenance or identify its relationship with the changes in Newton’s interleaved 

copy. The secondary literature still continues to follow Hall in describing both 

Fatio’s list and the changes in the Wren copy as “corrections”, even though their 

contents have not been systematically examined.46 

 Here is the passage in which Hall reflects on why the edits might have been 

necessary: 

Four chief criticisms were directed against the Principia, one 

philosophical and three mathematical. The first was, of course, aimed at 

the Newtonian concept of gravity with its apparently esoteric idea of 

attraction. The other three concerned the obscurity of Newton’s 

language, the mistakes of principle in certain of his demonstrations, in 
 

46 Hall, “Correcting the Principia,” 291–3. 
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Book II especially, and the vast number of minor slips, some due to the 

author's, some to the printer's carelessness. Many points of the last kind 

were such as would cause little difficulty to readers skilled in both Latin 

and mathematics (others would be unlikely to perceive them), but they 

marred the perfection of a great book, while a few were faults of 

consequence.47 

Hall’s claims here deserve close examination. His first suggestion – that the 

Principia elicited criticism for its esoteric idea of attraction – is not one to which I 

object. But his reference to “the obscurity of Newton’s language” invites further 

questions: it would be helpful to establish which readers found this to be a 

problem, in which passages, and – most importantly – whether this prevented 

them from understanding what Newton was trying to say. Hall also mentions a 

“vast number of minor slips,” which he elsewhere describes as “an infinity of 

errors to correct.”48 The primary evidence will need to be examined to confirm 

that these errors were indeed “minor” and caused as little difficulty to his 

readers as Hall suggests, and careful analysis will be required to distinguish 

such inconsequential slips from the “mistakes of principle in certain of his 

demonstrations,” which would appear to pose a much more significant problem. 

Mathematical proofs are conventionally presented in a deductive sequence, 

which means that one weak link automatically threatens the logic of the whole 

chain. Identifying these flaws and locating the conclusions they undermine 

would appear to be an urgent task for any historian of the reception of the 

Principia. Having done so, it might then be questioned how the text managed to 

retain the confidence of its readers if, as Hall asserts, it contained so many 

mistakes. 
 

47 Ibid., 293. 
48 Ibid., 292. 
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 A close examination of these changes to the text is of central importance to 

my thesis. I will show that there is a clear link between these edits and the 

documentation that records readers’ reactions to the text: in many instances, 

Newton altered his proofs in direct response to feedback from his readers. They 

not only highlighted minor slips and objected to the obscurity of his language, 

but also refined his terminology, disputed his logic, and suggested significant 

changes to his wording. This happened repeatedly, in critically important 

passages, throughout the book. Newton’s readers encouraged him to rewrite, 

reorder and restructure some of his most important proofs. They haggled and 

negotiated over the validity of his arguments. Newton’s interleaved copy thus 

comprises a precious resource that provides a detailed record of how the new 

mathematical knowledge in the Principia was forged by means of a dialogue 

with his readers. I suggest that the word “corrections” gives a misleading 

impression of the changes they contain: the edits Newton made to the text in 

the years following publication provide direct evidence of readers contesting the 

mathematical arguments in the Principia. 

The mathematics can only be understood relative to the Leibniz “debate” 

Hall’s “Correcting the Principia” also exhibits our penultimate trope, which is the 

central idea of the most famous passage in his article: 

Cotes was a competent mathematician, but [when preparing the second 

edition] it was beyond his power to remedy the greatest single defect of 

the Principia, its outmoded mathematical texture, even had he wished to 

do so. By 1713 the ascendancy of the Leibnizian calculus among the 

mathematicians of the continent was assured; the geometrical 

demonstration, familiar to Huygens and others as well as to Newton in 

1687, was already obsolete… The Principia was to remain a classic 
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fossilized, on the wrong side of the frontier between past and future in 

the application of mathematics to physics.49 

It is not the assumption of a clearly demarcated, impermeable “frontier” between 

the Newtonians and the Leibnizians I wish to subject to critical scrutiny here, 

because this has already been done very successfully by Guicciardini50: it is the 

assumption that the Newton-Leibniz debate is a necessary component of a 

study of the reception of the Principia at all. The subject of this thesis is the 

means by which the book came to be approved when it was published, and I 

can see no a priori reason why the disputes which occupied the opening years 

of the eighteenth century provide a uniquely valuable context from which to view 

events that took place over a decade earlier. I wish to suggest that the strong 

narrative pull of the subsequent rivalry between Newton and Leibniz – to which 

Hall contributed by normalising its depiction as a “War” – has had a distorting 

effect on studies of the reception of the Principia. 

 This trope is particularly emphasised by historians of mathematics, who 

share a training in the development of the methods of the calculus during the 

seventeenth and eighteenth centuries. According to the received narrative, the 

reception of the Principia was part of a debate between two competing 

mathematical schools. On one side, Newton led a group of English and Scottish 

mathematicians who championed the classical methods of proof used in the 

Principia, which were based on Newton’s conception of a geometrical limit. On 

the other, a group of continentals led by Leibniz employed a set of modern, 

analytical heuristics that were based on algebraic infinitesimals. The reception 

of the Principia is thus seen through the prism of two competing mathematical 
 

49 Hall, “Correcting the Principia,” 301. 
50 Guicciardini, Reading the Principia, 250–60. 



45 
 

methodologies, and contemporary readings of Newton’s book are framed within 

this context. An important component of such histories is the ongoing 

programme of “translation” of Newton’s geometrical demonstrations into the 

modern method of analysis by the Leibnizians during the years following 

publication. According to these narratives, in the decades after 1687 continental 

scholars “translated” the obsolete style of the Principia into the new terminology 

of the calculus. 

 The most prominent examples of this approach are the two monographs by 

Guicciardini and Bertoloni Meli, both of which situate the reception of the 

Principia within the context of the later debates. Bertoloni Meli’s work on 

Leibniz’s reading of the book can hardly avoid a comparison between the two 

methodologies, but he consciously frames the relationship as one of binary 

opposition. The sub-title of his book is “Newton versus Leibniz,” and its opening 

sentence announces that his subject is “the competing world systems put 

forward by Newton and Leibniz in the late 1680s.” Guicciardini also frames his 

study firmly within the context of the debate between Newtonians and 

Leibnizians, dividing his book into chapters on the two schools that emerged 

following the publication of the Principia, one in Britain in which “Newton 

surrounded himself with a small group of mathematicians with whom he shared 

his discoveries,” and another on the continent who had “a clearly stated 

programme: Newton’s demonstrations had to be translated into Leibnizian 

language.” To be clear, I do not wish to challenge the overwhelming majority of 

Bertoloni Meli’s and Guicciardini’s conclusions. In particular, I acknowledge 

Guicciardini’s important argument that the division into two schools was far from 

absolute, and that they had many methods and aims in common. It is merely 
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their perpetuation of the trope that the reception of the Principia can only be 

viewed from within the context of the Newton-Leibniz dispute to which I wish to 

draw attention. I suggest that this is a choice, not a requirement. Historians are 

not obliged to examine early readings of the book exclusively with reference to 

events that took place ten, twenty or thirty years later.51 

 The reason for drawing attention to this trope is that it encourages two 

assumptions that this thesis aims to challenge. The first is the that only Leibniz 

and his followers were sanctioned to disagree with the mathematical arguments 

in the Principia. The Leibnizians were Newton’s only worthy disputants, this 

trope suggests, and only they were allowed to deny the validity of the claims in 

his book. In mathematical terms, the trope implies that the only reason for 

disagreeing with Newton’s proofs was an ideological commitment to 

infinitesimals. It allows historians to overlook the possibility that individual 

readers who were sympathetic to Newton’s geometrical approach might 

nevertheless think that some of the proofs in the Principia were faulty. And the 

second danger of the trope is that its emphasis on a programme of “translation” 

misrepresents the way in which the book was read. As the documentary 

evidence will show, many early readers did indeed process the Principia’s 

geometrical proofs by reformulating them in analytical terms. But they did not 

read Newton’s proofs in his terms first and then afterwards translate them into 

infinitesimals. Rather, they read Newton’s geometrical limit theorems in terms of 

infinitesimals. They responded to the geometrical demonstrations printed on the 

pages of the book by reconstructing them in analytical terms on the pages of 

 

51 Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz, 1; Guicciardini, Reading the 
Principia, 3, 169, 195. 
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their notes. These readers did not translate the proofs into infinitesimals as a 

point of ideological principle, but because that was the only way they were able 

to process the arguments in the text. Translation was thus integral to the act of 

reading: it was a function of the way the book was read, not a result of the 

ideologies of the competing schools. 

 My approach in this thesis will be much more aligned with that articulated in 

Guicciardini’s most recent paper on Gregory’s assimilation of Newton’s fluxional 

methods: there were not two ways in which contemporary readers could 

process the arguments in Newton’s text, but many.52 My goal is not to situate 

the reception of the Principia within the context of the Newton-Leibniz debate, 

but to examine whether its earliest readers were persuaded by the arguments it 

contained. The ways in which they engaged with the text were naturally 

influenced by the wider communities within which they operated, but I will avoid 

the vocabulary of a debate between two competing schools, and focus solely on 

whether the text persuaded its individual readers as and when they sat down to 

read it. My aim is to establish who those early readers were, and the extent to 

which they were or were not persuaded by its arguments they found printed its 

pages. It is not my aim to retell the story of the publication of the Principia in 

1687 from the retrospective viewpoint of the Commercium Epistolicum of 1712. 

The Principia was a “masterpiece” 

The final trope in the secondary literature to which this thesis seeks to draw 

attention is also the most deeply embedded: the routine description of the 

Principia as a “masterpiece.” Like the adjective “difficult”, this epithet is so 

 

52  Guicciardini, “David Gregory’s manuscript ‘Isaaci Neutoni Methodus fluxionum’ (1694): A 
study on the early publication of Newton’s discoveries on calculus.” 
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ubiquitously applied to Newton’s book that examples are unnecessary; and like 

“difficult” I do not wish to make the strong argument that this word is never 

appropriate. I merely wish to draw attention to its habitual and reflexive use. I 

wish to encourage critical evaluation of what Newton scholars mean when they 

automatically describe his book in this way. Used in the historical sense of a 

piece of work produced to gain admittance to a guild-like group of peers, it may 

just about be defensible that the Principia was Newton’s “masterpiece,” since its 

publication successfully raised the status of its author and advanced his 

professional prospects (although this leaves unanswered the questions of who 

the guild and what the criteria of admittance were). However, I do not think this 

is the meaning most historians intend. I think they mean the word to be 

understood less narrowly, and simply wish to convey the outstanding brilliance 

of Newton’s book. The importance of Newton’s discoveries between 1684 and 

1687 and the developments they stimulated over the subsequent decades and 

centuries are hardly deniable. But to unthinkingly describe the book itself as a 

“masterpiece” is, I suggest, to ignore the Principia’s many shortcomings. It was 

poorly structured and confusingly written. Very few contemporary readers were 

able to access its contents, and even then only in part. They were habitually 

forced to reconstruct its arguments in terms different from those that appeared 

in the text, and a full understanding of many of its passages does not appear to 

have been possible without a face-to-face conversation with the author. 

Readers commonly objected to much of what it contained. Critical passages 

had to be rewritten because they were faulty or unclear. Its most important 

readers thought its most important arguments were faulty. As a rhetorical tool it 

was extremely ineffective, since it successfully persuaded only a tiny group of 
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individuals of a very small number of the claims it contained. It is not clear to me 

that “masterpiece” is the right word to describe a book with these properties. 

Historians who adopt it should at the very least be challenged to articulate why 

they think it is the appropriate term to use: this thesis will not shirk from 

emphasising the many defects of Newton’s book, and aims to critically examine 

the effect these had on its reception. 

Structure of Thesis 

The structure of my thesis will be thematic. In Chapter 1 I will attempt a 

complete chronology of known readings of the Principia before 1694, detailing 

all the extant evidence that Newton’s book was studied during these years, and 

identifying which sections of the text were read, by whom, and when. Chapter 2 

will examine in detail what the act of reading the Principia involved: I will argue 

that there were many different ways in which readers engaged with the text, but 

that they all entailed reconstructing Newton’s prose in symbolic form, often 

using different notation or different foundational concepts. Chapter 3 will 

interrogate the trope that Newton’s book was difficult to understand, and will use 

examples from contemporary reading notes to specify those qualities of the text 

that rendered it ineffective as a tool of persuasion. Having thus provided a 

general characterisation of ways in which the book was read, the two final 

chapters will detail the lack of assent to the novel claims Newton made in his 

book. Chapter 4 will show that readers were not persuaded by the new 

mathematical methods presented in the Principia (which is to say, Newton’s 

geometrical conception of limit as formulated in his method of first and last 

ratios) and either demanded that he re-write his proofs, or generated their own 



50 
 

using alternative methodologies. And Chapter 5 will show that readers were not 

persuaded by the new physical claims made in the Principia – they disputed the 

articulation of his foundational concepts, and denied that he had provided the 

only acceptable mathematisation of force. 

Guidance for the Reader 

As is appropriate for a study of a text in which the quantity of difficult 

mathematics both was and is perceived to be an obstacle to comprehension, I 

have given careful thought to how I present my mathematical analysis in this 

thesis. A close reading of mathematical manuscripts will be central to my overall 

argument. However, I have deliberately structured this thesis so that it can be 

profitably studied by any reader who is not confident engaging with the 

analytical details. This General Introduction, Chapter 1, the Introductions to 

Chapters 2, 3, 4 and 5, and the Conclusion are all entirely free of mathematical 

content. Taken together, these passages are intended to comprise a coherent 

summary of the conclusions of my study, and may be read without difficulty by 

any non-mathematical reader. 

 That said, I have tried very hard to render my discussion of the mathematics 

in this thesis as clearly and accessibly as possible. As discussed above, I do 

not wish to suggest that the demonstrations in the Principia are all trivially easy. 

But I am strongly of the view that the perceived difficulty of the book should not 

be allowed to act as an excuse for historians not to engage with any of its 

mathematical detail. I have taught mathematics in UK schools for twenty years, 

and it seems to me that many of the important demonstrations in the Principia – 

including most of the results discussed in this thesis – are accessible to A Level 



51 
 

students, and often require no knowledge beyond GCSE. I have accordingly 

pitched my mathematical explanations at the level of an alert sixteen-year-old. 

The reader who has not previously engaged with the mathematics of the 

Principia will find a sympathetic guide in Densmore’s Newton’s Principia: The 

Central Argument, whose commentary is warmly recommended (with the 

important caveat that it is based on the text of the third edition, not the first). I 

have often re-written seventeenth-century proportions using modern notation so 

that they may more easily be understood, but the role of such reconstructions in 

interpreting the printed text is a central theme of this thesis, and the extent to 

which they threaten to obscure significant distinctions will be explicitly 

addressed. There will be some instances when the reader who has received an 

undergraduate education in the epsilon-delta definition of a limit will be at an 

advantage, but I have not taken this knowledge for granted. 

 I have assumed throughout that my reader has to hand a modern translation 

of the third edition such as that by Cohen and Whitman, which I will often advise 

them to consult.53  Whenever the text of third edition significantly differs from the 

first, I will highlight this in my discussion. I will also make frequent references to 

the annotated copy in which Newton recorded changes to the text after 

publication, which has been made available to view online by the Wren Library, 

Cambridge.54 A clean copy of the first edition without the annotations, which the 

reader may also occasionally wish to view, has been provided online by the 

Library of Congress, Washington.55 The images of diagrams and text I have 

used in this document are generally taken from this copy. 

 

53 Newton, The Principia: Mathematical Principles of Natural Philosophy. 
54 https://mss-cat.trin.cam.ac.uk/manuscripts/uv/view.php?n=NQ.16.200 
55 https://www.loc.gov/resource/rbc0001.2013gen20872/?sp=11 
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 I have not always provided English translations of quotations from primary 

sources, but have done so whenever I have judged it helpful for the reader, 

particularly with longer passages. It is important to emphasise that these 

translations are never meant to be elegant paraphrases of their author’s 

intended sense, but literal renderings of the text on which they are based. The 

aim of my translations, where I have provided them, is to support the reader in 

their comprehension of the original, in parallel with which they are always 

intended to be read. 

 Finally, I wish to thank the prospective reader of this thesis for their time and 

consideration. I welcome constructive discussion of its contents, and look 

forward to being able to develop those ideas that are considered to be valuable, 

and acknowledge the faults in those that are not. In other words, I will gladly 

accept the opportunity to correct – or negotiate – the arguments as they appear 

in this text. Indeed, I cannot do better than to quote the words Newton used to 

end his own preface to the 1687 edition, presented here alongside Cohen and 

Whitman’s translation: 

Ut omnia candide legantur, & defectus, in materiatam difficili non tam 

reprehendantur, quam novis Lectorum conatibus investigentur, & 

benigne suppleantur, enixe rogo. 

I earnestly ask that everything be read with an open mind and that the 

defects in a subject so difficult may be not so much reprehended as 

investigated, and kindly supplemented, by new endeavors of my readers. 
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1. A chronology of early readings of the Principia 

1.1 Introduction 

The purpose of this chapter is to provide a detailed chronology of known early 

readings of the Principia. I will delay an examination of responses to the 

arguments in the text until later: my present aim is to establish in as much detail 

as possible which readers read which passages, in what way, and when, and to 

specify the primary sources on which the analysis in subsequent chapters will 

be based. Such a chronology is necessary here for the simple reason that none 

currently exists in the secondary literature. The two standard works on this 

subject are Guicciardini’s Reading the Principia of 1999, and Cohen’s 

Introduction to Newton’s Principia of 1971, to both of which this research is 

heavily indebted. Nevertheless, both Cohen and Guicciardini contain 

misdescriptions and omissions that have not been identified by other scholars in 

the decades since their studies were published. 

 The primary sources I have examined for evidence of engagement with the 

book are of four types. The first are personal reading notes. These take many 

forms: Leibniz, Flamsteed and Fatio left notes in the margins of their copies; 

Huygens and Gregory worked through individual propositions on separate 

pieces of rough paper; Halley and Fatio wrote out sheets of editorial feedback to 

be read by Newton; and Locke made notes in commonplace books. In whatever 

form they appear, such notes are the most valuable source of evidence of early 

readings, since they provide a direct and detailed record of how individuals 

engaged with the text. In Chapter 2 the contents of these documents will be 
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examined; my aim here is merely to identify them in the archive and place them 

chronologically.  

 Second, evidence of engagement with the text can often be found in 

contemporary correspondence. In their exchanges with each other – or with the 

author directly – Newton’s peers discussed both general themes of the Principia 

and specific results in the text. It is rare that letters contain detailed reference to 

the validity of individual mathematical proofs, and in that sense correspondence 

provides a less precise record of engagement with the text than reading notes: 

when the topic of Principia arises in contemporary correspondence, it is 

generally to discuss the implications of Newton’s conclusions rather than the 

validity of the arguments which led to them. Nevertheless, such references will 

provide important clues as to which sections of the book were read, and when.  

 Third, engagement with the text of the Principia can sometimes be inferred 

from treatises, tracts and articles (either published or unpublished) 

subsequently composed by Newton’s peers. In many ways this is the most 

important type of evidence for a history of the reception of the Principia to 

consider, but it is by far the most complex. It is also highly individualised, and 

the extent to which Newton’s ideas were developed in the later work of his 

readers varies widely. Leibniz’s response to Newton’s book is the theme of 

Bertoloni Meli’s Equivalence and Priority; Fatio appears to have gone no further 

on his own than proposing a physical mechanism for gravity; the impact of 

Newton’s physics on Halley and Flamsteed’s astronomy is not considered to be 

of great importance by their biographers; Clerke and Locke produced no 

mathematical physics of their own; Huygens had little time to develop the ideas 

he read about in the Principia before he died in 1695; and the extremely 
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significant effect of the Principia on the subsequent work of Gregory 

undoubtedly merits further research, but his archives are too large to be 

encompassed by this thesis. 

 The final category of primary evidence to be considered are the changes 

Newton made to the text of the Principia in response to suggestions from his 

peers. As related in the Introduction above, it will be a theme of this thesis that 

as a natural outcome of the process of studying it, many of the book’s readers – 

Halley, Clerke, Gregory, Fatio – proposed changes to the text, which were often 

accepted by Newton for inclusion in subsequent editions. He recorded these 

edits in two copies of the first edition he kept for this express purpose: the 

“annotated” copy now in the Wren Library,56 and the “interleaved” copy (so-

called because it was bound with specially inserted blank pages for additional 

notes) in the Cambridge University Library.57 Newton’s usual habit was to mark 

changes in both, and so although there are many differences, the edits in the 

two copies are generally extremely similar. And although the changes are 

individually undated, some chronological information can be inferred because 

when Newton gave out copies of his book in the years after publication, he often 

transferred whatever edits had been collected up to that point into the 

presentation copy. This happened, for example, when he gave a copy to Locke 

in 1690. When combined with the reading notes referred to above, these 

changes will reveal which passages were read and by whom, and will in 

subsequent chapters enable detailed examination of readers’ responses to 

Newton’s arguments. 

 

56 Cambridge, Trinity College, NQ.16.200. 
57 CUL, Adv.b.39.1. 
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 Of course, it cannot be claimed that the sources listed in this chapter 

constitute a complete record of all readings of the text before 1694. For 

example, correspondence strongly suggests that Hooke, Wallis, Petty, Boyle, 

Paget, de Moivre, Craig, Bentley, Campbell and Molyneux all engaged with the 

Principia to some degree in the years immediately following publication. I have, 

however, been unable to uncover any documentation recording the details of 

their study, and for this reason they are not represented here.58 An unknown 

number of other contemporary readings will either not have generated any 

material evidence, or generated material evidence that has since been lost. 

Feingold and Svorenčík’s forthcoming publications will be the best source of an 

estimate for their quantity and character. However, this thesis claims to attempt 

a fuller analysis of the extant primary sources than is currently available in the 

secondary literature. With the exception of Leibniz’s reading notes (for which I 

have relied on Bertoloni Meli’s transcription and analysis) and Gregory’s Notae 

(of which I have only been able to study the opening sections, as detailed 

below), I have closely examined all the primary evidence concerning early 

readings of the Principia of which I am aware. 

 A summary of the chronology provided in this chapter is presented in the 

table below. It makes no claim to completeness or absolute precision, but it is 

intended to be usefully indicative.59 Its purpose is to discourage historians from 

thinking of “reading the Principia” as a single, continuous act conducted in one 

sitting at the moment of publication, and to focus attention on which passages 

 

58 See Feingold and Svorenčík, “A preliminary census of copies of the first edition of Newton’s 
Principia (1687),” 256–8; Iliffe, “Butter for Parsnips,” 48–56. 
59  I am grateful to Niccolò Guicciardini for alerting me to one omission from this table, a 
commentary in Fatio’s hand (mostly dated 1691) held at the Royal Society in London, MS/64. I 
was unaware of the existence of this document while conducting my doctoral research. 
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were studied by which readers, in what way, and when. It highlights the overall 

conclusion of this chapter, which is that early readers almost always engaged 

with Newton’s text piecemeal. They read an assortment of passages, in 

different ways, in a variety of orders, over a number of years after publication. I 

have chosen to present the contents of this chapter chronologically to 

emphasise exactly this point. Early readings of the text were usually scattered 

and disjointed. It will become apparent that readers commonly engaged with the 

opening fifty pages of Book 1 (containing the Definitions, Laws, the method of 

first and last ratios in Section 1, and the main orbital force theorems in Sections 

2 and 3), along with the entirety of Book 3. All the evidence suggests that these 

passages were the most frequently read. This is consistent with the advice 

Newton gave in a letter to Bentley in 1691 that “When you have read the first 60 

pages, pass on to the 3d Book,” and also the instruction to the reader at the 

start of Book 3.60 But I have found no written record of this instruction before the 

letter to Bentley, and cannot see how a reader was supposed to know that 

before doing anything else they needed to turn to page 401 to find out how the 

author intended his book to be read: perhaps this instruction was communicated 

by word of mouth. It was anyway far from an established pattern. Huygens, for 

example, appears initially to have dipped in to examine individual results 

relating to his particular research interests, before being stimulated to examine 

other passages when he came across Leibniz’s references to them in the Acta 

Eruditorum. Flamsteed, I will argue, set out to work through the opening 

sections in detail, but gave up and skipped ahead to the climax of the inverse-

 

60 NC, 3:155–6. 
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square law. Importantly, we will see that even when readers paid attention to 

the details of a particular mathematical proof, it was rare that they examined 

every step in the logical chain leading up to its conclusion. The only reader for 

whom there is reliable evidence of a complete and careful scrutiny of the entire 

text is Gregory. Halley may have done so too, although the balance of evidence 

suggests otherwise, and it is likely that Fatio began such a project but did not 

see it through. Leibniz appears to have read most of the book, but – so far as 

we can tell from the extant evidence – did so without checking all the proofs. 

This puts him in the same category as Locke. Huygens comes out very badly 

from my analysis, which finds little evidence that he engaged with many of 

Newton’s proofs in any detail, along with strong indications that he studied 

much less of the book than the secondary literature is willing to admit. The 

responses of these individuals to the substance of Newton’s arguments will be 

the subject of later chapters: my aim here is simply to demonstrate that anyone 

who wishes to explain how the Principia came to be acclaimed so quickly when 

it was published in the summer of 1687 needs to account for the fact that early 

readings of the text by Newton’s peers were generally haphazard, non-

continuous, unsystematic and incomplete. 



Who read what, when, and how 
 

While every effort has been made to make this information as accurate as possible, it makes no claim to precision or completeness. It is intended to show that the readers examined in this thesis read different passages, in different ways, at different times.  
 

  Halley Clerke Locke Flamsteed Gregory Huygens Locke Huygens Leibniz Leibniz Huygens Leibniz Leibniz Fatio Locke  Fatio Gregory 
                   

  Editorial notes 
Letters to 
Newton 

1st reading 
notes 

Marginalia Notae 
Calculations 
for shape of 

the earth 

2nd reading 
notes 

Notes on 
centres of 

gravity 
Marginalia Notes Reading notes 

First set of 
Excerpts 

Second set of 
Excerpts 

Editorial notes 
3rd reading 

notes 
Marginalia Notae 

  1685–86 Sep – Nov 87 Sep 87 Oct – Dec 87 
Sep 87 – 
Apr 88 

by Nov 87 Mar 88 by 1688 autumn 1688 autumn 1688 Feb – Apr 89 Apr – Nov 89 Apr – Nov 89 
probably 
before  

13 Mar 1690 
1691 

maybe Mar 90; 
definitely by  
29 Apr 92 

Dec 92 – 
Jan 94 

 Definitions                  

 Laws                  

B
o

o
k 

1
 

Section 1            Lemmas 9–11      

Section 2         Props 4, 10 Props 1, 3 Props 6, 9 Prop 6      

Section 3         Prop 11         

Section 4                  

Section 5          Lemma 22        

Section 6         Lemma 28 Lemma 28   
Lemma 28. 

Prop 31 
    

Section 7          Prop 39      Prop 38, 39  

Section 8             Prop 40     

Section 9          Prop 45   Prop 44     

Section 10                  

Section 11            Intro 
all except 

Props 62–64 
    

Section 12                  

Section 13                  

Section 14                  

B
o

o
k 

2
 

Section 1                  

Section 2         Props 5–9 Prop 10 
Props 5 and 8, 

Lemma 2 
 up to Prop 8     

Section 3                  

Section 4                  

Section 5            Prop 23      

Section 6                  

Section 7            
Prop 40 

Scholium 
     

Section 8            
Scholium after 

Prop 50 
     

Section 9         Prop 51   Prop 52-53      

Book 3      Prop 19   Props 6–10 Prop 40  All  
Lemma 4 
onwards 

   

 

Hard evidence of detailed study  
Hard evidence of cursory reading  

Reasonable assumption of (at least) cursory reading  
If a particular result if named, only this result was studied in that Section Prop 40 
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1.2 Halley’s editorial notes, 1685–86  

The story of Halley’s role as midwife to the Principia has often been told. He 

prompted the book’s composition, funded its printing, broadcast its importance 

among his network of correspondents, and managed the mood-swings of its 

famously truculent author. Uniquely qualified to undertake such a forbidding 

task, Halley was improbably well-equipped with the disparate skills the work 

required. He had experience of dealing with printers and booksellers, was at the 

centre of intellectual life in London, had established academic connections on 

the continent, could win the trust and then handle the ego of his notoriously 

irascible author, was one of the few men in the country capable of 

understanding the mathematical proofs, and possessed the youth, energy and 

ambition to drive the job to completion. We may well agree with De Morgan that 

“But for him in all probability, the work would not have been thought of, nor 

when thought of written, nor when written printed.”61 However, historians have 

been curiously uninterested in Halley’s role as the Principia’s first reader. His 

response to the content of the text, and his acceptance of Newton’s arguments 

– on the occasions that it has been considered at all in the secondary literature 

– has been uncritically taken for granted. 

 This silence is not due to a lack of available evidence. It is clear that Halley 

read various draft sections of the Principia as it was being composed, because 

in the Portsmouth Collection at the Cambridge University Library there are six 

sheets of commentary located at MS Add. 3965, 94–99. These were first 

identified by Cohen in his Introduction of 1971, having received confirmation 
 

61 De Morgan, “Halley,” in The Cabinet Portrait Gallery of British Worthies, 11:12, London: 
Charles Knight, 1847, quoted in Cook, Edmond Halley: Charting the Heavens and the Seas, 
178. 
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from Whiteside that they were by Halley. From them Cohen inferred the 

existence of a now-lost early draft of the book “containing Definitions, Laws of 

Motion, and either all or great parts of the three books comprising the Principia 

as we know it.” Westfall’s biography referred to the notes only in passing; 

Whiteside dismissed them as a “not very percipient critique by Halley”; and 

Cook’s brief report stated that “Halley contributed nothing to [the Principia’s] 

composition. Although he was very impressed by it, he was clearly surprised by 

each new development as Newton unfolded it, and probably did not fully 

understand it at the time.”62 

 The notes occupy six folios, all written on the recto side only. The sheets are 

discontinuous and self-contained, with no overflow from one page to the next. 

Between them, their commentary covers draft versions of the Definitions and 

Laws, the first four sections of Book 1, the start of Book 2, parts of Book 3, and 

various other passages. In total, the text covered represents just under half of 

the final book, which strongly suggests that these six extant leaves were once 

part of a larger batch of notes. Assuming that Halley saw drafts of all the 

remaining sections, and that he produced a volume of commentary roughly in 

proportion to the number of pages he read, we can speculate that Halley 

originally produced a total of a dozen or fifteen pages of notes, of which those in 

MS Add. 3965 represent the incomplete remains. 

 The various draft sections of the Principia from which Halley made these 

notes mostly no longer exist. Only two substantial parts remain, both of which 

 

62  Cohen, Introduction, 122–124; Westfall, Never at Rest, 436; Cohen, Introduction, 337; 
Newton, The Preliminary Manuscripts for Isaac Newton’s 1687 Principia, xvii; Cook, “Halley, 
Edmond (1656–1742).” 
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are now in the University Library at Cambridge.63 The first is a set of drafts of 

parts of Book 1, at MS Dd.9.46. These documents were submitted to the 

University archives by Newton himself, since under the terms of his Lucasian 

Professorship he was obliged to deposit the text of his weekly lectures to the 

Library. For this reason they are usually referred to as the “Lucasian Lectures.” 

They are not a record of his teaching, however, but rather a collection of 

working drafts of the beginning of the Principia, retrospectively dressed up and 

dated to look as if they had been delivered as lectures. They are in the hand of 

Newton’s amanuensis Humphrey Newton, and although some parts may have 

been dictated, the majority are likely to have been copied out from earlier drafts 

long since discarded.64 In many locations Newton has subsequently written on 

or edited Humphrey’s text himself. The whole is an incomplete and disordered 

jumble of just over one hundred pages covering the Definitions, Laws of Motion, 

and perhaps the first two-thirds of Book 1. Cohen demonstrated that their 

contents had originally been grouped into two successive drafts of the opening 

sections of the Principia, which he labelled LL and LL. Some pages of the first 

draft LL  were transferred with small revisions into the second draft LL, while 

others were completely re-written, and yet more newly composed.65 The final 

manuscript of Book 1, which Halley took to the printer and is now held in the 

library of the Royal Society, is very similar to LL, which therefore represents a 

very late stage in the editorial process. Whiteside transcribed and translated 

 

63 The University Library at Cambridge holds a small number of other draft sections of the 
Principia which do not concern us here, because they have no bearing on Halley’s notes. They 
mostly comprise short bundles of pages pertaining to individual propositions. Chapter IV of 
Cohen’s Introduction contains a full catalogue. 
64 See Cohen, Introduction, 77n4. 
65 Cohen tracked down a further eight leaves archived at CUL, MS Add. 3965, 7–14 that also 
belong to the first draft LL. 
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sections of the manuscripts in Volume 6 of his Mathematical Papers, and then 

published facsimiles in 1989 under the title Preliminary Manuscripts for Isaac 

Newton’s 1687 Principia, 1684-1685. 

 The second set of manuscripts is an early version of what formed the basis 

of Book 3, now at MS Add. 3990. It bears the title “De Motu Corporum, Liber 

Secundus,” indicating that it was composed before Newton decided to split the 

first book in two. In fact, in can fairly confidently be dated to the autumn of 1685, 

since it contains data obtained from Flamsteed in September of that year. 

Furthermore, the following summer Newton told Halley that his theory of comets 

was still unfinished and that “In Autumn last I spent two months in calculations 

to no purpose for want of a good method, wch made me afterwards return to the 

first Book & enlarge it wth divers Propositions.”66 An extract of MS Add. 3990 

appeared in Whiteside’s Mathematical Papers in 1974, and images of the 

bound manuscript are now available to view online; the document was also 

published in full by John Conduit in 1728, soon after Newton died. 67 Like MS 

Dd.9.46, MS Add. 3990 is in Humphrey’s hand, with revisions and emendations 

inserted by Newton. Unlike MS Dd.9.46, however, Halley did not see the pages 

of MS Add. 3990: he read a later draft of the same book.  

 These documents enable us to date Halley’s readings of the drafts quite 

precisely. The proposition numbers of LL match MS Add. 3990 but are different 

from those in LL, suggesting that Newton wrote MS Add. 3990 with or just after 

LL, which he subsequently expanded into LL. LL grew out of the De Motu 

Newton prepared towards the end of 1684, which is why Whiteside placed LL 

 

66 Newton to Halley, 29 Jun. 1686, NC, 2:437. For corroboration of this date, see also Westfall, 
Never at Rest, 433–34 and 437, and NMP, 6:xxxii, 481. 
67 NMP, 6:481–96. Accessed 24 June 2021 at https://cudl.lib.cam.ac.uk/view/MS-ADD-03990/9. 
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in “winter/early spring 1684–5” or “early summer,”68 and LL soon after MS Add. 

3990 in the autumn. The six pages of Halley’s notes in MS Add. 3965 ff. 95–99 

refer to a variety of drafts, most of which no longer exist. The notes on f. 95 

refer to a now-lost draft of the Laws of Motion, but must have been made prior 

to the second draft LL, because Newton in many cases incorporated Halley’s 

suggestions into the text of LL. The notes on f. 99 relate to a non-extant draft of 

later sections of Book 1, but must also date from before LL, because the 

proposition numbers Halley uses are different. And Halley’s notes on f. 97 can 

be dated with certainty to between LL and LL, because his page and line 

references match LL, and because Newton implemented most of Halley’s 

suggestions directly onto the pages of LL, after which they were copied into 

LL. It is also clear that Halley made the notes on f. 94 after reading LL, 

because the page and line numbers match, and because Newton inserted many 

of his suggested alterations onto their pages. The same is true of the final two 

notes on f. 95, which were inserted later than the other comments on that page. 

The comments on f. 96 refer to a non-extant preliminary version of what was 

ultimately published as Book 2. Newton had originally planned the work to 

comprise only two books, but at some unknown point as it expanded during 

composition, decided to split the first book into two. The notes on f. 96 refer to 

the proposition numbers after this division had been made, which means they 

must have been made after 20 June 1686, when Newton informed him of the 

change. And finally, the notes on f. 98 refer to a draft of what was ultimately 

published as Book 3, but because the manuscript on which it was based is no 

 

68 NMP, 6:xxvi, 21. 
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longer extant, and because there is nothing to indicate whether they were made 

before or after the first book was split into two, they cannot be dated with 

confidence. All that can be inferred from the page and line numbers Halley used 

is that the version he saw must have been after MS Add. 3990, the format and 

numeration of which indicate that it was composed to accompany LL. This 

suggests that Halley was likely to have made these notes after those on f. 97, 

which are based on sections of LL. But there is no firm evidence for this: the 

notes on f. 98 could have been made at any stage in the process. 

 To summarise: 

LL composed (spring 1685?)  

f. 95 the MS on which these notes are based is lost, but Halley’s comments are marked into LL  

f. 99 also based on a now-lost MS, but the proposition numbers show it pre-dates LL  

f. 97 Halley read LL  and Newton inserted corrections into LL  (and, in two places, LL)  

LLβ composed (autumn 1685?)  

f. 94 Halley read LL and Newton inserted corrections into LL  

f. 95 the two final notes on f. 95 are based on LL, and Newton corrected LL  

Newton tells Halley there will be three books not two (20 June 1686)  

f. 96 
based on a non-extant draft of the final book, but the proposition numbers date it after the 

first book was split in two 

 

It is not possible to date f. 98, which is based on a non-extant draft of the final book.  

The details of this chronology are much less important than its overall shape, 

which contains valuable information about Halley’s editorial role. The most 

significant revelation is that Halley must have made his notes on at least three 

distinct occasions: once after the spring of 1685, again after the autumn, and for 
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a third time following June 1686. It is not the case – as Cohen and Cook loosely 

imply69 – that Newton invited feedback from a single provisional manuscript, 

which was read sequentially over the course of a few days or weeks. Instead, 

Halley’s advice was sought piecemeal, presumably over a number of months, 

section by section, a few bundles of pages at a time. If it is assumed that the six 

extant folios in MS Add. 3965 represent perhaps one half or one third of the 

total feedback Halley provided, a protracted back-and-forth of draft texts 

between Newton and Halley over the course of 1685 and 1686 may be 

reasonably inferred.  

 There is one other important conclusion to draw. In a number of instances, 

Halley commented on text which Newton had added to Humphrey’s original fair 

copy. So Halley must have read what was at the time the definitive, most up-to-

date version of the text, rather than a redundant, old copy. It is also clear from f. 

94 and f. 97 that Newton’s habit was to make his corrections directly onto the 

manuscript Halley had just read. Newton handed over a few bundles of pages 

to read, Halley made his notes and gave them back, whereupon Newton made 

corrections directly onto the original, returned manuscript. It is inconceivable 

that this exchange could have involved long-distance delivery. Newton would 

have been reluctant to let the “live” version of his precious work leave his own 

study, let alone Cambridge: Halley must therefore have travelled up from 

London to visit him and read the proof sections there. This must have happened 

on a minimum of three separate occasions, and, depending on the extent to 

which the extant notes are an incomplete record of the process, maybe as 

many as ten. The surviving correspondence provides evidence of only one visit 

 

69 See Cohen, Introduction, 336–7. 
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by Halley to Newton during the printing of the Principia, in a letter to Flamsteed 

dated 3 September 1686, when Newton makes a passing reference to “Mr 

Halley (who was lately here)”. These notes indicate that there must have been 

perhaps a handful more, and that Halley was a semi-regular visitor to 

Cambridge during these years. Halley’s proof-reading duties extended over 

many more months, and entailed significantly more travel, than Cohen, Westfall 

or Cook have acknowledged. 

 The content of Halley’s notes will be examined in detail in subsequent 

chapters. I will show in Chapter 2 that the majority of his comments constitute 

small alterations to Newton’s grammar or phrasing, and that the largest part of 

his feedback concerns syntax, morphology, and the clarity of Newton’s wording. 

That said, in some instances the precise phrasing of the text is of considerable 

importance: Chapter 4 will discuss Halley’s proposed tweaks to the wording of 

various limit results, and in Chapter 5 I will demonstrate how he also made 

alterations to the definitions of mass, inertia, centripetal force, and relative and 

absolute space. These are critically important passages, in which the 

foundational methods and concepts of modern science were being articulated: 

and yet the evidence unambiguously demonstrates that Halley was granted 

editorial access to them by his usually diffident author.  

 The key question of the extent to which Halley worked through and verified 

Newton’s mathematical proofs is harder to judge. I will present clear evidence 

that he must have followed at least some of the technical arguments very 

closely, since he picked up on occasional errors. But on the other hand, a 

comparison of his notes with those of Gregory and Fatio – who both set out to 

achieve complete readings of the text – suggests it is unlikely that he subjected 
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every demonstration to close scrutiny. Gregory took the best part of two years 

to work his way through the whole book; but Halley only had a few months. 

Gregory made hundreds of pages of dense notes, and Fatio made detailed 

annotations on dozens of pages; assuming that the extant sheets comprise very 

roughly one half of his total feedback, Halley produced only twelve or fifteen 

pages of observations in total. Furthermore, if he did process every result, 

Halley did so in a way that failed to detect the many errors that passed through 

to be printed. And there is no sign in the correspondence that Gregory, Fatio or 

anyone else thought that Halley had worked through all the proofs. If they had 

done so, they might well have asked him for help in their own endeavours, or 

spread the word that he knew the text as well as Newton. At the very least they 

might have found an opportunity to express their admiration. While it is possible 

that Halley fully verified every one of the proofs as they were produced, 

therefore, for him to have done so in the time available would have been not 

much less of an achievement than Newton’s in composing them.  

 I suggest that Halley superficially looked through all the mathematics for 

obvious errors, but did not subject all of it to critical analysis. He read the text, 

but probably without checking all the mathematics. If this inference is correct, 

then it is revealing something very important about the reception of the Principia 

– because it indicates that Halley had already placed his trust in the correctness 

of Newton’s claims before he read his text. His notes at MS Add. 3965 are not 

the initial responses of a sceptical reader being convinced for the first time of 

the surprising results the book contains. They are, for the most part, superficial 

tweaks in the late stages immediately before publication. They are the 

comments of an editor who has already chosen to attach his professional 
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reputation to the central argument of his author. If it is right to assume that 

Halley endorsed the surprising and revolutionary assertions Newton was 

making in the second half of the 1680s, these notes show that it was not the act 

of studying his geometrical proofs that caused him to be persuaded. Halley’s 

assent to Newton’s claims was not contingent on the validity of the 

mathematical arguments contained in his book. 

1.3 Clerke’s letters to Newton, September – November 1687 

Among the earliest readers of the book after its publication in the summer of 

1687 was the retired theologian Gilbert Clerke. The son of the headmaster of 

Uppingham School, Clerke had studied at Sidney Sussex, Cambridge, in the 

1640s, where he claimed to have worked alongside Isaac Barrow. He had 

subsequently been elected to a fellowship, but was forced to resign in 1655 

owing to his Unitarian views. He returned to Northamptonshire, and was taken 

into employment by the politician (and early member of the Royal Society) Sir 

Justinian Isham, tutoring his children and running his estate at Lamport Hall. 

Here he composed a handful of short tracts about natural philosophy, theology 

and mathematics, and made observations of the Great Comet of 1680–81. At 

the time of publication of the Principia, he was sixty one years old. 

 Otherwise of no importance to historians, Clerke exchanged a series of 

letters with Newton between September and November of 1687, in which he 

sought clarification of various matters in the opening sections of the book. This 

correspondence comprises five letters, all now held by the Dibner Library and 

housed in the Smithsonian, Washington. All five were published in Volume 2 of 
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The Correspondence of Isaac Newton, and are also accessible online.70 Four of 

them were sent by Clerke to Newton, dated 26 September, 3 October, 7 

November, and 21 November, and the fifth is a draft of Newton’s reply to the 

first. They were subsequently kept by Newton, from whose archive they 

ultimately made their way to the Burndy collection. Newton did not reply to the 

final two letters, and his response to that of 3 October has been lost.  

 Clerke’s queries allow a fairly precise reconstruction of his engagement with 

the book. In his first letter he reports that he has been studying the first three 

sections of Book 1, and asks for help with one particular line of algebra and 

some of Newton’s terminology. In his October reply he commits to embarking 

on Book 3, and in November he reports attempting to tackle Section 11 and 

“some of the foregoeing sections.” By the time of his final letter, he has had the 

opportunity to study Section 1 of Book 1 on the method of first and last ratios, 

and raises a number of objections to Newton’s limit proofs. In total Clerke 

therefore read the first sixty pages, Book 3, and possibly also some other 

passages. It will become clear in subsequent chapters that he studied many of 

the proofs in meticulous detail, paying close attention to the validity of Newton’s 

mathematical arguments. 

 To the extent that these letters are mentioned in the secondary literature at 

all, it is generally to dismiss Clerke as a naïve and ill-informed old man. Sylla 

reports that he was “a mathematician of modest ability,” and Whiteside that he 

was an “aged correspondent” who pestered Newton with “tiresome and near-

trivial ‘scruples’ regarding the opening pages of his book.”71 Clerke’s tone is 

 

70 NC, 2:485–96. 
71 Sylla, “Compounding ratios,” 12; NMP, 6:xxi. 
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indeed humble and apologetic throughout the exchange, and he admits to what 

appears to be a very basic misunderstanding in his first letter. But I shall argue 

in Chapter 3 that Clerke’s complaints were far from atypical among Newton’s 

contemporaries. He was not the only reader of the Principia who had difficulty 

recreating its prose demonstrations in algebraic form, and not the only reader 

who contested its terminology. Furthermore, his final letter has received almost 

no attention from the secondary literature, despite it containing his most 

important criticisms. I will show in Chapter 4 that Clerke’s objections to the 

method of first and last ratios were among a range of complaints raised by 

Newton’s readers against the formulation of his limit arguments, and Newton 

amended his text in direct response to Clerke’s comments. I shall argue that the 

condescension with which Clerke is treated is undeserved: the queries he 

raises are much closer in substance to those of his better-known peers than 

historians have been prepared to acknowledge. 

1.4 Locke’s first reading, September 1687  

John Locke has always played a very particular role in histories of early readers 

of the Principia. For three centuries he has been presented as the exemplar of a 

well-intentioned but technically incapable class of individual who tried but failed 

to understand it. Even during Newton’s lifetime, the story spread that Locke had 

attempted to read Newton’s book, but could not follow the mathematics. He did 

his best to understand Newton’s physics – so the rumour went – but had to ask 

others to confirm the validity of his geometrical proofs. After Newton’s death, 

Desaguliers said that he had been told “several times by Sir Isaac Newton 

himself” that 
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The great Mr. Locke was the first who became a Newtonian Philosopher 

without the help of Geometry; for having asked Mr. Huygens, whether all 

the mathematical Propositions in Sir Isaac’s Principia were true, and 

being told he might depend upon their Certainty; he took them for 

granted, and carefully examined the Reasonings and Corollaries drawn 

from them, became Master of all the Physics, and was fully convinc’d of 

the great Discoveries contained in that Book: Thus he also read the 

Opticks with Pleasure, acquainting himself with every thing in them that 

was not merely mathematical.72 

Some years earlier, Conduitt had also recorded that “Lock took his 

prop[osition]s for granted on hearing Hugens say that he had proved them,” 

crediting De Moivre as his source. Throughout his work, Locke held up 

geometrical reasoning as an abstract ideal to which all forms of knowledge 

should aspire, but the contemporary evidence suggests that he lacked the 

technical skills required to understand Newton’s proofs.73 

 It was not until Axtell’s studies in the late 1960s that a more complete picture 

emerged. Axtell demonstrated that Locke made three separate attempts to read 

the Principia: soon after publication in 1687; the following March, in order to 

compose a review for the Bibliothèque Universelle; and again in 1691. Axtell 

praised Locke’s “intellectual determination” as he sustained his “earnest assault 

on the Principia,” concluding that “the emphasis should be placed on the 

positive aspects of Locke’s achievement, the mastering of ‘all the Physicks’ in 

spite of his mathematical handicap.” He attributed Locke’s rejection of 

Cartesianism to his readings of the Principia, after which he replaced his 

 

72 Quoted in Locke, The Educational Writings of John Locke, 307. 
73 King’s College Library, Keynes MS 130, quoted in Cohen, Introduction, 147. See also Yolton, 
Locke and the Compass of Human Understanding, 87, and Gibson, “Locke’s Theory of 
Mathematical Knowledge and of a Possible Science of Ethics.” 
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previous Baconian view of science with an outlook based on Newton’s 

mathematical approach.74 

 All histories of the reception of the Principia since then have been based on 

Axtell’s study. Cohen did not dwell on Locke’s first or third readings, and only 

referred to the second in passing.75 Westfall retold the traditional story: 

Since he was not a mathematician, he found the demonstrations 

impenetrable. Not to be denied, he asked Christiaan Huygens if he could 

trust the mathematical propositions. When Huygens assured him he 

could, he applied himself to the prose and digested the physics without 

the mathematics.76 

Anstey bases his study of Locke’s epistemology of natural philosophy on 

Axtell’s conclusions; and Guicciardini pays very little attention to Locke.77 What 

it might mean for a reader of the foundational text of mathematical physics to 

“digest the physics without the mathematics,” no recent scholar has felt the 

need to explore. 

 I do not seek to challenge Axtell’s conclusion that Locke did not follow 

Newton’s geometrical demonstrations. However, I will demonstrate in Chapter 2 

that this emphasis on Locke’s mathematical inability mischaracterises Locke’s 

relationship with the text. I will show that the details of all three of Locke’s 

encounters with the Principia can be accounted for by his lifelong habit of 

making notes in commonplace books, as described by Richard Yeo. 

Notwithstanding the fact that Locke bypassed the book’s mathematical content, 

Yeo’s description of Locke’s commonplacing routine accounts exactly for the 

 

74 Axtell, “Locke, Newton and the two cultures,” 175–7; Locke, The Educational Writings of John 
Locke, 74. The emphasis is Axtell’s. 
75 Cohen, Introduction, 146. 
76 Westfall, Never at Rest, 470. 
77 Guicciardini, Reading the Principia, 176. 
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way he processed the text, and provides a much more complete understanding 

of Locke’s relationship with Newton’s work than Axtell was able to supply. 

 The primary evidence shows that Locke read the Principia three times. On 

each occasion he skipped all the mathematical sections, but read through 

everything else in order, making careful notes. Those three sets of notes are 

now in the Lovelace Collection at the Bodleian Library, and they are all are 

dated. In September 1687, shortly after publication, he made the notes now at 

MS Locke c. 33, 19–20; in March 1688, he took the notes in MS Locke c. 31, 

99–100 and used them to write a review in the Bibliothèque Universelle; and in 

1691, during the early years of his friendship with Newton, he made notes in MS 

Locke d. 9. On this final occasion, he also had access to a four-page simplified 

proof of the inverse-square law (at MS Locke c. 31, 101–4) and an updated 

copy of the Principia (now in the Wren Library of Trinity College, Cambridge, at 

Adv.b.1.6), both of which had been given to him by Newton. 

 The circumstances of his second and third readings will be considered 

below. On the occasion of the first, he was living in Rotterdam, having fled 

London in 1683 owing to suspicions about his involvement in the Rye House 

Plot. By 1687 he was staying with the merchant Benjamin Furly, whose copy of 

Newton’s book we may assume Locke read in September, making notes on 

individual sheets that are now mounted in MS Locke c.33, 99–100. Their 

structure and contents, and what they reveal of Locke’s process of engagement 

with Newton’s text, will be examined in Chapter 2; the circumstances of his 

second reading six months later will be discussed below. 

1.5 Flamsteed’s marginalia, October – December 1687 
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Newton and Flamsteed had known each other for over fifteen years when the 

Principia was published in the summer of 1687. The Astronomer Royal had 

provided Newton with data for the book during its preparation, so it was natural 

that Flamsteed would be presented with a copy upon publication. This copy is 

now in the library of the Royal Society (RCN 18577), to which it was presented 

in 1853 by John Baily from the collection of his late uncle, Francis Baily. It 

contains the marginal notes Flamsteed made when he read various parts of 

Book 1 and Book 3 in the autumn of 1687. Mentioned only in passing by Cohen 

and Flamsteed biographers, these marginalia have never been the subject of a 

historical study. 

 Flamsteed’s correspondence usefully provides a timeline of his engagement 

with the Principia. As it was going through the press he referred to its imminent 

publication in letters to William Molyneux and Richard Towneley, reporting that 

it contained mathematical proofs of the planetary orbit laws “which Kepler found 

out first but could assigne no reason for but what was drawn from 

Experiment.”78 It is not known exactly when and how Flamsteed received his 

copy from Newton, but in October 1687 he wrote to Gottfried Kirch, 

recommending the book as containing "many most useful propositions and 

geometrical theorems” in which “the author demonstrates what the most wise 

Kepler once discovered by means of lengthy toil.”79 It is unclear from this letter 

whether Flamsteed had yet had the opportunity to undertake any study of book, 

or was merely reporting what he understood to be its contents as he had to 

 

78 Flamsteed, The Correspondence of John Flamsteed, 2:350, 2:297–8. 
79 Flamsteed, The Correspondence of John Flamsteed, 2:363. 
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Towneley. Helpfully, his next letter to Molyneux, on 19 December, is much more 

specific: 

I should be glad to heare what opinion your friends have of Mr Newtons 

booke I have mastered 60 pages. The rest I have gone onely cursorily 

through. When our dayes lengthen I shall set upon the rest.80 

And he repeats this assertion to Molyneux the following June: 

I have onely read some 60 pages of Newton. after which I found the most 

material parte of that booke beeing mastered the rest would be easy. but 

it cost me many dayes paines to get through them. and yet I thinke my 

time well requited. 

The marginal annotations in his first edition broadly support Flamsteed’s claim 

that he read most of the first 60 pages. Or, at least, he attempted to: he made 

detailed mathematical notes alongside Corollary 2 to Law 3 (concerning the 

resolution of forces into components); Proposition 4 (the centripetal force 

required to maintain a circular orbit); Proposition 10 (the force required to 

maintain an elliptical orbit if directed towards the centre); Proposition 11 (the 

force required to maintain an elliptical orbit if directed towards a focus); Lemma 

14 (a technical result about parabolas); and Proposition 13 (the force required 

to maintain a parabolic orbit). I will show in Chapter 2 that in each case he 

either verified or attempted to verify Newton’s demonstration. In addition, there 

are smaller annotations next to Lemma 11, Proposition 14, Proposition 16, 

which provide technical results, respectively, about the method of first and last 

ratios and orbits under inverse square forces. His last detailed marginal notes 

 

80 Ibid., 2:373. 
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were made on page 57, and there are no subsequent verifications of 

mathematical proofs. 

 It is noticeable that Flamsteed appears only to have paid attention to the 

proofs concerning circular, elliptical and parabolic orbits, along with their 

supporting geometrical theorems. He left no annotations next to Newton’s 

results about hypothetical, non-real orbits, such as the logarithmic spiral or 

hyperbolic orbits considered in Propositions 9 and 12, or circular orbits for which 

the centripetal force is directed towards a point other than the centre, as in 

Propositions 7 and 8. We may readily surmise why the Astronomer Royal chose 

to ignore these passages. Moreover, his annotation alongside Corollary 2 to 

Law 3 – for a variety of reasons that will be considered in detail in Chapter 3 – 

shows that Flamsteed was unable to verify Newton’s proof, and gave up half-

way through. This is the first substantial mathematical demonstration in the 

book, and the opening dozen or so pages – containing the Definitions and first 

two Laws – are non-mathematical, so can be read without writing anything 

down. I therefore suggest that Flamsteed’s original plan had been to work 

through the opening sections in order, but that as a result of his early setback 

with Corollary 2 to Law 3, he chose instead to skip ahead to the results in which 

he was most interested – which is to say, the theorems relating to real 

astronomical orbits in Sections 2 and 3. 

 Importantly – as will be discussed further in Chapter 5 – Flamsteed does not 

appear to have scrutinised the proofs in Section 1 on the method of first and last 

ratios. There is only one annotation in these pages, a cursory note verifying the 

manipulation of ratios in Lemma 11, which I suggest Flamsteed made when he 

found the result cited in Proposition 4. But there is no evidence of any sustained 



78 
 

engagement with Newton’s arguments in Section 1. One other omission is 

noteworthy: Flamsteed does not appear to have verified the proof of Proposition 

6. This result is of critical importance, since it establishes Newton’s general 

method for quantifying centripetal force, which he subsequently applies in each 

of Propositions 7 to 13. It is clearly cited in each of these proofs, and yet the 

margins on the pages of Proposition 6 are blank. It is possible that Flamsteed 

worked through this result on separate sheets which have since been lost, but 

given that it is no more complicated than the other proofs he verified in the 

margins, I suggest this is unlikely. However, the remaining proofs about 

centripetal forces all depend on Proposition 6, and it constitutes an 

indispensable link in the logical chain that leads to the inverse square law. This 

means that Flamsteed’s trust in the central claims of the Principia – like Halley’s 

– cannot possibly have been founded on his assent to the mathematical 

arguments provided in the book, for the simple reason that he did not he did not 

study them all. 

1.6 The first part of Gregory’s Notae, September 1687 – April 1688 

By far the most substantial written response to the Principia – the only detailed 

commentary on the whole text, composed by one of the author’s most trusted 

and influential disciples – has yet to be fully examined by the secondary 

literature over three centuries after it was composed. In the mid-1950s 

Gregory’s two hundred pages of Notae were identified by Wightman and 

Turnbull in the library of the Royal Society, where they have in all likelihood 

been for very much longer. There are also three contemporary duplicates of the 

manuscript, in the libraries of Christ Church, Oxford, the University of 
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Edinburgh, and the Gregory Collection at the University of Aberdeen. 

Furthermore, Kirsanov suggested in 1992 that Gregory’s annotated first edition 

is now at Moscow University, having been brought to Russia by Robert Erskine, 

chief physician to Peter the Great, in the early eighteenth century. That 

document, too, has not been closely examined.81 

 Gregory’s Notae record the only known complete reading of Newton’s text 

from the time of publication. Gregory worked through the whole book, verifying 

(or attempting to verify) each proof in turn. His notes follow Newton’s results in 

the order that they are printed, although in some instances entries refer to later 

propositions, which suggests that they were copied up from some earlier 

document (which may or may not have been the annotated Moscow copy). The 

first thirty pages cover Sections 1 to 9 of Book 1, and are dated September 

1687 to April 1688; the remainder are dated December 1692 to January 1694. 

Some of the pages have extra slips of paper attached with paste, containing 

additional later notes. Many of these record the discussions that took place 

when Gregory visited Newton in May 1694, but he continued to add to the 

document throughout his life, and the last is dated 1708. Gregory ultimately 

wished for the Notae to be published as a running commentary on the Principia, 

and the Christ Church copy appears to have been prepared for the press, since 

the notes are numbered as footnotes. The first serious scholarly engagement 

with the Notae appeared in Eagles’ PhD thesis of 1977, but her research 

covered the entirety of Gregory’s mathematical career and so her study of the 

 

81 Wightman, “Gregory’s ‘Notae in Isaaci Newtoni Princpia Philosophiae’”; Wightman, “David 
Gregory’s Commentary on Newton’s Principia”; Kirsanov, “The Earliest Copy in Russia of 
Newton’s Principia: is it David Gregory’s Annotated Copy?” 
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manuscript was only partial. Guicciardini’s analysis is also based on a reading 

of selected passages.82 

 Over the following chapters, I will provide analyses of those sections of the 

Notae I have so far been able to examine. The resources available to me in this 

doctoral project – as well as the COVID restrictions which shut the library at the 

Royal Society during 2020–21 – have allowed me to study in detail only his 

notes on the opening fifty pages of Newton’s book, up to and including his proof 

of the inverse square law. The close scrutiny to which Gregory subjects 

Newton’s arguments in these passages is obvious from even a partial 

examination. Nevertheless, although the quantity of his response easily 

surpasses that of his contemporaries, its quality was in some respects typical of 

the Principia’s other readers. In Chapter 2 I will show that Gregory engaged with 

Newton’s mathematical demonstrations – as others did – by reconstructing his 

connected prose in symbolic form, and Chapter 3 will examine the obstacles 

this created when attempting to verify the proofs. In Chapters 4 and 5 his 

response to Newton’s geometrical limit methods and his analysis of force will be 

assessed. In general Newton’s peers engaged with these two topics not by 

processing Newton’s arguments in the terms in which he presented them, but 

by reconstructing his proofs within their own conceptual framework. However, 

as will be explained in these last two chapters, Gregory was unique among 

known early readers in that he was able to process the book’s arguments within 

a variety of conceptual frameworks. He was thus able not only to engage with 

Newton’s demonstrations in the terms that they were presented, but also to 

 

82 Eagles, “The Mathematical Work of David Gregory, 1659–1708”; Guicciardini, Reading the 
Principia, 179–84. 
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consider how they might more profitably be accommodated within others: his 

assent to the claims in the Principia was founded on an awareness that more 

than one argument could be provided in support of Newton’s conclusions. 

1.7 Huygens’ first references to the Principia, December 1687 

As with Gregory, there are important omissions in the secondary literature’s 

account of Huygens’ engagement with the text of the Principia. His objection to 

the reality of universal gravitation due to the absence of a physical mechanism 

is an established part of the historical narrative, but the assumption that his view 

was formed after sustained study of the text has not been critically examined. 

Although the story is frequently repeated that Locke took Huygens’ word that 

Newton’s mathematics was correct, no study has interrogated the extent to 

which Huygens’ judgment deserved to be trusted on the matter, nor (assuming 

that the anecdote is true) on what basis Huygens was making that claim. Cohen 

discussed Huygens only briefly in his Introduction; Guicciardini was not able to 

examine all the available documentation; and the Oeuvres Complètes on which 

Cohen and Guicciardini based their studies contains inaccuracies. 

 In fact, the extant evidence indicates that Huygens did not engage with the 

text of the Principia to a particularly high degree. I will show below that he read 

the Laws, Definitions and some parts of Book 3, but worked through the details 

of only a handful of Newton’s mathematical proofs (in Section 2 of Book 1 and 

Section 2 of Book 2), and only when prompted to do so by Leibniz’s publications 

in the Acta at the start of 1689. On the occasions that he did pay close attention 

to the text, Huygens mined it for information on specific topics he was already 

interested in – primarily the shape of the earth, and motion in resisting media. 
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Unlike Halley, Fatio, Gregory and Leibniz, at no point did he attempt a complete 

reading of the text; instead, like Flamsteed, Huygens engaged with the sections 

that were directly relevant to his research interests. The rest of the book, so far 

as we can reasonably infer from the available evidence, he left unexamined. He 

did not seem unduly interested in the proofs concerning planetary orbits or 

comets, for example. Nor did he pay detailed attention to Newton’s method of 

first and last ratios (as will be discussed in Chapter 4), instead choosing to 

interpret Newton’s geometrical limit proofs in terms of infinite series (see 

Chapter 2). It is also noticeable that Huygens frequently referred to the difficulty 

of the book, asserting that “la chose ne soit pas sans cette grande difficultè” and 

describing it as containing “beaucoup de choses obscures.” He wrote that its 

demonstrations were “perobscura,” and were presented “obscure admodum.”83 

In short, Huygens studied the proofs of the Principia in less detail than either 

Gregory, Leibniz or Fatio, and read the book less completely than Halley or 

Locke. In terms of the number of proofs that there is evidence he worked 

through, Huygens engaged with Newton’s work to approximately the same 

extent as Flamsteed and Clerke. In Reading the Principia, Huygens is one of 

only two individuals (the other is Leibniz) to whom Guicciardini devotes an 

entire chapter: I suggest that this overstates his involvement with the text. 

 The primary sources relating to Huygens are exceptionally difficult to 

navigate, although this is not acknowledged by Newton scholars. The standard 

reference work is the 22-volume Oeuvres Complètes compiled between 1888 

and 1950, which is mostly based on manuscripts housed in the Codices 

 

83 Huygens to Leibniz, 18 Nov. 1690, OC, 9:536–40; Huygens to Fatio, 18 Dec. 1691, OC, 

10:209–12; CH, HUG 7, 15v (=OC, 21:418); CH, HUG 26, 85r (=OC, 21:420). 
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Hugeniani at the University of Leiden. A visit to this archive has been beyond 

the resources of this project, which is therefore based on the material published 

in the OC. Its pages have been digitised and uploaded online, although 

because the cross-references still refer to page numbers in the print version, 

and because the layout on the website does not distinguish clearly between 

manuscript transcription and editorial comment, it is very hard to use. Moreover, 

much of it is arranged thematically, which means that – despite its dense critical 

apparatus, containing countless cross-references to other volumes – it is 

impossible for any scholar using it to be confident that they have found all the 

material relating to a particular topic. It also means that notes made by Huygens 

on the same sheet of paper are not necessarily adjacent or even near each 

other in the OC, but may instead appear in separate chapters or volumes. This 

situation has been mitigated by Joella Yoder’s recent Catalogue of the 

Manuscripts of Christiaan Huygens, which provides a concordance between the 

entries in the OC and the manuscripts in Leiden. However, Yoder’s book draws 

attention to the fact that many of the manuscripts have only been partially 

published, or even not published at all: the Oeuvres Complètes are therefore 

not reliably complètes. My analysis here is subject to these important 

qualifications.84 

 The first reference to the Principia in the Huygens correspondence is in a 

letter from Fatio dated 24 June 1687, which reports its imminent publication and 

outlines its contents. It is not clear when Huygens first accessed a copy, 

although a much later letter to his brother indicates that he was given one by 

 

84 In the closing stages of this doctoral project the digitised contents of the Codices Hugeniani 
were published online, at https://primarysources.brillonline.com/browse/codices-hugeniani. 
However, I have been unable to access this resource freely: at the time of writing the University 
of Oxford has not taken out a subscription. 



84 
 

Newton. It is not until six months after publication that concrete evidence of his 

engagement with the text appears, when on pages of his notebook HUG 1 

dated 3 December he calculated the shape of the earth based on Newton’s 

“channel” method from Proposition 19 of Book 3. Huygens performed this 

calculation differently from Newton, because he assumed that gravity remains 

constant within the interior of the earth, rather than (as Newton had proved in 

Section 12 of Book 1) increasing in direct proportion to the distance from the 

centre. He therefore arrived at a different value for the extent to which the earth 

is flattened at the poles. Huygens had made a study of the shape of the earth in 

the spring of 1687, and so the suggestion from the editors of the OC that when 

the Principia was published “Ce furent, paraît-il, les considérations de Newton 

sur la forme de la terre qui attirèrent en premier lieu son attention” is surely 

correct. Huygens’ first interaction with Newton’s book therefore seems to have 

been to look through it for new techniques to inform his previous work.85 

 Over the following twelve months, the Huygens archive contains only a few 

scattered references to the content of the Principia. In a letter to Hudde dated 

24 April 1688, Huygens refers to Newton’s hypotheses about gravity, “die ick 

niet en kan approberen” (“which I do not and cannot approve”). 86  On 14 

December 1688, he returned to a set of notes on the shape of orbits he had 

made in the early 1680s to insert the following comment: 

Hasce omnes difficultates abstulit Clar. vir. Neutonus, simul cum 

vorticibus Cartesianis; docuitque planetas retineri in orbitis suis 

 

85 Fatio to Huygens, 24 Jun. 1687, OC, 9:167–171; Huygens to Constantyn Huygens, 30 Dec. 
1688, OC, 9:304–5. His calculations on the shape of the earth are at OC, 21:398–402, and he 
went back to insert a note recording their outcome at OC, 21:391; his study from in earlier in the 
year is OC, 21:375. See OC, 21:385 for the editors’ commentary. 
86 Huygens to Hudde, 24 Apr. 1688, OC, 9:267. 
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gravitatione versus solem. Et excentricos necessario fieri figurae 

Ellipticae. 

The famous man Newton removed all these difficulties, together with 

Cartesian vortices; and he showed that the planets are kept in their orbits 

by gravity towards the sun. And that these eccentric orbits necessarily 

become elliptical figures.87 

And in a brief note that can be dated to some time in 1688, he wrote that 

“Theorema nostrum de centri gravitatis quiete vel aequali progressu 

perseverante demonstrare conatur Newtonus, et recte in corporibus ante 

concursum, sed non post.”88 The result that the common centre of gravity of a 

system does not change its state of motion appears as Corollary 4 of Law 3 in 

the Principia, and Huygens had arrived at an equivalent statement in the 1660s. 

This note, then, provides evidence that Huygens had at least come across it in 

Newton’s book by that time. But his phrasing “demonstrare conatur” is 

revealing: the extent to which Huygens had engaged critically with Newton’s 

proof is not clear, nor is it apparent whether he found it to be convincing. 

 Huygens thus gained some familiarity with the results of the Principia over 

the eighteen months following its publication. However, this awareness could 

have been obtained by superficial browsing, or by reading reviews, or from 

second-hand reports from correspondents. With the exception of Proposition 

19, the historical record contains no evidence of detailed scrutiny of any 

passages in the book before the end of 1688. The absence of evidence does 

not in itself constitute the evidence of absence. Nevertheless, I shall argue 

below that there is good reason to believe that Huygens had the book on his 

 

87 CH, HUG 1, 8 (=OC, 21:143). 
88 CH, HUG 7A, 10r (=OC, 21:415). 
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shelf for almost two years before he paid significant attention to anything in 

Books 1 or 2: it was not until the spring of 1689 that he made any direct 

attempts to verify Newton’s mathematical arguments.89 

1.8 Locke’s second reading and review, March 1688 

Locke read the Principia for the second time in March 1688. Still in the Dutch 

Republic, he did so for the explicit purpose of writing a review in the 

Bibliothèque Universelle et Historique, a periodical established in 1686 by Jean 

le Clerc. Locke had previously contributed to the Bibliothèque an article on his 

method of note-taking (which will be discussed in Chapter 2), and in January 

1688, it carried an abridged version of his Essay Concerning Human 

Understanding, which at that time had yet to be published. Two months later, Le 

Clerc published his review of the Principia, although Locke’s name was not 

attached. Fourteen pages long and written in French, this was the first review of 

the book to appear outside England, and Axtell argued that it played an 

important role in in spreading Newtonianism on the continent.90 

 That this anonymous review was indeed written by Locke was established 

by Axtell’s studies of the 1960s, building on earlier work by Colie.91  Axtell 

demonstrated that the words and structure of the review very closely match the 

contents of two sheets of Latin notes dated 1688, now at MS Locke c. 31, 99–

100. There are a few differences between the two documents, but the review is 

otherwise a direct translation of the Latin notes into French. However, the two 
 

89 I am grateful to Niccolò Guicciardini for pointing out that Huygens also devoted sustained 
attention to the Scholium after Newton’s Definitions in Leiden MS H 7A, edited by Gianfranco 
Mormino in Penetralia motus: La fondazione relativistica della meccanica in Christiaan 
Huygens, con l’edizione del Codex Hugeniorum 7A, Florence: La Nuova Italia Editrice, 1994. I 
was unaware of the existence of this source while conducting my doctoral research. 
90 Axtell, “Locke’s Review of the Principia,” 159. 
91 Axtell, “Locke’s Review of the Principia”; Colie, “John Locke in the Republic of Letters.”  
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documents have an unusual structure, for which Axtell was unable to account. 

The parts covering Books 1 and 2 consist almost entirely of the section 

headings transcribed directly from the Principia, and to represent Book 3 Locke 

provided an assortment of remarks about astronomical bodies, comets, heat, 

light and the tides. The review (although not the Latin notes) also has a long 

section in which Locke presents Newton’s argument against Cartesian vortices. 

Cohen was equally puzzled in his Introduction: 

The presentation of the Principia in the Bibliothèque Universelle (it is 

hardly a ‘review’) consists primarily of a translation into French of the 

Latin headings of the successive sections of Books I and II, followed by 

the reviewer’s own summary of Book III, together with an introductory 

paragraph… The result is curious indeed.92 

On the contrary, we will see in the next chapter that these two documents are 

easily accounted for by Locke’s note-taking habits, as described by Yeo. 

Prompted (we may assume) by Le Clerc, Locke read the Principia in full, for a 

second time, in March 1688. He again skipped all the mathematical proofs, but 

given his method of extracting notes, the review in the Bibliothèque and the 

preparatory sheets at MS Locke c. 31 appear exactly as we would expect them 

to, as will be presently explained. 

1.9 Leibniz’s Notes and Marginalia, autumn 1688 

Leibniz’s reading of the Principia is the subject of Bertoloni Meli’s Equivalence 

and Priority, on which my discussion of Leibniz within this thesis is entirely 

reliant. Bertoloni Meli demonstrates that, rather than first studying the book and 

 

92 Cohen, Introduction, 146. 
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then returning to his desk to formulate a separate scheme, Leibniz’s study of 

the Principia was integrated continuously into the development of his own ideas: 

it is impossible to isolate two separate phases of Leibniz’s thought, 

namely that of the interpretation [of the Principia] and that of the 

development of his own theory. Rather, I wish to stress that these two 

moments are present at the same time: Leibniz’s Notes and essays on 

planetary motion form a continuum.93 

There are four documents that record Leibniz’s direct engagement with the 

printed text: the marginalia he inserted in his copy of the first edition in late 

1688; a set of notes he made at the same time; and two sets of excerpts he 

made the following year. Between the notes and the excerpts – in the first two 

months of 1689 – he published in the Acta Eruditorum his “Schediasma” and 

“Tentamen”, which address topics covered by Newton in the Principia.94 

 Between November 1687 and June 1690 Leibniz was undertaking his Italian 

journey, the official purpose of which was to research the origins of the house of 

Este. In both the Schediasma and Tentamen Leibniz stated that had not at that 

time seen a copy of the Principia, and had only read Christopher Pfautz’s 

review of the book in the Acta Eruditorum, but Bertoloni Meli has shown that 

these claims were disingenuous.95 In fact, Leibniz began his study of the text as 

he was staying in Vienna in the autumn of 1688, when he made his Marginalia 

and Notes. The Marginalia are contained in Leibniz’s personal copy of the first 

edition, now in the Bodmer Library in Geneva. It was identified as such by 

 

93 Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz, 95. 
94 Following Bertoloni Meli, I will hereafter refer to these sources as the Marginalia, Notes and 
Excerpts, Schediasma and Tentamen respectively. 
95 Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz, 7–8. 
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Fellmann in 1973, who published transcriptions and a brief analysis. 96  The 

annotations are fairly brief and are scattered throughout the book, but 

concentrate on Section 1, Propositions 4, 6, 10, and 11, and Lemma 28 of Book 

1; Section 2 of Book 2; and the opening twenty pages of Book 3. The Notes 

comprise two sheets of paper folded in quarto in the Leibniz Library in 

Hannover, classmark LH 35, 10, 7, 32–5. These were first identified by Bertoloni 

Meli, who has provided some images, complete transcripts, and a detailed 

analysis. 97  The Notes contain a commentary on the Definitions and Laws, 

Section 1, and the first three pages of Section 2. Bertoloni Meli dates the 

document to “the autumn of 1688,” partly because the paper on which they are 

written matches the paper Leibniz used in other documents at that time in 

Vienna. He further suggests that most of the Marginalia were composed at the 

same time as the Notes, arguing that their contents correspond, and also that a 

short list of references in the Notes matches the annotations in his first edition. I 

find this match less compelling than he does, but have no reason to object to 

his overall claim that the two documents were contemporaneous.98 

 Equivalence and Priority demonstrates that as Leibniz read the Principia he 

“interpret[ed] the concepts and vocabulary of the Principia into the scheme of 

his own terms and ideas,”99 absorbing parts of Newton’s work into his own 

analysis of orbital motion. It will be shown in Chapter 4 that he reconstructed 

Newton’s geometrical limit results in terms of infinitesimals, and in Chapter 5 

that he formulated central forces very differently. While – as I will demonstrate 

 

96 Leibniz, Marginalia in Newtoni Principia Mathematica. 
97 Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz, 220–249. 
98 Ibid., 237. Fellmann had dated the Marginalia to the summer of 1689. 
99 Bertoloni Meli, “Leibniz’s Excerpts from the Principia Mathematica,” 478. 
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in Chapter 2 – Leibniz was not the only reader who processed Newton’s 

arguments by re-interpreting them in terms of his own pre-existing conceptual 

framework, the extent to which he used the Principia to stimulate the 

development of his own ideas is unique. This is evident even within the eight 

pages of Notes, in which statements and discussions of Newton’s results are 

intermixed with his own explorations. Bertoloni Meli demonstrates how Leibniz’s 

ideas on central forces developed from the Notes, through other documents 

composed in the autumn of 1688, and then into the Tentamen. This was 

published in the February 1689 edition of the Acta under the full title “Tentamen 

de Motuum Coelestium Causis” (“An essay on the causes of celestial 

motions”). 100  The previous month’s issue of the Acta had contained his 

“Schediasma de Resistentia Medii et Motu Projectorum Gravium in Medio 

Resistente” (“A sketch on the resistance of a medium and on the motion of 

heavy projectiles in a resisting medium”). The contents of this article overlap 

with some sections of Book 2 of the Principia: the passages that correspond are 

not examined in the Notes, but there are a small number of Marginalia against 

them. Unlike the Tentamen, Bertoloni Meli does not present evidence that the 

Schediasma was influenced by Leibniz’s study of Newton’s text. Nevertheless, 

the publication of these two articles did prompt another of Newton’s peers to 

examine some of the arguments contained in the Principia. 

1.10 Huygens’ reading notes, February – April 1689 

Other than studying the method of Proposition 19 of Book 3 to inform his 

calculations on the shape of the earth, there is no evidence that Huygens 

 

100 Bertoloni Meli provides a complete translation of the Tentamen in Equivalence and Priority: 
Newton versus Leibniz, 126–142. 
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engaged in detail with any passages of the Principia in the eighteen months 

after it was published. It was only at start of 1689 that he worked through any of 

Newton’s mathematical proofs, when he read and made notes on various 

proposition that are now in his archive at HUG 7 (Book G), 15–16. These notes 

are themselves not dated, but they are preceded by pages marked 20 

December 1688 and followed by notes on the April 1689 issue of the Acta 

Eruditorum.101  Some further notes at HUG 26 (Chartae Mechanicae), 85 are 

very likely to date from the same time. The content and the timing of the notes 

reveal the purpose of Huygens’ study: he read a series of results about orbital 

motion from the start of Book 1 and a small number of sections about motion in 

resisting media at the start of Book 2, because he had read about them in 

Leibniz’s Schediasma and Tentamen, which had just been published in the 

Acta. Just as he had in November 1687, Huygens again went to the Principia to 

mine it for specific information about research topics in which he was already 

interested. 

 In the Tentamen Leibniz analysed orbital motion, and it prompted Huygens 

to work through some of Newton’s proofs from Section 2 of Book 1. The notes 

he made when he did so are in HUG 7 (Book G). His notes on Proposition 6 

(the central result establishing Newton’s measure for centripetal force) are on 

folio 15r, and those on Proposition 9 (the force required to maintain a body in a 

logarithmic spiral) are on the reverse, at folio 15v. Surprisingly, there is no 

evidence that Huygens worked through Newton’s proof of Proposition 11 (the 

inverse-square law) nor Proposition 4 (uniform circular motion, which Huygens 

 

101 CH, HUG 7, 7, 28–30. 
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had himself analysed in his Horologium of 1673). On folio 12r there is a short 

note acknowledging the result of Proposition 10 (elliptical motion with the force 

directed towards the centre), but no verification of the proof. He queries one 

small step in Corollary 2, writing that “Il devoit avoir montrè auparavant quelle 

raison il y doit avoir entre les celeritez du corps à l'endroit ou aboutissent les 

grands diametres des Ellipses,” a phrasing which strongly suggests that he 

hadn’t worked through all the preceding results. 

 Leibniz’s Schediasma concerns the motion of bodies in resisting media, and 

it directed Huygens to read the corresponding passages in the Principia at the 

start of Book 2. The Schediasma was published in January, one month before 

the Tentamen, but Huygens seems to have worked through Newton’s results on 

resisting media after those on central forces. On folio 16r of HUG 7 (Book G), 

immediately after his notes on Proposition 9 of Book 1, he analysed Lemma 2 

and Proposition 8 from Section 2, which concerns the motion of bodies acted on 

by a resistance force proportional to the square of the velocity. Then, on folio 

85r of HUG 26 (Chartae Mechanicae) he worked through Proposition 5. Unlike 

the pages of HUG 7, the loose sheets collected together into HUG 26 are not 

dated, but it is reasonable to assume that these sets of notes are 

contemporaneous. The same may be said of a brief note that appears on folio 

84v of HUG 26. This sheet contains Huygens’ own calculations about motion in 

a resisting medium that the editors of the OC suggest date from the late 1660s, 

to which Huygens has later appended the words “Sic fere Neutonus Propos. 2 

lib. 2.” 
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 All of these documents are published in the Oeuvres Complètes.102 They 

have not been carefully examined by Newton scholars, however: the fullest 

study is by Guicciardini, who goes into detail on the notes on Proposition 6 of 

Book 1, and follows the OC in mis-labelling the notes on Lemma 2 of Book 2. 

Close analyses of all of Huygens’ notes will be provided over the following 

chapters, where I shall establish the general pattern that, rather than engaging 

with Newton’s proofs as they appeared in the text, he instead reconstructed 

them on his own terms, using different notation, different conceptual bases, and 

different logical arguments. He assented to some conclusions and disputed 

others, but in each case based his judgment not on Newton’s original argument, 

but on his own reconstruction of it. 

 These notes, composed between February and April 1689, provide the only 

evidence of Huygens’ sustained engagement with the detail of the text of the 

Principia. He spent the summer of 1689 in London with Newton, Fatio, 

Flamsteed and other members of the scientific and political elite, at the end of 

which trip Newton gave him two more propositions on motion on a resisting 

medium. Huygens made further notes on this topic in late 1690 at HUG 7, 75–9, 

explicitly referencing Proposition 9 of Book 2. He also hypothesised about the 

cause of gravity, most notably in his Discourse de la Cause de la Pesanteur of 

February 1690. But otherwise, references after 1689 to specific results in 

Newton’s book are infrequent. When Fatio visited the Hague in June 1690 he 

brought his notes with him, but there is no evidence that Huygens used these 

 

102 OC, 21:417–422. It is possible that the Leiden archive contains more relevant material that 
has not been published in the OC, and Yoder suggests that there is a second derivation of 
Proposition 5 and further commentary on Proposition 8 on f.85v of HUG 26, whose contents 
have not been published. It has been beyond the resources of this project to establish whether 
this is indeed the case. 
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documents to undertake further study of the book. Indeed, while labouring to 

prepare what he thought was going to be a second edition in May 1692, Fatio 

asked Huygens if he would be willing to contribute his manpower: 

Si de votre côté Mr. vous entrepreniez quelqu'une des autres Sections il 

ne seroit pas difficile de venir bien tot à bout de tout le livre. Et nous 

pourrions nous rendre conte l'un à l'autre des difficultez que nous aurions 

rencontrées et nous faciliter reciproquement l'etude d'un livre qui est 

assurement fort excellent mais en mesme temps fort obscur.103 

If on your side, sir, you were undertaking one of the other Sections it 

wouldn't be difficult to get through the whole book quickly. And we could 

relate to each other the difficulties that we encountered and reciprocally 

facilitate the study of a book which is certainly very excellent but at the 

same time very obscure. 

Huygens’ reply has been lost, but there is no evidence that he provided Fatio 

with the help he requested. In his correspondence with Leibniz he frequently 

engaged in general discussion about the cause of gravity, and towards the end 

of 1690 the pair discussed Newton’s treatment of tides, universal gravitation 

and comets in very general terms, but when Leibniz posed direct questions 

about specific passages in the book, Huygens avoided answering. And in his 

correspondence with l’Hôpital in the early 1690s, Huygens was impatient to 

learn about Newton’s integration methods, but did not raise the question of how 

they might be applied to specific propositions. The general pattern, therefore, is 

that while Newton’s work is a recurrent theme of his correspondence over the 

 

103 Fatio to Huygens, 9 May 1692, OC, 22:158. 
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final years of his life, Huygens discussed the implications of the Principia’s 

assertions much more than he interrogated its arguments.104   

 The central narrative in the secondary literature concerning Huygens’ 

response to the Principia is his objection to the reality of universal gravitation, 

which he described as “une hypothese si peu probable et si hardie.”105 His view 

that the mathematical system Newton built on it was therefore fundamentally 

compromised finds clear expression in this letter to l’Hôpital dated 29 December 

1692: 

Un scavant Anglois vient de me dire que la seconde edition des 

Principes de Mr. Newton, de la quelle Mr. Fatio devoit avoir soin, ne se 

fera pas encore si-tost. Il y a une infinité de fautes à corriger et quelques 

unes qui sont de l'autheur, comme il reconnoit luy mesme. J'estime 

beaucoup son scavoir et sa subtilitè, mais il y en a bien de mal emploiè à 

mon avis, dans une grande partie de cet ouvrage lors que l'autheur 

recherche des choses peu utiles, ou qu'il batit sur le principe peu 

vraisemblable de l'attraction.106 

An English savant has just told me that the second edition of Mr 

Newton’s Principia, which Mr Fatio should take care of, will not yet be 

complete soon. There is an infinity of faults to be corrected, some of 

which are the author’s, as he recognises himself. I greatly appreciate his 

knowledge and subtlety, but in my opinion there is a lot of misuse in a 

 

104 For Huygens’ evasiveness, see the exchange with Leibniz between October and November 

1690 at OC, 9:516–572, especially 523 and 533. See also Huygens to Leibniz, 29 May 1694, 

OC, 10:609–11, where they discuss the bucket experiment at the end of the Definitions. 

Huygens and l’Hôpital discuss Newton’s quadrature techniques at OC, 10:481–5, 518–24, for 

example, but I cannot find any references to specific passages in the Principia anywhere in their 

correspondence.  
105 OC, 16:250. 
106 Huygens to l’Hôpital, 29 Dec. 1692, OC, 10:348–55. See also Huygens to Leibniz, 18 Nov. 

1690, OC, 10:538. 
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large part of this work, when the author searches for things of little use, 

or when he builds on the unlikely principle of attraction. 

It will be shown below, however, that the “infinity of faults” had been tracked 

down not by Huygens but by Fatio. So far as can be inferred from the primary 

sources, therefore, Huygens dismissed the possibility of universal gravitation 

without examining Newton’s mathematical arguments in favour of its existence. 

He appears to have formed his views of Newton’s claims after minimal close 

analysis of the text. There is little evidence to show that Huygens ever 

subjected many of the demonstrations of the Principia to sustained scrutiny. 

1.11 Leibniz’s Excerpts, April – November 1689  

In 1988, Bertoloni Meli published details of two manuscripts he had discovered 

recording Leibniz’s second phase of study of the Principia, which he labelled the 

first and second set of Excerpts. These documents – of which Bertoloni Meli 

provided a transcription and brief commentary – are in the Leibniz Library in 

Hannover at LH 35, 14, 2, occupying folios 37–8 and 31–6 respectively.107 They 

demonstrate that Leibniz subsequently re-examined some of the passages he 

had remarked upon in the Notes, and also read many later sections of the book. 

Based on the paper he used, Bertoloni Meli concludes that they were “probably 

written in Rome in 1689,”108 where Leibniz stayed from April to November. 

 Both documents largely comprise excerpts from Newton’s text, either 

transcribed verbatim or slightly rephrased. Very occasionally these are 

 

107 Bertoloni Meli, “Leibniz’s Excerpts from the Principia Mathematica.” 

108 Ibid., 477. 
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accompanied by Leibniz’s own observations, but such remarks are far less 

frequent and substantial than they were in the Notes. He did not at any stage in 

the Excerpts work through any of Newton’s mathematical proofs, although he 

did in some instances comment on them. Taken at face value, this strongly 

suggests that this second phase of reading was significantly less detailed than 

the first phase represented by the Notes. Only in a few instances is there 

evidence that Leibniz subjected Newton’s arguments to fresh critical scrutiny; 

overwhelmingly he merely wrote out paraphrases of the text. The impression is 

of a cursory reading in order to gain an overview of the contents of the book. 

 In the first set of Excerpts, Leibniz began by writing out brief paraphrases of 

Newton’s Definitions and Laws, followed by Lemma 11, Lemma 10, Lemma 9 

and Proposition 6 (in that order). He then skipped a long way ahead to the end 

of Book 2, where he made a few notes concerning fluids and resistance drawn 

from Sections 5, 7, 8 and 9. These happen to be precisely the four sections in 

the Principia that have the word “fluid” in the title, so it may be that Leibniz 

flicked through the pages searching for passages relating to that topic. He 

ended with a couple of dozen notes from Book 3 concerning planetary orbits 

and gravity. The second set of Excerpts is three or four times as long. He again 

began by copying out the Definitions and Laws. He then skipped the method of 

first and last ratios, and paraphrased Propositions 1–4 and 7–10, in such a way 

that the two sets of Excerpts between them cover all of Sections 1 and 2. This 

was followed by Lemma 28, Proposition 40, Proposition 44, and most of 

Sections 10–14 of Book 1. He then embarked on Book 2, until immediately after 

Proposition 8 he came to an abrupt halt with the words “Nondum perrexi” (“I 

have not yet gone further”). 
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 If Leibniz did resume further systematic study of the text on a later occasion, 

there is no evidence of it in the documentary record. Naturally, the themes of 

the Principia continue to be a topic of frequent discussion in his correspondence 

over the following years, especially with Huygens. In due course he revised 

both the Tentamen and the Schediasma, and in the Acta of 1690 he published a 

tract on the cause of gravity. But there is no further evidence of detailed study of 

the book. Bertoloni Meli has fully evaluated the influence of the Principia on the 

development of his thought: to his analysis I only add the observation that, so 

far as we can tell from the extant evidence, from the entire five hundred pages 

of text, Leibniz only scrutinised closely the method of first and last ratios in 

Sections 1, and the handful of main orbital proofs in Sections 2 and 3. For the 

remainder of the book – other than a few isolated exceptions – he appears to 

have read through but not checked the proofs. He skimmed through the pages 

but did not stop to verify the mathematics. Although this fact does not impact 

upon Bertoloni Meli’s investigation, it is very important to mine: it is striking that 

even the man presented as the author’s greatest rival paid little detailed 

attention to the overwhelming majority of Newton’s book.  

1.12 Fatio’s reading notes, spring 1690 

As with Halley, Huygens and Gregory, significant evidence concerning the 

readings of the Principia by Newton’s Swiss acolyte Nicolas Fatio de Duillier 

has been overlooked by the secondary literature. Newton scholars have known 

for almost two centuries that Fatio was considered as a possible editor of a new 

version of the book in the early 1690s, and his annotated first edition has been 

in the Bodleian since 1755. His reading notes were published in Huygens’ 
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Oeuvres Complètes in 1905, and Cohen contextualised this evidence for the 

convenience of modern scholars in his Introduction of 1971. But these 

documents have not yet been fully examined, and mentions of Fatio in the 

secondary literature are often accompanied by insinuations about his technical 

expertise, Hall describing him as “possessed by mathematical abilities that were 

considerable though not of the highest order.” My priority in the following 

chapters is to provide accurate account of his engagement with Newton’s text 

rather than a judgement of his ability.109 

 There are two sources of primary evidence detailing Fatio’s readings of the 

Principia. The first is a set of notes Fatio took with him to on his trip to the 

Netherlands from June 1690 to September 1691, most of which he spent with 

Huygens in the Hague. He initially left the notes with Huygens, but soon after 

arriving back in London asked Huygens to return them.110 Before he did so 

Huygens made a copy, which is published in the Oeuvres Complètes, 10:147–

55. Fatio’s original has been lost. After Huygens died the copy eventually came 

into the hands of Johannes Groening, who reordered and published the notes 

as a supplement to his 1701 Historia Cycloeidis under the heading “Christiani 

Hugenii Annotata posthuma in Isaaci Newtoni Philosophiae Naturalis Principia 

Mathematica,” a title which gives the misleading impression that they were 

composed by Huygens.111 

 The original document from which Huygens took his copy reflects the 

outcome of Fatio’s reading of parts of the Principia and his subsequent 

discussions with Newton. It comprises three distinct sections. The first is a set 

 

109 Rigaud, Historical Essay on the First Publication of Sir Isaac Newton’s Principia, 89; Hall and 
Hall, Unpublished Scientific Papers of Isaac Newton, 205. 
110 Fatio to Huygens, 18 Sep. 1691, OC, 10:145–6. 
111 Groening, Bibliotheca Universalis. 
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of notes Fatio made during his initial study of the book. These cover the first 

sixty pages and Book 3 fairly thoroughly, and also make detailed reference to a 

few other passages. In many instances these notes record typographical or 

grammatical errors or suggest small re-phrasings, but in others Fatio extended 

Newton’s mathematics to generate new results, as will be discussed in Chapter 

2. He also interrogated the method of first and last ratios very closely, as we 

shall see in Chapter 4. It is clear that Fatio considered himself to be preparing a 

second edition of the text, because he suggested alterations using phrases 

such as “pro ‘mensuratarum’ legi velim ‘quantitatum mensuratarum’.” 112 

Moreover, Newton must have seen these notes, because – as Huygens 

recorded when he took his copy – in some instances Newton tweaked Fatio’s 

proposals in his own handwriting. It is also clear from the pages of the 

annotated copy in Cambridge that Newton often altered his text in accordance 

with Fatio’s suggestions. This first section of the document therefore provides 

clear evidence that Fatio was preparing a second edition in collaboration with 

Newton.  

 The second – completely distinct – section of Fatio’s document is headed 

“Ex Newtoni codice” and is a list of nine changes Newton made to the text that 

Fatio transcribed directly from the annotated copy. Three of these changes had 

been recorded by Newton in the main body of the book, and six in the 

endpapers at the back, from where Fatio copied them verbatim. Importantly, 

many of the edits in the “Ex Newtoni codice” are responses to Fatio’s editorial 

notes, since the changes are in some instances extremely similar to Fatio’s 

 

112 OC, 10:147. Fatio is here suggesting an alteration to the Scholium after the Definitions, on 
page 10 of the first edition. 
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suggestions. Newton must therefore have altered his text in response to the 

commentary in the first section of the document, and these changes were then 

recorded by Fatio in the second. 

 The third section is titled “Alia Errata ex Newtoni mei codice,” and is a much 

longer list of corrections compiled by Newton that Fatio copied out from the 

back of the annotated copy on a separate occasion. In the annotated copy 

these edits start on the Errata page and spill over onto the subsequent 

endpapers, from where Fatio copied them out verbatim. Helpfully, Fatio’s 

transcription is dated “Londini. 13 Mart. die 1689/90.” It is also the case that the 

“Ex Newtoni codice” edits are written on the endpapers of the annotated copy 

directly underneath those listed in the “Alia Errata.” The edits in the second 

section of Fatio’s document therefore post-date those in the third. The dates of 

the editorial notes in the first section are less clear. On the one hand, it is 

intuitively plausible that he copied the “Alia Errata” from the annotated copy in 

preparation for his own study of the text, which would suggest that he began his 

editorial notes soon after 13 March. But on the other, his notes frequently pick 

up misprints that are also recorded in the “Alia Errata,” which shows that if he 

did have these edits in his possession when he undertook his study, he did not 

pay them much attention. On balance I prefer this latter interpretation, and so 

suggest that Fatio probably made his editorial notes before copying the “Alia 

Errata” on 13 March (while acknowledging the strong possibility that he made 

them immediately afterwards). 

 The Trinity College Exit and Redit book shows that Newton was away from 

Cambridge between 10 March and 12 April 1690, and this final piece of 

information confirms a relatively clear narrative. Newton must have spent this 
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month in London, much of it with Fatio. Huygens had just sent Fatio a copy of 

his Treatise to give to Newton, and Westfall’s suggestion that Newton spent 

these weeks studying Huygens’ Treatise is plausible.113  Newton must have 

taken his annotated copy with him to London, because on 13 March Fatio 

copied out Newton’s list of corrections at the back (the “Alia Errata”). Very soon 

afterwards Fatio discussed with Newton the notes he had made on the opening 

sixty pages and Book 3 of the Principia, which he had made on the 

understanding that he was preparing a second edition. He probably made these 

notes over the weeks or months prior to Newton’s visit, but might have made 

them once he had arrived. As a result of their discussion Newton made a 

number of changes to his text, some of which were written into the body of the 

annotated copy, and others listed in the endpapers. Fatio then took another 

copy of the changes (“Ex Newtoni codice”), before Newton returned to 

Cambridge in mid-April, and Fatio travelled to the Netherlands in June. The 

nature of Fatio’s comments, and the extent to which he was persuaded by 

Newton’s mathematical arguments, will be the subject of subsequent chapters; 

he resumed his study of the text very shortly afterwards, as we shall presently 

discover. 

1.13 Locke’s third reading, 1691 

Locke returned to England on 12 February 1689, on the same ship that carried 

Princess Mary over from Briel to join her husband, the new King William III. Until 

that year, Newton and Locke had neither met nor corresponded, yet a 

coincidence of timing in the wake of the Revolution saw the two reach the peak 

 

113 Westfall, Never at Rest, 496. 
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of their renown almost simultaneously. Both were ambitious and had recently 

been released from years of self-imposed isolation; each was eager to have his 

own public status reflected and amplified by the other. Locke scholars 

emphasise the impact the Principia had made on him in the Netherlands, and 

for Newton the publication of his book had been a “psychological watershed in 

his life.” Westfall described how his new confidence was reflected in his 

burgeoning relationship with Locke, writing that “Each recognized in the other 

an intellectual peer.”114 

 Locke appears to have succeeded in tracking Newton down within a few 

months of arriving back in England, probably at the intellectual salon of the Earl 

of Pembroke. The pair quickly exchanged tokens of their mutual admiration. 

Locke’s Essay Concerning Human Understanding was finally published soon 

after his return to England, and he made sure to give Newton a presentation 

copy. Soon after, Newton sent Locke the amended copy of the Principia now in 

the Wren Library at Adv.b.1.6. He also supplied him with a simplified proof of 

the inverse-square law for elliptical orbits, dated March 1690.115 

 Locke read the Principia for the third time some time during 1691, as shown 

by his dated notes in MS Locke d. 9. Cohen did not mention this document, 

Axtell reported that on his third reading Locke “filled several pages of a 

notebook called ‘Adversaria Physica’ with detailed notes,” and Guicciardini 

writes that “Locke wrote a notebook called Adversaria Physica in which he 

commented on several propositions.” 116 These descriptions give a misleading 

 

114 Axtell, “Locke’s Review of the Principia,” 154; Westfall, Never at Rest, 500–1, 488–9. 
115  Westfall, Never at Rest, 488; Axtell, “Locke, Newton, and ‘The Elements of Natural 
Philosophy’,” 235; Milton, “Locke, John (1632–1704)”. The proof of the inverse-square law is at 
Bodleian, MS Locke c. 31, 101–4. 
116 Axtell, “Locke, Newton and the two cultures,” 176; Guicciardini, Reading the Principia, 176. 
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impression of Locke’s note-taking process, because MS Locke d. 9 is a 

commonplace book, which he had originally begun in 1660. He titled it 

“Adversaria Physica” not because it was a coherent tract on Newtonian physics, 

but because it contained his collected notes on medical and natural 

philosophical subjects – “Physica” as opposed to “Ethica”. The notes on the 

Principia are scattered throughout. The manner in which he engaged with the 

text was exactly the same as on the first two occasions that he read it, as we 

shall see in Chapter 2. 

 This third reading must have been from the presentation copy now in the 

Wren Library, because it contains a large number of manuscript amendments to 

the text, and Locke’s notes quote the altered version, not the original.117 Axtell 

wrote of these updates that “The majority of [Newton’s] notations were made for 

the sake of understanding rather than strict accuracy and obviously reflected his 

estimate of Locke’s ability to follow the Principia,”118 but an inspection of the 

source shows this not to be true. All of the edits in Locke’s copy are also in his 

annotated copy, which shows that Newton merely transcribed all the changes to 

the text he had thus far collected. The alterations were not made specifically for 

Locke – he just sent his new friend a copy which reflected the most up-to-date 

version of the text. 

 Moreover, these edits provide further chronological information of value. 

Locke’s copy is undated, 119  but the changes it contains can profitably be 

 

117 See, for example, the figures Locke records under his note headed ‘Sonus’ in MS Locke d.9, 
which are taken from the altered text in Adv.b.1.6 but were different in the original. 
118 Axtell, “Locke, Newton and the two cultures,” 176. 
119 Cohen, Introduction, 202, dates Newton’s gift to Locke to “the early 1690s”; Axtell, “Locke, 
Newton and the two cultures,” 176, asserts “sometime in 1691,” but provides no evidence for 
this year. Perhaps he assumed that the notes in MS Locke d. 9 were made immediately upon 
receipt.  
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compared with those Fatio suggested during his two readings of the text. Many 

of the edits Fatio made in his first phase of study (considered in the previous 

section) have also been transferred into Locke’s copy; but those recorded in his 

second phase (to be examined in the next section) have not. Locke’s copy must 

therefore have been prepared between the two. Furthermore, the simplified 

proof of the inverse-square law Newton gave to Locke is dated March 1690, 

which exactly coincides with Newton’s visit to Fatio in London. Given that 

Locke’s copy cannot have been prepared before that moment, there is a strong 

possibility that it was marked up during Newton’s stay, and then delivered to 

Locke along with the simplified proof of the inverse-square law at the same 

time. 

1.14 Fatio’s marginalia, 1691–92 

The second primary source documenting Fatio’s reading of the Principia is the 

extensive set of marginal notes in his copy of the first edition, now in the 

Bodleian. Although listed by Cohen, these have not been examined in detail in 

the secondary literature, and are generally not mentioned at all. 

 These annotations vary widely in size and complexity. Small edits and 

textual corrections appear throughout the book, although these cannot be taken 

as reliable evidence of close study, because many are likely to have been either 

transcribed from external sources, or spotted during cursory reading. However, 

some passages are accompanied by substantial marginal commentary, and 

these form a more meaningful pattern. There are almost no long marginalia 

before page 69, which marks the end of Section 4 of Book 1. Fatio’s longest 

and most dense annotations are very noticeably concentrated in Sections 5 and 
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9 in Book 1, with some further commentary alongside Proposition 30 and the 

Scholium in Section 6, Proposition 38 in Section 7, and Lemma 2 in Book 2. His 

handwriting in these notes is in general extremely tidy and there are very few 

crossings-out, but there are seven loose sheets of scrap paper tucked between 

the pages on which the writing is much more messy, suggesting that Fatio on 

occasion made rough reading notes which he then copied up neatly into the 

margins. He also has placed a small tick above the number at the top of many 

of the pages. With a handful of exceptions, he has ticked off all the pages in 

Sections 1–5 and Section 9, along with Propositions 32 and 33 in Section 7, the 

first two pages of Book 2, and Lemma 2 in Book 2. This would be an unreliable 

guide to his reading were it not that they exactly match a letter he wrote to 

Huygens on 29 April 1692, in which he said he had “still only studied in depth 

the first five sections, the ninth, and the treaty of comets. Elsewhere I have only 

studied thoroughly a few propositions here or there.”120 They may therefore 

reasonably be taken as a helpful indicator of the extent of his study. 

 When combined with the evidence from the document containing his earlier 

reading notes, a clear narrative emerges about how and when Fatio engaged 

with the Principia. As explained above, he studied the Definitions, Laws, 

Sections 1 to 4 of Book 1, and Book 3 shortly before (or possibly during) 

Newton’s stay in London in the spring of 1690. Newton made a number of 

changes to his text as a result of their discussions. Some time after the visit, 

Fatio set out to work through more sections, probably making notes on rough 

sheets before copying them up into the margin of his copy. This further study 

encompassed the entirety of Section 5 and 9, along with Proposition 30 and the 

 

120 Fatio to Huygens, 29 Apr. 1692, OC, 22:158–9. 
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Scholium in Section 6, some of Section 7, and Lemma 2 in Section 2 of Book 2. 

He must have subsequently discussed Sections 5, 6 and 9 and Lemma 2 with 

Newton face-to-face, because many of his suggested edits appear in the 

annotated copy. It is also the case that – as I shall show in Chapter 3 – some of 

the annotations record conversations in which Fatio asked Newton for clearer 

explanations of the proofs. 

 Establishing a precise timeline for this second phase of reading is difficult. 

The marginalia themselves are not dated, and Fatio continued to make 

additions throughout his life, including dozens based on the third edition of 

1726. He departed for the Netherlands in June 1690, returning in September of 

the following year. Newton visited him in London almost as soon as he got 

back, from 12 to 19 September 1691. On 18 September Fatio asked Huygens 

to return the documents on which OC, 10:147–55 was based, which suggests 

that he had some pressing need to use them at this time. Three months later 

Huygens and Fatio corresponded about the prospect of a second edition, Fatio 

reporting that “Le catalogue des Errata du livre de Mr. Newton grossit 

sensiblement entre mes mains à mesure que j’avance dans la lecture que je fai 

de ce livre et qui est tout à fait rigoureuse et severe.”121 Fatio’s letter of 29 April 

1692 (quoted above) provides a terminus ante quem for most of the 

annotations. This leaves three possibilities for his reading of Sections 5, 6, 7, 9 

and Lemma 2. He either studied and discussed them when Newton was staying 

with him in March 1690; or he read them in the Netherlands, possibly even with 

Huygens, before reviewing them with Newton on his return; or he set to work 

soon after he got back, finishing before April 1692. The second possibility 

 

121 Fatio to Huygens, 28 Dec. 1691, OC, 10:215. 
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strikes me as the least likely, since there is no hint of it in Fatio’s 

correspondence with Huygens, and he would have had a long wait before 

sharing his thoughts with Newton. There is little clear evidence to inform a 

decision between the first and the third: owing to his request that Huygens 

return the documents he had lent him on 18 September, the absence of most of 

the edits in Fatio’s copy from Locke’s, and the immediacy of the sentence “the 

catalogue of Errata grows appreciably in my hands, as I advance in the reading 

that I do of this book,” I suggest that he made them once he was back in 

England. It is possible that he and Newton spent his visit to London at the start 

of September 1691 engaged in intense editorial discussion just as they had in 

March 1690. 

 What is beyond doubt is that Fatio made a detailed reading of in total about 

half the book, working through the proofs with Newton as part of his efforts to 

prepare a second edition. The content of his deliberations, and how they fit into 

the overall pattern of the reception of Newton’s mathematical arguments, will be 

discussed in subsequent chapters. What I hope to have made clear, however, is 

that the secondary literature significantly understates Fatio’s importance as an 

early reader of the Principia. The judgement that his time with Newton in March 

1690 was spent passively “listing corrections to the Principia”122 misrepresents 

the active role he took in challenging, rewriting and augmenting the text. Fatio 

easily exceeds Huygens, probably exceeds Halley, equals Leibniz, and is 

second only to Gregory in terms of the quantity of detailed scrutiny to which he 

subjected the text. He was one of the three most important readers of Newton’s 

book, and deserves to be recognised as such. 

 

122 Iliffe, “Newton: The Making of a Politician.” 
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1.15 The second part of Gregory’s Notae, December 1692 – January 1694 

In 1691 Gregory was appointed Savilian Professor of Astronomy at Oxford, 

thanks in large part to the recommendation of the Lucasian Professor of 

Mathematics at Cambridge. At the end of the following year, for reasons not 

revealed by the historical record, he chose to resume his close scrutiny of 

Newton’s book, which had been suspended in the spring of 1688. The final 180 

pages of his Notae in the Royal Society – by far the greater part, covering 

Section 10 of Book 1 until the end of Book 3 – are dated December 1692 to 

January 1694. Gregory visited Newton in Cambridge for five days in May 1694, 

during which stay Newton told him that he was planning a second edition and 

shared his proposed revisions. Gregory expressed his desire that his own notes 

be included in the new publication, although there is no evidence that Newton 

considered this proposal seriously; nevertheless, the existence of the Notae 

was not kept secret, because both Huygens and Malebranche subsequently 

referred to them, and in 1713 Saunderson discussed the possibility of their 

publication. More importantly for our present purpose, Gregory returned to the 

Notae after the visit and attached small slips of paper to individual entries, 

recording the outcome of his discussions with Newton.123 

 The contents of both the original notes and the later additions will be 

examined over the following chapters. But let it first be noted what the fact of 

Gregory’s visit tells us about the reception of the mathematical arguments in the 

Principia. Like Newton’s meetings with Fatio in March 1690, and – probably – 

with Halley in 1685, it provides another clear instance in which solitary reading 

 

123 Guicciardini, Reading the Principia, 179–80. 
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of the Principia was not sufficient to persuade its readers of the validity of the 

arguments it contained. Even the book’s most attentive readers could not verify 

the proofs without a face-to-face discussion with their author. Its arguments 

were only considered convincing when supplemented by a personal submission 

from Newton himself. A decade after Halley had set him the challenge of 

constructing a mathematical explanation of planetary motion, Gregory was 

sitting in the same room querying his solution. Almost seven years after it was 

printed, the Principia’s most attentive reader was still unable to verify its central 

demonstrations. If the narrative in the secondary literature is to be believed that 

the moment it came off the press “Newton’s book took Britain by storm,” and 

that “Almost at once it became the reigning orthodoxy among natural 

philosophers,” then this is telling us something very important about the 

reception of the Principia: the acclaim the book received at its moment of 

publication cannot have been based on its readers’ acceptance of the 

mathematical arguments that were printed in it.  
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2. Practices of reading the Principia 

2.1 Introduction 

The previous chapter provided a chronological narrative of readings of the 

Principia over the half-decade after its publication, specifying who read which 

sections of the book, in what order, and when. My aim in this chapter is to 

describe what the act of reading on these occasions involved, based on a close 

examination of the documentary evidence. It will quickly become apparent that 

different individuals read the book in different ways. Newton’s peers had a 

variety of expectations about how his book should be processed, and brought to 

the text a range of reading habits, prior knowledge, and preconceptions about 

mathematical concepts. The act of reading was a multifarious, compound, 

heterogenous activity. 

 One crude but useful distinction I will make in what follows is between 

mathematical and non-mathematical readings of the text. In the first, readers 

carefully studied the individual steps in Newton’s mathematical arguments in an 

attempt to verify his proofs, whereas in the second passages in the book were 

read, considered, and their contents meaningfully processed, but without 

checking the mathematics. Individuals were commonly able to switch between 

these two modes, reading some passages mathematically and others non-

mathematically, and for this reason it is misleading to distinguish between 

mathematical and non-mathematical readers. But the distinction between 

mathematical and non-mathematical readings is useful, because any given 

individual engaging with any given passage at any given time either was or was 

not scrutinising the mathematics. The value of highlighting this distinction is that 
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the existing secondary literature overlooks non-mathematical readings almost 

entirely. Locke’s is the only example that is ever referred to in histories of the 

reception of the Principia, where he is habitually cited as an example of a 

mathematically ignorant reader who had to ask others whether the proofs could 

be trusted. As we shall see, the secondary literature also misrepresents the way 

in which Locke engaged with the text, in ways that have significant implications 

for analyses of his epistemology of mathematics and natural philosophy. But 

more importantly, the primary sources show that Halley, Fatio and Leibniz all 

read the greater portion of the Principia in exactly the same way. They too read 

the majority of the book without checking the mathematics, just like Locke. And 

this creates a problem for the existing secondary literature, because such 

readings cannot easily be categorised using the vocabulary of “mastery” and 

“understanding.” Articulating the extent to which the Principia could 

meaningfully be understood without checking the proofs will not be simple: I will 

approach the problem by providing a careful description of the documentation 

that records how non-mathematical readers engaged with the text. 

 Notwithstanding this division, we will observe the unifying pattern that all 

readings of the Principia involved an active process of reconstruction. When 

reading non-mathematically, Locke and Leibniz picked up a pen, selected short 

excerpts from the text, and wrote out isolated quotations. And when reading 

mathematically, Gregory, Flamsteed, Fatio and Huygens picked up a pen, found 

a piece of paper, and wrote out reconstructed versions of Newton’s arguments. 

The proofs in the Principia typically comprise long, prose compositions, and in 

order to verify them readers were obliged to recreate them in condensed, 

symbolic form. Importantly, they frequently did so using concepts and notation 
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different from those Newton employed in the text. When confronted with the 

printed text on the page, that is, readers reconstructed Newton’s arguments in 

their own terms, and according to their individual, pre-existing conceptual 

framework. Reading the text mathematically thus entailed reconstructing its 

demonstrations in a different form. Having done so, readers judged the validity 

of its arguments based on their own reconstructions rather than Newton’s 

originals. Expressed in its strongest form, this will lead to the conclusion that 

readers were rarely persuaded by Newton’s arguments in the versions that he 

presented them, and only granted assent if they were successfully able to 

reconstruct them within their pre-existing conceptual framework. 

 Furthermore, this act of reconstruction automatically led readers to produce 

what they thought were improved versions of Newton’s proofs. Editing the 

Principia was integral to the act of reading it. Because reading the book 

involved picking up a pen and recreating its arguments, the printed text was 

merely a jumping-off point from which readers produced their own versions of 

Newton’s demonstrations. As they did so they altered his terminology, reformed 

his conceptual foundations, and remodelled his arguments. In attempting to 

replicate them, readers often simplified Newton’s original demonstrations, 

provided alternative derivations of his results, or extended them to produce new 

discoveries. What began as an act of obedient reproduction often extended 

organically into a process of creative generation. At the very least, everyone 

who read the book did so by producing alternative formulations of its arguments 

that they found more persuasive. In some instances, readers were able to 

communicate these alternatives back to the author. For example, Halley, Fatio 

and Gregory held face-to-face meetings with Newton in which they queried his 
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proofs, haggled over his wording, and urged him to restructure his arguments. 

Indeed, the secondary literature acknowledges Halley’s role as “midwife” to the 

first edition, as well as Fatio’s and Gregory’s attempts to establish themselves 

as editors of a second in the 1690s. But to establish a separate category of 

“editor” distinct from ordinary “readers” is to misrepresent the way in which the 

book was read. All of Newton’s readers reconstructed his arguments in terms 

that they personally found more amenable to comprehension. Whether or not 

they then communicated these reconstructions back to the author so they could 

be considered for inclusion in subsequent editions is a matter of historical 

contingency. Halley, Fatio and Gregory prompted changes to the text after 

holding private meetings, but so too did Clerke after an exchange of letters, and 

we may plausibly speculate that other readers would have done the same if 

opportunity had allowed. In order to verify the arguments in the book, readers 

had to reconstruct them in alternative versions that they found more persuasive. 

It is in this gap between the printed text and his readers’ reconstructions of it 

that we can identify Newton’s contemporaries negotiating the validity of his 

proofs: editing the Principia was an automatic consequence of the act of 

reading it. 

2.2 Reading the Principia mathematically 

2.2.1 Reconstructing Newton’s connected prose in symbolic form 

The written style of the Principia determined the ways in which it was read. Like 

contemporary texts such as Huygens’s Horologium and Grégoire de Saint 

Vincent’s Opus geometricum, its demonstrations are generally expressed in 

long, verbose sentences structured in paragraphs of connected prose. This 
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meant that any reader who wished to verify one of the proofs generally did so 

by recreating its argument in condensed, symbolic form. Checking the validity of 

Newton’s mathematical arguments entailed picking up a pen and recreating his 

verbal explanations in the form of equations and proportions of ratios. 

 As an example of this process, I shall consider readers’ responses to 

Proposition 11 of Book 1. This is Newton’s proof of the inverse-square law for a 

body moving in an elliptical orbit, and its style is usefully representative of many 

other demonstrations. This image shows how the result appears in the printed 

text of the first edition: 
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There are many steps a modern reader encounters in verifying this proof, and 

they can usefully be grouped into three stages.124 First, the reader is required to 

process the details of the geometrical construction. He is told that the curve 

being considered is an ellipse, and that its foci are at S and H. It has been 

previously stated in Proposition 10 that DK and PG are conjugate diameters 

(which means that DK is parallel to the tangent ZPR) and that PF is 

perpendicular to DK. QxPR is a parallelogram; HI is parallel to EC; and QT is 

perpendicular to PS. As the reader comes across each of these facts stated in 

the text, he finds himself looking at the diagram to see how it fits in with the 

overall picture. It may be said that the reader understands the construction by 

corresponding the words in the text with the visual information in the diagram. 

Notice that, in practical terms, the printed diagram is essential for understanding 

the construction. It would not be impossible to draw out the diagram from its 

description if had not been provided, but it would be exceptionally difficult. 

 

124 The reader who finds it helpful to do so is encouraged to consult Cohen and Whitman’s 
translation. This is based on the second edition, which appended an alternative proof; two of the 
cross-references were also slightly altered. 
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 In the second stage, Newton establishes a string of proportions between the 

component parts of the diagram, based on their geometrical properties. Newton 

either explicitly states these properties in the text, or, more commonly, assumes 

that his reader possesses this prior knowledge. In the proof of Proposition 11, 

Newton assumes that his reader already knows that the corresponding sides of 

similar triangles are proportional to one another; that the sum of the distances 

from the foci to any point on an ellipse is constant (the focal distances property); 

that at any point on an ellipse, the angle between the tangent and the line 

joining the point to one focus is equal to the angle between the tangent and the 

line joining the point to the other focus (the reflective property); and the 

intersecting chord theorems in Propositions 35 and 36 of Book 3 of Euclid’s 

Elements. He also reminds the reader that the latus rectum of an ellipse is 

defined to be the quantity 22BC AC . In addition, at various stages in the proof 

he explicitly invokes the earlier results of Lemma 8 (which says that, in the limit 

of a particular construction, two particular lengths are equal), Lemma 12 (the 

areas of parallelograms formed by conjugate diameter pairs are always equal) 

and Proposition 6 (which he calls Theorem 5: the centripetal force is inversely 

proportional to 2 2SP QT QR ).  

 Based on these properties, Newton first demonstrates that EP AC . The 

modern reader can most easily understand his argument by recreating it in 

more familiar notation, as follows: 
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Newton then establishes five further proportions: 
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In order to understand where these proportions come from, close attention 

needs to be paid as Newton sets them out in turn. A modern reader might just 

about get away with not writing anything down yet, but he certainly needs to be 
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alert to verify each step as it comes. He will frequently need to refer back to the 

diagram and to previous results in the book. 

 Having established each of these proportions from the geometrical 

properties of the construction, in the third stage Newton manipulates them. In 

the case of Proposition 11, this involves combining all five together. In modern 

terms, he multiplies together all five left-hand sides, multiplies together all five 

right-hand sides, and then simplifies: 
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Finally, Newton argues that in the limit as Q moves towards P,  2Gv PC  from 

the construction. This means that   2L QR QT , and so 

  2 2 2L SP QT SP QR . He then invokes Proposition 6 to infer that the 

centripetal force is inversely proportional to  2L SP . Since L is fixed for a given 

ellipse, the centripetal force must therefore be inversely proportional to 2SP , as 

required. 

 It is during this third stage, I suggest, that any modern reader wishing to 

check the validity of Newton’s argument is obliged to pick up a pen. To 

understand the construction in the first stage without writing anything down is 

eminently possible; during the second stage, in which Newton establishes the 
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basic proportions from their geometrical properties, an alert reader can get 

away with simply nodding along with each ratio as Newton sets it out. But 

looking back at the way the proof was presented on the page, it is difficult to 

imagine verifying the third stage without writing out the ratios and seeing the 

terms simplify. The way the terms are listed in sentences horizontally across the 

page makes it impossible to see that they reduce in the way that Newton says 

they do. Once the ratios are set out vertically underneath each other, as they 

have been above, it is much easier to be convinced of the validity of the proof 

without writing anything down. But this is not the case when they are set out in 

continuous prose as they are on the pages of the Principia. A modern reader 

who wishes to verify the third stage in the proof is required to rewrite Newton’s 

verbal explanations in a format that allows the simplification of the ratios to be 

seen. 

 The primary evidence shows that this is exactly what Newton’s 

contemporary readers also did. Here are the annotations on page 50 of 

Flamsteed’s copy, directly alongside the proof:125 

 

125 RS, RCN 18577. 
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[1] 1.    , 2 ,  &

[2] 2 coeuntibus   &  

[3]        

[4]        2

[5] :   ::      :

[6]                               :

[7]                               :  

[8] :      [::]   

L AC BC q

v P

Qv Qx

PC Gv

L qr L pv qr pv

px pv

ac pc

L pv gvp



 

   

   :  

[9]    :  ,    ::  , :  ,

[10]  ,  :  ,   ::  , : ,

[11]                             , : ,

[12]                      2 ,  

[13] : , :: 2 :      dividendo p[
L ac

L gv

gvp qv q pc q cd q

qv q qT q ep q pf q

cd q bc q

L ac BC q

L qr qT q BCq PCq PC Gv BCq



   

 

er] 

[14]                       fit  ::    2 :                 et iterum dividendo p[er]  fiet

[15]  :       ::      2 :     sed ratio 2  ad  est aequalitatis [ ] 

[16] sed 

BCq

PCq PC Gv PC

L QR QTq PC Gv PC Gv L Qr QTq

L QR


     
SPq QTq SPq

L SPq
QR QR

 

 

Flamsteed has proceeded exactly as above above: in order to see how the 

terms combine, he has reconstructed the ratios listed in Newton’s prose as 
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symbols laid out vertically underneath each other. He begins by re-stating the 

definition of the latus rectum at line 1, and then records in lines 2–4 that he is 

considering the limit, at which point (as he can see from the diagram) Qv Qx  

and 2PC Gv . The key part of his verification comes in lines 5–11, where 

Flamsteed writes out the ratios in the order that Newton lists them in the text, 

but set out vertically underneath each other so he can more easily see how they 

combine. He has drawn boxes around the terms that will cancel. He writes out 

the result of this combination at line 13, where he also notices that L AC  can 

be replaced with 22BC ; and over the remaining couple of lines he completes the 

proof. Importantly, as he works through the ratios his line of thought is very 

slightly different from the path followed in the text: in line 6, he infers the 

equality of the ratios :QR Pv  and :AC PC  by going via the ratio :Px Pv , which 

is not explicitly referred to by Newton; and Flamsteed’s line 13 is different from 

the equivalent line in the printed proof, which still has 2CD  in both the 

antecedent and the consequent. His reconstruction is therefore not quite the 

same as the argument in the text. 

 For comparison, here is Gregory’s reconstruction of Proposition 11 in his 

Notae:126 

 

 

126 RS, MS210, 5r. 
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Gregory is using slightly different notation from Flamsteed (as will presently be 

discussed), but his need to verify the proof by writing out the ratios is evident. 

The reader who consults Fellmann’s transcription of his Marginalia will see that 

Leibniz did the same.127 In all the examples we possess, checking Newton’s 

proofs entailed an active process of independent recreation. To verify his 

mathematics, Newton’s readers had to pick up a pen and rewrite his prose 

descriptions of proportions in the form of symbolic, algebraic equations. 

2.2.2 Using different notation and foundational concepts 

The small changes Flamsteed made when writing out Proposition 11 exemplify 

another important feature of readers’ recreations of Newton’s proofs: they were 

often different from those they found printed in the book. As they reconstructed 

Newton’s arguments, readers employed different notation, followed different 

logical paths, and reinterpreted them using different foundational concepts. 

They then based their judgements not on Newton’s original text, but their own 

reconstruction of it. Readers were only persuaded by the arguments presented 

in the Principia when they could successfully recreate them on their own terms.  

 

127 Marginalia, 57–58. 
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 Good examples are provided by readers’ responses to Proposition 6. This 

result is of fundamental importance to the opening sections of the book, and 

establishes that for a body moving along an orbit of any shape, the centripetal 

force is inversely proportional to 2 2SP QT QR , where SP, QT and QR are 

particular lengths in the construction.128 In his printed demonstration, having 

described the construction, Newton once again expresses the resulting ratios in 

long, prose sentences running across the page. Any reader wishing to verify the 

proof must therefore pick up a pen and reconstruct his argument symbolically, 

as may be seen in the written responses of Huygens and Gregory. However, 

both Huygens and Gregory did so in different terms from those Newton used in 

the text. Common to both is an adherence – lacking in the printed 

demonstration – to the Euclidean theory of proportions. Articulated in the fifth 

book of the Elements, this was the main conceptual tool employed in the 

mathematization of natural philosophy in the first half of the seventeenth 

century, as used by Galileo and his followers, and Huygens in his Horologium. It 

involved establishing ratios between two homogeneous magnitudes, which is to 

say, between two magnitudes of the same kind. The ratio between two areas 

could therefore be formed, or the ratio between two forces, but not the ratio 

between an area and a force, or between a weight and a volume. This meant 

that in their studies of kinematics, for example, the Galileans could not say that 

the velocity of a moving body was the ratio of its distance to its time, but instead 

had to consider two bodies moving with the same velocity, and observe that the 

ratio of the two distances is equal to the ratio of the two times. Over the course 

 

128 The reader is referred to the translation provided in the Notes of Cohen and Whitman’s 
translation. The version in the main body of their text is based on the second edition, in which 
Proposition 6 was substantially rewritten. 
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of the seventeenth century, Euclidean proportions were gradually supplanted by 

Cartesian analytical algebra, which is not restricted by the need for 

homogeneity, and in which it is acceptable to combine heterogenous quantities. 

Newton himself cast much of his early work on orbital dynamics in Euclidean 

form, and the demonstration of the inverse square law he sent to Locke in 

March 1690 is presented in this way. But this is generally not the case for the 

proofs in the Principia. The clearest indication of this is that, in his orbital proof 

theorems, Newton considers one body on an orbital path and establishes an 

expression for that the force at that point, rather than considering two bodies on 

the same orbital path and establishing the ratio between them.129 

 A version of Proposition 6 that adheres to the theory of proportions would, 

then – as the printed text does not – derive an expression of the ratio of the 

forces acting on a body at two different points. This is exactly what Huygens 

and Gregory reconstructed in their notes. However, this forced them to recreate 

the proof in very different ways from Newton’s original. 

 The notes Huygens made when working through this result fit onto one side 

of notes, split into two sections.130 The first section reads as follows: 

 

 

129 This account of the Euclidean theory of proportions draws on Guicciardini, Reading the 
Principia, 133–5. Locke’s proof is at Bodleian, MS Locke c. 31, 101–104. 
130 CH, HUG 7, 15r (=OC, 21:417–18). Huygens’s commentary on Proposition 6 has also been 
analysed by Guicciardini, Reading the Principia, 130–35. 
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Ad propos. 6 lib. 1. Neutoni 

Dicit vim centripetam in P esse reciproce ut solidum 2 2 in QTSP QR .  

Commentarium. Ut possit dicere reciproce, necesse est alterum insuper 

punctum poni vel intelligi ut p, in quo vis centripeta comparetur ad vim 

centripetam quae in P. Ut autem hae vires inter se conferantur, oportet 

spatia QSP, qSp aequalia esse; hoc est □ SP, QT aequale □o Sp, qt. 

tumque erunt vires centripetae sicut rectae minimae RQ ad rq. Nec video 

quid aliud sibi velit haec propositio; nam si dicit esse vim centripetam in 

P ad vim centripetam in p sicut 2 2 in Sp qt rq   ad 2 2 in QTSP RQ , hoc 

est sicut RQ in 2Sp  in 2qt ad rq in 2SP  in 2Q T , haec ratio manifestè 

eadem est quae RQ ad rq, quia Sp.qt aequale SP.QT, adeoque 2 2.sp qt  

aequale 2 2.SP QT . Quidni igitur dixit vis centrifugas in P et p esse ut RQ 

ad rq. aut quare potius eas esse reciproce ut 2 2.SP QT QR  ad  

2 2.Sp qt qr quam ut reciproce .SP Q T QR  ad .Sp qt qr  vel ut reciproce 

3 3.SP QT QR  ad 3 3.Sp qt qr . 

An voluit positis spatijs QSP, qSp inaequalibus, comparare tamen vires 

centripetas in P et p. Hoc erat. 

Huygens states the need to consider a second point on the orbit and establish 

the ratio between the two forces in his opening sentence. He therefore draws a 

diagram showing two points p and P, with the required construction on each. 

For the remainder of his first paragraph he considers the case when the forces 
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act for the same time interval, which means (by Kepler’s area law) that the area 

QSP is equal to the area qSp, and so SP QT  is equal to Sp qt . If the forces 

at P and p are measured by the deflections QR and qr from the inertial paths, 

he therefore observes that it is trivially true that their ratio will be as 2 2Sp qt qr  

to 2 2SP QT QR , or reciprocally as 2 2SP QT QR  to 2 2Sp qt qr . Indeed, as 

Huygens notes, for as long as SP QT  is equal to Sp qt , we could say that 

they will be reciprocally as SP QT QR  to Sp qt qr , or reciprocally as 

3 3SP QT QR  to 3 3Sp qt qr , since all of these ratios are equal to QR to qr. 

 In order to prove Newton’s assertion, he argues, he needs also to consider 

what happens when the time intervals are not equal. He does this in the second 

half of his note, which is harder to transcribe: 

 

 

 

His diagram may be reproduced as follows: 
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The two bodies are at points E and A, and he is considering their motion in 

unequal times to points X and B respectively. Huygens first considers the point 

F that the first body would reach in the same time that it takes the second body 

to move from A to B. That is, point F is such that the areas SBA and SFE are 

equal, and under the diagram on the right he has written “Ponantur spatia 

aequalia SBA, SFE.” Under the diagram on the left, he has written 

 

 

 

This is notation is equivalent to 

 

: :
ts

n s t
n

 

 

This is trivially true: Huygens is writing it down to establish that, if n, s and t 

represent the lengths ES, AS and BC, then FG is represented by ts n . In other 
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words, this is the notation Huygens uses to establish what is called the “fourth 

proportional” to three given quantities. Since the areas SBA and SFE are equal, 

he knows that the ratio of the force at A to the force at E is equal to the ratio of 

the length r to the length y. This ratio is composed of the ratio of r to x and the 

ratio of x to y. However, Huygens has written, 

 

 

 

In other words, 

 

  
2 2

2
2

: : (*)
t s

x y u
n

 

 

It may not be immediately obvious where this has come from: Guicciardini 

explains that, for an arc subtended by an infinitely small angle, “the versed sine, 

1 cos , is proportional to the square of the sine,” as the modern reader may 

easily verify from series expansions.131 This gives the ratio of the deflections 

experienced by one body acted on by the same force over different periods of 

time. To establish the ratio of the deflections of two bodies acted on by different 

forces over different periods of time, (*) is composed with the ratio :r x  to 

produce 

 

 

131 Guicciardini, Reading the Principia, 133. 
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2 2
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: :
t s x

r y ru
n

 

 

which is to say 

 

 2 2 2 2: :r y n ru t s x  

 

or 

 


2 2 2 2

: :
n u t s

r y
x r

 

 

Huygens presents this as follows: 

 

 

 

He has therefore established that the ratio of the force at A to the force at E is 

equal to the ratio of 2 2n u x  to 2 2t s r , or reciprocally as 2 2t s r  to 2 2n u x . 

Referring back to Huygens’ diagram shows that these terms are indeed 

equivalent to Newton’s expression 2 2SP QT QR  at the respective points, as 

required. 
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 The details of Huygens’ proof are less important than the fact that it is 

extremely different from Newton’s. He uses different notation, and operates 

within a different conceptual basis. He deploys a result about the versed sine of 

an angle that is not referred to in the text. Because he wishes to adhere to 

Euclidean proportion theory, he is forced to construct an argument logically 

distinct from the one that appears in the book. 

 Gregory also recreates Newton’s proof in terms of Euclidean proportions, 

but does so in a different way. Here is his entry on Proposition 6 in the Notae:132 

 

 

 

Like Huygens, Gregory also imagines a “corresponding figure in some other 

section of the orbit,” and considers the ratios between the forces at these two 

points. To represent the forces he introduces the symbols V and v, not used by 

Newton, and derives the required proportion. But it is noticeable that Gregory 

employs a variety of notation within this passage. He uses two distinct sets of 

symbols, and switches between them as he writes. On the one hand, he uses 

 

132 RS, MS210, 4r. 



132 
 

proportions of ratios, like Huygens; and on the other, he employs what look like 

algebraic equations. He also writes 

 

 
2

2

RQ V Time

rq v time
 

 

as a shorthand for “the ratio of RQ to rq is compounded of the ratio of V to v and 

the ratio of 2T  to 2t .” Indeed, in the fifth line of the note he begins to write “

: ::RQ rq …”, but realises that he cannot easily compound ratios using this 

notation, so has to switch. Once he has done so, he can combine the terms to 

produce 

 

 


 

2 2

2 2

RQ V SP QT

rq v Sp qt
 

 

which he can rearrange to 

 

 


 

2 2

2 2

V RQ Sp qt

v rq SP QT
 

 

He is then able to retranslate this back into the proportion 

    2 2 2 2: :V v RQ Sp qt rq SP QT , from which the result quickly follows. 

Because the notation of proportions doesn’t easily allow him to compound 

complicated ratios, he has to manipulate the equations first, until they can be re-

expressed in Euclidean form. Indeed, this is typical of his workings in the Notae: 
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Gregory repeatedly forms Euclidean proportions from Newton’s text, 

immediately rewrites them as equations, manipulates the equations, and then 

turns them back into proportions. The style of Newton’s proofs forces him to do 

this. Newton’s text is typically expressed in terms of the force at a single point 

rather than in terms of the ratio of the two forces at different points, and yet his 

ratios are more easily manipulated when expressed in algebraic form. Gregory 

is therefore obliged repeatedly to switch between the two. 

 In his analysis of Huygens’ notes on Proposition 6, Guicciardini labels 

Huygens’ comments as “criticisms,” and concludes that “the use of proportion 

theory in the Principia was not acceptable to Huygens.”133 But seen alongside 

Gregory’s notes, I suggest that “criticisms” is too strong a word. Rather, 

Newton’s readers reformulated his demonstrations in their own terms, and for 

Huygens and Gregory an acceptable reformulation needed to adhere to the 

principles of Euclidean proportion theory. Verifying Newton’s proofs involved a 

positive act of reconstruction, and each reader reconstructed the demonstration 

in a slightly different way. They used different notation, employed different 

foundational concepts, and reached the conclusion by different logical routes. 

Newton’s readers rarely followed exactly the same path as the author to arrive 

at his conclusions. 

2.2.3 Simplifying the proofs 

Sometimes in the process of verifying the proofs Newton’s readers spotted 

ways in which they could be simplified. A clear example occurs in Fatio’s 

reading notes, where he recorded a straightforward adjustment that could be 

 

133 Guicciardini, Reading the Principia, 119; he describes the notes as “criticisms” on pages 118, 
125 and 128. 
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made to simplify the proof of Proposition 8 in Book 1. This result concerns a 

body orbiting along a semi-circular path under the action of a force always 

directed to an infinitely distant point: 

 

 

 

The semi-circular path of the orbit is as marked, and the infinitely distant point 

towards which the force is directed, S, is imagined to be a long way below the 

diagram, such that the line of action of the force PMS is always perpendicular to 

the diameter ANMC as P moves around the orbit. 

 Proposition 8 proves that the magnitude of the force as P moves around the 

semi-circle must vary inversely as the cube of the distance PM. Newton’s 

argument in the first edition is as follows. The triangles CPM and PZT are 

similar, and in the limit as Q approaches P, Lemma 8 tells us that PZT is similar 

to PQT. Therefore 2 2 2 2: :CP PM PQ QT . But Lemma 7 says that, in the limit 

as Q approaches P, PQ PR . This gives 2 2 2 2: :CP PM PR QT . Furthermore, 

because the orbit is a semi-circle, we have from Proposition 36 of Book 3 of the 

Elements (the tangent-secant theorem) that    2PR QR RN QN . In the limit 
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as Q approaches R, this becomes  2 2PR QR PM . Combining these, we 

have  2 2 2: 2 :CP PM QR PM QT , and therefore 

 



 


2 3

2

2 2 3 2

2

2

2

QT PM

QR CP

QT SP PM SP

QR CP

 

 

Proposition 6 says that the force is inversely proportional to 2 2QT SP QR . 

Because CP is constant and SP can be considered unchanging because the 

force is directed towards an infinitely-distant point (the phrase in the text is 

“neglecta ratione determinata 2  quad.  quad.SP CP ”), this implies that the force 

is inversely proportional to 3PM , as required. 

 Fatio’s improvement to this proof is extremely simple: he merely points out 

that in the opening steps, the invocations of Lemmas 8 and 7 are unnecessary. 

This is his entry in his reading notes:134 

l. 10 jungetur CP. Ob similia triangula CPM, TPZ, est CPq. ad PMq. ut 

PRq. ad QTq. et ex natura circuli &c. Nulla enim lemmatum VIII et VII 

citatione opus est. 

CPM is similar to PZT, says Fatio, and so the ratio of CP to PM is equal to the 

ratio of PR to QT. This leads directly to 2 2 2 2: :CP PM PR QT , without having 

to invoke the limit result of either of the Lemmas. 

 As it happens this improvement was not transcribed by Newton into either 

his annotated or interleaved copies, although a very similar change was made 

 

134 OC, 10:149. 
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much later in the third edition. It is nevertheless clear that, as he was recreating 

the proof in order to verify it, Fatio noticed an improvement that could be made. 

And although superficially it only involves deleting a handful of words from the 

printed text, from a logical point of view the simplification is very substantial, 

since Fatio’s version does not depend upon the proofs of Lemmas 7 and 8, 

which in turn depend on Lemmas 1, 5, and 6. Fatio generated a new, simpler, 

logically distinct proof as an automatic consequence of the act of reading it. 

2.2.4 Proving the same result by different means  

In addition to simplifying Newton’s own proofs, readers sometimes generated 

their own demonstration of the conclusion in the text by substantively different 

means. A good example is Huygens’ reading of Proposition 5 of Book 2, in 

which, unable to follow the derivation in the text, Huygens generated his own 

proof using series expansions. This example will also be relevant to the 

discussion in Chapter 5 of Newton’s limit methods, but my purpose here is 

merely to demonstrate how Huygens verified this result by constructing a proof 

different from the one in the text.  

 Proposition 5 concerns a body moving in a resistive medium in which the 

resistance is proportional to the square of the velocity. The main result states 

that under such conditions, if a series of times is taken in decreasing geometric 

progression, then the velocities at these times will vary inversely as that 

progression, and the spaces described between the times will be equal. This is 

very easily proved using modern notation: omitting constants of proportionality, 

Newton’s Second Law gives the differential equation  2v mdv dt , which 

yields  1v t ; this leads to  lns t , from which the result about geometric 

progression follows. Newton’s proof runs in the other direction. He starts by 
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assuming that the velocity is inversely proportional to the time, and then derives 

that the decrements in the velocity must be proportional to the squares of those 

velocities; the result about geometric progression then follows. He therefore 

begins by drawing a hyperbola: 

 

 

 

The horizontal axis represent time, and the vertical axis velocity. AK, KL and LM 

represent equal increments of time. Because the curve is a hyperbola, we have 

 

  



AB CA CK Kk

AB CK

Kk CA

 

 

Newton then manipulates these ratios as follows: 
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For a given hyperbola, Newton then notes that AB CA  is fixed. And he had 

previously set AK, KL and LM to be fixed, equal intervals. So as the point A 

varies in location along the horizontal axis, AB Kk  will be proportional to 

AB Kk . If the distance AK is now decreased, then in the limit (“ultimo, ubi 

coeunt AB & Kk”), AB Kk  will be proportional to 2AB . A similar argument 

gives 

 

 

 

 

2

2

2

AB Kk AB
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So, if the horizontal axis represents time and the vertical axis represents 

velocity, then successive decreases in velocity are proportional to the square of 

the starting velocity, which means that the resistive force is proportional to the 

square of the velocity. Newton has thus demonstrated that if the velocity-time 

graph is a hyperbola, then the resistive force is proportional to the square of the 

velocity. Reversing the direction of implication shows that if the resistive force is 
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proportional to the square of the velocity, then the velocity is inversely 

proportional to the time, as required. 

 Huygens proves Newton’s result by completely different means. Here are his 

notes on this proposition:135 

 

 

 

The text on the right may be transcribed as follows: 

Ad prop. 5 l. 2. Neutoni.  

Resistentia medij est in duplicata ratione celeritatis. 

 

135 CH, HUG 26, 85r (=OC, 21:420–1). 
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Demonstrat, sed obscure admodum, quod hyperbole est ejus naturae ut 

acceptis partibus aequalibus in asymptoto, indeque excitatis parallelis 

perpendicularibus quae hyperbolae occurrant, harum differentiae 

decrescunt in duplicata ratione ipsarum sibi proximarum. quod hoc 

calculo verum esse invenio. 

Hinc autem sequitur (quod miror Neutonum non observasse) corpus 

horizontali motu incitatum, etiam in medio resistente infinitum spatium 

conficere infinito tempore. quod contra est cum resistentia est ut 

velocitas, ut ostendi. Illud mirabile prorsus videtur. Cogita enim globum 

plumbeum sub aqua in plano horizontali projectum an in infinitum 

spatium perget moveri? 

It is immediately obvious that Huygens’ diagram is very different from Newton’s: 

 

 

 

In accordance with Euclidean proportion theory, he is going to establish the 

ratio of a certain quantity at two different points on the curve, rather than – as 

Newton does – an expression for that quantity calculated in the limit at one point 

on the curve. He has labelled the points differently, and has marked on two 

equal time intervals EB and KG, assumed small, which are equivalent to 
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Newton’s interval AK. Huygens has also drawn horizontal lines CF and HL 

across the top of each section of the curve, which Newton has not. 

 The working underneath contains Huygens’ notation for finding the fourth 

proportional, recognisable from the above discussion of Proposition 6: 

 

 

 

Huygens has labelled each lower-case expression with the corresponding 

upper-case length in the construction, so  a x  is equal to AE, a is equal to 

AB, and so on. The last term written on each line is the quantity he is trying to 

evaluate, such that in the first line he derives an expression for FD, in the 

second an expression for AG, then KM, HG and ML. 

 Each of Huygens’ lines needs to be worked through in turn to understand 

how his proof differs from Newton’s. Huygens begins by finding an expression 

for FD. Because the curve is a hyperbola, : :AE AB BC ED , and so ED is the 

fourth proportional of AE, AB and BD. On his diagram he has marked AB a , 
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BC b , and EB x . So ED is the fourth proportional of  a x , a, and b. That 

is,   ED ab a x . And because  FD ED BC , this gives    FD ab a x b . 

 In an extremely similar way, in the second line he establishes that 

AG ab c , and in the third that 

 


ab

c

ab
KM

x
. 

  

Directly underneath he records that HG is denoted on the diagram by c, and 

then he subtracts (“s.”) to give: 

 

 
bc

c

ab
ML c

x
 

 

ML and FD represent the decreases in velocity during the respective time 

intervals KG and EB, and so are a measure of the resistive forces acting. 

Huygens is aiming to prove that the ratio of the resistive forces is equal to the 

ratio of the squares of the velocities. In the final lines of working he therefore 

verifies that  2 2: :ML FD c b : 
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It can be seen that he has done so by leaving the right-hand ratio 2 2:c b  alone, 

and manipulating :ML FD  on the left. He has first simplified the expression for 

ML and then, in the third line, multiplied both terms by  a x . To get to the 

fourth line, he multiplies by  ab cx  to give 

 

      :ccxx aabc abcx accx aabc abcx abbx bcxx  

 

His instinct (in the deleted antepenultimate line) is to try dividing the terms 

towards the right by b, but he then realises that the left will simplify: 

 

  :ccxx accx abbx bcxx  

 

Crucially, he then sees that “quia x minima est deleri possunt in quibus xx,” and 

spots that he can make the result work by neglecting the 2x  terms, just as he is 

used to doing when dealing with infinite series. This leaves him with 

:accx abbx , which is indeed equal to 2 2:c b . The resistive forces will thus be in 
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the ratio of the squares of the velocities, and the stated results of Proposition 5 

about times in geometric progression follow immediately. 

 It is obvious that Huygens’ proof is completely independent of Newton’s. He 

has used a different diagram, a different notation, a different conception of 

proportion, and the methodology of infinite series rather than geometric limits. 

He has produced a substantively different derivation of the result, proving 

Newton’s conclusion by entirely different means. Moreover Huygens did not 

generate his proof in addition to working through Newton’s, but because he was 

not able to follow it. The lines at the top of his note can be translated as follows: 

With regard to Newton’s Proposition 5 of Book 2. The resistance of the 

medium is in the squared ratio of the speed. He demonstrates, but very 

obscurely, that the hyperbola is of its nature such that, if equal sections 

are taken along the asymptote, and from there parallel perpendiculars 

are constructed which go to meet the hyperbola, the differences of these 

decrease in the squared ratio of the next one. Which I find to be true by 

this calculation. 

The phrasing here (“Demonstrat, sed obscure admodum”, “quod hoc calculo 

verum esse invenio”) suggests that Huygens was not able to verify the proof of 

Proposition 5 he found in the text, and was only able to believe its conclusion 

because of his own, independent working. If he hadn’t generated his own 

derivation, he would not have been persuaded of the correctness of Newton’s 

assertion: it was his own reconstruction, and not the words printed on the page, 

that convinced him the result was true. 

2.2.5 Generating new results 

As well as reconstructing, simplifying and producing alternatives to Newton’s 

proofs, the act of working through his demonstrations sometimes led readers to 
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generate novel conclusions. Not all readers did this, since their circumstances 

and motives varied, as was shown in Chapter 1. But Bertoloni Meli has 

demonstrated that reading the Principia directly stimulated Leibniz to develop 

his own ideas; and the other reader who routinely generated new results as he 

studied Newton’s book was Fatio. His developments are far less substantial 

than Leibniz’s, but as he read he often produced extensions of the results he 

found in the text. 

 Small instances are easy to list. His marginal note alongside Lemma 26 

demonstrates that the three circles in the construction do indeed intersect, for 

example; this concurrence is not required for Newton’s result and so Fatio’s 

proof is not necessary, but he composes one nevertheless. He also correctly 

notes that the result of Proposition 38 about falling bodies can be applied to 

pendula describing very small arcs. And when working through the Scholium 

after Proposition 29, he correctly observes that if the quadrilateral fghi expands 

in such a way that f, g and h all move along straight lines, then the point i must 

also move along a straight line. This remark is not particularly relevant to the 

result, but it is true, and Fatio says he is able to prove it.136 

 If these extensions are relatively obscure, other suggestions are more 

prominent. For example, he made the following note alongside Proposition 4 in 

Book 1:137 

Si sint T , t ; tempora period. R , r ; radii circulorum; erunt 
R

T
, 

r

t
; ut 

velocites. 2

R

T
, 2

r

t
; ut vires centrip. Si sit praetera . :: .n n m mT t R r  erunt 

 

136 Bodleian, Arch. A d.37, 97, 121, 103; see also the loose sheet between pages 100 and 101. 
137 Bodleian, Arch. A d.37, 42. He made an almost identical note in his reading notes, OC, 
10:149. 
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1 m
nR ; 

1 m
nr  ut veloc. 

21 m
nR ; 

21 m
nr  ut vires Centr. Itemque erunt 

1n
mT ; 

1n
mt ; 

ut veloc. 
2n

mT ; 
2n

mt ; ut vires centr. 

If the time periods are T  and t , and the radii of the circles R  and r , 

then the velocities will be as 
R

T
 and 

r

t
, and the centripetal forces as 2

R

T
 

and 2

r

t
. Moreover if   n n m mT t R r , then the velocities will be as 

1 m
nR  

and 
1 m

nr , and the centripetal forces as 
21 m

nR  and 
21 m

nr ; and furthermore 

the velocities will be as 
1n

mT  and 
1n

mt , and the centripetal forces as 
2n

mT  

and 
2n

mt . 

This important theorem concerns uniform circular motion, and in the first edition 

contained seven corollaries. Expressed in modern notation, Corollary 1 says 

that  2F v r ; Corollary 2 that  2F r T ; Corollary 3 that if T is fixed then F r  

and v r ; Corollary 4 that if 2T r  then F is fixed and v r ; Corollary 5 that 

if 2 2T r  then  1F r  and v is fixed; Corollary 6 that if 2 3T r  then  21F T  

and  1v r ; and Corollary 7 that these proportions hold when bodies 

describe similar parts of similar figures. In his marginal note, Fatio has 

generalised these results. He first recapitulates that v r T  and that  2F r T , 

and then correctly notes that, if n mT r , then  1 m
nv r , 

21 m
nF r , 

 1n
mv t  and 

 2n
mF t . These expressions are correct, as the reader may easily verify; and 

Newton was sufficiently persuaded of their utility that as a result of their 

discussion in May 1690 he inserted them as an extra corollary, as the pages of 

his annotated copy show. 

 A much more substantial example lies in the long marginal note Fatio made 

alongside Proposition 43 of Book 1. I shall refer to this example again in 



147 
 

Chapter 4, since it is the only instance I have found of a reader applying 

Newton’s geometrical limit methods to create a new result. Proposition 43 

appears at the start of Section 9, which concerns the precession of orbits. In his 

construction, Newton considers two bodies P and p following orbits of the same 

shape, but p’s orbit precesses anticlockwise: 

 

 

 

The solid curve VPK represents the stationary orbit along which the body P 

travels, and the dotted curve vpk represents the similar precessing orbit of body 

p. Both orbit the fixed point C in such a way that at any given moment the 

distance CP is equal to the distance Cp. Newton restricts his analysis in Section 

9 to the case of an orbit precessing such that both (i) angle vCp is always equal 

to angle VCP, and also (ii) the angle VCp increases in direct proportion to the 

angle VCP (i.e. VCp is always a fixed multiple of VCP). It is notable these two 

restrictions imply that the angle VCv is almost certainly not increasing at a 

steady rate, unless VCP is increasing in a particularly idiosyncratic way. 
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Newton’s analysis does not therefore apply to what might naturally be described 

as a “steadily precessing” orbit.  

 Unhelpfully, the path of p as its orbit precesses is not indicated on Newton’s 

diagram. Fatio has marked it in on his copy, as can just about be seen from this 

image:138 

 

 

 

Both P and p start at V, at which point their orbits coincide. As they both begin 

to move and the orbit of p precessess anticlockwise, the body p moves through 

the point on the diagram marked p, then on through the point labelled n, and 

along a spiral back up the other side of C. In Proposition 43, Newton 

demonstrates that – so long as the orbit vpk precesses subject to the 

restrictions (i) and (ii) above – if the body P orbits about the point C in 

accordance with Kepler’s area law, then so too does body p. The force acting 

 

138 Bodleian, Arch. A d.37, 132. 
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on p must therefore be centripetal, with no transverse component. In 

Proposition 44 Newton finds the size of this centripetal force, proving that the 

additional centripetal force required to make any given orbit precess is inversely 

proportional to the cube of the distance Cp.  

 In the margin of his copy, Fatio has composed a long note and additional 

Scholium, intended to be inserted between Proposition 43 and Proposition 44. 

In his proposed Scholium, Fatio first acknowledges explicitly – as Newton does 

not – that if restrictions (i) and (ii) do not hold and instead the angle VCv 

increases at a steady rate, then none of the conclusions in Section 9 will hold: 

Si positis caeteris, quae in Propositione praecedente posita sunt, linea 

apsidum Cv supponatur aequabiliter, vel alia quacunque lege praeter eam quae dicta est, 

revolvi corpus p non amplius describet circa centrum C areas temporibus 

proportionales; ac proinde non ea vi tantum urgebitur, quae in punctum C 

perpetuo tendat.139 

If with the other things set down, which in the preceding Proposition are 

set out, the line of apsides Cv is supposed to revolve uniformly, or by 

whatever other law except the one which has been stated the body p will no longer trace out 

areas proportional to the times about the centre C; and therefore it will 

not only be driven by this force which is continually directed to the point 

C. 

This is not the only instance of a reader drawing attention to the limitations of 

the Principia’s results in this way, acknowledging more explicitly than the text 

did the mathematical conditions upon which results depended, as I will discuss 

in the next chapter. 

 

139 Bodleian, Arch. A d.37, 133. 
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 After his proposed Scholium Fatio records a new result he has derived. In it, 

he proves that (in modern terminology) the angular velocity of any orbiting body 

acted on by a centripetal force is inversely proportional to the square of its 

distance from the centre. For the modern reader this result follows from the 

conservation of angular momentum, but Fatio derives it from Newton’s 

construction. His note begins as follows: 

Lineae CP velocitas repraesentetur per arcum ef, quem in dato circulo, 

cujus centrum sit C, ‸et radius Ce, dato tempore quam minimo ipsa linea 

CP describit. Circulum Pgp centro C descriptum secet linea CfK in 

puncto g, et erit Ce ad ef ut CP ad Pg, quae proinde aequabitur 

ef CP Ce . Jam Pg CP  est ut area dato illo tempora quam minimo 

descripta, et propterea aequatur semper datae magnitudini: et, 

substituendo ipsius Pg valorem jam inventum, ef CPq Ce  erit semper 

ejusdem magnitudinis: Et cum Ce sit data erit ef reciproce ut CPq.140 

The velocity of the line CP is represented by the arc ef, which the line CP 

describes on a given circle whose centre is C and radius Ce, in a given 

very small time. The line CfK cuts the circle Pgp described about centre 

C at the point g, and Ce to ef will be as CP to Pg, which therefore will 

equal ef CP Ce . Now Pg CP  is as the area described in that given 

very small time, and therefore is always equal to a given magnitude: and, 

substituting the value of Pg now found,  2ef CP Ce  will always be of the 

same magnitude: And when Ce is given, ef will be inversely proportional 

to 2CP . 

Fatio’s argument refers to the annotated diagram above, where he has added a 

small circular arc ef with arbitrary radius Ce, and extended the line cfK to the 

point g. He considers the body P moving along a very short section of its orbit 

 

140 Bodleian, Arch. A d.37, 132. 
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from the point P to the point K. Over this very short period of time (“dato 

tempore quam minimo”), this path PK may be approximated by the circular arc 

Pg, with radius CP. As the radius sweeps around from CP to CK, Fatio takes 

the length of the circular arc ef as a measure of “the velocity of the line CP,” or 

what the modern reader would call the angular velocity. Because the circular 

sectors Cef and CPg are similar, Ce ef CP Pg  and so  Pg ef CP Ce . But 

the area swept out by the radius over this short period of time – which Fatio is 

approximating by the sector of a circle – will be proportional to Pg CP . By 

Kepler’s area law, this quantity will be fixed. Combining these, the quantity 

 2ef CP Ce  will also be fixed. Since the distance Ce was chosen to take an 

arbitrary, fixed value, this means that ef will be inversely proportional to 2CP , 

as required. 

 This result is much more substantial than the simple algebraic generalisation 

of Proposition 4. Rather than merely extending the results in the text, he has 

here derived a novel conclusion, independent from Newton’s, with an extended 

proof. It required a confident manipulation both of Newton’s construction and his 

methodology. But like his smaller suggestions, we can see that it emerged 

organically from the act of reading the text. Fatio had a pen in his hand as he 

worked through Newton’s proofs, and in the process of verifying them he 

extended their methods to produce new ideas. Just as Bertoloni Meli has shown 

to be the case for Leibniz, the process of reading the Principia automatically led 

Fatio to generate his own results. 

2.3 Reading the Principia non-mathematically 
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The existing secondary literature struggles to account for non-mathematical 

readings of the Principia. Other than the story that Locke asked Huygens if the 

demonstrations in the book could be trusted, whereupon – as Westfall put it – 

“he applied himself to the prose and digested the physics without the 

mathematics,”141 instances in which contemporaries read sections of the book 

without working through the mathematical proofs have been overlooked by 

Newton scholars. There are two reasons for this. The first is that such readings 

leave less of a trace in the historical record. If a reader picks up a pen and 

works through Newton’s proofs to verify them, that process produces a material 

artefact that does at least have some chance of being preserved in an archive, 

but if he simply reads through the words without writing out the mathematics, no 

physical trace of that activity will remain. This evidential bias, however, does not 

mean that no analysis is possible at all. On the contrary – as we shall presently 

discover – the notes left by Newton’s contemporaries demonstrate that 

passages in his book were commonly read without checking the 

demonstrations. Leibniz, Halley, Fatio and Locke all read the greater portion of 

the Principia in this way, without stopping to verify the mathematical proofs. 

 The second problem is the importance of “understanding” and “mastery” in 

much of the secondary literature, as discussed in the Introduction above. For 

users of this vocabulary, non-mathematical readings of the text pose a 

significant difficulty. If a reader has successfully worked through one of 

Newton’s proofs, then he can confidently be said to have “understood” it; and if 

he has tried but failed – or not even tried – then it can reasonably be asserted 

that he has not. But classifying a reader who reads through the statement and 

 

141 Westfall Never at Rest, 470. 
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proof of a result but does not pick up a pen to verify it, is much more 

complicated. The extent to which such a reader possesses “understanding” or 

has “mastered” the demonstration is much less clear. Rather than articulate a 

response to this question, the secondary literature has in general chosen to 

ignore it, by choosing not to pay attention to the many occasions on which 

individuals read through passages in the text without stopping to verify the 

proofs. I hope in what follows to supply such a response, and by closely 

examining what the practice of reading the Principia non-mathematically 

entailed, to gain a fuller awareness of what it might have meant to “digest the 

physics without the mathematics.” 

2.3.1 Halley and Fatio’s corrections 

One source of evidence of non-mathematical readings of Newton’s text are the 

grammatical and typographical corrections given to him as part of their editorial 

duties by both Halley and Fatio. For the large part these are very simple to 

explain, and equally brief to analyse: both Halley’s feedback sheets and Fatio’s 

reading notes contain dozens of instances in which they alert Newton to errors 

of typography, syntax or morphology in the text. It is not particularly instructive 

to list examples, but, to take two representative instances, when reading a draft 

of what became Proposition 71, Halley corrected “Agantur de corpusculis lineae 

PHK, PIL, phk, pil auferentes a circulis maxmis AHB, ahb, aequales arcus” to 

“Agantur a corpusculis lineae…”; and in the middle of Proposition 51 Fatio 

noticed that the printed text “Pendulis igitur duabus APT, Apt de perpendiculo 
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AR inaequaliter deductis” should have read “Pendulis igitur duobus APT, 

Apt…”. Similar examples abound in both documents.142  

 Mostly these corrections reveal nothing about Halley and Fatio’s response to 

the meaning of Newton’s words. However, this is not true of all the edits. In 

some instances, Halley and Fatio asked Newton to clarify his phrasing, while 

not altering the substance of his meaning. This may be taken as evidence that 

they found the original argument difficult to follow, perhaps because of the 

novelty of the methodology, or perhaps because of the author’s misjudgement 

of the prior knowledge of his readers; I will provide examples in Chapter 3. And 

Halley made Newton tweak the definitions of some foundational physical and 

mathematical concepts such as mass, inertia, centripetal force, relative and 

absolute space, and infinitesimal moments. In these cases, even small changes 

are of considerable significance, and highly revealing of latent preconceptions: 

these will be discussed in Chapters 4 and 5. Furthermore, because the 

corrections can only have been detected by continuously reading the 

surrounding passages, they provide firm evidence that these sections were fully 

read, as detailed in Chapter 1. Finally, the superficial nature of many of the 

corrections do not mean that the mathematics was being ignored. I have 

already provided evidence that Fatio worked through many of Newton’s proofs. 

But Halley’s notes also show that he must have paid some attention to the 

mathematics. He correctly picked up an error in the draft of the Scholium after 

Proposition 21, for example; he spotted mistakes in the diagrams of Proposition 

6 of Book 1 and Propositions 4 and 9 of Book 2; and he suggested small re-

 

142 Fatio’s copy of the first edition also has hundreds of such corrections marked into the text, 
although these are harder to date, and – because they might have been transferred individually 
into his copy – do not reliably denote that the passage has been read in full. 
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phrasings of the proofs of Propositions 18, 33 and 65 of Book 1.143 Halley could 

not have done so without following the details of at least some of the proofs with 

a high degree of care. Leibniz also combined mathematical and non-

mathematical readings of the text, providing further evidence that the 

processing of Newton’s demonstrations was often partial and incomplete: the 

verification of the arguments in the Principia was rarely absolute. 

2.3.2 Locke’s commonplace notes 

The non-mathematical readings which have received most attention from 

historians are those undertaken by Locke in the late 1680s and early 1690s. 

Chapter 1 highlighted a notable asymmetry in the secondary literature regarding 

Locke’s relationship with the Principia: Newton scholars dismiss his attempt to 

read the book and explain his failure to understand it on his lack of 

mathematical training, while Locke specialists invoke his knowledge of 

Newton’s work as a central event in his intellectual development. I suggest that 

neither narrative is right, because all the secondary literature on Newton and 

Locke for the last half-century has been based on Axtell’s analyses from the 

1960s, which misrepresent the way in which Locke engaged with the text. The 

content of his reading notes can instead be accounted for by Richard Yeo’s 

study of the humanist tradition of commonplacing. The primary evidence shows 

that Locke read the book in full three times, skipping over the mathematical 

sections on each occasion, but taking careful notes on everything else. He 

extracted short quotations verbatim from the text, usually involving definitions, 

numerical data or experimental results. Locke thus read the Principia in exactly 

the same way that he read Cicero and Tacitus. 
 

143 CUL, MS Add. 3965, 96r, 97r, 99r. 
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 Locke consumed a vast number of books over the course of his life, and 

habitually took notes in a highly systematic and regular manner. As Yeo 

explains, this was based on his use of commonplace books, a type of notebook 

in which short quotations, epigrams and excerpts on the same theme were 

arranged together under standard headings. A reader with a new notebook 

would begin by inserting titles on each page (“honour,” “virtue,” “beauty,” 

“friendship”), and whenever in his subsequent study he came across a proverb, 

adage or fact he wished to preserve, would make a note under the appropriate 

heading. Notes on a given topic were thus grouped together – in a “common 

place” – making it easy to retrieve and memorise information. Often each note 

was accompanied by a page reference to the book from which it came; some 

readers maintained more than one commonplace book, covering different 

subjects. The habit of commonplacing was promoted by Renaissance 

humanists, although its influence had waned by the mid-1600s, owing to its 

association with scholasticism and deference to textual authority. Nevertheless, 

Yeo argues that a small group of seventeenth-century English virtuosi 

connected with the Royal Society – Boyle, Hooke, Pepys, Aubrey, Evelyn, 

Hartlib, and Locke – used notebooks “in both traditional and novel ways” in their 

pursuit of empirically-derived knowledge.144 In particular, commonplace books 

were well suited to meet the needs of Baconian natural history, because they 

could be used to compile observational data and record details of reported 

events and phenomena. By comparing a large mass of individual entries, 

inductive generalisations could be made; and because the books could be 

shared, they allowed for easy collaboration. For this group of scholars 

 

144 Yeo, Notebooks, English Virtuosi, and Early Modern Science, 5. 
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notebooks were no longer repositories of ancient material, but a technology for 

collating and processing new information. 

 Yeo reports that Locke himself was a “fastidious, and perhaps obsessive” 

note-taker.145 He kept dozens of notebooks and journals, containing tens of 

thousands of quotations from more than a thousand different texts. His larger 

books typically contain between one and two thousand separate entries. He 

sometimes logged personal observations and second-hand testimonies, but 

overwhelmingly recorded excerpts from his vast private reading, writing out 

short quotations as he read. He almost never marked the books themselves, 

rarely even adding marginal annotations, but sometimes made a list on the 

inside back cover to indicate from which pages he had taken extracts. From the 

1660s, he kept different notebooks for different disciplines, sorting medical, 

chemical and natural philosophical notes into his “Physica” books, and religious, 

social and political matters into “Ethica.” Locke organised his commonplace 

books (which he called “adversaria,” a term originally used for books of 

accounts) according to a non-standard scheme of his own devising, publicised 

under the title “A New Method of Making Common-Place-Books” in 1706. 

According to this method, entries were sorted not by theme, but by the 

combination of the title’s first letter and leading vowel. For example, f. 108 of 

MS Locke d. 9 (the commonplace book in which Locke recorded his third set of 

notes on the Principia in 1691, shown below) contains notes on a series of 

unconnected topics, each of which starts with the letter “g” and has a first vowel 

“a” – “Gravitas,” “Ganglion,” “Gangraena” and so on. Each entry consists of a 

title, followed by a short quotation or fact, and a reference to the book from 

 

145 Ibid., 184. 
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which it was taken. The page numbers of each letter-vowel pair were recorded 

in an index at the front, so that information could efficiently be retrieved. 
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As detailed in Chapter 1, Locke read the Principia in full on three separate 

occasions, and took a full set of notes on each. These notes are all now held in 

the Bodleian Library, Oxford. Those covering his reading in September 1687 

comprise sheets from a reading journal now at MS Locke c. 33, 19–20; when he 

read the book for a second time in 1688 in order to compose his review in the 

Bibliothèque Universelle, he made notes on loose sheets of paper now in MS 

Locke c. 31, 99–100; and his third reading of 1691 is recorded in a 

commonplace book now at MS Locke d. 9. Although the overall structure of 

these notes varied, the style of individual entries within them was very 

consistent, and Locke’s manner of extracting quotes, results and empirical data 

verbatim from the text is exactly accounted for by Yeo’s description. The mode 

of reading Locke’s commonplacing habits encouraged directly determined how 

he engaged with the Principia. 

 Because he was in Rotterdam at the time of his first reading, he did not have 

access to his usual commonplace books, so made reading notes on individual 

sheets. He adapted his New Method for use in a compressed space, as may be 

briefly explained with reference to f. 19r of MS Locke c. 33 below. Locke has 

drawn vertical lines down the page dividing it into five columns, each labelled at 

the top with a letter of the alphabet. Each column has five further subheadings, 

one for each vowel. As in his commonplace books, every entry starts with a 

keyword, or title (“Petitio,” “Motus,” “Refratio”), sorted according to its first letter 

and leading vowel. But rather than each letter-vowel combination occupying an 

entire page, in these sheets the titles are positioned horizontally in the 

appropriate columns. So the entry on “Planetae” towards the bottom of f. 19r 
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starts in the “P–a” column, since the word starts with “P” and has “a” as its 

leading vowel. “Odium” immediately below is slightly to the left, under “O–i”; 

“Principes orientis” is further to the right, under “P–i.” The publication details of 

Newton’s book are listed towards the top of the page, under the “N–e” column: 
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Locke includes a page reference with every entry, which allows his notes to be 

compared with the text on which he based them. Most commonly, Locke copies 

out after his title a direct quotation from the text. Here, for example, is his note 

on “Mare” at the foot of f. 19r, which he marks “Newton 464/500”: 

Mare. Vis centrifuga partium terrae a diurno terrae motu oriunda cum sit 

ad vim gravitatis ut I ad 291 efficit ut altitudo aquae sub aequatore 

superet ejus altitudinem sub polis mensura pedum parisiensium 85,200. 

Newton 464
510 .  

A comparison with page 464 of the first edition shows that Locke has copied out 

part of a sentence from the Corollary to Proposition 36 of Book 3 almost word 

for word. Similarly, this entry on the heat of boiling water on f. 20r is a verbatim 

transcription of a sentence from the long example after Proposition 41 of Book 

3, on pp. 498–99: 

Calor aquae ebullientis est quasi triplo major quam calor quem terra 

arida concipit ad aestivum solem ut expertus sum: & calor ferri candentis 

(si recte conjector) quasi triplo vel quadruplo major quam calor aquae 

ebullientis. Adeoque calor quem terra arida apud cometam in perihelio 

versantem ex radiis solaribus concipere posset quasi 2000 vicibus major 

quam calor ferri candentis. Newton 498
510 . 

And this note on gravity on f. 20v consists of a sentence lifted from Proposition 

4 of Book 3, supplemented with some words Locke came across sixty pages 

later, in the Corollary to Proposition 36: 

Gravitas. Corpora in regionibus nostris vi gravitatis cadendo describunt 

tempore minuti unius secondi pedes parisienses 1
215 . Newton 407

510 . vis 

centrifuga partium terrae a diurno motu terrae oriunda est ad vim 

gravitatis ut 1 ad 291 
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That Locke so often transcribed Newton’s words directly should not be taken to 

imply that he did not understand what he read. He was not mindlessly copying 

out quotations or data for the sake of filling out his notes. This is clear from his 

entry on the density of water on f. 20r, which originally read “Aquae densitas ad 

densitatem Argenti vivi est ut 1 ad 13 vel 14 circiter,” taken from the Scholium 

after Proposition 31 of Book 2 on p. 350. But Locke later edited this note, 

because twenty pages later, in the Scholium after Proposition 50, Newton gave 

a more precise measurement of “1 ad 13 2
3  circiter,” causing Locke to update his 

record. A similar level of engagement is shown in this note on f. 19r on the 

length of a one-second pendulum: 

Mensura pendulum oscillans uno minute secondo longum est digitos 

Anglicos 1
539  pes Gallicus est ad Anglicarum ut 1068 ad 1000 Newton 

370
510 . 

This is not a direct quote, but a paraphrase of the second half of page 370, 

using Newton’s vocabulary. Locke has composed a précis. He understood what 

he read, processed the details of the text, and made cross-references between 

different sections. 

 Just these few examples are enough to give a clear sense of the style of 

Locke’s notes. He read with his pen in his hand, copying out sentences and 

short passages verbatim, just as was his habit for classical works. He 

transcribed a handful of definitions, but otherwise all his notes extracted 

numerical data from Newton’s text – about the speed of sound, heat capacities, 

the relative weights of water, air, mercury and gold, the strength of gravity, the 

length of pendulums, the size of the earth, and the properties of the heavenly 

bodies. Very few of his entries don’t contain measurements. Locke reported 
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nothing of the system connecting these individual observations, which had been 

Newton’s main achievement: Locke was less interested in the physical 

principles underlying the phenomena than the phenomena themselves. 

Moreover, tracking the location of his notes through the pages of the Principia, 

suggests an even stronger conclusion. Because earlier entries are higher up the 

page, the order in which Locke made his notes can be inferred. So having first 

recorded the publication details on f. 19r (“Newton”), it is probable that he next 

copied out some of the Definitions (f. 19v, and f. 20v under “Gravitas”), and then 

sections from Corollary 3 to Law 3 on p. 16 (“Motus,” f. 19r). But Locke then 

made no more notes from Book 1 until shortly before the end, when he reached 

the Scholium after Proposition 96 (“Refratio,” f. 19r; “Lux,” f. 20v). It is notable 

that these are just about the only pages in Book 1 which do not look densely 

mathematical to a casual observer: it is plausible that Locke skipped over the 

geometrical proofs, stopping only to read the parts he thought he might 

understand. Book 2 is also full of forbidding geometrical demonstrations, but 

there are a few non-mathematical parts in Section 8, and these are exactly the 

pages from which Locke extracts notes (“Pes Parisiensis,” f. 19r; “Pondera 

specifica,” f. 19r; “Mensura pendulum,” f. 19r; “Sonus,” f. 19v; “Aquae densitas,” 

f. 20r). And when he reaches the start of Book 3, which contains almost no 

mathematics, the frequency of his notes sharply increases. The location and 

order of his notes is consistent with Locke leafing through every page of the 

book from the beginning, passing over everything that looked like a 

mathematical proof, and reading everything else. 

 The same patterns can be seen in the notes from his second and third 

readings. Those from 1688, on which his review in the Bibliothèque Universelle 
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were based, comprise two sheets at MS Locke c. 31, 99–100. The notes on 

Books 1 and 2 largely constitute a list of Newton’s section headings copied out 

verbatim (with the exception of Sections 12 and 14 of Book 1, which are 

composed of transcribed portions of the text). Because it contains more non-

mathematical content, Locke’s notes for Book 3 are much fuller: he extracts a 

series of short, individual quotations and facts from the text, just as he did in his 

first reading. Most of it consists of astronomical data, such as the size of the 

earth, the distances between the planets, and the relative strength of the heat 

from the sun. However, this fragmentary style should again not be taken as an 

indication that Locke did not understand what he read. This note about comets 

on f. 100v appears at first glance to be a transcription, but Locke has made it by 

stitching together four separate quotations on the same theme, spread across 

the last thirty pages of the book: 

Cometae sunt Luna superiores & in regione planetarum versantur. 

Splendent luce solis a se reflexae. Genus planetarum sunt motu 

perpetuo in orbem redentes. corpora eorum sunt solida compacta fixa ac 

durabilia. 

Comets are higher than the moon and move in the planetary regions. 

They shine by the light of the sun reflected from them. They are a kind of 

planet, revolving in orbit with a continual motion. Their bodies are solid, 

compact, fixed and durable. 

The first sentence is the heading of Lemma 4 on p. 474; the second is the 

statement of Corollary 1 to this lemma, on p. 479; the third is taken from the text 

of Corollary 3, on the following page; and the fourth is extracted from deep 

within the long example that follows Proposition 41, on p. 498. There is no way 

Locke could have constructed this note without reading all thirty pages, 
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following Newton’s overall argument, and selecting representative extracts. 

Locke understood what he read, processed its meaning, and was able to make 

cross-references within the text. 

 The review in the Bibliothèque Universelle that (as discussed in Chapter 1) 

so puzzled Axtell and Cohen is now easily explained: it is largely a direct 

translation of these Latin notes into French. In some instances Locke has 

switched their order, but almost every paragraph of the review is a direct 

translation of an entry in the notes. Locke must have made the notes for the 

express purpose of writing the review, because at the bottom of f. 99v he left a 

note reminding himself to insert two of Newton’s tables about planetary 

distances and the satellites of Jupiter, which do indeed appear on pages 443, 

444 and 445 of the Bibliothèque. However, although the Latin and French texts 

are very similar, they are not quite identical: Locke made a handful of small 

changes in the process of composing his review, and also inserted a long 

section about Cartesian vortices that is almost a direct translation of the 

Scholium at the end of Section 9. 

 The notes Locke made on the occasion of his 1691 reading follow the same 

routine. They are contained in MS Locke d. 9, which is a commonplace book of 

the type described by Yeo. The entries are structured according to his New 

Method outlined above, and so his notes on the Principia are scattered 

throughout the book. Locke records the publication details under the title 

“Newton,” for example, next to an entry on “Nephritis”: I have counted twenty 

pages which contain entries from the Principia. On each of the three occasions 

that he read the Principia, then, Locke did so exactly in the manner of a 

humanist scholar studying a classical text. He extracted short quotations and 
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generally copied them out verbatim. He occasionally combined separate 

sentences in the text to produce what appears to be a precis, which shows that 

he must have understood what he read. He bypassed the mathematical 

sections entirely, but seems to have paid close attention to everything else: the 

location of his notes is consistent with him having leafed through every page of 

the book in order, reading everything that looked non-mathematical. He 

extracted short, self-contained quotations as he went, most of which contained 

numerical data and experimental results. He thus processed Newton’s text in an 

identical manner to that he adopted for the thousands of other books he read in 

his life. 

 There are three final points to note. First, although on each of the three 

readings he tended to focus on the same non-mathematical sections, his notes 

were different each time. That is, although he read the same pages, he chose to 

extract different quotations and record different data. There is some overlap 

between the three sets of notes, but their contents are sufficiently different to 

conclude that he made each set from scratch. Locke made three entirely 

independent, complete readings of the whole work. Second, there is a causal 

link between how Locke read and what he read. The structure of his notes 

necessitated dividing knowledge into small, discrete chunks, and I suggest that 

this process of extracting a series of disconnected items of information was 

incompatible with processing a large, interconnected, coherent scheme such as 

Newton’s. Locke’s commonplacing technique forced him to sift through the text 

for individual items of data and read the Principia in the manner of a Baconian 

natural historian, and it would have been impossible for Locke to process any of 

the geometrical proofs within his system. The atomising tendency of his note-



167 
 

taking was incompatible with the deductive structure of extended mathematical 

proofs. Even if he had had the technical capability, if Locke had wanted to verify 

any of Newton’s demonstrations, he would have had to do so outside the pages 

of his commonplaces. He would have had to work through the proofs on 

separate pieces of paper, and it would have made no sense at all to transcribe 

short excerpts from the derivations under summary headings. He would have 

been obliged temporarily to suspend his note-taking, and process the text in an 

entirely unfamiliar way, quite different from the routine he adopted for all the 

other thousands of books he read in his life. This means that if Yeo’s broader 

thesis about the importance of notebooks to an influential group within the early 

Royal Society is right, and if it is true that “although notebooks were central to 

the bookish culture attacked by some apologists for that new institution, they 

played a part in the making of early modern science”146 then Locke’s notes 

could be revealing of the way in which the early Royal Society handled 

mathematical knowledge. As a technology, commonplace books were incapable 

of processing mathematical proofs. If Locke’s inability to verify Newton’s 

demonstrations is to be characterised as a deficiency – as it is in all of the 

existing secondary literature – then it was not just a personal weakness, but a 

failure of the mode of reading with which he engaged with the text. 

 And third, the foregoing analysis has significant implications for historians of 

Locke. The asymmetry within the secondary literature on the topic of Locke’s 

reading of the Principia has already been acknowledged: Newton scholars 

characterise his attempt as a failure owing to his lack of mathematical expertise, 

while historians of Locke identify his contact with the book as a central event in 

 

146 Yeo, Notebooks, English Virtuosi, and Early Modern Science, 36. 
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his intellectual development. However, the secondary literature examining the 

relationship between Locke and Newton is based on Axtell’s papers from the 

late 1960s, in which he maintained that Locke’s reading of the Principia was the 

proximate cause of his renunciation of Cartesianism. Axtell specifically identified 

the two pages about vortices in the review in the Bibliothèque Universelle as his 

moment of conversion: this argument may need reconsidering in the light of the 

knowledge that these lines are almost direct translation of the Scholium at the 

end of Section 9, and do not appear either in the Latin notes on which he based 

his review, or in the record of his first and third readings. If Newton’s destruction 

of Cartesian vortices was so significant to Locke, its relative absence from all 

three sets of reading notes needs to be explained. 147  There are further 

consequences for more recent studies of Locke’s view on natural philosophy 

such as that by Peter Anstey, which maintains that Locke altered his views in 

the 1690s in response to the Principia.148 Following Axtell, Anstey places great 

significance on the passage in the review about Cartesian vortices. More 

importantly, Anstey’s argument that Locke viewed the Principia as a paradigm 

of demonstrative reasoning is not easy to reconcile with the primary evidence 

that shows that Locke did not engage with Newton’s proofs. Because he did not 

scrutinise the demonstrations, Locke does not acknowledge that the 

mathematical methodology of the Principia is more complicated than the 

imagined ideal of Euclidean geometry on which his scheme is based. Locke’s 

epistemology therefore does not account for any of the novel methodologies on 

which Newton’s achievement depended; and neither does Anstey’s analysis, 

 

147 Axtell, “Locke’s Review of the Principia,” 156. 
148 Anstey, John Locke and Natural Philosophy. 
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even as he asserts the importance of the Principia in his intellectual 

development. 

2.3.3 Leibniz’s Excerpts 

Finally, the non-mathematical readings of the Principia recorded in Leibniz’s 

Excerpts may be considered. I have purposefully left this section until the end of 

the chapter in order to draw attention to the important fact that Leibniz 

processed the majority of Newton’s book in a very similar way to Locke: his two 

sets of Excerpts largely comprise transcriptions or paraphrases of passages in 

Newton’s text, and are only very occasionally supplemented by his own 

commentary. The general style of these notes is clear even from a cursory 

examination. He begins the first set by copying out Newton’s eight Definitions 

and three Laws, before recording Lemmas 9–11 and Proposition 6, along with a 

few of his own notes. He then transcribes a handful of items from the second 

half of Book 2, followed by a larger quantity of material from Book 3. Like Locke, 

he either transcribes Newton directly, or composes a précis using the 

vocabulary in the text. And like Locke, he often records numerical data, such as 

pendulum lengths, the speed of sound, and the dimensions of planetary orbits. 

Unlike Locke, however, he also copies out statements of mathematical results, 

generally without their proofs. The second set of Excerpts is very similar, and 

contains large numbers of verbatim transcriptions and paraphrases, along with 

occasional commentary. He again writes out the Definitions and Laws, and 

then, having skipped Section 1, reads through most of the rest of Book 1 and 

the start of Book 2 in sequential order. There is evidence of detailed 

engagement with the proofs in Section 11, but otherwise he just copies out 

extracts from passages of interest. 
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 In his Marginalia and Notes – as will be discussed in Chapters 4 and 5 – 

Leibniz worked through the detail of some of the orbit proofs in Sections 2 and 

3, and the method of first and last ratios in Section 1. In other words, Leibniz 

undertook both mathematical and non-mathematical readings of the text, just as 

Fatio and Halley did. Naturally, it was his close study of the theorems in the 

opening passages that had the greatest impact on his own ideas about 

planetary motion, as Bertoloni Meli has demonstrated. Nevertheless, this should 

not disguise the fact that Leibniz read through almost everything else in the 

book – so far as can be inferred from the extant primary sources – without 

verifying the proofs. His critical engagement with the demonstrations of the 

Principia was mostly limited to the opening fifty pages. While it is too strong to 

claim that Leibniz also “digested the physics without the mathematics,” it does 

seem that he didn’t check most of it. That is, Leibniz read the majority of the 

Principia in a very similar way to Locke: the narrative in the secondary literature 

that their readings were diametrically opposite in character owing to the 

disparity of their mathematical expertise is not sustained by the primary 

evidence.  
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3. Deconstructing the difficulty of the Principia 

3.1 Introduction 

The material presented in the previous chapter will now permit a critical 

examination of the pervasive trope that the Principia was self-evidently difficult 

to understand. As stated in my Introduction, I do not deny that the book was 

indeed difficult: my aim here is merely to deconstruct what this label means. 

Rather than impugning the competence of Newton’s peers, I start from the 

assumption that the difficulties contemporaries had understanding the Principia 

were a function of the characteristics of the text. The book was hard to 

understand for reasons of which its author was the cause. Newton did not have 

to write a book that was difficult to understand, because not all books of 

mathematics are difficult to understand, but as a matter of historical contingency 

the Principia was. My aim here is to provide a detailed taxonomy of the 

obstacles Newton’s readers encountered when processing his proofs, and to 

establish those qualities of the book that contributed to its impenetrability. In 

other words, I wish to identify the characteristics of the Principia that made it so 

ineffective at persuading its readers of the validity of the arguments it contained. 

 The evidence presented in the previous chapter showed that to verify the 

proofs in the text readers were required to pick up a pen and actively 

reconstruct them. Any difficulties in understanding therefore arose from 

obstacles to this process: Newton’s book became impenetrable as and when 

his arguments became impossible to reconstruct independently from the 

information printed on the page. The reading notes of Newton’s peers contain 

many specific examples of such occurrences, as will be demonstrated in this 
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chapter. I will show that Newton’s verbose prose was often not easy to 

reconstruct in symbolic form; that his text used idiosyncratic terminology with 

which its readers were unfamiliar; that its explanations were frequently unclear; 

and that it was not uncommon for readers to perceive large gaps in the proofs. 

There is also some evidence that the intimidating length of the book actively 

discouraged readers from scrutinising individual proofs, as did its unclear logical 

structure. The chapter will close with detailed analyses of two case studies 

exemplifying many of these tendencies: Flamsteed’s failure to understand 

Corollary 2 to Law 3, which led him to give up on his initial aim of reading the 

opening sections all the way through, and the proof of Proposition 9 of Book 1, 

which both Huygens and Gregory thought they understood, when they did not. I 

also wish to emphasise that in this chapter, so far as possible, I have only 

drawn examples from proofs based on established geometrical practices. I have 

postponed discussion of Newton’s innovative limit methods until the next 

chapter, where I will examine readers’ responses to his method of first and last 

ratios. My present aim is to show that, separately from the unfamiliarity of its 

radical mathematical methodology, Newton wrote the book in such a way that it 

contained many obstacles to its comprehension. 

 In categorising these obstacles, Gilbert Clerke is a useful figure to consider. 

I suggested in Chapter 1 that, to the extent that he is mentioned at all in the 

secondary literature at all, Clerke is held in low regard. He is viewed by 

historians as an insignificant hobbyist who had the audacity to try to read 

Newton’s book. But it will become apparent over the course of this chapter that 

Clerke’s reading experience was more representative of his illustrious peers’ 
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than has been recognised. The difficulties he had with the text were shared by 

all its better-known readers. Clerke summarised his complaints as follows: 

so contracting the ratios by changing the Quad’s, & getting them in rank 

& file one under another, I easily saw how I was to multiply & divide… 

and indeed you should have sett them so, for your booke is hard enough, 

make it as easie as you can: so there should have been two prickd lines 

from the center to the tangents in prop. 5. p. 44 & you should have had 

marginal references to Eucl. & Apoll: & been prodigal or per this & per 

that, of your nempe’s & quoniam’s & enlargd your scholium’s; but you 

masters doe not consider the infirmities of your readers, except you 

intended to write only to professours or intended to have your books lie, 

moulding in libraries or other men to gett the credit of your inventions149 

In these words of November 1687 Clerke was accurately prophesying the 

obstacles many readers would encounter with Newton’s book over the coming 

years. Flamsteed was also confused by the ratios not being presented “in rank 

and file one under another.” Fatio, like Clerke, found himself frustrated by 

incomplete diagrams. Gregory, too, sought missing references to Euclid and 

Apollonius. Huygens and Leibniz would likewise have benefited from enlarged 

scholiums to explain the proofs. And the fact that, as was demonstrated in 

Chapter 1, so much of the book was so regularly left unread vindicates his 

warning that the book was destined to “lie moulding in libraries.” Clerke 

unknowingly provided a helpful summary of the ways in which Newton’s text 

would not be understood by his contemporaries. His evidence shows that the 

difficulties readers experienced with the Principia owed as much to the 

characteristics of Newton’s book as they did to their own competence. 

 

149 Clerke to Newton, 7 Nov. 1687, NC, 2:492. 
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3.2 Misprints and mistakes 

I begin by briefly acknowledging one potential source of difficulty which in 

general did not obstruct understanding of the text: there were dozens of 

misprints and typographical slips in the first edition, but these overwhelmingly 

did not impede readers’ attempts to verify the arguments. Newton’s peers 

generally recognised misprints for what they were, and corrected accordingly. 

Hall referred in his famous article to “the vast number of minor slips, some due 

to the author's, some to the printer's carelessness,”150 and many of these are 

recorded on the pages of Newton’s annotated and interleaved copies, as well 

as in Fatio’s reading notes. In Lemma 2, for example, “curva AcE” should have 

read “curva acE”; the Scholium after Proposition 4 refers to “arcum BC” when it 

should say “arcum BD”; and the text of Proposition 37 mislabels “GA” as “CA”. 

The most conspicuous example is the frequent omission of the word “reciproce” 

from many of the orbital force theorems in Sections 2 and 3, including 

Propositions 4, 7, 9, 10 and 12. Yet none of these instances led to 

misunderstandings for Gregory, Huygens, Fatio, Flamsteed or Leibniz, all of 

whom easily corrected the text when as they were working through the proofs, 

as the primary sources show. Although there were many misprints in the book, 

as a rule they did not cause difficulties for its readers. 

 That said, not every example is straightforward. Hall was not quite right to 

say that these slips “were such as would cause little difficulty to readers skilled 

in both Latin and mathematics.”151 In clear-cut instances when there was an 

obvious correction to be made, Newton’s readers usually did so. But when an 

 

150 Hall, “Correcting the Principia,” 293. 
151 Ibid., 293. 
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unconfident reader working through a poorly explained proof had cause to 

doubt whether the printed text was perfectly accurate, the situation was more 

complicated. When examining Flamsteed’s reading of Corollary 2 to Law 3 at 

the end of this chapter, I will show that, soon after making a legitimate 

correction to the text, he mistakenly imagined a second error that derailed his 

attempt to verify the proof. He was not certain that the printed text was correct, 

and that added to his difficulty in understanding the passage. So while it is 

generally the case that readers successfully navigated errors, there were 

exceptions: in some instances the quantity of misprints throughout the book 

added to the burden of readers trying to understand it. 

3.3 Length and structure 

The intimidating length of Newton’s book is taken for granted by the secondary 

literature, but the impact this had on its reception, and the extent to which the 

length of the text is distinct from its difficulty, is never directly addressed. I 

demonstrated in Chapter 1 that the length of the book altered the way in which 

readers engaged with it, because it was so time-consuming to carry out a 

complete, cover-to-cover examination of all of the arguments it contained. So 

far as we can tell from the documentary evidence, only Gregory could 

meaningfully claim to have done this, and it took him almost seven years. Fatio 

appears to have set out to do the same, but did not finish; so too did Leibniz, 

although he read much of it without verifying the proofs, and also stopped 

before the end. Locke, of course, read the book in full three times, but did not 

examine the mathematics. It is likely that Halley cast his eyes over every page, 

although the extent to which he scrutinised the proofs is unclear. Readers such 
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as Flamsteed and Clerke appear to have loosely followed the advice Newton 

later gave to Bentley that he read the first sixty pages and then move on to 

Book 3, but it is important to observe that even those individuals who carried out 

this instruction carefully and completely (which Flamsteed and Clerke appear 

not to have done) would still not have come across any of Newton’s arguments 

concerning universal gravitation, for example.152 

 Another practical effect of the Principia’s oppressive length was that it made 

it more difficult to verify its mathematical arguments. Suppose, for instance, that 

a reader wished to subject to critical examination Newton’s proof of the inverse 

square law for elliptical orbits. One thing he could do is start at page 1 and keep 

reading carefully until he came across the result. But Newton doesn’t announce 

at the beginning on which page the proof of the inverse square law concludes, 

so unless the reader has received external advice he will embark on this study 

not knowing whether he will reach his destination in five pages or five hundred. 

A more pragmatic approach – the one which his marginalia suggest determined 

the initial investigations of Leibniz, for example – is to start by flicking through 

the pages to find the conclusion of the proof in Proposition 11 on page 50, 

before working backwards to check the supporting results. Proposition 11 cites 

Proposition 6, Lemma 8 and Lemma 12; these in turn invoke Law 2 and Lemma 

10; and these lead back further to the preceding Lemmas and Laws. So the 

reader can either begin working backwards in order, or alternatively stop at 

some point and choose to take the remaining results on trust. This latter 

appears to have been the approach of Flamsteed, who, having been directed 

 

152 NC, 3:155–6. This advice is repeated at the start of Book 3. 
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back to Lemma 11 from Newton’s proofs about centripetal forces, examined this 

result only cursorily and then took the remaining steps for granted. Huygens 

provides a yet more instructive example. As was shown in Chapter 1, he 

appears to have made no attempt to work back along the chain of deduction, 

and when he examined the orbital force theorems in Section 2, there is no 

evidence that he went back to verify any of the results in Section 1 on which 

they depended. The note he left when reading Proposition 10 is particularly 

revealing. In Corollary 2 to this result, Newton makes a claim about the 

velocities of bodies at the end points of elliptical orbits, but does not justify the 

claim in the text, and does not supply a proof anywhere in the preceding pages. 

Both Gregory and Fatio, when they came across this unsubstantiated assertion, 

satisfied themselves of its truth by generating their own short demonstrations. 

Yet Huygens merely noted “Il devoit avoir montré auparavant quelle raison il y 

doit avoir entre les celeritez du corps à l'endroit ou aboutissent les grands 

diametres des Ellipses,” revealing both his inclination to accept a proof from 

Newton without examining it, and his reluctance to check that the author had 

indeed produced it. This short note is betraying a remarkable fact about the 

reception of the mathematical arguments of Principia: it shows that Huygens 

was willing to take on trust the validity of a proof that was not even there.153 

 These difficulties were compounded by the fact that Newton provided the 

reader with no extra material to help him navigate the logical structure of the 

text. It might just about have been possible to find Proposition 11 and then work 

backwards through all the supporting proofs, but without starting at the 

beginning and working through every page sequentially, it would have been 

 

153 RS, MS210, 4v; OC, 10:150; CH, HUG 7, 12r (=OC, 21:417). 
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impracticable to locate and then verify an individual result hidden in the middle 

of the book. Fatio suggested some improvements to facilitate exactly this: 

In summa quaque pagina adscribi deberet tum liber, tum numerus 

propositionum et rerum de quibus agitur summum caput. Variae 

praeterea construendae essent tabulae, una quae seriem propositionum 

contineret, altera quae esset materiarum, tertia quae etiam eadem esse 

posset cum prima, ostenderet ex quibus propositionibus quaevis pendeat 

propositio.154 

At the top of each page there should be written first the book, then the 

number of the propositions, and a heading above of the things about 

which it is concerned. Moreover, various tables should be constructed, 

one of which should comprise the order of the propositions, another of 

which is of the subject matters, and a third of which yet could be the 

same as the first, and would show on which propositions any proposition 

depends. 

In his own copy Fatio did indeed label each page in this way, and I showed in 

Chapter 1 that both Huygens and Leibniz sought out results on particular topics, 

so would also have benefited from such headings. And the final table Fatio 

suggests would have made it more viable to locate and scrutinise the argument 

in support of any individual result. His suggestion that the reader be told “on 

which propositions any proposition depends” would have enabled readers to 

navigate towards isolated results without reading the whole book. As it stood 

this was prohibitively difficult, and I have found no evidence to suggest that it 

was ever even attempted. 

 

154 OC, 10:151. The editors of the OC have the second sentence as “… una quae seriem 
proportionum contineret”: I have not seen the original manuscript, but I suggest this is a 
mistranscription. 
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 In other words, irrespective of its contents and style, the length and structure 

of Newton’s book was in and of itself an obstacle for its readers. If it had been 

shorter or more clearly organised – if Halley had published the De Motu rather 

than the Principia, say – then more readers would have been able to examine 

its arguments more closely. But the weight of the book in his hands announced 

to almost every potential reader that a complete study was going to be 

impossible, and the opaque structure meant that a careful scrutiny of any 

individual result was going to be very difficult. Most readers had no choice but to 

take many of Newton’s arguments on trust. The length of the Principia made it 

harder to challenge its contents: the large number of pages it contained had the 

practical effect of increasing the authority of the book. 

3.4 Unfamiliar terminology 

A much smaller obstacle to Newton’s readers was some of the mathematical 

terminology he used in his proofs. One of the themes of Clerke’s letters, for 

example, was Newton’s vocabulary when manipulating ratios. In the first edition, 

many of the proofs used the term “sesquiplicata”, a neologism coined by 

Newton and intended to be equivalent to the word “sesquialtera”, which in 

modern terms is equivalent to raising to the power of 3/2.155  Clerke erroneously 

inferred from his study of Lemma 11 that it must represent raising to the power 

of 3, but this interpretation failed him in Proposition 15, so he sought clarification 

from the author. Clerke also argued that instead of the word “dimidiata” to 

represent the square root of a quantity (Clerke thought it more commonly 

denoted the process of halving), Newton should instead have used 

 

155 See Sylla, “Compounding ratios,” 14. 
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“subduplicata,” which is “a more proper, more usual & better knowne word”. 

Newton must have been sympathetic to Clerke’s misgivings, because he 

changed the text in his annotated and interleaved copies, appending the 

sentence “Rationem vero sesquiplicatam voco quae ex triplicata subduplicata 

componitur, quamque alias sesquialteram dicunt” to the proof of Lemma 11, 

and replacing every occurrence of the word “dimidiata” in the book with 

“subduplicata.” And Clerke was not the only reader unfamiliar with the 

terminology Newton used for exponents, as can be seen from responses to 

Proposition 7 of Book 1, in which Newton deployed “quadrato-cubus” to stand 

for what the modern reader would call the fifth power: Fatio proposed that this 

be replaced with “quinta potestas”, and Gregory wrote a note explaining that 

“per SP q[uadatro-]c[ubus] intelligetur quinta potestas ipsius SP sive 5SP  ut ex 

ejus generatione patet.”156 

 Two further aspects of Newton’s terminology caused Fatio disquiet. One 

concerned the vocabulary used to describe angles. Fatio struggled greatly with 

the proof of Lemma 26 of Book 1, as can be seen from his uncharacteristically 

messy marginal notes, and it cannot have helped that in the first edition Newton 

denoted by the “complementum” of an angle A both  360 A  and  180 A , 

depending on the context. Fatio suggested that to avoid confusion he drop this 

term and instead use “supplementum” for  180 A , as a modern reader 

would.157 Newton instead re-wrote the proof using the phrase “complementum 

ad duos rectos” for this quantity (“complementary to two right angles”), in the 

same way that he had in Proposition 17. And the other clarification Fatio sought 

 

156 Clerke to Newton, 3 Oct. and 7 Nov. 1687, NC, 3:488–96; OC, 10:149; RS, MS210, 4r. 
157 Bodleian, Arch. A d.37, 97. 
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was to the vocabulary used to describe conic sections. For what the modern 

reader would describe as the “major axis” of an ellipse, the first edition used 

either “axis transversus” (when specifically describing an ellipse) or “latus 

transversum” (the general term used by Apollonius for the line joining the 

vertices of any conic section). By March 1690 Newton had already relabelled 

the “axis transversus” of the ellipse in Proposition 15 as its “axis major” in his 

interleaved copy, and as its “axis principalis” in his annotated copy (where he 

had also added the sentence “Axes vero sectionum conicarum principales 

appello in quibus earum umbilici jacent”). 158  Fatio subsequently proposed 

replacing the phrase “latus transversum” in each of the three places he found it 

in the text: with “diameter sive latus transversum” in Lemma 19 (which result 

concerns conic sections generally), “latus transversum sive axis major” in 

Proposition 44 of Book 1 (which concerns an ellipse), and to “axis major” in 

Proposition 42 of Book 3 (which concerns a parabola, wherefore Newton did not 

make the edit). 159  In other words, both Newton and Fatio agreed that the 

original vocabulary of “axis transversus” and “latus transversum” was sufficiently 

unfamiliar that it could usefully be clarified. 

 In her analysis of Newton’s exchange with Clerke, Sylla argues that their 

disagreement over terminology signifies the Principia’s status as “a work 

belonging to the transitional period between the medieval and modern treatment 

of ratios.” According to this reading, Newton’s old-fashioned manner of 

compounding ratios was shared with late-mediaeval texts by Bradwardine and 

Oresme, and the letters between Newton and Clerke “echo noisy struggles 

 

158 OC, 10:153. 
159 Bodleian, Arch. A d.37, 97. Bodleian Arch. A d.37, 75, 136, 510. Newton altered the first two 
as Fatio suggested, but not the third. 
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within seventeenth-century mathematics, in the process of which much of the 

distinctively medieval science of ratios was, along with some inferior 

seventeenth-century conceptions of ratio, left behind.”160 Seen in the context of 

other readers’ responses to the Principia’s terminology, I think this claim is 

overstated. Newton’s unfamiliar vocabulary wasn’t restricted to ratios, and there 

isn’t a clear pattern its provenance. The simplest explanation is probably the 

correct one, which is that the experience of his readers was not at the front of 

Newton’s mind when he composed the text. 

3.5 Newton’s verbal style 

I demonstrated in Chapter 2 that a necessary component of the act of 

processing the mathematical sections of the Principia was translating Newton’s 

prose expressions into equations involving ratios. A large proportion of the 

primary evidence of readings of the Principia – most of Gregory’s Notae, for 

example, or Flamsteed’s marginalia – consists of strings of equations that are 

symbolic reformulations of sentences in the text. This task was often 

successfully completed, but on other occasions it constituted a significant 

hurdle. Here, for example, is how the most famous proof in the book, the 

inverse square law of Proposition 11, is set out on the page: 

 

 

160 Sylla, “Compounding ratios,” 12. 
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I demonstrated in Chapter 2 how Flamsteed and Gregory successfully 

translated these sentences into equations, neatly set out underneath each other 

to make their manipulation easier. In his letters to Newton, Clerke bemoaned 

this process, and the extra difficulty he found in “contracting the ratios by 

changing the Quad’s, & getting them in rank & file one under another”. But by 

telling Newton that “you should have sett them so, for your book is hard enough, 

make it as easie as you can” Clerke only expressed the frustration that 

Flamsteed and Gregory may well also have felt.161 

 Clerke also had difficulty with these lines, from Proposition 17 of Book 1: 

 

 

161 Clerke to Newton, 7 Nov. 1687, NC, 2:492. 
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The proof relates to this construction on an ellipse, although a detailed 

understanding will not be needed to get the gist of Clerke’s complaint: 

 

 

 

If the terms are set out “in rank and file one under another”, this passage is 

easy to follow. Newton begins by applying Proposition 13 of Book 2 of the 

Elements to triangle PHS (equivalent to the modern cosine rule), and then 

proceeds to use Pythagoras’ Theorem and the basic properties of ellipses 

(where L is the latus rectum, equal to 22BC CD ): 
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Adding       2 22KP PH L SP PH SP PH  to each side gives 

 

      2 2L SP PH SP PH KP PH  

 

which produces the ratio 

 

     : 2 2 :SP PH PH SP KP L  

 

In this form, it is simple enough to follow. But set out on the page as it is in the 

first edition, Clerke had to ask Newton for help: 

in propos: 17. p. 59. lin: 15. where you say, addantur utrobique you adde 

2KPH. but on one side, &  L SP PH , but once on the one side & twice 

on the other; upon wch your concludeing analogism doth depend. & if the 

equation should be rightly reduced it would be 

  2 2 2 2SPH KPH SPH KPH .162 

It is clear to see what Clerke’s misunderstanding here is: when Newton instructs 

the reader to make the addition half-way through, Clerke adds it not to the first 

 

162 Clerke to Newton, 26 Sep. 1687, NC, 2:485–6. 
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and last expressions in the chain as intended, but to the preceding two. That is, 

he adds       2 22KP PH L SP PH SP PH  to both sides of 

 

               
2 2 22SP PH L SP PH SP SP PH PH L SP PH  

 

Since the quantities on either side here are identically equal, it is not surprising 

that he ends up with another identical equality 

 

      2 2 2 2SP PH KP PH SP PH KP PH  

 

as he states in his letter. Newton explained the misunderstanding in his reply, 

and Clerke retorted politely that it would have helped if Newton had “hooked in 

the intermediate equations with Lunula’s” and had “written better to be 

understood.”163 

 However, Clerke was not the only reader who had this difficulty. Here, for 

example, are the annotations Fatio made in his copy to the statement of 

Corollary 1 to Proposition 44 of Book 1:164 

 

 

163 Clerke to Newton, 3 Oct. 1687, NC 2:488–90. 
164 Bodleian, Arch. A d.37, 135. 
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In their translation of this sentence, Cohen and Whitman accidentally did a very 

good job of conveying the intractability of the original: 

Corollary 1. Hence the difference of the forces in the places P and p or K 

and k is to the force by which a body would be able to revolve with 

circular motion from R to K in the same time in which body P in an 

immobile orbit describes the arc PK… as mk ms  to 2rk , that is, if the 

given quantities F and G are taken in the ratio to each other that the 

angle VCP has to the angle VCp, as 2 2G F  to 2F .165 

An understanding of the construction to which this passage refers is not needed 

to recognise that, even in English, this is an extremely difficult sentence to 

parse. It takes a great deal of effort to understand which ratios are being 

claimed by Newton to equal to which. Fatio only manages it by annotating the 

text in a number of ways. He uses vertical bars to break the sentence down into 

its component phrases, with double ( ‖ ) and single ( | ) bars showing which 

terms correspond. He also introduces algebraic notation to represent some of 

the verbal expressions, inserting “mn” for “differentia virium in locis P & p vel K 

& k” and “pr” for “vim qua corpus motu circulari revolvi posset.” And he 

 

165 The ellipsis in the middle of the sentence stands for a phrase added to the second and third 
edition, on which Cohen and Whitman’s translation is based. 
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separates off “si capiantur… ad angulum VCp” from the main sentence with 

parentheses – that is, exactly as Clerke suggested, he “hooks in the 

intermediate equations with lunulas.” Fatio must have discussed these 

annotations with Newton, since in his annotated copy Newton made some small 

clarifications to this passage. But the vertical bars cannot have been an editorial 

suggestion: Fatio needed to use them to understand the text. And neither are 

these markings a one-off. They appear again in Corollary 2: 166 

 

 

 

And here is the same thing three pages later, in Example 1 after Proposition 

45:167 

 

 

166 Bodleian, Arch. A d.37, 135. 
167 Bodleian, Arch. A d.37, 138. 
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In both cases Fatio is again using the bars to separate long sentences into their 

component phrases, so that he can see how to form the ratios. The single and 

double bars enable him to see which terms correspond: in the above example, 

he is clarifying the statement that the ratio of   2 2 2RG RF TF  to  3T will 

become the same as the ratio of   2F X  to    2 2 33 3T X TX X , or as the 

ratio of   2F  to    2 23 3T TX X . 

 None of these examples involves mathematical techniques that were at the 

time innovative, and in each case the ratios being formed are extremely simple. 

Yet it is clear that the verbal style in which Newton expressed his mathematics 

formed a significant obstacle to his readers’ understanding. The form in which 

the arguments in the Principia were presented hindered their comprehension. 

Clerke was not able to overcome this difficulty without guidance from the author. 

In Fatio’s case, he could only understand Newton’s proofs by making additional 

annotations to render the text comprehensible. In both cases the printed text 

was ineffective at persuading its readers. 
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3.6 Unclear explanations 

A large number of passages in the Principia were difficult to understand owing 

to the lack of clarity of Newton’s explanations. Strong evidence for this lies in 

the editorial notes from Halley and Fatio, which demonstrate the ways in which 

Newton’s peers wanted his proofs to be more clearly worded. 

 Some of these editorial suggestions comprise only very minor adjustments 

to Newton’s phrasing. In the discussion of the rotating bucket in the Scholium 

after the Definitions, for example, Halley suggested altering “defluet ipsa 

paulatim de medio” to “recedet ipsa paulatim e medio,” and “motus autem 

relativi… effectibus veris omnino vacant” to “motus autem relativi… effectibus 

veris omnino destituuntur.” When in the very next paragraph Fatio read the 

sentence “Igitur quantitates relativae non sunt eae ipsae quantitates, quarum 

nomina prae se ferunt, sed earum mensurae illae sensibiles… quibus vulgus 

loco mensuratarum utitur” he noted “pro mensuratarum legi velim quantitatum 

mensuratarum.” Newton made the change in all three cases, and Halley’s 

feedback sheets and Fatio’s notes and marginalia contain dozens of similar 

examples. However, it is difficult to argue that such instances increase the 

clarity of the text. Halley and Fatio in these cases are not making Newton’s text 

easier to understand, so much as rewriting the passage as they themselves 

would have phrased it. In this sense, these edits are perhaps most helpfully 

seen in the context of the themes of Chapter 2, as further examples of readers 

recreating Newton’s proofs in their own terms during the act of understanding 

them.168 

 

168 CUL, MS Add. 3965, 94r; OC, 10:147. 
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 Many of Fatio and Halley’s other suggestions, however, are much more 

obviously motivated by a desire to clarify a proof, or at least to sharpen its 

articulation. In the Corollary to Lemma 27, for example, Fatio adds the sentence 

“Nam ex constructione patet lineam BL eadem ratione secari in D et R qua FI 

secatur in G et H” to help explain how the ratios correspond to each other from 

the diagram in the demonstration. Halley likewise adjusts Proposition 22 to 

make the construction easier to understand, changing the word order to 

“Namque ob proportionales CD, CP, linea AB communis est utriusque figurae 

RPB, DEB diamter. Bisecetur eadem in O…”, in order to clarify that the line AB 

is the object that Newton means to be bisected. And in the discussion of what 

the modern reader would call the conservation of momentum in the Scholium 

after the Laws, Fatio sharpened “in partes contrarias mutatio motus erat corpori 

utriq; illata” (“a change of motion was brought about in opposite directions for 

each body”) by inserting the crucial word “aequalis” (“an equal change of 

motion”). Dozens of similar examples could be adduced. In some cases these 

changes were prompted by Fatio or Halley not understanding Newton’s proof 

until they made a crucial realisation that they then felt obliged to articulate; in 

others, they merely felt that any reader looking to follow in their footsteps could 

usefully be given a little assistance.169 

 Elsewhere, Fatio and Halley clarified the logic of Newton’s arguments by 

making explicit the restrictions on which they depend. For example, Fatio 

inserts the qualification that Proposition 44 only holds in the limit (“punctorum P, 

K distantia intelligatur esse quam minima”); that Proposition 72 requires the 

density of the sphere to be given (“ac detur tum sphaerae”); and that the 

 

169 Bodleian, Arch. A d.37, 101; CUL, MS Add. 3965, 97r; OC, 10:152. 
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argument of Lemma 27 is only valid if the straight line within the oval revolves at 

a uniform rate (“uniformi cum motu”). Halley likewise insists that Corollary 2 of 

Proposition 4 in Book 2 only holds “cum velocitate data” (“when the velocity has 

been given”). Again, these amendments can either be viewed as precision fine-

tuning of the rigour of proofs, or as indications that Newton’s original 

demonstrations could only be understood when their conditions were made 

sufficiently clear.170 

 Halley and Fatio also improved a large number of diagrams that they felt 

were substandard or misleading. They urged clearer labelling for the diagrams 

in Proposition 7, Lemma 20, Proposition 41, Proposition 43, and Proposition 96 

of Book 1, as well as Proposition 9 of Book 2; and Fatio had to redraw the 

construction because the original did not match the description in Lemma 26, 

Lemma 27, Proposition 50 and Proposition 53 of Book 1, and Proposition 41 of 

Book 3.171 

 A few final examples will illustrate the further variety of ways in which 

Newton’s text was perceived to be unclear. While Halley’s editorial role seems 

to have been limited to tweaking individual sentences, Fatio appears to have 

been allowed wider scope, and was able to propose more substantial changes. 

For example, this is how Proposition 3 of Book 1 read in the first edition: 

 

Corpus omne quod, radio ad centrum corporis alterius utcunq; moti 

ducto, describit areas circa centrum illud temporibus proportionales, 

urgetur vi composita ex vi centripeta tendente ad corpus alterum & ex vi 

omni acceleratrice, qua corpus alterum urgetur. 

 

170 Bodleian, Arch. A d.37, 133, 105; OC, 10:150; CUL, MS Add. 3965, 96r 
171 Bodleian, Arch. A d.37, 76, 96, 99, 100, 128, 132, 151, 157; OC, 10:150, 151; CUL, MS Add. 
3965, 96r, 97r. 
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Nam (per Legum Corol. 6.) si vi nova, quae aequalis & contraria sit illi 

qua corpus alterum urgetur, urgeatur corpus utrumq; secundum lineas 

parallelas, perget corpus primum describere circa corpus alterum areas 

easdem ac prius: vis autem qua corpus alterum urgebatur, jam 

destruetur per vim sibi aequalem & contrariam, & propterea (per Leg. 1.) 

corpus illud alterum vel quiescet vel movebitur uniformiter in directum, & 

corpus primum, urgente differentia virium, perget areas temporibus 

proportionales circa corpus alterum describere. Tendit igitur (per Theor. 

2.) differentia virium ad corpus illud alterum ut centrum. Q.E.D. 

Every body that, by a radius drawn to the centre of a second body 

moving in any way whatever, describes about that centre areas that are 

proportional to the times is urged by a force compounded of the 

centripetal force tending toward the second body and of the whole 

accelerative force by which the second body is urged. 

For (by Corollary 6 of the Laws) if each body is urged along parallel lines 

by a new force that is equal and opposite to the force by which the 

second body is urged, the first body will continue to describe about the 

second body the same areas as before; but the force by which the 

second body was urged will now be annulled by an equal and opposite 

force, and therefore (by Law 1) that second body either will be at rest or 

will move uniformly straight forward; and the first body, urged by the 

difference of the forces, will continue to describe areas proportional to 

the times about the second body. Therefore, the difference of the forces 

tends (by Theorem 2) towards that second body as its centre. Q.E.D. 

A modern reader may well sympathise with Fatio’s view that this passage 

“obscurior esset propter frequentiorem usum vocis alterum” (“is rather obscure 

because of the very frequent use of the word alterum”). To remedy this, he 

suggested using the letters L and T for the two bodies, and inserting the 

clarifying phrases “sibimet ipsi jam relictum” and “id est urgente vi reliqua” in the 
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penultimate sentence, which is exactly what Newton did in the second 

edition.172 

 Two pages later, Fatio came across Corollary 7 of Proposition 4: 

Eadem omnia de temporibus, velocitatibus & viribus, quibus corpora 

similes figurarum quarumcunq; similium, centraq; similiter posita 

habentium, partes describunt, consequuntur ex Demonstratione 

praecedentium ad hosce casus applicata. 

In cases in which bodies describe similar parts of any figures that are 

similar and have centres similarly placed, all the same proportions with 

respect to the times, velocities, and forces follow from applying the 

foregoing demonstrations to these cases. 

His comment on this passage was simply “Coroll. pag. 42 obscurum est,” 

whereupon Newton appended further explanation.173 

 Fatio also advocated substantial rewrites to many of the results in Section 5 

and Section 9. Lemma 25, for example, derives a result that is easy to state 

symbolically, but very difficult to articulate verbally. With reference to the 

diagram below, it proves that the ratio of ME to MI is equal to the ratio of BK to 

KQ: 

 

 

172 OC, 10:148–9. 
173 OC, 10:149. 
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Newton’s wording of this result in the first edition was: 

Si parallelogrammi latera quatuor infinite producta tangant sectionem 

quamcunq; Conicam, & absincdantur ad tangentem quamvisquintam; 

sumantur autem abscissae terminatae ad angulos oppositos 

parallelogrammi: dico quod abscissa unius lateris sit ad latus illud, ut 

pars lateris contermini inter ounctum contactus & latus tertium, ad 

abscissam lateris hujus contermini. 

If the four sides of a parallelogram, infinitely produced, touch any conic 

section and are cut off at any fifth tangent; and if the cut-offs are 

assumed ended at opposite angles of the parallelogram: I say that the 

cut-off of one side [ME] is to that side [MI] as the part of the adjoining 

side between the point of contact and the third side [BK] to the cut-off of 

this adjoining side [KQ]. 

Unsurprisingly, Fatio felt the need to attempt to phrase this more clearly: 

… sumantur autem abscissae laterum duorum conterminorum, quae 

latera dicantur primum et secundum, terminatae ad angulos oppositos 

parallelogrammi: dico quod abscissa primi lateris sit ad latus illud, ut pars 
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lateris secundi inter punctum contactus & latus tertium, id est latus primo 

lateri oppositum, ad absciccam lateris hujus secondi.174 

… and if the cut-offs of two adjacent sides, which sides will be 

designated the ‘first’ and ‘second’, are assumed ended at opposite 

angles of the parallelogram: I say that the cut-off of the first side [ME] is 

to that side [MI] as the part of the second side between the point of 

contact and the third side, that is the side opposite to the first side [BK], 

to the cut-off of this second side [KQ]. 

Although his amended version was slightly different, Newton was indeed 

persuaded of the need of a rewrite. And as a final example Fatio’s adjustments 

to Lemma 21 may be cited, which were even more involved. There is not space 

to discuss them in detail here, but his marginalia show that although he did not 

challenge the validity of the result, he encouraged Newton to clarify its 

statement, tweak the labelling on the diagram, and rephrase many of its 

sentences to make it easier to follow.175 

3.7 Incomplete proofs 

It might be argued that the stylistic faults highlighted in the previous sections are 

fundamentally cosmetic, and that although they make the book harder to read, 

they do not undermine the integrity of Newton’s arguments. That cannot be said 

of the examples considered in this final section, which highlight instances of 

readers being confronted by what they perceived to be logical gaps in Newton’s 

demonstrations. In such circumstances, they were obliged either to attempt to 

fill in the missing steps themselves, seek help from the author, or resign 

themselves to incomprehension. Naturally, there are few absolute distinctions to 

 

174 Bodleian, Arch. A d.37, 91. 
175 Bodleian, Arch. A d.37, 77–9. 
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be had here. What a reader might perceive as an unexplained step in the proof, 

the author might consider to be prior knowledge he could reasonably expect. 

There is no clear-cut boundary between a reader lacking expertise and the 

author overestimating the skills of his readership. Nevertheless, I hope in this 

section to present a convincing case that Newton’s readers sometimes had 

good cause to feel frustrated by the inadequacy of the arguments on the page. 

 First, it is noteworthy that it was common for readers to buttress the proofs 

by supplying references that were missing from Newton’s text – references 

either to standard propositions from Euclid and Apollonius, or to other results 

within the Principia. I have already shown Clerke express his desire for more 

such marginal citations, to ease his understanding of the demonstrations. 

Gregory’s Notae are full of such references to standard texts, and Fatio is 

meticulously careful to ensure that the cross-references within the Principia are 

correct. What is indicated by readers’ desire to supply these references is 

harder to infer. Fatio (and possibly Gregory), may merely have been keen to be 

seen to be thorough in his editorial duties. However, references to external texts 

may also indicate that prior knowledge Newton took for granted was not shared 

by his peers. For example, a number of the proofs in Section 2 of Book 1 rely on 

Proposition 36 from Book 3 of Euclid’s Elements, but Newton nowhere makes 

this reference explicit. He appears to expect his reader to be confident applying 

the result. Gregory, however, marks the reference in his Notae every time it 

occurs. This doesn’t prove that Gregory didn’t know the result and had to refer 
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to his library for assistance, but it does suggest that it was sufficiently unfamiliar 

to be noteworthy, or that he thought that others might find it to be so.176 

 In other instances, Newton left gaps that standard works were unable to fill 

in. The primary sources present clear evidence of a handful of such cases. In 

the Scholium at the end of Section 6 of Book 1, for example, the text refers in 

passing to “the method of Dr Seth Ward” for calculating the position of planets, 

which the marginalia in his copy show that Fatio did not know about until he 

asked Newton. 177  Likewise, Halley could not see why two triangles in 

Proposition 8 of Book 1 were similar, until the author explained that the 

construction should be considered in the limit and Lemma 7 invoked. 178  I 

showed above that both Gregory and Fatio were forced in their notes to 

reconstruct the missing steps in the proof of Corollary 2 to Proposition 10 in 

Book 1, which Newton justified only cursorily.179 Huygens similarly filled in gaps 

in the demonstrations of Proposition 8 and Lemma 2 of Book 2, as did Gregory 

for the Scholium after Proposition 4 in Book 1. The details of these last 

examples will be examined in subsequent chapters. I will therefore restrict 

myself in this section to one particularly egregious instance of a gap in the 

proofs, which is revealed by the difficulties Fatio encountered when working 

through Corollary 2 of Proposition 30 and Corollary 2 of Proposition 44. 

 Of the two results, Corollary 2 of Proposition 30 is simpler to follow. 

Proposition 30 is the first result in Section 6, whose theme is “To find motions in 

given orbits.” The main proof provides a very elegant construction whereby a 

 

176 See, for examples, RS, MS210, 4r; OC, 10:151, and Bodleian Arch. A d.37, 82, 102, 411, 
486, 487, 488, 489. 
177 Bodleian Arch. A d.37, 114. 
178 CUL, MS Add. 3965, 97r. 
179 RS, MS210, 4v; OC, 10:150; CH, HUG 7, 12r (=OC, 21:417). 
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given area can be cut off from a parabola by a line radiating from the focus. 

Since under the action of a centripetal force equal areas are swept out in equal 

times, this is equivalent to being able to find the position of a body (such as a 

comet) moving along a parabolic trajectory at a given time. Here is the diagram 

Newton supplies: 

 

 

 

S is the focus and A is the principal vertex; the point O, which is used in the 

finer details of the proof, can be safely ignored in everything that follows. Given 

any parabola (that is, with S and A fixed) Newton’s aim is to construct a line SP 

such that the curvilinear area APS is equal to a given quantity. He achieves this 

as follows. Call the area to be cut off 4AS M , where AS is the given length 

between the focus and the principal vertex (and so 4AS is the latus rectum) and 

M is some constant. Label the midpoint of AS as G, and construct the 

perpendicular bisector. Mark the point H such that GH is equal to 3M, and finally 

construct a circle with centre H and radius HS. This circle will intersect the 

parabola at the required point P, as shown. Newton proves that this 

construction does indeed generate an area APS equal to 4AS M  using half a 
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dozen lines of simple algebra. The demonstration is based on Pythagoras’ 

Theorem, the basic properties of the parabola, and a standard result about its 

quadrature from Archimedes. 

 This construction provides a dynamic geometrical model in which the point P 

represents a body moving along a parabolic trajectory under the action of a 

centripetal force directed towards S, with the distance GH representing a 

measure of time. To understand why this is so, the construction needs to be 

imagined moving. For a given parabola A and S are fixed, which means that G 

(the midpoint) is also fixed. The body P is to be imagined moving along the 

curve, away from A. As it does so, H moves up the perpendicular, away from G. 

It does this in such a way that the distance HS is always equal to the distance 

HP, which means that the circular arc joining S to P moves at the same time. As 

P moves out along the parabola, H moves up the straight line. Moreover, 

Newton has shown that at any given moment the area APS is given by 

4AS M , where AS is fixed and M is variable. But in the construction the length 

GH was set equal to 3M. This means that the area must be directly proportional 

to the length GH; and so the length GH can be used as a measure of time. It is 

perhaps more useful to think of the motion of H driving the motion of P, rather 

than the other way around: as H moves up GH at constant speed, P moves out 

along the parabola with decreasing speed, in accordance with Kepler’s area 

law. It is an ingenious and very pleasing construction. 
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 Fatio appears to have had no problems following this proof. However, the 

three corollaries that follow the main result are a different matter. Here is my 

translation of these results as they appear in the first edition:180 

Corollary 1. Hence GH is to AS as the time in which the body described 

the arc AP is to the time in which it described the arc between the vertex 

A and the perpendicular to the axis erected from the focus S. 

Corollary 2. And if a circle ASP continually passes through the moving 

body, the velocity of point H is to the velocity which the body had at the 

vertex A as 3 to 8, and thus the line GH is also in this ratio to the straight 

line which the body could describe in the time of its motion from A to P 

with the velocity which it had at the vertex A.  

Corollary 3. Hence also, conversely, the time can be found in which the 

body described any assigned arc AP. Join AP and at its midpoint erect a 

perpendicular meeting the straight line GH in H. 

The reader who consults the original text will find that Newton has supplied no 

additional diagram to accompany these corollaries, nor any explanatory 

material. Anyone who wishes to sympathise more directly with Fatio’s 

experience may at this point try to verify the results themself: if they do so, they 

will not find any help in the translation by Cohen and Whitman, which contains 

no guidance and two errors, one of which reveals the authors have not 

understood the statement of this result, never mind the proof.181 

 

180 The printed text of Corollary 2 erroneously had “velocitas puncti G”, but the Errata instructed 
it to be changed to “velocitas puncti H”, as shown here. In later editions “per corpus movens” 
was altered to “per corpus motum P”, but that change is not germane to the discussion here. 
181 Towards the end of the main proof, AO2 is misprinted as AQ2, even though there is no point 
Q in the proof; and in the first corollary “perpendiculum ad axem ab umbilico S erectum” is 
mistranslated as “a perpendicular erected from the focus S to the axis”, which makes no sense 
in terms of the construction. 
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 The first corollary submits easily enough. The perpendicular erected from 

the focus is not marked on the printed diagram, so Fatio wisely decides to mark 

it onto his copy, and label the point where it meets the parabola “D”: 

 

 

 

Corollary 1 says that, as the body P moves along the parabolic trajectory ADP, 

the ratio of GH to AS is always equal to the ratio of the time it took to move from 

A to P to the time it took to move from A to D. It has already been established 

that A, G, S and D are fixed, and that as P moves along the parabola, H moves 

up the perpendicular from G. It has also been shown that for any position P on 

the trajectory the area APS is given by  4 3 GH AS , which means that the 

time elapsed since leaving the point A is proportional to  4 3 GH AS . To 

establish the time taken to move from A to D, the location of H when the body is 

at D needs to be considered. Fatio has drawn in dotted lines the construction 

lines at this point, but not explicitly marked the position where H will lie when the 

body is at D: I have labelled it 'H . The distance 'GH  is required, and there are 

a few ways to find it. One is to realise that, since 'H D  and 'H S  are equal, 

H’ 
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'H DS  is an isosceles triangle; and since both SD and GH are perpendicular to 

the axis AGSO, 'GH must be equal to 1 2 SD . But S is the focus, and so from 

the defining properties of a parabola, SD is the semi-latus rectum and AS is half 

of the semi-latus rectum. This means that 'GH  must be equal to AS. Therefore 

the area ADS must be     4 3 ' 4 3GH AS AS AS . Since the area APS was 

 4 3 GH AS , the ratio of the area APS to the area ADS is equal to the ratio of 

GH to AS; and so the ratio of the time taken to move from A to P to the time 

taken to move from A to D must also be GH to AS. This is the required result. 

 The third corollary is even simpler. It proposes that, wherever the point P lies 

on the trajectory, the time it has taken to get there from the vertex A can be 

found. Since GH is the measure of time, this amounts to finding the point H 

given the point P. This is easy: construct the perpendicular bisector of PS, and it 

will intersect the upright through G at the required point. 

 Corollary 2, however, is baffling. The reader is invited at this point to read it 

again. The set-up is comprehensible, and now it has been intuited that H moves 

with constant speed up the perpendicular as P moves with decreasing speed 

along the curve, it is makes sense to consider the ratio of the speed of H to the 

speed of the body at the vertex. But the sudden appearance of the ratio of 3 to 

8 is puzzling. 

 The margin of Fatio’s first edition alongside this result contains the following 

diagram:182 

 

 

182 Bodleian Arch. A d.37, 105. 
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It is not at all clear where this mysteriously crisp, impeccably drawn diagram 

has come from, nor how it relates to Corollary 2. There are some familiar 

features – A, G and S are where they should be, and there is a trajectory 

emerging from A and a circle passing through A, P and S. A ratio of 3 to 8 is 

ready to emerge somehow, although where the 3 and the two 4s have come 

from is unclear. But P has moved much lower down the curve beyond the 

perpendicular GH, and a new point, C, has appeared, which is not referred to in 

the text. Fatio has provided no further notes to help: there is no explanatory text 

anywhere else on the page. 

 It takes considerable effort to decode this diagram. P has moved down the 

trajectory because the motion close to the vertex A is being considered; H is 

constructed on the perpendicular as before, with a circle through A, P and S. 

Q 
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But the trajectory emerging from A in this diagram is not in fact a parabola: 

rather, it is the osculating circle of the parabola at A, which is being used to 

approximate the parabola near A. C is the centre of this osculating circle, and 

therefore the distance AC (and the distance PC) is equal to the radius of 

curvature of the parabola at the vertex. It so happens that the radius of 

curvature of a parabola at its vertex is equal to half of the latus rectum. The 

latus rectum of the parabolic trajectory the osculating circle is approximating 

was equal to 4AS, which means that the distance AC must be equal to 2AS. 

Since G is the midpoint of AS, the points A, G, S and C must therefore divide 

the horizontal axis in the ratio : : 1:1: 2AG GS SC . Specifically, the ratio of 

GC to AC is 3 to 4. 

 Fatio’s diagram can now be fully understood. I have labelled the point on the 

curve between A and P as Q, as indicated. Because the small circle passing 

through A, P and S has its centre at H (from the original construction), the 

distance AH must be equal to the distance PH. But because C is the centre of 

the osculating circle, AC, QC and PC must all be equal. So QHC is a line of 

symmetry of the sector APC; this means that the length AQ must be equal to 

the length PQ (measured either curvilinearly or rectilinearly). Finally, consider 

the limit when P (and therefore Q) are very close to A. In the limit, the shape 

ACQ is similar to the shape GCH. It does not matter whether in this limit the 

sector ACQ is viewed as becoming a triangle with a right-angle at A, or the 

triangle GCH is viewed as becoming a sector with HC equal to CG – either way, 

the two shapes become similar. But it was previously established that the ratio 

of GC to AC is 3 to 4. This means that, in the limit, the ratio of GH to AQ is also 

3 to 4. And since AQ PQ , the ratio of GH to AP is 3 to 8. This has finally 
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established the result in Corollary 2: in the limit as P approaches A the ratio of 

the distance moved by H to the distance moved by P in the same time is 3 to 8, 

which is another way of saying that the ratio of the velocity of the point H to the 

velocity the body has at A is 3 to 8.183  

 Now that the proof has been understood, it can be considered how a reader 

such as Fatio might have been expected to reproduce it himself. If he is to 

successfully recreate the proof of Corollary 2 from the bare statement Newton 

supplies, the reader needs to have two flashes of insight, and one specialised 

piece of knowledge. The first insight is to use the osculating circle to 

approximate the parabola. The piece of knowledge is that the radius of 

curvature of a parabola at its vertex is equal to half of the latus rectum. Then, 

having constructed the diagram above and calculated the ratios of all its 

component parts, the reader needs to realise that they should consider what 

happens in the limit as P is close to A. All three are required to establish the 

ratio of 3 to 8. And yet Newton’s text does not give the slightest hint of any of 

them: there is no mention of the osculating circle in this or any of the preceding 

proofs, no statement about the radius of curvature of a parabola anywhere in 

the book, and for any reader working through the propositions in order there is 

no expectation that he needs to make a return to limit methods, which were last 

used in Section 3. 

 

183 The second claim of the corollary, that at any point in the trajectory 3 to 8 is also the ratio of 

the distance GH to the distance the body would have covered if it had spent the intervening time 

travelling in a straight line with the speed it had at A, follows immediately. 
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 There is a connection between these annotations and those in Fatio’s 

margin thirty pages later in Section 9, next to the start of Corollary 2 of 

Proposition 44:184 

 

 

 

 

 

 

184 Bodleian Arch. A d.37, 135. 
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Section 9 concerns orbits that precess; that is, orbits in which the body follows a 

path of fixed shape which itself gradually rotates. Proposition 44 demonstrates 

that the extra force required to make a given orbit precess at a particular rate is 

inversely proportional to the cube of the distance of the orbiting body from the 

centre of attraction. Corollary 2 applies result this to the case of a precessing 

elliptical orbit. Fatio expended considerably energy working through Section 9 

and left many marginal notes whose details need not concern us here. For 

present purposes our attention can be confined to the annotations above, which 

lie alongside this assertion in the proof:  

But the force by which a body could revolve in a circle at the distance CV 

with the velocity that a body revolving in an ellipse has at V is to the force 

by which a body revolving in an ellipse is urged at the apsis V as half of 

the latus rectum of the ellipse to the semidiameter CV of the circle 

V is the vertex (or apsis) of the ellipse, as shown in Fatio’s diagram, and 

Newton’s claim follows immediately from the fact that the radius of curvature of 

an ellipse at its vertex is equal to half the latus rectum. Of course, this is the 

same fact that was needed in the proof of Proposition 30, where it was applied 

to a parabola rather than an ellipse. But once again, Newton supplies no 

justification of this assertion in the text. The purpose of Fatio’s marginal note 

here is to derive this relationship, as can be seen from the sentence at the 

bottom “Ex hoc calculo patet radium convexitatis in vertice V aequari Ellipsis 

dimidio Lateri Recto.” 

 Even knowing that this is what Fatio’s note sets out to prove, it is still difficult 

to parse. He has drawn another meticulously precise diagram, this time showing 

an ellipse VOA, which has its foci at C and F, and its centre at M. Part of a large 
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circle with centre C and radius CV has been drawn in, as has the osculating 

circle at the vertex V, which has its centre at I. The radius of curvature at V is 

therefore equal to the distance VI. Fatio begins by stating that 

 

: :: :AV CF VF FI  

 

The question of where this proportion comes from will be considered presently; 

for the moment let it simply be accepted that it is true.185 Proceeding from here, 

it is clear from the construction that the ratio :AV CF  is the same as the ratio 

:MV MF , and so 

 

: :: :MV MF VF FI  

 

Fatio does not write this down. Rather, he immediately manipulates these ratios 

to give 

 

    : :: :MV MF MV VF MF FI  

 

From the construction, the right-hand side is obviously equal to :MF MI , 

whence Fatio concludes that 

 


2MF

MI
MV

 (+) 

 

185 The reader is invited to derive it for themselves; I have been able to do so only by using 
infinite series. 
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He then considers triangle MOF, as indicated on the diagram. By Pythagoras’ 

Theorem  2 2 2OF MO MF , but by the basic properties of an ellipse OF MV

. This gives 

 

 2 2 2MV MF MO  (*) 

 

Fatio next considers the latus rectum of the ellipse, which is defined as the 

quantity 22MO MV . He denotes this as 2R (meaning that R is half of the latus 

rectum). Therefore 

 

: :: :MV MO MO R  

 

and so  2R MO MV . Using (*), this gives 

 




2 2MV MF
R

MV
 

 

which can be decomposed further as 

 

  

 

 

 


2 2

2

by (+)

by construction

MV MF
R

MV MV
MF

MV
MV

MV MI

VI
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From the definition of R, this means that the radius of curvature at the vertex V 

of the ellipse is equal to half of the latus rectum, as required. 

 The proofs of both Propositions 30 and 44 therefore depend upon the fact 

that the radius of curvature of a conic section at its vertex is equal to half the 

latus rectum. Yet in neither proof is this fact stated, nor implied to be relevant. 

Radius of curvature is not mentioned. Moreover, a reader who wishes to prove 

Corollary 2 to Proposition 30 – even one who knows about the radius of 

curvature of conic sections – is required to realise that the osculating circle 

needs to be constructed, and then consider what happens to the ratios of its 

components in the limit as P moves towards V. 

 These notes therefore imply important information about Fatio’s reading of 

the book, and the wider characteristics of Newton’s text. The only reasonable 

conclusion to draw from his annotations is that Fatio did not know this fact about 

radius of curvature, and so was not able to reproduce either proof: he was only 

able to do so after Newton explained the derivations to him in a face-to-face 

meeting. His notes are the post-hoc record of a conversation with Newton. The 

meticulous clarity of the diagrams, the absence of any surrounding explanatory 

material in Proposition 30, and the sudden appearance of the proportion 

: :: :AV CF VF FI  at the start of the note for Proposition 44 are most plausibly 

explained by the inference that Fatio was unable to make sense of the printed 

proofs, sought help from the author, and wrote up the contents of their 

conversation afterwards. And I have not seen any evidence that any of 

Newton’s contemporary readers were able to understand these passages on 

their own: the printed explanations were so deficient that they were only 

rendered comprehensible by a direct, face-to-face conversation with their 
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author. The text of the first edition did not – and it this case, it is tempting to say, 

could not – convince its readers of the validity of the arguments it contained. 

3.8 Two case studies  

I end this chapter with two detailed case studies of readers not understanding 

proofs, each of which displays a combination of the textual characteristics 

discussed so far. The first is Flamsteed’s failure to successfully process the 

proof of Corollary 2 to Law 3, and the second concerns the derivation of 

Proposition 9 of Book 1, which was misunderstood by both Huygens and 

Gregory. The distinction between the two cases is that Flamsteed was aware of 

his misunderstanding while Huygens and Gregory were not; what unites them – 

as I hope by now does not need to be emphasised – is that the failure of 

understanding was as much due to the qualities of the text as the competence 

of its readers. 

3.8.1 Flamsteed gives up on Corollary 2 to Law 3 

As was shown in Chapter 1, the marginalia in Flamsteed’s first edition are far 

less copious than those in Fatio’s, but they nevertheless enable a reasonably 

precise reconstruction of his reading of the Principia. I have suggested that 

Flamsteed initially set out to read the book in order from the beginning, but soon 

gave up and instead skipped ahead to the results that interested him about 

orbital forces in Section 2: I propose that Corollary 2 to Law 3 marks the exact 

point at which he capitulated. It is certainly the first result in the book that is 

sufficiently mathematically involved that a reader needs to pick up a pen to 

verify its claims, because the preceding Definitions and Laws contain no 

complicated geometry and no ratios to manipulate. In examining Flamsteed’s 
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difficulties, therefore, we should consider that Corollary 2 bears extra 

significance for any reader who reasonably imagines that this opening proof 

sets the tone for what lies ahead. We may speculate that Flamsteed intuited 

from his failure to understand this result that he was going to struggle with the 

rest of the book, and so chose not to continue. 

 Law 3 is Newton’s assertion that to any action there is an equal and 

opposite reaction, and Corollary 1 is what the modern reader recognises as the 

parallelogram rule for the vector addition of forces. Corollary 2 concerns the 

decomposition of forces into components, and it is this with which Flamsteed 

had difficulty.186 The physical set-up Newton considers is two weights hanging 

from cords, the other ends of which are attached to rigid spokes radiating from 

the centre of a wheel. He wishes to consider the conditions required for the 

hanging weights to balance, such that the spokes do not rotate about the centre 

of the wheel. Here is the diagram that accompanied the text in the first edition: 

 

 

 

186 The reader is invited in what follows to consult Cohen and Whitman’s translation. 
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O is the centre of the wheel, and OM and ON are the rigid spokes. MA and NP 

are cords, to the ends of which are attached weights A and P. It is immediately 

noticeable that there are three ways in which this diagram is not as clear as it 

could be. First, M (upper case) is labelled m (lower case). This inconsequential 

slip was corrected in subsequent editions. Second, the lines OK, OD, DC, AC 

and OL are marked as solid lines, even though they do not represent physical 

objects. They are merely construction lines that will be used in the proof, yet 

they are not distinguished from the spokes OM and ON and the cords MA and 

NP. And third, the weight on the right appears in two separate positions (to be 

explained presently). The position on the far right is labelled with an upper case 

P, while the position to its left is marked with a lower case p; this distinction 

between upper case P and lower case p is exceptionally difficult to make out 

from the diagram. It will become clear that both features of the picture added to 

Flamsteed’s confusion. 

 When considering the circumstances under which the hanging weights 

balance and the wheel does not rotate, Newton considers two cases. In the first 

case, the weight P hangs freely straight down, as shown on the far right of the 

diagram. The modern reader acquainted with the basic principles of moments 

will recognise that the weights balance if the weight of A multiplied by the 

distance OK is equal to the weight of P multiplied by the distance OL. Newton 

acknowledges that this is “a very well-known property of the balance, the lever, 

and the wheel and axle.” Newton derives this result by constructing the point D 

on MA such that OD OL , and then representing the weight of A by the length 

AD. He constructs the triangle ACD such that ODC and ACD are both right 



215 
 

angles, and thence resolves the weight represented by AD into (what the 

modern reader would call) two components, represented by AC and CD 

respectively. AC has no turning effect about the centre since it acts parallel to 

OD, and so the overall turning effect is merely the turning effect of CD. But 

since OD OL , the perpendicular distance of CD from O is the same as the 

perpendicular distance of PN from O. So A and P will balance if the weight of P 

is equal to the force represented by the length CD; that is (since the weight of A 

is represented by the length AD), if the ratio of the weight P to the weight A is 

equal to the ratio of the length CD to the length AD. By similar triangles, this is 

equal to the ratio of the length OK to the length OD; and since OD OL  “the 

weights A and P are inversely as the spokes OK and OL,” as required. Newton 

knows that this is not a new result: his purpose in deriving it here is to 

demonstrate the utility of decomposing forces into components (as he does 

when he resolves AD into AC and CD).  

 Flamsteed successfully followed the argument for this first case, as the 

annotations he left in his copy demonstrate:187 

 

 

187 RS, RCN 18577, 14. 
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In understanding the construction, he has followed Newton’s instruction 

“describatur circulus occurrens filo MA in D” literally, and drawn the correct 

circle on to the diagram using a compass (the hole is visible in the paper at O). 

He has also left some notes regarding the manipulation of the ratios at the foot 

of the page: Flamsteed has transferred a correction listed on the Errata page 

into the text, and his understanding is demonstrated by his confirmatory 

statement “ : :: :DC DA OK OD  vel OL” at the bottom. 
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 The second case is more complicated. The reader is encouraged to consult 

the original text and read Cohen and Whitman’s translation; in the process of 

explaining the proof as clearly as I can, it will become obvious where the 

possible causes of confusion lie. In the second case, Newton takes the weight P 

and – with the other end of the cord still attached to the point N – rests it on an 

oblique plane, which is labelled G in the diagram. The new position of the 

weight is labelled p (lower case), while the original position was labelled P 

(upper case). The weight has not changed, so while the position p is different 

from the position P, the weight p is the same as the weight P (“pondus p 

ponderi P aequale”). Newton wishes to consider – just as he did in the first case 

– the conditions required for this weight resting on the plane G to balance the 

weight A, which is still hanging from the point M as before. He is going to prove 

that they will balance if “the weight p is to the weight A in a ratio that is 

compounded of the inverse ratio of the least distances of their respective cords 

AM and pN from the centre of the wheel and the direct ratio of pH to pN.” Even 

in translation, this is not a straightforward sentence to parse: Newton’s verbal 

style is already causing difficulties. 

 Newton proves this as follows. Construct a line passing vertically through p. 

Then construct a line passing through N that is perpendicular to the plane G. 

Call the point where these two lines intersect H. This is shown on the diagram. 

But it is noticeable that at first glance HN looks perpendicular to pN, rather than 

G; notice also that the cord joins the weight to the point N and not the point H, 

and so the line pH does not represent any physical object. Newton’s diagram is 

not very easy to use. Now let the downwards force of the weight be represented 

by the vertical line pH. By the parallelogram rule from Corollary 1, this can be 
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resolved into two components pN and HN (which, the reader must remind 

themself, are not perpendicular).  

 Newton now establishes that these components pN and HN represent, 

respectively, the tension in the cord and the reaction force from the plane G. 

Newton does this by temporarily imagining into existence a second plane Q 

perpendicular to pN, abutting the plane G at the point p. (This is marked on the 

diagram: notice that at a casual glance Q looks parallel to HN, which it is not.) If 

the cord pN were then severed, the plane Q would help support the weight 

instead. Indeed, because Q is perpendicular to the cord, the support it provides 

(a modern reader would call it the normal reaction force) would act in the 

direction pN and be equal in size to the tension that had previously been in the 

cord. The normal reaction force provided by the other plane G would remain 

unchanged, acting in the direction HN. With the cord severed there would thus 

be three forces holding the body in equilibrium: the downward weight, the 

reaction force from Q acting parallel to pN, and the reaction force from G acting 

parallel to HN. Newton has already chosen to represent the downward weight 

by the length of the line pH, so the reaction forces must therefore be 

represented by the lengths of the lines pN and HN respectively. This means that 

the size of tension in the cord must also be represented by the length of the line 

pN. 

 This result seems intuitive enough. However, the reader must be careful to 

observe that the tension in the cord is represented by the oblique line pN only if 

the size of the downwards weight is represented by the line pH. In the first case 

discussed above, the size of the downwards weight had been represented by 

the line vertical PN. But these two weights are equal, because the two cases 
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correspond to the same object in different positions. Therefore Newton is 

correct to write that “the tension of this oblique cord will be to the tension of the 

other, perpendicular cord PN as pN to pH” (“tensio fili huius obliqui erit ad 

tensionem fili alterius perpendicularis PN, ut pN ad pH”). 

 Newton is now able to derive the conditions under which the weight lying on 

the plane G (with the temporary plane Q removed) will balance the weight 

hanging vertically at A. In modern terms, the anticlockwise turning effect on the 

rigid spoke OM is equal to the weight of A multiplied by the distance OK.  The 

clockwise turning effect on the rigid spoke ON is equal to the tension in the cord 

pN multiplied by the perpendicular distance from O to the line pN (which 

distance is not marked on Newton’s diagram). But it has just been established 

that the ratio of the tension in the oblique cord pN to the tension in the vertical 

cord PN is equal to the ratio of the length pN to the length pH. And the tension 

in the cord PN when hanging freely is (of course) equal to the weight of the 

body. So the two weights will balance if: 
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When compared to the long sentence referred to above expressing Newton’s 

statement of the result  

Therefore, if the weight p is to the weight A in a ratio that is compounded 

of the inverse ratio of the least distances of their respective cords AM 

and pN from the centre of the wheel and the direct ratio of pH to pN, the 

weights will have the same power to move the wheel and so will sustain 

each other, as anyone can test. 

it will be seen that the required conclusion has been reached. 

 With this proof understood, Flamsteed’s response can now be evaluated. He 

has left the following annotation in the margin next to the lines just quoted: 188 

 

 

 

It is difficult to recreate Flamsteed’s line of thought in its entirety, but this note 

suggests that he misunderstood two separate steps of Newton’s proof. 

 First, it is notable that he has made an alteration in the main body of the text: 

Flamsteed has crossed out PN, and replaced it – after much uncertain dithering, 

it appears – with PH. Comparing this to the statement of the result quoted 

above, it is clear that Flamsteed is wrong to make this change. The ratio in 

question is that of the tension in the oblique cord pN to the tension in the 

 

188 RS, RCN 18577, 15. 
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perpendicular cord PN, not to the cord PH. Indeed, there is no cord PH; the line 

PH is not even perpendicular. I think that Flamsteed means to change it to pH, 

not PH. The line pH is at least vertical, and the text is not helpful at 

distinguishing between (lower case) p and (upper case) P: the symbols look 

almost identical on the diagram, and throughout the proof p and P represent the 

same weight. And at first glance the sentence “the ratio of the tension of this 

oblique cord [pN] will be to the tension of the other perpendicular cord pH as pN 

to pH” looks plausible. But it is definitely incorrect, because it misunderstands 

which forces are represented by which lengths in the construction, and because 

there is no cord running along the vertical line pH. 

 Flamsteed’s second mistake is revealed in the note in the margin, which can 

be cautiously transcribed as follows: 

 

 

 

: :: :

: :: :

: :: :

OK OL P A

pN PH P p

OK pN OL PH A p

 

 

My caution lies in the transcription of the p’s and P’s the second line, as will 

become apparent. In this note Flamsteed is trying to make sense of Newton’s 

lines quoted above, and the basic structure is that he is trying to compound the 

first two ratios to produce the third. He needs to write something down because 

it is not immediately obvious what the “minimarum distantiarum filorum suorum 

AM, pN a centro rotae” refers to. Flamsteed understands that the first of these 

distances is OK, but he incorrectly thinks that the second is OL. That must 

surely be because, as discussed above, he is not alert to the difference 

between pN and PN. OL is the minimum distance between the centre and the 
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cord PN, but the proof instead requires the minimum distance between the 

centre and the cord pN (and this distance, as we have previously observed, is 

not marked on the diagram). He therefore erroneously forms the ratio :OK OL . 

He immediately realises that he earlier proved this to be equal to the ratio of the 

weight P to the weight A, and so writes down that : :: :OK OL P A . This 

statement is true, but, because of his error with the perpendicular distance, is 

irrelevant to the matter in hand. 

 It may be imagined that it is only now that he realises that he has missed the 

word “reciproca,” which means that he has written this ratio the wrong way 

round. To maintain consistency, he therefore writes “ratione directa pH ad pN” 

backwards as well. But this is exactly the ratio he misunderstood previously, 

and it is at this point that he realises that something has gone awry. I cannot 

make sense of what he has written in the second line, and his handwriting is 

difficult to read, but the first and third terms appear to have been altered. One 

possibility is that he began to write out the first three terms of : : : ...PN PH P  

before he noticed the distinction between p and P, whereupon he changed the 

line to : : :pN PH P p . It is not clear why he did this, since there is no consistent 

reading within which : : :pN PH P p  makes any sense: the best I can do is 

suggest that Flamsteed thought that the line PN (which he erroneously writes as 

pN) represents the weight P, and the line pH (which he erroneously writes as 

PH, and which is not a physical object anyway) represents the weight p. 

 Having formed these two erroneous ratios from the text, he finally 

compounds them. The left-hand sides combine to produce  :O K pN O L PH . 

According to Newton’s text the composition should produce the ratio of p to A, 

but because he forgot the “reciproca”, Flamsteed writes A underneath the first 
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and p under the second. The right-hand sides, however, do not combine 

correctly. There is no way that :P A  can compound with either :P p  or :p p  to 

give :A p . Flamsteed knows that he has not understood the proof. He is aware 

that he has got lost somewhere along the way. He knows that he has failed, and 

he takes this as a sign that the rest of the book is beyond him too. 

 This failure is just as much the author’s failure of persuasion as it is the 

reader’s failure of understanding. On the one hand, the proof contains no novel 

mathematical techniques, and there are no conceptual difficulties to prevent the 

modern reader getting his head around it. Newton might reasonably have 

expected the then Astronomer Royal to have been able to do the same. On the 

other, I have already highlighted the many ways in which the printed 

demonstration does not make things simple for the reader. The diagram is 

unhelpful: the difference between p and P is very difficult to make out; the 

construction of HN perpendicular to G and Q perpendicular to pN is unclear; the 

perpendicular distance between O and pN is not marked; and there is no 

distinction between lines that represent physical cords, spokes and planes (AM, 

PN, pN, MO, ON, Q, G) and those that are merely construction lines (pH, HN, 

OK, OL etc.). Newton’s verbal style, too, hindered Flamsteed’s understanding: 

his errors in the final lines directly arose from the process of translating the 

words of the text into sets of ratios. If Newton had supplied the ratios directly, 

Flamsteed would have successfully made it to the end of the proof. This 

marginal note provides a concrete example of a case when Clerke’s suggestion 

that the ratios be set out on the page underneath each other would have 

facilitated understanding. And we can also consider the effect of making 

corrections to the text. Recall that in the simpler first case of the Corollary, the 
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printed text contained a slip that the Errata page instructed Flamsteed to rectify. 

This means that when he incorrectly – and fatally – changed PN to PH on page 

15, he had only moments before correctly changed DO to OK on page 14. He 

had been primed by the Errata to be alert to the possibility that there were 

mistakes in the proofs, and this caused him to lack confidence in the printed text 

when he had no cause to do so. It is too strong to say that published corrections 

undermined readers’ confidence in the overall validity of the proofs, but the 

existence of the Errata seems to have made Flamsteed sensitive to the 

possibility that there might be small mistakes in the text along the way. There 

was doubt in his mind as he read. 

 I have argued above that these marginalia document the moment Flamsteed 

gave up on reading all the way through the Principia. That is why they deserve 

the close attention I have given them: they are a record of the moment when a 

plausibly competent reader decided to give up working his way through the text. 

When we say that Newton’s contemporaries found his book difficult to read, this 

primary source reveals very precisely what that difficulty entailed, and it is clear 

that the characteristics of the text were just as responsible for its impenetrability 

as the competence of its readers. 

3.8.2 Huygens and Gregory both misunderstand Proposition 9 

I end with an unusual example, in which the difficulty of the Principia is 

manifested not in readers’ failure to understand the text, but in their 

misunderstanding of it. Both Gregory and Huygens mis-read Proposition 9 of 

Book 1, and although each thought they understood the proof and had 

successfully arrived at the desired conclusion, their notes clearly reveal that 

they had not correctly followed Newton’s arguments. This example is significant 
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because, first, Gregory and Huygens cannot be dismissed as lacking expertise, 

and so it further emphasises the extent to which Newton was responsible for the 

difficulties his readers encountered. And second, this example encourages 

critical examination of the vocabulary of “understanding” and “mastery” in the 

context of mathematical proofs. It will become clear that both Huygens and 

Gregory thought they had understood the text, when they had not; they were 

persuaded of the validity of Newton’s conclusions, but not for the reasons he 

gave. This significantly complicates the wider discussion of the means by which 

Newton’s book was approved. Even when his most competent peers carefully 

studied the demonstrations, they sometimes gave their assent to the results of 

the Principia for what Newton would have said were the wrong reasons. 

 Proposition 9 demonstrates that for a body orbiting in a logarithmic spiral 

under the action of a centripetal force acting towards the centre of the spiral, 

that force must be inversely proportional to the cube of the distance of the body 

from the centre. Because Newton’s proof is short, and because its brevity 

contributes to Huygens and Gregory’s misunderstanding, it is worth providing its 

diagram and translation in full:189 

 

 

 

189 This translation is based on Cohen and Whitman’s, with some changes to reflect the fact that 
they were translating the third edition rather than the first. 
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Let the indefinitely small angle PSQ be given, and because all the angles 

are given, the species of the figure SPRQT will be given. Therefore, the 

ratio Q T Q R  is given, and 
2QT QR  is as QT, that is as SP. Now 

change the angle PSQ in any way, and the straight line QR subtending 

the angle of contact QPR will be changed (by Lemma 11) as the square 

of PR or QT. Therefore 
2QT QR  will remain the same as before, that is 

as SP. And therefore 2 2QT SP QR is as 3SP , that is (by the Corollary to 

Theorem 5) the centripetal force is inversely as the cube of the distance 

SP. Q.E.I. 

Newton’s argument is intended to be understood as follows. A logarithmic spiral 

is given around its centre S. A defining property of logarithmic spirals is that 

they are self-similar, which is to say that as the spiral is traced out from the 

centre, each successive section of the curve is an enlargement of the previous 

section. As a consequence, for any given logarithmic spiral the angle RPS 

between the tangent RP and the radial line SP is fixed, and is independent of 

the location of P on the spiral. This is reflected in the opening statement of the 

result (not quoted above), “Gyretur corpus in spirali PQS secante radios omnes 

SP, SQ, &c. in angulo dato.” 

 It is critically important to Newton’s argument that there are two distinct 

steps in his proof. In the first step, the figure SPQRT is constructed for a fixed, 

very small angle PSQ (“Detur angulus indefinite parvus PSQ”). Because of the 

self-similarity property, this construction will (for a given angle PSQ) always be 

the same shape irrespective of where P lies on the curve. That is, if the angle 

PSQ is kept constant but the point P is free to slide along the spiral, the figure 

SPQRT will retain the same shape but contract and expand as P moves in and 

out along the curve. The ratio Q T Q R will therefore be a fixed value, 
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independent of the location of P. The ratio 
2QT QR  will therefore be 

proportional to QT; and QT is in turn proportional to SP. Therefore, for a given 

angle PSQ, 
2QT QR  will always be proportional to SP, irrespective of where P 

lies on the spiral. In the second step, Newton considers what will happen when 

P is held fixed but the angle PSQ is changed (“Mutetur jam utcunq; angulus 

PSQ”). Specifically, Newton considers what will happen in the limit as Q slides 

along the curve towards P. Lemma 11 shows that, as the angle PSQ 

decreases, QR will be proportional to 2PR . Because the angle RPS is fixed, 

QT is proportional to PR, which means that QR will be proportional to 2Q T . As 

Q slides along the curve towards P the ratio 
2QT QR  will therefore not change. 

That is, 
2QT QR  will remain proportional to SP. Therefore, in the limit as Q 

approaches P, 2 2QT SP QR will be proportional to 3SP ; and so by Proposition 

6 the centripetal force is inversely proportional to the cube of the distance, as 

required. To repeat the important idea: in the first step of the proof Newton fixes 

the angle PSQ and shows that, no matter where P lies on the curve, 
2QT QR  

is proportional to SP; and in the second step Newton fixes the position of P but 

allows angle PSQ to diminish, and shows that in the limit as Q moves towards P 

the ratio 
2QT QR  does not change. The result then follows easily. 

 Both Huygens and Gregory misunderstand the proof in very similar ways, 

because neither of them acknowledges the importance of these two distinct 
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steps. Here are Huygens’ notes on this passage, in full, followed by my 

translation:190 

 

 

Ad Prop. 9. l. 1. Spiralis haec semper appropinquat puncto S, 

circumvolutionibus infinitis numero, nec unquam ad ipsum pervenit. ac 

tamen longitudinem certam non excedit. 

Demonstratio perobscura est, in qua cum dicit, mutetur jam utcunque 

angulus PSQ &c, hoc tantum propositum habet ut ostendat qualiscunque 

et ubicunque accipiatur angulus PSQ, semper 
2QT QR  esse ut SP. 

velut si accipiatur angulus major qSP, erit hic quoque 
2qt qr  ut SP. Nam 

quia 
2QT QR  ut SP, estque 

2qt  ad 2Q T  ut qr ad QR, erit necessario et 

2qt qr  ut 
2QT QR  hoc est ut SP. Itaque cum semper sit 

2QT QR  ut 

SP, ducto utroque in 2SP  erit 
2 2.QT SP QR ut 3SP . ideoque per propos. 

6, vis centripeta ut 3SP  inversè. 

Poterat autem eundem angulum PSQ velut in duobus locis adsumtum 

considerasse, et utrobique similiter ductas PR, QT, QR. quae figurae 

proportionales fuissent. Et quia vis centrifuga ut 
2 2.QT SP QR  inversè 

per 6. hoc autem ut 3SP , quia QT ut SP, et ita quoque QR: erit et vis 

centripeta ut 3SP  inverse. 

 

190 Codices Hugeniani, HUG 7, 15v (=OC, 21:418–19). 
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Demonstravi hanc eandem propositionem, ut propositione sexta nihil 

opus esset. 

Proposition 9, line 1. This spiral always approaches the point S, with 

turns infinite in number, and does not ever reach itself. And nevertheless 

it does not exceed a certain length. 

The proof is very obscure, in the part where he says “mutetur jam 

utcunque angulus PSQ &c”; the entire proposition aims to show that 

whatever and wherever the angle PSQ is taken, 
2QT QR  is always as 

SP. Just as if a bigger angle qSP were to be taken, this 
2qt qr  will also 

be as SP. For because 
2QT QR  is as SP, and 

2qt  to 2Q T  is as qr to 

QR, 
2qt qr  will also necessarily be as 

2QT QR , that is as SP. And so 

since 
2QT QR  is always as SP, with both multiplied by 2SP , 

2 2QT SP QR will be as 3SP . Therefore by Proposition 6, the centripetal 

force will be inversely as 3SP . 

But it was possible to have considered the same angle PSQ taken as if in 

two places, and PR, QT and QR similarly drawn on both. These figures 

would have been similar. And because the centripetal force is inversely 

as 2 2QT SP QR  by [Proposition] 6, this is as 3SP , because QT is as 

SP, and so also is QR; and the centripetal force will be inversely as 3SP . 

I have demonstrated this same proposition, such that there is no need for 

the sixth proposition. 

It is noticable that Huygens – not for the only time, as was shown in Chapter 1 – 

openly declares his difficulty with the proof (“Demonstratio perobscura est”). I 

also argued in Chapter 1 that there is no evidence that Huygens ever made a 

detailed study of the method of first and last ratios in Section 1 of Book 1. This 

will be developed further in Chapter 4, where it will become clear that Huygens’ 
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habit when reading the Principia was always to re-interpret Newton’s 

geometrical limit arguments in terms of infinitesimals. I also demonstrated in 

Chapter 2 that he generally reconstructed Newton’s proofs in terms of 

Euclidean proportions, and so preferred to consider the ratios of quantities 

evaluated at two different points, rather than (as Newton did) an expression for 

the quantity at one point. These considerations should be borne in mind when 

examining his notes: Huygens ends up deriving the required quantity 3SP , but 

he does so fallaciously, because he does not appreciate the importance of the 

order of the two steps in Newton’s argument. 

 His opening line confirms that he knows the geometrical features of a 

logarithmic spiral, and he does not challenge the assertion in the second 

sentence of Newton’s proof that 
2QT QR  is proportional to SP. Newton, of 

course, makes this claim in the first step of his argument, when the angle is 

fixed and P is imagined to be sliding up and down the line. But Huygens does 

not acknowledge this distinction and immediately, without appearing to realise 

it, slips into step two and applies Lemma 11 as instructed. He does so, as we 

might expect, by considering a second point q on the curve further away from Q 

than P, and noting that the ratio of 
2qt  to 2Q T  is as qr to QR. He thus 

concludes that 
2QT QR  remains proportional to SP as angle PSQ changes, 

and so 2 2QT SP QR will be proportional to 3SP , as required. But it is not at all 

clear that Huygens is comfortable with this. There is no evidence that he ever 

closely examined Lemma 11, and no acknowledgement that this result only 

holds in the limit when the angle is small. Indeed, if we take “qualiscunque et 
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ubicunque accipiatur angulus PSQ” at face value, what Huygens writes here is 

false: the ratio does not hold for large values of the angle PSQ. 

 If his second paragraph hints at his uncertainty, his misunderstanding is fully 

revealed by his third, in which he returns to consider the first step of Newton’s 

proof. He correctly understands the self-similarity of the construction as P 

moves around the curve, but the incriminating line is that in which he writes that 

2 2QT SP QR  is proportional to 3SP , “quia QT ut SP, et ita quoque QR”. 

Replacing both QT and QR with SP in the ratio for the centripetal force does 

indeed generate 3SP . It is also true that both QT and QR are proportional to SP 

as P moves but with the angle PSQ held constant (step one). But QT and QR 

are definitely not proportional to SP as the angle PSQ diminishes with P held 

fixed (step two). In that circumstance, it is only the ratio 
2QT QR  that remains 

proportional to SP; the individual lengths QT and QR do not. It is therefore 

wrong merely to substitute SP for both QT and QR into 2 2QT SP QR  to 

produce 3SP , tempting though that short-cut is. Huygens’ willingness to make 

this substitution reveals that he has incorrectly understood the logical structure 

of the proof. He has not acknowledged that it must first be shown that (as P 

moves along the curve, with angle PSQ fixed) 
2QT QR  is proportional to SP, 

and then that (in the limit as Q moves towards P, with P held fixed) this ratio 

2QT QR  remains constant. 

 It would be easy to dismiss Huygens’ error as a small and unremarkable 

slip, were it not for the fact that Gregory misunderstands Newton’s proof in a 

very similar way. Unlike Huygens, Gregory gives no indication that he finds the 

proof difficult to follow, and thinks he has correctly followed Newton’s argument. 
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There are five entries on Proposition 9 in the Notae, the first four of which are 

straightforward.191 Gregory first acknowledges the properties of the logarithmic 

spiral; then establishes that all the angles in the construction are determined 

once angle PSQ is given; then confirms that this fixes the ratio Q T Q R ; and 

then infers that as the position of P and Q varies with angle PSQ held fixed, this 

ratio Q T Q R  is proportional to SP. In terms of the vocabulary we have been 

using, this takes us to the end of step one. However, he then adds a fifth and 

final comment: 

Facilius hoc ita invenietur, vis centripeta est ut Q Tq SPq Q R  reciproce, 

quare est etiam ut quodvis huic proportionale reciproce. Sed Q T q R Q  

est ut SP quare Q Tq SPq Q R  est ut SP cub: quare vis centripeta est ut 

SP cub reciproce. Videtur vocem reciproce hic omitti; et a Mutetur ad 

Quare, demonstrationi non condit. 

It will be found more easily in this way: the centripetal force is reciprocally 

as 2 2QT SP QR, hence it is also as anything that is reciprocal to this 

proportion. But 
2QT RQ  is as SP, hence 2 2QT SP QR  is as 3SP ; 

hence the centripetal force is inversely as 3SP . It seems that the word 

“reciprocally” is here omitted; and from “Mutetur” to “Quare” does not add 

to the demonstration. 

This note clearly reveals that Gregory has misunderstood how Newton intends 

his proof to work: he has not realised the importance of the second step to the 

integrity of the demonstration. Since the centripetal force is inversely 

proportional to 2 2QT SP QR , Gregory argues, and because we have just 

deduced that 
2QT RQ  will be proportional to SP, we can make a simple 

 

191 RS, MS210, 4r. 
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substitution to conclude that the centripetal force is inversely proportional to 3SP

. According to this reading, the two sentences “from ‘Mutetur’ to ‘Quare’” (which 

is to say, exactly the lines that correspond to the second step) are redundant, 

and there is no need to invoke Lemma 11. But this is wrong. Gregory has, like 

Huygens, not distinguished between the two steps of the proof.  When in his 

third note he recorded that the ratio Q T Q R  is constant, Gregory failed to 

acknowledge the essential qualification that this is only true during step one, 

while the angle PSQ is held fixed and P moves. In step two, as P is held fixed 

but the angle PSQ is reduced, the ratio Q T Q R  does not remain constant. And 

since the expression for the centripetal force from Proposition 6 only applies in 

the limit as Q moves towards P, the angle PSQ must be made indefinitely small. 

In this circumstance the ratio Q T Q R  changes; yet Newton correctly points out 

that (by Lemma 11) the ratio 
2QT QR  does not. That is why he can conclude 

that the centripetal force is inversely proportional to 3SP . Far from the 

sentences from ‘Mutetur’ to ‘Quare’ adding nothing, they are essential to the 

logic of his demonstration. 

 Both Huygens and Gregory therefore misunderstood Newton’s proof of 

Proposition 9, and did so for very similar reasons. Their notes very clearly show 

that neither of them correctly followed the argument printed on the page. And 

yet they both agreed that its outcome was correct. They agreed with the result, 

despite having misunderstood the argument presented in its support. They 

assented to the validity of the conclusion, but Newton would say that they did so 

for the wrong reasons. This significantly complicates our attempt to establish 

the means by which the claims of the Principia were verified: how we should 

categorise two readers, who cannot reasonably be said to lack expertise, and 
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who both determined that this result was correct, but who did so fallaciously, is 

not at all obvious. But let it finally be noted that Huygens has left one further 

clue that deserves to be pursued. Although he acknowledges that he found 

Newton’s proof difficult, he explains in the final sentence of his note that 

“Demonstravi hanc eandem propositionem, ut propositione sexta nihil opus 

esset.” In other words, while Huygens did successfully manipulate Newton’s 

ratios to attain the desired expression, it was not this that persuaded him to 

agree that the result was correct. He agreed that the result was correct because 

he had produced his own proof, separate from Newton’s. I have not been able 

to locate this demonstration, but we may reasonably assume that it adopted 

Euclidean proportions, neglected the method of first and last ratios, and quite 

possibly employed the methodology of infinite series, exactly as his other notes 

do. Huygens, it appears, had previously proved the result of Proposition 9 using 

his own notation, terminology and conceptual framework. It was his own 

independent reconstruction of the proof that persuaded him of this result’s 

validity: these readers’ assent to the claims in the Principia was not founded on 

their acceptance of the arguments they found printed in the text.  
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4. Responses to the new mathematics 
in the Principia 

4.1 Introduction 

Over the previous chapters I have demonstrated that, on the occasions that his 

peers engaged with his mathematical proofs, reading comprised an active 

process of recreation. Readers verified Newton’s arguments by reconstructing 

them using different notation, commonly within a different conceptual 

framework, and often via a different logical path. They granted assent to his 

claims according to whether they were successfully able to reconstruct his 

arguments in their own terms. In addition, I argued in Chapter 3 that the 

Principia was difficult to understand because the format, style and composition 

of the text often obstructed readers’ ability to successfully reconstruct its 

arguments, which is another way of saying that Newton’s book was very 

ineffective at persuading his readers. This was the case even for those proofs 

based on uncontentious, established mathematical techniques. My aim in this 

chapter is to show that this also applied to the demonstrations involving the 

novel mathematical methods contained within the Principia – which is to say, 

the geometrical limit and proto-calculus techniques that Newton deployed in 

many of his proofs. 

 Newton employed a variety of infinitesimal and limit methods in the Principia. 

He laid out the foundations for his method of first and last ratios explicitly in 

Section 1 of Book 1, yet geometrical limit and proto-calculus techniques appear 

throughout the book, in a range of formulations and a variety of styles of proof. 

In this chapter I will first consider readers’ responses to the limit methods they 

encountered in the main body of the work, before then examining how they 
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engaged with the proofs in Section 1. It will quickly become clear that it is not 

helpful to attempt to establish a binary distinction between peers who 

“understood” and “mastered” Newton’s proofs and those who did not. It was 

often the case that both understanding and mastery were partial. Flamsteed 

engaged with Newton’s novel methodology only very superficially, and Halley 

very uneasily. Gregory and Fatio were generally successful in assimilating his 

techniques, but both Huygens and Leibniz reinterpreted his geometrical proofs 

in terms of infinitesimals and infinite series. In Huygens’ case, this was because 

– like Flamsteed – he didn’t make a meaningful attempt to engage with the 

details of the proofs in Section 1. Leibniz – like Clerke – appears to have tried, 

but was obstructed by the poor wording and opaque logical structure of 

Newton’s limit definition in Lemma 1. Halley, Fatio and Gregory all appear to 

have intuited the general meaning of the foundational proofs, but sought 

clarification of key details. Importantly, there is no evidence that any of 

Newton’s readers recognised the need for the unusual style of proof Newton 

deployed at the heart of his method of first and last ratios in Lemmas 6, 7, 8 and 

9. Fatio and Gregory in particular could not see the value of the “microscope” 

argument Newton employed in these four results, and urged that they all be re-

written. Gregory – either during his initial reading or after consultation with 

Newton – also perceived a flaw in the application of Section 1 to Proposition 6, 

critically undermining the logical validity of all the orbital force theorems at the 

start of the book, including the proof of the inverse-square law.  

 In other words, even when Newton’s readers understood the foundational 

basis of his methodology, and even when they agreed with his conclusions, 

they thought he had justified his claims in the wrong way. Their responses show 
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that there were no established criteria for what constituted an acceptable limit-

based argument at the time of publication. They objected to both the articulation 

of his underlying concepts and the formulation of his demonstrations, 

encouraging him to re-phrase, re-write, and re-structure his proofs. In short, 

contemporary readers were not persuaded by the geometrical limit arguments 

they found printed in the text: Newton had to negotiate the validity of the 

mathematical methodology of the Principia with his readers on a case-by-case 

basis. 

4.2 General responses to Newton’s geometrical limit methods 

As outlined above, the primary evidence reveals a variety of responses to the 

limit methods Newton used in the main body of the book. These ranged from a 

cursory glance at the details of his arguments, all the way up to a full 

assimilation of Newton’s methodology. We will consider this spectrum of 

responses in turn, starting at one end and moving towards the other. 

4.2.1 Flamsteed’s superficial engagement 

Among the range of possible responses to the Principia’s limit methods, one 

was not to engage with them at all. I demonstrated in Chapter 1 that most 

readers engaged with the book in discontinuous, piecemeal chunks, and argued 

in Chapter 2 that its intimidating length encouraged readers to leave large 

sections of the text unexamined. Locke avoided all the mathematical content of 

the book, as is well known. I will show below that Huygens also made no 

sustained attempt to assimilate Newton’s geometrical limit methods. However, 

the clearest example of a reader who engaged with Newton’s limit arguments 

only to a superficial degree is Flamsteed. I have argued previously that 
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Flamsteed set out to work through the opening sections in order, but got stuck 

on Corollary 2 of Law 3, whereupon he skipped ahead to the orbital force 

theorems in Sections 2 and 3. His disengagement with Newton’s limit 

arguments is consistent with this scheme. He left only one marginal note in 

Section 1, against Lemma 11:192 

 

 

 

Lemma 11 proves that, given a fixed curve, “the vanishing subtense of the 

angle of contact is ultimately in the squared ratio of the subtense of the 

conterminous arc.” That is, with reference to the diagram above, in the limit as 

the point B moves along the curve towards the point A, BD is proportional to 

2A B . It is the only result in Section 1 whose proof requires any manipulation of 

ratios, and so it is possible that Flamsteed cursorily read through the whole 

section but only needed to make written notes on this passage. I suggest, 

however, that he was instead sent back to Lemma 11 when he found it invoked 

by Proposition 4, which his marginalia show he also studied. 

 

192 RS, RCN 18577, 33. 
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 Either way, this annotation reveals that Flamsteed engaged with Newton’s 

limit arguments only superficially. As the reader will confirm if they consult the 

original text, in these five lines Flamsteed manipulates the ratios in the proof to 

verify the final proportion. He checks that the terms combine to produce the 

required result that BD is proportional 2A B . In one sense, therefore, it could be 

argued that Flamsteed has confirmed the validity of the conclusion of Lemma 

11. But it cannot reasonably be claimed that he gave his considered assent to 

the broader methodology of first and last ratios. There is no evidence that he 

engaged with Newton’s definition of a limit in Lemma 1, for example, nor has he 

commented on the discussion that follows in the Scholium. He has not asked 

any of the questions his peers raised – as we shall see below – when 

examining the other proofs in this section. He has computed the ratios in 

Lemma 11 but not interrogated their foundational basis. Logically his reading of 

this proof may have been complete, but conceptually it was not. Indeed, I have 

previously noted that Flamsteed appears not to have studied Proposition 6, 

which is an essential component of the centripetal force proofs in Sections 2 

and 3. This is consistent with the general pattern that he verified some aspects 

of some of the proofs in the logical chain of deduction. He superficially verified a 

selection of Newton’s ratios without engaging with the underlying methodology: 

Flamsteed’s assent to the geometrical limit methods in the Principia was partial. 

4.2.2 Halley’s latent unease 

Flamsteed did at least satisfy himself that the result of Lemma 11 was correct, 

and proceeded to the orbit theorems convinced in his own mind of its validity. It 

is not at all clear that that is also true of Halley, whose ambiguous response to 

Newton’s limit methods is revealed in his editorial notes. Neither the quantity 
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nor the content of the documentary evidence is conclusive, but I suggest that 

the changes he proposed to passages involving limit methods reveal a latent 

unease in their rigour. It is probably too strong to claim that Halley felt that the 

method of first and last ratios was unreliable, but at the very least he felt the 

need to negotiate with Newton over what constituted an acceptable limit-based 

argument. 

 As outlined in Chapter 2, the majority of Halley’s editorial comments 

comprised either grammatical or typographic corrections, or small tweaks to 

Newton’s phrasing. Not many of his suggested alterations substantively 

changed the meaning of the text. However, it is noticeable that Halley re-

worded and reformulated Newton’s limit arguments disproportionately 

frequently. Some of his adjustments are very small. When reading a now-lost 

draft of Proposition 3 of Book 2, for example, which concerns a body falling 

against a resistance proportional to its velocity, he appears to have advised 

changing the words “descensus initio” (“at the beginning of the fall”) to “ipso 

descensus initio” (“at the very beginning of the fall”), an alteration which helps 

focus the reader’s attention on the moment at the start of the limit process, and 

the first ratio at the instantaneous beginning of the descent. Perhaps for similar 

reasons, in a geometrical argument about a converging arc and line in 

Proposition 34 of Book 1, he suggested adding either “donec tandem” (“until 

eventually”) or “usque” (“all the way”, “continuously”). In Proposition 1 of Book 1, 

he suggested replacing “temporis momentis” (“moment of time”) with “temporis 

particulis” (“particle of time”). In Proposition 2 of Book 2, in a passage about 

infinitesimal subdivisions, he suggested improving “Minuantur jam aequales 

illae temporum particulae, & augeatur earum numerus infinitum” (“Now let those 
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equal particles of time be diminished, and let their number increase indefinitely”) 

by inserting either “augeatur terminorum numerus” (“let the number of 

boundaries increase”) or “augeatur spatiorum numerus” (“let the number of 

spaces increase”). In the discussion of first and last ratios in the Scholium at the 

end of Section 1, he suggested adding the word “revera” (“in fact”, “actually”) to 

the sentence “Rationes illae ultimae si rigide loqamur non sunt rationes 

quantitatum ultimarum sed limites” (“Those ultimate ratios, if we speak strictly, 

are not ratios of ultimate quantities but limits”), and Newton was encouraged to 

change these lines yet further before publication. And he did not realise that the 

proof of Proposition 8 in Book 1 only holds in the limit, prompting Newton to 

insert a note to this effect. From one point of view, these are all insubstantial 

changes. None of them amounts to a dispute about the validity of Newton’s 

arguments. But taken together they indicate that the vocabulary and syntax of 

limit proofs was yet to be codified. They are evidence that the standards by 

which limit arguments were to be judged, the terminology they should employ, 

and the assumptions that an author could expect in his reader, were not fixed. 

At the very least, Halley in all of these instances tried to help Newton’s readers 

follow proofs with whose novel methodology he suspected they would be 

unfamiliar.193 

 In two instances, however, Halley’s alterations were much more significant. 

One concerns an adjustment to Lemma 1, and is discussed below. The other 

relates to a passage in Lemma 2 of Book 2, and both Halley’s proposed 

alteration and Newton’s response reveal a latent unease regarding the logical 

status of the limit arguments. Lemma 2 contains an important discussion of the 

 

193 CUL, MS Add. 3965, 96–97. 
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nature of infinitesimal moments, and is one of a handful of sections of the 

Principia which explicitly address the foundations of Newton’s limit methods. 

The draft manuscript Halley saw is no longer extnat, but a translation of the 

corresponding passage in the published first edition reads as follows: 

I here consider these quantities as indeterminate and variable, and 

increasing or decreasing as if by a continual motion of flux; and it is their 

momentary increments or decrements that I mean by the name 

‘moments’, in such a way that increments are considered as added or 

positive moments, and decrements as subtracted or negative moments. 

But take care that you do not understand them to be finite particles. 

Moments, as soon as they are of finite magnitude, cease to be moments. 

They must be understood to be the just-now nascent beginnings of finite 

magnitudes. For in this lemma the magnitude of moments is not 

regarded, but only their first proportion when nascent. It comes to the 

same thing if in place of moments there are used either the velocities of 

increments and decrements (which it is also possible to call motions, 

mutations, and fluxions of quantities) or any finite quantities proportional 

to these velocities.  

When Halley read the draft version of this passage (which, to repeat, may not 

have been identical to this text), he advised inserting the following, immediately 

after “But take care that you do not understand them to be finite particles” 

(“Cave tamen intellexeris particulas finitas”): 

Finiri enim repugnat aliqua tenus perpetuo earum incremento, aut 

decremento194 

For being finite is somewhat incompatible with their continual increment 

and decrement 

 

194 Ibid., 96r. 
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These words do not reflect well on Halley’s perception of the persuasiveness of 

the Newton’s proofs. If the modern reader judges the original phrasing of 

Lemma 2 to be less than fully rigorous, then Halley’s proposed addition strongly 

indicates misgivings with the underlying methodology. Even more 

disconcertingly, when he received this suggested edit from Halley, Newton 

agreed to include it. He inserted the words in a slightly different place (after 

“desinunt esse momenta” rather than “finitas”), and because the manuscript 

Halley read has been lost, it is not clear how much redrafting this passage 

underwent, but they appeared in full in the final publication. It is difficult to 

imagine how any reader would find the vague wording of this phrase would do 

anything other than weaken trust in the robustness of the concepts to which it 

refers. Furthermore, this addition calls into question the confidence Halley 

placed in the Scholium before he proposed it. If he had not had doubts about 

the validity of the passage as it stood, he would not have suggested inserting 

this sentence; and if Newton had been more confident, he would never have 

accepted. As it happens, Newton did replace the sentence in the second edition 

of 1713, along with “Momenta… desinunt esse momenta.” But their later 

removal only serves to emphasise the point, which is that their inclusion in 1687 

is admission of unease. Halley’s suggested change to Lemma 2 provides a 

clear indication of his uncertainty about the logical characteristics of Newton’s 

concept of a geometrical limit. 

 The importance of these alterations must not be over-stated. Taken 

together, Halley’s comments on Newton’s limit results count fewer than a dozen 

in a five-hundred-page book. His notes on f.97 of MS Add. 3965 show that 

Halley carefully studied the Lemmas that subsequently became Section 1, and 
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(on paper, at least) did not register any objections either to individual results or 

the validity of its foundational techniques. Halley inspected Newton’s 

arguments, and authorised their publication. The few comments he made 

advised small changes of phrasing. Nevertheless, it is legitimate to examine the 

circumstances of Halley’s acceptance very closely. Sharing Newton’s intuition 

that his conclusions are correct is not the same as being confident that his 

arguments are sound, and in this context fine adjustments of terminology are 

significant. Any tinkering with Newton’s articulation of his foundational 

assumptions is of considerable importance. The distinction between a “moment” 

of time and a “particle” of time is significant if there is any doubt that either might 

be ill-defined. At the very least, Halley’s view that a limit argument could be 

improved by the words “donec tandem”, and that “ipso descensus initio” was 

more persuasive than “descensus initio,” shows that the criteria by which such 

demonstrations were to be judged were, at the time of his reading, not agreed 

upon. In other words, these edits provide concrete evidence of a negotiation 

between Halley and Newton over what constituted an acceptable proof. And no 

editor confidently secure in the logical status of the method of first and last 

ratios would write the sentence “Finiri enim repugnat aliqua tenus perpetuo 

earum incremento, aut decrement,” any more than an author capable of 

robustly defending his methods would accept this insertion. So while Halley 

shared Newton’s intuitive grasp of his limit-based techniques and did not seek 

to challenge the correctness of his conclusions, his editorial notes give us good 

cause to question the extent of his approval: the primary evidence suggests that 

Halley’s assent to the limit methods in the Principia was qualified. 

4.2.3 Leibniz and Huygens’ adherence to infinitesimals 
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I drew attention in the Introduction to the theme in the secondary literature that 

the decades following publication saw a programme of “translation” of the 

Principia’s geometrical limit-based demonstrations into proofs founded on 

infinitesimals. This programme both drove and was driven by the rivalry 

between Newton and Leibniz, and so was simultaneously ideological and 

sociological in origin.195  But in this section I shall argue that it was also a 

function of how the book was read. The primary evidence shows that some of 

Newton’s early readers processed his arguments not in the geometrical limit 

format in which they were presented, but in terms of the infinitesimal framework 

to which they were accustomed. This was not a retrospective exercise readers 

embarked upon after they had already approved the text; they did not first read 

the book and then translate its proofs into infinitesimals. Rather, they processed 

Newton’s arguments by reconstructing them in their own terms. They judged the 

validity of the Principia’s conclusions by whether they could prove them using 

infinitesimals. They read the book from within a different conceptual framework 

in which it was written.  

 Two particularly important such readers were Leibniz and Huygens. 

Leibniz’s response to the mathematical methodology of the Principia is one of 

the themes of Bertoloni Meli’s studies, and he has shown that Leibniz paid 

detailed attention Newton’s geometrical limit proofs. In the Notes and Marginalia 

he made in 1688, Leibniz commented on almost all of the proofs in Section 1, 

and in the first set of Excerpts from 1689 he revisited Lemmas 9, 10 and 11. 

Leibniz disagreed with much of what he read, and his criticisms of individual 

 

195  See, for example, Hall, Philosophers at War; Bertoloni Meli, Equivalence and Priority; 
Guicciardini, Reading the Principia. 



246 
 

proofs will be considered in detail below. Their overall pattern, however, is very 

clear: Leibniz processed all Newton’s proofs using the vocabulary and 

methodology of infinitesimals. He responded to Newton’s geometrical limit 

definition in Lemma 1 by writing “Dubitari potest an sit aliqua ultima differentia”; 

in his Excerpt from Lemma 11, he described a geometrical quantity that is 

vanishing in the limit as a “magnitudinem initialem pervenisse primi gradus,” 

and a short section of curve as an “arcum infinite parvum primi gradus”; and 

when he came across results he thought he had already proved, he wrote “hoc 

ita meo more effero” (in Lemma 2) and “Haec breviter meo more demonstrandi” 

(after Lemma 11). This attention on whether Newton’s results could also be 

proved “meo more” shows that Leibniz’s aim was not so much to assimilate 

Newton’s proofs within the conceptual framework in which they were presented, 

but to ascertain whether they corresponded to results he could establish within 

his own. It was this conceptual mismatch, and not their internal validity, that led 

him to conclude that some of Newton’s proofs were wrong. I will argue below 

that Leibniz was not persuaded by the mathematical demonstrations of the 

Principia in large part because he did not engage with them in the terms in 

which they were written.196 

 Unlike Leibniz, Huygens engaged in detail with only a handful of passages in 

the Principia. As shown in Chapter 1, the historical record suggests that he 

cherry-picked passages that aligned with his specific research interests, and at 

no point attempted a wider reading of the text. In line with this, there is no 

evidence that Huygens studied the foundational propositions of the method of 

first and last ratios in Section 1 of Book 1. He left no reading notes relating to 

 

196 Notes, 226, 230; Excerpts, 480. 
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these results, and does not refer to them in detail in his correspondence. He 

did, however, engage with proofs involving limit arguments elsewhere in the 

book. The most reasonable way to summarise the manner in which he did so is 

that he reinterpreted Newton’s geometrical limit arguments in terms of his pre-

existing conceptual framework of infinitesimals and infinite series. Before 

presenting examples, however, let me emphasise that Huygens did not embark 

on these reformulations having first tried to assimilate the method of first and 

last ratios in Section 1. He reconstructed Newton’s geometrical limit arguments 

in terms of infinitesimals because he had chosen not to study the conceptual 

foundations set out at the start of the book. In other words, when Newton 

provided what he thought was a careful and precise justification for his new 

methodology, Huygens decided to ignore it. Huygens made no attempt to 

engage with the conceptual framework in which the Principia was written. 

 Much of the relevant primary evidence in support of this claim has already 

been presented. In Chapter 2, I showed how Huygens verified Proposition 5 of 

Book 2 not by working through the argument in the text, but instead by 

generating his own independent proof based on the methodology of series. 

Because he chose not to engage with Newton’s geometrical limits, he had to 

justify it by alternative means using his own conceptual framework. I also 

discused Huygens’ recreation of Newton’s proof of Proposition 6 of Book 1 in 

terms of Euclidean proportions, which on the face of it need not be incompatible 

with geometrical limit proofs. But Huygens’ proof depended upon the fact that 

for an infinitely small angle  , the versed sine, 1 cos , is proportional to the 

square of the sine, and this result comes from series expansions. Just as in 

Proposition 5, then, Huygens needed to appeal to the methodology of 
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infinitesimals to verify a proof Newton had constructed in terms of geometrical 

limits. Furthermore, I demonstrated in Chapter 4 that when reading Proposition 

9 of Book 1 Huygens misunderstood the logical structure of Newton’s argument 

because he did not see the importance of the limit argument in the second step. 

These three examples all therefore show Huygens attempting to process 

Newton’s dynamic, geometrical limit proofs using the methodology of static, 

infinitesimal increments. In Propositions 5 and 6 this caused him to generate 

alternative derivations based on infinite series, and in Proposition 9 it led him to 

misunderstand the argument. Huygens did not in any of the extant evidence 

engage with Newton’s arguments using the conceptual framework in which they 

were presented. 

 Huygens’ reading notes on Lemma 2 and Proposition 8 of Book 2 provide 

further examples. Lemma 2 comprises a general statement about the heuristics 

for differentiation and differentials, containing what the modern reader 

recognises as the product rule and quotient rule, as well as rules for 

differentiating powers and roots. Newton expresses his results using the 

vocabulary of moments (“momenta”), which he describes as the “instantaneous 

increments or decrements” of variable quantities. Lemma 2 considers six 

separate cases, and Huygens’s note relates to the first, which concerns the 

moment of the quantity AB. Reformulated in modern terminology, this is: 

 

   . .d AB B dA AdB  
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This is equivalent to the product rule for differentiation, and there are a few 

different ways in which a modern textbook might justify this result, depending on 

its readership. Newton’s explanation can be reconstructed as follows. 

 

 

   
   
   

 

 

 

The reader who consults the original text will see that Newton does not supply 

this diagram, which the reader is expected to infer. It shows an expanding 

rectangle of width A and height B. The width and height are increasing at 

different rates, with the instantaneous increment of A (its “moment”, dA) labelled 

as a, and that of B labelled b. Importantly, Newton directs his reader to consider 

the rectangle half a moment in time before it has area AB, and half a moment in 

time after it has area AB. It is easy to compute the area of the rectangle at these 

two instants: 

 

  
  

      

      

1 1 1 1 1
2 2 2 2 4

1 1 1 1 1
2 2 2 2 4

area half a moment before

area half a moment after

A a B b AB aB bA ab

A a B b AB aB bA ab
 

a 

b 

B 

A 
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Subtracting the first from the second gives that the increment in the area of the 

rectangle over the whole moment is aB bA , as was to be proved. 

 In his short note on this result, Huygens supplies an alternative proof:197 

 

 

 

It is clear from his diagram that, unlike Newton, Huygens wishes to consider not 

the half-moment before and the half-moment after the rectangle has area AB, 

but one full moment afterwards. At this instant the area is 

  

        area one moment after A a B b AB aB bA ab  

 

The increase in area is therefore  aB bA ab . Neglecting the infinitesimal term 

ab, this leaves aB bA , as required. Huygens’ proof arrives at the result almost 

immediately, using only one line of working to Newton’s two. 

 

197 CH, HUG 7, 16r (=OC, 21:421). 
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 Both proofs of this simple result are easy to understand. Nevertheless, 

Huygens’ is simpler. It is analogous to the intuitive justification a modern reader 

might give of the product rule today. Indeed, Newton’s insistence on considering 

the half-moment before and the half-moment after seems unnecessarily fiddly. 

His reason for doing so is in the step in Huygens’ proof that was carefully elided 

above: the neglecting of the infinitesimal term ab. To Huygens this step was 

sufficiently automatic that he did not write “ab” anywhere on his note. Ignoring 

infinitesimal terms was such an established part of his conceptual framework 

that he didn’t make it explicit. For Newton, on the other hand, avoiding 

infinitesimals was of the utmost importance. The contortion of his proof to 

consider not the moment after but the half-moment before and the half-moment 

after ingeniously achieves this aim. But his text was not read in the same way 

that it was written: Huygens processed its proofs from within a conceptual 

framework different from Newton’s. 

 Huygens’ note on Proposition 8 appears as follows:198 

 

 

 

198 CH, HUG 7, 16r (=OC, 21:422). 
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Proposition 8 concerns a body falling vertically under gravity through a medium 

which provides resistance proportional to the square of the velocity, and 

Huygens’ figure at the top right represents the horizontal axis of the diagram on 

page 255 of the Principia. The details of Proposition 8 are not important here, 

because Huygens’ note refers to a single line in Newton’s proof that can be 

understood in isolation from the rest, and which Huygens has written out on the 

far left: “Erit hujus momentum KL ut illius momentum 2APQ”.199 In Proposition 8 

KL is defined as the moment of AK, which has been shown to be proportional to 

2A P ; and PQ is the moment of AP. Huygens therefore wishes to verify that the 

moment of 2A P  will be 2AP PQ , where PQ is the moment of AP. The 

modern reader will recognise this as a simple example of the chain rule. Newton 

does not justify this assertion explicitly in Proposition 8, relying on the reader to 

realise that it follows from the general statement of Lemma 2. Huygens on the 

other hand – who, so far as can be inferred from the evidence, only worked 

through the first of the six cases considered in Lemma 2 – wishes to verify it 

directly.  

 At the bottom left of his note, he introduces the symbols a, b, c and x to 

represent AK, AP, PQ and KL respectively. He then considers an expanding 

square of side b, as he has drawn at the top. Since  2AK AP , the area of the 

square is a. The moment of b is c, and the moment of a is x, as he has shown 

on the diagram. Huygens explains his geometrical reasoning in the text on the 

right: 

 

199  Huygens has mislabelled this note “ad prop. 6. l. 2. Newtoni”, probably because the 
alternative title for Proposition 8 is Theorem 6. This slip has not been corrected by either the 
editors of the OC or Guicciardini. 
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Censetur quadratum AQ excedere quadratum AP duplo rectangulo APQ, 

neglecto minimo quadrato ex PQ. Hinc statim concludi potest rectae AK 

incrementa minima esse ut 2APQ. 

In symbolic terms, the area of the larger square  
2

b c  exceeds the area of 

the smaller square 2b  by double the rectangle bc, so long as the minimally 

small square 2c  is neglected. Thus the infinitesimal increment x is as 2bc as 

required.200 

 Huygens has therefore established to his own satisfaction the assertion in 

Proposition 8 he wished to verify. However, he is again explicitly using the 

methodology of infinitesimals that Newton so studiously avoids (“neglecto 

minimo quadrato ex PQ”), as is consistent with the pattern established by the 

other examples examined in this section. Huygens did not merely translate the 

geometrical limit results into the language of infinitesimals; rather, the only way 

he had of verifying Newton’s claims was by attempting to re-prove them using 

the analytical techniques with which he was already familiar. In most cases this 

resulted in alternative derivations which involved neglecting higher-order terms 

in series expansions. Viewed alongside his neglect of the method of first and 

last ratios in Section 1 of Book 1, the only fair conclusion to draw is therefore 

that he made no attempt to assimilate Newton’s methodology. He did not 

understand the proofs of the Principia on their own terms, because he did not 

try to do so: at best, he produced his own derivations of the conclusions at 

 

200 He has supplied an algebraic derivation of this result in the centre of the page, although I 
confess that I do not fully understand his train of thought. He appears to begin with the ratio 

     : : 2a a x b b c , from which the subsequent lines easily follow. But why he feels able to 

begin with this line, I am not sure: the only way I can make sense of it is by referring back to the 
geometrical argument he has provided in his note. 



254 
 

which they arrived. Huygens, like Leibniz, read Newton’s proofs within a 

different conceptual framework from that in which they were written. 

4.2.4 Gregory and Fatio’s successful assimilation 

If Flamsteed was casual, Halley uneasy, and Leibniz and Huygens resistant in 

their attitudes towards the mathematical methodology of the Principia, other 

readers were much more comfortable engaging with Newton’s proofs in the 

terms in which they were written. Gregory and Fatio are two such individuals, 

and I have already given a number of instances in which they carefully 

processed the limit arguments in the geometrical terms in which they were 

presented in the text, rather than judging them according to the criteria of an 

alternative infinitesimal methodology. In Gregory’s case, this was facilitated by 

his familiarity with his uncle James’ work, whose similarity to Newton’s is 

acknowledged at the end of his comments on Section 1 in the Notae. He here 

describes the method of first and last ratios as “a middle way between the 

method of exhaustion and infinitesimals” (“… de methodo exhaustionum et 

indivisibilibus ac inter illas mediam maluit insistere viam”). Guicciardini reports 

that in sections of the Notae I have been unable to examine, Gregory produces 

analytical proofs of results omitted by the text, employing algebraic methods 

Newton generally avoided in the Principia.201 Gregory therefore appears to have 

been able to adapt his methods to suit the circumstances. This willingness to 

engage with a variety of styles of proof is not displayed by any of Newton’s 

other readers, and is consistent with the conceptual flexibility he adopted when 

working through his proofs on orbital motion, as we shall see in Chapter 5. 

 

201 RS, MS210, 1v; Guicciardini, Reading the Principia, 179–84. 
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 Although less obviously alert to alternative methodologies, Fatio also 

engaged with Newton’s limit proofs in the geometric terms in which they were 

presented. He studied the arguments in Section 1 closely, just as he did the 

orbital force theorems that employed them in Sections 2 and 3. The long 

marginal note Fatio made alongside Proposition 43 of Book 1 was examined in 

Chapter 2, where my emphasis was on the novelty of this result, and the way in 

which the act of verifying Newton’s original proof organically led Fatio to 

generate this new piece of mathematics. Here I make the additional observation 

that this new proof is based on a geometrical limit argument. Fatio sufficiently 

trusted the validity of Newton’s methodology, and was sufficiently adept at 

manipulating it, to use it to produce a new piece of mathematics: in fact, it is the 

only example I have come across of a reader extending Newton’s results to 

generate a new conclusion using his method of first and last ratios. Just as with 

Gregory, however, Fatio’s successful assimilation of Newton’s methodology did 

not mean that he uncritically assented to his foundational proofs in Section 1, as 

I shall now address. 

4.3 Critiques of the method of first and last ratios in Section 1, Book 1 

Having considered the general responses to the geometrical limit methods 

deployed by Newton over the course of the Principia, I will now examine 

readers’ responses to the foundational exposition of the method of first and last 

ratios set out in the eleven lemmas and concluding scholium of Section 1 of 

Book 1. Although reactions to these passages varied, some clear patterns 

emerge. No objections were raised in the extant evidence against Lemmas 2, 3 

and 4, which concern what the modern reader recognises as definite integrals, 
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nor to the simple statement regarding similar shapes in Lemma 5. Surprisingly, 

this is also true of the circle of curvature proof in Lemma 11, possibly owing to 

its relative unimportance in the first edition. Readers of Lemma 10, on the other 

hand, were keen to clarify exactly how Newton intended the preceding 

mathematical results to apply to the concepts of physical mechanics. 

 There are two particularly significant observations to make, however. First, 

many readers either misunderstood or contested the limit definition in Lemma 1, 

and it is important to note that they did so because Newton’s poor wording 

rendered its logical structure obscure. Assent was thus denied to the 

foundational mathematical proposition of the book not on the grounds of an 

ideological objection to Newton’s methodology, but because the logic of his 

demonstration was unclear: Newton wrote the very first proof in the Principia, on 

which all the others depended, badly. And second, his readers did not see the 

need for the unusual “microscope” style of proof he deployed in Lemmas 6, 7, 8 

and 9. Both Fatio and Gregory thought the microscope was redundant, and 

urged its removal. This shows that, even when they were sympathetic to his 

mathematical methodology and agreed with its conclusions, Newton’s peers 

sometimes judged the arguments he provided in its support to be faulty. 

4.3.1 The limit definition in Lemma 1 

Lemma 1 comprises Newton’s geometrical definition of a limit, and is of extreme 

importance both to the internal logic of the Principia, and the broader history of 

mathematical analysis. Its precise articulation therefore merits careful scrutiny. 

On a local level, an individual’s reaction to Lemma 1 tended to determine how 

he subsequently engaged with all the other limit proofs in the book, and the 

response to this opening result generally provides a good indication of how a 
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given reader engaged with Newton’s methodology in later sections. Responses 

to Lemma 1 therefore varied widely, and cannot easily be summarised: some 

readers ignored it completely, some approved it without comment, some 

misunderstood its argument, some demanded it be rewritten, and some 

objected to the fundamental concepts with which it was articulated. The only 

definitive conclusion that can be drawn is that it did not receive universal 

assent. 

 Here is how the result appears in the printed first edition: 

 

 

Quantities, and also ratios of quantities, which in a given time constantly 

tend to equality, and which in this way are able to approach closer to 

each other than any given difference, become ultimately equal. 

If you deny this, let their ultimate difference be D. Therefore they cannot 

approach closer to equality than the given difference D, contrary to the 

hypothesis. 

The modern reader will immediately perceive affinities between Newton’s 

phrasing and the nineteenth-century, epsilon-delta formulation of a limit. Newton 

subsequently made significant alterations to both the statement and its proof, 

and it is an important aim of this section to establish the extent to which these 
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changes were made in response to his readers. Here is the updated version as 

it appears in the presentation copy he gave to Locke: 

 

 

 

The words “fiant ultimo inaequalis et” have been inserted at the start of the 

second sentence, which now translates as “If you deny this, let them become 

ultimately unequal, and let their ultimate difference be D.” This edit also appears 

in the “Alia Errata” section of Fatio’s reading notes, which means that it pre-

dates his meeting with Newton in March 1690. 202  However, Newton made 

further changes to the first sentence. Here is the final version as it appears in 

his annotated copy: 

 

 

202 OC, 10:153. 
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There have clearly been a number of alterations, but “Dato tempore” has 

ultimately been replaced with “tempore quovis finito”; “eo pacto” has become 

“ante finem temporis illius”; and “accedere possunt” has become “accedunt”. 

This is the version that appears in the third edition. However, it is noteworthy 

that Cohen and Whitman unilaterally made even more changes when producing 

their translation: 

Quantities, and also ratios of quantities, which in any finite time 

constantly tend to equality, and which before the end of that time 

approach so close to one other that their difference is less than any given 

quantity, become ultimately equal. 

If you deny this, let them become ultimately unequal, and let their 

ultimate difference be D. Then they cannot approach so close to equality 

that their difference is less than the given difference D, contrary to the 

hypothesis. 

It can be seen that they chose to translate “propius… quam pro data quavis 

differentia” as “so close... that their difference is less than any given quantity” 

and “propius… quam pro data differentia D” as “so close… that their difference 

is less than the given difference D.” Cohen and Whitman did not in their 

apparatus acknowledge that they had altered Newton’s wording in this way, but 
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clearly considered their changes to be of benefit to any modern reader who 

wished to understand the meaning of these lines. Three hundred years after 

they were originally composed, Newton’s words are still not easy to follow. 

 The logical structure of Lemma 1 also merits close consideration. In 

particular, it is important to note that Newton is using a proof by contradiction. 

He claims that, given two quantities that approach each other in such a way that 

they can come closer than any given difference, they must become ultimately 

equal. He proves this by arguing that, if they are not ultimately equal, then they 

cannot approach each other closer than any given difference. He therefore 

proves his original statement indirectly, by deriving a contradiction from its 

negation. The logical structure of this proof by contradiction will be very 

important in what follows.203 

 Some of Newton’s readers did not remark on Lemma 1. It does not appear 

in Fatio’s commentary, for example, nor in Gregory’s Notae. For these two 

readers, it is fair to infer from this absence that they assented to the validity of 

the original wording. This is consistent with their successful engagement with 

the limit methods later in the Principia. On the other hand, the absence of any 

record of Huygens commenting on Lemma 1 is consistent with the assumption 

that he never studied the opening section, and that he processed the later 

proofs in the book in terms of infinitesimals precisely because he never made 

any attempt to assimilate Newton’s methodology. 

 

203  The proof may alternatively be viewed as a proof by contraposition: if two quantities 
approach each other in such a way that they can come closer than any given difference, then 
they must ultimately become equal. According to this reading, Newton proves the statement by 
demonstrating the contrapositive: if they don’t become ultimately equal, then they cannot come 
closer than any given difference. Mutatis mutandis, my analysis holds either way. 
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 However, Halley’s notes – which reflect his reading of draft manuscripts 

before publication – do make a handful of references to the method of first and 

last ratios:204 

 

 

 

Two of these lines relate to the phrasing of Lemma 1, and neither can be 

conclusively decoded. The first is the top line. Halley originally wrote “quam sub 

data diff &c,” and either he or Newton – I cannot tell from the handwriting – 

subsequently changed “sub” to “pro.” The draft version on which this note is 

based no longer exists, so it is not clear what change Halley is proposing, nor 

whether it relates to the “quam pro data differentia” in the statement or the 

proof. The absence of “quavis” suggests the latter, but “lin. 3” may indicate the 

former. He might intend it to apply to both. However, the fourth line in the image 

provides further information. It relates to a very similar form of words in Case 3 

of Lemma 11, which considers two angles tending to equality in the limit. For 

this edit the manuscript draft on which Halley’s edit was based does still exist, 

and it reads “propius accedent ad invicem quam‸pro differentia quavis 

assignata.” The text is a fair copy transcribed by Newton’s amanuensis, to 

which Newton has subsequently added “pro” in exactly the position Halley 

suggested “secundum.” 

 

204 CUL, MS Add. 3965, 97r. 
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 Putting this together, I suggest that Newton’s original phrasing in both 

Lemma 1 and Lemma 11 had been “propius… quam differentia.” Halley 

suggested “quam sub” in Lemma 1 and “quam secundum” in Lemma 11, but 

Newton preferred “quam pro” in both cases, as the final version reflects. If this 

reconstruction is correct, these edits demonstrate Halley altering the phrasing of 

one of the most significant lines in the book: he is negotiating with Newton his 

definition of a geometrical limit. It might be argued that he is only tinkering with 

unimportant prepositions, but the example of Cohen and Whitman’s 

unauthorised rewording shows that even small changes of phrasing make a 

difference to how easily a passage may be understood, and thus how effectively 

it persuades its readers. And it is clear that Newton agreed with Halley that an 

improvement could be made, since he changed his text in response. Moreover, 

a second, more tantalising, possibility presents itself. There is no way of telling 

from Halley’s manuscript, but it is possible that the word “data” was also absent 

from the draft he read, and that he was suggesting adding “pro data” to the 

phrasing of Lemma 1. This is not impossible, since the lines still make sense 

with “data” removed – and if this were the case, then Halley would have made 

an extremely significant contribution to the formulation of the concept of a limit. 

It is only the inclusion of “given” which makes it clear that the difference D 

should be conceived as a fixed, finite quantity that a second variable is then 

challenged to fall beneath, as conveyed by the symbols “  0 ” in the modern 

epsilon-delta definition. But this suggestion is speculative, and there is no firm 

evidence in its support: what is clear, however, is that Halley thought he could 

improve on the phrasing of Lemma 1, and successfully lobbied Newton to 

change it. 
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 The most direct criticism of Lemma 1 in the historical record appears in 

Clerke’s letter to Newton of 21 November 1687:205 

but I must needs crave your pardon for one more touch at parting; viz: 

concerning your lemmata. If your first lemma had been thus Quantitates 

ut et Quantitatum rationes quae ad aequalitatem dato tempore 

constanter tendunt, fiunt ultimo aequales, who could have denied it? But 

then the words dato tempore, seem to make the proposition identical; as 

if it were said quantities wch will be equal will be equal: the Asymptots 

will indefinitely draw nearer & nearer though never to touch dato 

tempore.  

But your adding et eo pacto – pro data quavis differentia; if upon this it 

had been said – nullam habent ultimam differentiam & proved – si negas, 

sit earum ultima differentia D, ergo nequeunt propius accedere quam, 

per datam differentiam D. contra hypothesin: who could denie it? If not! 

then your Lemma cannot be admitted; for whereas you say, sit earum 

ultima Differentia D, it is already proved that there is no such thing, & 

indeed all mathematicians have hitherto held that there is no such thing 

as quantitas indvisibilis [sic] or ultima ratio but you say ultima ratio 

quacum evanescent p.35. wch determines nothing for with wch of all 

these lines or angles doth the Angles ABC evanescere determine wch of 

these or any other you will, a lesse may be given. 

 

 

 

 

 

205 Clerke to Newton, NC, 2:496–500. 

A 

B 

C 
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His sense in his first opening sentences is very clear. If Newton had just written 

“quantities which tend towards equality in a given time become ultimately 

equal,” then that proposition would have been undeniable. Newton’s inclusion of 

the words “in a given time” make it tautologically true, Clerke says, because if 

they tend to equality within a given time, then of course they will ultimately be 

equal. This is a misunderstanding on Clerke’s part. He is erroneously 

understands “tend to equality” to mean “attain equality,” which is not Newton’s 

intention. But his more significant confusion is in the second half of the 

passage. When Newton writes “sit earum ultima differentia D,” Clerke objects 

that this is not possible, because there is no such thing as an “ultimate 

difference.” However small the difference is, there can always be a smaller one. 

It has been proved that there isn’t such a thing as an “ultima differentia” or a 

“quantitas indivisibilis” or an “ultima ratio.” As his final diagram shows, given any 

small angle, a smaller one can always be found. This invalidates the lemma, 

Clerke argues, and having denied Newton’s definition of a geometrical limit, he 

therefore denies all the other results in Section 1. In Lemmas 6, 7, 8 and 9 it is 

not true to say that the respective angles, curves, tangents and triangles 

coincide in the given ratios, because when the points meet the constructions on 

which they are based disappear. As he writes later in his letter, “after coition of 

the points… there will be no lines left for coincidence.” Clerke concedes that he 

might have granted these results if Newton had only claimed that they were 

approximately equal rather than perfectly identical. He writes that “you might 

wth the consent of all have taken propemodum aequales per aequalibus.” But 

as it stands, “such things cannot passe for strict Geometrie.” The entire method 

of first and last ratios is undermined as soon as Newton considers the “ultima 
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differentia” between two approaching quantities, he objects, because there is no 

such thing as a “last difference.” 

 Of course, the modern reader can see that this is not what Newton intends. 

Clerke has misunderstood. And the core of his misunderstanding is that he has 

not recognised that Newton is using a proof by contradiction. Newton writes “sit 

earum ultima differentia D” not because he thinks there is an ultimate difference 

between two approaching quantities, but because that is the negation of the 

statement he is trying to prove. To someone who intuits what Newton intends, it 

is obvious that in this context he means “ultima differentia” to stand for a fixed, 

finite limit beyond which the two approaching quantities do not converge. But 

Clerke does not intuit that. He thinks by “ultima differentia” Newton means the 

final difference between two approaching quantities. But that isn’t what he 

means, and Newton would agree that such a final difference does not exist. 

Clerke’s confusion is driven by his failure to acknowledge the structure of the 

demonstration, since he does not recognise that this is a proof by contradiction. 

His misunderstanding is logical, not conceptual. 

 A problem for historians who dismiss Clerke’s criticisms as naïve is that 

Leibniz misunderstood Lemma 1 in just the same way. He also did not 

recognise that Newton was using a proof by contradiction. In his Notes on 

Newton’s proof he wrote “Dubitari potest an sit aliqua ultima differentia,”206 

almost exactly as Clerke did: Leibniz’s immediate response to reading the 

words of Lemma 1 was to object that such an “ultimate difference” does not 

exist. His Marginalia alongside Lemma 1 read “Si asymptotae sint potest esse 

 

206 Notes, 226. 
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nulla differentia ultima, et tamen nunquam fient aequales,”207 which is identical 

to Clerke’s retort that asymptotes approach closer and closer with no “ultimate 

difference” but never become equal. Like Clerke, Leibniz understood from “Si 

negas, sit earum ultima differentia D” that Newton thought there existed an 

ultimate difference between two approaching quantities, and objected that this 

was not true. He also did not grasp that Newton made this assumption as part 

of a proof by contradiction. 

 And like Clerke, this denial of Lemma 1 lead him to reject the methodology 

in the remainder of the section. Having been unpersuaded by Newton’s 

articulation of a limit in his opening result, Leibniz proceeded to assimilate the 

proofs in terms of his pre-existing conceptual framework of infinitesimals. This is 

particularly clear in his Excerpt from Lemma 11. This is mostly a transcription 

lifted directly from the text, but one of the few occasions when he deviates from 

Newton’s wording is when he replaces Newton’s sentence “Est ergo, per 

Lemma I, ratio ultima AB quad. ad Ab quad. aequalis rationi ultimae BD ad bd” 

with “Ergo postremo coincident.”208 He also objects that “Si accedent usque ad 

A ergo coincident… dicendum est non coincidere, sed ad magnitudinem 

initialem pervenisse primi gradus.”209 Furthermore, he says, 

Mirum quod haec dicantur ultimo rationem habere cum coincidant, sed 

respondeo revera non coincidere, cum formant arcum infinite parvum 

primi gradus, qui a recta non differet nisi incomparabiliter.210 

In other words, when Newton in Lemma 11 asserted that two quantities 

approach each other in the limit (terminology which has been defined by 
 

207 Marginalia, 52. 
208 Excerpts, 480. 
209 Ibid., 480. 
210 Ibid., 480. 
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Lemma 1), Leibniz raised the objection that they are in fact separated by 

infinitesimals of the first order (concepts which the text studiously avoids). He 

judged Newton’s method of first and last ratios by whether or not it conformed to 

the expectations of his pre-existing conceptual framework. He did not engage 

with Newton’s proofs in the terms that they were written. Lemma 1 did not 

persuade him to adopt Newton’s concept of a limit, because the argument it 

presented did not convince him – and the cause of this was his failure to realise 

that it was a proof by contradiction. Notwithstanding the manifest differences in 

their responses to Newton’s book, the very first mathematical argument in the 

Principia failed to persuade Leibniz in exactly the same way that it failed to 

persuade Clerke. 

 If, in the light of Clerke and Leibniz’s comments, the edits Newton made to 

Lemma 1 after publication are re-examined, they reveal something very 

interesting. I have argued that both Clerke and Leibniz rejected the method of 

first and last ratios because they did not understand the logical structure of 

Lemma 1. However, this logical structure is extremely unclear in the original 

phrasing in the first edition. Furthermore, Newton’s later insertion of “fiant ultimo 

inaequales et” significantly clarifies his meaning. The effect of these words is to 

make it clear that Newton does not in that sentence consider the two quantities 

to be approaching ever closer towards an ultimate difference, but that they are 

in the end separated by a fixed difference. That is, these words make it much 

clearer that the assumption “sit earum ultima differentia D” is part of a proof by 

contradiction. The alterations to the first sentence likewise emphasise that a 

finite time period is being considered in the proof, rather than an infinitely 

extending example in which the quantities approach asymptotically. The 
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timeline for these edits is uncertain, because although Fatio’s notes show that 

“fiant ultimo inaequales” must have been inserted before March 1690, the other 

changes cannot reliably be dated. But it is clear that they address difficulties 

readers had understanding the proof. These edits don’t fix conceptual difficulties 

so much as logical ones: they are the author’s attempts to clarify his argument 

for correspondents who he knows have misunderstood it. And there is a strong 

possibility that at least some of the edits were made in direct response to 

Clerke’s complaints, because “fiant ultimo inaequales” resolves his logical 

misunderstanding, and the changes to “dato tempore” and “eo pacto” 

correspond exactly to the phrases he picks out in his letter. If this is indeed the 

case, then far from being dismissed by the secondary literature, Clerke’s name 

deserves to be known for prompting Newton to re-write some of the most 

important lines in the Principia, and thus to refine the articulation of one of the 

foundational concepts in the history of mathematics. 

4.3.2 Newton’s microscope in Lemmas 7 – 9 

A second feature of Section 1 that drew attention from Newton’s readers was 

the style of proof he used in Lemmas 6, 7, 8 and 9. This style was deployed 

very similarly in all four results, and when it is discussed in the secondary 

literature is sometimes labelled “Newton’s microscope.”211 But it will become 

apparent that, although this microscope argument was of critical importance to 

Newton’s justification of his method of first and last ratios, his readers either 

struggled to understand it or thought that it was irrelevant. Lemma 6 merits 

separate consideration, and will be discussed in the next section; of the others, 

Lemma 7 is the most convenient to analyse, and it will be a simple matter to see 
 

211 Densmore, Newton’s Principia: The Central Argument, 84. 
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how this style of proof, as well as readers’ responses to it, apply directly to 

Lemmas 8 and 9. 

 Lemma 7 is based on the following construction (which is identical to that 

used in Lemmas 6 and 8, and very similar to that in Lemma 9): 

 

 

 

It will be helpful to gain an intuitive understanding of Lemma 7 before examining 

Newton’s statement and proof. This is best done by focussing on the points A, 

B, D and R in the diagram (and ignoring, for the moment, points b, d and r). 

Some fixed curve passes through point A and point B, and – even though many 

other points in the construction are about to move – this curve remains fixed 

throughout. The line AD is the tangent to this curve at A. The point R lies on 

some straight line meeting the curve and the tangent at A: in the diagram angle 

RAD looks like a right angle, but this is not a requirement. The straight line AB 

is the chord of the arc AB, and Newton is going to describe BD as the “secant.” 

In intuitive terms, Lemma 7 says that when the curve and the point A are held 



270 
 

fixed, as the point B slides along the curve towards the point A, bringing points 

D and R with it, then in the limit the arc AB, the chord AB and the tangent AD 

are all equal in length. 

 With an intuitive understanding of the result, the difficulties in proving it 

satisfactorily are immediately apparent. Clerke succinctly articulated the 

problem in the letter quoted above, when he wrote that “after coition of the 

points A, B. there will be no lines left for coincidence”: as soon as the point B 

arrives at A, the arc, chord and tangent all disappear, and so the result 

becomes meaningless. Newton attempted to overcome this problem using the 

points b, d and r. Here is how the statement and its proof appear in the first 

edition: 

 

 

 

The construction of the points r, b and d is reasonably clear, with triangle dAr an 

enlargement of triangle DAR, and with arc Ab an enlargement of arc AB. Now 

Newton lets B move along the curve towards AB. As it does so, the angle dAb, 

which is equal to angle DAB, tends towards zero. But the last three lines of the 

proof are less obvious. As B moves towards A along the arc AB and the triangle 
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DAR shrinks, it is not immediately clear how the point b is moving. If it is also 

moving towards A along the arc Ab, such that triangle dAr is shrinking in 

proportion, it makes some intuitive sense that the straight line Ab, the straight 

line Ad and the arc Ab will coincide. But then little has been gained by 

considering d, b and r rather than D, B and R, since if all six points are 

vanishing towards the point A, then both constructions cease to exist when they 

ultimately meet. 

 The reader may already have gathered that this is not what Newton intends. 

Rather, he means it to be understood that, as B slides along the arc towards A 

and triangle DAR shrinks, triangle dAr remains the same size. That is, as points 

D and R move in towards A, points d and r stay fixed. At all times the arc Ab is 

understood to be constructed similar to the arc AB, which means that as the 

point B gradually approaches the (moving) point D, the point b gradually 

approaches the (fixed) point d. The line Ad therefore does not change in either 

position or length, as the line Ab gradually comes up to meet it. So while 

throughout the process the construction dArb is an enlargement of the 

construction DARB, the scale factor of that enlargement increases as B 

approaches A, in such a way that the size of triangle dAr remains fixed. The 

construction “microscopes” in. And since the construction dArb is always finite, 

this allows Newton unproblematically to infer that in the limit the line Ab, the line 

Ad and the arc Ab are in the ratio of equality; and because it is at all times an 

enlargement of the construction DARB, this allows him to conclude that in the 

limit the line AB, the line AD and the arc AB are also in the ratio of equality, as 

required. 
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 Any reader who did not immediately grasp that this was what Newton meant 

is in good company. Here are the notes Fatio made on this result:212 

p. 30. l. 7. lege. Nam dum punctum ad punctum A accedit, intelligantur 

semper produci AB et AD ad b et d, ut sint Ab, Ad magnitudines finitae 

hoc est magnitudines non infinitae parvae, et secanti BD parallela 

agi bd quae proinde lineam ADd secabit in d, cum ea constituens 

angulum Adb aequalem ango ADB tangentis cum secante atque adeo 

non infinite parvum. Sitque arcus Ab semper similis arcui AB. Et punctis 

&c. 

p. 30. l. 9. evanescet; coincident autem puncta b et d, adeoque &c. 

p. 30, l. 7 read: For during the time in which the point [B] approaches the 

point A, let AB and AD be understood always to be produced to b and d, 

so that Ab and Ad are finite magnitudes, that is, not infinitely small 

magnitudes; and let bd be understood always to be drawn parallel to the 

secant BD; and so bd will therefore cut the line ADd at d, forming with it 

the angle Adb equal to the angle ADB of the tangent with the secant, and 

so therefore not infinitely small. And let the arc Ab always be similar to 

the arc AB. And with the points etc. 

p. 30, l. 9 [And as the points A and B come together, the angle dAb] will 

vanish; but the points b and d will coincide, and therefore [the straight 

lines Ab and Ad and the intermediate arc Ab will coincide] 

It should be clear how these comments correspond to the original text replicated 

above, and it is easy to see that Fatio’s proposed edits directly address the 

ambiguities just discussed. He wishes it to be understood that AB and AD are 

“semper produci” to the points b and d “dum punctum [B] ad punctum A 

accredit.” He wants to make it clear that Ab and Ad are “magnitudines finitae 

 

212 OC, 10:148. 
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hoc est magnitudines non infinitae parvae,” that the arc Ab is “semper” similar to 

the arc AB, and that in the limit points b and d “coincident.” In other words, he 

wishes to clarify how Newton’s microscope method works. It is important to note 

that Fatio composed these notes during his own independent study of the text, 

before he sat down to discuss his difficulties with Newton in March 1690. That 

is, he was not so baffled that he needed Newton to explain the proof to him. But 

although had managed to work out what Newton meant, he wanted it to be re-

written much more clearly. He didn’t think that the original text constituted a 

persuasive mathematical argument, and so negotiated with Newton over what 

constituted an acceptable proof. And Fatio was successful in that negotiation, 

because Newton decided to change the text, as this image from his annotated 

copy shows: 

 

 

 

In translation, the edited text reads: 

For during the time in which the point B approaches the point A, let it be 

understood that the lines AB and AD are always produced to the far-off 

points b and d, and that bd is drawn parallel to the secant BD. And let the 

arc Ab always be similar to the arc AB. Then with the points A and B 

coming together, the angle dAb (by the preceding Lemma) will vanish, 
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and thus the always-finite straight lines Ab and Ad and the intermediate 

arc Ab will coincide, and therefore will be equal. Whence the 

disappearing straight lines AB and AD and the intermediate arc AB, 

always proportional with these, will have an ultimate ratio of equality. 

Q.E.D. 

Newton’s edits do not follow Fatio’s proposals exactly, but his influence is very 

clearly identifiable. AB and AD are “semper” extended to the “longinqua” points 

b and d “dum punctum B ad punctum A accredit”. The arc Ab is “semper” similar 

to the arc AB, and the distinction is emphasised between the lines Ab and Ad, 

which are “semper finitae”, and the lines AB and AD, which are “evanescentes”. 

Newton also made extremely similar changes to the proofs of Lemmas 8 and 9 

in response to Fatio’s notes, as the reader may easily attest. 

 Gregory and Leibniz were also struck by the unusual style of the microscope 

proofs, but responded very differently. Here is Gregory’s comment in his Notae: 

Non facile est conficere quare in lemmatis hujus sectionis presertim in 

8vo et 9no lemmate adhibeat Auctor arcum Ab ejusque tangentem Ad et 

secantem rd proportionales similes et similiter positos arcum AB ejusque 

tengenti AD et secant AR, ut demonstrandum primo concludat in arcu Ab 

ejusque adjunctis, illud postea transferendo ad arcum AB cum pari jure 

et ob eandem rationem, illud primo asseruisset de arcu AB primario quo 

de arcu simili et similiter posito Ab.213 

It is not easy to establish why in the lemmas of this section, especially in 

the eighth and ninth lemma, the author adds the curve Ab, its tangent Ad 

and secant rd proportional, similar and similarly placed to the curve AB 

its tangent AD and secant AR [sic – he means RD], in such a way that he 

might first conclude the thing to be demonstrated in the curve Ab and its 

additions, and then transfer it afterwards to the curve AB; with equal 

 

213 RS, MS210, 1r. 
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justice and by the same reasoning, he might have first asserted about 

the primary curve AB that which he asserted about the similar and 

similarly placed curve Ab. 

Gregory references Lemmas 8 and 9 in these lines, but his claim equally 

applies to Lemma 7: his view is very clearly that the microscope is not required. 

The enlarged construction dArb is redundant and adds nothing, Gregory says, 

because the proofs are just as valid for the original construction DARB. This 

assertion could mean one of two things: either he has misunderstood Newton’s 

microscope argument (perhaps thinking that as DARB shrinks dArb shrinks 

too), or he has correctly understood the argument but thinks it unnecessary. 

Whichever it is he records no objection to the result, so he must have been 

comfortable concluding directly that ratios of the line AB, the tangent AD and 

the arc AB to each other tend to equality, even as DARB vanishes. But he has 

definitely not recognised why Newton felt the need to include the microscoped 

enlargement. Gregory has not acknowledged that Newton is uncomfortable 

establishing the ratios in the vanishing construction, and he has not explained 

why he thinks Newton’s discomfort is misplaced. 

 Leibniz, too, thought that the microscope was superfluous. In his Marginalia 

alongside Lemma 9, he wrote the following:214 

hoc idem statim dici poterat de B, F, D, C, G, E quod hic dicitur de 

assumtis prius b, f, d, c, g, e. itaque frustra assumuntur. Quandoque 

bonus dormitat Homerus. 

Whether Leibniz ultimately accepted the result of Lemma 9 is moot. In his later 

Notes he attempted to generate an alternative proof using infinitesimals, and 

 

214 Marginalia, 52. 



276 
 

when he was not able to do so erroneously concluded that Newton was wrong; 

Bertoloni Meli asserts that its inclusion in the Excerpts is evidence that he 

subsequently changed his mind, but I am not persuaded of this.215 Either way, 

Leibniz’s comment here clearly shows that, like Gregory, he considered the 

microcoping to be unnecessary. Again, it is possible that he perceived Newton’s 

concerns over the vanishing construction but could see good reasons why they 

were unwarranted. If so – like Gregory – he did not articulate those reasons on 

paper. He did, however, record in his Notes that he had not had enough time to 

fully examine what he described as the very confusing proof (“demonstrationem 

perplexiorem examinare non vacat”216). Combined with his dismissive aside in 

his Marginalia (“Sometimes even the worthy Homer nods”), this strongly 

suggests that Leibniz missed Newton’s point entirely. 

 The microscope argument is used in four of the proofs in Section 1, and 

most of mathematics of the rest of the book ultimately depend on these results. 

And yet Newton’s readers did not approve the justification he gave for it in the 

first edition. Their reasons for doing so varied: Fatio got the gist but thought it 

should be substantially re-written, while Gregory and Leibniz both thought that it 

was redundant, at least one of them because he didn’t understand it. But this 

variety should not obscure a very significant fact about the reception of the 

Principia: none of the three most important readers of the book was persuaded 

by the justification of its foundational methods in the form that it appeared in the 

text. 

 

215 Notes, 242, 101n13. Because the Excerpts overwhelmingly consist of transcriptions, the 
inclusion of Lemma 9 does not, as far as I can see, automatically denote assent. But I defer to 
Bertoloni Meli’s judgement on this matter. 
216 Ibid., 229. 
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4.3.3 The tangent construction in Lemma 6 

Newton also employed this microscope method in Lemma 6, although readers’ 

responses were very different. Here is how Lemma 6 appears in the first edition: 

 

 

 

If any arc AB (given in position) is subtended by the chord AB, and at 

some point A (in an interval of continuous curvature) is touched by the 

straight line AD, produced in both directions; and if then points A and B 

approach each other and come together; I say that the angle BAD 

contained by the chord and the tangent will be indefinitely diminished and 

will ultimately vanish. 

For let the line AB be produced to b and the line AD to d, and with the 

points A and B coming together, and indeed with no part AB of that line 

Ab lying any more within the curve, it is evident that this straight line Ab 

will either coincide with the tangent Ad or be drawn between the tangent 

and the curve. But the latter case is contrary to the nature of curvature, 

and therefore the former obtains. Q.E.D. 
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Newton’s argument is simple to grasp intuitively: with the arc AB held fixed, as 

the point B slides towards the point A, the angle BAD between the chord AB 

and the tangent AD tends towards zero, and so the chord moves up to meet the 

tangent. Lemma 6 thus defines the tangent to a curve as the limiting position of 

its chords. Newton’s justification uses the enlargement dArb, constructed as 

before. He argues that, as B moves towards A along the arc AB, so too does b 

move up towards d. As it does so, and with the points A and B coming together, 

no part of the line Ab can lie below the arc AB: this is because the only part of 

Ab that could possibly lie below the arc AB is the chord AB, and that cannot lie 

below the arc if the points A and B have come together.  So there are only two 

options: either the line Ab coincides with the tangent Ad, or the line Ab lies 

somewhere between the arc and the tangent. But the second case is “contra 

naturam Curvaturae,” and so the line Ab must coincide with the tangent Ad. 

Transferring this to the smaller construction DARB, he can conclude that the 

line AB coincides with the tangent AD, as required. 

 Leibniz, as by now should come as no surprise, did not engage with the 

proof as Newton wrote it, but instead attempted to convince himself of its 

conclusion using infinitesimals. He did so very easily. In the diagrams in his 

Notes he dispensed entirely with the enlarged construction dArb, and wrote a 

handful of sentences to convince himself that “Hinc ob angulum BAC infinite 

parvum, differentia inter BAC evanescet.” He followed this with a few lines of 

commentary on the discussion of the angle of contact in the Scholium at the 
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end of the section, accepting Newton’s claims but again reinterpreting them in 

terms of infinitesimals.217 

 Fatio, on the other hand, responded to Lemma 6 in the terms that it was 

written: 

p. 29. in ima pag. lege vel. Lemma 6 probatur per suppositionem ipsius 

lemmatis. Tota ejus demonstratio ita legi poterit expunctis inutilibus 

quibusdam. Nam punctis AB coeuntibus, nullaque adeo ipsius AB parte 

jacente intra curvam, manifestum est quod haec recta AB vel coincidet 

cum tangente AD cujus nulla etiam pars jacet intra curvam, vel ducitur 

inter tangentem et curvam. Sed casus posterior est contra naturam 

curvarum quae unicam in puncto A tangentem admittit ergo &c.218 

p. 29 at the foot of the page read “or Lemma 6 is proved by the 

assumption of the lemma itself.” The entire proof of this will thus be able 

to be read with certain redundant bits removed. “For with the points A 

and B coming together, and indeed with no part of that line AB lying 

within the curve, it is evident that this straight line AB will either coincide 

with the tangent AD (of which indeed no part lies within the curve), or it is 

drawn between the tangent and the curve. But the latter case is contrary 

to the nature of curvature, which allows only a single tangent at the point 

A, therefore etc.” 

As discussed above, Fatio recognised the need for Newton’s microscope 

argument in Lemmas 7 to 9. But he is here proposing that it is redundant in 

Lemma 6, and that the proof holds without the enlarged construction dArb. His 

argument is that Newton’s proof depends upon the observation that in the limit 

no part AB of the line Ab lies within the curve (“nullaque adeo ipsius Ab parte 

AB jacente amplius intra curvam” in the original), whence Ab must coincide with 

 

217 Notes, 227, 241–42. 
218 OC, 10:147–48. 



280 
 

Ad, and so AB must coincide with AD. But if Newton is going to use the fact that 

“no part AB” lies within the curve (“nullaque adeo ipsius AB parte jacente intra 

curvam” in his note), says Fatio, he may as well bypass the enlarged 

construction and infer directly that AB coincides with AD. Once he has 

established that in the limit there are no points on the chord AB that lie within 

the curve, he can immediately stop. There is no need to employ the larger 

construction. 

 Newton’s response is extremely interesting. Immediately underneath Fatio’s 

note, on the same document, Newton himself wrote out the following words: 

deleatur demonstratio lemm. VI, vel legatur Nam si angulus ille non 

evanescit, continebit arcus AB cum tang. AB [sic: read AD] angulum 

rectilinio aequalem, et propterea curvatura ad punctum A non erit 

continua contra hypothesin. 

Let the proof of Lemma 6 be deleted, or let it read: For if that angle does 

not disappear, the arc AB contains with the tangent AB [sic: read AD] an 

angle equal to a rectilinear angle, and therefore the curvature at the point 

A will not be continuous, contrary to the hypothesis. 

This new form of words was then transferred verbatim into his annotated copy, 

and thence to the second and third editions. So Newton did indeed remove the 

enlarged construction as Fatio advised. But he replaced his original with a 

completely different argument. He hasn’t followed Fatio’s suggestion that he 

stop once he has established that no part of AB lies within the curve: instead, 

he comes up with a new proof by contradiction, removing all reference to the 

straight line AB, and no longer based on the question of whether in the limit any 

portion of the chord lies within the curve. Maybe he rejected Fatio’s argument 

because it is open to the objection that once A and B coincide, even though 
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there is no portion of the chord within the curve, there is also no chord left to 

coincide with the tangent. It is also noticeable that both Newton and Fatio 

considered deleting the proof entirely. Newton’s note begins “deleatur 

demonstratio lemm. VI, vel legatur…,” and Fatio writes that “Lemma 6 probatur 

per suppositionem ipsius lemmatis”; presumably Fatio means that the result is 

implied tautologically by the restriction that point A is “in medio curvaturae 

continuae.” From that point of view, Lemma 6 doesn’t prove anything that isn’t 

already contained within the meaning of the term “continuous curvature,” but 

just provides an interpretation of the tangent as the limiting position of its 

chords. Either way, the final presentation of Lemma 6 was the result of a 

negotiation with Fatio, who did not approve of the words that were printed in the 

book: when challenged by one of his readers, Newton completely changed the 

argument in support of his conclusion. 

4.3.4 Gregory’s criticism of Lemma 9 

Gregory recorded in his Notae the startling claim that all of the orbit proofs in 

the opening sections of the Principia are compromised by a logical error that 

arises from Newton’s application of Lemma 9. This result has a critically 

important role in the first sixty pages of the book, because Newton applies the 

mathematics of Lemma 9 to mechanical concepts in Lemma 10, which he then 

invokes when establishing his means of quantifying centripetal force in 

Proposition 6. All the remaining orbit proofs – including the inverse-square law 

for elliptical orbits – then depend upon Proposition 6. Gregory’s bold allegation 

was that the result of Lemma 9 cannot be applied to Proposition 6, and thus all 

the orbit proofs in the Principia are logically invalid. 



282 
 

 Lemma 9 concerns a line intersecting non-tangentially with a curve. Here is 

the diagram Newton supplies: 

 

 

 

A fixed curve ABC is assumed to intersect a fixed straight line ADEde non-

tangentially at the point A. The tangent AFGfg to the curve at A is also shown. 

Lemma 9 proves that, in the limit as B moves towards A along the fixed curve 

ABC, the area of the triangle ABD is proportional to the square of AD. Newton’s 

proof requires a second construction ACGE so that he can express the result 

not in terms of a single triangle ABD in the limit as B approaches A, but as the 

ratio of two triangles ABD and ACE as both B and C approach A. He has also 

added the two constructions Abfd and Acge, which are enlargements of ABFD 

and ACGE as explained above. 

 The Notae show that Gregory did not understand the proof of Lemma 9 

when he initially read it, and in the main body of his notes there is no entry 

between Lemmas 8 and 10. Instead, he pasted in a loose sheet after his 

meeting with Newton in May 1694, reporting that Newton had to explain the 

result to him (“Demonstratio Lem. IX prout nunc impressa, omnino intelligi 
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nequit. Hanc tamen ab Auctore restitutam habeo.”219) It is possible that his 

incomprehension was caused by the microscope structure of the proof, but he is 

not explicit on the matter. Whether or not this was the case, his conversation 

with Newton failed to convince him that the invocation of Lemma 9 is valid in the 

proof of Proposition 6. Here is the construction in Proposition 6: 

 

 

 

Gregory makes the very simple objection that Lemma 9 cannot be invoked in 

Proposition 6 because Proposition 6 considers the tangent to a curve, but 

Lemma 9 does not. In Lemma 9, it is shown that the area between a curve and 

a non-tangential straight line is shown to be proportional to the square of the 

abscissa, and this is applied in Lemma 10 to show that the distance is 

proportional to the square of the time. In the proof of Proposition 6 this is then 

used to infer that the distance QR is proportional to the square of the time 

elapsed, and Newton explicitly invokes Lemma 10 in his proof. But in the 

construction of Proposition 6, QR is the displacement from the tangent ZPR, 

while the construction of Lemma 9 requires that ADEde is not a tangent. The 

result of Lemma 9, says Gregory, therefore cannot be applied to the 

construction in Proposition 6. The proofs of all the orbit proofs in Sections 1 and 

 

219 The sheet is pasted in at RS, MS210, 2. 
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2 – including the inverse-square law – are therefore logically invalid. Of Lemma 

9, he writes the following: 

Supponit vero Demonstratio (quod et in ipsa Prop expresse supponitur 

Rectam AD hisce verbis se mutuo secent in angulo dato) rectam ADE 

non tangere curvam ABC; Et Lem. X lemmati huic IX superstructum idem 

supponit: Et tamen in Prop VI pag. 44 (primaria quidem cuique totus 

quantus, quantus est liber, inaedificatur) Lem: hocce X citatur tanquam 

verum, etiam tum recta tangit Curvam. 

The demonstration indeed supposes (which also in that proposition is 

expressly supposed the line AD by these words “intersect each other at a 

given angle”) that the line ADE is not a tangent to the curve ABC; and 

Lemma 10 supposes the same construction as Lemma 9: however in 

Proposition 6 p. 44 (the principal result, indeed, and on which the entire 

bulk of the book is constructed) this Lemma 10 is cited as if true, yet in 

that case the line is tangent to the curve. 

Honesty obliges me to admit that I am not certain that Gregory is correct.220 But 

irrespective of its correctness, he follows through on the allegation by 

suggesting that Lemmas 9 and 10 are not required to prove Proposition 6. He 

says that it can validly be derived by alternative means: 

 

220 He is right to point out that Proposition 6 concerns a tangent, while Lemmas 9 and 10 do not. 
But I do not think this invalidates the citation, because the two constructions are otherwise too 
dissimilar for this difference to be significant. In Lemma 10, Newton identifies the abscissa AD 
with time and the evanescent area ABD with distance, to show that, in the limit at the start of the 
motion, the distance is proportional to the square of the time. When he applies this result to 
Proposition 6, it is to infer that the distance QR is proportional to the square of the time. But the 
time in the construction for Proposition 6 is not given by the abscissa PR, but by the area PSQ. 
And while the displacement in Proposition 6 is given by the ordinate QR, the displacement in 
Lemma 9 is given by the area ABD. The two constructions are different. It therefore does not 
matter to Newton’s logic that ZPR in Proposition 6 is a tangent and ADEde in Lemmas 9 and 10 
is not, because the two lines represent different physical quantities. They are not supposed to 
correspond. I think Gregory is wrong to allege a logical flaw; Newton is correct to assert in his 
rewrite for the second edition that Proposition 6 may be proved from either Lemma 10 or 
Lemma 11. 
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Verum quidem est posse demonstrari aliter quam per Lem. X. lineolam 

RQ (fig. Prop VI) sive spatium pervenissum esse (data vi) ut quadratum 

temporis. Sed tum Lemma X prout suo‸loco demonstratum, non debuit in 

Prop hac VI cum demonstratio illa supponat contrarium ei quod in Prop 

VI supponitur, nempe ZPR curvam APQ contingere. Verum Prop illa VI 

potest per Lem XI solum demonstrari, sicut in charta pag. 7 harum 

notarum annexa factum est.  

Certainly in truth it is possible to prove other than from Lemma 10 that 

the little line QR (fig. Proposition 6) or the space attained is (for a given 

force) as the square of the time. But then Lemma 10 having been proved 

in its place, it should not obtain in this Proposition 6, since that proof 

supposes the contrary to that which is supposed in Proposition 6, since 

without doubt ZPR is a tangent to the curve. In truth Proposition 6 is able 

to be proved by Lemma 11 alone, just as has been done in the attached 

sheet p.7 of these notes. 

Gregory has indeed added a loose sheet to the main body of his notes 

concerning Proposition 6.221 This note is headed “Prop: VI. Theor V poterit sit 

commode et dilucide demonstrari, deleta ea omni quae est in libro,” reflecting 

Gregory’s explicit desire to replace the proof in the first edition. The alternative 

he supplies is not very different from Newton’s original. He expands and 

clarifies Newton’s explanation, and then removes the reliance on Lemma 10 

(and therefore Lemma 9) as follows: 

Et lineola QR spatium est quod corpus cadendo ab R eodem tempore 

describeret. ideoque (per Lem: X vel XI) est ut quadratum temporis si 

modo detur vis centripeta.  

 

221 This loose sheet is no longer attached to page 7, but has instead been re-bound as f.3 
between Gregory’s page 4 (f.2v) and page 5 (f.4r). I assume this is the note to which Gregory is 
here referring, although I have been unable to examine the entire document in person to verify 
this: at the time of writing, the library of the Royal Society is closed owing to COVID restrictions, 
and my analysis is based on the electronic images of the opening pages that the librarians have 
very kindly supplied. 
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That is, he simply asserts that QR is proportional to the square of the time “by 

Lemma 10 or 11.” Gregory’s reasons for thinking that Lemma 11 could 

legitimately be invoked instead are discussed. However, Newton’s response to 

Gregory’s suggestion also deserves close consideration. When Gregory visited 

Cambridge in May 1694, Newton showed him a radically restructured version 

he had planned of the opening sections of the book, including Proposition 6.222 

However, this restructured version was never published. Instead, the second 

and third editions contained a rewrite of the 1687 proof of Proposition 6, based 

on a consideration of what Newton labelled the “sagitta” of the arc (that is, the 

distance from the point on the arc to the chord joining two points either side, 

corresponding to the versine of a circle). This rewrite does not match the 

alternative Gregory provided, and there is no evidence that Gregory suggested 

the rewrite be based on the sagitta. However, it is noticeable that the rewrite 

that appears in later editions invokes Lemma 11 rather than Lemma 10. The 

only remaining reference to Lemma 10 is the sentence “Idem facile 

demonstratur etiam per corol. 4. lem. x.” appended after the proof. So while it 

cannot be claimed that Gregory supplied the proof that appears in later editions, 

I suggest that when composing his rewrite Newton was at least in part 

responding to Gregory’s encouragement to avoid reliance on Lemma 10. It is 

certainly the case that Gregory thought Proposition 6 was wrong and needed to 

be replaced. Newton’s most attentive reader thought there was a logical flaw 

that undermined all of the orbital force theorems at the start of the Principia. 

4.3.5 The application to mechanics in Lemma 10 

 

222 See Brackenridge, The Key to Newton’s Dynamics, Chapters 8 and 9. 
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Between publication in 1687 and the release of the second edition in 1713, 

Lemma 10 underwent more changes than any other result in Section 1. This 

can be seen from the following image of Newton’s annotated copy:223 

 

 

 

In translation, the original proof and corollaries read as follows: 

 

223 Cambridge, Trinity College, NQ.16.200, 32. 
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The spaces which a body describes when urged by any regular force, 

are at the very beginning of the motion in the squared ratio of the times. 

Let the times be represented by the lines AD and AE, and the velocities 

generated by the ordinates DB and EC; and the spaces described by 

these velocities will be as the areas ABD and ACE described by these 

ordinates, that is, at the very beginning of the motion (by Lemma 9) in the 

squared ratio of the times AD and AE. Q.E.D.  

Corollary 1. And hence it is easily concluded that the deviations of bodies 

describing similar parts of similar figures in proportional times, that are 

generated by equal forces in these parts similarly applied to the bodies, 

and that are measured from the places of the figures at which the bodies 

would arrive in the same proportional times without these forces, are very 

nearly as the squares of the times in which they are generated. 

Corollary 2. But the deviations that are generated by proportional forces 

similarly applied, are as the forces and the squares of the times jointly. 

The modern reader can intuit this result by conceiving the diagram in Lemma 9 

as a velocity-time graph on its side, with AD representing time, DB velocity, and 

the area ABD the displacement. Newton’s contemporaries, however, found it 

less straightforward. Leibniz understood it well enough but denied that it was 

true because it depended on Lemma 9, whose validity he disputed. Clerke 

requested a fuller explanation, objecting that this result “should have been 

usherd in with more words.” Gregory also had to work hard to fill in the gaps in 

Newton’s justification, explaining to himself in a long note that “spatia omnia 

percursa sunt sicut omnia rectangula sub punctis rectae AE et ordinatim 

applicatis respectivis comprehensa haec est per Lemma 2m ut figura curvilinea 
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AEC”. He then followed this with an example to help him clarify the meaning of 

Corollary 1.224 

 Gregory also reflected on whether the force under consideration was 

allowed to change or not, agreeing with Newton that “hoc verum est urgente 

quavis vi regulari an irregulari.” Fatio, however, felt that “definiendum est quid 

per vim regularem oporteat intelligi,”225  and his annotated copy shows that 

Newton did indeed do exactly that. Or, at least, he tried to: the image above 

records Newton’s struggle to articulate what he meant by the phrase “vi 

regulari.” He did so in two phases. First, as can be seen crossed out in the top-

left of the image, he replaced “vi regualri” with “vi finita et continuo crescente vel 

decrescente.” This edit was probably composed in London in March 1690, 

possibly with Fatio sitting in the room alongside him, and also appears in 

Locke’s copy. At an unknown later date Newton further amended it to “vi finita… 

sive vis illa determinata & immutabilis sit, sive eadem continuo augeatur vel 

continuo diminuatur,” which version appears in subsequent editions. 

 Fatio also prompted Newton to re-write the two corollaries, in which Newton 

lays the groundwork for the orbital force theorems in Sections 2 and 3 by 

deducing that the centripetal force acting on a body is measured by the 

deflection from its inertial path divided by the square of the time elapsed.  As 

the modern reader may well sympathise, Fatio found the original wording 

difficult to parse. His editorial notes contain the following suggested alterations, 

relating to the final clause of each sentence: 

 

224 Notes, 229–30, 242–43; Excerpts, 481, 485; Clerke to Newton, 21 Nov. 1687, NC, 2:496–

500; RS, MS210, 1v. 

225 OC, 10:148. 
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p. 32. l. 18. venirent sunt tum in eadem figura tum praecipue in duabus 

figuris inter se comparatis ut quadrata &c. 

Ibid. l. 21. generantur sunt tum in eadem figura, tum praecipue in duabus 

figuris inter se comparatis ut vires & c.226 

That is, he suggests inserting the phrase “whether both in the same figure, or 

especially in two figures compared to each other” to make the meaning clearer. 

Newton, however, deleted these two notes from Fatio’s manuscript, and chose 

to alter the text differently. The only change in Locke’s copy is to the middle of 

Corollary 1, which reads “… qui viribus quibus vis aequalibus (in partibus istis) 

ad corpora similiter applicatis generantur, & mensurantur a locis figarum 

earundem…,” and the image above shows that Newton made many further 

changes in his annotated copy. After some deliberation, Newton ended up with 

the following (I have marked in the changes from the original text): 

Corollary 1. And hence it is easily concluded that the deviations of bodies 

describing similar parts of similar figures in proportional times, that are 

generated by whatever equal forces in these parts similarly applied to the 

bodies, and that are measured from the places by the distances of the 

bodies from those points on the similar figures at which the bodies would 

arrive in the same proportional times without these forces, are very 

nearly as the squares of the times in which they are generated. 

Corollary 2. But the deviations that are generated by proportional forces 

similarly applied to similar parts of similar figures, are as the forces and 

the squares of the times jointly. 

This is the wording that appears in subsequent editions. None of these changes 

substantively alters the meaning, and considered individually they are all minor 

 

226 OC, 10:148. 
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rewordings of unimportant phrases. But the difficulties Clerke, Gregory and 

Fatio had with this passage show that Newton’s readers did not unequivocally 

assent to the text they found in his book: in order to approve Lemma 10, they 

needed to reconstruct its arguments in a clearer, more persuasive form than 

that the author provided. 

 Newton also added three new corollaries and a Scholium at the end of this 

result. The reader who consults the text of the third edition, or Cohen and 

Whitman’s translation, will see that the three new corollaries are very 

straightforward reformulations of the first two, and the Scholium comprises a 

suspiciously basic explanation of his use of ratios, which on the face of it is 

unconnected to the rest of the result. I have not been able to establish when or 

why Newton chose to add them, although he may have done so as part of his 

reformulation of Proposition 6 in the early 1690s. Along with the later changes 

to “vi regulari” and Corollaries 1 and 2, they are absent from Locke’s copy. It is 

possible that this second batch of changes was composed towards the end of 

Newton’s stay with Fatio in March 1690, after Locke’s copy had been prepared; 

or they might have been made during his meeting in May 1694 with Gregory, 

who also referred to the constancy of the force and the obscurity of the original 

corollaries in his Notae. They could also have been suggested by Cotes in 

preparation for the second edition of 1713; or possibly they were composed on 

three different occasions. But this is speculation. After Fatio’s intervention, who 

or what instigated the second set of changes to Lemma 10 I have been unable 

to discover. 

4.3.5 Curvature in Lemma 11 and the Scholium 
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Finally, readers’ responses to Newton’s discussion of curvature in Lemma 11 

and the first paragraph of the subsequent Scholium deserve brief attention. 

Lemma 11 provides an argument that, in the limit at a particular point, a certain 

class of curves can be replaced by a circle (the “circle of curvature,” or 

“osculating circle”). My discussion of this result will be short, since it provoked 

relatively little commentary from contemporary readers, partly because they 

found the explanation in the text comparatively easy to follow, and partly 

because this result came at the end of the section. None of Newton’s peers 

raised objections to Lemma 11 that they had not already registered over the 

previous ten pages. Flamsteed – as discussed at the very beginning of this 

chapter – only engaged with Lemma 11 very superficially. Clerke objected in 

much the same way that he did to the other results in Section 1, arguing that 

replacing a curve with a circle is fundamentally unacceptable because “then the 

lines evanescentes, with wch you conclude will not be same with the nascentes, 

with wch you beganne.” Perhaps surprisingly, Fatio – who showed in response 

to Propositions 30 and 44 that he was not confident with the techniques of 

radius of curvature – recorded no significant objections to Lemma 11. His only 

reference to this result in his editorial notes was to suggest clarifying the 

phrasing of Case 3, as indeed Newton did.227 

 Leibniz, according to Bertoloni Meli, “read the text superficially” and only 

made what he describes as a “cursory reading” of Lemma 11. I have examined 

Leibniz’s commentary on this passage closely but still do not fully understand 

his views, so willingly defer to Bertoloni Meli’s judgement. In the Marginalia 

Leibniz recorded brief statements of disagreement, writing “non videtur sequi” in 

 

227 Clerke to Newton, 21 Nov. 1687, NC, 2:496–500; OC, 10:148. 
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the margin of the proof (next to Case 2), “suspectum hoc Lemma generale” next 

to a reference to it on page 41, and “Lemma XI generale nondum admitto” 

alongside another citation on page 42. He provided further commentary in his 

Notes, in which he alleged that it contradicts Lemma 9, but I cannot infer clearly 

the reasons for this objection. Lemma 11 is represented at length in the first set 

of Excerpts, where it is supplemented by remarks on Newton’s geometrical 

limits, but this is no indication of assent. Bertoloni Meli asserts that on his first 

reading Leibniz misunderstood Lemma 11 only to apply to circles, but I am not 

sure I agree that the evidence supports this: I suggest that the large quantity of 

text Leibniz transcribed in the Excerpts reflects his uncertainty, and may 

indicate that he did not fully articulate an opinion as to the validity of the 

result.228 

 Gregory’s Notae record that the last two lines of the proof of Lemma 11 in 

his copy were illegible, presumably owing to a printing error. Nevertheless, he 

correctly recreated the missing steps in Newton’s argument, demonstrating that 

– unlike the microscope proofs earlier in the section – he could reconstruct the 

logic of the demonstration very easily, and did not wish to challenge it. 

However, he was eager to assert that among algebraic curves the result only 

applies to those of the second degree (which is to say, conic sections), making 

this observation in three successive entries. Gregory conceded that when 

studying astronomical orbits this limitation will not be significant, and also that 

this restriction is acknowledged in the Scholium, but it may have been him who 

encouraged Newton to make this qualification explicit by inserting the phrase “in 

curvis omnibus curvaturam finitam ad punctum contactus habentium” in the 

 

228 Notes, 102, 230, 243–4; Marginalia, 52–54, Excerpts, 480–1, 483–4.  
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statement of the result, as appears in the second edition. Gregory also noted an 

apparent contradiction between Corollary 2 of Lemma 11 and Lemma 9, in 

which the areas of the evanescent triangles were shown to be proportional to 

the squares of the abscissas rather than the cubes. This may also have been 

the contradiction to which Leibniz was referring. This disagreement can be 

resolved by observing that (in modern terms) in Lemma 9 the curve is 

approximated by a straight line, whereas in Lemma 11 it is approximated by a 

quadratic, whence the areas contained will be proportional to the squares and 

cubes respectively. Seen in this way, the two constructions consider two 

different approximations. As discussed above, Gregory thought that this 

distinction rendered the invocation of Lemma 9 in Proposition 6 invalid, although 

in the second edition Newton recorded his view that it could be derived from 

either.229 

 One final reason for the lack of critical engagement with Lemma 11 is its 

relative unimportance within the logical structure of the first edition. The only 

significant result in the opening sections that invoked Lemma 11 was 

Proposition 4, but since Proposition 4 concerned motion in a circle, the claim 

that a non-circular curve could in the limit be approximated by a circle was in 

that instance surplus to requirements. This allowed Leibniz, for example, to 

deny the general validity of Lemma 11 but still accept the conclusion of 

Proposition 4, as will be shown in Chapter 6. However, Lemma 11 was of 

critical significance in the second edition of 1713, since Newton re-wrote 

Proposition 6 so that it invoked Lemma 11, to which he added two extra 

corollaries. All the orbit proofs in the opening sections were therefore logically 

 

229 RS, MS210, 1v. 
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dependent on Lemma 11 in the second edition, but not in the first. Although it 

may have been encouraged by his conversations with Gregory, Newton’s 

reasons for this rewrite have not been fully investigated: the role of Lemma 11 

in the overall argument of his orbit theorems appears to have been more 

important to Newton during the years following publication than to his 

readers.230 

  

 

230 See Brackenridge, The Key to Newton’s Dynamics, Chapters 8 and 9. 
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5. Responses to the new physics in the Principia 

5.1 Introduction 

Having considered readers’ reactions to the new mathematical methods in the 

Principia in the previous chapter, I will now examine responses to the novel 

physical ideas contained in Newton’s book. Taken as a whole, this is a 

significantly larger task, and the implications of Newton’s ideas for the study of 

natural philosophy in the years, decades and centuries after publication is far 

too big a topic to be usefully engaged with here. But since my remit in this 

thesis is restricted to early readers of the Principia, my focus will only be on 

their immediate responses to the physical ideas expressed by Newton in his 

text. The Principia contained a number of claims about the real world and how it 

should be mathematised: my aim in this chapter is to assess the extent to which 

early readers of the book were persuaded by these claims. 

 The primary evidence shows very clearly that they were not. Over the 

course of the following sections I shall show, first, that readers challenged the 

Definitions and Laws as they found them articulated in the opening pages of the 

book; second, that they in some instances disputed the physical conclusions 

that Newton claimed to have proved mathematically; and third, that they were 

not persuaded by the way in which Newton mathematised force.  

 It is the discussion in this third section that will be the most significant. 

Hindsight judges that one of the most transformative contributions of the 

Principia was Newton’s mathematisation of orbital motion in terms of centripetal 

rather than centrifugal forces – that is, in terms of an inward pull rather than an 

outward push. However, I shall demonstrate below that Newton’s contemporary 
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readers were explicitly ambivalent about the way in which he mathematised 

force. His peers knew that there was more than one way in which orbital motion 

could be mathematised, and recognised that the conclusions in the Principia 

could be reformulated using centrifugal forces (or a mixture of the two) without 

undermining their logical validity. Newton’s revolutionary conception of a 

centripetal rather than a centrifugal force was not met with acceptance by his 

early readers, who were thus not persuaded by the fundamental physical 

assumptions on which Newton based his arguments. Furthermore, a close 

examination of the primary sources will reveal the need to reframe the 

established narrative of Newtonian scholarship that readers did not accept the 

reality of universal gravitation because it lacked a physical mechanism. The 

reader who is most commonly cited as objecting to universal gravitation owing 

to an absence of a mechanistic cause was Huygens, and it is true that he often 

communicated this view in his correspondence. However, this objection needs 

to be contextualised by the fact that there is no evidence that Huygens read any 

of the final four sections of Book 1 that invoked the existence of universal 

gravitation. Indeed, almost none of the early readers of the Principia read these 

sections: in the five years following publication, the only reader for whom there 

is concrete evidence confirming deliberate study of the passages in the book 

concerning universal gravitation was Leibniz, and even he does not appear to 

have attempted to verify the relevant proofs. The story that Newton’s peers 

rejected universal gravitation owing to its lack of mechanism needs to be told in 

this context. 

 These, then, are the two important conclusions to be drawn from this 

chapter: Newton’s readers did not give their assent to his conceptualisation of 



298 
 

centripetal force, and they overwhelmingly did not engage with his proofs 

involving universal gravitation. In the last chapter we saw that the novel 

mathematical ideas contained in the Principia did not meet with the assent of its 

readers; as we will presently discover, neither were they persuaded by the new 

physical claims it made. 

5.2 Challenges to the Definitions and Laws 

I begin by considering readers’ responses to Newton’s articulation of the 

foundational physical concepts of mechanics, as set out in his Definitions and 

Laws. In doing so, a loose analogy may be drawn between the physical 

assumptions Newton establishes in these opening pages, and the mathematical 

assumptions he sets out in the method of first and last ratios in Section 1. This 

correspondence is by no means exact, but in both cases he articulates the 

conceptual basis on which the deductive structure of the proofs of the Principia 

will be founded. 

 From this point of view, it is noteworthy that – despite the two passages 

being read with apparently equal frequency – after publication Newton made 

markedly fewer changes to the text of the Definitions and Laws than he did to 

Section 1. His annotated copy shows a far smaller number of edits over these 

pages than in his method of first and last ratios. Moreover, those changes that 

he did make are generally small rephrasings of the text, rather than the 

substantive alterations to Newton’s arguments that were considered in the last 

chapter. It is also the case that fewer of them can be directly identified as 

responses to specific feedback from early readers. Locke’s copy, for example, 

carries very few edits in the opening pages, and those that are present 
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generally comprise small grammatical corrections. The largest changes made 

for the second edition (the alterations to Definition 1 and Definition 5) are 

certainly missing. Fatio, whom I demonstrated in Chapter 1 to have conducted a 

close reading of the opening sections of Book 1 when preparing his aborted 

second edition, also proposed few alterations. His reading notes show that he 

alerted Newton to a number of typographical errors, and suggested a few 

changes of phrasing to isolated sentences, but he did not generally dispute the 

substance of Newton’s assertions. The only clear exception I can find is an 

incorrect proposed amendment of Corollary 4 of the Laws, which Newton rightly 

deleted. Gregory likewise did not seek to dispute anything in the opening pages, 

and in the handful of entries on these passages in his Notae he merely explains 

Newton’s reasoning to himself. 231 

 Leibniz maintained different conceptions of mass, force, space and time 

from those articulated in Newton’s book, and this is reflected in his readings of 

the opening passages. His Notes on Definition 1, for example, focus on 

Newton’s neglect of an aethereal fluid, which is also addressed in his brief 

Marginalia and Excerpts from the Scholium after Proposition 40 of Book 2; he 

made a short marginal note next to Definitions 6 and 7 recognising lunar gravity 

as an example of a centripetal force; in his Notes on the subsequent Scholium, 

he questioned Newton’s account of the rotating bucket experiment; he added a 

short note to his transcription of Law 2 in the Notes which Bertoloni Meli 

describes as reflecting his “difficulties in getting accustomed to Newton’s 

 

231 Fatio’s note at OC, 10:147 reads, “dubitari potest utrum in actionibus corporum inter se, si 

generentur motus circulares pergat centrum grav. in linea recta moveri”. Gregory’s notes on the 

opening pages are all on RS, MS210, 1r. 
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terminology”; and in the second set of Excerpts he added a short note to Law 3 

about implications of actions inducing equal and opposite reactions throughout 

the universe. The many differences between Leibniz’s metaphysics and that 

proposed by the Principia is a central theme of Bertoloni Meli’s studies, to which 

the reader is directed for further analysis. That said, it strikes me that these 

foundational disagreements do not occupy a particularly significant proportion of 

the written records Leibniz made when reading the Principia. There are no 

Marginalia in the opening twenty-fives pages other than the single example just 

cited; in the first set of Excerpts Leibniz transcribed or paraphrased all eight 

Definitions and all three Laws without any note of criticism; and with the two 

exceptions just referenced, the same is true of both the second set of Excerpts 

and the Notes. On the face of it, his responses to the method of first and last 

ratios were much more substantial, and, as demonstrated in Chapter 4, he did 

at least examine closely many of the proofs in Section 1. But throughout the 

opening pages he engaged with Newton’s text from within his own pre-existing 

conceptual framework. He read the Definitions and Laws to establish whether 

they agreed with his own metaphysics, and processed the proofs in Section 1 in 

terms of infinitesimals. Bertoloni Meli has shown how Leibniz’s foundational 

physical assumptions were integral to the development of his own ideas, but he 

does not make the case that reading the Principia encouraged him to 

reconsider those foundational assumptions, merely that it reinforced his 

adherence to them. Just as with Section 1, there is no sign that the act of 

reading the Definitions and Laws provoked Leibniz to modify his views. At best, 

he recorded where he disagreed. Newton’s text failed to persuade Leibniz of its 
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own correctness, then; but neither are there many signs in his notes that Leibniz 

was open to the possibility of being persuaded by it.232 

 The only one of Newton’s readers who made a sustained, detailed, critical 

engagement with the Definitions and Laws was Halley. In the editorial notes he 

made for draft sections of the Principia before publication, he made what can 

fairly be described as a very large number of textual changes to these 

passages: I have counted 28 proposed edits to the Definitions, plus a further 

thirteen relating to the Laws. There are, however, considerable practical 

difficulties in understanding the nature of these amendments, partly because 

the draft version of the Laws on which the notes are based no longer exists, and 

partly because the edits Newton subsequently made to the draft version of the 

Definitions are in some instances so heavy as to be illegible. It is clear that in 

many cases Halley was correcting Newton’s grammar, or suggesting minor 

alterations to the phrasing, but in others his contribution appears to have been 

more substantive. He sought a clarification of Newton’s definition of momentum 

in Definition 2, for example, and of centripetal force in Definition 5. He 

successfully petitioned to alter a number of phrases in the Scholium 

immediately following the Definitions, in passages concerning the nature of 

relative and absolute space, absolute motion, and the motion of composite 

bodies. Halley was also responsible for some of the final wording in the 

explanation of Law 1, although because the draft he read has since been lost 

 

232 See especially Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz, 97–101, 

236–40, and Bertoloni Meli, “Leibniz’s Excerpts from the Principia Mathematica,” 502. 
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there is no way of judging the content of his contribution. The same is true of 

Corollary 4 to Law 3.233 

 He also prompted Newton to re-phrase his definition of the absolute quantity 

of centripetal force in Definition 6. The draft version that Halley saw read as 

follows: 

Vis centripetae quantitas absoluta est mensura ejusdem major vel minor 

pro potentia causae propagandi vires a centro per regiones in circuitu: uti 

virtus magnetica major in uno magnete minor in alio.234 

The absolute quantity of a centripetal force is the measure of it that is 

greater or less according to the power of the cause spreading the forces 

from the centre through the surrounding regions: just as magnetic force 

is greater in one lodestone and less in another. 

Halley’s response was to suggest two alternative rephrasings, either 

minor pro ratione‸causae fortius aut debilius eam propagantis a centro235 

[greater or] less according to whether the reckoning‸of the cause spreading it 

from the centre is stronger or weaker  

or 

 

233 Halley’s edits to the Definitions are on 94r of CUL, MS Add. 3965, and those to the Laws are 

on 95r. His notes on the Definitions are based on the document now at CUL, MS Dd.9.46,4–23, 

which Cohen labelled LL(1). Those on the Laws were based on an earlier version of this 

document, now lost. 

234 CUL, MS Dd.9.46, 5, published at Newton, The Preliminary Manuscripts for Isaac Newton’s 
1687 Principia, 39. 
235 CUL, MS Add. 3965, 94r. 
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vis centripetae quantitas absoluta est mensura ejusdem proportionalis  

causae suae eam per regiones in circuitu a centro propagantis sic virtus 

magnetis major est in 

The absolute quantity of a centripetal force is the measure of it 

proportional to its cause spreading it from the centre through the 

surrounding regions, as the force of a magnet is greater in [one 

lodestone and less in another.] 

The draft manuscript MS Dd.9.46 shows that Newton initially implemented the 

first of these changes, before crossing it out and replacing it with “major vel 

minor pro efficacia causae eam propagantis a centro” (“greater or less 

according to the efficacy of the cause propagating it from the centre”), which is 

the wording used in the first edition. The net effect of Halley’s intervention was 

therefore to reduce the reliance on the exemplary phenomenon of magnetism. 

Newton had originally phrased the definition of the absolute quantity of a 

centripetal force in terms of the central “potentia” that was responsible for 

propagating an unspecified variety of “forces” throughout the surrounding 

regions; Halley encouraged him to adjust it to focus on the “efficacia” of the 

cause of the centripetal force, which was responsible for propagating “it”. The 

final wording is more abstract than the initial draft, and less dependent on the 

example of magnetism. The change in emphasis is away from the occult power 

of a centripetal force and towards its visible effect. 

 He also tried to change Newton’s characterisation of inertia in Definition 3. 

The middle sentence of the draft Halley examined, in which Newton attempted 

to articulate the meaning of the words “inherent force” (“vis insita”), ran as 

follows: 
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Exercet vero corpus hanc vim solummodo in mutatione status sui per vim 

aliam in se impressam facta, estq; exercitium ejus sub diverso respectu 

et Resistentia et Impetus: respectu solo ab invicem distincta Resistentia 

quatenus corpus ad conservandum statum suum reluctatur vi impressae, 

Impetus quatenus corpus idem vi resitentis obstaculi difficulter cedendo 

conatur statum ejus mutare.236 

Indeed, a body exerts this force only in a change of its state brought 

about by another force impressed upon it, and its exercise is, in different 

aspects, both resistance and impetus: to distinguish each aspect from 

each other, resistance to the extent that the body opposes the impressed 

force in order to preserve its own state, and impetus to the extent that the 

same body, yielding with difficulty to the force of a resisting obstacle, 

attempts to change that obstacle’s state. 

Halley’s suggested alteration reads as follows: 

exercitium autem ejusdem et Resistentia & impetus respectu solo ab 

invicem distinguuntur. Resistentia dicitur qua corpus statum suum 

conservans a vi aliqua impressa non superatur amittit. Impetus, quo idem 

corpus causam in se continet a qua mutare posset status alterius.237 

But its exercise [is] both resistance and impetus, distinguished from each 

other in one respect. Resistance is said to be that thing by which a body 

conserving its state is not overcome by any impressed force does not 

lose its state on account of any impressed force. Impetus, that thing by 

which the same body contains within itself the cause by which it would be 

able to change the state of another. 

While the distinction between Halley’s proposed text and Newton’s original is 

very fine, it is not trivial. Halley is doing more than merely correcting spelling or 

re-ordering words: his definitions emphasise a body’s active ability to either 

 

236 CUL, MS Dd.9.46, 5, published at Newton, The Preliminary Manuscripts for Isaac Newton’s 
1687 Principia, 39. 
237 CUL, MS Add. 3965, 94r. 
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resist change or impose it on another body, rather than its passive attempt to do 

so. As it happens, Newton did not adopt Halley’s suggestion. The final text in 

the first edition is identical to the original draft, although the words “respectu 

solo ab invicem distincta” have been deleted. But Halley nevertheless thought 

he could improve on Newton’s articulation of these foundational concepts of 

mechanics: he was not convinced by the suitability of the words he read. 

 Halley proposed other changes too. It was at his suggestion that Newton 

added the sentence “Whatever presses or draws something else is pressed or 

drawn just as much by it” to his statement of Law 3.238 And he also left a note 

relating to the draft he read of Definition 1, Newton’s definition of mass: 

Quantitas materiae [cujuscunq] est mensura ejusdem orta ex illius 

densitate‸partium et magnitudine‸totius conjunctim. Hinc‸Quapropter in eodem 

vase major est‸mihi quantitas aeris aut pulveris, prout pulvis magis aut 

minus compressione comprimendo condensatur. Hinc etiam et corpus 

duplo densius in duplo spatio quadruplum erit, sub nomine corporis aut 

massae quantitatem istam ubiq. intelligo, neglecto ad medium respectu, 

si quod fuerit, interstitia partium libere pervadens. 239 

The quantity of [any] matter [whatsoever] is the measure of it arisen from 

its the density‸of the parts and the bulk‸of the whole jointly. Hence‸Wherefore the 

quantity of air or powder in the same container is bigger‸to me, according 

as the powder is more or less condensed by compression by pressing. 

Hence also And a body twice as dense in twice the space will be 

quadruple; I understand this quantity by the term “body” or “mass” 

everywhere, with consideration to a medium freely pervading the 

interstices of the parts, if such a thing exists, disregarded. 

 

238 See CUL, MS Add. 3965, 95r. where Halley’s note reads “Quicquid premit vel trahit alterum, 
tantundem ab eo premitur.” This sentence appears verbatim immediately after the statement of 
Law 3 in the printed first edition. 
239 CUL, MS Add. 3965, 94r. 
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It is difficult to work out exactly what the nature of Halley’s proposed edit was, 

because the manuscript document on which it was based now looks like this:240 

 

 

 

 

 

The top image represents Newton’s early draft of Definition 1 on the recto side 

of the page, and the lower image his subsequent re-write on the blank verso 

opposite. Many of the edits here are illegible, and it is impossible to tell which of 

them were present when Halley made his reading. The reader who consults the 

final text will see that Newton made yet further changes before settling on the 

wording in the first edition. I think that the best interpretation of this evidence is 

that Halley’s note is based on a reading of the first image above (showing the 

recto side of the page), on which Newton recorded the adjustments he made to 

his text in response Halley’s comments. Newton then made further changes as 

 

240  CUL, MS Dd.9.46, 3–4, published at Newton, The Preliminary Manuscripts for Isaac 
Newton’s 1687 Principia, 37–8. 



307 
 

he produced the draft in the second image (the verso side), which he 

subsequently edited into the printed version. According to this reading, Halley 

made significant contributions to the final form of the definition. In the first 

sentence of his note, he appears to have suggested inserting the words 

“partium” and “totius,” to which Newton did not accede. He did, though, alter the 

phrasing of his second sentence in response to Halley’s note (“Quaepropter in 

eodem vase major…”), although we can see from the image that he 

subsequently deleted the phrase before adjusting it further. And Newton re-

ordered his third sentence following Halley’s suggested “sub nomine corporis 

aut massae quantitatem istam ubiq. intelligo neglecto ad medium respectu, si 

quod fuerit, interstitia partium libere pervadens,” copying his suggestion directly 

onto his manuscript, from where these phrases made their way into the final 

version. Halley therefore altered sentences originally written by Newton, and by 

the time it reached the printed text his contribution was divided in two, but the 

final construction of these phrases is recognisably Halley’s. 

 It hardly needs to be said that these are all critically important passages in 

the history of the exact sciences, and the primary evidence clearly shows that 

Halley played an active role in their composition. He was partly responsible for 

the final definitions of mass, momentum, inertia, centripetal force, and relative 

and absolute space that appeared in the printed text of the Principia. He 

suggested these changes because he thought he could improve on the versions 

in the drafts that he read, which is another way of saying that he disagreed with 

the way in which his author had articulated his physical assumptions. He felt the 

need to negotiate the phrasing of their statement: Halley had a significant role in 

composing what are now called Newton’s Laws. 
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5.3 Challenges to the empirical predictions of Newton’s mathematics 

A second type of challenge to the physics of the Principia is disagreement with 

the empirical predictions contained within the text: instances in which readers 

found cause to object to physical predictions made by Newton’s mathematics. 

In its totality, the project of first determining and then testing the measurable 

predictions of Newtonian theory lasted tens if not hundreds of years. The 

standard narrative identifies the French geodesic expedition in the 1730s as a 

critical turning point in the wider acceptance of Newtonianism, and Eddington’s 

eclipse observations in 1919 as the moment of its overthrow. But my concern 

here is much more narrow. I wish to investigate instances in which early readers 

of the Principia immediately recognised – as they were in the act of reading it – 

that the text was making empirical predictions which they had reason to doubt. 

 Remarkably, I have only been able to find two such cases. The evidence 

presented in Chapter 5 showed that the criticisms Newton’s readers made of his 

mathematical arguments were many and varied: yet the archive records only 

two occasions on which readers had cause to object to empirical predictions 

contained within the text. The first is Huygens’ response to Proposition 5 of 

Book 2. In this result, Newton proves mathematically that (in modern terms) if a 

body moves against a resistance proportional to the square of its velocity, then 

its velocity will be inversely proportional to the time elapsed. This is very easy to 

prove using modern notation, and follows almost immediately from a simple 

differential equation. I demonstrated in Chapter 2 that Huygens convinced 

himself of this result not by working through Newton’s geometrical argument, 

but by instead generating a separate proof based on infinite series. However, 

there was one detail in Huygens’ reading notes that was not addressed in our 
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analysis. It can be seen from the image provided in Chapter 2 that Huygens 

added two short paragraphs at the end of his analysis: 

Hinc autem sequitur (quod miror Neutonum non observasse) corpus 

horizontali motu incitatum, etiam in medio resistente infinitum spatium 

conficere infinito tempore. quod contra est cum resistentia est ut 

velocitas, ut ostendi. 

Illud mirabile prorsus videtur. Cogita enim globum plumbeum sub aqua in 

plano horizontali projectum an in infinitum spatium perget moveri?241 

But it follows from this (which I am amazed that Newton has not 

observed) that a body propelled with a horizontal motion, even in a 

resisting medium, completes an infinite distance in infinite time. Which is 

contrary to when the resistance is as the velocity, as I have shown. 

That seems utterly amazing. For consider whether a lead sphere 

projected in a horizontal plane underwater will continue to be moved for 

an infinite distance? 

Huygens is, of course, correct. Newton’s mathematics does indeed predict that 

a body moving horizontally against a resistance proportional to the square of 

the velocity travels a distance proportional to the logarithm of the time elapsed, 

which means that as the time increases without limit, so too does the distance. 

The body will continue to traverse an infinite distance in infinite time. Huygens is 

also right to point out that this does not happen when the resistance is 

proportional to the velocity, in which conditions the distance travelled in infinite 

time turns out to be finite. When the resistance is as the velocity, the distance 

travelled in infinite time is finite; yet when the resistance is as the square of the 

velocity (which would intuitively appear to make it larger), the distance travelled 

 

241 CH, HUG 26, 85r (=OC, 21:420–1). 
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is infinite. Huygens might well write that “Illud mirabile prorsus videtur,” because 

Newton’s mathematics seems to be predicting something that is physically 

absurd. Huygens isn’t missing anything. He is correctly pointing out why the 

mathematical ideal embodied in Newton’s model (to use anachronistic 

vocabulary) cannot obtain in the real world. A lead sphere projected horizontally 

underwater cannot possibly continue to move an infinite distance. The modern 

reader might say that Newton’s model requires further refinement; but Huygens’ 

more blunt observation is that the physical implication of Newton’s mathematics 

is obviously incorrect. Huygens here denies his assent to the Principia’s claims 

not because of his perceived invalidity of Newton’s mathematical argument, but 

owing to the manifest wrongness of its physical implications. 

 The only other such example I have found is Fatio’s reading of Proposition 

37 of Book 2. This result is part of Section 7, which concerns the modern topic 

of fluid mechanics, and was almost completely rewritten by Newton between the 

first and second editions. In the version published in 1687, Proposition 37 

concerns the speed with which water flows out of a container with a hole in the 

bottom, a problem now known as Torricelli’s Theorem. Newton argues that the 

speed of efflux is such that, were the emergent jet to be somehow redirected 

vertically upwards, it would reach a height equal to exactly half of the depth of 

the water in the container. When he read this claim, Fatio disagreed with it. He 

thought that the vertically directed jet would reach a height equal to the entire 

depth of the water, not half-way. As Torricelli’s Theorem confirms, Fatio was 

right. 
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 To understand the manner of Fatio’s objection, it will be helpful to have an 

overview of Newton’s argument.242 Newton imagines a vessel of water, filled to 

some depth A. There is a hole in the bottom of area F, out of which water is 

about to flow downwards. Newton draws attention to the vertical column of 

water within the vessel sitting directly above the hole. He considers what would 

happen if, rather than flowing out of the hole, this column of water were to be 

removed from the vessel and simply dropped to plummet in free fall in a 

vacuum. The central assumption on which Newton bases his argument is that 

the momentum that would be acquired if this column of water were to plummet 

in free fall for a fixed time T is equal to the total momentum that is in fact 

acquired by all the water that spurts out of the hole during the same fixed time 

T. 

 Newton first considers the momentum that would be acquired if the column 

were to descend in free-fall for a fixed time T. The column has a height of A and 

a cross-sectional area F, and so its mass is AF. If it were to fall from rest for a 

given time T, it would acquire some speed V that can be easily calculated from 

the Galilean laws of kinematics, and the momentum gained would therefore be 

AFV. He then considers the total momentum of all the water that spurts out of 

the hole during the fixed time T. Let the speed with which it emerges be labelled 

w. If the water spurts out of a hole of area F for time T with speed w, then the 

total volume of water that emerges will be wFT . Since it all has speed w, its 

 

242 What follows is a sanitised summary of the argument that appears in the 1687 version of 
Proposition 37. While I have generally used the same symbols as Newton, I have reformulated 
his argument in modern terminology and notation for ease of comprehension. The reader who 
wishes to examine the original is directed towards the translation in Buchwald and Cohen, eds., 
Isaac Newton’s Natural Philosophy, 302–04. They are warned against consulting Proposition 37 
in any modern translation based on the third edition, in which Section 7 bears little relation to 
the first.  
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total momentum will be 2w FT . Invoking Newton’s central assumption that the 

momentum that would be acquired if the column of water were to plummet in 

free fall for a fixed time T is equal to the total momentum that is acquired by all 

the water that spurts out of the hole during the same fixed time T, this gives  

 

 2AFV w FT  

 

The F’s cancel, and the Galilean laws of kinematics will easily generate an 

expression for V in terms of T. In modern notation, everything simplifies to 

 

2w gA  

 

where g is the gravitational acceleration constant. Finally, Newton considers 

what would happen if the emergent jet were somehow to be directed vertically 

upwards. The greatest height reached by a projectile is proportional to the 

square of its velocity: the modern reader will intuit this from energy 

considerations, whereas Newton simply writes “uti notum est”. Both Newton and 

the modern reader are therefore able to reach the conclusion that a jet with 

velocity w gA  will reach a height equal to 2A . Thus the speed of efflux 

from the hole is such that, were the emergent jet to be somehow redirected 

vertically upwards, it would reach a height equal to exactly half of the depth of 

the water in the container, as required. 

 Modern fluid dynamics shows that Newton’s conclusion is wrong. According 

to Torricelli’s Theorem, the speed of efflux from the hole will be 2gA , and an 

upturned jet will reach the entire height A of the water. Torricelli’s Theorem is 
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properly proved from the Bernoulli equation, but its result can be derived 

algebraically by equating the gravitational potential energy lost by a particle of 

water as it falls from the top surface of the water down to the hole with the 

kinetic energy it gains in rising back up. Either demonstration is ultimately 

founded on the conservation of energy. Newton’s analysis, on the other hand, is 

based on the assumption that the momentum gained by the emerging jet of 

water in a given time is equal to the momentum that would be gained by the 

column of water directly above the hole if it were to descend in free fall for the 

same amount of time. This assumption turns out not to be true, but I have not 

seen any indications in the secondary literature that this should have been 

obvious to him in 1687.243 The important point is that the erroneous factor of 1 2  

in Newton’s answer is not the result of a computational mistake, but arises from 

a completely different (and, we would say in hindsight, wrong) conceptual 

approach to the problem. 

 Fatio also disagreed with Newton’s conclusion. He correctly thought that the 

height reached by such an upturned jet would be equal to the entire depth of the 

water, not half. He recorded his objections in three places in his first edition. In 

the margin next to the final paragraph of Newton’s explanation on page 331, he 

wrote the following note: 

Newtonum ab erroribus in hac propositione contentis nullatenus liberare 

potui, quam per Experimentum; constructo scilicet Vase ad hunc ipsum 

usum destinato.244 

 

243 See the analysis by George E. Smith in Buchwald and Cohen, eds., Isaac Newton’s Natural 
Philosophy, 249–313. 
244 Bodleian, Arch. A d.37, 331. 
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I have not by any means been able to free Newton from the errors 

contained in this proposition, other than through an experiment; 

obviously with a vessel having been constructed, designed for this very 

purpose. 

He also made the following note on a loose sheet of paper, now inserted 

between the pages of his copy: 

dimidiam aquae altitudinum. Corrige et lege totam aquae altitudinum. 

Newtonum nostrum ab hoc errore vix liberare potui, idque facto demum 

experimento opere vasis quod conficiendum curavi.245 

 “half the water’s height.” Correct and read “the total height of the water.” 

I have been able to free our Newton from this error with difficulty, and in 

the end by an experiment made with the effect of a vessel which I took 

care should be performed. 

And immediately below this, on the same sheet of loose paper, he wrote the 

following commentary on Proposition 37: 

Tota haec demonstratio fallax est ejusque conclusio falsa. Aqua enim 

effluens, ut notissimum est, si ejus motus sursum vertatur ascendet, in 

spatiis non resitentibus, ad ipsam superficiei altitudinem non autem ad 

altitudinem‸illam dimidiam. ‸Cujus Propositionis Demonstratio ex eo pendet quod 

si motus in aqua a gravitate genitus sursum vertatur donec aquae 

particulae altius ascendere non possint debeat totius aquae centrum 

gravitatis in eadem altitudine ac ante motum reperiri Vide quae de simili 

motus conversione‸sursum Cl. Hugenius in Horologio oscillatorio 

demonstravit Quae‸Hugenii demonstratio ad fluida non minus quam ad 

solida corpora extenditur Fluida enim ex exiguis solidis particulis 

 

245 See the loose sheet of paper inserted at Bodleian, Arch. A d.37, 332. This note relates to a 
line in Proposition 38 which invokes the result of Proposition 37. 
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componi versimile est, ac proinde nihil aliud esse quam plurium 

solidorum corporum congerium.246 

This entire demonstration is fallacious and its conclusion is false. For the 

water flowing out, as is very notable, if its motion were to be turned back 

up, will ascend (in non-resisting spaces) to the very height of the top, not 

to half that height. The demonstration‸of which proposition depends upon this, 

that if the generated motion in the water were to be turned back up by 

gravity, as long as the particles of water are not able to ascend higher, 

the centre of gravity of all the water should be found again at the same 

height as before the motion. See those things that the famous Huygens 

has demonstrated about a similar upwards change of motion in the 

Horologium Oscillatorium. Which demonstration of Huygens is extended 

to fluids no less than to solid bodies. For it is apparently true that a fluid 

is composed of small solid particles, and therefore is nothing other than 

rather many solid bodies joined together. 

It is clear that Fatio is forcefully recording his disagreement with Newton’s 

conclusion. It is equally clear that he was right to do so. But it is the manner of 

his objection that is of most interest. First, Fatio and Newton must have had a 

free and frank exchange of views about Proposition 37, presumably face-to-

face. Fatio did not tentatively suggest that Newton reconsider the precise 

wording of a nuanced passage. He boldly asserted that “Tota haec 

demonstratio fallax est ejusque conclusion falsa.” He was able to convince 

Newton of his error, but only after a struggle (“vix”), which appears to have been 

protracted (“nullatenus”). Fatio strongly disagreed with what he read, and 

Newton’s initial response was to defend it with equal vigour. And second, the 

grounds of Fatio’s disagreement, and the type of evidence he supplies in his 

defence, are instructive. Newton’s original argument in Proposition 37 may be 

 

246 See the loose sheet of paper inserted at Bodleian, Arch. A d.37, 332. 
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described as mathematical: he establishes a mathematical model of the 

physical set-up (to use anachronistic language), and then supplies a 

mathematical argument to deduce the conclusion that if the emergent jet were 

somehow to be redirected vertically upwards, it would reach a height equal to 

exactly half of the depth of the water in the container. Fatio rebuts this 

mathematical argument with empirical evidence. The water does not reach half 

the depth of the water in the container, says Fatio, but to the very top – and he 

knows this because he has performed the experiment. Indeed, he has 

conducted the test with a specially constructed vessel, built expressly to verify 

this fact. It is reasonable to infer from the second note above that he performed 

the experiment for Newton personally, in front of his very eyes, probably in 

1690. It is certainly the case that Newton admitted defeat, because he deleted 

the word “dimidiam” from “dimidiam aquae altitudinem” in his annotated copy. In 

other words, Fatio disproved Newton’s mathematical argument by directly 

presenting him with empirical evidence to the contrary. In the previous example 

Huygens intuited that Newton’s mathematical argument must be wrong because 

it led to an empirical prediction that is absurd; in this instance Fatio 

demonstrates that Newton’s mathematical argument must be wrong because it 

leads to an empirical prediction that, as a matter of experimental fact, he can 

show to be untrue. 

 Fatio, like Huygens, did not attempt to identify the flaw in Newton’s 

mathematics. Newton went to great lengths to do that himself, and after the 

publication of the first edition completely rewrote not only Proposition 37 but 

almost all of Section 7. This overhaul is the subject of George Smith’s study 
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“Fluid Resistance: Why Did Newton Change His Mind?”247 But because he does 

not know of the existence of Fatio’s commentary, Smith does not acknowledge 

the answer to his rhetorical question: Newton changed his mind because Fatio 

performed an experiment to demonstrate that he was wrong. This 

demonstration caused Newton not just to rephrase the passage in question, but 

to re-examine and re-write the entire section. Fatio’s intervention may 

alternatively be viewed in the context of the 250-year-long project to subject 

Newton’s system of mathematical physics to experimental confirmation. Fatio’s 

test of Proposition 37 in 1690, using a vessel that he constructed specially for 

that purpose, deserves to be acknowledged as the first entry in the long story of 

empirical verification of Newtonianism – a story which passes through La 

Condamine in 1749 and Cavendish in 1798 and finally ends with Eddington in 

1919. The Swiss mathematician performed the first ever experimental test of 

the predictions Newton made in the Principia, and he showed them to be false. 

5.4 The diversity of responses to Newton’s analysis of force 

My final consideration is of readers’ responses to the ways in which Newton 

mathematised force in the Principia. The standard narrative in the secondary 

literature is that Newton’s peers accepted his mathematical analysis of 

planetary forces, but lamented his failure to provide a mechanistic cause for 

universal gravitation. The primary sources demonstrate that, while grounded in 

some evidential truth, the emphasis of this narrative is misplaced. On the 

contrary, there was a plurality of responses to Newton’s analysis of force in the 

Principia, just as there was to his mathematical methods. Rather than present 

 

247  Smith, “Fluid Resistance: Why Did Newton Change His Mind?”. See also Chapter 9 in 
Buchwald and Cohen, eds., Isaac Newton’s Natural Philosophy. 
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this variety thematically, I have chosen to consider the responses of individual 

readers in turn. However, I wish to highlight four particularly important variables, 

which can be tracked through each of the examples that follow. These four 

factors are interdependent and inextricably interlinked, and in each individual 

case they are all present to a greater or lesser degree. 

 The first variable is the importance a given reader attached to the need for a 

mechanism which could account for the physical cause of gravity, which is 

already heavily emphasised in the traditional narrative. Huygens is commonly 

cited as an important reader who could not assent to the existence of universal 

gravitation owing to its lack of physical mechanism. Fatio also gave 

considerable thought to a causal mechanism for gravity. But it is very important 

to note that the mathematics and the physics cannot be separated cleanly: in 

Leibniz’s case the physical assumptions he made about the mechanistic cause 

of gravity determined the mathematics he chose to analyse it with. 

 Following from this, the second variable is the awareness of individual 

readers that there is more than one way to mathematise force. In the section 

below on Gregory, I will outline the two distinct approaches to the mathematical 

analysis of force that Newton used in the first edition of the Principia, and note 

that he developed a third during the 1690s. Leibniz developed a fourth. 

Importantly, all four can be used to derive the inverse square law. None of 

these, therefore, should be seen as the “correct” method of analysis to explain 

orbital motion. There were many available approaches, as some of Newton’s 

readers acknowledged. Leibniz’s system demonstrates his awareness of this 

plurality, and Gregory was able to switch flexibly between the alternatives. 
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 The third variable is the extent to which Newton’s readers were persuaded 

by his rejection of centrifugal force in favour of his new conception of centripetal 

force. It will be clear from the primary evidence that overwhelmingly they were 

not. Huygens in his correspondence was notably unwilling to relinquish his 

conception of centrifugal force. Leibniz’s mathematisation of force consisted of 

a mixture of centripetal and centrifugal force. And Gregory, remarkably, stated 

very clearly his view that all of Newton’s orbital force proofs in Sections 2 and 3 

of Book 1 could in principle be rewritten in terms of centrifugal rather than 

centripetal forces. In this way he accepted the validity of Newton’s mathematical 

arguments without committing to his ontological assumption of the reality of 

centripetal forces. In short, although the retrospective narrative is that Newton’s 

realisation of centripetal force was one of the major conceptual achievements of 

the Principia, the primary evidence shows that his contemporaries were not 

persuaded by it at the time of publication. 

 The fourth and final variable is extremely straightforward: it is simply to 

acknowledge that Newton’s peers did not read large sections of his book, and 

therefore commonly formed their opinion about the physical reality of forces 

without having read all the mathematical arguments Newton put forward in their 

favour. In this respect, it is important to emphasise the distinction between 

gravitation as a centrally directed pull on (for example) the earth towards the 

sun, and universal gravitation as a mutually attractive force pulling both the 

earth towards the sun and the sun towards the earth. The derivations of 

Kepler’s Laws and the inverse square law in Sections 2 and 3 of Book 1 

assume only a centrally directed gravitational pull, and as outlined in Chapter 1, 

these passages were frequently studied by Newton’s peers. But these opening 
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sections do not anywhere refer to the existence of universal gravitation. It is 

only towards the end of Book 1, in Sections 11–14, that Newton considers what 

will happen if the orbiting body pulls back on the body around which it orbits. 

Indeed, Newton opens Section 11 with a long paragraph articulating exactly this 

distinction, and explaining that over the following pages “pergo motum exponere 

corporum se mutuo trahentium.” But few of Newton’s early readers ever saw 

this passage. Almost none of them studied the subsequent sections in any 

detail. Halley made brief comments on a few passages; Clerke reported that he 

had tried but struggled to understand Section 11; Flamsteed mentioned it once 

in a letter from 1695; Leibniz appears to have read Proposition 66 closely and 

skim-read the rest, but without checking the mathematics; and Gregory only got 

to the end of Book 1 in his second phase of reading at the end of 1692.248 This 

means that there is no evidence that any readers undertook a detailed study of 

Newton’s mathematical demonstrations concerning universal gravitation in the 

five years following publication. Most significantly, the two readers commonly 

cited by the secondary literature as having bemoaned the lack of a causal 

mechanism never read these results. The narrative that contemporaries 

opposed universal gravitation on the grounds of its physical improbability needs 

to be contextualised by the apparent fact that they did so without having studied 

the mathematical arguments in favour of its existence. 

5.4.1 Fatio’s causal speculations, independent of his study of the text 

The first of these two readers is Fatio. I have already demonstrated that Fatio 

engaged with the Principia by dutifully working through many of the proofs in 

 

248 CUL, MS Add. 3965, 99; Clerke to Newton, 7 Nov. 1687, NC, 2:491–96; Flamsteed to 
Newton, 29 Jan. 1695, Correspondence, 4:78; Excerpts, 491–99. 
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order, discussing them with their author, seeking clarification, challenging, and 

suggesting improvements. I showed in Chapter 4 that Fatio engaged particularly 

critically with Newton’s articulation of geometrical limits in his method of first and 

last ratios. It is notable therefore that there is no record of an equivalent 

negotiation concerning Newton’s mathematisation of force. There are many 

instances of Fatio querying or tweaking Newton’s proofs, but – unlike Gregory 

or Leibniz, as will shortly become evident – at no stage did he question the 

fundamental aspects of his analysis of orbital motion. 

 Instead, Fatio’s main concern with the nature of force in the Principia was to 

establish a physical mechanism for gravitation. In the late 1680s and early 

1690s he proposed a number of causal mechanisms, both in private 

correspondence and to the Royal Society. He first addressed the Royal Society 

on the cause of gravity on 27 June 1688, five weeks after being nominated as a 

member, when he proposed a mechanism based on something like a Cartesian 

vortex, with orbital motion maintained by swirling particles of aether. Almost two 

years later, in February 1690, he returned to Gresham College to read the 

abstract of his tract De la Cause de la Pesanteur, which he submitted in full the 

following month. This provided a mechanism not just for centripetal orbital 

forces but for universal gravitation, proposing that the movement of aethereal 

corpuscles between two bodies could account for their being drawn towards 

each other according to an inverse-square law. Fatio continued to revise this 

theory for the next fifty years. He communicated it to Leibniz, regularly 

discussed it in correspondence with Huygens, and (almost certainly wrongly) 
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thought that Newton approved of it. 249  However, a comparison with the 

chronology presented in Chapter 1 shows a disjunction between the 

development of Fatio’s physical theories and his readings of the Principia. His 

presentation of 1688 was almost certainly made before he had engaged in any 

meaningful study of the text. His initial version of the tract De la Cause de la 

Pesanteur was composed shortly before Newton’s stay with him in London in 

May 1690, and must therefore have been written prior to their discussion of the 

proofs in Sections 1–4 of Book 1, and before Fatio worked through Sections 5–

9. Furthermore, there is no evidence that he ever studied the mathematical 

results concerning universal gravitation in Sections 11–14. His reading notes 

and marginalia strongly suggest that his programme of careful study came to a 

halt before he reached these passages. So Fatio did not develop a mechanism 

for universal gravitation because he had been persuaded of its physical reality 

by the mathematical arguments Newton provided: he cannot possibly have 

been, because (so far as we can tell) he never read them. Rather, he appears 

to have made his physical speculations independently of his study of the text. 

Fatio did accept the existence of mutual attractive forces, but the primary 

evidence shows that he must have been convinced of this by some means 

other than studying Newton’s book. It wasn’t reading the Principia that 

persuaded Fatio of the physical reality of universal gravitation. 

5.4.2 Huygens’ emphasis on Cartesian vortices and centrifugal motion 

The second reader whose concern for a causal mechanism is routinely 

emphasised by the literature is Huygens. The received narrative that Huygens 

 

249 See the account in Gangebin “De la Cause de la Pesanteur.” 
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could not accept action at a distance and so rejected the physical reality of 

universal gravitation is certainly borne out by the primary evidence. He labelled 

Newton’s idea in a letter to l’Hôpital “le principe peu vraisemblable de 

l’attraction,”250 and its improbability is a recurrent theme of his correspondence 

with Leibniz, particularly for the two years from the summer of 1692.251  In 

November 1690, he wrote the following: 

Pour ce qui est de la Cause du Reflus que donne Mr. Newton, je ne m'en 

contente nullement, ni de toutes ses autres Theories qu'il bastit sur son 

Principe d'attraction, qui me paroit absurde, ainsi que je l'ay desia 

temoignè dans l'Addition au Discours de la Pesanteur. Et je me suis 

souvent etonnè, comment il s'est pu donner la peine de faire tant de 

recherches et de calculs difficiles, qui n'ont pour fondement que ce 

mesme principe. Je m'accommode beaucoup mieux de son Explication 

des Cometes et de leur queues; et quoyque la chose ne soit pas sans 

cette grande difficultè, que vous remarquez fort bien, je ne trouve encore 

rien de meilleur que ce qu'il en dit, qui vaut mieux incomparablement, 

que ce qu'en a imaginè des Cartes.252 

As for the Cause of the Tides given by Mr. Newton, I am by no means 

satisfied with it, nor with all his other Theories which he builds on his 

Principle of attraction, which seems absurd to me, as I have already 

testified in the supplement to the Discourse on Gravity. And I have often 

been amazed, how he could have taken the trouble to do so much 

research and difficult calculations, which are based only on this same 

principle. I get along much better with his Explanation of Comets and 

their tails; and although the thing is not without this great difficulty, as you 

 

250 Huygens to l’Hôpital, 29 Dec. 1692, OC 10:354.  
251 See, for example, Leibniz to Huygens, 11 Apr. 1692, OC, 10:283–6; Huygens to Leibniz, 11 
Jul. 1692, OC, 10:296–9; Leibniz to Huygens, 26 Sep. 1692, OC, 10:316–21; Huygens to 
Leibniz, 12 Jan. 1693, OC, 10:383–9. 
252 Huygens to Leibniz, 18 Nov. 1690, OC, 9:536. 
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observe very well, I still do not find anything better than what he says 

about it, which is incomparably better than what Descartes imagined. 

The “Discours de la Cause de la Pesanteur” to which he refers was published at 

the start of 1690 as an appendix to his “Traité de la lumière,” and proposed a 

mechanism for a centrally directed force that would maintain a planetary body in 

an orbit. As demonstrated in Chapter 1, Huygens had by this stage already 

undertaken all the detailed study of the proofs of the Principia of which evidence 

remains, and his “Discours” does not attempt to supply a mechanism for mutual 

attraction, only a centrally-directed force. It seems that Huygens therefore 

denied universal gravitation without reading Newton’s arguments in favour of it. 

 Huygens’ reference to Descartes in this letter is representative of a wider 

habit, and the overall impression from his correspondence is that Huygens 

considered the primary achievement of the Principia to be its refutation of 

Cartesian vortices. In a short note he made about orbits in December 1688 he 

wrote that 

Hasce omnes difficultates abstulit Clar. vir. Neutonus, simul cum 

vorticibus Cartesianis; docuitque planetas retineri in orbitis suis 

gravitatione versus solem. Et excentricos necessario fieri figurae 

Ellipticae.253  

The great Mr Newton has removed all of these difficulties, along with 

Cartesian vortices; he has shown that the planets are held in their orbits 

by gravitation towards the sun, and that eccentric orbits necessarily 

become elliptical figures. 

In a note on comets made in 1689 Huygens recorded that 

 

253 OC, 21:143. 
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Je suis maintenant presque du sentiment de Mr. Newton qui veut que les 

Cometes tournent en des Ellipses fort oblongues autour du Soleil, qui fait 

l'un des foiers. Cela devient probable apres qu'il a ostè les tourbillons de 

des Cartes, qui d'ailleurs ne s'accommodoient point avec plusieurs 

phenomenes des mouvements planetaires.254 

I am now almost of the opinion of Mr Newton who wants the Comets to 

turn in very elongated Ellipses around the Sun, which is one of the 

foci. This becomes likely after he has set aside the vortices of Descartes, 

which, moreover, do not accommodate themselves with several 

phenomena of planetary movements.  

And in his exchanges with Leibniz his concern is to discover from his 

correspondent “si vous n’aviez pas rejettè les Tourbillons de des Cartes apres 

avoir vu le livre de Mr. Newton.”255  

 It is also noticeable that Huygens did not reject the language of centrifugal 

forces in his correspondence, and did not appear to register that Newton had 

done so either. This is demonstrated in a letter about the nature of gravity to 

Leibniz in the summer of 1692, which is suffused with the vocabulary of “la force 

centrifuge” and “la vertu centrifuge.”256  In a letter from early 1690 quizzing 

Leibniz on his own system of planetary motion, after repeating his view that 

Cartesian vortices are “superflus,” Huygens again asked his correspondent 

what he had made of “le Systeme de Mr. Newton où le mouvement des 

Planetes s'explique par la pesanteur vers le Soleil et la ‘vis centrifuga,’ qui se 

contrebalancent.”257 This misrepresentation of Newton’s analysis is revealing, 

and, confirms the overall pattern of Huygens’ engagement with the Principia. He 

 

254 OC, 19:310. 
255 Huygens to Leibniz, 24 Aug. 1690, OC, 9:470–3. 
256 Huygens to Leibniz, 11 Jul. 1692, OC, 10:296–304. 
257 Huygens to Leibniz, 8 Feb. 1690, OC, 9:366–368. 
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undertook little detailed examination of the book, and processed its claims in 

terms of his own pre-existing conceptual framework, not the one Newton 

presented: he verified the limit proofs by recreating them with infinitesimals, and 

judged its dynamics in terms of Cartesian vortices and centrifugal forces. 

5.4.3 Gregory’s analytical flexibility 

Gregory’s aim in studying the Principia was to verify Newton’s proofs rather 

than to establish a causal mechanism for gravitation, and his Notae scrutinise 

the integrity of the book’s mathematical arguments more than the viability of his 

physical conclusions. His comments on the mathematics, however, are highly 

revealing of his approach to the physics, because they show that he recognised 

that there was more than one way of mathematising force, and more than one 

ontology consistent with Newton’s analysis. As to the ontology he favoured – 

and in particular whether he thought the forces on a body in orbit should be 

viewed as centripetal or centrifugal – Gregory appears in his Notae to have 

remained explicitly non-committal. 

 Gregory’s awareness that force could be mathematised in more than one 

way reveals itself in the Notae because Newton himself tackled the problem of 

orbital motion using two distinct methods in the Principia. These are usually 

labelled the “Polygonal” and “Parabolic” approximations respectively.258 In the 

polygonal approximation, a curved orbital path is approximated by an inscribed 

polygon. The orbiting body is considered to move along the rectilinear sides of 

the polygon in turn with constant velocity, and at each vertex (all of which lie on 

the approximated curve), it receives an instantaneous force which immediately 

 

258 See Brackenridge, The Key to Newton’s Dynamics, 24–35. Brackenridge also explains a 
third method, the “circular” approximation, which was employed in the second edition of 1713. 
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alters its direction and speed, such that it continues its motion with a new 

constant velocity along the next side of the polygon. The polygonal 

approximation is therefore intrinsically associated with a conception of force as 

an instantaneous impulse, or “blow”; and it decomposes the motion into 

elements of constant velocity. The polygonal approximation for orbital motion 

was first used by Newton in the 1660s, and provided the foundation for his early 

studies on circular motion, but it appears very rarely in the Principia itself. Easily 

the best-known instance is Proposition 1 of Book 1, which may briefly be 

considered by way of an example. Proposition 1 proves Kepler’s area law, that 

any body moving under the action of a centrally-directed force will sweep out 

equal areas in equal times. Here is the construction Newton uses for the proof: 

 

 

 

The body moves from A to F along the red orbital path (which is not marked on 

the printed diagram in the book), and the centre towards which the forces are 

directed is labelled S. The curve is approximated by the inscribed polygon 

ABCDEF, and the body is considered to move rectilinearly along each of the 
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sides AB, BC, CD, etc. in turn. At each of the vertices B, C, D, etc. the body 

receives an instantaneous impulsive force directed towards S, such that it is 

diverted along the next side of the polygon. The magnitudes of the impulsive 

forces are represented by the displacements Cc, Dd, Ee etc. It is a simple 

matter in Proposition 1 to prove geometrically that the areas of the triangles 

SAB, SBC, SCD etc. are all equal, and thus that Kepler’s area law must hold for 

any body orbiting under the action of a centrally-directed force. 

 In the parabolic approximation, on the other hand, primary importance is 

given to the tangent to the curved orbit. At any given moment in the orbit, 

consideration is given to the tangential path the body would continue along if 

there were no centripetal force. The centripetal force has the effect of deflecting 

and accelerating the body away from this tangent, and the size of this 

accelerated deflection can be used to measure the size of the force. This 

deflection is computed using Galileo’s laws of kinematics: the centripetal force 

is considered to act continuously and accelerate the body away from the 

tangent, and the laws of kinematics dictate that it thus moves in a parabolic arc. 

We notice that the parabolic approximation is therefore intrinsically associated 

with a conception of force as a continuous pull, rather than the succession of 

impulses implied by the polygonal approximation. The majority of the orbit 

proofs in the first edition of the Principia employ this parabolic approximation. 

For example, Proposition 6 concerns a body moving in any curved orbit 

whatsoever, under the action of a centrally directed force. Here is the diagram 

Newton uses: 
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The body at point P is understood to be orbiting along the curve anticlockwise 

around the point S, towards which the force is directed. If this centripetal force 

were not to act, the body would continue along the tangent towards R. But the 

centripetal force does act, and is considered to pull continuously on the body 

parallel to PS as it moves away from P, deflecting the body from the tangent 

such that it arrives at the point Q. Newton uses the Galilean laws of kinematics 

to compute the size of the deflection QR; and because he is using the Galilean 

laws of kinematics and the force is considered to be a continuous pull on the 

body parallel to PS, the orbital curve between P and Q is approximated by a 

section of parabolic arc. 

 Most of Newton’s demonstrations employ the parabolic approximation, and 

so most of the Notae show Gregory successfully assimilating this style of proof. 

However, Newton’s Scholium after Proposition 4 of Book 1 is unusual, and 

Gregory’s commentary on this result demonstrates us that he was able to 

switch between the two methods of analysis. Proposition 4 concerns the 

centripetal force required to maintain motion in a circle. In modern terms, it 

proves that  2F v r , and it does so using the standard parabolic 

approximation. Uniquely among Newton’s proofs, however, the short Scholium 

that follows contains an alternative derivation of the same conclusion using a 
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polygonal analysis. In translation, here is the final paragraph of the Scholium in 

the first edition: 

The preceding results can also be demonstrated in the following way. In 

any circle, suppose that a polygon of any number of sides is described. 

And if a body moving with a given velocity along the sides of the polygon 

is reflected from the circle at each one of its corners, the force with which 

it impinges on the circle at each reflection will be as its velocity, and 

therefore the sum of the forces in a given time will be as that velocity and 

the number of reflections jointly, that is (if the polygon is specified) as the 

length described in that given time and the same length divided by the 

radius of the circle jointly, that is as the square of that length divided by 

the radius. And therefore if the polygon, with its sides diminished 

indefinitely, coincides with the circle, it will be as the square of the arc 

described in the given time divided by the radius. This is the force with 

which the body urges the circle, and the opposite force with which the 

circle continually repels the body toward the centre, is equal to this. 

Newton’s explanation here deserves brief consideration. The penultimate 

sentence (“ut quadratum arcus dato tempore descripti applicatum ad radium”) 

recognisably contains the 2v r  that is to be derived, and Newton is clearly 

establishing a polygonal approximation in this Scholium, rather than the 

parabolic approximation used in the main proof. Following through sentence by 

sentence, his claim that the force with which the body strikes the circle at each 

vertex of the polygon is proportional to the velocity is intuitively plausible to a 

modern reader, if force is thought of as an instantaneous impulse proportional 

to the change of momentum. The sum of all these forces in a given time will 

therefore be proportional to the product of the velocity and the number of 

reflections. But the argument in the text then makes a leap: it is not obvious why 

the number of reflections is proportional to the length described in a given time 
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divided by the radius. Once this is granted, the 2v r  result follows easily. But 

Newton does not explain why this step holds. 

 His reading notes show that this also puzzled Gregory. This is what he wrote 

in his Notae: 

Esse vero numerum reflectionum ut longitudo applicata ad radium ita 

ostenditur  

tot sunt reflexiones quot sunt latera polygoni dato tempore percursa, sed 

ob polygonum regulare, latus est ut radius, quare latera‸sive longitudo in dato 

tempore sunt ut radius et numerus laterum conjunctim id est ut radius et 

numerus reflexionum conjunctim, id est longitudo est ut rectangulus sub 

numero reflexionum et radio unde longitudo applicata ad radium est 

numerus reflexionum259 

That the number of reflections is indeed as the length divided by the 

radius is shown as follows.  

There are as many reflections as there are sides of the polygon run 

through in a given time; but on account of it being a regular polygon, the 

side is as the radius, hence the sides‸or total distance in a given time are as 

the radius and the number of sides jointly, that is as the radius and the 

number of reflections jointly, that is the total distance is as the product of 

the number of reflections and the radius, whence the total distance 

divided by the radius is the number of reflections. 

Gregory has here provided the missing explanation. In a given time, the number 

of reflections is obviously equal to the number of sides of the polygon run 

through. But because it is a regular polygon, if the size of the circle is varied as 

everything else is kept the same, the length of each side is proportional to the 

radius. The total distance described along the circumference of the polygon in a 

 

259 RS, MS210, 2v. 
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given time – which is equal to the number of sides run through multiplied by the 

length of each side – is therefore proportional to the number of reflections 

multiplied by the radius. Whence the number of reflections is proportional to the 

total distance described divided by the radius, as required. 

 Other instances in which readers supplied arguments missing from the text 

were considered in Chapter 4, but this example additionally demonstrates 

Gregory’s ability confidently to switch between alternative mathematisations of 

centripetal force. Although Newton very rarely uses the polygonal approximation 

in the Principia, and supplies almost no other examples on which to model a 

proof, Gregory was sufficiently flexible to be able to construct a polygonal 

argument for himself when the text failed to provide it. He recognised that there 

was more than one way of mathematising force, and was able to adapt 

accordingly when reading the text. 

 There is one further observation to be made about Gregory’s response to 

Newton’s mathematisation of force, which is briefly stated but of considerable 

significance. Having worked through the central orbit theorems in Section 2 and 

the short Scholium that follows, he wrote the following: 

vellem Auctor Theorema conderet de vi centrifuga thoremati quinto de vi 

centripeta simile quod non adeo arduum futurum reor eadem enim 

Lemmata in sectione prima doctrinae de vi centrifuga inservirent.260  

I would like the author to compose a theorem about centrifugal force 

similar to Theorem 5 about centripetal force, which indeed I think is not 

going to be not difficult, for the same lemmas in the first section would 

serve the doctrine of centrifugal force.  

 

260 RS, MS210, 4v. 
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To this note he subsequently added these words: 

Unde facillime deduci poterunt Theoremata de vi centrifuga Horologio 

Oscillatorio D: Huygenii subnexa 

Whence the theorems added about centrifugal force in Mr Huygens’ 

‘Horologium Oscillatorium’ will very easily be able to be deduced 

And squeezed alongside in the margin, he has written this: 

immo theorema idem theor. 5 inservit, nam actioni qua centrum retinet et 

trahit corpus in orbita ne in tangentem exeat aequalis est reactio qua 

corpus trahit centrum hoc est corporis vi centrifuga q.e.d. 

On the contrary, a theorem the same as Theorem 5 serves, for to the 

action with which the centre holds back and drags the body in an orbit so 

that it does not go out along the tangent, there is an equal reaction by 

with which the body drags the centre, that is the centrifugal force of the 

body. Q.E.D. 

The catalyst for these notes is the final words of the Scholium, “vi centripeta in 

centrifugam versa” (“with the centripetal force turned into a centrifugal force”). In 

the Scholium these words are used to describe how the geometric construction 

used to determine the force governing elliptical motion could be altered to 

determine the force governing hyperbolic motion. But reading this phrase 

prompted Gregory to make a much broader remark. Theorem 5 is the 

alternative label for Proposition 6, which provides the geometric measure of 

centripetal force Newton uses in all the subsequent demonstrations: Gregory is 

therefore explicitly stating his desire that alternative proofs be provided of all the 

orbit proofs, expressed in terms of centrifugal rather than centrifugal force. He 

thought that the proofs in Section 2 could, and should, be re-written in terms of 

centrifugal rather than centripetal forces. Whether this reflected his own 
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ontological preference for centrifugal over centripetal forces, or whether he 

merely wished the reader of Newton’s book to have the freedom to make their 

own choice, is not clear. My interpretation of the notes above is that Gregory 

wishes not to commit to a position on the physical reality of centripetal as 

opposed to centrifugal forces. The first note appears to suggest that whether 

the proofs are phrased in terms of centripetal or centrifugal forces is a matter of 

mathematical convenience, and that they have equal ontological validity. He 

clearly states his view that the method of first and last ratios is just as applicable 

to either. The final marginal note complicates matters, since it appears 

erroneously to identify centrifugal force with the pull exerted by the orbiting body 

on the larger one at the centre. But Gregory’s writing in this final note is 

somewhat difficult to read: further research needs to be done into the 

development of Gregory’s own views about the mathematisation of force before 

drawing firm conclusions. 

 However, Gregory’s awareness that there is more than one possible 

mathematisation of centripetal force resonates with his view that there is more 

than one possible interpretation of the underlying physics. He recognised that 

the analysis provided by Newton was only one of the many possible 

mathematisations of central force. Multiple proofs of the orbital laws were 

possible, with multiple underlying ontologies. In the face of such variety, he 

appears in the Notae to have remained non-committal. In other words, and 

despite his extremely close reading of the text, Gregory was not persuaded that 

Newton’s analysis of orbital forces was the only valid possibility. 

5.4.4 Leibniz’s alternative in the Tentamen 
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Bertoloni Meli’s analysis of Leibniz’s response to the Principia, and his account 

of the book’s influence on his own mathematisation of orbital forces in the 

Tentamen of February 1689, reveals that, like other readers, Leibniz was not 

persuaded by Newton’s mathematisation of force. My purpose in this final 

section is to show how this disagreement was manifested in his processing of 

the text. 

 It will be helpful to begin by comparing Newton’s analysis of orbital motion in 

the Principia with Leibniz’s in the Tentamen. Both analyses can be used to 

derive the required expressions for the centripetal forces needed to maintain 

circular and elliptical orbits, but they arrive at these results in different ways. In 

the opening sections of Book 1, Newton assumes the existence of only one type 

of force, a centripetal force. Coupled with a law of linear inertia, centripetal 

forces are sufficient for Newton to explain orbital motion. A body will continue to 

move in a straight line unless deflected from it, and a force continually acting 

towards a fixed point will continually deflect the body into some sort of orbit. The 

shape of the orbit will depend on the size of this deflecting force. As explained 

in the previous section, Newton’s mathematical analysis of centripetal forces in 

the Principia mostly uses a parabolic approximation, whereby the force pulls 

continuously on the body to deflect it from its inertial path. The body therefore 

accelerates along each deflection. In Sections 2 and 3 of Book 1 Newton uses 

this analysis to determine the centripetal force required to maintain orbits in a 

variety of shapes. In the text of the Principia Newton famously refused to 

hypothesise about the physical cause of the centripetal forces sustaining 

planetary motion. 
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 Leibniz’s explanation of orbital motion in the Tentamen, on the other hand, 

assumes the existence of not one but three forces. First, a transverse 

component – the circulatio harmonica – sweeps the body around the orbit in a 

circular motion, with speed inversely proportional to the distance from the centre 

(thus accounting for Kepler’s Area Law). The circulatio harmonica generates, 

second, a centrifugal force (or “conatus”) propelling the body outwards, which 

Leibniz proved to be inversely proportional to the cube of the distance from the 

centre.261 And, third, the “solicitation of gravity” provides a pull towards the 

centre. So the transverse component (the circulatio harmonica) moves the body 

around the orbit at the same time as the centrifugal and centripetal components 

combine to produce a radial component (the motus paracentricus) which moves 

the body either towards or away from the centre of the orbit, depending on their 

relative sizes. While in principle the transverse circulatio harmonica and the 

radial motus paracentricus could presumably combine to produce orbits of 

many shapes, Leibniz – unlike Newton – only considered circular and elliptical 

motion. And unlike Newton, Leibniz analyses the radial forces using not a 

parabolic but a polygonal approximation, whereby a force acts impulsively on 

the body at each vertex to deflect it from its inertial path. Leibniz considers 

these impulsive forces to be acting at regular time intervals, with the body 

moving uniformly along each deflection, in contrast to Newton’s accelerated 

deflections. And unlike Newton’s analysis of orbital motion, Leibniz’s was 

intrinsically bound up with what he understood to be its physical cause. 

Following Descartes, Leibniz assumed the existence of a swirling vortex which 

carried the planets along, and it was the vortex that provided the circulatio 

 

261 Guicciardini, Reading the Principia, 150. 
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harmonica. This transverse component was lacking from Newton’s analysis: for 

Leibniz, its role in his mathematical proofs was intrinsically linked to his 

commitment to the physical existence of Cartesian vortices. 

 These differences in analytical approach are manifested in Leibniz’s 

engagement with the text of the Principia. In Chapter 1 it was noted that, of the 

orbital force theorems Newton presented at the start of Book 1, Leibniz made 

detailed studies of only three: Proposition 4 (which considers a circular orbit), 

Proposition 10 (an elliptical orbit with the force directed to the centre) and 

Proposition 11 (an elliptical orbit with the force directed towards a focus). 

Proposition 4 depends on Lemma 11, and although Leibniz denied the general 

validity of Lemma 11, he accepted its result in the specific case of a circle, so 

was able successfully to reconstruct Newton’s proof in his Marginalia. 262 

Propositions 10 and 11, however, depend on Proposition 6, which presented 

Leibniz with a more significant problem. Proposition 6 introduces the parabolic 

approximation, and so – unsurprisingly – Leibniz denied it. Specifically, he 

objected to Newton’s assumption that bodies accelerate along each deflection 

from the inertial path. In his analysis, Leibniz preferred to assume that bodies 

moved along each deflection with constant velocity. So while Newton uses 

Galileo’s laws of kinematics to conclude that the deflection is proportional to the 

square of the time, Leibniz understands the deflection to be proportional to the 

time itself. In the geometrical construction used in Proposition 6, the deflection 

is QR, and the time (because it is proportional to the area traced out, by 

Kepler’s Law) is represented by SP QT . This means that Newton – whose 

 

262 Marginalia, 53. 
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parabolic approximation considers a continuous force accelerating a body for a 

given duration of time – assumes that: 
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This is the result of Proposition 6. But according to Leibniz – whose polygonal 

approximation assumes an impulsive force acting instantaneously on a body, 

which then moves uniformly for a given duration of time – this should be: 
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Leibniz therefore rejected Proposition 6. Although the margins alongside this 

result in his copy of the first edition are otherwise completely blank, he changed 

Newton’s text from  

lineola nascens QR, dato tempore, est ut vis centripeta (per Leg. II.) & 

data vi, ut quadratum temporis (per Lem X.) 

to 
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lineola nascens QR, dato eodem manente tempore, est ut velocitas 

centripeta (per Leg. II.) & data velocitate, ut tempus (per Lem. X.)263 

This alteration matches the first lines of the proportions we have just given 

almost exactly. Because (in anachronistic vocabulary) the magnitude of an 

impulsive force is equal to the change of momentum, he is able to use 

“velocitas centripeta” where I have written “force,” but otherwise these changes 

show how Leibniz’s different analysis of orbital motion was reflected in his 

reading of Newton’s book. 

 However, despite rejecting Proposition 6, Leibniz was still able to verify the 

conclusions of Propositions 10 and 11. He did so by constructing his own 

derivations that did not rely on Proposition 6. Proposition 10 proves that the 

force required to maintain an elliptical orbit if the force is directed towards the 

centre of the ellipse is directly proportional to the distance from the centre: 

 

 

 

Newton’s proof uses a series of geometrical arguments to show that for this 

construction 

 

263 Ibid., 55. 
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Since  2 2QR Qt PC  was the quantity Newton derived in Proposition 6 as his 

measure of centripetal force, and since for any given ellipse both BC and CA 

are fixed, this allows him to conclude that the force is proportional to PC, as 

required. Leibniz, however, does not recognise  2 2QR Qt PC  as a measure 

of centripetal force. In the Marginalia, alongside Newton’s invocation of 

Proposition 6, Leibniz writes 

ergo vis centripeta est in composita ratione directa ipsius PV [=QR] 

spatii, et reciproca ipsius PC.QT temporis (non quadrati temporis ut vult 

Coroll. Th. 5)264 

He then proceeds to deduce Newton’s conclusion from within his own analytical 

framework. As Fellmann’s transcription shows, he first infers from the constancy 

of BC and CA that QR is proportional to 2 3Qt PC . Since for Leibniz the force is 

proportional to the deflection divided by the time (which by Kepler’s Area Law is 

proportional to Qt PC ) he is therefore able to establish that the force is 

proportional to  2Qt PC . Having done so, however, he ignores this result and 

instead goes back a step to his previous expression for QR: 

sin vero tempora aequalia, vis centripeta erit ut PV [=QR], seu ut 

3 2PC QT . sed quia QT reciproce ut PC in casu aequalis temporis, erit 

impetus novus aequalibus temporum intervallis impressus, seu vis 

centripeta in ratione distantiae directa. 

 

264 Ibid., 56. ‘Theorem 5’ is the alternative title Newton uses for Proposition 6. 
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That is, Leibniz now chooses to lean on his assumption that as the body moves 

around the orbit the successive impulsive forces occur at a regular frequency. 

They are thus separated by equal intervals of time. Under this condition, the 

forces will be proportional to the deflections QR, which is to say, proportional to 

3 2PC QT . And because the times are all equal, PC QT  will be constant, 

which means that the forces will be proportional to PC, as Newton claims. In 

short: by assuming equal time intervals between the impulses, Leibniz can 

measure the force by the size of the deflections QR, which in Proposition 10 are 

proportional to the distances from the centre PC. 

 The Marginalia suggest that he performed an extremely similar manoeuvre 

when reading the inverse-square law in Proposition 11. As the reader may 

again verify from Fellmann’s transcription,265 Leibniz followed the text right up to 

the penultimate stage of the proof, agreeing with Newton that 
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where L is the latus rectum (and the diagram is the same as that provided for 

Proposition 10). From here, Newton noted the equality of 2PC and Gv, and then 

multiplied both sides by 2SP QR  to get 
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265 Ibid., 57–8. 
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From Proposition 6 – and because L is fixed – Newton was thus able to 

conclude that the force is inversely proportional to the square of the distance. 

Leibniz, however, was able to take a much more straightforward final step. He 

also acknowledged the constancy of L and the equality of 2PC and Gv, and 

then simply wrote “Ergo QR sunt ut 2QT , seu ut 21: SP .” Although he has 

explained his thought process less explicitly, this note is consistent with the 

approach he took in Proposition 10: he once again assumes that the impulsive 

forces act at regular intervals, under which condition the force is proportional to 

QR. The expression for the deflection can therefore legitimately be taken to be 

a measure of the force, which means that the force is inversely proportional to 

the square of the distance. 

 According to the chronology established by Bertoloni Meli, Leibniz returned 

to Newton’s book in 1689, the year after his initial Marginalia. When he revisited 

Proposition 6, he recorded the following short note in his first set of Excerpts: 

Aestimat vim percussionis centripetam per RQ ductam in 1 : in 

quadratum temporis seu 1 : 
2

PS QT  scilicet spatium QR semper est in 

ratione vis centripetae seu celeritatis et temporis quadrati temporis 

nempe in summis istis elementis.266 

This note reinforces the observations we have already made. It is apparant that 

Leibniz’s instinct is to think of forces acting impulsively, initially writing 

“percussionis” instead of “centripetam” and “temporis” for “quadrati temporis,” 

and identifying force with speed (“vis centripetae seu celeritatis”). Bertoloni Meli 

sees in these changes “Leibniz’s acceptance of the proportionality between QR 

 

266 Excerpts, 481, 486. 



343 
 

and time squared,”267 but I am not so sure. The Excerpts consist largely of 

transcriptions or paraphrases of Newton’s text, and it is not clear to me that by 

changing “temporis” to “quadrati temporis” Leibniz was necessarily agreeing 

with Newton, so much as recording what he wrote. He let “celeratis” stand, after 

all, which indicates that he had not fully acknowledged the differences. Indeed, 

an “acceptance” of the proportionality between QR and time squared would 

constitute an admission that Newton’s analysis of orbital motion was preferable 

to his own, which Bertoloni Meli would surely not recognise. I think a fairer 

interpretation is that Leibniz tried to process Newton’s orbital proofs using his 

own conceptual framework, and that both this note and the Marginalia reflect 

the disjunction that thereby arose. Just as he did with the method of first and 

last ratios, and notwithstanding Bertoloni Meli’s account of how the publication 

of the Principia stimulated the development of his own analysis of orbital 

motion, Leibniz judged Newton’s arguments not in the terms in which they were 

presented, but by the extent to which they corresponded to conclusions he 

could establish with his own. 

 I wish to end with three final, interconnected remarks. First, the modern 

reader with the benefit of hindsight might form the view that the two approaches 

are not as different as they first appear. Leibniz considers each force to be an 

impulse, and he assumes that they act at regular intervals of time, and so he is 

effectively finding an expression for the impulse per unit time. But the impulse 

per unit time – which is to say, the rate of change of momentum – is the very 

definition of force in many modern articulations of Newton’s Second Law. The 

 

267 Ibid., 486. 
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modern reader might therefore view Newton and Leibniz as providing different 

mathematical analyses of the same underlying dynamics. Second, it is 

important to observe that the different ways in which Newton and Leibniz 

analysed orbital dynamics were inextricably connected with the different ways in 

which they articulated infinitely small quantities. Proposition 6 quantifies force 

by the expression  
2

QR SP QT , calculated in the limit as the points Q and R 

approach the point P. As this limit is approached, the values of QR, SP and QT 

all change continuously, and Newton’s task for any given orbit is to evaluate 

 
2

QR SP QT  in the limit of the geometrical construction. Leibniz, however, 

measures force with the expression  QR SP QT . Because he assumes that 

his forces act impulsively at regular intervals, he takes the time (given by 

 1 2 SP QT ) to be constant, under which condition the forces are proportional 

to QR. For Leibniz QR, SP and QT are static, infinitesimal quantities, whereas 

in Newton’s proofs they decrease dynamically towards zero. Leibniz considers 

the impulsive forces that act at a series of points along the orbit, each separated 

by an equal, infinitesimal interval of time; Newton considers the continuous 

force applied at a single point on the orbit, in the limit as the interval of time for 

which it acts decreases towards zero. The mathematics and the physics cannot 

be separated. And third, the actors’ own views of the differences between their 

respective analyses merits close attention. Taken as a whole this theme 

extends well beyond the scope of this thesis, and has been much more fully 

addressed by both Guicciardini and Bertoloni Meli. Guicciardini emphasises that 

while Leibniz “stated that the polygonal model is preferable,” it remained the 
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case that “both Leibniz and Newton considered the choice between the 

polygonal and the continuous model one of convention.”268 He writes that  

Leibniz’s preference for the polygonal model and Newton’s usage of the 

parabolic one do not reveal incommensurable approaches to the 

mathematization of natural philosophy. They emerge as choices 

motivated by different aims. Both Newton and Leibniz understood that 

these choices were a matter of convention. Newton was interested in the 

geometrical representability of motion and force: he thus drew figures 

which are approximations in terms of polygons, circles or parabolas of 

actual displacements of bodies in motion. Leibniz was interested in 

writing a differential equation of motion. He thus found it more useful to 

focus on the infinitesimal representation of trajectories.269 

My reading of Bertoloni Meli is that he disagrees. While he acknowledges that 

“the choice of the specific polygon entails a degree of arbitrariness” and that in 

that sense “Leibniz’s mathematical representations of curvilinear motion are 

fictitious,” the polygonal analysis “corresponds in principle to physical actions in 

a way that the continuous curve does not.” He says that the “mathematics 

mirrors the physical laws involved.” That is, while the choice of any particular 

polygon to approximate the curve was somewhat arbitrary for Leibniz, the 

general choice of the polygonal approximation over the parabolic was not, 

because it corresponded with the physical reality of Cartesian vortices, and “his 

belief that phenomena were ultimately explicable in terms of impacts.” 270 

According to this interpretation, Leibniz’s rejection of the parabolic model was 

not, in Guicciardini’s terms, merely a matter of convention. 

 

268 Guicciardini, Reading the Principia, 156. The emphasis is his. 
269 Ibid., 156. 
270 Bertoloni Meli, Equivalence and Priority: Newton versus Leibniz, 83. 
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 Leibniz recorded his own views on the matter very clearly. In the margin 

alongside Proposition 10, he wrote the following: 

Vero cum autore sit vis centripeta ut PV seu QR directe, et quadratum 

temporis 2 2.PC QT reciproce, fiet tunc erratur quidem, sed positis 

temporibus aequalibus, error evanescit, idemque prodit, ipsi et nobis271 

That is, Leibniz thought Newton’s proof was erroneous, and that his own 

demonstration made the error disappear. When he first read the book in 1688, 

Leibniz thought the orbital force proofs in the Principia were wrong. Once again 

the primary evidence reveals the paradox that has been repeated in many of 

the other readings of the text I have examined in this thesis: although he was 

not persuaded by the arguments he found in Newton’s book, Leibniz agreed 

with his conclusions. Leibniz thought Newton used the wrong method and the 

wrong argument, but he thought that his result was right. Even though he 

processed the proofs from within a different conceptual framework, he 

concurred with Newton’s expressions for the forces required to maintain circular 

and elliptical orbits. And it has been a recurring pattern that Newton’s peers 

disagreed with the arguments they found on the page, but generated 

independent verifications of the same results to which they could willingly 

assent. Readers of the Principia routinely discovered what they perceived to be 

errors in the text, and by correcting them generated their own proofs of 

Newton’s claims. “Error evanescit, idemque prodit, ipsi et nobis”: these words 

provide a useful distillation of the themes with which I will conclude. 

  

 

271 Marginalia, 56. 
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Conclusion: Newtoni in verba 

Re-statement of findings 

In this thesis we have seen that there is a large quantity of primary material 

documenting the reception of the Principia that has not been adequately 

analysed by the secondary literature, including manuscripts that record the 

responses to the text of Halley, Fatio, Gregory, Huygens, Clerke, Locke and 

Flamsteed. Although this material cannot be relied upon to provide a complete 

record of early readings – or even a representative record – it is reasonable to 

suggest that their contents are usefully indicative of early readings of Newton’s 

text. 

 Careful analysis of this material shows that readers generally engaged with 

his text piecemeal, studying different passages in different orders in different 

ways. Most readers left most of the book unread. The only sections that appear 

to have been routinely studied were the Definitions, the Laws, the opening 

sections of Book 1 on orbital motion, and Book 3. But even within this pattern 

the level of scrutiny with which Newton’s peers engaged with his text varied 

widely, with individual readers routinely skipping individual steps in the proofs. 

The extant documentation suggests that the importance of Halley and Fatio as 

early readers of the text has been understated by the secondary literature, that 

of Huygens has overstated, and Locke’s three readings of the text have been 

persistently misrepresented. We only have evidence of one complete, 

sequential reading of the text (Gregory), although a few others appear to have 

been attempted (Fatio, possibly Halley, and arguably Leibniz and Locke). 
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 There was a variety of ways in which readers engaged with the text, but we 

can usefully distinguish between mathematical readings of the Principia, in 

which readers attempted to verify the proofs, and non-mathematical readings, in 

which they did not. Some readers (Fatio, Leibniz) were able to switch between 

these two modes. In either case, the act of reading constituted an active 

process of reconstruction: Newton’s readers picked up a pen and reconstructed 

the connected prose of his arguments in symbolic form. These reconstructions 

were often substantively different from the original arguments that appeared in 

the text, and used different notation, different concepts, and different logic. 

Readers assented to Newton’s proofs to the extent to which they were 

successfully able to reconstruct arguments that supported his conclusions. 

Because these reconstructions were often substantively different from Newton’s 

originals, this meant that they often assented to his claims but not the 

arguments he used to derive them. 

 Because studying the text entailed an active process of reconstruction, 

readers automatically generated what they considered to be improved versions 

of Newton’s proofs. They altered, simplified and often extended the 

demonstrations printed in the text. Editing the Principia was thus inherent to the 

act of reading it. When circumstances allowed, readers communicated these 

alterations back to Newton, who often incorporated them verbatim into his 

annotated copy of the text. He reworded, reformulated and restructured his 

proofs in response to their feedback: Newton negotiated the validity of his 

arguments with his readers. 

 The book was “difficult” to read to the extent that its composition and style 

produced obstacles to this process of reconstruction. Newton’s connected prose 
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was often hard to parse and recreate in symbolic form. He often left gaps in his 

proofs. The conceptual frameworks in which individual readers reconstructed 

his proofs were sometimes unable to accommodate his arguments. The length 

of the book made complete readings impractical, discouraging readers from 

carefully examining all the steps in his arguments. For these reasons, even 

careful readers such as Gregory, Fatio and Halley were only able to give their 

assent after face-to-face meetings with the author, during which they were able 

to query, challenge, and haggle over the validity of Newton’s arguments. 

 Responses to the novel mathematical methodology of the Principia varied. 

Some readers paid little attention to the underlying foundations (Flamsteed), 

others reinterpreted his geometrical limit proofs in terms of infinitesimals 

(Leibniz, Huygens), and many got the gist of his techniques but registered 

important misgivings with Newton’s articulation of them (Halley, Clerke, Fatio, 

Gregory). Newton rewrote many of the proofs in Section 1 on the method of first 

and last ratios in response to his readers. Some were not persuaded by his limit 

definition in Lemma 1 because the logical structure of its proof was unclear, and 

others either objected to the articulation of or did not see the need for the 

unusual “microscope” style of proof he employed in Lemmas 6–9. Responses to 

the novel physical claims in the book were just as diverse. Some readers did 

not accept the foundational assumptions they found in the text, with Halley 

making material changes to the articulation of the Definitions and Laws. Many 

recognised that Newton’s mathematisation of force was not the only viable 

alternative, and many either denied or were explicitly ambivalent about his 

rejection of centrifugal force. There is no evidence that any readers scrutinised 
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the mathematical demonstrations concerning universal gravitation during the 

five years following publication. 

 There are therefore two overall conclusions for which this thesis has argued. 

 First, the arguments in the Principia did not succeed in persuading its 

readers. Most of Newton’s readers left most of the book unread. When they did 

read it, they often did not understand it; when they did understand it, they often 

did not agree with it. They disputed his physical and mathematical 

methodologies, and haggled over the validity of his proofs. Even careful readers 

required face-to-face meetings with Newton to supplement the printed 

demonstrations. Every reader for whom there is reliable evidence objected to 

his articulation of the method of first and last ratios in Section 1 of Book 1, and 

every reader for whom there is reliable evidence objected to at least one step in 

his proof of the inverse-square law. The text of the Principia failed to persuade 

early readers of the validity of the arguments it contained. The most that can be 

said is that a very small number of readers gave qualified assent to a very small 

number of its results. The acclaim the secondary literature asserts it received in 

the summer of 1687 must therefore have been unwarranted: the immediate 

approval of the book when it was published could only have been founded in 

some cause other than assent to the mathematical demonstrations in the text. 

 The second conclusion points towards the longer-term acceptance of 

Newtonianism. Although the arguments in the Principia did not receive the 

assent of its early readers, Newton’s conclusions often did. Readers granted 

assent to his claims according to whether they were successfully able to 

reconstruct arguments in their support. Very often these reconstructions were 

different from Newton’s originals, and readers were only able to agree with his 
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conclusions because they could provide their own arguments in support of his 

claims. Let it be clearly understood, however, that readers did not merely wish 

the book’s demonstrations to be expressed differently: in many instances they 

thought that they were wrong. By proposing amended proofs, Newton’s peers 

thus negotiated the validity of the arguments in his book. Even when they 

thought his arguments were defective, they granted assent to his conclusions if 

they were able to construct their own, improved demonstrations in support of his 

claims. In Leibniz’s words from the close of the last chapter, “Error evanescit, 

idemque prodit, ipsi et nobis.” 

Suggestions for further research 

These findings link with recent developments in the secondary literature a few 

ways. Feingold and Svorenčík’s forthcoming publications may contain valuable 

information about families of manuscript annotations, and may reveal patterns 

in the distribution of edits to the text of the first edition. This information might 

allow the dates of individual edits to be established, and so enable a 

chronological reconstruction of the alterations to Newton’s proofs. Tracing the 

modifications of his text in this way would provide a detailed account of the 

means by which the new mathematical knowledge in the Principia was made 

over the years after publication. Separately, the evidence presented in this 

thesis affirms the particular importance of David Gregory among Newton’s early 

readers, as has been emphasised in the most recent papers of Guicciardini and 

Ducheyne. Gregory’s role as Newton’s principal reader, interpreter and 

evangelist calls for further scrutiny of both his Notae in the Royal Society and 

his archives in Scotland. 
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 However, neither of these lines of enquiry promises to shed any light on the 

original explanandum of this thesis, the speed with which Newton’s book is 

considered to have been acclaimed when it was published in the summer of 

1687. The nearest I have found to a convincing explanation is in Iliffe’s “Butter 

for Parsnips,” whose emphasis on networks of trust in the reception of Newton’s 

book is consistent with the evidence I have presented here. Iliffe proposes that 

less mathematically confident readers sought the help and reassurance of their 

more expert peers in accessing the technical details of Newton’s proof, and that 

trust in the text radiated outwards through “concentric circles of competence” as 

a result. The evidence presented in this thesis provides the critical additional 

information that the innermost experts whose competence Iliffe says was 

trusted did not themselves verify Newton’s proofs in the years following 

publication. Those experts who were able to access the text directly – Huygens, 

Fatio, Gregory – did not assent to the validity of its demonstrations, or at least 

did so in a complicated way over a protracted period of time. That is, the 

evidence I have presented here would appear to show that for some years after 

1687 none of Newton’s readers agreed with his mathematics. The acclaim the 

Principia is asserted to have received when it was published must, in this 

sense, have been unwarranted. If this conclusion is correct, it deserves to be 

stated much more boldly than is currently admitted by the secondary literature: 

when the Lucasian Professor announced in 1687 that he had solved the 

problems concerning cosmology and planetary motions which had occupied 

them for the previous decade, the Fellows of the Royal Society took Newton’s 

word for it.  
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