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Abstract

Learning representations of data has long been a desirable goal in machine learning.
Constructing such representations enables downstream tasks such as classification
or object detection to be preformed efficiently. Furthermore, it is desirable to
have these representations be constructed in such a way so they are interpretable,
which allows for fine grained intervention and reasoning on characteristics of the
input. Other tasks may include, cross-generation between modalities, or calibrating
predictions such that their confidence matches their accuracy. An effective way to
learn representations is through a Variational Autoencoder (VAE), which performs
variational inference on the latent variables of the observable input. In this thesis
we show how the VAE, can be utilised to: incorporate label information into the
learning process; learn shared-representations of multimodal data; and calibrate
predictions of existing neural classifiers.

Data sources are often accompanied by additional label information, which may
indicate the presence of a characteristic in the input. A question naturally arises as to
whether the additional label information can be used to structure the representation
such that it provides a notion of interoperability about the characteristic; such
as “to what extent is the person smiling?”. The first contribution of this thesis is
to address the aforementioned problem and propose a method which successfully
uses label information to structure the latent space. Furthermore, this allows us
to perform additional tasks such as fine grained interventions; classification; and
conditional generations. Moreover, we are also successfully able to handle the
case when label information is missing, drastically reducing the data burden when
training these models.

Rather than being presented with labels, we sometimes instead observe another
unstructured observation of the same object, e.g. a caption of an image. In this
scenario, the objective changes slightly to one where the model is able to learn
shared-representations of data, allowing it to perform cross-generations between
modalities. The second contribution of this theses addresses this problem. Here,
learning is performed by employing mutual supervision between the modalities
and introducing a bi-directional objective, which faithfully ensures symmetry in
the model. Furthermore, by virtue of this approach, we are able to learn these



representations in situations where some of the modalities may be missing during
training.

Uncertainty quantification is an important task in machine learning, with it now
being well known that current deep learning models severely overestimate their
confidence. The final contribution of this thesis is to address how the representations
of VAEs can be used to extract reliable confidence estimates for neural-classifiers.
This investigation leads to a novel approach to calibrate neural-classifiers, which is
applied post-hoc to off the shelf classifiers and is very fast to train and test.
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1
Introduction

1.1 Preamble
For machine learning models to be applied on complex domains such as image or

language problems, they need to be able to construct representations, or features,

which encapsulate the information in such a way that downstream tasks can easily be

performed. Typically, these features are learned, avoiding the need to construct hand-

crafted features. There are multiple approaches to learning these features, ranging

from autoencoders, which reconstruct the input (Hinton and Zemel, 1994; Kingma

and Welling, 2013; Devlin et al., 2018; He et al., 2021); through to discriminative

approaches which learn the features by explicitly optimising a task (He et al., 2016;

Simonyan and Zisserman, 2014). Given the motivation for learning features, it is

natural now to ask what tasks the features are needed for.

For an artificial agent to interact in the world it firstly needs the capability to

recognise and identify objects in its surrounding. Doing so is one of the most

prominent tasks needed to be performed by an artificial agent, and falls under

the broader objective of recognition. Within this objective there are numerous

specific tasks such as classification (Simonyan and Zisserman, 2014; He et al., 2016),

semantic-segmentation (Long et al., 2015) and object detection (Felzenszwalb et al.,

1
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2010). These aforementioned tasks form an essential part of an agent’s pipeline,

typically they will represent the first stage, with planning and execution following

subsequently. Clearly then, it is essential that these recognition tasks can be

performed quickly, but also it is imperative that they are done with a reasonably

high accuracy. Moreover, it is essential that the predictions also produce reliable

uncertainty estimates, enabling the planning module to successfully settle on its

actions whilst mitigating adverse consequences.

The applications of artificial intelligence and machine learning extend beyond the

realm of an agent acting in the real world. For instance we may want systems which

can generate example instances of data, such as art or maps in a video game. Here

representation learning also plays a critical role, as the representation will contain

enough information to reconstruct (Hinton and Zemel, 1994) or generate (Kingma

and Welling, 2013) instances of data. Moreover, by taking the generative approach

of the VAE (Kingma and Welling, 2013), we are also able to obtain a bound on the

likelihood of an observation.

Whilst evaluating the likelihood and generating examples of data is a useful ability,

often we want to specify the properties of the generation (conditional generation)

or generate another instance which shares the same underlying attributes (cross-

generation). Doing so requires us to learn representation whilst reconciling multiple

pieces of information such as: image, caption and label; referred to as multi-

modal learning. The ability to leverage multiple pieces of information to learn

representation is not dissimilar to how human brains learn representations, which

jointly embeds information across different modalities (Quiroga et al., 2009; Stein

et al., 2009) enabling reasoning and understanding between them (Bauer and

Johnson-Laird, 1993; Fan et al., 2015).

In this work we explore the uses of the representations learnt through a VAE, which

is a flexible framework enabling the fast learning of features through variational

inference. Specifically, the contributions of thesis are as follows:
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• We provide a novel method for integrating label information into the learning of

a VAE. Doing so enables the construction of representations which encapsulate

and isolate the characteristics of the label, enabling interventions on specified

characteristics. Furthermore, this model can also perform additional tasks

such as conditional generation and classification, surpassing existing models

in accuracy. This model is explored in Chapter 3.

• Secondly, we demonstrate how shared-representations for multiple modalities

can be learned through the use of mutual-supervision and a bi-directional

objective, permitting cross-generations between the modalities. Furthermore,

we also demonstrate how this approach can be utilised in the case where one

of the modalities may be missing during training, reducing the dependence

on paired data in the training dataset. This approach is demonstrated in

Chapter 4.

• Finally, in Chapter 5, we address the problem of calibration in neural-classifiers,

which are known to be severely miscalibrated. In this section we highlight

how the representations learned by a VAE can be used to provide a basis to

produce reliable confidence estimates for neural-classifier predictions.

1.2 Variational Autoencoder

Stochastic Variational Inference (VI) (Hoffman et al., 2013) was popularised by the

introduction of the VAE (Kingma and Welling, 2013; Rezende et al., 2014) which

enabled a scalable and fast method to perform inference in graphical models. They

combine deep autoencoders (Hinton and Zemel, 1994) with generative latent-variable

models; resulting in a model which captures the generative factors of the observation

in a low dimensional representation. Unlike deep autoencoders, VAEs capture

representations of data, not as distinct values corresponding to observations, but

rather as distributions of values. Before proceeding to definitions and explanations,

we will now briefly describe the motivation for learning VAEs.
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Why do we care about VI? Often, the distribution of observations in the real

world may be dependant on a set of common factors. Considering the attributes of a

face, examples of these factors may be attributes such as: pose, hair color, skin

color, facial hair, sex, facial expression. It is natural then, that along with

modelling the distribution of observations, we should also learn a set of common

factors and the causal relationship between them and their corresponding realisations

in data.

Mathematically, we can represent this relationship through a graphical model, with

the random variables x and z corresponding to the data observations and common

factors, which are commonly referred to as latent variables; the graphical model in

Figure 1.1 indicates this causal relationship. Modelling such a relationship allows us

to explicitly intervene on the factors of a data sample, allowing for visual changes in

the output. Moreover, we may want to structure the latent variables in such a way

that we can isolate and alter selected characteristics in data space by manipulating

known factors in the latent space; a feature known as disentanglement in the VAE

literature.

Learning is achieved by introducing an approximate posterior into the learning

process, and reconstructing the data sample in a similar manner to a standard

autoencoder. Doing so subsequently allows us to perform inference on the data

samples, permitting us to reason and draw conclusions about the nature of the

data sample. However, one can not simply treat this like a standard autoencoder.

Due to the stochastic nature of the latent space, learning via gradient descent can

quickly become problematic due to the variance of the gradient estimator. A variety

of methods have been proposed to address learning which will now be discussed.

VAE Background

The REINFORCE (Williams, 1992) technique used to be a popular approach to

obtain unbiased gradient estimates in variational inference, as it enabled the use of

non-differentiable cost functions. However, in practice, this estimator still has a
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x

z

Figure 1.1: Graphical representation between data observations x and their correspond-
ing generative factors z.

variance which is too high to learn effectively. To some extent, this can be alleviated

through the use of control variates (Ranganath et al., 2014; Paisley et al., 2012),

enabling effective learning of the parameters.

The wake-sleep algorithm (Hinton et al., 1995) is another popular approach to solve

the problem of stochastic variational inference, which applied an inference model to

approximate the true posterior and a generative model for the observed variable

and the continuous latent variables. Learning occurred via the joint optimisation of

two objectives, which failed to provide a bound on the log-evidence. A re-weighted

version of the wake-sleep algorithm was introduced by Bornschein and Bengio (2014),

which is shown to be beneficial to discrete latent models (Le et al., 2020).

Another approach which needs to be mentioned is that of the Denoising Autoencoder

(DAE) (Vincent et al., 2010; Bengio et al., 2013b). Here, the inputs are corrupted

with noise and then the autoencoder reconstructs to the clean input. Sampling is

then performed through Langevin or Metropolis-Hastings MCMC; which introduces

a high computational burden compared to the VAE.

Recently, the most effective approach to emerge is that of estimating the pathwise

derivative, which is also termed the: the process derivative (Pflug, 2012); the

general area of perturbation analysis (Glasserman and Ho, 1991); the pathwise

derivative (Glasserman, 2004); and more recently as the reparameterisation trick

in stochastic back-propagation (Kingma and Welling, 2013; Rezende et al., 2014).

Here the stochastic computation graph is constructed and is thus amenable to

back-propagation and gradient descent.
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Definition

The VAE defines a generative model which is a joint distribution over observed

data x and latent variables z as pθ(x, z) = p(z)pθ(x | z). Given this model,

learning representations of data can be viewed as performing inference—learning

the posterior distribution pθ(z | x) that constructs the distribution of latent values

for a given observation. To do this, VAEs employ amortised VI (Wainwright

and Jordan, 2008; Kingma and Welling, 2013) which approximates the intractable

posterior pθ(z | x) as a variational approximation qϕ(z | x) by predicting the

parameters of the distribution; the likelihood pθ(x | z) is parameterised using a

neural-network decoder. Using this variational approximation of the posterior and

by maximising the log-likelihood through importance sampling, we are able to

perform effective estimation of the objective which derives as the Evidence Lower

Bound (ELBO) of the model

log pθ(x) = logEqϕ(z|x)

[
pθ(z,x)
qϕ(z | x)

]
≥ Eqϕ(z|x)

[
log pθ(z,x)

qϕ(z | x)

]
≡ L(x;ϕ, θ). (1.1)

Here, the observations D = {x1, . . . ,xN} are random variables sampled from an

unknown distribution pD(x), which are used for training using stochastic gradient

descent.

1.3 Variational Autoencoders for Supervision, Cal-
ibration and Multimodal Learning

Given this short summary of VAE background, we now provide a short introduction,

and motivate the individual contributions of this thesis.

1.3.1 Capturing Label Characteristics in VAEs

Label information is often present with the corresponding data sample, such as class

information or attributed information in an image. Naturally, it would prove benefi-

cial if we can leverage this information when constructing the latent representations,

as doing so enables a whole host of additional tasks to be performed. Specifically,

this would enable us to perform classification and conditional generations, but also
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enable us to alter characteristics in the resulting reconstructions without affecting

others.

The typical approach to learning Semi-Spervised VAEs (SSVAEs), is to place

the labels y directly into the latent space (Kingma et al., 2014; Siddharth et al.,

2017), leading to z = {z\c,y}, with z\c representing the non-labelled generative

factors such as background. In situations where y is observed, the latent variable

is supervised and variational inference is performed when it is not. Whilst this

approach is able to attain a high classification accuracy, it completely fails to

encapsulate the characteristics of the class into the latent space; this is primarily

due to the restrictive capacity of the discrete latent variable y. This pathology

prevents fine grained interventions from being performed, such as adjusting the

extent to which a class is present in the reconstruction, restricting the model to only

performing binary interventions, i.e. the person is smiling or they are not.

Here, instead of capturing the labels directly as discrete latent variables, we directly

learn to capture the characteristics indicated by the label. For example, rather

than simply capturing if the person is smiling, we encapsulate the characteristics

of the smile in a continuous space, allowing much finer control when performing

interventions of conditional generations. Full details are provided in Chapter 3.

1.3.2 Multi-Modal learning through Mutual Supervision

Labels typically provide the minimum amount of information for a class or attribute,

and often these labels have to be explicitly obtained. Instead data may often come

in the form of pairs, i.e. a caption to an image or a set of matching images displaying

digits. In this situation, we require models which are able to learn the relationship

between these modalities and construct shared representations. Doing so enables

the functionality to perform cross-generation or manipulate reconstructions using

unstructured information, such as changing the color in the description of an

object.

The goal of learning these joint representations is referred to as multi-modal learning,

where here we restrict ourselves to the use of VAEs. Approaches in the literature (Wu
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and Goodman, 2018b; Shi et al., 2019a) reconcile these multiple modalities by

factorising the approximate posteriors as a product (Wu and Goodman, 2018b)

or mixture (Shi et al., 2019a). However, this approach typically fails in the case

where one of the modalities may be unobserved (Wu and Goodman, 2018b) or is

not possible due to the construction of the model (Shi et al., 2019a). Moreover,

this approach further restricts the model as it requires priors to be placed over the

latent space.

Rather than directly reconciling the posteriors through various factorisation, we

instead learn shared representations by implicitly regularising the posteriors against

each other through the Kullback–Leibler divergence (KL). This approach alleviates

the need to factorise the posteriors and place a prior over the latent variables,

allowing more flexibility in the model. Furthermore, this approach naturally extends

to the case when one of the modalities may be missing during training. Details for

this approach are given in Chapter 4.

1.3.3 Sample-dependent Temperature Scaling for Improved
Calibration

It has recently become known that neural-classifier are miscalibrated, in that their

confidence does not match their accuracy; typically this miscalibration manifests as

overconfidence, where the confidence is higher than the expected accuracy (Guo

et al., 2017). As a short example, if a classifier is 80% confident then we expect it

to be 80% accurate.

To address the miscalibration problem, Guo et al. (2017) propose a simple method

which scales the logits by a single scalar T . This values is obtained through cross-

validation, by minimising the Expected Calibration Error (ECE), a quantity which

represents the difference between expected accuracy and confidence. Whilst on

average this approach obtains networks which are better calibrated, it fails to respect

the fact that some samples will contribute to the ECE in a way which makes them

over-confident and some will make the ECE underconfident.
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Instead, rather than applying the same temperature value to all samples in the

dataset, we instead predict the temperature on a per-datapoint basis. That is, we

learn a temperature prediction network, which given an input x, will predict the

temperature. This gives the model the flexibility to respect the fact that not all

data-points contribute equally to the ECE, unlike vanilla temperate scaling which

uses the same value for all data-points. Assuming a temperature prediction network

T (x), the resulting predictive probability distribution is give by

p(y|x) =
exp(f(Φ(x))

T (x) )∑
k exp(f(Φ(x))k

T (x) )
. (1.2)

This approach allows the network to assign lower confidences to samples it should

be uncertain about and higher confidences to samples it should be confident about.

Full details of this method are given in Chapter 5.



2
Literature Review and Background

Here we provide an extended literature review to the contributions of this thesis.

Specifically, the first three sections contain related work and background information

to the first three chapters respectively; with Section 2.4 containing work which is

relevant, but tangential to the contributions of this thesis.

2.1 Capturing Label Characteristics in Variational
Autoencoders (VAEs)

This section can be viewed as an introduction to Chapter 3, and provides the

relevant background information and notation needed.

2.1.1 Semi-Supervised VAE Background

Semi-Spervised VAEs (SSVAEs) (Kingma et al., 2014; Maaløe et al., 2016; Siddharth

et al., 2017; Joy et al., 2021) consider the setting where a subset of data S ⊂ D

is assumed to also have corresponding labels y. Denoting the (unlabelled) data

as U = D\S, the log-marginal likelihood is decomposed as

log p (D) =
∑

(x,y)∈S
log pθ(x,y) +

∑
x∈U

log pθ(x),

where the individual log-likelihoods are lower bounded by their Evidence Lower

Bound (ELBO)s. Typically, the labels y are treated as a latent variables and

10
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Figure 2.1: Graphical representation of the M2 model. Solid and dashed line indicates
generative model and inference model respectively.

marginalised over whenever the label is not provided. In more detail, most

approaches split the latent space in the following way z = {zy,y}, such that

each dimension of y explicitly represents a predicted value of a label, which is

only known for the labelled datapoints. For the unlabelled datapoints, y has

to be inferred or imputed. This approach stems from the motivation that most

practitioners aim to perform classification, in the case where training is semi-

supervised. Despite this, this approach is often used for learning representation

where labels are sometimes present during training; allowing users to perform tasks

such as manipulations according to a change in label, and also generate examples

conditioned on a specified label. In this work we focus our attention on how this

approach is unsuitable for the latter task, and introduce a novel method which

outlines how labels can be used to improve the quality of representations in SSVAEs.

We now provide an in depth explanation of the relevant models for SSVAEs.
Related Models

M2 SSVAEs aim to incorporate labels value pairs {x,y} ∈ S which are only

available for a subset of the data S ⊂ D. The answer to the question of how

to introduce supervision through y is not immediately obvious. As previously

eluded to, a naïve approach is to introduce an inductive bias by setting a portion

of the latent space to be discrete (Kingma et al., 2014). These latent variables

can then be directly supervised with the labels y when they are available and

performing variational inference when they are not. Specifically, this produces

the graphical model in Figure 2.1, where the approximate posterior factorizes as
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q(z,y|x) = q(z|x,y)q(y|x). For the supervised case, the ELBO derives as:

log pθ(x,y) ≥ Eqϕ(z|x,y) log pθ(x|y, z)p(y)p(z)
qϕ(z|x,y) . (2.1)

If the label is unobserved, then the label has to be imputed and marginalized:

log pθ(x) ≥
∑

y
Eqϕ(z,y|x)log pθ(x|y, z)pθ(y)p(z)

qϕ(z,y|x) . (2.2)

The objective can then be formed using the above bounds

J =
∑

{x,y}∈S
log p(x,y) +

∑
x∈U

log p(x).

As we will now outline, this method introduces serious pathologies into the training

of the model. This approach is known as the M2 model (Kingma et al., 2014), and

is a cornerstone for semi-supervised learning in VAEs.

The first issue is this approach leads to a complete failure in its ability to achieve

the two main goals of conditional generation and classification. For the supervised

case when x and y are both observed, the mapping between them is detached,

thus preventing any gradient updates to the parameters of the distribution q(y|x),

consequently the method fails to perform classification or conditional generation.

To amend this, the authors introduce a weighted classifier to the objective:

J α = J + α · EpS(x,y)[− log q(y|x)]

where α has to be tuned manually, with the assumed challenges implicit in hyper-

parameter optimisation. This issue is further compounded as we have to decide if it

is best to optimise α to improve the log-likelihood of the data or the classification

accuracy? Furthermore, different choices of α lead to potentially more serious

pathologies. Namely, whilst the balancing α may just seem like making a somewhat

trivial trade-off between a variational term and a classifier, it is actually explicitly

controlling the flow information into z or y. If α is too low, then more information

flows into z. Conversely, when α is large, a poor representation is learned, as the

model places more of the emphasis on classification and not on reconstruction or

regularisation of the latent space.
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Another serious issue with the M2 model is its failure to properly disentangled the

representations for the classes and for the non-class information). Typically, the

capacity of a single binary variable is not large enough to represent the nuanced

and detailed generative factors of a class. Consequently, this class information

is entangled between the continuous and discrete latent space, thus preventing

accurate interventions between classes.

Furthermore, as y is discrete, there exists a ground truth for the aggregate posterior

q(y), which during training the samples are taken from, however, at test time,

the samples are drawn from p(y). The variations between these two manifest as

a train-test mismatch, thus affecting the efficacy of the generative model at test

time.

Perhaps a more obvious flaw is in the design choice of using a discrete latent space.

Representations are intended to encode the generative factors of data, with the

generative model learning the causal relationship between the two. Typically, one

would expect the representation to encapsulate the variation in a class as there are

often a plethora of ways a class may look. Treating the latent space as discrete

values thus only permits binary interventions on classes, which is suitable for multi-

class problems like MNIST, however it decimates the potentially smooth transition

between two classes e.g. transition from smile to not smile.

Arbitrary Dependency Structure The use of the M2 model described above

is only feasible due to the dependency structure q(z,y|x) = q(z|x,y)q(y|x). This

factorisation can be restrictive, to combat this Siddharth et al. (2017) introduced an

importance sampling method to permit arbitrary conditional dependency structure;

enabling disentanglement between the class and additional information.

Auxiliary Variables To improve the bound on the variational bound, Maaløe

et al. (2016) introduce an auxiliary variable into the M2 model Figure 2.2, with the

following factorization q(a, z|x) = q(z|a,x)q(a|x). Doing so increases the flexibility

of the variational distribution, and leads to higher classification accuracies.
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Figure 2.2: Left: Generative model, Right: Inference model for ADGM.
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Figure 2.3: Left: Generative model for DIVA, Right: Inference model where dashed line
indicates auxiliary classifier.

Domain Invariant Variational Autoencoder Tangentially to the M2 style

models outlined above, Ilse et al. (2019) introduced the DIVA model with primary

focus of obtaining a generalized classifier across different domains. This approach is

somewhat different to the previous models, as it does not place the labels directly

in the latent space. Instead, it chooses to introduce a classifier on a subset of the

latent space reserved for labeled generative factors zc and a classifier reserved for

the generative factors of the domain. The remaining factors are captured in a

subsection of the latent reserved for the domain zd and the other factors zo. The

motivation is that by encapsulating the domain in zd and the other factors in zo,

then only class information will be present in zc, thus permitting a classifier which

can be applied to different domains.

Learning is performed by introducing three separate encoders q(zd|x), q(zo|x) and

q(zc|x), two conditional priors p(zd|d) and p(zc|yc), and the generative model
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p(x|zd, zo, zc). For the supervised case, the objective is given as:

Ls(x,y) = Eq(zd|x)q(zo|x)q(zc|x) log p(x|zd, zo, zc)

− βKL(q(zd|x)||p(zd|d))− βKL(q(zo|x)||p(zo)

− βKL(q(zc|x)||p(zc|yc)),

where β is a tunable hyper-parameter. As with M2 style models, the above

formulation does not encourage any learning or disentanglement associated with

the labels yd or yc. Consequently, the objective is amended through the addition of

two ad-hoc classifiers

FDIV A(x,y) = Ls(x,y) + αdEq(zd|x)[log q(d|zd)] + αcEq(zc|x)[log q(yc|zc)],

where αd and αc are hyper-parameters. As eluded to by the authors, the objective

can be seen as domain invariant classifier which is regularised by a variational

term Ls(x,y). To deal with the unsupervised case, the labels are imputed follow-

ing Louizos et al. (2015), allowing DIVA to be applied in the situation where the

labels are missing.

Lu(x) = Eq(zd|x)q(zo|x)q(zc|x) log p(x|zd, zo, zc)

− βKL(q(zd|x)||p(zd|d))− βKL(q(zo|x)||p(zo)

+ βEq(zc|x)q(yc|zc)[log p(zc|yc)− log q(zc|x)]

+ Eq(zc|x)q(yc|zc)[log p(yc)− log q(yc|zc)].

Again this formulation requires the addition of a classifier for the domain. The final

semi-supervised objective is given as

FSS−DIV A =
∑

{x,y}∈S
FDIV A(x,y) +

∑
x∈U
Lu(x) + αdEq(zd|x)[log q(d|zd)].

It is worth drawing to attention the motivations of the aforementioned methods,

where the primary goal is to obtain a classifier trained through semi-supervision.

We argue that this goal completely disregards one of the principal features of VAEs;

namely, learning meaningful representations which are amenable to interventions,
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Figure 2.4: A general multimodal VAE, where the latent z encapsulates information
from both s and t.

but also the ability to obtain a bound on the likelihood. To some extent DIVA learns

to disentangle representations, however only to a limited degree, for instance in a

multi-label setting it is unable to construct isolated representations for individual

labels.

2.2 Learning Multimodal VAEs through Mutual
Supervision

This section can be viewed as an introduction to Chapter 4, and provides the

relevant background information and notation needed.

2.2.1 Background: Multimodal VAEs

In the real world, data sources manifest themselves not as single modalities, but

instead as multi-modal streams. For instance, video usually contains information

through visual and audible mediums, but may also contain associated auxiliary

information such as a title. Multi-modal VAEs aim to capture these joint modalities

and form shared representations, resulting in the use of fewer samples and training

and a model with an improved understanding of the world. The ability to capture

these shared representations is essential for a number of downstream tasks, such as

cross-generations but also in prediction tasks which require reasoning about the

modalities in a joint manner such as the Hateful Memes challenge (Kiela et al.,

2020).

The general graphical model for a multimodal VAE is given in Figure 2.4, which

highlights how the latent space is a shared representation for both modalities.

Performing variational inference in such a model requires us to approximate the

posterior distribution q(z|s, t) whilst also evaluating the generative model p(z, s, t) =
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p(z)p(s|z)p(t|z). Assuming the above is possible, the ELBO is given as

p(z, s, t) ≥ Eq(z|s,t) log p(z, s, t)
q(z|s, t) . (2.3)

One of the first attempts to model joint representations was the JMVAE (Suzuki

et al., 2016), which used a joint encoder q(z|x1,x2), trained in conjunction with

two uni-modal encoders q(z|x1) and q(z|x2) which aim to minimise the KL between

themselves and q(z|x1,x2). Similarly Vedantam et al. (2017), also explicitly define

multi-modal and uni-modal inference networks, but encourage convergence using a

two step training regieme. The same approach was also taken by Tsai et al. (2019),

but propose a strategy to infer the missing modalities using the modalities which

are observed.

Taking a different approach, the Multi-modal Variational Autoencoder (MVAE) (Wu

and Goodman, 2018a) modelled the joint posterior through a Product-of-Expert

(PoE) of the marginals q(zi|xi). Through a sub-sampled training regime, this

approach handled the case when modalities without the need for additional inference

networks. This was extended by Shi et al. (2019b) with the Multi-modal Mixture-

of-expert Variational Autoencoder (MMVAE) which used a Mixture-of-Expert

(MoE). More in depth explanations of these models and their limitations are given

below.
MVAE (Wu and Goodman, 2018b)

To address approximating the posterior, the authors assume the modalities are

conditionally independent s|z ⊥⊥ t|z, resulting in the following true posterior

p(z|s, t) = p(s, t|z)p(z)
p(s, t) = p(s|z)p(t|z)p(z)

p(s, t) ∝ p(z|t)p(z|s)
p(z) (2.4)

which the authors refer to as the MVAE-Q (Quotient). To prevent numerical

instabilities in the quotient, the authors further approximate the posterior as

p(z|s) ≈ p(z)q(z|s), leading to the following approximate posterior

p(z|s, t) = p(z)q(z|s)q(z|t). (2.5)
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One major issue with this approach is due to the fact that each expert retains the

power to reduce the density of a region which the others provide a high density

for. Furthermore, the authors note that training fails when all of the modalities are

present during training and subsequently have to introduce a sub-sampling regime

to address this deficiency.
MMVAE (Shi et al., 2019a)

Rather than taking the approach of the product of experts, Shi et al. (2019b) made

use of a MoE, which approximates the posterior as q(z|s, t) ≈ 0.5 ·q(z|s)+0.5 ·q(z|t).

This above formulation addresses the two major deficiencies of MVAE, and is also

amenable to using models with tighter bounds such as the Importance Weighted

Autoencoder (IWAE) (Burda et al., 2015). However, one of the major drawbacks

of MMVAE, is its inability to handle the case where one of the modalities may be

missing during training, hence placing a requirement that all of the data must be

paired.

2.3 Sample-dependent Temperature Scaling for
Improved Calibration

This section can be viewed as an introduction to Chapter 5, and provides the

relevant background information and notation needed.

2.3.1 Background

For neural-classifiers to be used effectively in real world scenarios it is essential

that they produce appropriate confidences with their predictions. This is especially

important for safety critical systems, such as pedestrian detection in self driving

cars; or in diagnosing patients with life threatening diseases. Clearly a failure in any

one of these case could potentially lead to a serious loss of life and inflict significant

damage on societies perception of machine learning. Fortunately, neural-classifiers

can achieve remarkably high accuracy (Simonyan and Zisserman, 2014; He et al.,

2016; Szegedy et al., 2016), making them appropriate for such systems. However,

despite this high accuracy, they are also prone to suffer from miscalibration; where

their confidence does not match their accuracy. Achieving calibrated predictions is
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hence a desirable goal; in this work we show how VAEs can be employed to improve

the calibration of neural networks.

2.3.2 Definitions

Here we consider the input and labels to be the random variables x ∈ X and y ∈

{1, . . . , K} where K is the number of possible classes. Let the output probabilities

for each class be p = p(y|x) = σ(f(Φ(x))), with σ(s) = exp(s)∑
k

exp(sk) as the softmax

function and θ = {W, ϕ} where W and ϕ are the parameters of the last layer and

feature extractor of the neural-classifiers respectfully. The predicted label is then

simply ŷ = arg maxk pk. If the neural-classifier is calibrated, then given 100 samples

which have an output probability p, we would expect the classifier to correctly

classify p · 100 of them. Formally, we can quantify how calibrated a classifier is by

defining the Expected Calibration Error (ECE) as

Ep[|P(ŷ = y|p = p̃)− p̃|] (2.6)

where p̃ is the resulting accuracy for the model. Clearly evaluating such a metric

is computational infeasible, consequently an approximation needs to be formu-

lated.

Evaluating ECE Due to the finite nature of the test-set we need to empirically

estimate the accuracy for a given confidence. To do this, each prediction is grouped

into M bins of equal size. Let Bm be the set of indices for the samples who’s

confidence predictions falls in the range Im = (m−1
M
, m
M

]. The accuracy for the

samples in Bm is then

acc(Bm) = 1
|Bm|

∑
i∈Bm

1(ŷi = yi). (2.7)

In a similar fashion, the confidence for each bin is given as

conf(Bm) = 1
|Bm|

∑
i∈Bm

pi. (2.8)

From this, the ECE can be empirically evaluated as follows

ECE =
∑
m

|Bm|
N
| acc(Bm)− conf(Bm)| (2.9)
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with N being the number of samples in the dataset. This provides a quantifiable

metric for evaluating the calibration of neural-classifiers and is often the default

metric to refer to when comparing methods.

Maximum ECE Another key metric which gives an indication of how well

calibrated neural-classifiers are is the maximum calibration error

max
p̃∈[0,1]

[|P(ŷ = y|p = p̃)− p̃|] (2.10)

which can be empirically estimated by taking the maximum calibration error given

by each bin

MCE = max
m
| acc(Bm)− conf(Bm)|. (2.11)

This metric is often used as an alternative to, or in conjunction with ECE.

Reliability Plots Reliability plots gives us a visual representation of how cali-

brated a model is. A perfectly calibrated model would yield accuracies from (2.7)

which were equivalent in value to the bin which they were assigned to. Displaying

these values on a bar chart then, will give an indication of how well calibrated

the model is; with a calibrated model displaying values which show an equivalence

between the x and y axis. We display an example reliability plot in Figure 2.5,

which was obtained from the predicted probabilities for a ResNet-50 classifier using

CIFAR10 as inputs. A perfectly calibrated model would be represented by a straight

line indicating that confidence is equivalent to accuracy for all values—pink bars.

Here however, we see that the accuracy for given confidence values is actually much

lower than their confidence values, indicating that this model is overconfident and

is indeed miscalibrated.

Given the definitions and a high level overview of the problem set up, we now

highlight and outline the import pieces of background work which are relevant

to Chapter 5. An additional literature review is included in Section 5.4.
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Figure 2.5: Reliability Plot for classification of CIFAR10 on ResNet-50.

2.3.3 Related Work

Temperature Scaling Temperature scaling is a post-hoc method which improves

the calibration of neural-classifiers (Guo et al., 2017). The main premise is to

artificially compensate for the miscalibrated confidences by introducing a scalar

factor T into the softmax function

σ(s, T ) =
exp( s

T
)∑

k exp( sk
T

) . (2.12)

Adjusting T has a significant impact on the resulting softmax distribution, a low T

makes the distribution much “peakier”, whereas a high T flattens the distribution.

An example of the softmax distribution with different values of T is given in

Figure 2.6.

Figure 2.6: Example plots of Softmax distribution with different temperature values for
fixed logits. Left to right: T = 0.1, T = 1.0 and T = 10.0.

Typically, to obtain T , practitioners are required to perform a cross-validation step

using grid search, using the ECE or the Negative Log Likelihood (NLL) as an
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optimisation metric. One of the main advantages of temperature scaling is that

is can be applied post-hoc to almost any existing training algorithm, hence its

popularity within the calibration literature.

Deep-Ensembles Deep-ensembles of neural-classifiers have been used to improve

various metrics such as classification (Dietterich, 2000), but there advantages also

extend to calibration (Lakshminarayanan et al., 2016). The deep-ensemble model is

very simple to train and test. Given A neural-classifiers, the model averages the

predicted probabilities resulting in the following predictive distribution

p(y|x) = 1
A

A∑
a=1

pθa(y|x; θa), (2.13)

where the probabilities can thus be used to calculate the ECE or produce reliability

plots.

Mixup Another popular, but simple, approach is mixup (Zhang et al., 2017).

This work trains neural-networks using a convex combination of image and label

pairs, which are given as

x̃ = αxi + (1− α)xj (2.14)

ỹ = αyi + (1− α)yj (2.15)

where i and j are random sample indices drawn from the dataset and y is the

one-hot vectorised representation of y. The main premise behind mixup, is to

incorporate the knowledge that linear interpolations of the input should lead to

linear interpolations of the label.

2.4 Additional VAE Literature
Here we provide an additional literature review of related work to theVAE. Conse-

quently, this section should be viewed as an additional literature review containing

information on work which is relevant but tangential to the contributions of this

thesis.

2.4.1 In Search of Tighter Lower Bounds

The VAE objective forms an ELBO on log marginal of the data; consequently, there

a numerous pieces of work which aim to tighten the bound.
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Importance Weighted Encoders

The tightness of the lower bound can be increased by taking multiple samples from

the approximate posterior distribution. This idea was introduced in IWAE (Burda

et al., 2015), leading to the following objective

log p(x) ≥ Ez1,...,zk∼qϕ(z|x) log
[ 1
K

∑
k

p(x, zk)
qϕ(zk|x)

]
, (2.16)

for K samples. Which leads to the importance weighted gradient update

∇θ,ϕEzi,...,zk∼qϕ(z|x)

[
p(x, zk)
qϕ(zk|x)

]
= 1
K

∑
k

w̃∇θ,ϕ log p(x, g(ϵk,x))
qϕ(g(ϵk,x)|x) . (2.17)

where zk = g(ϵk,x) is the reparameterisation trick and w̃k = wk
1
K

∑
k
wk

are the

importance weights with wk = p(zk,x)
qϕ(zk|x) ; which decomposes as an importance weighted

average of VAE gradients.

Due to the tighter lower bound, IWAE achieves a higher log-likelihood and increases

the number of active dimensions used in the latent space. These factors make it a

popular approach in hierachical VAEs Kingma et al. (2016); Sønderby et al. (2016)

and multimodal VAEs Shi et al. (2019a).
More Expressive priors

One of the primary reasons for choosing the prior to be an isotropic Gaussian with

unit variance and zero mean, is the ease of use and the emergence of an analytical

solution for the KL term. However, the use of this prior restricts the approximate

posterior’s ability to model the true posterior. Ideally, we would like to choose a

prior which matches the aggregate posterior EpD(x)pθ(z | x), tightening the lower

bound.

There have been numerous approaches to improve the quality of the prior. The

work by Tomczak and Welling (2018b) learns the prior by approximating the

aggregate posterior using a mixture model. In Makhzani et al. (2015), they took

an adversarial approach to fit the aggregate posterior to the prior. Separately,

normalising flows (Kingma et al., 2016) provide a flexible distribution to learn the

prior in Chen et al. (2016); Huang et al. (2017).
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Flow Posteriors

Improving the expressiveness of the posterior improves its ability to match and

model the true posterior, thus tightening the bound. A common way to improve

the expressivity is to use flow priors (Rezende and Mohamed, 2015), that allow

more flexibility to model the true posterior than the standard isotropic Gaussian.

Since Rezende and Mohamed (2015), numerous works have used flow based posteriors

to improve the quality of the model (Kingma et al., 2016; Tomczak and Welling,

2018b; Berg et al., 2018; Huang et al., 2018; Grathwohl et al., 2018; Durkan et al.,

2019).
Auxiliary Variables

The bound on the likelihood can also be improved through the introduction of

auxiliary variables, which introduces a dependence on an auxiliary variable α in

the inference process

q(z|x) =
∫
q(z|x, α)q(α|x)dα. (2.18)

The introduction of α is designed to capture the dependency between the latent

variables of z. This approach has been employed in ADGM (Maaløe et al., 2016)

and Ranganath et al. (2016). The graphical model for Maaløe et al. (2016) can be

seen in Figure 2.2.

2.4.2 Improving Generative Quality

Another core feature beyond obtaining a bound on the likelihood is the ability for a

VAE to sample from the learned distribution. Unlike the Generative Adversarial

Network (GAN) (Goodfellow et al., 2014), the VAE tends to have a low generation

fidelity; in this section we highlight how with some modifications, the VAE can

produce high fidelity samples.
Hierarchical

The expressivity of both the posterior and the prior can be improved significantly

through the introduction of a hierarchy in the latent space. Here, the VAE has
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Figure 2.7: a) Inference model for hierarchical VAE; b) Generative model for VAE; c)
Inference model for a hierarchical VAE with bi-directional inference; and d) Generative
model for a hierarchical VAE with bi-directional inference.

multiple layers of latent variables as outlined in a) and b) in Figure 2.7. This leads

to the following lower bound on the likelihood

log p(x) ≥ Eq(zL|x),...,q(z0|z1)

[
log p(x|zL)p(x0)

∏l=L
l=1 p(zl|zl−1)

q(zL|x)∏l=L−1
l=0 q(zl|zl+1)

]
. (2.19)

One issue with this approach is the that the inference model does not match the

dependency structure of the generative model. In the inference model, the latent

variables are sampled from the bottom up—z1 is sampled before z0. Whereas in

the generative model the latent variables are sampled in the opposing order. This

leads to potential issues during training and which were addressed in Sønderby

et al. (2016), where they introduced a bi-directional approach, which samples latent

variables in the correct order. The graphical model for this approach can be seen in

c) and d) of Figure 2.7. The use of a hierarchy of latent variables and bi-directional

inference has been shown to dramatically improve the fidelity of the generated

images (Child, 2021).
Vector Quantized

Recently, the Vector Quantized VAE (VQVAE) (Van Den Oord et al., 2017),

which differs from a typical VAE in that it has a discrete latent space rather

than a continuous one, demonstrated how high fidelity samples can be obtained.



2. Literature Review and Background 26

The motivation for using a discrete latent space is based on the fact that many

application can be represented by discrete variables, e.g. language, and the authors

claim that images can be also represented by language; additional applications

include reasoning and planning. The VQVAE works by matching the predicted

features from the encoder to a set of learn-able codes in a codebook. The code

which is closest to the feature is then used as the input to the decoder. During

the backward pass, a straight through estimator is used to alleviate the issue of

selecting the closest code. This approach is able to provide high-quality generations

whilst also compressing the input significantly.
Expressive Decoders

In a standard VAE the output dimensions factorise over the entire output space,

meaning that each individual variable (often a pixel) is conditionally independent.

In reality, this assumption over-simplifies the task and in fact you would often expect

a dependency between pixels. One way to alleviate this is to use approaches like

PixelCNN (Van den Oord et al., 2016) in the decoder (Chen et al., 2016; Gulrajani

et al., 2016), providing much more flexibility in the resulting distribution. One issue

with this approach is that the auto-regressive decoder tends to ignore the latent

code (Bowman et al., 2015). The work of Chen et al. (2016) goes some way to limit

the auto-regressive component in an effort to force information through the latent

space.
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Abstract

We present a principled approach to incorporating labels into the Variational
Autoencoders (VAEs) objective, that captures the rich characteristic information
associated with those labels. While prior work has typically conflated these
by learning latent variables that directly correspond to label values, we argue
this is contrary to the intended effect of supervision in VAEs—capturing rich
label characteristics with the latents. For example, we may want to capture the
characteristics of a face that make it look young, rather than just the age of the
person. To this end, we develop the Characteristic Capturing VAE (CCVAE),
a novel VAE model and concomitant variational objective which captures label
characteristics explicitly in the latent space, eschewing direct correspondences
between label values and latents. Through judicious structuring of mappings
between such characteristic latents and labels, we show that the CCVAE can
effectively learn meaningful representations of the characteristics of interest across
a variety of supervision schemes. In particular, we show that the CCVAE allows
for more effective and more general interventions to be performed, such as smooth
traversals within the characteristics for a given label, diverse conditional generation,
and transferring characteristics across datapoints.



3.1 Introduction
Learning the characteristic factors of perceptual observations has long been desired

for effective machine intelligence (Brooks, 1991; Bengio et al., 2013a; Hinton

and Salakhutdinov, 2006; Tenenbaum, 1998). In particular, the ability to learn

meaningful factors—capturing human-understandable characteristics from data—

has been of interest from the perspective of human-like learning (Tenenbaum and

Freeman, 2000; Lake et al., 2015) and improving decision making and generalization

across tasks (Bengio et al., 2013a; Tenenbaum and Freeman, 2000).

At its heart, learning meaningful representations of data allows one to not only

make predictions, but critically also to manipulate factors of a datapoint. For

example, we might want to manipulate the age of a person in an image. Such

manipulations allow for the expression of causal effects between the meaning of

factors and their corresponding realizations in the data. They can be categorized

into conditional generation—the ability to construct whole exemplar data instances

with characteristics dictated by constraining relevant factors—and intervention—the

ability to manipulate just particular factors for a given data point, and subsequently

affect only the associated characteristics.

A particularly flexible framework within which to explore the learning of meaningful

representations are VAEs, a class of deep generative models where representations of

data are captured in the underlying latent variables. A variety of methods have been

proposed for inducing meaningful factors in this framework (Kim and Mnih, 2018;

Mathieu et al., 2019; Mao et al., 2019; Kingma et al., 2014; Siddharth et al., 2017;

Vedantam et al., 2018b), and it has been argued that the most effective generally

exploit available labels to (partially) supervise the training process (Locatello et al.,

2019). Such approaches aim to associate certain factors of the representation

(or equivalently factors of the generative model) with the labels, such that the

former encapsulate the latter—providing a mechanism for manipulation via targeted

adjustments of relevant factors.
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Figure 3.1: Manipulating label characteristics for “hair color” and “smile”.

Prior approaches have looked to achieve this by directly associating certain latent

variables with labels (Kingma et al., 2014; Siddharth et al., 2017; Maaløe et al.,

2016). Originally motivated by the desiderata of semi–supervised classification, each

label is given a corresponding latent variable of the same type (e.g. categorical),

whose value is fixed to that of the label when the label is observed and imputed by

the encoder when it is not.

Though natural, we argue that this assumption is not just unnecessary but actively

harmful from a representation-learning perspective, particularly in the context

of performing manipulations. To allow manipulations, we want to learn latent

factors that capture the characteristic information associated with a label, which

is typically much richer than just the label value itself. For example, there are

various visual characteristics of people’s faces associated with the label “young,”

but simply knowing the label is insufficient to reconstruct these characteristics for

any particular instance. Learning a meaningful representation that captures these

characteristics, and isolates them from others, requires encoding more than just the

label value itself, as illustrated in Figure 3.1.



3. Rethinking Semi-Supervised Learning in VAEs 31

The key idea of our work is to use labels to help capture and isolate this related

characteristic information in a VAE’s representation. We do this by exploiting the

interplay between the labels and inputs to capture more information than the labels

alone convey; information that will be lost (or at least entangled) if we directly

encode the label itself. Specifically, we introduce the CCVAE framework, which

employs a novel VAE formulation which captures label characteristics explicitly in

the latent space. For each label, we introduce a set of characteristic latents that are

induced into capturing the characteristic information associated with that label. By

coupling this with a principled variational objective and carefully structuring the

characteristic-latent and label variables , we show that CCVAEs successfully capture

meaningful representations, enabling better performance on manipulation tasks,

while matching previous approaches for prediction tasks. In particular, they permit

certain manipulation tasks that cannot be performed with conventional approaches,

such as manipulating characteristics without changing the labels themselves and

producing multiple distinct samples consistent with the desired intervention. We

summarize our contributions as follows:

i) showing how labels can be used to capture and isolate rich characteristic

information;

ii) formulating CCVAEs, a novel model class and objective for supervised and

semi-supervised learning in VAEs that allows this information to be captured

effectively;

iii) demonstrating CCVAEs’ ability to successfully learn meaningful representations

in practice.

3.2 Background
VAEs (Kingma and Welling, 2013; Rezende et al., 2014) are a powerful and flexible

class of model that combine the unsupervised representation-learning capabilities

of deep autoencoders (Hinton and Zemel, 1994) with generative latent-variable

models—a popular tool to capture factored low-dimensional representations of

higher-dimensional observations. In contrast to deep autoencoders, generative
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models capture representations of data not as distinct values corresponding to

observations, but rather as distributions of values. A generative model defines

a joint distribution over observed data x and latent variables z as pθ(x, z) =

p(z)pθ(x | z). Given a model, learning representations of data can be viewed as

performing inference—learning the posterior distribution pθ(z | x) that constructs

the distribution of latent values for a given observation.

VAEs employ amortized Variational Inference (VI) (Wainwright and Jordan, 2008;

Kingma and Welling, 2013) using the encoder and decoder of an autoencoder to

transform this setup by i) taking the model likelihood pθ(x | z) to be parameterized

by a neural network using the decoder, and ii) constructing an amortized variational

approximation qϕ(z | x) to the (intractable) posterior pθ(z | x) using the encoder.

The variational approximation of the posterior enables effective estimation of the

objective—maximizing the marginal likelihood—through importance sampling. The

objective is obtained through invoking Jensen’s inequality to derive the Evidence

Lower Bound (ELBO) of the model which is given as:

log pθ(x) = logEqϕ(z|x)

[
pθ(z,x)
qϕ(z | x)

]
≥ Eqϕ(z|x)

[
log pθ(z,x)

qϕ(z | x)

]
≡ L(x;ϕ, θ). (3.1)

Given observations D = {x1, . . . ,xN} taken to be realizations of random vari-

ables generated from an unknown distribution pD(x), the overall objective is
1
N

∑
n L(xn; θ, ϕ). Hierarchical VAEs (Sønderby et al., 2016) impose a hierarchy of

latent variables improving the flexibility of the approximate posterior, however we

do not consider these models in this work.

Semi-Spervised VAEs (SSVAEs) (Kingma et al., 2014; Maaløe et al., 2016; Siddharth

et al., 2017) consider the setting where a subset of data S ⊂ D is assumed to also

have corresponding labels y. Denoting the (unlabeled) data as U = D\S, the

log-marginal likelihood is decomposed as

log p (D) =
∑

(x,y)∈S
log pθ(x,y) +

∑
x∈U

log pθ(x),

where the individual log-likelihoods are lower bounded by their ELBOs. Standard

practice is then to treat y as a latent variable to marginalize over whenever the
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label is not provided. More specifically, most approaches consider splitting the

latent space in z = {zy, z\y} and then directly fix zy = y whenever the label is

provided, such that each dimension of zy explicitly represents a predicted value of

a label, with this value known exactly only for the labeled datapoints. Much of

the original motivation for this (Kingma et al., 2014) was based around performing

semi–supervised classification of the labels, with the encoder being used to impute

the values of zy for the unlabeled datapoints. However, the framework is also

regularly used as a basis for learning meaningful representations and performing

manipulations, exploiting the presence of the decoder to generate new datapoints

after intervening on the labels via changes to zy. Our focus lies on the latter, for

which we show this standard formulation leads to serious pathologies. Our primary

goal is not to improve the fidelity of generations, but instead to demonstrate how

label information can be used to structure the latent space such that it encapsulates

and disentangles the characteristics associated with the labels.

3.3 Rethinking Supervision
As we explained in the last section, the de facto assumption for most approaches

to supervision in VAEs is that the labels correspond to a partially observed

augmentation of the latent space, zy. However, this can cause a number of issues

if we want the latent space to encapsulate not just the labels themselves, but also

the characteristics associated with these labels. For example, encapsulating the

youthful characteristics of a face, not just the fact that it is a “young” face. At an

abstract level, such an approach fails to capture the relationship between the inputs

and labels: it fails to isolate characteristic information associated with each label

from the other information required to reconstruct data. More specifically, it fails

to deal with the following issues.

Firstly, the information in a datapoint associated with a label is richer than stored

by the (typically categorical) label itself. That is not to say such information is

absent when we impose zy = y, but here it is entangled with the other latent

variables z\y, which simultaneously contain the associated information for all the
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labels. Moreover, when y is categorical, it can be difficult to ensure that the VAE

actually uses zy, rather than just capturing information relevant to reconstruction

in the higher-capacity, continuous, z\y. Overcoming this is challenging and generally

requires additional heuristics and hyper-parameters.

Second, we may wish to manipulate characteristics without fully changing the

categorical label itself. For example, making a CelebA image depict more or less

‘smiling’ without fully changing its “smile” label. Here we do not know how to

manipulate the latents to achieve this desired effect: we can only do the binary

operation of changing the relevant variable in zy. Also, we often wish to keep

a level of diversity when carrying out conditional generation and, in particular,

interventions. For example, if we want to add a smile, there is no single correct

answer for how the smile would look, but taking zy = "smile" only allows for a

single point estimate for the change.

Finally, taking the labels to be explicit latent variables can cause a mismatch between

the VAE prior p(z) and the pushforward distribution of the data to the latent space

q(z) = EpD(x)[qϕ(z | x)]. During training, latents are effectively generated according

to q(z), but once learned, p(z) is used to make generations; variations between the

two effectively corresponds to a train-test mismatch. As there is a ground truth

data distribution over the labels (which are typically not independent), taking the

latents as the labels themselves implies that there will be a ground truth q(zy).

However, as this is not generally known a priori, we will inevitably end up with a

mismatch.

What do we want from supervision? Given these issues, it is natural to

ask whether having latents directly correspond to labels is actually necessary. To

answer this, we need to think about exactly what it is we are hoping to achieve

through the supervision itself. Along with uses of VAEs more generally, the three

most prevalent tasks are: a) Classification, predicting the labels of inputs where

these are not known a priori; b) Conditional Generation, generating new

examples conditioned on those examples conforming to certain desired labels; and c)
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Intervention, manipulating certain desired characteristics of a data point before

reconstructing it.

Inspecting these tasks, we see that for classification we need a classifier from z to y,

for conditional generation we need a mechanism for sampling z given y, and for

inventions we need to know how to manipulate z to bring about a desired change.

None of these require us to have the labels directly correspond to latent variables.

Moreover, as we previously explained, this assumption can be actively harmful,

such as restricting the range of interventions that can be performed.

3.4 Characteristic Capturing Variational Autoen-
coders

To correct the issues discussed in the last section, we suggest eschewing the treatment

of labels as direct components of the latent space and instead employ them to

condition latent variables which are designed to capture the characteristics. To this

end, we similarly split the latent space into two components, z = {zc, z\c}, but

where zc, the characteristic latent, is now designed to capture the characteristics

associated with labels, rather than directly encode the labels themselves. In this

breakdown, z\c is intended only to capture information not directly associated with

any of the labels, unlike z\y which was still tasked with capturing the characteristic

information.

For the purposes of exposition and purely to demonstrate how one might apply this

schema, we first consider a standard VAE, with a latent space z = {zc, zs}. The

latent representation of the VAE will implicitly contain characteristic information

required to perform classification, however the structure of the latent space will

be arranged to optimize for reconstruction and characteristic information may be

entangled between zc and z\c. If we were now to jointly learn a classifier—from zc

to y—with the VAE, resulting in the following objective:

J =
∑

x∈U
LV AE(x) +

∑
(x,y)∈S

(
LV AE(x) + αEqϕ(z|x) [log qφ(y | zc)]

)
, (3.2)
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where α is a hyperparameter, there will be pressure on the encoder to place

characteristic information in zc, which can be interpreted as a stochastic layer

containing the information needed for classification and reconstruction1. The

classifier thus acts as a tool allowing y to influence the structure of z, it is this high

level concept, i.e. using y to structure z, that we utilize in this work.

However, in general, the characteristics of different labels will be entangled within

zc. Though it will contain the required information, the latents will typically be

uninterpretable, and it is unclear how we could perform conditional generation

or interventions. To disentangle the characteristics of different labels, we further

partition the latent space, such that the classification of particular labels yi only

has access to particular latents zic and thus log qφ(y | zc) = ∑
i log qφi(yi | zic). This

has the critical effect of forcing the characteristic information needed to classify yi

to be stored only in the corresponding zic, providing a means to encapsulate such

information for each label separately. We further see that it addresses many of the

prior issues: there are no measure-theoretic issues as zic is not discrete, diversity

in interventions is achieved by sampling different zic for a given label, zic can be

manipulated while remaining within class decision boundaries, and a mismatch

between p(zc) and q(zc) does not manifest as there is no ground truth for q(zc).

How to conditionally generate or intervene when training with (3.2) is not imme-

diately obvious though. However, the classifier implicitly contains the requisite

information to do this via inference in an implied Bayesian model. For example,

conditional generation needs samples from p(zc) that classify to the desired labels,

e.g. through rejection sampling. See Appendix A.1 for further details.

3.4.1 The Characteristic Capturing VAE

One way to address the need for inference is to introduce a conditional generative

model pψ(zc | y), simultaneously learned alongside the classifier introduced in (3.2),
1Though, for convenience, we implicitly assume here, and through the rest of the paper, that

the labels are categorical such that the mapping zc → y is a classifier, we note that the ideas apply
equally well if some labels are actually continuous, such that this mapping is now a probabilistic
regression.
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Figure 3.2: CCVAE graphical model.

along with a prior p(y). This approach, which we term the CCVAE, allows the

required sampling for conditional generations and interventions directly. Further,

by persisting with the latent partitioning above, we can introduce a factorized

set of generative models p(zc | y) = ∏
i p(zic | yi), enabling easy generation and

manipulation of zic individually. CCVAE ensures that labels remain a part of the

model for unlabeled datapoints, which transpires to be important for effective

learning in practice.

To address the issue of learning, we perform variational inference, treating y as a

partially observed auxiliary variable. The final graphical model is illustrated in

Figure 3.2. The CCVAE can be seen as a way of combining top-down and bottom-up

information to obtain a structured latent representation. However, it is important

to highlight that CCVAE does not contain a hierarchy of latent variables. Unlike a

hierarchical VAE, reconstruction is performed only from z ∼ qϕ(z | x) without going

through the “deeper” y, as doing so would lead to a loss of information due to the

bottleneck of y. By enforcing each label variable to link to different characteristic-

latent dimensions, we are able to isolate the generative factors corresponding to

different label characteristics.
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3.4.2 Model Objective

We now construct an objective function that encapsulates the model described

above, by deriving a lower bound on the full model log-likelihood which factors over

the supervised and unsupervised subsets as discussed in Section 3.2. The supervised

objective can be defined as

log pθ,ψ(x,y) ≥ Eqφ,ϕ(z|x,y)

[
log pθ(x | z)pψ(z | y)p(y)

qφ,ϕ(z | x,y)

]
≡ LCCV AE(x,y), (3.3)

with pψ(z | y) = p(z\c)pψ(zc | y). Here, we avoid directly modeling qφ,ϕ(z | x,y);

instead leveraging the conditional independence x ⊥⊥ y | z, along with Bayes rule,

to give

qφ,ϕ(z | x,y) = qφ(y | zc)qϕ(z | x)
qφ,ϕ(y | x) , where qφ,ϕ(y | x) =

∫
qφ(y | zc)qϕ(z | x)dz.

Using this equivalence in (3.3) yields (see Appendix A.2.1 for a derivation and

numerical details)

LCCV AE(x,y)=Eqϕ(z|x)

[
qφ(y | zc)
qφ,ϕ(y | x) log pθ(x | z)pψ(z | y)

qφ(y | zc)qϕ(z | x)

]
+log qφ,ϕ(y | x)+log p(y).

(3.4)

Note that a classifier term log qφ,ϕ(y | x) falls out naturally from the derivation,

unlike previous models (e.g. Kingma et al. (2014); Siddharth et al. (2017)). Not

placing the labels directly in the latent space is crucial for this feature. When

defining latents to directly correspond to labels, observing both x and y detaches

the mapping qφ,ϕ(y | x) between them, resulting in the parameters (φ, ϕ) not being

learned—motivating addition of an explicit (weighted) classifier. Here, however,

observing both x and y does not detach any mapping, since they are always

connected via an unobserved random variable zc, and hence do not need additional

terms. From an implementation perspective, this classifier strength can be increased,

we experimented with this, but found that adjusting the strength had little effect on

the overall classification accuracies. We consider this insensitivity to be a significant

strength of this approach, as the model is able to apply enough pressure to the

latent space to obtain high classification accuracies without having to hand tune
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Figure 3.3: Gradient norms of classifier.

parameter values. We find that the gradient norm of the classifier parameters suffers

from a high variance during training. This is not necessarily surprising, as using

only a single sample to estimate qφ,ϕ(y | x), will produce biased gradient estimates

with high variance. We find that not reparameterizing through zc in qφ(y | zc)

reduces this affect and aides training changing the objective to

LCCV AE(x,y)=Eqϕ(z|x)

[
qφ(y | z̄c)
qφ,ϕ(y | x) log pθ(x | z)pψ(z | y)

qφ(y | z̄c)qϕ(z | x)

]
+log qφ,ϕ(y | x)+log p(y)

where z̄c indicates that we do not reparameterize the sample. This significantly

reduces the variance of the magnitude of the gradient norm∇φ, allowing the classifier

to learn appropriate weights and structure the latent space. This can be seen in

Figure 3.3, where we plot the gradient norm of φ for when we do reparameterize zc

(blue) and when we do not (orange). Clearly not reparameterizing leads to a lower

variance in the gradient norm of the classifier, which aides learning. To a certain

extent these gradients can be viewed as redundant, as there is already gradients

to update the predictive distribution due to the log qφ,ϕ(y | x) term anyway. It is

worth noting that the true posterior p(y|z) can in fact be computed exactly using

Bayes rule, p(y|z) = p(z|y)p(y)
p(z) , but we chose against this approach as it does not

enable scaling to a large number of classes, instead reverting to performing inference

on the random variable y.

For the datapoints without labels, we can again perform variational inference,

treating the labels as random variables. Specifically, the unsupervised objective,

LCCV AE(x), derives as the standard (unsupervised) ELBO. However, it requires
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marginalising over labels as p(z) = p(zc)p(z\c) = p(z\c)
∑

y p(zc|y)p(y). This can

be computed exactly, but doing so can be prohibitively expensive if the number of

possible label combinations is large. In such cases, we apply Jensen’s inequality a

second time to the expectation over y (see Appendix A.2.2) to produce a looser,

but cheaper to calculate, ELBO given as

LCCV AE(x) = Eqϕ(z|x)qφ(y|zc)

[
log

(
pθ(x | z)pψ(z | y)p(y)
qφ(y | zc)qϕ(z | x)

)]
. (3.5)

Combining (3.4) and (3.5), we get the following lower bound on the log probability

of the data

log p (D) ≥
∑

(x,y)∈S
LCCV AE(x,y) +

∑
x∈U
LCCV AE(x), (3.6)

that unlike prior approaches faithfully captures the variational free energy of the

model. As shown in Section 3.6, this enables a range of new capabilities and

behaviors to encapsulate label characteristics.

3.5 Related Work
The seminal work of Kingma et al. (2014) was the first to consider supervision

in the VAEs setting, introducing the M2 model for semi–supervised classification

which placed labels directly in the latent space. The related approach of Maaløe

et al. (2016) augments the encoding distribution with an additional, unobserved

latent variable, enabling better semi-supervised classification accuracies. Siddharth

et al. (2017) extended the above work to automatically derive the regularised

objective for models with arbitrary (pre-defined) latent dependency structures. The

approach of placing labels directly in the latent space was also adopted in Li et al.

(2019). Regarding the disparity between continuous and discrete latent variables in

the typical semi-supervised VAEs, Dupont (2018) provide an approach to enable

effective unsupervised learning in this setting.

From a purely modeling perspective, there also exists prior work on VAEs involving

hierarchies of latent variables, exploring richer higher-order inference and issues with

redundancy among latent variables both in unsupervised (Ranganath et al., 2016;
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Zhao et al., 2017) and semi-supervised (Maaløe et al., 2017, 2019) settings. In the

unsupervised case, these hierarchical variables do not have a direct interpretation,

but exist merely to improve the flexibility of the encoder. The semi-supervised

approaches extend the basic M2 model to hierarchical VAEs by incorporating the

labels as an additional latent (see Appendix F in Maaløe et al., 2019, for example),

and hence must incorporate additional regularisers in the form of classifiers as in the

case of M2. Moreover, by virtue of the typical dependencies assumed between labels

and latents, it is difficult to disentangle the characteristics just associated with the

label from the characteristics associated with the rest of the data—something we

capture using our simpler split latents (zc, z\c).

From a more conceptual standpoint, Mueller et al. (2017) introduces interventions

(called revisions) on VAEs for text data, regressing to auxiliary sentiment scores as a

means of influencing the latent variables. This formulation is similar to (3.2) in spirit,

although in practice they employ a range of additional factoring and regularizations

particular to their domain of interest, in addition to training models in stages,

involving different objective terms. Nonetheless, they share our desire to enforce

meaningfulness in the latent representations through auxiliary supervision.

Another related approach involves explicitly treating labels as another data modality

(Vedantam et al., 2018b; Suzuki et al., 2016; Wu and Goodman, 2018a; Shi et al.,

2019b). This work is motivated by the need to learn latent representations that

jointly encode data from different modalities. Looking back to (3.3), by refactoring

p(z | y)p(y) as p(y | z)p(z), and taking q(z | x,y) = G(q(z | x), q(z | y)), one

derives multi-modal VAEs, where G can construct a product (Wu and Goodman,

2018a) or mixture (Shi et al., 2019b) of experts. Of these, the MVAE (Wu and

Goodman, 2018a) is more closely related to our setup here, as it explicitly targets

cases where alternate data modalities are labels. However, they differ in that the

latent representations are not structured explicitly to map to distinct classifiers, and

do not explore the question of explicitly capturing the label characteristics. The

JLVM model of Adel et al. (2018) is similar to the MVAE, but is motivated from
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an interpretability perspective—with labels providing ‘side-channel’ information

to constrain latents. They adopt a flexible normalising-flow posterior from data x,

along with a multi-component objective that is additionally regularised with the

information bottleneck between data x, latent z, and label y.

DIVA (Ilse et al., 2019) introduces a similar graphical model to ours, but is motivated

to learn a generalized classifier for different domains. The objective is formed

of a classifier which is regularized by a variational term, requiring additional

hyper-parameters and preventing the ability to disentangle the representations.

In Appendix A.3.4 we propose some modifications to DIVA that allow it to be

applied in our problem domain. Obtaining the true joint distribution can also be

obtained when following a similar graphical model (Khemakhem et al., 2020), but

is restricted to using simple transformations.

In terms of interoperability, the work of Ainsworth et al. (2018) is closely related to

ours, but they focus primarily on group data and not introducing labels. Here the

authors employ sparsity in the multiple linear transforms for each decoder (one for

each group) to encourage certain latent dimensions to encapsulate certain factors

in the sample, thus introducing interoperability into the model. Tangentially to

VAEs, similar objectives of structuring the latent space using GANs also exist Xiao

et al. (2017, 2018), although they focus purely on interventions and cannot perform

conditional generations, classification, or estimate likelihoods.

3.6 Experiments
Following our reasoning in Section 3.3 we now showcase the efficacy of CCVAE

for the three broad aims of (a) intervention, (b) conditional generation and (c)

classification for a variety of supervision rates, denoted by f . Specifically, we

demonstrate that CCVAE is able to: encapsulate characteristics for each label in

an isolated manner; introduce diversity in the conditional generations; permit a

finer control on interventions; and match traditional metrics of baseline models.

Furthermore, we demonstrate that no existing method is able to perform all of the
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above,2 highlighting its sophistication over existing methods. We compare against:

M2 (Kingma et al., 2014); MVAE (Wu and Goodman, 2018a); and our modified

version of DIVA (Ilse et al., 2019). See Appendix A.3.4 for details.

To demonstrate the capture of label characteristics, we consider the multi-label

setting and utilise the Chexpert (Irvin et al., 2019) and CelebA (Liu et al., 2015)

datasets.3 For CelebA, we restrict ourselves to the 18 labels which are distinguishable

in reconstructions; see Appendix A.3.1 for details. We use the architectures from

Higgins et al. (2016) for the encoder and decoder. The label-predictive distribution

qφ(y | zc) is defined as Ber(y | πφ(zc)) with a diagonal transformation πφ(·)

enforcing qφ(y | zc) = ∏
i qφi(yi | zc

i). The conditional prior pψ(zc | y) is then

defined as N (zc|µψ(y), diag(σ2
ψ(y))) with appropriate factorization, and has its

parameters also derived through MLPs. See Appendix A.3.3 for further details.

3.6.1 Interventions

If CCVAE encapsulates characteristics of a label in a single latent (or small set of

latents), then it should be able to smoothly manipulate these characteristics without

severely affecting others. This allows for finer control during interventions, which is

not possible when the latent variables directly correspond to labels. To demonstrate

this, we traverse two dimensions of the latent space and display the reconstructions

in Figure 3.4. These examples indicate that CCVAE is indeed able to smoothly

manipulate characteristics. For example, in b) we are able to induce varying skin

tones rather than have this be a binary intervention on pale skin, unlike DIVA in

a). In c), the zic associated with the necktie label has also managed to encapsulate

information about whether someone is wearing a shirt or is bare-necked. No such

traversals are possible for M2 and it is not clear how one would do them for MVAE;

additional results, including traversals for DIVA, are given in Appendix A.4.2.

2DIVA can perform the same tasks as CCVAE but only with the modifications we ourselves
suggest and still not to a comparable quality.

3CCVAE is well-suited to multi-label problems, but also works on multi-class problems. See
Appendix A.4.6 for results and analyses on MNIST and FashionMNIST.
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Figure 3.4: Continuous interventions through traversal of zc. From top left clockwise:
a) DIVA pale skin and young; b) CCVAE pale skin and young; c) CCVAE Pleural
Effusion and Cardiomegaly. d) CCVAE smiling and necktie;

3.6.2 Diversity of Generations

Label characteristics naturally encapsulate diversity (e.g. there are many ways

to smile) which should be present in the learned representations. By virtue of

the structured mappings between labels and characteristic latents, and since zc is

parameterized by continuous distributions, CCVAE is able to capture diversity in

representations, allowing exploration for an attribute (e.g. smile) while preserving

other characteristics. This is not possible with labels directly defined as latents, as

only discrete choices can be made—diversity can only be introduced here by sampling
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Figure 3.5: Diverse conditional generations for CCVAE, y is held constant along each
row and each column represents a different sample for zc ∼ p(zc|y). z\c is held constant
over the entire figure.

Figure 3.6: Variance in reconstructions when intervening on a single label. [Top two]
CelebA, from left to right: reconstruction, bangs, eyeglasses, pale skin, smiling, necktie..
[Bottom] Chexpert: reconstruction, cardiomegaly, edema, consolidation, atelectasis,
pleural effusion.

from the unlabeled latent space—which necessarily affects all other characteristics.

To demonstrate this, we reconstruct multiple times with z = {zc ∼ pψ(zc | y), z\c}

for a fixed z\c. We provide qualitative results in Figure 3.5.

If several samples are taken from zc ∼ pψ(zc | y) when intervening on only a single

characteristic, the resulting variations in pixel values should be focused around the

locations relevant to that characteristic, e.g. pixel variations should be focused

around the neck when intervening on necktie. To demonstrate this, we perform

single interventions on each class, and take multiple samples of zc ∼ pψ(zc | y). We

then display the variance of each pixel in the reconstruction in green in Figure 3.6,

where it can be seen that generally there is only variance in the spatial locations

expected. Interestingly, for the class smile (2nd from right), there is variance in

the jaw line, suggesting that the model is able capture more subtle components of

variation that just the mouth.
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3.6.3 Classification

To demonstrate that reparameterizing the labels in the latent space does not hinder

classification accuracy, we inspect the predictive ability of CCVAE across a range

of supervision rates, given in Table 3.1. It can be observed that CCVAE generally

obtains prediction accuracies slightly superior to other models. We emphasize here

that CCVAE’s primary purpose is not to achieve better classification accuracies; we

are simply checking that it does not harm them, which it most clearly does not.

Table 3.1: Classification accuracies.

CelebA Chexpert
Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 0.832 0.862 0.878 0.900 0.809 0.792 0.794 0.826
M2 0.794 0.862 0.877 0.893 0.799 0.779 0.777 0.774

DIVA 0.807 0.860 0.867 0.877 0.747 0.786 0.781 0.775
MVAE 0.793 0.828 0.847 0.864 0.759 0.787 0.767 0.715

3.6.4 Disentanglement of labeled and unlabeled latents

If a model can correctly disentangle the label characteristics from other generative

factors, then manipulating z\c should not change the label characteristics of the

reconstruction. To demonstrate this, we perform “characteristic swaps,” where we

first obtain z = {zc, z\c} for a given image, then swap in the characteristics zc to

another image before reconstructing. This should apply the exact characteristics,

not just the label, to the scene/background of the other image (cf. Figure 3.7).

⊕ =

{zc, z\c} {zc, z\c} {zc, z\c}

Figure 3.7: Characteristic swap, where the characteristics of the first image (blond hair,
smiling, heavy makeup, female, no necktie, no glasses etc.) are transferred to
the unlabelled characteristics of the second (red background etc.).
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Comparing CCVAE to our baselines in Figure 3.8, we see that CCVAE is able to

transfer the exact characteristics to a greater extent than other models. Particular

attention is drawn to the preservation of labeled characteristics in each row, where

CCVAE is able to preserve characteristics, like the precise skin tone and hair color

of the pictures on the left. We see that M2 is only able to preserve the label and

not the exact characteristic, while MVAE performs very poorly, effectively ignoring

the attributes entirely. Our modified DIVA variant performs reasonably well, but

less reliably and at the cost of reconstruction fidelity compared to CCVAE.

unlabeled contextual attributes, z\c
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Figure 3.8: Characteristic swaps. Characteristics (smiling, brown hair, skin tone,
etc) of the left image should be preserved along the row while background information
should be preserved along the column.

An ideal characteristic swap should not change the probability assigned by a pre-

trained classifier between the original image and a swapped one. We employ this

as a quantitative measure, reporting the average difference in log probabilities

for multiple swaps in Table 3.2. CCVAE is able to preserve the characteristics

to a greater extent than other models. DIVA’s performance is largely due to its

heavier weighting on the classifier, which adversely affects reconstructions, as seen

earlier.

3.7 Discussion
We have presented a novel mechanism for faithfully capturing label characteristics

in VAEs, the Characteristic Capturing VAE (CCVAE), which captures label
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Table 3.2: Difference in log-probabilities of pre-trained classifier from denotation swaps,
lower is better.

CelebA Chexpert

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 1.177 0.890 0.790 0.758 1.142 1.221 1.078 1.084
M2 2.118 1.194 1.179 1.143 1.624 1.43 1.41 1.415

DIVA 1.489 0.976 0.996 0.941 1.36 1.25 1.199 1.259
MVAE 2.114 2.113 2.088 2.121 1.618 1.624 1.618 1.601

characteristics explicitly in the latent space while eschewing direct correspondences

between label values and latents. This has allowed us to encapsulate and disentangle

the characteristics associated with labels, rather than just the label values. We

are able to do so without affecting the ability to perform the tasks one typically

does in the (semi-)supervised setting—namely classification, conditional generation,

and intervention. In particular, we have shown that, not only does this lead to

more effective conventional label-switch interventions, it also allows for more fine-

grained interventions to be performed, such as producing diverse sets of samples

consistent with an intervened label value, or performing characteristic swaps between

datapoints that retain relevant features.
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Abstract

Multimodal Variational Autoencoders (VAEs) seek to model the joint distribution
over heterogeneous data (e.g. vision, language), whilst also capturing a shared
representation across such modalities. Prior work has typically combined information
from the modalities by reconciling idiosyncratic representations directly in the
recognition model through explicit products, mixtures, or other such factorisations.
Here we introduce a novel alternative, the Mutually supErvised Multimodal VAE
(MEME), that avoids such explicit combinations by repurposing semi-supervised
VAEs to combine information between modalities implicitly through mutual su-
pervision. This formulation naturally allows learning from partially-observed data
where some modalities can be entirely missing—something that most existing
approaches either cannot handle, or do so to a limited extent. We demonstrate that
MEME outperforms baselines on standard metrics across both partial and complete
observation schemes on the MNIST-SVHN (image–image) and CUB (image–text)
datasets. We also contrast the quality of the representations learnt by mutual
supervision against standard approaches and observe interesting trends in its ability
to capture relatedness between data.



4.1 Introduction
Modelling the generative process underlying heterogenous data, particularly data

spanning multiple perceptual modalities such as vision or language, can be enor-

mously challenging. Consider for example, the case where data spans across

photographs and sketches of objects. Here, a data point, comprising of an instance

from each modality, is constrained by the fact that the instances are related and

must depict the same underlying abstract concept. An effective model not only

needs to faithfully generate data in each of the different modalities, it also needs

to do so in a manner that preserves the underlying relation between modalities.

Learning a model over multimodal data thus relies on the ability to bring together

information from idiosyncratic sources in such a way as to overlap on aspects they

relate on, while remaining disjoint otherwise.

VAEs (Kingma and Welling, 2014) are a class of deep generative models that are

particularly well-suited for multimodal data as they employ the use of encoders—

learnable mappings from high-dimensional data to lower-dimensional representations—

that provide the means to combine information across modalities. They can also

be adapted to work in situations where instances are missing for some modalities;

a common problem where there are inherent difficulties in obtaining and curating

heterogenous data. Much of the work in multimodal VAEs involves exploring

different ways to model and formalise the combination of information with a view

to improving the quality of the learnt models (see Section 4.2).

Prior approaches typically combine information through explicit specification as

products (Wu and Goodman, 2018b), mixtures (Shi et al., 2019a), combinations

of such (Sutter et al., 2021), or through additional regularisers on the represen-

tations (Suzuki et al., 2016; Sutter et al., 2020). Here, we explore an alternative

approach that leverages advances in semi-supervised VAEs (Siddharth et al., 2017;

Joy et al., 2021) to repurpose existing regularisation in the VAE framework

as an implicit means by which information is combined across modalities (see

Figure 4.1).
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We develop a novel formulation for multimodal VAEs that views the combination

of information through a semi-supervised lens, as mutual supervision between

modalities. We term this approach MEME. Our approach not only avoids the need

for additional explicit combinations, but it also naturally extends to learning in the

partially-observed setting—something that most prior approaches cannot handle.

We evaluate MEME on standard metrics for multimodal VAEs across both partial

and complete data settings, on the typical multimodal data domains, MNIST-SVHN

(image-image) and the less common but notably more complex CUB (image-text),

and show that it outperforms prior work on both. We additionally investigate

the capability of MEMEs ability to capture the ‘relatedness’, a notion of semantic

similarity, between modalities in the latent representation; in this setting we also

find that MEME outperforms prior work considerably.

4.2 Related work
Prior approaches to multimodal VAEs can be broadly categorised in terms of the

explicit combination of representations (distributions), namely concatenation and

factorization.

Concatenation: Models in this category learn joint representation by either

concatenating the inputs themselves or their modality-specific representations.

Examples for the former includes early work in multimodal VAEs such as the

JMVAE (Suzuki et al., 2016), triple ELBO (Vedantam et al., 2018a) and MFM

(Tsai et al., 2019), which define a joint encoder over concatenated multimodal

data. Such approaches usually require the training of auxiliary modality-specific

components to handle the partially-observed setting, with missing modalities, at

test time. They also cannot learn from partially-observed data. In very recent work,

Gong et al. (2021) propose VSAE where the latent representation is constructed as

the concatenation of modality-specific encoders. Inspired by VAEs that deal with

imputing pixels in images such as VAEAC (Ivanov et al., 2019), Partial VAE (Ma

et al., 2018), MIWAE (Mattei and Frellsen, 2019), HI-VAE (Nazábal et al., 2020)

and pattern-set mixture model (Ghalebikesabi et al., 2021), VSAE can learn in
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(b) Typical Multimodal VAE
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Figure 4.1: Constraints on the representations. (a) VAE: A prior regularises the
data encoding distribution through KL. (b) Typical multimodal VAE: Encodings for
different modalities are first explicitly combined, with the result regularised by a prior
through KL. (c) MEME (ours): Leverage semi-supervised VAEs to cast one modality
as a conditional prior, implicitly supervising/regularising the other through the VAE’s
KL. Mirroring the arrangement to account for KL asymmetry enables multimodal VAEs
through mutual supervision.

the partially-observed setting by incorporating a modality mask. This, however,

introduces additional components such as a collective proposal network and a mask

generative network, while ignoring the need for the joint distribution over data to

capture some notion of the relatedness between modalities.

Factorization: In order to handle missing data at test time without auxiliary

components, recent work propose to factorize the posterior over all modalities as

the product (Wu and Goodman, 2018b) or mixture (Shi et al., 2019a) of modality-

specific posteriors (experts). Following this, Sutter et al. (2021) proposes to combine

the two approaches (MoPoE-VAE) to improve learning in settings where the number
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of modalities exceeds two. In contrast to these methods, mmJSD (Sutter et al.,

2020) combines information not in the posterior, but in a “dynamic prior”, defined

as a function (either mixture or product) over the modality-specific posteriors as

well as pre-defined prior.

Table 4.1 provides a high-level summary of prior work. Note that all the prior

approaches have some explicit form of joint representation or distribution, where

some of them induces the need for auxiliary components to deal with missing data

at test time, while others are established without significant theoretical benefits. By

building upon a semi-supervised framework, our method MEME circumvents this

issue to learn representations through mutual supervision between modalities, and

is able to deal with missing data at train or test time naturally without additional

components.

Table 4.1: We examine four characteristics: The ability to handle partial observation at
test and train time, the form of the joint distribution or representation in the bi-modal case
(s, t are modalities), and additional components. (✓) indicates a theoretical capability
that is not verified empirically.

Partial Test Partial Train Joint repr./dist. Additional
JMVAE ✓ ✗ qΦ(z|s, t) qϕs(z|s), qϕt(z|t)
tELBO ✓ ✗ qΦ(z|s, t) qϕs(z|s), qϕt(z|t)
MFM ✓ ✗ qΦ(z|s, t) qϕs(z|s), qϕt(z|t)
VSVAE ✓ ✓ concat(zs, zt) mask generative network
MVAE ✓ (✓) qϕs(z|s)qϕt(z|t)p(z) sub-sampling
MMVAE ✓ ✗ qϕs(z|s) + qϕt(z|t) -
MoPoE ✓ (✓) qϕs(z|s) + qϕt(z|t) + qϕs(z|s)qϕt(z|t) -
mmJSD ✓ ✗ f(qϕs(z|s), qϕt(z|t), p(z)) -
Ours ✓ ✓ - -

4.3 Method
Consider a scenario where we are given data spanning two modalities, s and t,

curated as pairs (s, t). For example this could be an “image” and associated “caption”

of an observed scene. We will further assume that some proportion of observations

have one of the modalities missing, leaving us with partially-observed data. Using

Ds,t to denote the proportion containing fully observed pairs from both modalities,

and Ds, Dt for the proportion containing observations only from modality s and t

respectively, we can decompose the data as D = Ds ∪ Dt ∪ Ds,t.
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Figure 4.2: Simplified graphical model from Chapter 3.

In aid of clarity, we will introduce our method by confining attention to this bi-modal

case, providing a discussion on generalising beyond two modalities later. Following

established notation in the literature on VAEs, we will denote the generative model

using p, latent variable using z, and the encoder, or recognition model, using q.

Subscripts for the generative and recognition models, where indicated, denote the

parameters of deep neural networks associated with that model.

4.3.1 Semi-Supervised VAE

To develop our approach we draw inspiration from semi-supervised VAEs which

use additional information, typically data labels, to extend the generative model.

This facilitates learning tasks such as disentangling latent representations and

performing intervention through conditional generation. In particular, we will build

upon Chapter 3, where we supervise latent representations in VAEs with partial

label information by forcing the encoder, or recognition model, to channel the flow

of information as s → z → t. They demonstrate that the model learns latent

representations, z, of data, s, that can be faithfully identified with label information

t.

Figure 4.2 shows a modified version of the graphical model from Chapter 3, extracting

just the salient components, and avoiding additional constraints therein. The label,

here t, is denoted as partially observed as not all observations s have associated labels.

Note that, following the information flow argument, the generative model factorises
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as pθ,ψ(s, z, t) = pθ(s | z) pψ(z | t) p(t) (solid arrows) whereas the recognition model

factorises as qϕ,φ(t, z | s) = qφ(t | z) qϕ(z | s) (dashed arrows). This autoregressive

formulation of both the generative and recognition models is what enables the

“supervision” of the latent representation of s by the label, t, via the conditional

prior pψ(z | t) as well as the classifier qφ(t | z). It is worth noting that we have

chosen to remove the inductive bias of introducing z\c in Chapter 3 and instead

provide the model with full flexibility to learn the relationship between latent

factors.

The corresponding objective for supervised data, derived as the (negative) variational

free energy or Evidence Lower Bound (ELBO) of the model is

log pθ,ψ(s, t)≥L{Θ,Φ}(s, t)=Eqϕ(z|s)

qφ(t|z)
qϕ(z|s) log pθ(s|z)pψ(z|t)

qϕ(z|s)qφ(t|z)

+log qϕ,φ(t|s)+log p(t),

(4.1)

with the generative and recognition model parameterised by Θ = {θ, ψ} and

Φ = {ϕ, φ} respectively. A derivation of this objective can be found in Ap-

pendix B.1.

4.3.2 Mutual Supervision

Procedurally, a semi-supervised VAE is already multimodal. Beyond viewing labels

as a separate data modality, for more typical multimodal data (vision, language),

one would just need to replace labels with data from the appropriate modality, and

adjust the corresponding encoder and decoder to handle such data. Conceptually

however, this simple replacement can be problematic.

Supervised learning encapsulates a very specific imbalance in information between

observed data and the labels—that labels do not encode information beyond what

is available in the observation itself. This is a consequence of the fact that labels

are typically characterised as projections of the data into some lower-dimensional

conceptual subspace such as the set of object classes one may encounter in images,

for example. Such projections cannot introduce additional information into the

system, implying that the information in the data subsumes the information in the
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labels, i.e. that the conditional entropy of label t given data s is zero: H(t | s) = 0.

Supervision-based models typically incorporate this information imbalance as a

feature, as observed in the specific correspondences and structuring enforced between

their label y and latent z.

Multimodal data of the kind considered here, on the other hand, does not exhibit

this feature. Rather than being characterised as a projection from one modality

to another, they are better understood as idiosyncratic projections of an abstract

concept into distinct modalities—for example, as an image of a bird or a textual

description of it. In this setting, no one modality has all the information, as each

modality can encode unique perspectives opaque to the other. More formally, this

implies that both the conditional entropies H(t | s) and H(s | t) are finite.

Based on this insight we symmetrise the semi-supervised VAE formulation by

additionally constructing a mirrored version, where we swap s and t along with

their corresponding parameters, i.e. the generative model now uses the parameters

Φ and the recognition model now uses the parameters Θ. This has the effect of

also incorporating the information flow in the opposite direction to the standard

case as t→ z→ s, ensuring that the modalities are now mutually supervised. This

approach forces each encoder to act as an encoding distribution when information

flows one way, but also act as a prior distribution when the information flows the

other way. Extending the semi-supervised VAE objective (4.1), we construct a

bi-directional objective for MEME

LBi(s, t) = 1
2
[
L{Θ,Φ}(s, t) + L{Φ,Θ}(t, s)

]
, (4.2)

where both information flows are weighted equally. On a practical note, we find that

it is important to ensure that parameters are shared appropriately when mirroring

the terms, and that the variance in the gradient estimator is controlled effectively.

Please see Appendix B.4 and Appendix B.5 for further details.



4. Multi-Modal learning through Mutual Supervision 58

4.3.3 Learning from Partial Observations

In practice, prohibitive costs on multimodal data collection and curation imply that

observations can frequently be partial, i.e., have missing modalities. One of the

main benefits of the method introduced here is its natural extension to the case

of partial observations on account of its semi-supervised underpinnings. Consider,

without loss of generality, the case where we observe modality s, but not its pair t.

Recalling the autoregressive generative model p(s, z, t) = p(s | z)p(z | t)p(t) we can

derive a lower bound on the log-evidence

log pθ,ψ(s) = log
∫
pθ(s | z)pψ(z | t)p(t) dz dt ≥ Eqϕ(z|s)

[
log pθ(s | z)

∫
pψ(z | t)p(t) dt
qϕ(z | s)

]
.

(4.3)

Estimating the integral p(z) =
∫
p(z | t)p(t) dt highlights another conceptual

difference between a (semi-)supervised setting and a multimodal one. When t is

seen as a label, this typically implies that one could possibly compute the integral

exactly by explicit marginalisation over its support, or at the very least, construct

a reasonable estimate through simple Monte-Carlo integration. In Chapter 3,

we extend the latter approach through importance sampling with the “inner”

encoder q(t | z), to construct a looser lower bound to (4.3).

In the multimodal setting however, this poses serious difficulties as the domain of

the variable t is not simple categorical labels, but rather complex continuous-valued

data. This rules out exact marginalisation, and renders further importance-sampling

practically infeasible on account of the quality of samples one can expect from the

encoder q(t | z) which itself is being learnt from data. To overcome this issue and

to ensure a flexible alternative, we adopt an approach inspired by the VampPrior

(Tomczak and Welling, 2018b). Noting that our formulation includes a conditional

prior pψ(z | t), we introduce learnable pseudo-samples λt = {ut
i}Ni=1 to estimate

the prior as pλt(z) = 1
N

∑N
i=1 pψ(z | ut

i ). Our objective for when t is unobserved is

thus

L(s) = Eqϕ(z|s)

[
log pθ(s | z)pλt(z)

qϕ(z | s)

]
= Eqϕ(z|s)

[
log pθ(s | z)

qϕ(z | s) + log 1
N

N∑
i=1

pψ(z | ut
i )
]
,

(4.4)
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where the equivalent objective for when s is missing can be derived in a similar way.

For a dataset D containing partial observations the overall objective (to maximise)

becomes

∑
s,t∈D

log pθ,ψ(s, t) ≥
∑

s∈Ds

L(s) +
∑

t∈Dt

L(t) +
∑

s,t∈Ds,t

LBi(s, t), (4.5)

This treatment of unobserved data distinguishes our approach from alternatives

such as that of Shi et al. (2019a), where model updates for missing modalities

are infeasible. Whilst there is the possibility to perform multimodal learning in

the weakly supervised case as introduced by Wu and Goodman (2018b), their

approach directly affects the posterior distribution, whereas ours only affects the

regularization of the embedding during training. At test time, Wu and Goodman

(2018b) will produce different embeddings depending on whether all modalities are

present, which is typically at odds with the concept of placing the embeddings of

related modalities in the same region of the latent space. Our approach does not

suffer from this issue as the posterior remains unchanged regardless of whether the

other modality is present or not.

Learning with MEME Given the overall objective in (4.5), we train MEME

through maximum-likelihood estimation of the objective over a dataset D. Each

observation from the dataset is optimised using the relevant term in the right-hand

side of (4.5), through the use of standard stocastic gradient descent methods. Note

that training the objective involves learning all the (neural network) parameters

(θ, ψ, ϕ, φ) in the fully-observed, bi-directional case. When training with a partial

observation, say just s, all parameters except the relevant likelihood parameter φ

(for qφ(t | z)) are learnt. Note that the encoding for data in the domain of t is still

computed through the learnable pseudo-samples λt. This is reversed when training

on an observation with just t.

Generalisation beyond two modalities We confine our attention here to the

bi-modal case for two important reasons. Firstly, the number of modalities one

typically encounters in the multimodal setting is fairly small to begin with. This
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is often a consequence of its motivation from embodied perception, where one is

restricted by the relatively small number of senses available (e.g. sight, sound,

proprioception). Furthermore, the vast majority of prior work on multimodal

VAEs only really consider the bimodal setting (cf. Section 4.2). Secondly, it is

quite straightforward to extend MEME to settings beyond the bimodal case, by

simply incorporating existing explicit combinations (e.g. mixtures or products) on

top of the implicit combination discussed here, we provide further explanation in

Appendix B.6. Our focus in this work lies in exploring and analysing the utility of

implicit combination in the multimodal setting, and our formulation and experiments

reflect this focus.

4.4 Experiments
4.4.1 Learning from Partially Observed Data

In this section, we evaluate the performance of MEME following standard multimodal

VAE metrics as proposed in Shi et al. (2019a). Since our model benefits from its

implicit latent regularisation and is able to learn from partially-observed data, here

we evaluate MEME’s performance when different proportions of data are missing in

either or both modalities during training. The two metrics used are cross coherence

to evaluate the semantic consistency in the reconstructions, as well as latent accuracy

in a classification task to quantitatively evaluate the representation learnt in the

latent space. We demonstrate our results on two datasets, namely an image ↔

image dataset MNIST-SVHN (LeCun et al., 2010; Netzer et al., 2011), which is

commonly used to evaluate multimodal VAEs (Shi et al., 2019a; Shi et al., 2021;

Sutter et al., 2020, 2021); as well as the more challenging, but less common, image

↔ caption dataset CUB (Welinder et al., 2010).

Following standard approaches, we represented image likelihoods using Laplace

distributions, and a categorical distribution for caption data. The latent variables

are parameterised by Gaussian distributions. In line with previous research (Shi

et al., 2019a; Massiceti et al., 2018), simple convolutional architectures were used

for both MNIST-SVHN and for CUB images and captions. For the cpations data,
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we first fit a FastText model on all sentences, resulting in a 300-d projection

for each word (Bojanowski et al., 2017), these projections are then stacked to

form an ‘image’, permitting convolutions to be performed. For details on training

and exact architectures see Appendix B.12; we also provide tabularised results

in Appendix B.9.

Cross Coherence Here, we focus mainly on the model’s ability to reconstruct one

modality, say, t, given another modality, s, as input, while preserving the conceptual

commonality between the two. In keeping with Shi et al. (2019a), we report the cross

coherence score on MNIST-SVHN as the percentage of matching digit predictions

of the input and output modality obtained from a pre-trained classifier. On CUB

we perform Canonical Correlation Analysis (CCA) on input-output pairs of cross

generation to measure the correlation between these samples. For more details on

the computation of CCA values we refer to Appendix B.8.

In Figure 4.5 we plot cross coherence for MNIST-SVHN and display correlation

results for CUB in Figure 4.6, across different partial-observation schemes. The

x-axis represents the proportion of data that is paired, while the subscript to

the method (see legends) indicates the modality that is presented. For instance,

MEME_MNIST with f = 0.25 indicates that only 25% of samples are paired, and

the other 75% only contain MNIST digits, and MEME_SPLIT with f = 0.25

indicates that the 75% contains a mix of MNIST and SVHN samples that are

unpaired and never observed together, i.e we alternate depending on the iteration, the

remaining 25% contain paired samples. We provide qualitative results in Figure 4.3

and Figure 4.4.

We can see that our model is able to obtain higher coherence scores than the baselines

including MVAE (Wu and Goodman, 2018b) and MMVAE (Shi et al., 2019a) in the

fully observed case, f = 1.0, as well as in the case of partial observations, f < 1.0.

This holds true for both MNIST-SVHN and CUB1. It is worth pointing out that

the coherence between SVHN and MNIST is similar for both partially observing
1We note that some of the reported results of MMVAE in our experiments do not match those

seen in the original paper, please visit Appendix B.10 for more information.
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Input

Output

Figure 4.3: MEME cross-modal generations for MNIST-SVHN.

being this bird has a bird
brown and and and very
short beak.

this is a bird with a red
breast and a red head.

distinct this bird has
wings that are black and
has an orange belly.

this bird has a black top
and yellow bottom with
black lines , the head and
beak are small.

most this bird has wings
that are green and has an
red belly

this is a large black bird
with a long neck and bright
orange cheek patches.

Figure 4.4: MEME cross-modal generations for CUB.

MNIST or SVHN, i.e. generating MNIST digits from SVHN is more robust to

which modalities are observed during training (Figure 4.5 Right). However, when

generating SVHN from MNIST, this is not the case, as when partially observing

MNIST during training the model struggles to generate appropriate SVHN digits.

This behaviour is somewhat expected since the information needed to generate an

MNIST digit is typically subsumed within an SVHN digit (e.g. there is little style

information associated with MNIST), making generation from SVHN to MNIST

easier, and from MNIST to SVHN more difficult. Moreover, we also hypothesise

that observing MNIST during training provides greater clustering in the latent

space, which seems to aid cross generating SVHN digits. We provide additional

t-SNE plots in Appendix B.9.3 to justify this claim.

For CUB we can see in Figure 4.6 that MEME consistently obtains higher correlations

than MVAE across all supervision rates, and higher than MMVAE in the fully

supervised case. Generally, cross-generating images yields higher correlation values,

possibly due to the difficulty in generating semantically meaningful text with

relatively simplistic convolutional architectures. We would like to highlight that

partially observing captions typically leads to poorer performance when cross-

generating captions. We hypothesise that is due to the difficulty in generating the
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Figure 4.5: Coherence between MNIST and SVHN (Top) and SVHN and MNIST
(Bottom). Shaded area indicates one-standard deviation of runs with different seeds.

captions and the fact there is a limited amount of captions data in this setting.

Latent Accuracy To gauge the quality of the learnt representations we follow

previous work (Higgins et al., 2017; Kim and Mnih, 2018; Shi et al., 2019a; Sutter

et al., 2021) and fit a linear classifier that predicts the input digit from the latent

samples. The accuracy of predicting the input digit using this classifier indicates

how well the latents can be separated in a linear manner.
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Figure 4.6: Correlation between Image and Sentence (Top) and Sentence and Image
(Bottom). Shaded area indicates one-standard deviation of runs with different seeds.

In Figure 4.7, we plot the latent accuracy on MNIST and SVHN against the fraction

of observation. We can see that MEME outperforms MVAE on both MNIST and

SVHN under the fully-observed scheme (i.e. when observation fractions is 1.0).

We can also notice that the latent accuracy of MVAE is rather lopsided, with the

performance on MNIST to be as high as 0.88 when only 1/16 of the data is observed,

while SVHN predictions remain almost random even when all data are used; this

indicates that MVAE relies heavily on MNIST to extract digit information. On
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Figure 4.7: Latent accuracies for MNIST and SVHN (Top) and SVHN and MNIST
(Bottom). Shaded area indicates one-standard deviation of runs with different seeds.

the other hand, MEME’s latent accuracy observes a steady increase as observation

fractions grow in both modalities. It is worth noting that both models performs

better on MNIST than SVHN in general—this is unsurprising as it is easier to

disentangle digit information from MNIST, however our experiments here show

that MEME does not completely disregard the digits in SVHN like MVAE does,

resulting in more balanced learned representations. It is also interesting to see

that MVAE obtains a higher latent accuracy than MEME for low supervision rates.
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This is due to MVAE learning to construct representations for each modality in

a completely separate sub-space in the latent space, we provide a t-SNE plot to

demonstrate this in Appendix B.9.1.

Ablation Studies To study the effect of modelling and data choices on perfor-

mance, we perform two ablation studies: one varying the number of pseudo-samples

for the prior, and the other evaluating how well the model leverages partially

observed data over fully observed data. We find that performance degrades, as

expected, with fewer pseudo-samples, and that the model trained with additional

partially observed data does indeed improve. See Appendix B.11 for details.

4.4.2 Evaluating Relatedness

Now that we have established that the representation learned by MEME contains

rich class information from the inputs, we also wish to analyse the relationship

between the encodings of different modalities by studying their “relatedness”, i.e.

semantic similarity. The probabilistic nature of the learned representations suggests

the use of probability distance functions as a measure of relatedness, where a low

distance implies closely related representations and vice versa.

In the following experiments we use the 2-Wasserstein distance, W2, a probability

metric with a closed-form expression for Gaussian distributions (see Appendix B.7

for more details). Specifically, we compute dij =W2( q(z|si) ∥ q(z|tj) ), where q(z|si)

and q(z|tj) are the individual encoders, for all combination of pairs {si, tj} in the

mini-batch, i.e {si, tj}, for i, j ∈ {1 . . . ,M} where M is the number of elements in

the mini-batch.

General Relatedness In this experiment we wish to highlight the disparity in

measured relatedness between paired vs. unpaired multimodal data. To do so, we

plot dij on a histogram and color-code the histogram by whether the corresponding

data pair {si, tj} shows the same concept, e.g. same digit for MNIST-SVHN and

same image-caption pair for CUB. Ideally, we should observe smaller distances

between encoding distributions for data pairs that are related, and larger for ones

that are not.
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To investigate this, we plot dij on a histogram for every mini-batch; ideally we should

see higher densities at closer distances for points that are paired, and higher densities

at further distances for unpaired points. In Figure 4.8, we see that MEME (left) does

in fact yields higher mass at lower distance values for paired multimodal samples

(orange) than it does for unpaired ones (blue). This effect is not so pronounced in

Figure 4.8: Histograms of Wassertein distance for SVHN and MNIST (Left) and CUB
(Right): MEME (Top), MMVAE (middle) and MVAE (Bottom). Blue indicates unpaired
samples and orange paired samples. We expect to see high densities of blue at further
distances and visa-versa for orange.
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MMVAE and not present at all in MVAE. This demonstrates MEME’s capability

of capturing relatedness between multimodal samples in its latent space, and the

quality of its representation.

Class-contextual Relatedness To offer more insights on the relatedness of

representations within classes, we construct a distance matrix K ∈ R10×10 for the

MNIST-SVHN dataset, where each element Ki,j corresponds to the average W2

distance between encoding distributions of class i of MNIST and j of SVHN. A

perfect distance matrix will consist of a diagonal of all zeros and positive values in

the off-diagonal.

See the class distance matrix in Figure 4.9 (right), generated with models trained

on fully observed multimodal data. It is clear that our model (top) produces much

lower distances on the diagonal, i.e. when input classes for the two modalities are

the same, and higher distances off diagonal where input classes are different. A

clear, lower-valued diagonal can also be observed for MMVAE (middle), however it

is less distinct compared to MEME, since some of the mismatched pairs also obtains

smaller values. The distance matrix for MVAE (bottom), on the other hand, does

not display a diagonal at all, reflecting poor ability to identify relatedness or extract

class information through the latent.

To closely examine which digits are considered similar by the model, we construct

dendrograms to visualise the hierarchical clustering of digits by relatedness, as seen

in Figure 4.9 (right). To do this, we first obtain the latent representation for each

class and subsequently create a linking matrix between the classes based on the

distances between the clusters. Using this linkage function, the dendrogram can be

produced which represents how close certain clusters are form one another. We see

that our model (left) is able to obtain a clustering of conceptually similar digits. In

particular, digits with smoother writing profile such as 3, 5, 8, along with 6 and 9

are clustered together (right hand side of dendrogram), and the digits with sharp

angles, such as 4 and 7 are clustered together. The same trend is not observed for

MMVAE nor MVAE. It is also important to note the height of each bin, where



4. Multi-Modal learning through Mutual Supervision 69

higher values indicate greater distance between clusters. Generally the clusters

obtained in MEME are further separated for MMVAE, demonstrating more distinct

clustering across classes.

Figure 4.9: Distance matrices for Wasserstein divergence between classes for SVHN and
MNIST (Top) and dendrogram (Bottom) for: Ours (Left), MMVAE (middle) and MVAE
(Right).

4.5 Discussion
Here we have presented a method which faithfully deals with partially observed

modalities in VAEs. Through leveraging recent advances in semi-supervised VAEs,
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we construct a model which is amenable to multi-modal learning when modalities

are partially observed. Specifically, our method employs mutual supervision by

treating the uni-modal encoders individually and minimizing a KL between them

to ensure embeddings for are pertinent to one another. This approach enables us

to successfully learn a model when either of the modalites are partially observed.

Furthermore, our model is able to naturally extract an indication of relatedness

between modalities. We demonstrate our approach on the MNIST-SVHN and

CUB datasets, where training is performed on a variety of different observations

rates.

Ethics Statement We believe there are no inherent ethical concerns within this

work, as all datasets and motivations do not include or concern humans. As with

every technological advancement there is always the potential for miss-use, for this

work though, we can not see a situation where this method may act adversarial

to society. In fact, we believe that multi-modal representation learning in general

holds many benefits, for instance in language translation which removes the need

to translate to a base language (normally English) first.
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Abstract

It is now well known that neural networks can be wrong with high confidence in their
predictions, leading to poor calibration. The most common post-hoc approach to
compensate for this is to perform temperature scaling, which adjusts the confidences
of the predictions on any input by scaling the logits by a fixed value. Whilst this
approach typically improves the average calibration across the whole test dataset,
this improvement typically reduces the individual confidences of the predictions
irrespective of whether the classification of a given input is correct or incorrect.
With this insight, we base our method on the observation that different samples
contribute to the calibration error by varying amounts, with some needing to
increase their confidence and others needing to decrease it. Therefore, for each
input, we propose to predict a different temperature value, allowing us to adjust
the mismatch between confidence and accuracy at a finer granularity. Our method
is applied post-hoc, consequently using very little computation time and with a
negligible memory footprint and is applied to off-the-shelf pre-trained classifiers.
We test our method on the ResNet50 and WideResNet28-10 architectures using the
CIFAR10/100 and Tiny-ImageNet datasets, showing that producing per-data-point
temperatures is beneficial also for the expected calibration error across the whole
test set.



5.1 Introduction
For neural networks to be employed in real-world safety-critical applications, we

do not only require them to produce correct predictions, but also provide reliable

confidence estimates in their predictions (i.e. they are calibrated). Limiting our scope

to neural classifiers, using the maximum probability of the predictive distribution

as a confidence measure, literature has established that a mismatch exists between

such notion of confidence and the expected accuracy. Indeed, such models generally

suffer from being on average overconfident over the test-set.

A simple approach to rectify this issue is to perform temperature scaling (Guo et al.,

2017), a post-hoc method which scales the logits by a single scalar value, obtained

through cross validation. This approach improves the classifier’s performance on

standard calibration metrics across a test dataset. However, from a per-sample point

of view there are significant issues. Since the temperature is found by minimising

the calibration error (in expectation) over the entire validation set, and since

neural networks are overconfident on average, practically speaking, the effect of

temperature scaling is to reduce the confidence for every prediction. However, as

we will discuss, different samples contribute by varying amounts to the calibration

error.

This issue can be seen in Figure 5.1, which shows the histogram of the individual

contributions to the calibration errors; i.e. the distribution of |p(y|pi)− pi|, where

p(y|pi) is the accuracy and pi is the softmax probability for the data point i,

the calibration error can be obtained by taking the weighted average over all the

values.1 Here the mismatch between per data-point confidence and accuracy is not

constant across all the data-points, and hence miscalibration cannot be fixed by

scaling the logits by a single fixed value, a key assumption in vanilla temperature

scaling. The calibration error varies significantly, with a small (but not insignificant)

number of samples on which the network is overconfident. Consequently, scaling the
1Here p(y|pi) is obtained through histogram binning and represents the accuracy of each bin,

and the weights are proportional to the number of samples in each bin.
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predictions with a single temperature value will adjust all of the errors in the same

way. Typically, the temperature values obtained are greater than 1, resulting in a

reduction of confidence of all predictions, regardless of whether they are correct

with low confidence or incorrect with high confidence.

To combat this, we propose a method which produces per-data-point predictions

of the temperature, permitting an adequate decrease in the confidence on samples

which the classifier is likely to get wrong, and an increase in the confidence on

predictions it is likely to get correct. As a result, we obtain better test Expected

Calibration Error (ECE) guo2017calibration both on in-distribution sets (i.e. the

test set is i.i.d. with respect to the training set) and under covariate-shifted sets

(i.e. the test set shares the same set of labels of the training set, but the inputs are

not i.i.d. with respect to the training set).

Like temperature scaling, our method is applied post-hoc and is very fast to train

and test. We extensively test the calibration of ResNet50 (He et al., 2016) and

WideResNet28 (Zagoruyko and Komodakis, 2016) when using our method on CI-

FAR10/CIFAR100 and TinyImageNet, including results under data-shift (Hendrycks

and Dietterich, 2019). Specifically our contributions is to identify a limitation in

using a constant temperature for temperature scaling and propose a novel method

to predict temperature values on a per-data-point basis to address this limitation.

Our method produces a temperature value that is sample dependent, allowing the

method to reduce the confidence of incorrect predictions, but also increase the

confidence of correct ones.

5.2 Problem formulation
5.2.1 Network Overconfidence and Temperature Scaling

Given an input x, a standard K-class neural classifier first extracts a feature

embedding Φ(x) before computing the logits s = f(Φ(x)) ∈ RK and finally applying

the softmax operator p = σ(s) = exp (s)∑
i

exp (si)
to obtain the class probabilities for the

categorical distribution, the prediction is then given as ŷ = arg max p. A classifier

is said to be calibrated if the confidence in its prediction (usually taken to be
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Figure 5.1: Histogram of per sample contribution to calibration error, positive numbers
indicate overconfidence. Here we can see that the samples contribute by different amounts
to the overall calibration error. Predictions are for CIFAR-10 using a ResNet-50.

max p) matches its accuracy on expectation, i.e. if a classifier makes predictions

with a confidence of 80% for a certain set of points, then it also has an accuracy of

80% on such set of points. Typically, the predictions of neural networks produce

overconfident, i.e. the probability of the predicted class is higher than their expected

accuracy (Guo et al., 2017).

Temperature scaling (Guo et al., 2017) consists of re-scaling the logits by a constant

factor T ∈ R+ before applying the softmax, i.e. p′ = σ( s
T

). The value of T can

drastically affect the entropy of the predicted distribution, which is demonstrated

in Figure 5.2, where a value of T > 1 leads to a higher entropy distribution (the

higher T , the higher the entropy); a value of T < 1 leads to a lower entropy

distribution (the lower T , the more “peaky” the distribution).

The temperature T is usually found by minimising the ECE or the Negative Log-

Likelihood (NLL) using a validation set. Typical optimal values for T are usually

greater than 1 (Mukhoti et al., 2020), indicating that, on average, optimising the

ECE or NLL across the validation set leads to a higher entropy of the predictions.

However, this approach decreases the confidences of all the predictions without

considering that the miscalibration error can vary widely on a data-point basis.

For correct predictions, temperature scaling will make the predictions more under-

confident, whilst for incorrect predictions, the temperature may not be the right

value to bring the confidences down to a level which will make it calibrated.
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Figure 5.2: Example plots of Softmax distribution with different temperature values for
fixed logits. Left to right: T = 0.1, T = 1.0 and T = 10.0.

This suggests that further improvements in calibration can be achieved by using

a variable temperature T , predicted on a per data-point basis (i.e. T = g(x)),

permitting T > 1 for over-confident or incorrect predictions, and T < 1 for under-

confident or correct predictions. Moreover, this approach can be applied without

affecting a classifiers accuracy2.

5.2.2 Why Jointly Learning Temperature Alongside the
Network Weights Might Go Wrong?

Here we outline why learning to predict the temperature values T and predictive

probabilities p cannot be performed at the same time. Consider the last layer of a

NN with parameters w ∈ RD×K for a feature space of size D and the cross entropy

loss L : RK → R. The gradient for the layer is given as

∂L
∂w̄

= ∂s
∂w̄

(σ(s)− q), (5.1)

where q ∈ RK is the one-hot logit of the label and σ(s) − q = {σ(sj) − qj : j ∈

{1 . . . K}3, w̄ indicates the network weights are flattened to column vector form.

Inspecting the gradients indicates that the gradient starts to vanish when sk →∞

and s\k → −∞, where k is the correct class. Or to put it simply, the optimisation

does not converge until the network produces one-hot logits.

This forces the magnification of the network weights (Mukhoti et al., 2020), which

subsequently leads to an overconfident network and hence miss-calibrated predictions.

A mechanism to achieve the desired one-hot prediction without magnifying the

weights could be instead to naïvely learn the temperature alongside the logits,
2For a proof please see Appendix C.2
3See Appendix C.1 for a derivation
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assuming the model is trainable and converges. In this case, gradient updates

would decrease the value of T , resulting in a lower-entropy distribution that is more

“peaky”. This has been attempted before in Neumann et al. (2018) but with limited

success. We now outline why this approach does not work well in practice.

If we consider the gradient of the temperature, which is given as

∂L
∂T

=
∑
k

qk
T 2

(
sk
∑
i\k

exp
(
si
T

)
−
∑
j\k

sj exp
(
sj
T

))
, (5.2)

which decreases the value of T for a correct prediction (k̃ = arg maxk sk), leading

to more confident predictions, see Appendix C.3 for a proof. Typically, the train

accuracy will approach 100%, meaning that gradient updates to T cause it to

decrease without any moderation, preventing the network from learning how to

predict T appropriately. In short, there is essentially only data for correct predictions,

preventing crucial information on how the network should behave when it’s wrong.

Consequently, learning T naïvely is not a feasible option as the network just

learns to be confident everywhere. Empirically we found this to be the case when

experimenting with the technique described in Neumann et al. (2018).

5.2.3 Learning to Calibrate

We propose to use a separate training regime, with an objective to learn how

to calibrate the confidences for each prediction. Doing so requires learning a

temperature prediction module on a data-set consisting of data-points Xcal =

{xn}N ,Xtrain ∩ Xcal = ∅, neural network predictions Pcal = {pn}N and labels

Ycal = {yn}N . It is important to note that the objective here is to learn to assign

low confidences to data points which are likely to be incorrect and high confidences

to those which are likely to be correct.

Specifically for a given data-point x ∈ Xcal, we propose to optimise the temperature

prediction module over T by maximising the log probability of the label y under

the Categorical probability distribution parametrised by the T -scaled logits s, i.e.
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T ∗ = arg maxT log Cat(y; softmax(s/T ))4. Here we do not optmise s is fixed, we

are only optimising w.r.t to T .

In situations where y = arg maxk pk (i.e. correct prediction), the target function

is maximised when T → 0, as we want the predicted probabilities to match the

one-hot logits, e.g. see T = 0.1 in Figure 5.2. This is equivalent to minimising the

entropy of the predictive distribution by only manipulating T , which is the desired

outcome for a correct prediction.

In situations where the prediction is incorrect, y ̸= arg maxk pk, to maximise the

target function we need to maximise py and minimise pk̃, where k̃ = arg maxk pk.

As the temperature prediction module cannot change the predicted label, the

optimzation accepts the incorrect prediction and maximise the target function by

flattening the Softmax outputs with T ≫ 1, which is equivalent to maximising the

entropy of the predictive distribution. This effect can be seen by considering the

case where predicting class 2 in Figure 5.2 is the incorrect prediction; among the

three cases shown, T = 10 maximises the Cat(y ̸= 2; softmax(s/T )).

5.3 Representing Uncertainty with the Variational
Autoencoder (VAE)

VAEs (Kingma and Welling, 2013) act as an efficient model to obtain representations

of data; the representations encapsulate the generative factors in a lower-dimensional

subspace and are rich enough to reconstruct the data sample. In the specification

of the generative model, the user has to specify a prior over the latent variables

(typically an isotropic Gaussian) where the KL distance between the prior and

approximate posterior is minimised during training. Unlike a standard autoen-

coder (Hinton and Zemel, 1994), there is now a mechanism to obtain a likelihood

on the latent codes. In reality this value forms part of the importance weight and

can be used as a proxy to the true likelihood but avoids issues associated with deep

generative models (Nalisnick et al., 2019).
4Which is equivalent to the cross entropy loss.
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From a mechanistic point of view, we expect samples which are much more common

to be placed in the centre of the prior. Here we leverage this idea and use the latent

likelihoods as a basis to predict the temperature value. Indeed, we find empirically

that this approach works well in practice. Rather than using an isotropic Guassian

as the prior, we instead introduce a Gaussian mixture prior, with component for

each class specified by the learnable parameters λk = {µk, σk} ∈ RDz . This allows

for an individual unimodal prior for each class; preventing any issue with clusters

for individual classes being placed in lower likelihood regions of the latent space, as

would be the case if an isotropic prior is used. With this mixture prior, the evidence

lower bound is given as

ELBO[Φ(x)] = Eqφ(z|Φ(x)) log pϑ(Φ(x)|z)pλ(z|y)
qφ(z|Φ(x)) , (5.3)

where qφ(z|Φ(x)), pϑ(Φ(x)|z) and pλ(z|y) represent the encoder, decoder and mix-

ture prior component, the parameters of the VAE are given as Θ = {ϑ, φ, λ1, . . . , λK}.

The parameters of the mixture prior are learnt alongside the parameters of the

encoder and decoder (Tomczak and Welling, 2018a). The use of this mixture prior

forces the aggregate posterior for each class to match a Gaussian distribution, i.e.∑
x∈Xk q(z|Φ(x)) ≈ N (z;µk, σk). This encourages the representations for each class

to cluster around a known distribution pλ(z|y), which we will use to obtain a pseudo

likelihood to predict the temperature value. The choice of the VAE was in part

down to the motivation that samples which contribute significantly to the ECE will

have lower latent-likelihood but also because empirically we found it worked well in

practice. Before outlining the details of the approach in the next two subsections,

we first provide evidence of this empirical motivation to use a VAE.

We now perform a preliminary experiment, which serves to investigate which samples

in the latent representation contribute the most to the calibration error. Specifically,

we construct a t-SNE plot for each class of CIFAR-10 but colour code the points

depending on their per-data-point contributions to the calibration error. This

provides a visual method for us to inspect where samples which harm calibration

are placed, which can be seen in Fig. 5.3. Here we can see that data-points which
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Figure 5.3: t-SNE plot for classes cat and dog, colour indicates per data-point
contribution to ECE, 0.5 indicates no contribution. Generally, samples with little
contribution to calibration error (pink) are placed around the centre of the cluster,
unlike samples with a high contribution (yellow and orange) which are placed near the
edges. Furthermore, incorrect samples (black cross) are placed significantly far away from
the cluster centre.

do not contribute to the calibration error tend to be placed near the centre of the

cluster, and ones which do, or are incorrect, indicated by a black cross, are placed far

from the centre. This highlights that the VAE is able, to some extent, to provide

a basis to predict the temperature, we then utilise this representation to predict T

through a simple Multi Layer Perceptron, rather than predicting T directly from

the latent space, which we found not to work in practice. Other approaches such as

performing Linear Discriminant Analysis on the feature space could be considered,

but we chose not to perform these experiments due to the complexity of the feature

space.

5.3.1 Temperature Prediction Network

Given that the VAE is able to encapsulate the information needed for confidence

prediction, we learn a very simple MLP parameterised by θ, which predicts the

temperature based on the latent embeddings, using the cross entropy loss as an

objective. Rather than using the latent samples as input to the MLP, given the

observations in Figure 5.3, we choose to predict the temperature as a function of the

vector of log-likelihoods on all of the conditional priors, specifically T = gθ(q̃) where

g : RK → R is the MLP which predicts the temperature and q̃ = {log pλ(z|y)|∀y},

i.e each element q̃i contains the log-likelihood of z on the corresponding conditional
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prior pλ(z|y = i). Evaluating log pλ(z|y) can be viewed as a pseudo likelihood of

x, consequently the module predicts the temperature as a non-linear transform of

a pseudo-likelihood of the sample. It is also important to point out that due to

the use of feature space as the input, we able to use small architectures, making

this approach very fast during training and at test time. We represent a high level

overview and the graphical model in Figure 5.4.

Figure 5.4: High level architecture. The off shelf neural-network is represented by the
red box, where the parameters are left unchanged, the learnable VAE encoder is indicated
by q(z|Φ(x)), with the gθ(q̃) as the MLP predicting T .

5.3.2 Calibrated Training Details

The overall post-hoc learning algorithm is very simple and the module can be

trained in under a minute on an 8Gb Titan Xp for most datasets, depending on

the validation set and feature space size, we give an overview of the procedure in

algorithm 1. We combine learning the VAE and the temperature prediction network

into one objective. Specifically, we maximise the following objective

L(x,y) = ELBO[Φ(x)] + log Cat(y | softmax(s/gθ(q̃)) (5.4)

with q̃ = {log pλ(z|y)|∀y} z ∼ qϕ(z | x) and using Normal distributions for z;

Laplace distribution over Φ(x) (L1 loss); and a Categorical over y. To train the

VAE, we use a held-out dataset from training the network, i.e. Xtrain ∩ Xcal = ∅.

We used the Adam optimiser with a learning rate of 0.001 and trained for 50 epochs.

This is an additional benefit of training the VAE on the Φ(x), as the feature space

has a lower dimensionallity and simpler structure than the image space, leading to

much faster training and the ability to use simpler networks.
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Algorithm 1 Learning Adaptive Temperature
Require: Xcal,Ycal,Pcal

while not converged do
x,y← Random batch
∇V AE ← ∇ELBO[Φ(x)] ▷ Standard VAE gradient
q̃ = {log pλ(z|y)|∀y} z ∼ q(z|Φ(x)) ▷ Vector of pseudo likelihoods
∇T ← ∇ log Cat(y; softmax(s/gθ(q̃)) ▷ CE loss for temperature
{Θ, θ}t+1 ← {Θ, θ}t − α(∇V AE +∇T ) ▷ Update parameters {Θ, θ}

end while

Calibration at Test Time During test time, the features of the data point Φ(x)

and predicted logits are computed from the classifier s = f(Φ(x)), the temperature

can then predicted through T = gθ(q̃). The calibrated predictions are then computed

as p = σ(s/T ).

5.4 Related Work
Uncertainty Estimation In deep learning, the most typical way to address

uncertainty estimation is to make the networks output a distribution, and to extract

an uncertainty measure as a function of the predictive distribution. Bayesian

approaches define a prior distribution over the weights of the network and apply

inference techniques to update such distributions given the training set. Given the

intractability of exact inference for neural networks, several approximate variational

inference schemes have been proposed (Gal and Ghahramani, 2016; Blundell et al.,

2015; Kingma et al., 2015; Welling and Teh, 2011; Kim et al., 2020; Chen et al.,

2014). Recent literature tries to combine the benefits of Bayesian deep learning

with the training of deterministic neural networks trained via standard optimisation

algorithms. Some methodologies suggest using a Laplace approximation of a trained

network to approximate a Gaussian using a Laplace approximation around the

optimal parameters (Ritter et al., 2018; Kristiadi et al., 2020). Others suggest

replacing the head of the network with a Gaussian Process (Liu et al., 2020) or a

head parametrising a Dirichlet distribution (Malinin and Gales, 2018; Joo et al.,

2020), or just performing Bayesian inference on the final layer (Riquelme et al.,

2018). Another family of models leverages ensembles (Lakshminarayanan et al.,

2016) to output distributions. Given the extreme computational and memory
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requirements of ensembles, several techniques have been suggested to obtain the

ensembling benefits more efficiently (Havasi et al., 2020; Wen et al., 2020)

Calibration Deep Neural Networks suffer from overconfident classification scores,

Which can be alleviated through temperature scaling in post-processing (Guo

et al., 2017)—a modern variant of Platt scaling (Platt et al., 1999). As previ-

ously mentioned, this typically comes at the cost of decreasing the confidence

in correct predictions (Kumar et al., 2018). Other approaches include histogram

binning (Zadrozny and Elkan, 2001); isotonic regression (Zadrozny and Elkan, 2002);

and Bayesian binning (Naeini et al., 2015; Naeini and Cooper, 2016). Overconfidence

is caused by over-fitting to the cross-entropy loss, which can be alleviated by instead

using a focal loss (Lin et al., 2017; Mukhoti et al., 2020). In a similar fashion, Kumar

et al. (2018) utilised a differentiable proxy during training to improve calibration.

Label smoothing was also shown to improve calibration (Müller et al., 2019). It has

also been shown that recomputing the coefficients of batch normalization improves

calibration (Nado et al., 2020). Tangentially, Ovadia et al. (2019) performed a large

scale comparison of methods under dataset-shift.

5.5 Results
Before evaluating the model, we define the hypothesis we are trying to test.

Specifically, we want to evaluate if predicting the temperature on a per-data-

point basis leads to improved calibration over vanilla temperature scaling. Secondly,

we wish to investigate how adaptive temperature performs under dataset shift.

We performed our experiments on WideResNet28-10 (Zagoruyko and Komodakis,

2016) and ResNet50 (He et al., 2016) architectures. We report calibration results

on CIFAR10/CIFAR100 (Krizhevsky et al., 2009) and Tiny-ImageNet (Torralba

et al., 2008). We conducted distribution-shit experiments using variants CIFAR10-

C/CIFAR100-C to test for domain shift (Hendrycks and Dietterich, 2019). We used

the following as models for our evaluation:

• Cross Entropy Loss, due to it’s popularity and wide adoption.
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• Brier Score (Brier et al., 1950), due to it’s ability to obtain well calibrated

predictions (Mukhoti et al., 2020).

• Deep Ensembles (Lakshminarayanan et al., 2016), as it achieves state of the

art results.5

Results are obtained for multiple seeds for Cross Entropy and Brier Score, but only

one seed for Deep Ensembles due to the number of models needed.

5.5.1 Calibration

Here we evaluate how adaptive temperature scaling affects standard calibration

metrics compared to vanilla temperature scaling. We report results using the ECE,

which divides the probability into equally sized bins and then computes the absolute

difference between confidence and accuracy for each bin before taking the average.

However, the ECE is known to be a biased estimator of the theoretical probabilistic

expectation (Ding et al., 2019), whose performance depends on the binning size

and on the distribution of samples in each bin. For this reason, the ECE reliability

as a good miscalibration metric is being questioned and several alternatives have

been proposed (e.g. (Nixon et al., 2019; Roelofs et al., 2020; Mukhoti et al., 2020)).

Among these, we choose to also use the AdaECE (Mukhoti et al., 2020), which uses

adaptive bin sizes to ensure each bin contains the same number of samples.

Figure 5.5: Reliability plots for: left) vanilla predictions; middle) temperature scaling;
right) adaptive temperature scaling (ours). Temperature scaling was optimised through
cross validating in the range 0 - 10 and optimised the ECE. CIFAR-10 on ResNet50.

We report the results in Table 5.1 along with reliability plots in Figure 5.5, where

it can be seen that adaptive temperature scaling improves calibration compared to
5Applying adaptive temperature scaling to deep ensembles does not necessarily preseve accuracy,

however as we show in our experiments the difference is negligible.



5. Sample-dependent Temperature Scaling for Improved Calibration 85

standard temperate scaling. In all cases our method is able to outperform vanilla

temperature scaling, with large improvements obtained when using the cross entropy

loss, e.g. 0.93 → 0.76 and 3.76 → 2.95 ECE for CIFAR10 and CIFAR100 when

using the WideResNet2810 Network.

Method Scaling Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓)
CIFAR10

WideResNet2810 ResNet50

CE None 95.52 ± 0.43 2.15 ± 0.18 2.13 ± 0.18 93.13 ± 1.97 3.75 ± 1.32 3.74 ± 1.32
CE Vanilla TS 95.52 ± 0.43 0.93 ± 0.20 0.98 ± 0.30 93.13 ± 1.97 1.41 ± 0.43 1.45 ± 0.44
CE Adaptive TS 95.52 ± 0.43 0.76 ± 0.07 0.86 ± 0.20 93.13 ± 1.97 1.13 ± 0.60 1.09 ± 0.57

Brier None 95.84 ± 0.10 0.92 ± 0.13 1.50 ± 0.16 94.59 ± 0.23 2.03 ± 0.13 2.27 ± 0.12
Brier Vanilla TS 95.84 ± 0.10 1.88 ± 0.23 1.94 ± 0.19 94.59 ± 0.23 1.67 ± 0.24 2.08 ± 0.30
Brier Adaptive TS 95.84 ± 0.10 1.65 ± 0.15 1.61 ± 0.13 94.59 ± 0.23 1.61 ± 0.40 1.53 ± 0.44

Ensmbls None 96.35 1.68 1.61 95.62 1.92 1.89
Ensmbls Vanilla TS 96.35 0.61 0.68 95.62 0.93 0.84
Ensmbls Adaptive TS 96.37 0.51 0.46 95.64 0.60 0.58

CIFAR100

WideResNet2810 ResNet50

CE None 80.71 ± 0.17 5.76 ± 0.16 5.70 ± 0.16 77.91 ± 0.33 9.39 ± 0.42 9.37 ± 0.43
CE Vanilla TS 80.71 ± 0.17 3.76 ± 0.29 3.68 ± 0.28 77.91 ± 0.33 3.63 ± 0.21 3.61 ± 0.26
CE Adaptive TS 80.71 ± 0.17 2.95 ± 0.41 2.90 ± 0.47 77.99 ± 0.33 3.30 ± 0.50 3.32 ± 0.47

Brier None 79.25 ± 0.14 4.19 ± 0.24 4.13 ± 0.22 76.03 ± 0.55 4.15 ± 0.22 4.04 ± 0.25
Brier Vanilla TS 79.25 ± 0.14 3.87 ± 0.62 3.90 ± 0.62 76.03 ± 0.55 3.34 ± 0.46 3.41 ± 0.39
Brier Adaptive TS 79.25 ± 0.14 3.67 ± 0.82 3.64 ± 0.74 76.03 ± 0.55 3.30 ± 0.50 3.32 ± 0.47

Ensmbls None 83.19 4.24 4.21 80.90 6.59 6.29
Ensmbls Vanilla TS 83.18 3.71 3.55 80.90 3.22 3.16
Ensmbls Adaptive TS 83.22 2.95 2.66 80.86 2.79 2.77

Tiny-ImageNet

WideResNet2810 ResNet50

CE None 60.47 ± 0.17 7.54 ± 4.00 7.53 ± 4.09 55.27 ± 2.19 8.92 ± 2.72 8.93 ± 2.74
CE Vanilla TS 60.47 ± 1.06 6.28 ± 2.43 6.15 ± 2.47 55.27 ± 2.19 7.64 ± 1.53 7.57 ± 1.58
CE Adaptive TS 60.04 ± 1.20 5.18 ± 1.40 5.17 ± 1.32 55.27 ± 2.19 4.51 ± 1.76 4.45 ± 1.78

Brier None 50.23 ± 0.45 5.56 ± 0.63 5.52 ± 0.64 42.38 ± 1.21 5.33 ± 1.47 5.37 ± 1.47
Brier Vanilla TS 50.23 ± 0.45 4.55 ± 0.28 4.43 ± 0.63 42.38 ± 1.21 3.08 ± 0.59 3.12 ± 0.55
Brier Adaptive TS 50.23 ± 0.45 4.43 ± 0.47 4.21 ± 0.51 42.38 ± 1.21 2.71 ± 0.08 2.60 ± 0.23

Ensmbls None 66.16 6.21 6.19 61.90 8.89 9.00
Ensmbls Vanilla TS 66.16 5.12 5.06 61.90 4.29 4.43
Ensmbls Adaptive TS 66.00 4.58 4.41 61.76 4.26 4.17

Table 5.1: Calibration results, here we can see that adaptive temperate scaling is able
to improve calibration on a variety of models. Bold indicates best results, or with in one
standard deviaiton of best results.

Data-Shift

A key hypothesis we want to test is how adaptive temperature scaling behaves

under data-shift. Specifically, we use the widely used CIFAR10-C and CIFAR100-C

datasets, which are corrupted versions of the CIFAR10 and CIFAR100 (Hendrycks

and Dietterich, 2019). The dataset consists of standard CIFAR images which have
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Figure 5.6: How AdaECE changes with varying levels of motion-blur (left) and elastic
transform (right) corruptions. Adaptive temperature consistently produces lower error
rates. CIFAR10-C on ResNet50.

undergone 15 synthetic corruptions (e.g. noise, weather conditions, image properties)

at varying levels. Within this scenario, the classifier should either be robust to

such corruptions (retaining accuracy) or if the accuracy is compromised, reduce the

confidences accordingly. As such, we report the test accuracy as well as ECE and

AdaECE in Table 5.2, where adaptive temperature scaling shows improvements

over temperature scaling.

We also expect to see adaptive temperature scaling provide improvement over

temperature scaling as the intensity of corruptions are increased for CIFAR-10-C.

We generate plots highlighting the AdaECE calibration metric as the level of the

corruption intensity is increased; the plot for motion-blur is displayed in Figure 5.6.

Here despite a general increase in error for all methods adaptive temperature scaling

consistently produces lower error rates than vanilla temperature scaling (orange)

and vanilla predictions (blue). More examples are in Appendix C.4.

Temperature Variation Along Feature Interpolations If the temperature

module is successfully able to predict a high temperature in uncertain regions, then

we should see a change in the temperature as we traverse the feature the space. To

conduct this experiment, we obtain the average feature representation for each class

ϕk = 1
|Xk|

∑
x∈Xk Φ(x) and measure the temperature when interpolating between two

classes. i.e. we predict the temperature for the features {αϕk(i) +(1−α)ϕk(j)} α ∈

[0, 1]. We plot the interpolation results in Figure 5.7 (Left) for the classes in
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Figure 5.7: Top: How temperature varies when interpolating between class feature
means. Here we can see that temperature increases between classes or remains high
for classes who’s embeddings are close together. Pairs were chosen to improve visual
clarity. Dataset: CIFAR-10; architecture: ResNet50. Bottom: Histogram of temperature
values for each image in CIFAR-10, here we can see that typically objects have a lower
temperature than animals, indicating they are easier to classify. Dataset: CIFAR-10;
architecture: ResNet50.

CIFAR-10, where the horizontal axis represent α and the vertical axis represents

the temperature. For some classes we see a significant rise in the temperature as

we interpolate between two classes, e.g. automobile and bird. This highlights the

temperature prediction models ability to assign a low temperature in regions that

the classifier is certain about, e.g. around the mean and a higher temperature in

less certain regions, e.g. near a decision boundary.
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Method Scaling Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓)
CIFAR10-C

WideResNet2810 ResNet50

CE None 75.07 ± 1.46 15.70 ± 1.14 15.68 ± 1.14 71.45 ± 2.96 18.48 ± 1.70 18.47 ± 1.70
CE Vanilla TS 75.07 ± 1.46 12.19 ± 0.91 12.17 ± 0.91 71.45 ± 2.96 12.72 ± 0.64 12.70 ± 0.63
CE Adaptive TS 75.07 ± 1.46 12.03 ± 1.31 12.02 ± 1.31 71.45 ± 2.96 10.86 ± 1.88 10.83 ± 1.87

Brier None 75.27 ± 0.73 16.21 ± 0.80 16.45 ± 0.78 74.19 ± 0.28 15.34 ± 0.63 15.34 ± 0.65
Brier Vanilla TS 75.27 ± 0.73 15.87 ± 0.46 15.86 ± 0.46 74.19 ± 0.28 14.66 ± 0.83 14.67 ± 0.86
Brier Adaptive TS 75.27 ± 0.73 14.84 ± 0.88 14.81 ± 0.89 74.19 ± 0.28 13.39 ± 1.18 13.35 ± 1.18

Ensmbls None 77.28 13.45 13.43 74.84 13.95 13.93
Ensmbls Vanilla TS 77.28 10.12 10.09 74.84 10.37 10.33
Ensmbls Adaptive TS 77.21 9.29 9.25 74.80 9.15 9.12

CIFAR100-C

WideResNet2810 ResNet50

CE None 51.74 ± 0.39 18.63 ± 0.70 18.58 ± 0.70 49.67 ± 0.28 24.27 ± 0.89 24.25 ± 0.90
CE Vanilla TS 51.74 ± 0.39 12.28 ± 1.14 12.25 ± 1.14 49.67 ± 0.28 11.78 ± 0.91 11.76 ± 0.91
CE Adaptive TS 51.74 ± 0.39 12.17 ± 0.10 12.15 ± 0.11 49.72 ± 0.29 11.69 ± 0.74 11.67 ± 0.71

Brier None 50.58 ± 0.28 15.04 ± 1.36 15.02 ± 1.36 48.14 ± 0.83 13.43 ± 1.06 13.41 ± 1.06
Brier Vanilla TS 50.58 ± 0.28 9.81 ± 0.84 9.81 ± 0.85 48.14 ± 0.83 10.12 ± 0.67 10.10 ± 0.67
Brier Adaptive TS 50.58 ± 0.28 9.56 ± 0.82 9.64 ± 0.74 48.62 ± 0.55 8.83 ± 0.48 8.86 ± 0.48

Ensmbls None 54.61 14.81 14.78 52.94 19.12 19.07
Ensmbls Vanilla TS 54.61 12.66 12.62 52.94 11.36 11.33
Ensmbls Adaptive TS 54.61 12.02 12.00 53.91 9.15 9.15

Table 5.2: Corrupted calibration results. Here we can see that adaptive temperate
scaling is able to improve calibration on a variety of models. Bold indicates best results,
or within one standard deviation of best results.

Interestingly, this feature is not present for all class pairs; for some, e.g. cat and

dog, where the temperature remains high between classes. We hypothesise that

this is due to an interpolation between these classes being a plausible realisation of

an image, unlike for automobile and bird.

We further show a histogram in Figure 5.7 (Right), of the temperature values for

each sample in CIFAR-10 and colour code according to class. Again we see a similar

pattern where the animal based classes typically have a higher temperature than

the objects, indicating that the network should be more uncertain. This higher

temperature is obtained from the VAE learning that samples in this region are often

incorrect, which is where the pressure comes from to increase the temperature.

5.5.2 Misclassification Rejection

Calibrated uncertainty estimates should render that the models are able to reject

samples in order to preserve the accuracy. In this setting we report results

for AURRA, which computes the area under the rejection ratio curve(Nadeem
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Methods AURRA-C (↑) AURRA-DS (↑) AURRA-E (↑) AURRA-C (↑) AURRA-DS (↑) AURRA-E (↑)
WideResNet2810 ResNet50

CIFAR-100

None 93.07 ± 4.28 91.84 ± 5.24 92.95 ± 4.23 93.96 ± 0.15 92.94 ± 0.21 93.87 ± 0.16
Vanilla TS 92.97 ± 4.25 91.70 ± 5.40 92.67 ± 4.41 93.62 ± 0.06 92.68 ± 0.26 93.35 ± 0.11

Adaptive TS 93.20 ± 4.25 92.00 ± 5.39 92.99 ± 4.35 94.03 ± 0.18 93.18 ± 0.19 93.84 ± 0.19

Tiny-ImageNet

None 84.21 ± 1.09 81.83 ± 0.64 83.69 ± 1.16 79.84 ± 2.10 76.71 ± 1.64 79.35 ± 2.25
Vanilla TS 84.05 ± 1.09 81.63 ± 0.64 83.31 ± 1.11 79.58 ± 2.06 76.27 ± 1.56 78.59 ± 2.07

Adaptive TS 84.68 ± 0.18 81.93 ± 0.28 84.09 ± 0.20 81.26 ± 0.49 77.60 ± 0.50 80.44 ± 0.48

Table 5.3: AURRA scores for based on: confidence (AURRA-C), Demster-Schafer (Sen-
soy et al., 2018) (AURRA-DS) and entropy (AURRA-E). Unlike temperature scaling,
adaptive temperature scaling does not suffer a reduction in rejection ability.

et al., 2009). We display the results in Table 5.3, where we see that temperature

scaling provides a slight improvement over normal predictions and also vanilla

temperature scaling. Furthermore, we would like to highlight that even though

vanilla temperature scaling improves calibration, it does so at the expense of being

able to reject samples; unlike adaptive temperature scaling which is able to provide

the best of both worlds. It is important to stress that this is a significant advantage,

as we are able to provide better calibrated predictions whilst also increasing the

models ability to reject samples.

5.5.3 Evaluating Hardness

Given our models ability to predict the temperature, it should naturally extract

a notion of hardness, that is how difficult is it to classify. One would expect hard

samples to have a high temperature and easy ones to have a low temperature. To

conduct this experiment, we utilise the CIFAR-10.1 Recht et al. (2018); Torralba

et al. (2008) datset, which contains “harder”, but statistically similar images to

CIFAR-10; conseqently this experiments is not examining data-shift, but is instead

measuring the performance on challenging samples. We report the standard metrics:

accuracy, ECE and AdaECE in Table 5.4, where we see that adaptive temperature

is able to obtain a lower calibration error than vanilla temperature scaling for both

ResNet50 and WideResNet28-10 when trained using cross entropy loss.

A key hypothesis we wish to test is “does the model assign higher temperatures

to harder samples?”; harder samples should naturally contain a greater amount of
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Methods Accuracy (↑) ECE (↓) AdaECE (↓) Accuracy (↑) ECE (↓) AdaECE (↓)
None 85.86 ± 2.48 8.35 ± 1.58 8.15 ± 1.68 89.55 ± 0.81 5.66 ± 0.28 5.56 ± 0.32

Vanilla TS 85.86 ± 2.48 4.57 ± 0.32 4.24 ± 0.43 89.55 ± 0.81 3.64 ± 0.25 3.38 ± 0.35
Adptive TS 85.86 ± 2.48 3.67 ± 1.41 3.35 ± 1.39 89.55 ± 0.81 3.53 ± 0.22 3.35 ± 0.20

Table 5.4: CIFAR-10.1 Results for ResNet50 and WideResNet28-10, here we see that
adaptive temperature scaling is able to provide slightly improved calibration on the harder
CIFAR-10.1 dataset.

Figure 5.8: Histograms of temperature for correct predictions for CIFAR-10 and CIFAR-
10.1 on ResNet50. Lower temperatures are typically assigned to correct (blue) samples
from CIFAR-10 but higher for incorrect samples (orange). We also see that hard samples
are assigned higher values, regardless of whether they are correct or not (red and green)
for CIFAR-10.1.

uncertainty in their predictions. Consequently, we should see higher temperature

values assigned to harder samples (CIFAR-10.1) than to easier ones (CIFAR-

10). We test this hypothesis by plotting the histogram of temperature values for

CIFAR-10 and CIFAR-10.1, for both correct and incorrect predictions in Figure 5.8

(Right).

Here we see that generally, correct samples for CIFAR-10 (blue) are assigned a lower

temperature than for CIFAR-10.1 (green), indicating that the adaptive temperature

is able to recognise harder samples and assign a higher temperature increasing the

uncertainty. Furthermore, we also see that adaptive temperature predicts higher

temperatures for incorrect predictions for CIFAR-10 (orange), highlighting adaptive

temperatures ability to reduce the confidence of samples which are likely to be

incorrect. Interestingly, the same is not true for CIFAR-10.1, this is due to the
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fact that the samples from CIFAR-10.1 are by design harder, adaptive temperature

predicts higher values of T than for the easier CIFAR10 counterpart.

5.6 Discussion
Here we have presented a novel post-hoc method for predicting the temperature of

the softmax distribution in neural network classification. Given a data-point, our

method is able predict how confident the classifier should be about its prediction,

improving the calibration error, furthermore, adaptive temperature is also able to

obtain better results under distribution shifts. This is achieved by leveraging the

latent space of a VAE, which we found to naturally encapsulate and structure the

information relating to confidence appropriately. As the model is applied post-hoc,

training is very fast, requiring little computational overhead, furthermore it is very

easy to implement.



6
Conclusion

Here we summarise and highlight the contributions made in this thesis, before

providing a critical discussion on these contributions.

6.1 Summary
Variational Autoencoders (VAEs) offer a principled way to learn representations

of data. In this thesis, we have explored the utility of such representations

when incorporating additional information such as labels or different modalities.

Specifically, we have explored the following problems: utilising partially observed

label information to capture the characteristics of an image and disentangle them

within the latent space (Chapter 3); how shared representations of two modalities

can be learned in the situation where one of the modalities may not always be

present (Chapter 4); and how the latent space of the VAE can be used to obtain

reliable confidence estimates in a neural-classifier (Chapter 5). We will first outline

these contributions in more detail and the subsequently provide a discussion on

their limitations.

In Chapter 3, we presented Characteristic Capturing VAE (CCVAE); a semi-

supervised VAE which encapsulated an image’s characteristics in the latent space

and structured it accordingly utilising the label information. Specifically, by placing

92
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a classifier on the latent space with an appropriate inductive bias, the generative

factors within the image are forced to align themselves with the axes of the latent

space. This forces the information associated with a label to be encapsulated within

a given latent dimension, allowing us to perform additional tasks such as latent

traversals and fine grained manipulation. Moreover, this functionality can be learned

in the semi-supervised case, where the labels are not present for a vast majority of

the dataset. In practice we found that good performance can be obtained, even at

very low supervision rates where only 0.4% of the data is labelled.

In Chapter 4, we extended the motivation to learn VAEs with label information to

the case where the additional data source represents another modality of the same

underlying object, which typically contains unstructured and higher dimensional

data. In this work the focus was on learning shared representation, allowing the

model to perform tasks such as cross-generation—mapping from one modality to

the other whilst preserving the underlying class. Moreover, we wanted to achieve

this in the partially-observed setting, where one of the modalities may be missing

during training. To achieve this, we repurposed CCVAE by reformulating it as a bi-

directional objective; which ensures that the resulting graphical model is symmetric.

Another significant advantage of this approach is the ability to extract relatedness

between two samples.

In Chapter 5, we explored the utility of VAEs in calibrating a neural-classifiers

predictions, which are known to be generally overconfident. In this setting, we

utilised the latent space of the VAE to obtain temperature values for the resulting

softmax predictive probability distribution. We found that empirically, the latent

space of the VAE is able to structure samples such that those which contribute

significantly to the Expected Calibration Error (ECE) are placed in lower likelihood

regions of the latent space than those which do not. Based on this empirical

finding, we used the likelihoods as inputs to predict the temperature value for the

predictive probabilities. This allows the model to assign high confidences to samples

that typically do not contribute to ECE and low values to ones that contribute



6. Conclusion 94

significantly. Adaptive Temperature Scaling is a post-hoc method and can be

applied to almost any pre-existing neural-classifier.

6.2 Discussion

In this section we present a critical discussion of the methods presented in this

thesis.

6.2.1 Capturing Label Characteristics in VAEs

One of the major limitation of CCVAE is that the characteristics are forced to

be captured in a single latent dimension. This clearly limits to models ability to

represent the characteristics, and could subsequently lead to poorer representations

or entangle the characteristics. Moreover, there may be more than one generative

feature associated with a label; an example of this could be smiling, where the

showing of the teeth does not necessarily mean that the person is smiling to a

greater extent than someone who has their mouth closed. Whilst it is feasible to

use more than one dimension, it is not immediately obvious what inductive bias

should be placed on the classifier.

Another issue that is somewhat linked to the aforementioned issue, is how to deal

with the situation where some of the labels follow a Categorical distribution. So

far, we have assumed that the labels are independent and can be modelled by a

Bernoulli distribution; which for some of the examples is not a valid assumption

to make. An example of this scenario could be describing facial hair, where it

is implausible for someone to have a beard and a 5 o’clock shadow (stubble).

Dealing with this issue again requires us to think careful about the inductive-bias

and how to place it into the model.

A further issue is the case when the model is completely unsupervised and no label

information is present. Empirically we found the model to completely fail, which is

hardly a surprising result.
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6.2.2 Learning Multimodal VAEs through mutual supervi-
sion

One clear problem is the fidelity of the resulting cross-generations, which tend to

be poor compared to other multimodal method which are based on transformer

architectures . Fidelity was not a primary focus for this work and instead we used

simpler datasets for the purpose of exposition. Generating high fidelity images is

of course an important goal and a highly sought after feature in models; it would

be interesting to see how this approach could be used in much larger models such

as Child (2021).

Another issue with this approach is the training time, which typically takes 5

times longer to train than it’s unimodal counter part. Whilst this is not a major

deficiency, it is still an undesirable outcome in the model and if possible should be

reduced.

6.2.3 Sample-dependent Temperature Scaling for Improved
Calibration

With any deep learning model, there is always an inherent amount of variation in the

resulting parameters due to stochasticity in the training regime. Unfortunately, this

uncertainty propagates into Adaptive Temperature Scaling, resulting in different

calibration errors for the same neural-classifier. This can be alleviated by training

multiple temperature prediction networks and choosing the best ones on the

validation set. We opted not to do this, due to the additional computational

burden and the impact on the time taken to calibrate the model.

Another further issue is comes with the need for additional data. The calibration

phase requires additional data to train temperature prediction model which was not

present in the training set. This potentially limits the ability to apply this method

to off-the-shelf classifiers. However, we would also like to note that this is an issue

which also plagues most other post-hoc calibration methods.
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A
Appendix: Capturing Label

Characteristics in VAEs

A.1 Conditional Generation and Intervention for
Equation (3.2)

For the model trained using (3.2) as the objective to be usable, we must consider

whether it can carry out the classification, conditional generation, and intervention

tasks outlined previously. Of these, classification is straightforward, but it is less

apparent how the others could be performed. The key here is to realize that

the classifier itself implicitly contains the information required to perform these

tasks.

Consider first conditional generation and note that we still have access to the prior

p(z) as per a standard VAE. One simple way of performing conditional generation

would be to conduct a rejection sampling where we draw samples ẑ ∼ p(z) and

then accept these if and only if they lead to the classifier predicting the desired

labels up to a desired level of confidence, i.e. qϕ(y | ẑc) > λ where 0 < λ < 1 is

some chosen confidence threshold. Though such an approach is likely to be highly

inefficient for any general p(z) due to the curse of dimensionality, in the standard

setting where each dimension of z is independent, this rejection sampling can be

113
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performed separately for each zic, making it relatively efficient. More generally, we

have that conditional generation becomes an inference problem where we wish to

draw samples from

p (z | {qϕ(y | zc) > λ}) ∝ p(z)I (qϕ(y | zc) > λ) .

Interventions can also be performed in an analogous manner. Namely, for a

conventional intervention where we change one or more labels, we can simply

resample the zic associated we those labels, thereby sampling new characteristics to

match the new labels. Further, unlike prior approaches, we can perform alternative

interventions too. For example, we might attempt to find the closest zic to the

original that leads to the class label changing; this can be done in a manner akin to

how adversarial attacks are performed. Alternatively, we might look to manipulate

the zic without actually changing the class itself to see what other characteristics

are consistent with the labels.

To summarize, (3.2) yields an objective which provides a way of learning a semi-

supervised VAEs that avoids the pitfalls of directly fixing the latents to correspond

to labels. It still allows us to perform all the tasks usually associated with semi-

supervised VAEs and in fact allows a more general form of interventions to be

performed. However, this comes at the cost of requiring inference to perform

conditional generation or interventions. Further, as the label variables y are absent

when the labels are unobserved, there may be empirical complications with forcing all

the denotational information to be encoded to the appropriate characteristic latent

zic. In particular, we still have a hyperparameter α that must be carefully tuned to

ensure the appropriate balance between classification and reconstruction.

A.2 Model Formulation
A.2.1 Variational Lower Bound

In this section we provide the mathematical details of our objective functions. We

show how to derive it as a lower bound to the marginal model likelihood and show

how we estimate the model components.
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The variational lower bound for the generative model in Figure 3.2, is given as

LCCV AE =
∑
x∈U
LCCV AE(x) +

∑
(x,y)∈S

LCCV AE(x,y)

LCCV AE(x,y) = Eqϕ(z|x)

[
qφ(y | zc)
qφ,ϕ(y | x) log

(
pθ(x | z)pψ(z | y)
qφ(y | zc)qϕ(z | x)

)]
+ log qφ,ϕ(y | x) + log p(y),

LCCV AE(x) = Eqϕ(z|x)qφ(y|zc)

[
log

(
pθ(x | z)pψ(zc | y)p(y)
qφ(y | zc)qϕ(z | x)

)]
.

The overall likelihood in the semi-supervised case is given as

pθ(x,y) =
∏

(x,y)∈S
pθ(x,y)

∏
x∈U

pθ(x),

To derive a lower bound for the overall objective, we need to obtain lower bounds

on log pθ(x) and log pθ(x,y). When the labels are unobserved the latent state will

consist of z and y. Using the factorization according to the graph in Figure 3.2

yields

log pθ(x) ≥ Eqϕ(z|x)qφ(y|zc)

[
log

(
pθ(x | z)pψ(z | y)p(y)
qφ(y | zc)qϕ(z | x)

)]
,

where pψ(z | y) = p(z\c)pψ(zc | y). For supervised data points we consider a lower

bound on the likelihood pθ(x,y),

log pθ(x,y) ≥
∫

log pθ(x | z)pψ(z | y)p(y)
qφ,ϕ(z | x,y) qφ,ϕ(z | x,y)dz,

in order to make sense of the term qφ,ϕ(z | x,y), which is usually different from

qϕ(z | x) we consider the inference model

qφ,ϕ(z | x,y) = qφ(y | zc)qϕ(z | x)
qφ,ϕ(y | x) , where qφ,ϕ(y | x) =

∫
qφ(y | zc)qϕ(z | x)dz.

Returning to the lower bound on log pθ(x,y) we obtain

log pθ(x,y) ≥
∫

log pθ(x | z)pψ(z | y)p(y)
q(z | x,y) q(z | x,y)dz

=
∫

log
(
pθ(x | z)pψ(z | y)p(y)qφ,ϕ(y | x)

qφ(y | zc)qϕ(z | x)

)
qφ(y | zc)qϕ(z | x)

qφ,ϕ(y | x) dz

= Eqϕ(z|x)

[
qφ(y | zc)
qφ,ϕ(y | x) log

(
p(x | z)pψ(zc | y)
qφ(y | zc)qϕ(z | x)

)]
+ log qφ,ϕ(y | x) + log p(y),

where qφ(y | zc)/qφ,ϕ(y | x) denotes the Radon-Nikodym derivative of qφ,ϕ(z | x,y)

with respect to qϕ(z | x).
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A.2.2 Alternative Derivation of Unsupervised Bound

The bound for the unsupervised case can alternatively be derived by applying

Jensen’s inequality twice. First, use the standard (unsupervised) Evidence Lower

Bound (ELBO)

log pθ(x) ≥ Eqϕ(z|x)

[
log pθ(x | z)p(z)

qϕ(z | x)

]
.

Now, since calculating p(z) = p(zc)p(z\c) = p(z\c)
∑

y p(zc | y)p(y) can be expensive

we can apply Jensen’s inequality a second time to the expectation over zc to

obtain

log p(zc) ≥ Eqφ(y|zc)

[
log pψ(zs | y)p(y)

qφ(y | zs)

]
.

Substituting this bound into the unsupervised ELBO yields again our bound

log p(x) ≥ Eqϕ(z|x)qφ(y|zc)

[
log pθ(x | z)p(z | y)

qϕ(z | x)qφ(y | zc)

]
+ log p(y) (A.1)

A.3 Implementation
A.3.1 CelebA

We chose to use only a subset of the labels present in CelebA, since not all attributes

are visually distinguishable in the reconstructions e.g. (earrings). As such we lim-

ited ourselves to the following labels: arched eyebrows, bags under eyes, bangs,

black hair, blond hair, brown hair, bushy eyebrows, chubby, eyeglasses,

heavy makeup, male, no beard, pale skin, receding hairline, smiling, wavy

hair, wearing necktie, young. No images were omitted or cropped, the only

modifications were keeping the aforementioned labels and resizing the images to be

64 × 64 in dimension.

A.3.2 Chexpert

The Chexpert dataset comprises of chest X-rays taken from a variety of patients. We

down-sampled each image to be 64× 64 and used the same networks from the CelebA

experiments. The five main attributes for Chexpert are: cardiomegaly, edema,

consolidation, atelectasis, pleural effusion. Which for non medical experts

can be interpreted as: enlargement of the heart; fluid in the alveoli; fluid in the

lungs; collapsed lung; fluid in the corners of the lungs.
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A.3.3 Implementation Details

For our experiments we define the generative and inference networks as follows. The

approximate posterior is represented as qϕ(z | x) = N (zc, z\c | µϕ(x), diag(σ2
ϕ(x)))

with µϕ(x) and diag(σ2
ϕ(x)) being the architecture from Higgins et al. (2016).

The generative model pθ(x | z) is represented by a Laplace distribution, again

parametrized using the architecture from Higgins et al. (2016). The label predictive

distribution qφ(y | zc) is represented as Ber(y | πφ(zc)) with πφ(zc) being a diagonal

transformation forcing the factorisation qφ(y | zc) = ∏
i qψi(yi | zc

i). The conditional

prior is given as pψ(zc | y) = N (zc | µψ(y), diag(σ2
ψ(y))), with the appropriate

factorisation, where the parameters are represented by an MLP. Finally, the prior

placed on the portion of the latent space reserved for unlabelled latent variables

is p(z\c) = N (z\c | 0, I)). For the latent space zc ∈ Rmc and z\c ∈ Rm\c , where

m = mc +m\c with mc = 18 and m\c = 27 for CelebA. The architectures are given

in and Table A.1.

Encoder Decoder
Input 32 x 32 x 3 channel image Input ∈ Rm

32× 3× 4× 4 Conv2d stride 2 & ReLU m × 256 Linear layer
32× 32× 4× 4 Conv2d stride 2 & ReLU 128× 256× 4× 4 ConvTranspose2d stride 1 & ReLU
64× 32× 4× 4 Conv2d stride 2 & ReLU 64× 128× 4× 4 ConvTranspose2d stride 2 & ReLU
128× 64× 4× 4 Conv2d stride 2 & ReLU 32× 64× 4× 4 ConvTranspose2d stride 2 & ReLU
256× 128× 4× 4 Conv2d stride 1 & ReLU 32× 32× 4× 4 ConvTranspose2d stride 2 & ReLU

256 × (2×m) Linear layer 3× 32× 4× 4 ConvTranspose2d stride 2 & Sigmoid

Classifier Conditional Prior

Input ∈ Rmc Input ∈ Rmc

mc ×mc Diagonal layer mc ×mc Diagonal layer

Table A.1: Architectures for CelebA and Chexpert.

Optimization We trained the models on a GeForce GTX Titan GPU. Training

consumed ∼ 2Gb for CelebA and Chexpert, taking around 2 hours to complete 100

epochs respectively. Both models were optimized using Adam with a learning rate

of 2× 10−4 for CelebA respectively.
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High variance of classifier gradients

The gradients of the classifier parameters φ suffer from a high variance during

training. We find that not reparameterizing zc for qφ(y | zc) reduces this issue:

LCCV AE(x,y)=Eqϕ(z|x)

[
qφ(y | z̄c)
qφ,ϕ(y | x) log pθ(x | z)pψ(z | y)

qφ(y | z̄c)qϕ(z | x)

]
+log qφ,ϕ(y | x)+log p(y).

(A.2)

Figure A.1: Gradient norms of classifier.

where z̄c indicates that we do not repa-

rameterize the sample. This signifi-

cantly reduces the variance of the mag-

nitude of the gradient norm ∇φ, allow-

ing the classifier to learn appropriate

weights and structure the latent space.

This can be seen in Figure A.1, where we

plot the gradient norm of φ for when we

do reparameterize zc (blue) and when

we do not (orange). Clearly not reparameterizing leads to a lower variance in

the gradient norm of the classifier, which aides learning. To a certain extent these

gradients can be viewed as redundant, as there is already gradients to update the

predictive distribution due to the log qφ,ϕ(y | x) term anyway.
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A.3.4 Modified DIVA

The primary goal of DIVA is domain invariant classification and not to obtain

representations of individual characteristics like we do here. The objective is

essentially a classifier which is regularized by a variational objective. However, to

achieve domain generalization, the authors aim to disentangle the domain, class and

other generative factors. This motivation leads to a graphical model that is similar

in spirit to ours ( Figure A.2), in that the latent variables are used to predict labels,

and the introduction of the inductive bias to partition the latent space. As such,

DIVA can be modified to suit our problem of encapsulating characteristics. The

first modification we need to consider is the removal of zd, as we are not considering

multi-domain problems. Secondly, we introduce the factorization present in CCVAE,

namely qφ(y | zc) = ∏
i qψi(yi |zc

i). With these two modifications an alternative

objective can now be constructed, with the supervised given as

LSDIV A(x,y) = Eqϕ(z|x) log pθ(x | z)− βKL(qϕ(z\c|x)||p(z\c))

− βKL(qϕ(zc|x)||pψ(zc | y)),

and the unsupervised as

LUDIV A(x) = Eqϕ(z|x) log pθ(x | z)− βKL(qϕ(z\c|x)||p(z\c))

+ βEqϕ(zc|x)qφ(y|zc)[log pψ(zc | y)− log qϕ(zc|x)],

+ βEqϕ(zc|x)qφ(y|zc)[log p(y)− log qφ(y | zc)],

where y has to be imputed. The final objective for DIVA is then given as

log pθ (D) ≥
∑

(x,y)∈S
LSDIV A(x,y) +

∑
x∈U

[
LUDIV A(x) + αEq(zc|x) log qφ(y | zc)

]
.

It is interesting to note the differences to the objective of CCVAE, namely, there is

no emergence of a natural classifier in the supervised case, and y has to be imputed

in the unsupervised case instead of relying on variational inference as in CCVAE.

Clearly such differences have a significant impact on performance as demonstrated

by the main results of this paper.
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x ycyd

z\c zczd

x ycyd

z\c zczd

Figure A.2: Left: Generative model for DIVA, Right: Inference model where dashed
line indicates auxiliary classifier.

A.4 Additional Results
A.4.1 Single Interventions

Here we demonstrate single interventions where we change the binary value for the

desired attributes. To quantitatively evaluate the single interventions, we intervene

on a single label and report the changes in log-probabilities assigned by a pre-trained

classifier. If the single intervention only affects the characteristics of the chosen

label, then there should be no change in other classes and only a change on the

chosen label. Intervening on all possible labels yields a confusion matrix, with the

optimal results being a diagonal matrix with zero off-diagonal elements. We also

report the condition number for the confusion matrices, given in the titles.

It is interesting to note that the interventions for CCVAE are subtle, this is due

to the latent zic ∼ p(zic|yi), which will be centered around the mean. More striking

intervention can be achieved by traversing along zic.
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Figure A.3: Confusion matrices for CCVAE for (from top left clockwise) f =
0.004, 0.06, 0.2, 1.0
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f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure A.4: CCVAE. From left to right: original, reconstruction, then interventions from
switching on the following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair,
brown hair, bushy eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline,
smiling, wavy hair, wearing necktie, young.
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Figure A.5: Confusion matrices for M2 for (from top left clockwise) f =
0.004, 0.06, 0.2, 1.0
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f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure A.6: M2. From left to right: original, reconstruction, then interventions from
switching on the following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair,
brown hair, bushy eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline,
smiling, wavy hair, wearing necktie, young.
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Figure A.7: Confusion matrices for DIVA for (from top left clockwise) f =
0.004, 0.06, 0.2, 1.0



A. Appendix: Capturing Label Characteristics in VAEs 126

f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure A.8: DIVA. From left to right: original, reconstruction, then interventions from
switching on the following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair,
brown hair, bushy eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline,
smiling, wavy hair, wearing necktie, young.
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Figure A.9: Confusion matrices for MVAE for (from top left clockwise) f =
0.004, 0.06, 0.2, 1.0
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f = 0.004

f = 0.06

f = 0.2

f = 1.0

Figure A.10: MVAE. From left to right: original, reconstruction, then interventions from
switching on the following labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair,
brown hair, bushy eyebrows, chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline,
smiling, wavy hair, wearing necktie, young.



A. Appendix: Capturing Label Characteristics in VAEs 129

A.4.2 Latent Traversals

Here we provide more latent traversals for CCVAE in Figure A.11 and for DIVA in

Figure A.12. CCVAE is able to smoothly alter characteristics, indicating that it

is able to encapsulate characteristics in a single dimension, unlike DIVA which is

unable to alter the characteristics effectively, suggesting it cannot encapsulate the

characteristics.

A.4.3 Generation

We provide results for the fidelity of image generation on CelebA. To do this we

use the FID metric Heusel et al. (2017), we omitted results for Chexpert as the

inception model used in FID has not been trained on the typical features associated

with X-Rays. The results are given in Table A.2, interestingly for low supervision

rates MVAE obtains the best performance but for higher supervision rates M2

outperforms MVAE. We posit that this is due to MVAE having little structure

imposed on the latent space, as such the POE can structure the representation

purely for reconstruction without considering the labels, something which is not

possible as the supervision rate is increased. CCVAE obtains competitive results

with respect to M2. It is important to note that generative fidelity is not the focus

of this work as we focus purely on how to structure the latent space using labels. It

is no surprise then that the generations are bad as structuring the latent space will

potentially be at odds with the reconstruction term in the loss.

Table A.2: CelebA FID scores.

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 127.956 121.84 121.751 120.457
M2 127.719 122.521 120.406 119.228

DIVA 192.448 230.522 218.774 201.484
MVAE 118.308 115.947 128.867 137.461

A.4.4 Conditional Generation

To asses conditional generation, we first train an independent classifier for both

datasets. We then conditionally generate samples given labels and evaluate them

using this pre-trained classifier. Results provided in Table A.3. CCVAE and M2 are
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comparable in generative abilities, but DIVA and MVAE perform poorly, indicated

by random guessing.

Table A.3: Generations accuracies.

CelebA Chexpert

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 0.513 0.605 0.612 0.596 0.516 0.563 0.549 0.542
M2 0.499 0.61 0.612 0.611 0.503 0.547 0.547 0.558

DIVA 0.501 0.501 0.501 0.501 0.499 0.503 0.503 0.503
MVAE 0.501 0.501 0.501 0.501 0.499 0.499 0.499 0.499

A.4.5 Diversity of Conditional Generations

We also report more examples for diversity, as in Figure 3.6, in Figure A.13.

A.4.6 Multi-class Setting

Here we provide results for the multi-class setting of MNIST and FashionMNIST.

The multi-class setting is somewhat tangential to our work, but we include it for

completeness. For CCVAE, we have some flexibility over the size of the latent space.

Trying to encapsulate representations for each label is not well suited for this setting,

as it’s not clear how you could alter the representation of an image being a 6, whilst

preserving the representation of it being an 8. In fact, there is really only one

label for this setting, but it takes multiple values. With this in mind, we can now

make an explicit choice about how the latent space will be structured, we can set

zc ∈ R or zc ∈ RN , or conversely, store all of the representation in zc, i.e. z\c = ∅.

Furthermore, we do not need to enforce the factorization qφ(y | zc) = ∏
i q(yi|zic),

and instead can be parameterized by a function F : RN → RM where M is the

number of possible classes.

Classification We provide the classification results in Table A.4.

Table A.4: Additional classification accuracies.

MNIST FashionMNIST

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0 f = 0.004 f = 0.06 f = 0.2 f = 1.0

CCVAE 0.927 0.974 0.979 0.988 0.741 0.865 0.879 0.901
M2 0.918 0.962 0.968 0.981 0.756 0.848 0.860 0.892
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Conditional Generation We provide classification accuracies for pre-trained

classifier using conditional generated samples as input and the condition as a

label. We also report the mutual information to give an indication of how out-of-

distribution the samples are. In order to estimate the uncertainty, we transform a

fixed pre-trained classifier into a Bayesian predictive classifier that integrates over the

posterior distribution of parameters ω as p(y | x,D) =
∫
p(y | x, ω)p(ω | D)dω. The

utility of classifier uncertainties for out-of-distribution detection has previously been

explored Smith and Gal (2018), where dropout is also used at test time to estimate

the mutual information (MI) between the predicted label y and parameters ω (Gal,

2016; Smith and Gal, 2018) as

I(y, ω | x,D) = H[p(y | x,D)]− Ep(ω|D) [H[p(y | x, ω)]] .

However, the Monte Carlo (MC) dropout approach has the disadvantage of requiring

ensembling over multiple instances of the classifier for a robust estimate and repeated

forward passes through the classifier to estimate MI. To mitigate this, we instead

employ a sparse variational GP (with 200 inducing points) as a replacement for

the last linear layer of the classifier, fitting just the GP to the data and labels

while holding the rest of the classifier fixed. This, in our experience, provides a

more robust and cheaper alternative to MC-dropout for estimating MI. Results are

provided in Table A.5.

Table A.5: Pre-trained classifier accuracies and MI for MNIST (top) and FashionMNIST
(bottom).

Model f = 0.004 f = 0.06 f = 0.2 f = 1.0
Acc MI Acc MI Acc MI Acc MI

M

CCVAE 0.910 0.020 0.954 0.014 0.961 0.013 0.973 0.010
M2 0.883 0.035 0.929 0.026 0.934 0.024 0.948 0.020

F

CCVAE 0.734 0.025 0.806 0.024 0.801 0.028 0.798 0.029
M2 0.750 0.032 0.792 0.032 0.787 0.032 0.789 0.031



A. Appendix: Capturing Label Characteristics in VAEs 132

Latent Traversals We can also perform latent traversals for the multi-class

setting. Here, we perform linear interpolation on the polytope where the corners

are obtained from the network µψ(y) for four different classes. We provide the

reconstructions in Figure A.14.

Diversity in Conditional Generations Here we show how we can introduce

diversity in the conditional generations whilst keeping attributes such as pen-stroke

and orientation constant. Inspecting the M2 results Figure A.15 and Figure A.16,

where we have to sample from z to introduce diversity, indicates that we are unable

to introduce diversity without affecting other attributes.

Interventions We can also perform interventions on individual classes, as showed

in Figure A.17.
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Figure A.11: Various latent traversals for CCVAE.
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Figure A.12: Various latent traversals for DIVA.
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Figure A.13: CCVAE, variance in reconstructions when intervening on a single label.
From left to right: reconstruction, then interventions from switching on the following
labels: arched eyebrows, bags under eyes, bangs, black hair, blond hair, brown hair, bushy eyebrows,
chubby, eyeglasses, heavy makeup, male, no beard, pale skin, receding hairline, smiling, wavy hair, wearing

necktie, young.

Figure A.14: CCVAE latent traversals for MNIST and FashionMNIST. It is interesting
to see how one class transforms into another, e.g. for MNIST we see the end of the 5
curling around to form an 8 and a steady elongation of the torso when traversing from
t-shirt to dress.
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Figure A.15: CCVAE conditional generations with z\c fixed. Here we can see that
CCVAE is able to introduce diversity whilst preserving the “style” of the digit, e.g. pen
width and tilt.

Figure A.16: M2 conditional generations. Here we can see that M2 is unable to introduce
diversity without altering the “style” of the digit, e.g. pen width and tilt.

Figure A.17: Left: CCVAE, right: M2. As with other approaches, we can also perform
wholesale interventions on each class whilst preserving the style.
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B.1 Derivation of the Objective
The variational lower bound for the case when s and t are both observed derives

as:

log p(t, s) = log
∫

z
p(t, s, z)dz

≥
∫

z
log p(s, t, z)

q(z|t, s) q(z|t, s)dz

Following Chapter 3, assuming s |= t|z and applying Bayes rule we have

q(z|t, s) = q(z|s)q(t|z)
q(t|s) ,

which can be substituted into the lower bound to obtain

log p(t, s) ≥
∫

z
log p(s, t, z)q(t|s)

q(z|s)q(t|z)
q(z|s)q(t|z)
q(t|s) dz

= Eq(z|s)

[
q(t|z)
q(t|s) log p(s|z)(z|t)

q(z|s)q(t|z)

]
+ log q(t|s) + log p(t). (B.1)

B.2 Efficient Gradient Estimation
Given the objective in (B.1), note that the first term is quite complex, and requires

estimating a weight ratio that involves an additional integral through q(t | s) =

137
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∫
qφ(t | z)qϕ(z | s)dz. This has a significant effect, as the naive Monte-Carlo gradient

estimator can be very noisy, and prohibit learning effectively. To mitigate this, we

make a relatively simple modification that ensures correctness of both objective and

gradient, but has the benefit of simplifying some of the gradient computations to

avoid noise. We compute the first term of (B.1) as

Eqϕ(z|s)

[
qφ(t | z̄)
q(t | s) log pθ(s | z)pϑ(z | t)

qϕ(z | s)qφ(t | z̄)

]
, (B.2)

where z̄ denotes a “detached” variable—i.e., one that disallows gradient propa-

gation upstream (i.e., backwards) through its location in the associated compute

graph.

We will now show that this formulation simply enforces that components that

cancel or are analytically zero in the gradient estimator are not unnecessarily

computed. Note that the gradient of (B.2) with respect to ϕ can be written

(following reparametrisation of z = ρ(ϵ, ϕ)) as

∇ϕ Eqϕ(z|s)

[
qφ(t | z)
q(t|s) log pθ(s | z)pϑ(z | t)

qϕ(z | s)qφ(t | z)

]

= Ep(ϵ)

[(
∇ϕ

qφ(t | z)
q(t | s)

)
log pθ(s | z)pϑ(z | t)

qϕ(z | s)qφ(t | z) + qφ(t | z)
q(t | s) ∇ϕ log pθ(s | z)pϑ(z | t)

qϕ(z | s)qφ(t | z)

]
.

(B.3)

In order to validate the “detached” formulation in (B.2), it suffices to show that

the two instances of z̄ employed do not change the gradient estimator. These two

instances neatly map onto the two terms of the gradient estimator in (B.3).

Part A: We show that

Ep(ϵ)

[
qφ(t | z)
q(t | s) ∇ϕ log pθ(s | z)pϑ(z | t)

qϕ(z | s)qφ(t | z)

]
= Ep(ϵ)

[
qφ(t | z)
q(t | s) ∇ϕ log pθ(s | z)pϑ(z | t)

qϕ(z | s)

]
.

This becomes apparent when considering the missing term in the log, where the

relevant factor (after moving the independent q(t | s) out) is
∫
p(ϵ)qφ(t | z)∇ϕ log qφ(t | z)dϵ =

∫
p(ϵ)∇ϕqφ(t | z)dϵ = ∇ϕ

∫
p(ϵ)qφ(t | z)dϵ = ∇ϕqφ(t) = 0

Using log qφ(t | z̄) simply enforces this zero gradient directly.
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Part B: We show that

Ep(ϵ)

[(
∇ϕ

qφ(t | z)
q(t | s)

)
log pθ(s | z)pϑ(z | t)

qϕ(z | s)qφ(t | z)

]
= 0.

To show this, we make the following observations:

p(s|z)p(z|t)
q(z|s)q(t|z) = p(s, z | t)

q(t, z | s) = p(s, z | t)p(s)
q(s, z | t)p(t) ≈

q(s)
p(t)

(at convergence p(s, z | t) ≈ q(s, z | t))

which means the term within log is independent of z. Moreover, we expand the

term q(t | s), denoting z′ = ρ(ϵ′, ϕ), as

q(t | s) =
∫
qϕ(z′ | s)qφ(t | z′)dz′ =

∫
p(ϵ′)qφ(t | ρ(ϵ′, ϕ))dϵ′ = Ep(ϵ′) [qφ(t | z′ = ρ(ϵ′, ϕ))]

Using these terms, we can now simplify the gradient as follows:

Ep(ϵ)

[(
∇ϕ

qφ(t | z)
q(t | s)

)
log pθ(s | z)pϑ(z | t)

qϕ(z | s)qφ(t | z)

]

= Ep(ϵ)

[(
q(t | s)∇ϕqφ(t | z)− qφ(t | z)∇ϕq(t | s)

q(t | s)2

)
log q(s)

p(t)

]

= 1
q(t | s)2 log q(s)

p(t) Ep(ϵ)[q(t | s)∇ϕqφ(t | z)− qφ(t | z)∇ϕq(t | s)]

= 1
q(t | s)2 log q(s)

p(t)
[
q(t | s)Ep(ϵ)[∇ϕqφ(t | z)]− Ep(ϵ)[qφ(t | z)]∇ϕq(t | s)

]
= 1
q(t | s)2 log q(s)

p(t)
[
q(t | s)∇ϕEp(ϵ)[qφ(t | z)]− Ep(ϵ)[qφ(t | z)]∇ϕq(t | s)

]
= 1
q(t | s)2 log q(s)

p(t) [q(t | s)∇ϕq(t | s)− q(t | s)∇ϕq(t | s)]

= 0

Taken together, these justify the simplification proposed in (B.2). We note that in

Chapter 3 we perform the same modification as in (B.2), motivated by an empirical

study, but here, we prove that this change is both sound and correct, and does

not introduce additional any bias. We plot the signal-to-noise ratios (SNR) for the

“detached” case (blue) and the naive case (orange) in Figure B.1, which highlights

the effect of the simplification.
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B.3 High Variance of the gradient estimator
During training, the term q(t|z)

q(t|s) incurs a very low signal to noise ratio, which becomes

untenable for learning. To combat this, we formulate an alternate estimate of the

gradient of the objective, enabling us to learn effectively.

The gradient of the first term in the objective wrt ϕ is given as

∇ϕL(s, t;ϕ, φ, θ, ϑ) = Ep(ϵ)

[(
∇ϕ

q(t|z)
q(t|s)

)
log p(s|z)p(z|t)

q(z|s)q(t|z) + q(t|z)
q(t|s)∇ϕ log p(s|z)p(z|t)

q(z|s)q(t|z)

]
(B.4)

with z = t(ϵ, s;ϕ) (reparameterization). We observe that the first term has a

variance which is too high to learn anything meaningful from. Fortunately, we note

that, under certain conditions, the expected value of the gradient in the first term

is zero, which means it can be removed (Roeder et al., 2017) through a judicious

application of a “stop gradient” on q(t|z)
q(t|s) .

Using reparemterisation, with z = t(ϵ) and denoting log p(s|z)p(z|t)p(t)
q(z|s)q(t|z) as logA for

convenience, the first term of (B.4) can be expanded as

Eϵ∼g(ϵ)

∫ qφ(t | z)qϕ(z | s)dz∇zqφ(t|z)∇ϕt(ϵ)
[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)

 (B.5)

− Eϵ∼g(ϵ)

qφ(t|z)∇ϕ

∫
qφ(t | z)qϕ(z | s)dz

[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)



Eϵ∼g(ϵ)

∫ qφ(t | z)qϕ(z | s)dz∇zqφ(t|z)∇ϕt(ϵ)
[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)

 (B.6)

− Eϵ∼g(ϵ)

qφ(t|z)∇ϕ

∫
qφ(t|z′)g(α)dα

[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)


with z′ = t(α)

Eϵ∼g(ϵ)

∫ qφ(t|t(α))g(α)dα∇zqφ(t|z)∇ϕt(ϵ)
[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)

 (B.7)

− Eϵ∼g(ϵ)

qφ(t|z)
∫
∇z′qφ(t|z′)∇ϕt(α)dα

[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)
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∫
Eϵ∼g(ϵ)

∫ qφ(t|t(α))g(α)dα∇zqφ(t|z)∇ϕt(ϵ)
[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)

dα (B.8)

−
∫

Eϵ∼g(ϵ)

qφ(t|z)
∫
∇z′qφ(t|z′)∇ϕt(α)dα

[
∫
qφ(t | z)qϕ(z | s)dz]2 log pθ(s|z)pϑ(z|t)

qφ(t|z)qϕ(z|s)

dα

When the true posterior p(z|s) matches the approximate posterior qϕ(z | s) and the

predictive distribution qφ(t | z) matches the true distribution p(t|z), by applying

Bayes rule, the term inside the log is equivalent to p(s), which is independent of ϵ

and α.

∫ ∫ qφ(t|g(α))q(α)∇g(ϵ)qφ(t|g(ϵ))∇ϕg(ϵ)q(ϵ)
[
∫
qφ(t | z)qϕ(z | s)dz]2

dϵdα log p(s) (B.9)

−
∫ ∫ qφ(t|g(ϵ))q(ϵ)∇g(α)qφ(t|g(α))∇ϕg(α)q(α)

[
∫
qφ(t | z)qϕ(z | s)dz]2

dϵdα log p(s)

Which subsequently equals zero, leading to our choice of removing this term from

the gradient. We are aware that this approach leads to a biased estimator and

is only applicable under certain conditions, but we empirically observe that it is

essential to training. We plot the resulting SNR ratios for the case when we apply

the stop gradient (blue) and when do not (orange) in Figure B.1.

This modification can be viewed as the control variate strategy below

f̂(z) := f(z)− α(h(z)− Eqϕ(z|s)[h(z)]), (B.10)

with α = 1 and E[f(z)] = E[f̂(z)] as required. Here, the definitions of f(z) and

h(z) are

f(z) = ∇ϕ,φEq(z|s)

q(t|z)
q(t|s) log p(s|z)p(z|t)p(t)

q(z|s)q(t|z)

+∇ϕ,φqφ,ϕ(t | s) (B.11)

h(z) = ∇ϕ,φ

q(t|z)
q(t|s)

 log p(s|z)p(z|t)p(t)
q(z|s)q(t|z) . (B.12)
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Figure B.1: SNR for encoder parameters (Left) and classifier parameters (Right), blue
indicates that we apply the stop gradient in Appendix B.3, orange indicates we do not. A
higher value typically leads to improved learning.

B.4 Weight Sharing
Another critical issue with naïvely training using (B.1), is that in certain situations

qφ(t | z) struggles to learn features (typically style) for t, consequently making it

difficult to generate realistic samples. This is due to the information entering the

latent space only coming from s, which contains all of the information needed to

reconstruct s, but does not necessarily contain the information needed to reconstruct

a corresponding t. Consequently, the term pθ(s | z) will learn appropriate features

(like a standard VAE decoder), but the term qφ(t | z) will fail to do so. In situations

like this, where the information in t is not subsumed by the information in s, there

is no way for the model to know how to reconstruct a t. Introducing weight sharing

into the bidirectional objective (4.2) removes this issue, as there is equal opportunity

for information from both modalities to enter the latent space, consequently enabling

appropriate features to be learned in the decoders pθ(s | z) and pφ(t | z), which

subsequently allow cross generations to be performed.

Furthermore, we also observe that when training with (4.2) we are able to obtain

much more balanced likelihoods Table B.1. In this setting we train two models

separately using (B.1) with s = MNIST and SVHN and then with t = SVHN

and s = MNIST respectively. At test time, we then ‘flip’ the modalities and the

corresponding networks, allowing us to obtain marginal likelihoods in each direction.
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Clearly we see that we only obtain reasonable marginal likelihoods in the direction

for which we train. Training with the bidirectional objective completely removes

this deficiency, as we now introduce a balance between the modalities.

Table B.1: Marginal likelihoods.

Train Direction

Test Direction s = M, t = S s = S, t = M Bi

s = M, t = S −14733.6 −40249.9flip −14761.3
s = S, t = M −428728.7flip −11668.1 −11355.4

B.5 Reusing Approximate Posterior MC Sam-
ple

When approximating qφ,ϕ(t | s) through MC sampling, we find that it is essential

for numerical stability to include the sample from the approximate posterior. Before

considering why, we must first outline the numerical implementation of qφ,ϕ(t | s),

which for K samples z1:K ∼ qϕ(z | s) is computed using the LogSumExp trick

as:

log qφ,ϕ(t | s) ≈ log
K∑
k=1

exp log qφ(t|zk), (B.13)

where the ratio qφ(t|z)
qφ,ϕ(t|s) is computed as exp{log qφ(t | z) − log qφ,ϕ(t | s)}. Given

that the LogSumExp trick is defined as:

log
N∑
n=1

expxn = x∗ + log
N∑
n=1

exp(xn − x∗), (B.14)

where x∗ = max{x1, . . . , xN}. The ratio will be computed as

qφ(t | z)
qφ,ϕ(t | s) = exp{log qφ(t | z)− log qφ(t|z∗)− log

K∑
k=1

exp[log qφ(t|zk)− log qφ(t|z∗)]},

(B.15)

where z∗ = arg maxz1:K
log qφ(t|zk). For numerical stability, we require that

log qφ(t | z) ̸≫ log qφ(t|z∗), otherwise the computation may blow up when taking

the exponent. To enforce this, we need to include the sample z into the LogSumExp

function, doing so will cause the first two terms to either cancel if z = z∗ or yield

a negative value, consequently leading to stable computation when taking the

exponent.
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B.6 Extension beyond the Bi-Modal case
Here we offer further detail on how Mutually supErvised Multimodal VAE (MEME)

can be extended beyond the bi-modal case, i.e. when the number of modalities

M > 2. Note that the central thesis in MEME is that the evidence lower bound

(ELBO) offers an implicit way to regularise different representations if viewed from

the posterior-prior perspective, which can be used to build effective multimodal

DGMs that are additionally applicable to partially-observed data. In MEME, we

explore the utility of this implicit regularisation in the simplest possible manner to

show that a direct application of this to the multi-modal setting would involve the

case where M = 2.

The way to extend, say for M = 3, involves additionally employing an explicit

combination for two modalities in the prior (instead of just 1). This additional

combination could be something like a mixture or product, following from previous

approaches. More formally, if we were to denote the implicit regularisation between

posterior and prior as Ri(., .), and an explicit regularisation function Re(., .), and

the three modalities as m1,m2, and m3, this would mean we would compute

1
3 [Ri(m1, Re(m2,m3)) +Ri(m2, Re(m1,m3)) +Ri(m3, Re(m1,m2))] , (B.16)

assuming that Re was commutative, as is the case for products and mixtures. There

are indeed more terms to compute now compared to M = 2, which only needs

Ri(m1,m2), but note that Ri is still crucial—it does not diminish because we are

additionally employing Re.

As stated in prior work(Suzuki et al., 2016; Wu and Goodman, 2018b; Shi et al.,

2019a), we follow the reasoning that the actual number of modalities, at least

when considering embodied perception, is not likely to get much larger, so the

increase in number of terms, while requiring more computation, is unlikely to

become intractable. Note that prior work on multimodal VAEs also suffer when

extending the number of modalities in terms of the number of paths information

flows through.
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We do not explore this setting empirically as our priary goal is to highlight the

utility of this implicit regularisation for multi-modal DGMs, and its effectiveness at

handling partially-observed data.

B.7 Closed Form expression for Wassertein Dis-
tance between two Gaussians

The Wassertein-2 distance between two probability measures µ and ν on Rn is

defined as

W2(µ, ν) := inf E(||X − Y ||22)
1
2 ,

with X ∼ µ and Y ∼ ν. Given µ = N (m1,Σ1) and ν = N (m2,Σ2), the 2-Wassertein

is then given as

d2 = ||m1 +m2||22 + Tr(Σ1 + Σ2 − 2(Σ
1
2
1 Σ2Σ

1
2
1 ) 1

2 ).

For a detailed proof please see Givens and Shortt (2002).

B.8 Canonical Correlation Analysis
Following Shi et al. (2019a); Massiceti et al. (2018), we report cross-coherence scores

for CUB using Canonical Correlation Analysis (CCA). Given paired observations

x1 ∈ Rn
1 and x2 ∈ Rn

2 , CCA learns projection weights W T
1 ∈ Rn1×k and W T

2 ∈ Rn2×k

which minimise the correlation between the projections W T
1 x1 and W T

2 x2. The

correlations between a data pair {x̃1, x̃2} can thus be calculated as

corr(x̃1, x̃2) = ϕ(x̃1)Tϕ(x̃2)
||ϕ(x̃1)||2||ϕ(x̃2)||2

(B.17)

where ϕ(xn) = W T
n x̃n − avg(W T

n x̃n).

Following Shi et al. (2019a), we use feature extractors to pre-process the data.

Specifically, features for image data are generated from an off-the-shelf ResNet-101

network. For text data, we first fit a FastText model on all sentences, resulting in a

300-d projection for each word (Bojanowski et al., 2017), the representation is then

computed as the average over the words in the sentence.
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Figure B.2: MNIST → SVHN (Left) and SVHN → MNIST (Right), for the fully
observed case.

Figure B.3: MNIST → SVHN (Left) and SVHN → MNIST (Right), when SVHN is
observed 50% of the time.
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Figure B.4: MNIST → SVHN (Left) and SVHN → MNIST (Right), when MNIST is
observed 50% of the time.

Figure B.5: MNIST → SVHN (Left) and SVHN → MNIST (Right), when SVHN is
observed 25% of the time.
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Figure B.6: MNIST → SVHN (Left) and SVHN → MNIST (Right), when MNIST is
observed 25% of the time.

Figure B.7: MNIST → SVHN (Left) and SVHN → MNIST (Right), when SVHN is
observed 12.5% of the time.
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Figure B.8: MNIST → SVHN (Left) and SVHN → MNIST (Right), when MNIST is
observed 12.5% of the time.

B.9 Additional Results
B.9.1 MVAE Latent Accuracies

The superior accuracy in latent accuracy when classifying MNIST from MVAE is

due to a complete failure to construct a joint representation, which is evidenced in

its failure to perform cross-generation. Failure to construct joint representations

aids latent classification, as the encoders just learn to construct representations for

single modalities, this then provides more flexibility and hence better classification.

In Figure B.10, we further provide a t-SNE plot to demonstrate that MVAE places

representations for MNIST modality in completely different parts of the latent space

to SVHN. Here we can see that representations for each modality are completely

separated, meaning that there is no shared representation. Furthermore, MNIST is

well clustered, unlike SVHN. Consequently it is far easier for the classifier to predict

the MNIST digit as the representations do not contain any information associated

with SVHN.

B.9.2 Generative Capability

We report the mutual information between the parameters ω of a pre-trained classifier

and the labels y for a corresponding reconstruction x. The mutual information
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Table B.2: Coherence Scores for MNIST → SVHN (Top) and for SVHN → MNIST
(Bottom). Subscript indicates which modality is always present during training, f indicates
the percentage of matched samples. Higher is better.

MNIST → SVHN

Model f = 1.0 f = 0.5 f = 0.25 f = 0.125 f = 0.0625

MEMESVHN 0.625 ± 0.007 0.551 ± 0.008 0.323 ± 0.025 0.172 ± 0.016 0.143 ± 0.009
MMVAESVHN 0.581 ± 0.008 - - - -

MVAESVHN 0.123 ± 0.003 0.110 ± 0.014 0.112 ± 0.005 0.105 ± 0.005 0.105 ± 0.006

MEMEMNIST 0.625 ± 0.007 0.572 ± 0.003 0.485 ± 0.013 0.470 ± 0.009 0.451 ± 0.011
MMVAEMNIST 0.581 ± 0.008 - - - -

MVAEMNIST 0.123 ± 0.003 0.111 ± 0.007 0.112 ± 0.013 0.116 ± 0.012 0.116 ± 0.005

MEMESPLIT 0.625 ± 0.007 0.625 ± 0.008 0.503 ± 0.008 0.467 ± 0.013 0.387 ± 0.010
MVAESPLIT 0.123 ± 0.003 0.108 ± 0.005 0.101 ± 0.005 0.101 ± 0.001 0.101 ± 0.002

SVHN → MNIST

Model f = 1.0 f = 0.5 f = 0.25 f = 0.125 f = 0.0625

MEMESVHN 0.752 ± 0.004 0.726 ± 0.006 0.652 ± 0.008 0.557 ± 0.018 0.477 ± 0.012
MMVAESVHN 0.735 ± 0.010 - - - -

MVAESVHN 0.498 ± 0.100 0.305 ± 0.011 0.268 ± 0.010 0.220 ± 0.020 0.188 ± 0.012

MEMEMNIST 0.752 ± 0.004 0.715 ± 0.003 0.603 ± 0.018 0.546 ± 0.012 0.446 ± 0.008
MMVAEMNIST 0.735 ± 0.010 - - - -

MVAEMNIST 0.498 ± 0.100 0.365 ± 0.014 0.350 ± 0.008 0.302 ± 0.015 0.249 ± 0.014

MEMESPLIT 0.752 ± 0.004 0.718 ± 0.002 0.621 ± 0.007 0.568 ± 0.014 0.503 ± 0.001
MVAESPLIT 0.498 ± 0.100 0.338 ± 0.013 0.273 ± 0.003 0.249 ± 0.019 0.169 ± 0.001

gives us an indication of the amount of information we would gain about ω for a

label y given x, this provides an indicator to how out-of-distribution x is. If x is a

realistic reconstruction, then there will be a low MI, conversely, an un-realistic x

will manifest as a high MI as there is a large amount of information to be gained

about ω. The MI for this setting is given as

I(y, ω | x,D) = H[p(y | x,D)]− Ep(ω|D) [H[p(y | x, ω)]] .

Rather than using dropout (Gal, 2016; Smith and Gal, 2018) which requires an

ensemble of multiple classifiers, we instead replace the last layer with a sparse

variational GP. This allows us to estimate p(y | x,D) =
∫
p(y | x, ω)p(ω | D)dω

using Monte Carlo samples and similarly estimate Ep(ω|D) [H[p(y | x, ω)]]. We display

the MI scores in Table B.5, where we see that our model is able to obtain superior

results.
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Table B.3: Latent Space Linear Digit Classification.

MNIST

Model 1.0 0.5 0.25 0.125 0.0625

MEMESVHN 0.908 ± 0.007 0.881 ± 0.006 0.870 ± 0.007 0.815 ± 0.005 0.795 ± 0.010
MMVAESVHN 0.886 ± 0.003 - - - -

MVAESVHN 0.892 ± 0.005 0.895 ± 0.003 0.890 ± 0.003 0.887 ± 0.004 0.880 ± 0.003

OursMNIST 0.908 ± 0.007 0.882 ± 0.003 0.844 ± 0.003 0.824 ± 0.006 0.807 ± 0.005
MMVAEMNIST 0.886 ± 0.003 - - - -

MVAEMNIST 0.892 ± 0.005 0.895 ± 0.002 0.898 ± 0.004 0.896 ± 0.002 0.895 ± 0.002

MEMESPLIT 0.908 ± 0.007 0.914 ± 0.003 0.893 ± 0.005 0.883 ± 0.006 0.856 ± 0.003
MVAESPLIT 0.892 ± 0.005 0.898 ± 0.005 0.895 ± 0.001 0.894 ± 0.001 0.898 ± 0.001

SVHN

Model 1.0 0.5 0.25 0.125 0.0625

MEMESVHN 0.648 ± 0.012 0.549 ± 0.008 0.295 ± 0.025 0.149 ± 0.006 0.113 ± 0.003
MMVAESVHN 0.499 ± 0.045 - - - -

MVAESVHN 0.131 ± 0.010 0.106 ± 0.008 0.107 ± 0.003 0.105 ± 0.005 0.102 ± 0.001

OursMNIST 0.648 ± 0.012 0.581 ± 0.008 0.398 ± 0.029 0.384 ± 0.017 0.362 ± 0.018
MMVAEMNIST 0.499 ± 0.045 - - - -

MVAEMNIST 0.131 ± 0.010 0.106 ± 0.005 0.106 ± 0.003 0.107 ± 0.005 0.101 ± 0.005

MEMESPLIT 0.648 ± 0.012 0.675 ± 0.004 0.507 ± 0.003 0.432 ± 0.011 0.316 ± 0.020
MVAESPLIT 0.131 ± 0.010 0.107 ± 0.003 0.109 ± 0.003 0.104 ± 0.007 0.100 ± 0.008

B.9.3 t-SNE Plots When Partially Observing both Modali-
ties

In Figure B.11 we can see that partially observing MNIST leads to less structure in

the latent space.

B.10 MMVAE baseline with Laplace Posterior
and Prior

The difference in results between our implementation of MVAE and the ones in the

paper (Shi et al., 2019a), is becuase we restrict MEME to use Gaussian distributions

for the posterior and prior, and therefore we adopt Gaussian posteriors and priors

for all three models to ensure like-for-like comparison. Better results for MMVAE

can be obtained by using Laplace posteriors and priors, and In Table B.6 we display

coherence scores using our implementation of MMVAE using a Laplace posterior

and prior. Our implementation is inline with the results reported in Shi et al.

(2019a), indicating that the baseline for MMVAE is accurate.
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Table B.4: Correlation Values for CUB cross generations. Higher is better.

Image → Captions

Model GT f = 1.0 f = 0.5 f = 0.25 f = 0.125

MEMEImage 0.106 ± 0.000 0.064 ± 0.011 0.042 ± 0.005 0.026 ± 0.002 0.029 ± 0.003
MMVAEImage 0.106 ± 0.000 0.060 ± 0.010 - - -

MVAEImage 0.106 ± 0.000 -0.002 ± 0.001 -0.000 ± 0.004 0.001 ± 0.004 -0.001 ± 0.005

MEMECaptions 0.106 ± 0.000 0.064 ± 0.011 0.062 ± 0.006 0.048 ± 0.004 0.052 ± 0.002
MMVAECaptions 0.106 ± 0.000 0.060 ± 0.010 - - -

MVAECaptions 0.106 ± 0.000 -0.002 ± 0.001 -0.000 ± 0.004 0.000 ± 0.003 0.001 ± 0.002

MEMESPLIT 0.106 ± 0.000 0.064 ± 0.011 0.046 ± 0.005 0.031 ± 0.006 0.027 ± 0.005
MVAESPLIT 0.106 ± 0.000 -0.002 ± 0.001 0.000 ± 0.003 0.000 ± 0.005 -0.001 ± 0.003

Caption → Image

Model GT f = 1.0 f = 0.5 f = 0.25 f = 0.125

MEMEImage 0.106 ± 0.000 0.074 ± 0.001 0.058 ± 0.002 0.051 ± 0.001 0.046 ± 0.004
MMVAEImage 0.106 ± 0.000 0.058 ± 0.001 - - -

MVAEImage 0.106 ± 0.000 -0.002 ± 0.001 -0.002 ± 0.000 -0.002 ± 0.001 -0.001 ± 0.001

OursCaptions 0.106 ± 0.000 0.074 ± 0.001 0.059 ± 0.003 0.050 ± 0.001 0.053 ± 0.001
MMVAECaptions 0.106 ± 0.000 0.058 ± 0.001 - - -

MVAECaptions 0.106 ± 0.000 0.002 ± 0.001 -0.001 ± 0.002 -0.003 ± 0.002 -0.002 ± 0.001

MEMESPLIT 0.106 ± 0.000 0.074 ± 0.001 0.061 ± 0.002 0.047 ± 0.003 0.049 ± 0.003
MVAESPLIT 0.106 ± 0.000 -0.002 ± 0.001 -0.002 ± 0.002 -0.002 ± 0.001 -0.002 ± 0.001

B.11 Ablation Studies

Here we carry out two ablation studies to test the hypotheses: 1) How sensitive

is the model to the number of pseudo samples in λ and 2) What is the effect of

training the model using only paired data for a given fraction of the dataset.

B.11.1 Sensitivity to number of pseudo-samples

In Figure B.12 we plot results where the number of pseudo samples is varied for

different observation rates. Ideally we expect to see the results decrease in their

performance as the number of pseudo-samples is minimised. This is due to the

number of components being present in the mixture pλt(z) = 1
N

∑N
i=1 pψ(z | ut

i ),

also being decreased, thus reducing the its ability to approximate the true prior

p(z) =
∫

t pϑ(z | t)p(t)dt. As expected lower observation rates are more sensitive,

due to a higher dependence on the prior approximation, and a higher number of

pseudo samples typically leads to better results.
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Table B.5: Mutual Information Scores. Lower is better.

MNIST

Model 1.0 0.5 0.25 0.125 0.0625

OursSVHN 0.075 ± 0.002 0.086 ± 0.003 0.101 ± 0.002 0.102 ± 0.004 0.103 ± 0.001
MMVAESVHN 0.105 ± 0.004 - - - -

MVAESVHN 0.11 ± 0.00551 0.107 ± 0.007 0.106 ± 0.004 0.106 ± 0.012 0.142 ± 0.007

OursMNIST 0.073 ± 0.002 0.087 ± 0.001 0.101 ± 0.001 0.099 ± 0.001 0.104 ± 0.002
MMVAEMNIST 0.105 ± 0.004 - - - -

MVAEMNIST 0.11 ± 0.00551 0.102 ± 0.00529 0.1 ± 0.00321 0.1 ± 0.0117 0.0927 ± 0.00709

MEMESPLIT 0.908 ± 0.007 0.914 ± 0.003 0.893 ± 0.005 0.883 ± 0.006 0.856 ± 0.003
MVAESPLIT 0.11 ± 0.00551 0.104 ± 0.006 0.099 ± 0.003 0.1 ± 0.0117 0.098 ± 0.005

SVHN

Model 1.0 0.5 0.25 0.125 0.0625

OursSVHN 0.036 ± 0.001 0.047 ± 0.002 0.071 ± 0.003 0.107 ± 0.007 0.134 ± 0.003
MMVAESVHN 0.042 ± 0.001 - - - -

MVAESVHN 0.163 ± 0.003 0.166 ± 0.010 0.165 ± 0.003 0.164 ± 0.004 0.176 ± 0.004

OursMNIST 0.036 ± 0.001 0.048 ± 0.001 0.085 ± 0.006 0.111 ± 0.004 0.142 ± 0.005
MMVAEMNIST 0.042 ± 0.001 - - - -

MVAEMNIST 0.163 ± 0.003 0.175 ± 0.00551 0.17 ± 0.0102 0.174 ± 0.012 0.182 ± 0.00404

MEMESPLIT 0.648 ± 0.012 0.675 ± 0.004 0.507 ± 0.003 0.432 ± 0.011 0.316 ± 0.020
MVAESPLIT 0.163 ± 0.003 0.165 ± 0.01 0.172 ± 0.015 0.173 ± 0.013 0.179 ± 0.005

Table B.6: Coherence Scores for MMVAE using Laplace posterior and prior.

MNIST SVHN
91.8% 65.2%

B.11.2 Training using only paired data

Here we test the models ability to leverage partially observed data to improve the

results. If the model is successfully able to leverage the partially observed samples,

then we should see a decrease in the efficacy if we train the model using only paired

samples, i.e. a model trained with 25% paired and 75% partially observed should

perform improve the results over a model trained with only the 25% paired data.

In other words we omit, the first two partially observed terms in (4.5), discarding

Ds and Dt. In Figure B.13 we can see that the model is able to use the partially

observed modalities to improve its results.

B.12 Training Details
MNIST-SVHN We provide the architectures used in Table B.7b and Table B.7a.

We used the Adam optimizer with a learning rate of 0.0005 and beta values of
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(0.9, 0.999) for 100 epochs, training consumed around 2Gb of memory.

CUB We provide the architectures used in Table B.7c and Table B.7d. We used

the Adam optimizer with a learning rate of 0.0001 and beta values of (0.9, 0.999)

for 300 epochs, training consumed around 3Gb of memory.
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Encoder Decoder

Input ∈ R1x28x28 Input ∈ RL

FC. 400 ReLU FC. 400 ReLU
FC. L, FC. L FC. 1 x 28 x 28 Sigmoid

(a) MNIST dataset.
Encoder

Input ∈ R1x28x28

4x4 conv. 32 stride 2 pad 1 & ReLU
4x4 conv. 64 stride 2 pad 1 & ReLU
4x4 conv. 128 stride 2 pad 1 & ReLU
4x4 conv. L stride 1 pad 0, 4x4 conv. L stride 1 pad 0

Decoder

Input ∈ RL

4x4 upconv. 128 stride 1 pad 0 & ReLU
4x4 upconv. 64 stride 2 pad 1 & ReLU
4x4 upconv. 32 stride 2 pad 1 & ReLU
4x4 upconv. 3 stride 2 pad 1 & Sigmoid

(b) SVHN dataset.
Encoder Decoder

Input ∈ R2048 Input ∈ RL

FC. 1024 ELU FC. 256 ELU
FC. 512 ELU FC. 512 ELU
FC. 256 ELU FC. 1024 ELU
FC. L, FC. L FC. 2048

(c) CUB image dataset.
Encoder

Input ∈ R1590

Word Emb. 256
4x4 conv. 32 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 conv. 64 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 conv. 128 stride 2 pad 1 & BatchNorm2d & ReLU
1x4 conv. 256 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
1x4 conv. 512 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
4x4 conv. L stride 1 pad 0, 4x4 conv. L stride 1 pad 0

Decoder

Input ∈ RL

4x4 upconv. 512 stride 1 pad 0 & ReLU
1x4 upconv. 256 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
1x4 upconv. 128 stride 1x2 pad 0x1 & BatchNorm2d & ReLU
4x4 upconv. 64 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 32 stride 2 pad 1 & BatchNorm2d & ReLU
4x4 upconv. 1 stride 2 pad 1 & ReLU
Word Emb.T 1590

(d) CUB-Language dataset.

Table B.7: Encoder and decoder architectures.
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Fully observed.

this is a white bird with a
wings and and black beak.

a grey bird with darker
brown mixed in and a short
brown beak.

a small brown bird with a
white belly.

yellow bird with a black
and white wings with a
black beak.

Captions observed 50% of the time.
than a particular a wings a
with and wings has on
yellow.

the bird has two large ,
grey wingbars , and orange
feet.

below a small has has that
bill yellow and.

yellow bird with a black
and white wings with a
black beak.

Images observed 50% of the time.
blacks this bird has has
that are that and has a
yellow belly.

tiny brown bird with white
breast and a short stubby
bill.

bird this bird has red with
bird with a a and a pointy.

this is a yellow bird with
a black crown on its head.

Captions observed 25% of the time.

throat a is is yellow with
yellow gray chest has
medium belly belly throat.

this is a puffy bird with a
bright yellow chest with
white streaks along the
feathers.

bird green small has crown
as wing crown white white
abdomen and crown and and.

this bird has a small bill
with a black head and wings
but white body.

Images observed 25% of the time.
crest this small with
looking with a brown with a
and face body.

the bird had a large white
breast in <exc> to its head
size.

rotund white bill large
bird , brown black back
mostly with with breast
flying.

this bird has a black belly
, breast and head , gray
and white wings , and red
tarsus and feet.

Captions observed 12.5% of the time.
a the bird wings a is and
nape the and , crown ,
rectrices grey , , beak its
and , a tail.

white belly with a brown
body and a very short ,
small brown beak.

red this bird skinny black
black crown red feet beak
downwards short and a.

a bird with a short ,
rounded beak which ends in
a point , stark white eyes
, and white throat.

Images observed 12.5% of the time.
an a is colorful bird ,
short with and black and
crown small short orange
light small light over.

small bird with a long beak
and blue wing feathers with
brown body.

a this is white a all is
with flat beak and black a
, ’s a curved for light has
a body is.

this is a large black bird
with a long neck and bright
orange cheek patches.

Figure B.9: MEME cross-modal generations for CUB.
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Figure B.10: T-SNE plot indicating the complete failure of MVAE to construct
joint representations. s indicates SVHN (low transparency), m indicates MNIST (high
transparency).

Figure B.11: f = 0.25, Left) t-SNE when partially observing MNIST. Right) t-SNE
when partially observing SVHN.
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Figure B.12: How performance varies for different numbers of psuedo samples. Number
of pseudo samples ranges from 1 to 100 on the x axis.



B. Appendix: MEME 159

Figure B.13: How performance varies when training using only a fraction of the partially
observed data.



C
Appendix: Adaptive Temperature Scaling

C.1 Gradient of Network Weights
Consider the last layer of a Neural Network with parameters w and the cross entropy

loss L : RK → R. The gradient of the parameters is given as ∂L
∂w

= ∂s
∂w

∂σ(s)
∂s

∂L
∂σ(s) ,

where

∂L
∂σ(sk)

= − qk
σ(sk)

(C.1)

∂σ(sk)
∂sj

= σ(sk)(δjk − σ(sj)). (C.2)

the gradient for the last layers is thus given as

∂L
∂w

= ∂s
∂w

(σ(s)− q), (C.3)

where σ(s)− q = {σ(sj)− qj : j ∈ {1 . . . K}.

C.2 Predictions are unaffected by temperature
In neural network classification problems, the parameters of the Categorical distri-

bution are obtained through the Softmax operator

σ(s) =
exp ( s

T
)∑

i exp ( si
T

) ,

160
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with the predicted class given as k̃ = arg maxk σ(sk). The temperature value has

no effect on the resulting prediction

arg max
k

σ(sk) = arg max
k

sk
T

(C.4)

= arg max
k

sk. (C.5)

Hence, the value of T does not affect the class prediction.

C.3 Gradient of Temperature
The gradient of the loss w.r.t the temperature is ∂L

∂T
= ∂p

∂T
∂L
p

T . The gradient of the

individual class probabilities from the softmax output is

∂pk
∂T

=
∑
i exp ( si

T
) ∂
∂T

exp ( sk
T

)(∑
i exp ( si

T
)
)2 −

exp ( sk
T

)∑k
∂
∂T

exp ( sk
T

)(∑
i exp ( si

T
)
)2

= σ(sk)
T 2

(∑
i\k

si exp (si
T

)− sk exp (si
T

)
)
.

Given that ∂L
∂σ(sk) = − qk

σ(sk) , using the chain rule we have

∂L
∂T

=
∑
k

qk
T 2

(
sk
∑
i\k

exp
(
si
T

)
−
∑
j\k

sj exp
(
sj
T

))
, (C.6)

thus concluding the proof.

C.4 Corruptions
We display additional plots for how AdaECE varies with corruption strength for

CIFAR10-C in Figure C.1, where we can see that adaptive temperature scaling

consistently obtains better results than vanilla temperature scaling.

C.5 Temperature Values
We display the average temperature values in Table C.1, here we see that adap-

tive temperature obtains a similar average temperature to vanilla temperature

scaling.

C.6 Training Details
We followed standard training protocols when training the neural networks. Models

trained on CIFAR-10/CIFAR-100 required 350 epochs, with an initial learning
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Figure C.1: Additional plots for how AdaECE varies with corruption strength for
CIFAR10-C.
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Network Dataset Avg. Temp
Vanilla Adaptive

ResNet50
CIFAR-10 1.484 ± 0.123 1.506 ± 0.296
CIFAR-100 1.398 ± 0.034 1.313 ± 0.076

TinyImageNet 1.296 ± 0.234 1.131 ± 0.179

WideResNet2810
CIFAR-10 1.310 ± 0.035 1.294 ± 0.072
CIFAR-100 1.220 ± 0.010 1.134 9

TinyImageNet 1.174 ± 0.084 1.017 ± 0.117

Table C.1: Average temperature values for neural different models.

rate of 0.1, the learning rate was decreased by a factor of 10 at the milestones 150

and 250 epochs. Models trained on TinyImageNet required 100 epochs, with an

initial learning rate of 0.1, the learning rate was decreased by a factor of 10 at the

milestones 43 and 72 epochs.
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