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Abstract

A three-step kinetics scheme is used to model chain-branching reactions but also thermal 

reactions that are traditionally modelled using a one-step scheme. The chain-branching 

crossover temperature Tb is adjusted to accommodate for the different reaction types. 

Two main scenarios are considered: a homogeneous reactive gas in a closed vessel, and 

the initiation of detonation waves in a tube induced by a shock that is driven either 

by a piston or a contact. In the homogeneous scenario, the reaction behaves more and 

more like a chain-branching reaction the smaller Tb is below the initial temperature 

(unity in our non-dimensionalized scales). For Tb > 1 however, heat is released from 

the outset, and the reaction proceeds in a thermal manner similar to what occurs with 

one-step schemes. It is shown how the three-step scheme can be matched to widely 

used two-step and one-step models in the cases Tb < 1 and Tb > 1 respectively. With 

piston-driven shock-induced detonations and for Tb — 1 sufficiently large, we reproduce 

situations similar to those which occur with one-step thermal schemes. For Tb ~ 1, 

both thermal and chain-branching effects are witnessed. With Tb sufficiently below unity, 

chain-branching is very prominent from the outset, and since no secondary shock is formed, 

the situation is unlike what usually occurs with one-step thermal schemes, but is in good 

agreement with predictions of a simplified two-step chain-branching model. The major 

qualitative difference when using an acoustically permeable contact discontinuity to drive 

the shock instead of a piston occurs when Tb — 1 is sufficiently large, where we witness 

the temperature maximum and the fuel minimum move away from the driving surface.
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Chapter 1

INTRODUCTION

1.1 Thermal and Chain-Branching Explosions

When talking about explosions, one usually envisages a chemical reaction of utmost 

brevity, ignited by an external device (e.g. electric spark, flame) and resulting in a large 

release of thermal energy. Spontaneous explosions, however, occur without the aid of ex­

ternal initiating devices. These are either thermal explosions (whereby the heat generated 

is the main contributor in the increase of the rate of reaction, thereby generating more 

heat, and so on) or branched-chain explosions. Although the main focus of this work is 

on branched-chain explosions, I will also consider situations, using the same model, where 

very little chain-branching occurs and so the reaction is actually thermal.

A branched-chain explosion is one where the fuel is converted into stable products 

via intermediary reactions (known as propagation reactions). Fuel is transformed into 

chain carriers (sometimes referred to as radicals) in the initiation reaction, which are then 

either involved in propagation and branching reactions which create more chain carriers, 

or are converted into stable products via termination or recombination reactions. It is 

the competition between these propagation and termination reactions that determines the 

type of explosion. If the conditions are right for propagation to be dominant, then we end 

up with a branched-chain explosion, otherwise we may well witness a thermal explosion 
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instead.

Probably the most common example used when describing branched-chain reactions 

is that of Hydrogen-Oxygen combustion. The most important steps of which are

1. Initiation

H2,O2,M H,O or OH (1.1)

2. Propagation and Branching

H + O2 OH + O (1.2)

O + H2 OH + H (1.3)

OH + H2 -> H2O + H (1.4)

3. Termination

H + H + M -» H2 + M (1.5)

H + OH + M H2O + M (1.6)

H + O2 + M -> HO2 + M (1.7)

(M is any of the other species present) [1].

The initiation reaction converts fuel into chain carriers (in the above example this 

corresponds to H2 and O2 molecules being converted into H and O atoms and the hy­

droxyl radical OH in equation (1.1)). The propagation reaction then combines these chain 

carriers with remaining fuel to produce more chain carriers. If, as in hydrogen-oxygen 

combustion, there is a net increase in the number of chain carriers, then we call this a 

branching propagation reaction. In one cycle of the above branching reactions, one H 

atom results in two H atoms (i.e. a net increase of one), and hence in a chain of only 

fifty cycles each original H atom grows to 250 or about 1015 H atoms! Of course there 
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must be an inhibitor to this growth in chain carriers, and this is partly achieved by the 

termination reaction which converts chain carriers into stable products (such as H2O in 

equation (1.6)). Branching is of course also inhibited by the amount of fuel left, but 

which process of inhibition is most dominant or which one starts first will depend on the 

parameters in the problem.

Prior to 1965, thermal and chain-branching explosions were treated quite indepen­

dently [2], Thermal reactions were regarded as driven strictly by the self-heating produced 

by the exothermicity of the reactions. On the other hand, chain-branching explosions were 

modelled as isothermal phenomena, and autocatalysis occurred strictly because of the for­

mation of highly reactive chain carriers which can react to produce more such species. 

Neither type models most chemical reactions in fuels such as Hydrogen-Oxygen and hy­

drocarbon mixtures very well, and in 1965 Gray and Yang [2] initiated the modern studies 

of a unified theory which recognizes that when branching reaction rates become apprecia­

ble, some self-heating is inevitable. Their work concentrated on criticality issues rather 

than the time histories of the reactants and the temperature, and contained a phase plane 

analysis which was used to study singular points in the temperature-chain carrier plane. 

Nowadays, when chain-branching reactions are considered, the termination reaction is 

regarded as highly exothermic and dependant upon chain carrier concentration, as is the 

case in reality [1, 3, 6, 7, 11, 13].

It is characteristic that the rate coefficients for chemical reactions depend strongly and 

nonlinearly on the temperature. According to the Arrhenius law [3], this temperature 

dependence is described by

where A is a pre-exponential frequency factor, R is the universal gas constant, and E is 

the activation energy of the reaction and corresponds to an energy barrier which has to 

be overcome. Although in general, A is actually a function of the temperature T, it is 

sufficient for most purposes in combustion to regard it as a constant [3]. E tends to be 
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very large for initiation and branching reactions, and so much work on combustion (in­

cluding part of this work) exploits this fact by tackling the equations using high activation 

energy asymptotics. Termination reactions on the other hand tend to have a very small 

temperature dependence, and as such k is either made a constant or is made to depend 

algebraically on T rather than exponentially for such reactions [4].

Thermal reactions are typically modelled using one-step Arrhenius kinetics, which sees 

fuel F being converted into stable products P in a single first-order reaction

F-^P. (1.9)

Most work in the field of combustion theory has, especially in the past, concentrated on 

the one-step scheme. Such work was, and still is, instrumental in the advancement of 

the theory of combustion and in the development of diagnostic tools to help analyse the 

results, such as the use of ‘pressure against specific volume’ phase planes [5] which we use 

to classify the evolution to detonation. In practise however, most chemical reactions which 

are of interest cannot be accurately modelled using one-step kinetics, but require some 

type of chain-branching mechanism to capture the essential features of these reactions. 

The initiation, branching and termination steps of chain-branching reactions mentioned 

above are typically modelled using the following general three-step scheme [6, 7, 8] , which 

I too shall use.

1. Initiation

F^Y (1.10)

2. Branching

F + Y^2Y (1.11)

3. Termination

Y^P (1.12)
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Here Y represents chain carriers and Rj, RB and Rc represent the specific reaction rates 

for the reaction steps (1.10), (1.11) and (1.12), respectively. Initiation and termination are 

represented by first order equations, whereas branching requires a second order equation 

since it can only occur with the collision of fuel and chain carrier particles. We notice a 

net increase of one chain carrier in the branching reaction.

Probably the most important feature in most chemical explosions is the existence of 

an ignition-delay time or induction time which is the time it takes for a spontaneous 

explosion to occur for given initial values of temperature, pressure and chemical composi­

tion. This time can be as long as several hours or as short as microseconds, during which 

there is a slow buildup of chain carriers formed by the initiation reaction from fuel. Part 

of this work will be concerned with determining induction times for various values of the 

chain-branching crossover temperature TB, which is the temperature at which the chain­

branching reaction rate is of the same order as the termination reaction rate. If enough 

chain carriers are produced to kick-start the branching reaction and the termination re­

action cannot consume the chain carriers at a fast enough rate, then a chain-branching 

explosion occurs which sees the fuel being converted into chain carriers at an exponentially 

large rate. Unlike thermal explosions though, this branching explosion does not release 

significant amounts of heat. Practically all the heat release occurs after the branching 

explosion in a zone dominated by the strongly exothermic termination reaction which 

converts the chain carriers into stable products. See figure 1.1.

The initiation and branching reactions are roughly thermally neutral, but some heat 

is still released in the induction and branching zones by the termination reaction (1.12). 

This heat release however is very small compared to that which occurs after the chain­

branching explosion when chain carrier concentration reaches its peak.

As mentioned earlier, it is the competition between the branching and termination 

reactions which determines the outcome of the reaction. If branching dominates (at 

least for a while) then a chain-branching explosion may well occur. If it is weak, then

5



Figure 1.1: Time behaviour of a typical chain-branching explosion in an adiabatic system

Zone 
(explosion)

the termination reaction will simply consume any chain carriers as soon as they are 

produced. The result will then be that the chain-branching explosion is suppressed, 

delayed or eliminated altogether. If the branching reaction is very weak, then a chain­

branching explosion will not occur, and the outcome will be more like a thermal explosion 

as in figure 1.2. Here, we no longer have the three distinct zones typical of chain-branching 

explosions. Instead, the induction zone is now releasing heat, and the explosion (i.e. the 

rapid consumption of fuel) results not in the buildup of chain carriers but in the rapid 

buildup of products and in the associated rapid heat release.

The Tb parameter described earlier will potentially allow me to describe reactive sys­

tems varying from the nearly purely chain-branching to the nearly purely thermal.

This thesis will investigate chain-branching explosions in three parts: the homoge­

neous, closed vessel scenario, piston-driven shock-induced initiation of detonation waves, 

and contact-driven shock-induced initiation of detonation waves.
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Figure 1.2: Time behaviour of a typical thermal explosion in an adiabatic system

1.2 Homogeneous explosions

To best understand how chain-branching explosions develop, I shall begin by investigat­

ing them in a spatially homogeneous reactive mixture inside a constant volume closed 

adiabatic vessel. The notion of a well-stirred closed vessel implies that the whole volume 

is simultaneously involved and hence we can disregard propagating combustion waves [3]. 

Such setups but with heat loss to the cooler vessel wall were first considered for ther­

mal explosions by Semenov [9] in 1935, and later by Frank-Kamenetskii [10] in 1955. 

Semenov’s work assumed uniform (i.e. homogeneous) temperatures throughout the ves­

sel and a Newtonian heat transfer law, whereas Frank-Kamenetskii considered the more 

realistic law of Fourier that allows for diffusion of heat to the vessel wall, and hence 

non-uniform temperatures.

Homogeneous chain-branching explosions were dealt with in 1978 by Kapila [11] in 

an attempt to develop a theory analogous to that of Kassoy’s [12] complete solution 

to the thermal explosion problem two years earlier. Both pieces of work treated the 

problem asymptotically in the realistic limit of high activation energy. Kapila’s work 
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gave a complete time history of the chain-branching explosion and also derived a critical 

value of a parameter based on the branching rate relative to the termination rate, below 

which a fizzle reaction occurs and beyond which an explosion occurs. The time history of 

the explosion is shown to consist of the three temporal zones described earlier. Kapila, 

however, does not use the three-step scheme already mentioned but does away with the 

initiation reaction after assuming that a small concentration of chain carriers is already 

present in the starting mixture.

The effects of dissociation (breaking up of the stable species produced by the propa­

gation reactions) and the effects of the subsequent recombination (reverse of dissociation) 

were included by Birkan and Kassoy [1] in a five-step kinetic scheme. In Hydrogen-Oxygen 

combustion, these added reactions can be written as

H7O,H7,M ILOHJIO^ (1.13)

where dissociation is the forward reaction and recombination the reverse. Using data 

from a typical Hydrogen-Oxygen system at a temperature of 500K, they calculate from 

their results a long induction time of about 0.3ms, a brief chain-branching explosion time 

of about 0.06/zs and a heat release zone of about 1.2/rs. Major dissociation only comes 

into effect about 20/is after the temperature reaches nearly its maximum value, owing to 

the very high activation energy of the dissociation reaction. The recombination process 

only becomes important when the temperature approaches the final equilibrium state, 

which is found to be much less than the maximum attainable temperature due to the 

endothermicity of the dissociation reaction.

More recently in 2000, Bonilla et al. [13] investigated chain-branching explosions using 

the ratio e of the characteristic chemical time of the short branching zone to that of the 

long termination zone as an asymptotically small parameter. They argue that this is a 

more natural choice than Kapila’s high activation energy analysis (where the small param­

eter is scaled directly with the initial temperature) when dealing with initial temperatures 
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sufficiently above the branching crossover temperature. Like Kapila’s approach, they use 

a two-step scheme by assuming an arbitrarily small initial chain carrier concentration z/, 

but explain that for more accuracy in the limit s —> 0 they need an additional straining 

of the time coordinate when v is very small.

Currently in review, is a paper by Blythe, Kapila and Short [14] that considers the full 

three-step homogeneous problem for various values of the TB parameter in the asymptotic 

limit of high activation energy. Although focus is primarily on values of TB at and close 

to the initial temperature (i.e. TB = 1, 1 + e, 1 + eln(e), where c is the inverse acti­

vation energy of the branching reaction), they also consider the two more general cases, 

Tb — 1 = 0(1) < 0 and TB — 1 = 0(1) > 0 as e —> 0, that we have also considered here. 

A basic conclusion that can be drawn from their work is that both thermal and chain­

branching effects are witnessed in the explosion region of the solution for values of TB 

close to unity. For TB sufficiently far below or above unity, both this thesis and Blythe et 

al. find that the reaction proceeds in a predominantly chain-branching or predominantly 

thermal manner, respectively. All the homogeneous problem asymptotics presented in 

this thesis were carried out independently before the Blythe et al. paper was submitted.

In chapter 2, I shall investigate homogeneous explosions from initiation up until ter­

mination when the temperature reaches its maximum, using a combination of numerics 

and asymptotics. I shall give complete time histories of the reactions, determine the time 

to explosion and compare my numerical results with the asymptotics where they exist. 

Like Kapila [11], I shall use the large activation energy of the branching reaction as an 

asymptotically large parameter. However, since I will be using a three-step scheme (as 

opposed to Kapila’s two-step scheme) I will use the large activation energy of the initia­

tion reaction as another asymptotically large parameter, but one that is much larger than 

that of the branching reaction (as tends to be the case in reality [3]). Like Kapila [11] but 

unlike Birkan and Kassoy [1], I shall disregard the effects of dissociation and recombina­
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tion. Both these reactions have activation energies which are so large that by the time 

the temperature becomes sufficiently high the chain explosion (if any) will have already 

occurred.

An important aspect of this present work, as already mentioned, is the ability to 

accommodate for different reactions which vary from the nearly purely chain-branching 

to the nearly purely thermal. As we shall see, this can be done by adjusting the branching 

crossover temperature TB appropriately. A matching procedure will also be carried out 

to match parameters from our three-step model to those from the widely used one-step 

and two-step models where it is appropriate to do so.

1.3 Shock-induced initiation of detonations

A shock wave, as the term suggests, is a wave where there are sudden and large changes 

across the wave front. These changes are in the temperature, pressure, density and fluid 

velocity of the supporting medium which in our case is a reactive gas, but is just as 

applicable in condensed phase explosives. Shock waves are very different to ordinary sound 

or acoustic waves, for which there are only small amplitude longitudinal displacements of 

molecules, no net flow of gas and where any physical changes in the gas are small and 

reversible. The velocity of such acoustic waves, termed the local sound speed of the gas, is 

determined by the collision rate between the gas molecules and so is primarily determined 

by the temperature of the gas [15].

A different situation arises when a disturbance is driven through the gas at a speed 

larger than the local molecular velocity. Analogous to the formation of a bow-wave in 

front of a ship, pressure, temperature and density all build up ahead of the disturbance 

or wave front. Such a wave is known as a shock wave. The driving mechanism might be 

a solid piston travelling at some constant velocity into the gas (chapter 3) or a contact 

discontinuity (chapter 4). Ahead of the shock wave, the reactive gas is motionless and 

spatially uniform, and is at a low enough temperature such that we can regard the gas 
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as chemically inert. As the shock wave passes through the gas, it immediately heats the 

gas in its wake to a temperature that is high enough for the gas to begin reacting at a 

noticeable rate, thus igniting, or detonating, the gas as it moves.

Since we are concerned with shock-induced ignition it makes sense to clarify the two 

main combustion processes associated with gas flow: slow combustion and detonation [16]. 

With these waves, the combustion of the gas is necessarily accompanied by motion of the 

gas. Hence the process of combustion here is not only a chemical phenomenon but also 

one of gas dynamics, and so the outcome has to be determined by solving simultaneously 

the nonlinearly coupled equations describing the chemical kinetics of the reaction and the 

gas dynamics of the mixture. On the other hand, the homogeneous closed vessel situation 

only requires us to solve the equations describing the chemical kinetics of the reaction.

In slow combustion, the velocity of propagation of combustion in the gas depends on 

the amount of heat transfer from the combustion zone to the unburnt gas mixture. The 

main mechanism of heat transfer is ordinary conduction [16], hence such combustions 

waves, known as deflagrations or flames, travel subsonically. The pressure and density 

across a deflagration both decrease, and hence this type of combustion wave is expansive.

Detonations, however, are more violent in nature, but based on the number of papers 

written, have probably not been studied as much as deflagrations. In simple one dimen­

sional theory, a (strong) detonation wave can be regarded as a very strong shock wave 

closely followed by an exothermic reaction capable of providing enough energy to sustain 

the wave. It is generally far more destructive than the original shock wave used to ignite 

it owing to the presence of more energy from the reaction, and the continuous initiation 

of chemical combustion by the adiabatic compression and heating of the gas behind the 

shock front [17]. Unlike a flame or deflagration, a detonation wave travels supersonically 

with respect to the fuel ahead of the wave. Also, whereas flames and deflagrations are 

expansive, (strong) detonation waves, by virtue of the integral shock wave, are necessarily 

highly compressive.
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In chapter 3, I shall be investigating piston-driven shock-induced ignition in a reactive 

gas using the three-step chain-branching scheme as in our study of the homogeneous closed 

vessel scenario. Several different cases will be considered based on different values of the 

chain-branching crossover temperature TB. This crucial parameter, which as we shall see 

in the homogeneous problem controls the ratio of the induction length to the termination 

zone, will determine how the detonation wave will develop. Short and Quirk [7] used TB 

as a bifurcation parameter in studying the nonlinear stability of a detonation wave for 

the three-step chain-branching reaction, and also determined a detonability limit value of 

Tb beyond which the detonation fails.

In 1982, Abouseif and Toong [18] carried out numerical studies using a one-step ther­

mal model in a piston-tube setup. They were able to predict threshold values of energy 

necessary for the direct initiation of detonations, and they did this by stopping the piston 

after a finite time and seeing whether the shock decayed or developed into a detonation. 

Jackson and Kapila [19] mention that their work in 1985 appears to be the first to apply 

a systematic asymptotic procedure to shock-induced ignition with the one-step thermal 

model. The main purpose of their work was to describe the state of the gas between the 

piston and the shock and to determine how much the chemical heat release accelerates 

the shock, up to the instance of thermal runaway at the piston.

Dold, Kapila and Short [20] presented, based on large activation energy asymptotic 

arguments, the evolution of detonations for the one-step model subsequent to runaway 

at the piston. The reaction wave begins as a shockless ‘weak detonation’ that travels 

supersonically at every point in its structure. They place emphasis on the correct use 

of the term “propagation” of reaction waves, and stress that these weak detonations are 

not self-propagating since characteristics cannot travel faster than the local sound speed 

and hence cannot travel faster than the weak detonation. However, as soon as this weak 

detonation wave slows down to and below the Chapman-Jouget (CJ) speed (the speed 

at which a point at the rear of the wave - the CJ point - becomes sonic), information 
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can then begin to travel faster than the wave giving rise to a shock wave near the CJ 

point. The shock wave overtakes and engulfs the weak detonation, and since it increases 

the sound speed of the material in its trail it is able to sustain genuine propagation. The 

reaction wave is thus transformed from a weak detonation to a ‘strong’, self-propagating, 

Zeldovich-von Neumann-Doring (ZND) detonation.

Since a large majority of chemical reactions are actually chain-branching, an asymp­

totic study by Dold and Kapila [6] was conducted to compare the already well known 

theoretical evolution to detonation under a one-step model with the evolution to detona­

tion under a three-step chain-branching scheme. Although they only investigated the very 

early time behaviour under these two schemes, they were able to highlight fundamentally 

different types of reaction waves that can emerge at the end of an induction period for the 

different models. Such results are verified by some experimental observations carried out 

for example by Strehlow [4]. The asymptotic study showed that the reaction wave which 

emerges travels subsonically away from the piston. Hence, in contrast with the one-step 

results, disturbances are able to overtake the reaction wave from the outset, and thus the 

reaction wave is self-propagating from the outset.

A far more comprehensive piston study to determine the differences between shock ig­

nition in one-step thermal and chain-branching models was conducted recently by Sharpe [21] 

using a combination of numerical and asymptotic techniques. Since the main aim was to 

establish the major qualitative differences, Sharpe used a simple, but widely used, two- 

step model rather than the more elaborate three-step model used in this thesis. Chain­

initiation and chain-branching are represented in the induction step, which is isothermal 

but temperature sensitive, and which ends with a complete and instantaneous transfor­

mation of fuel into chain carriers rather than the finite (but exponentially thin in the limit 

of high activation energy) explosion time one gets with the three-step model. The second 

step then represents the exothermic termination reaction. The transition or ignition point 

is defined as the point which marks the end of the induction zone and the start of the 
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termination zone. He considers three cases: when the rate of heat release in the termi­

nation reaction is slow, comparable and fast as compared to the initial induction time 

(i.e., when the termination zone is long, comparable and short as compared to the initial 

induction time, respectively). To achieve these different cases, he uses different values of 

a parameter k, which he defines to be the ratio of the termination reaction rate to that of 

the induction step, and hence plays a similar role to our TB. In all cases, and as Dold and 

Kapila [6] previously revealed, the transition point is found to initially travel at a subsonic 

speed. In the case of fast heat release, a secondary shock forms quickly near the piston 

(without involving a weak detonation, as it does in the one-step model) and develops 

into a strong detonation. With a moderate heat release, the secondary shock forms much 

closer to the leading shock and only develops into a strong detonation after it collides with 

the leading shock. For low rates of heat release, although the reaction wave or transition 

point is continually accelerated, a secondary shock cannot form quickly enough before 

the pressure disturbances catch up with the leading shock, a situation completely unlike 

what occurs with the one-step model, unless the initiating shock is sufficiently strong [22].

Varying TB will allow me to accommodate for situations which are truly chain-branching 

and also situations which bear resemblance to one-step thermal models. But since TB, as 

we shall see, also controls the ratio of the induction zone to the termination zone, we can 

compare our results with those of Sharpe’s two-step study.

In all the above cited cases of shock-induced ignition, the driving force has been a 

piston (or some equivalent system such as shock reflection off a rear wall). This entails a 

symmetric boundary condition at the piston face which reflects all acoustic disturbances 

back into the reactive mixture, thus enhancing chemical reaction. The situation is differ­

ent when, rather than a solid piston, we have a contact surface driving the shock wave 

through the reactive material. This can be seen in some cases of deflagration-to-detonation 
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transition (DDT), where an accelerated flame produces two shocks that merge to generate 

a strong transmitted shock and a driving contact surface [23]. It is also known that the 

rupture of a diaphragm, which initially separates two gases of very different densities, 

results in the generation of a strong shock and a driving contact surface [15].

Being a gas-dynamical phenomenon, the contact surface is acoustically permeable, 

allowing acoustic disturbances emanating from the reaction zone ahead to be transmitted 

through the contact surface. This undoubtedly means that, depending on how permeable 

the contact is, the exothermic reaction ahead cannot be as vigorous as in the piston case. 

Furthermore, according to numerical [24] and analytical [25] findings for the one-step case, 

both in the high activation energy asymptotics limit, ignition is found to take place away 

from the contact surface, whereas with piston driven situations ignition always begins at 

the piston face owing to the intuitive reason that this is where the gas has been hottest for 

longest. The reason Short and Dold [24] and Parkins [25] give for the offset of the ignition 

point in contact-driven systems is that the temperature maximum moves off the contact 

surface and into the gas ahead owing to acoustic leakage through the permeable contact 

surface. Both these papers link the acoustic permeability, a0, of a contact surface to its 

strength (i.e. the ratio of densities across the contact), and allow the piston problem to be 

recovered by taking ao —> oo. For finite oq > 1, there will always be some transmission of 

disturbances through the contact, and for a0 = 1 there is no reflection and all disturbances 

pass through the contact (note then that here a density and temperature discontinuity 

no longer exists). The case «o < 1 is physically unattainable with a contact arising out 

of a shock-merging setup (as is the case in [24], [25] and in this thesis too).

Contact-driven shock-induced detonations can also occur in condensed phase (solid or 

liquid) explosives. These scenarios are relevant to the issue of safe storage and handling of 

highly reactive materials, and have been studied using various experimental techniques. 

Gustavsen, Sheffield, Alcon and Hill [26], for example, fire a planar projectile from a gas 

gun at high speed into an initially stationary solid explosive sample in order to compare 
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the shock sensitivity of newly pressed explosive with explosive pressed 17 years earlier. In 

a similar experiment, Gustavsen, Sheffield and Alcon [27] compare the shock sensitivity of 

two different formulations of the same explosive. The resulting Riemann problem in these 

types of experiments involves the transmission of a planar shock wave into the explosive 

as well as a planar shock wave back into the projectile, with the contact surface generated 

at the impact (material) interface.

The aforementioned papers on contact-driven gaseous systems ([24] and [25]) assume 

one-step Arrhenius chemistry, and involve high activation energy asymptotic studies up 

to thermal runaway (Short and Dold [24] use a numerical method to solve the leading 

order asymptotic equations). However, it does not appear that highly resolved numerical 

simulations of the full evolution for finite activation energies have been performed, even 

for the one-step model. In chapter 4, we will perform a numerical investigation into how 

the same contact-driven system would evolve under the three-step Arrhenius model, for 

various values of the TB parameter. It is expected that for values of TB which lead to one- 

step behaviour in the homogeneous vessel scenario, we will see some of the effects from 

[24] and [25] appearing in our three-step model. Also, a high activation energy asymptotic 

study using the chain-branching two-step model is conducted in order to provide insight 

into what may be expected in the three-step model when using chain-branching values of 

Tb. The asymptotic results can then also be compared with Sharpe’s asymptotic study 

of the two-step pTston-driven shock case [21] in order to determine the differences when 

we use a contact as opposed to a piston to drive the shock.
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Chapter 2

HOMOGENEOUS CLOSED
VESSEL EXPLOSIONS

2.1 The mathematical model

Consider a well-stirred, insulated, constant volume vessel filled with a single reactant 

(fuel), F (figure 2.1). The well-stirred, condition ensures we have a diffusionless, spatially 

homogeneous vessel so that the concentrations of reactants do not depend on position. 

Temperature is also the same throughout the reactive mixture. Hence we are dealing with 

ordinary differential equations rather than partial differential equations.

We shall make the following additional assumptions:

1. Although the initiation reaction has a high activation energy, it is assumed to be 

thermally neutral (it is actually very slightly endothermic) [1].

chemical mixture

Figure 2.1: The mechanically stirred, closed vessel.
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2. The propagation reaction is also assumed to be thermally neutral. This is a real­

istic assumption since for example in Hydrogen-Oxygen systems, the propagation 

reactions only contribute five percent of the total heat release. It also has a high 

activation energy, but much smaller than that of the initiation reaction. [1, 11]

3. Termination is strongly exothermic, and is assumed to have a zero activation tem­

perature. In reality, it is very weakly dependent on temperature. [1, 3, 11]

Attempting to model a real chain-branching reaction exactly, such as the Hydrogen­

Oxygen combustion example given in (1.1)—(1.7), would not only be extremely cumber­

some but the results would be particular to the specific fuel and initial conditions. Instead, 

I shall use the generic three-step kinetic scheme (1.10)—(1.12) which models the essential 

physical characteristics of a chain-branching explosion. The non-dimensionalized reaction 

rates, modelled using the Arrhenius law, are:

Ri

Rb

Rc

kif exp

kBpfyexp

(2.1)

(2-2)

(2-3)

where / and y are the mass fractions of fuel and chain carriers respectively, ej and eB are 

the inverse activation temperatures of initiation and branching respectively, p is density 

(which is constant) and kj, kB and kc are the rate constants. Mass conservation tells us 

that 

f + y + z = 1

where z is the mass fraction of product.
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Our equations are non-dimensionalized using the scalings

P=~, T=~ t = kci, ei = TQei, 
Po To

, _ _ kB kc 1
Pi — 7—, kB — kc — — 1,

kc kc kc
P 

RT0

(2-4)

where symbols with a tilde denote dimensional quantities, a ‘0’ subscript denotes initial 

values, Q is the total amount of heat released, R is the universal gas constant and p is 

the mean molecular weight. We note that kc = 1, and that T = 1 at t = 0. We assume 

that p = 1.

It is convenient to redefine the rate constants kj and kB by defining two new constants 

Tj and TB by

ki

kB

exp

exp

(2-5)

(2-6)

so

Ri

Rb

f P ( 1 
/exp - —-

L£r \-O

f n p/?/exp — — 
£b \^b

(2-7)

(2-8)

The convenience of these two new constants is clear when we look at the orders of Ri 

and Rb as the temperature T passes though Ti and Tb. Since we are assuming that the 

overall reaction is exothermic (and hence T is a monotonically increasing function of time) 

then Rj balances with Rc when T = T/ since the exponential factor in Ri becomes unity 

- i.e. initiation balances termination. In fact as T passes through Tr, the exponential in 

Ri changes from being exponentially small to exponentially large. Similarly, and more 

importantly, RB balances with Rc when T = Tb i.e. the branching rate balances the 
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termination rate1. For these reasons, 7} and TB are known as the chain-initiation and 

chain-branching crossover temperatures respectively [7], and we assume that

Tb < Tj. (2.9)

Setting 7} = 3, as in [7], and assuming that the temperature cannot exceed this value im­

plies that the initiation rate is always exponentially small. This is in physical agreement 

with typical chain-branching reactions where chain-initiation reactions are energetically 

inhibited because they have an activation energy greater than the bond dissociation en­

ergy [3].

2.1.1 Governing equations

df , r i /1 i \ i , r i /1 i m x 
— = —/exp -I—-- — fyexp — —(2.10)
dt [£/ \7/ 7 y J \7b 7 /
dy „ r i /1 i \ i , r i /1 i \ i x
— = /exp — — -- + fyexp — — -- - y 2.11
dt yTj 1 /J \_£b \Jb 7 /

(2.12) 
at

Initial conditions are

/(0) = 1, 7/(0) =0, T(0) = l, (2.13)

and so initially the reactive mixture consists purely of fuel. The rate of change of fuel (2.10) 

is governed by the rate at which fuel is consumed by the initiation reaction (first term on 

the right-hand side) and the rate at which it is consumed by the branching reaction (last 

term). In the chain carrier equation (2.11), the first two terms on the right-hand side 

describe the rate at which chain carriers are produced by the initiation and branching 

reactions, whereas the final term gives the rate at which chain carriers are consumed by 

the termination reaction.
xThis is of course assuming that T can ever reach Tj or Tb- e.g. T can never become equal to Tb if 

Tb < 1 = initial temperature.
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To clarify the temperature equation (2.12), suppose initiation, branching and termi­

nation release or absorb a total amount of heat Qi, Qb and Qc respectively. Then

i dr f pi <i i\] z ri f i 
7“-----77^ = QlJ exP — 777 - 777 + Qsfy^P — 777"
(y-l) dt [7/ TJ] \TB + Qcy (2.14)

where 7 is the ratio of specific heats (1.4 for air). Now in reality, and in accordance with 

assumptions (1) and (2), Q/ and Qb are small. So we assume that Qi = Qb = 0 and let 
def

Qc = Q, i.e. all heat release occurs in the termination step. Letting

l3“g=fQC-l) (2-15)

then gives (2.12). Another assumption commonly made in this area of work is that 7 is 

constant, i.e. the gas is polytropic. Polytropic equations of state are also actually often 

used for modelling solid or liquid explosives, but with a value of 7 ~ 3 [28].

One notes that it is possible to deal with the temperature equation straight away as 

follows:

Adding (2.10) and (2.11) gives
df dy 
-77 + -77 = -y dt dt

so that (2.12) gives
dT = B(_dL_dy\
dt \ dt dt)

which can be integrated to give

T = (—f — y) + const.

Initial conditions (2.13) give that const = 1 + /3 and hence

T=l + /3(l-f-y) = l + /3z (2.16) 
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and thus we can eliminate T, leaving us with only two coupled ordinary differential equa­

tions in two dependent variables, / and y. This representation may appear to make the 

process of obtaining a solution (either numerical or asymptotic) simpler, but unfortu­

nately we come across certain difficulties when defining new regions in the asymptotic 

solution. Hence I shall stick to the original set of equations defined above. What (2.16) 

does tell us however is the maximum attainable temperature (Tm) in our system. Since 

the final (burnt) state of our system corresponds to/ = y = 0,z = l and T = TM, then

Tm = 1 + ^ (2.17)

Equation (2.16) also tells us that the temperature T increases linearly with the amount 

of product z produced.

2.2 Strategies for finding a solution

Looking at our governing equations, the nonlinearities (algebraic and exponential) give 

us a big hint that attempting to look for an analytic solution would be futile. This is not 

a surprise though, since in chemically reactive systems, nonlinear problems are more the 

rule than an exception. This leaves us with two obvious routes: numerics and asymptotics. 

Getting a computer to solve a system of equations numerically is common practice, but 

unfortunately, as with many problems in chemical combustion, stiffness problems make the 

numerics all the more difficult and delicate. These problems arise when “zones of rapid 

variation occur in the solution due to the presence of several widely disparate spatial 

and/or temporal scales” [29]. The culprits in our system are the small values of and 

eb which occur inside the exponentials - resulting in exponentially small or exponentially 

large values. Modern computing technology has however lessoned the impact of such 

problems, and numerical solutions are now very commonly produced. Minor underflow 

problems did still occur when experimenting with very small values of and eb, but
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Figure 2.2: Fuel ignition time for various values of Tb, using Ei = i, eB = Q = 4, 7 = 1.4, Tr ~ 3.

more importantly, no overflow problems were encountered.

1 / j jA 
ei KT, t)

Keeping asymptotics in mind, it makes sense to tackle this problem by considering the 

orders of the exponential factors in (2.10) and (2.11). Since our assumption is that 7/ is 

fixed, our critical factor becomes Tb- At t = 0, T = 1 and so initially exp

is exponentially small while exp A- is initially exponentially large, of order

one, and exponentially small for Tb < 1, Tb = 1 and Tb > 1 respectively2. This critical 

value of Tb is emphasised in figure 2.2 which was obtained numerically (the ignition time, 

tign, in our numerical solutions, is defined as the time it takes for half the fuel, f, to 

be consumed). Hence, it makes sense to split the problem into at least two categories:

21 use the terms “exponentially large” and “exponentially small” loosely here, since for Tb ~ 1, 
exp — (4----i) is actually order one.

Tb < 1 and Tb > 1.

Whereas the smallness of Ej and eb may be a problem in numerical work, this is 

precisely what is required for valid asymptotics, hence the numerics and asymptotics
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should complement one another in some respects.

I shall define two new constants which, as we shall see, are ubiquitous in our asymptotic

work:
def

ej = exp def 1= exp —
|_Tb

where ei is exponentially small while ep is exponentially large, of order one, and expo­

nentially small for TB < 1, Tb = 1 and TB > 1 respectively.

Where I give numerical results, these will correspond to the following parameter values 

(unless stated otherwise):

1
“ 15’ £b = <2 = 4, 7=1-4,5

Tj = 3.

The algorithm used to numerically solve the equations, is a general fourth order Runge- 

Kutta routine with adaptive time stepping.

2.3 Exponentially-large branching factor (TB < 1)

In this case, the branching reaction exponential factor exp i / _i_____i 
\ Tb_T is not only

exponentially large initially, but owing to the monotonically increasing temperature T, 

continues to be so throughout the entire reaction. The whole branching rate term (Rb, or 

second term in (2.10) and (2.11)) however is initially zero since y(0) = 0, and it ultimately 

dies off as the fuel f is depleted.

2.3.1 Numerical results

The plots in figures 2.3-2.6 are for Tb = 0.9, 0.8, 0.6 and 0.3. As is clearly visible, 

the solution consists of three distinct temporal regions: an induction region, a very brief 

explosion region and a thermal region in which all species approach the stable equilibrium. 

Each figure resembles figure 1.1 of a typical chain-branching explosion in an adiabatic
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Figure 2.3: Histories of species and temperature for Tb = 0.9.

vessel.

The induction region represents a period of time where there is very little perturbation 

in all dependent variables (/, y, z and T) from the initial state. This region is shorter 

for smaller TB (ranging from a time of 1.5 x 10-4 for TB = 0.3 to about a time of 

8 for Tb = 0.9). The only reaction at work here is the initiation reaction, which is 

producing chain carriers from fuel at an exponentially small rate. The fact that there 

are no chain carriers in the system to begin with means that RB is forced to remain 

negligible for a period of time. The termination reaction also is dormant in this region for 

the same reason. As soon as just enough chain carriers have been produced to kick start 

the branching reaction, we witness a chain-branching explosion marked by a very rapid 

depletion of fuel, most of which is immediately converted into chain carriers. Again, this 

region is shorter for smaller TB. One notes that even by the end of the explosion, there 

is little or no increase in temperature owing to branching being thermally neutral. Any 

heat released in this zone (observable for the larger values of TB) is due to the exothermic 

termination reaction converting some of the chain carriers into products. This is not
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Figure 2.4: Histories of species and temperature for Tb = 0.8.

observed for TB = 0.3 as the branching rate is simply too fast to allow for the buildup of 

products. Once most of the fuel is depleted, the chain carrier concentration reaches its 

maximum value, yM- This value is larger for smaller TB since smaller TB means a larger 

branching rate RB, and hence the explosion occurs too fast for the 0(1) termination rate 

to have much effect. As soon as yM is reached, there is no more fuel and hence the only 

reaction occurring is that of termination which converts all the chain carriers to products 

over a long time scale. It is also in this region that we begin to witness the temperature 

significantly increase until it reaches its maximum, TM (= 2.6 here, and as predicted 

by (2.17)). According to equation (2.12) the rate of change of T is directly proportional 

to y, and this is expressed in our graphs by the inflection points in T and z occurring 

at the time when y = yM- Whereas the lengths of the induction and branching zones 

vary considerably with TB, the termination zone operates on the same time scale since 

the termination reaction is insensitive to temperature and so is unaffected by the value 

of Tb. Figures 2.3-2.6 clearly show that starting at the time when y = 0.5 it takes a time
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Figure 2.5: Histories of species and temperature for Tb = 0.6 (top: full display, below: zoomed in at 
explosion).
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Figure 2.6: Histories of species and temperature for Tb = 0.3 (top: full display, below: zoomed in at 
explosion).

28



of 4 units for the termination reaction to exhaust most of the chain carriers3. Hence, the 

ratio of the length of the induction zone to that of the termination zone decreases with 

decreasing TB, starting out at a value of approximately 2 for TB = 0.9, becoming 1 for 

Tb = 0.8 and tending to zero very rapidly after that.

3Formally, it takes an infinite amount of time to deplete all chain carriers.

The chain-branching explosion is more dramatic for smaller values of TB, in that not 

only does it occur very rapidly but it also occurs very suddenly, taking only a time of 

1.5 x 10-4 to begin for TB = 0.3 (figure 2.6). The graphs also look more and more like 

purely chain-branching explosions the smaller TB is, in the sense that the three temporal 

regions are more well-defined, yM is closer to 1 and the branching zone has a small or 

negligible buildup of products and a small or negligible heat release. Taking the TB — 0.3 

example again (figure 2.6), fuel is converted into chain carriers in a symmetric fashion (i.e. 

a decrease in / is marked by a virtually equivalent increase in y) and the branching region 

is well defined and void of products and heat release. Then yM reaches exponentially close 

to the maximum possible value of one, and so for some time the chemical mixture consists 

almost only of chain carriers.

2.3.2 Asymptotic analysis

From assumptions (1) and (2) on p. 17 we have that

0 < Ei W eb 1- (2-18)

Since TB < 1 here, eB is exponentially large (ej is always exponentially small since Ti = 3). 

We shall use these facts to construct leading order asymptotic solutions to the governing 

equations (2.10)-(2.13).
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Region I - Induction

It may make sense to try an expansion of the form

/ —y — O + eiyi, T — l + s/0i,

A, yi, 0i =O(i),

since the very small perturbation in this region is caused almost exclusively by the initi­

ation reaction. However, such an expansion fails since a balance in the equations is not 

achievable.

A leading order balancing act (see appendix A.l) to determine the correct gauge 

functions to use shows that the correct expansion is

f=l + —F, y = O + ^-Y, T =1 + ^-6, t = —T, (2.19)
Gb Gb gb Gb

F, Y, 6, t = 0(1).

Our governing equations (2.10)-(2.13) now become

dF 
dr

1 + — F Y exp 
Gb J

dY 
dr

1 d----- F I exp 
gb J

- — Y, (2.21)

de 
dr

$Y. (2.22)

Initial conditions are

F(0) = K(0) = 0(0) = 0. (2.23)

30



To leading order, the exponential factors can be written as

exp — I 1 “ iI ~ exP — ( 1 ~ 1 + “v# J£i \ 1 + ^9 / Ei \ e2B J

= exp ( —~ 1 4—^-9 ~ 1,
V/eh / £ie2B

(2.24)

/ 2 X / 2 \
assuming 9 = o f J and 9 = o ( J, and

exp
1

1 + ^0 eB
exp

1
Eb (2.25)

= exp [ —-0 ) ~ H—-^0 ~ 1, 
\ebeb / £b^b

assuming 9 = o ( — ) and 9 = o \ ).
° \eI J \ eI /

Hence we arrive at the following leading order approximation to equations (2.20)-(2.22)

dF 
dr 
dY 
dr 
d9 
dr

-1 -Y,

1 + T, 

£Y.

(2.26)

(2.27)

(2.28)

Solving and applying the initial conditions (2.23) give the leading order solutions 

F = 1 — eT, (2.29)

Y = -1 + eT, (2.30)

9 = (eT — r — 1). (2.31)

Possible non-uniformities in these solutions occur when

1. F = O (—), i.e. when there is significant fuel consumption. (2.29) tells us this 

occurs when t = O I In ( .\ \ei / J

2. 9 = O (—i.e. when the temperature is high enough. (2.31) tells us that this 

occurs when t = O fin f ) ).
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3. 0 = O i e. when the temperature is high, but not as high as in number 2.

(2.31 ) tells us that this occurs when r = O (in ) ■ 

(2 \

i-e. when the temperature is high, but not as high as in number 3.

(/ 2 \ \
In ( \ .

The earliest non-uniformity is obviously number 1. This makes sense since, in this case, 

a significant increase in temperature can only occur after significant fuel consumption, so 

that chain-termination can begin.

Region II - Chain-Branching Explosion

The orders of F, Y and 0atT = O(ln(£a)| are 7 \ \ Pt I I

^1-1 =0

and so we rescale the variables as follows:

F=—F, Y = —Y, 0 = —0, r = In f+ t, (2.32)
6/ 6/ 6/ \eI J

F, Y, 0, r = 0(1).

With respect to our original variables f, y, T and t, we have

- - 1 - 1
/ = 1 + F, y = Y, T = 1 + —0, t = — In (2.33)+ T

hence we expect to see 0(1) changes in fuel and chain carrier concentration but only an 

exponentially small change in temperature during this stage, as is actually the case in 

chain-branching explosions.

Our complete equations (2.20)-(2.23) now become
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dF 1 + f) — exp 
/ eB

1 / 1- 1---------

1 + F ) Y exp

L \ eB

1(1-^)
£b \ 1 + ^-0/

dY 
dr

1 + f) — exp
7 £b

\ Gb

1(i__ L
L \ eg

1(1__ 1-
^B \ l + ^t

es

1
^B

dO 
dr

= ^Y.

(2.34)

(2.35)

(2.36)

Matching conditions are

F - , Y - ef, 0 ~ (2.37)

1 + F) Y exp

as t —> —oo i.e. back into Region I.

To leading order, the exponential factors can be written as

exp 1 (i__ u 1
exp

(2.38)
= exp । flj ~ n—— e ~ 1, 

\£i^b J ^l^-B

assuming 0 = o (es) and 0 = o {ejeB), and

exp
1

£b

1
1 + -M eg (2.39)

= exp [—-—0 
\^b^b .

-^—e ~ i, 
^BeB

assuming 9 = o(eB) and 0 = 0(^36#), which give rise to the following leading order
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approximation to equations (2.34)-(2.36)

dF 
dr

= -(i + r)y, (2.40)

dY 
dr

= (1 + f) y, (2.41)

d0 
dr

= (dY. (2.42)

Equations (2.40) and (2.41) and the first two matching conditions in (2.37) give

dF _ 
dY “

and so (2.40) becomes

dF , - - CeT
(C constant)

but (2.37) gives C = —1.

Equation (2.42) then becomes and so 0 = /d ln(l + eT) after matching with

Region I.

Our Region II leading order solutions are therefore

F =
—eT

1 + ef ’
(2.43)

Y =
eT

1 + ’
(2.44)

0 = ^ln(l + eT). (2.45)

With respect to f, y and T, these solutions are 

f =
1

1 + ’ 1 + e
T= 1 + — £ln(l W), 

^B
(2-46)

meaning that by the end of this region (i.e. as r —> oo), / —> 0 and y —> 1. In other 

words, most of the fuel has been depleted and has been replaced with chain carriers in 
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a symmetric fashion (since f + y = 1 to leading order in this region), i.e. a decrease in 

/ by an amount x is marked by an increase in y by x. This symmetry is very clear in 

the zoomed-in plots of figures 2.5 and 2.6 which show numerical solutions to the original 

governing equations. As evident in figures 2.3 2.6, the symmetry is stronger for values 

of TB further away from the critical value of one, but this lack of symmetry for values of 

Tb close to one only exists if eB is not small enough - as in our numerics. The symmetry 

will of course be stronger for smaller values of sB, so that as eB —> 0 we get the above 

symmetric solution.

The non-uniformity that brought us to this region tells us that the chain-branching 

explosion begins (i.e. is ignited) at the time

= exp

tian In 
eB

1 1
£i

(2.47)

The exponential factor confirms that smaller eB or smaller TB means a faster ignition 

time. The accuracy of tign is discussed in section 2.5.

Non-uniformities in our asymptotic solutions for Region II occur (or may seem to 

occur) when

1. 0 = O(eB), i.e. when the temperature increases significantly. (2.45) tells us this 

occurs when t = O(eB).

2. 0 = O^sCb), i.e. when the temperature increases significantly - but not as signifi­

cantly as in number 1. (2.45) tells us this occurs when t = O(eB6B).

3. 6 = O(eieB), i.e. when the temperature increases significantly - but not as signifi­

cantly as in number 2. (2.45) tells us this occurs when t =

4. Y = O i.e. the initiation reaction might reappear after losing it to leading 

order in (2.40) and (2.41). This, however, cannot happen since T —> 1 as t —> oo,

35



and so this is not a non-uniformity.

5. 1 + F = OI — ), i.e. the termination reaction coming into play after losing it to 

leading order in (2.41). (2.43) tells us this occurs when t = OQue#).

It seems that non-uniformity 5 occurs first. This makes sense since the termination 

reaction must be dominant in the next region now that the initiation and branching 

reactions have been exhausted of fuel. However, as the following argument shows, we 

must be careful when rescaling for the next region.

If in Region II we had used the higher order expansion Y = Yo + • ■ • + — Yn, where 

-^-Yn is included for a higher order balance, then (2.35) would become

(2.48)

The leading order solution Yo is given by (2.44), and so Yo ~ 1 — e T as r —> oo i.e.

as we move from Region II to Region III.

At O ( — ), we have
\eB J

dY / . - -
-21= (1 + f)k-Ko~ -Ko 
dr \ /

as t —> oo since F —> — 1, which can be integrated to give

Yn = —t — e T + E ~ — t (2.49)

as t —> oo (E a constant). Hence, a higher order solution to (2.35) is

Y = 1 - e~^ - — + ..., (2.50)
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where —7- is the dominant term as f —> 00. 
^B

But if we then go on to rescale for Region III according to non-uniformity 5 (i.e. using 

r = Ines + f,...) then we would get the following solution to the resulting chain carrier 

equation

Y = — e~T — t + G (G a constant), (2.51)

where — e~T is the dominant term as f —> —00 i.e. as we move back into Region II).

Hence the only real difference between the solutions of the chain carrier equations of 

Regions II and III is a switch in the dominant term. For this reason, we consider this 

non-uniformity weak.

There will be a non-uniformity in our Region II solutions when the initiation and 

branching terms balance4 in equations (2.34) and (2.35):

4Such balance does not mean that initiation still has a role to play, but rather that the branching rate 
has become so small that it is comparable with that of the initiation reaction.

ei— exp
£
£i

1
1 + x0 

£b

= O exp

After a bit of work, we find out that this non-uniformity occurs when 6 = O(es), 

and so at r = O(ep) (see appendix A.2 for details). This actually corresponds to non­

uniformity 1 in the above list. So in the next region, we expect to see a significant increase 

in temperature.

Region III - Chain carrier depletion

In this region, fuel is virtually non-existent, and hence the initiation and, most impor­

tantly, the branching reactions are no longer taking place. Thus according to (2.3) and 

(2.11)-(2.12), we expect to see a gradual (0(1)) decrease in chain carrier concentration 

and a proportional increase in temperature.
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We transform the variables as follows5:

5 At the end of Region II, F —> — 1 + e~T and so we use a WKB rescaling for F in (2.52). However, it 
makes no sense to use a similar rescaling for Y (i.e. Y = 1 — e~eB^) since this will not yield the expected 
0(1) change in chain carrier concentration, only an exponentially-exponentially small perturbation. Hence 
we leave Y unchanged.

F = -1 + e~eBF, Y = Y, 0 = 6b0, T = eBT, (2.52)

F, Y, 0, r = 0(1).

With respect to our original variables, we get

f = e~eB^, y = Y, T = l + 0, t= —
eB

In ^B 

ei
(2.53)+ esf

and so fuel concentration is exponentially-exponentially small in this region, whereas 0(1) 

changes in chain carrier concentration and temperature can be expected.

Our complete equations (2.34)-(2.37) now become

dF 
dr

er— exp
f 1 / 1

— 1-------
_£i \ 1 +

— Y exp —
L£b

1
1-------

dY 
df

eBe SbF ei— exp
^B

1------
1 + 0

~ r i+ Y exp — 
L£b

1-+

d0 
dr

^Y,

(2-54)

(2.55)

(2.56)

r 1

L+r

with matching conditions

F ~—1, Y ~ 1, 0~/3f (2.57)

as r —> 0 back into Region II.

We are not really concerned with the fuel equation (2.54) since we can consider f = 0 

to be true for all our intents and purposes. To leading order, (2.55) becomes = — Y 

38



(ignoring the negligible first term), and so Y = He~^ (H constant). As t -4- 0, Y ~ H 

and so H = 1 from our matching condition (2.57). Equation (2.56) then gives that

= (3e~T => 0 = —/3e~T +1 (I constant). As f -4- 0, 0 ~ —^(1 — f)+I = /3f — (3 + 1 

and so I — (3 using (2.57).

Hence our solutions for this region are:

f = 0, (2.58)

Y = e~T, (2.59)

0 = (2.60)

This is the final region since as r oo, we reach the stable chemical equilibrium

/ = 0, y = Q, z = l, T = 1 + (3 = TM

2.3.3 Comparing the asymptotic and numerical solutions

This can be accomplished by plotting the numerical solution against either a composite 

asymptotic solution or the individual asymptotic solutions. A composite solution, which 

is uniformly valid throughout the whole chemical process, can be constructed by adding 

the asymptotic solutions for each region and subtracting the matched parts. Table 2.1 

provides a summary of all that is required to create such a composite solution.

Unfortunately, owing to our solutions being to leading order only, coupled with the 

fact that the values of ej and more crucially Eb used in the numerics are not actually 

very small, the composite asymptotic solution becomes poor for the larger values of Tb- 

With our current values of £/ and sB, the composite solution for y is highly erroneous 

in the first region (induction zone) for Tb = 0.6 (see figure 2.7(a)). For larger values of 

TB, say for Tb = 0.8, the solution becomes very deteriorated and one then has to either 

decrease Eb or determine the next order terms. Figure 2.7 shows the Tb = 0.6 species and 

temperature history using the composite solution plotted against the numerical solution 

for three decreasing values of eb starting at our original value of |. The errors in y, T
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Table 2.1: The asymptotic solution for each region, together with the behaviour of each solution in the 
previous region (i.e. the matched part). All with respect to the original variables.

/ y T

Region I (eeBt - 1) 
eB V / 1 + (3^ - eBt - 1)

Region II 1
£JLeest 
eB 1 + — In fl + ^eeBt} 

es \ ?B Jl+±LeeBt 
eB

l+ZLeeBt 
eB

Behaviour of 
Reg II in Reg I

sb SB
1 + ^eeBt

Region III super-exponentially small
1

( ) eB -t

\?I J
1 + ^(1- f^V" e-1 | 

\ \ei J /

Behaviour of
Reg III in Reg II 0 1 1 + — (eBt-ln f^ 

es \ \eI J /

and z in the induction zone decrease rapidly as we decrease to more asymptotically 

suitable values.

For comparative reasons, it is however adequate to just plot the numerical solution 

against the individual asymptotic solutions as opposed to the composite solution. This 

has been done for values of TB = 0.6 and beyond in figure 2.8. Figure 2.8(a) shows that 

for TB = 0.6 the asymptotics and numerics are very much in agreement in every aspect. 

However, for TB = 0.8 in figure 2.8(b), we see that although qualitatively correct, even the 

individual asymptotic solutions are struggling to produce accurate plots when compared 

with the numerics - the most obvious discrepancy is the premature branching explosion. 

This of course is because we are now much closer to TB = 1, and so to achieve high 

asymptotic accuracy we must either determine higher order terms or decrease eB.
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Figure 2.7: Comparing the composite asymptotic solution (---- ) with the numerical solution (—) for
Tb = 0.6 using three values of eb-

t

(c) SB = 1/10

For values of Tb further away from the critical value of unity, our leading order com­

posite solution is actually rather accurate. Figure 2.9 shows our composite solution for 

Tb = 0.3 to be virtually the same as the numerical solution.
It is the appearance of eb and TB in eg exp — 1) that makes eB so

sensitive to changes in sB or TB. A small change in either produces an exponential
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Figure 2.8: Comparing the asymptotic solution (---- ) from each region individually with the numerical
solution (—).

0 2 4 6 8 10
t

(b) Tb = 0.8

Figure 2.9: Comparing the composite asymptotic solution (---- ) with the numerical solution (—) for
Tb = 0.3 (left: full display, right: zoomed in at explosion).
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change in and so it is really the value of eB that determines how good the asymptotics 

are, rather than eB or TB individually.

2.4 Suppressed branching factor (Tb > 1)

We have so far tackled the case where the branching factor exp
i (_i_____

\Tb T J is expo­

nentially large from the start through till the end of the reaction owing to the initial 

temperature being already above the branching crossover temperature i.e. TB < 1. The 

result was that the reactions proceed in a chain-branching manner. Here, we consider the 

case where TB > 1, i.e. this exponential factor is now exponentially small initially. The 

values of TB we shall use will ensure that this factor does not remain exponentially small 

throughout the entire reaction, but that it becomes exponentially large when T exceeds 

Tb. This condition will be applied by choosing values of TB that are less than Tm, other­

wise chain-branching will never come into play. But such a condition does not necessarily 

mean that RB also becomes exponentially large, since the chain carrier concentration may

still be too small or the fuel may have been depleted to such an extent that the magnitude

of exp
i / _i_____  

\Tb_TJ becomes physically irrelevant.

2.4.1 Numerical results

Figures 2.10 and 2.11 show the species and temperature histories for TB = 1.1 and 1.5 

respectively. What we immediately notice in both figures, in contrast with the TB < 1 

case, is a very long induction zone characterized by a slow but noticeable consumption 

of fuel. The induction zone is long because there is no chain-branching to accelerate the 

conversion of fuel into chain carriers. The dormancy of the branching reaction results pri­

marily from the small branching exponential factor and also, but much less importantly, 

from losing out to the termination reaction in competing for chain carriers which are con­

sequently converted directly into stable products. The formation of products means that 

heat is emitted and so the induction zone is moderately thermal. When the temperature

43



Figure 2.10: Histories of species for TB = 1.1 (left: full display, right: zoomed in at explosion).

approaches TB, the branching reaction gathers pace and competes more successfully for 

chain carriers. For TB = 1.1, we get branching-crossover very early on when the chemical 

mixture is still about 95% fuel and hence the branching rate RB is actually sufficiently 

large to start a small chain branching explosion in which the remaining fuel is depleted 

and in which chain carrier concentration is boosted to nearly 30%. The zoomed in dia­

gram of figure 2.10 is in fact very similar, apart from the induction times of course, to 

the Tb = 0.9 diagram in figure 2.3. Both values of TB are very close to the critical value 

of unity but crucially one is smaller than unity and the other is bigger. For TB = 1.5, 

the induction zone is much longer than for TB = 1.1. Branching crossover occurs much 

later and by then the fuel mass is only at 65%. The smaller branching exponential factor 

coupled with a smaller fuel fraction means that RB is much smaller than it was with the 

Tb = 1.1 case and hence this time chain carriers struggle to reach even 5% of the total 

chemical mass. This reaction can only really be described as a thermal explosion since 

it does not consist of the three distinct zones typical of chain-branching explosions but 

duplicates the behaviour of typical thermal explosions as was shown in figure 1.2.

Will the induction zones continue to grow rapidly as we increase TB? We have already 

seen that for TB = 1.5, the branching reaction (with rate RB = fyexp )
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Figure 2.11: Histories of species for Tb = 1-5 (left: full display, right: zoomed in at explosion).

is having very little impact on chain carrier growth even though the branching factor
i (j___  

sb \Tb___ T )exp becomes exponentially large when fuel is still as high as 65% of the

total chemical mass. The fact though is that Rb is now much smaller than it was, and 

it rapidly tends to zero for larger values of Tb- If we then go further and take values of 

Tb > TM, and hence the branching factor can never be exponentially large, we realise that 

the induction zones are no longer growing at substantial rates. In fact, we notice that 

there is very little difference in the species and temperature histories between Tb = 3.0 in 

figure 2.12 and TB = 5.0 in figure 2.13(a). Plotting the ignition time of fuel (as an indicator 

of the induction time) against Tb in figure 2.13(b) (as in figure 2.2 but this time including 

large Tb values), we see that the ignition times begin to grow quite spectacularly but then 

this growth gradually decays. Beyond Tb = Tm (2.6 with our current set of parameters), 

the induction zone grows at a very slow, seemingly logarithmic, pace6. Increasing Tb 

to even larger values has very little impact on our system since Rb becomes so small 

that it no longer plays any role in our governing equations. It is only the initiation 

and termination reactions that are governing how the reactants react, and since neither

6The growth for Tb < 1 was already proven to be exponential in equation (2.47) for the asymptotic 
domain.
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Figure 2.12: Histories of species for Tb = 3.0 (left: full display, right: zoomed in at explosion).

reaction involves TB, increasing TB will not make a difference. The thermal explosion 

zone, which incidentally is actually much slower than the branching explosions witnessed 

in the TB < 1 case, occurs solely because the heat released in the thermal induction zone 

speeds up the rate Rj of the initiation reaction. Such behaviour is synonymous with that 

observed in one-step Arrhenius chemical reactions.

2.4.2 Asymptotic analysis

As already mentioned in the introduction, Blythe, Kapila and Short [14] produced asymp­

totic solutions to our governing equations (2.10)-(2.13) for various values of TB. Although 

they considered the case TB > 1, I shall still present the first two regions here as they 

were resolved independently before their paper was submitted. Plus, our solutions are 

derived in a different manner: whereas we derive the asymptotic solutions in each region 

directly from the governing equations (2.10)-(2.13), Blythe et al. rewrite these equations 

by viewing time as a dependent variable and considering some function of temperature 

as the new independent variable. The following two regions will be more than sufficient 

to allow for the derivation of an expression for the ignition time, and also for parameter 

matching between the one-step model and our three-step model.
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Figure 2.13: Showing the insignificance of large TB-

(a) Histories of species for Tb = 5.0. (b) Ignition time of fuel for various values, in­
cluding large values, of TB-

We already have that e/ is exponentially small, but because TB > 1 here, eB becomes 

exponentially small too (reflecting the smallness of the branching reaction in the initial 

phase at least).

Region I - Induction

The induction zone expansions are

f = l+£lF, y = Q + eiY, T = l+£!0, t=-r, (2.61)

F, Y, 0, r = O(l).

Hence we expect to see a small reduction in fuel mass, coupled with a small increase 

in temperature (as is the case with one-step thermal systems). Chain carrier growth is 

expected to be exponentially small.

Substituting into our governing equations (2.10)-(2.13) gives
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dF 
ei^

e^dY 
Ei dr

n r1 (1 1 m
<l+^)^exp[i (±__L_) , 

1/1 1 \ ’(l + ^)exp -(—-——
_£/ ylj 1 + E/u) _

(1 + EjF} eiY exp — - - 1 J) - eTY
Fb \Tb 1 + Ei6 J _

de 

dr
(2.64)

Initial conditions are

F(0) = K(0) = 0(0) = 0. (2.65)

To leading order, the exponential factors can be written as

F 1 / 1
exp

1
1 + EjO

exp
f ™ 1 +

l-Tr \Ti . (2.66)
= e/e0,

assuming 9 = o

f 1 f 1
exp —

1
Th

1
1 + EjO

exp — 
ITb

™ 1 + erf
1B (2.67)

= es exp cb,

assuming 0 = o I — 1 and 0 = o I —

Hence we arrive at the following leading order approximation to equations (2.62)-(2.64)

dF 
dr

Y 

de 
dr

/3Y.

(2.68)

(2.69)

(2.70)
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Figure 2.14: Finite time singularity in Region I solutions at r =

T

Solving and applying the initial conditions (2.65) give the leading order solutions

F = lln(l-,8r), (2.71)

Y = (2'72>

6 = -ln(l-^r). (2.73)

What we immediately notice is that a singularity develops in all three induction zone 

solutions at the finite time r = | (see figure 2.14). This blow-up of solutions characterizes 

a rapid reaction or explosion in which fuel is quickly consumed and heat is rapidly released 

i.e. a thermal explosion. In terms of our original time variable, the ignition time for this 

explosion is
, £i £i r i (1 i \ 
tign = ^ = exP — 1 - W

y 0ei /3 L£/ \ Ti/
(2.74)

The exponential factor tells us that smaller Ej (i.e. larger activation energy for the ini­

tiation reaction) means a much longer ignition time. We also note the absence of Tb, a 

fact that tells us branching plays no part in our leading order asymptotic expression in 

determining the time to ignition. The expression thus seems to model behaviour charac­

teristic of one-step thermal reactions, and indeed we shall see later in section 2.6.1 that, 
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with the correct identification of the various parameters, the expression matches exactly 

that which is deduced from one-step systems (such as that in [29]). The accuracy of our 

expression for tign is discussed in section 2.5.

The singular behaviour of the induction zone’s solutions (2.71)-(2.73) means we require 

new asymptotics near time tigri. The following possible non-uniformities should point us 

in the right direction:

1. F = O i.e. when there is significant fuel consumption. (2.71) tells us this

occurs when t = O I I.

2. 3 = O (—), i.e. when the temperature is high enough. (2.73) tells us that this 

occurs when r = O I I.

3. 3 = O , i.e. when the temperature is high, but not as high as in number 2. 
/

(2.73) tells us that this occurs when r = O I I.

4. Y = O , i.e. when the branching rate becomes important (as it was dropped 

when determining the leading order equation (2.68)). (2.72) tells us that this occurs 

when t = O ■

Although the earliest of the above times is that in number 4, rescaling according to it 

leads us to the same set of leading order differential equations as (2.68)-(2.70). We can 

also disregard possible non-uniformity number 3 as it occurs in the exponential branching 

factor which we do not expect to be vital just yet. We are left with non-uniformities 

numbers 1 and 2, both of which unsurprisingly lead to the same rescalings since F and 3 

are proportional in magnitude, which again is typical of the behaviour of one-step systems.
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Region II - Thermal Explosion

Non-uniformities 1 or 2 together with equation (2.69) suggest we rescale our variables as 

follows:
1 y 1 1 —

F = —F, Y = e'i, 0 = —0, t =------- ----- , (2.75)
£I £! P '

F, Y, 9, r = O(l).

Note that we can only have t < with time rescaled in this way, and hence at least 

another asymptotic region would be required if we were to consider the complete time 

history of the variables.

With respect to our original variables f, y, T and t, we have

f = l + F, y = , (2.76)

hence we envisage 0(1) changes in fuel concentration and temperature as expected with 

thermal explosions. This is in contrast with the chain-branching explosion witnessed with 

the Tb < 1 case where an 0(1) change in fuel concentration occurs but with only an 

exponentially small change in temperature (see the scalings in (2.33)).

Our complete equations (2.62)-(2.65) now become

dF w r i1 + F) exp —

1 + F) eje si exp
' 1
Yb

FdY 
—— Ei dr

1
T~i

' 1
£b

(2.77)

(2.78)

(2.79)

1 + f) exp — 
/ (O

1 + F I 6/e exp

= e

1 1

1 1

1

1
Td

1



Matching conditions are

(2.80)

as f —> 0 i.e. back into Region I.

For a leading order balance, we require that

(2.81)

y^t, e^r

from the temperature equation (2.79). The fuel equation (2.77) requires that

’1/1
exP - Hr 

L£r v/
= o^, (2.82)

provided that we have not. reached the branching crossover temperature, i.e. T = 1 + 9 <

Tb, which then gives

9=^—. (2.83)
1 — T

In order to arrive at the leading order terms for Y and 9 we require the two term expansions

Y = t + e/Fi and (2.84)

9 — ------r + SiOi- 1 — T
(2.85)

To leading order, the exponential factors in our equations (2.77)-(2.80) can then be written

as
F 1 1 .

---- - — Texp

■ 1 
exp —

1
Tb

exp

1
tT
' i
Tb

(r-<‘-
\1B

e^Y ~ H

exp — (1 —

(2.86)

and (2.87)

(2.88)

1
£b

The exp - (1 - f)) factor in (2.87) is exponentially small while t < 1 — or
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using (2.83), while T < TB. Hence, treating this factor as zero in our approximations 

below would, as expected, cause a non-uniformity when branching crossover occurs.

To leading order then, and while the branching reaction is negligible, the fuel equa­

tion (2.77) becomes
/^^-(l + F)^-^ (2.89)

The chain carrier equation (2.78) can be reduced to

ei YdY
~eeiSi dr

= (1 + F)e^2^ - e?1 (2.90)

but

(2.91)

which is exponentially small while t < 1 — i.e. while T < Tj. Treating this factor 

as zero in our leading order analysis would lead to a non-uniformity when (and if) the 

temperature reaches however, assumption (2.9) tells us that the temperature must 

reach TB before it can reach Tj. Moreover, we have already assumed in our model that, 

for physical reasons, the temperature cannot ever reach Tt. Hence this non-uniformity is 

ignored, and our leading order chain carrier equation can now be written as

(1 + - e^1 = 0. (2.92)

The temperature equation (2.79) can be written as

— = e^1 
dr ’

(2.93)

and also as
dd _ 1 d^
dr (1 — r)2 + 1 dr (2.94)
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by differentiating (2.85). Comparing (2.93) with (2.94), and then integrating gives

hi = —2 ln(l — t),

which becomes non-uniform when t = 1.

The chain carrier equation (2.92) becomes

(1 + F)e^~^ 1
(1 — f)2 ’

(2.95)

(2.96)

and hence the fuel equation (2.89) becomes

(2.97)

which can be integrated to give

(2.98)

Finally, substituting this solution into (2.96) gives

(2.99)

So our Region II leading order solutions are

F = ----------- 
w-l)

(2.100)

Y = f — 2e/ln(l — t), (2.101)

6 = r^ + 7wCjln
1 — T (1 — T)z

1
. (2.102)

The next region can be resolved by considering the non-uniformities arising from the 

above analysis. For instance, (2.99) becomes non-uniform when f = 1 or when t = 

The latter occurs first, and (2.102) tells us that the temperature is then an O(£j) amount 
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away from the maximum temperature TM = 1 + 0, i.e. near the end of the complete 

reaction. Another non-uniformity, which may occur before or after the latter depending 

on TB, is when branching crossover occurs (i.e. when T = TB). As we have already seen 

in the numerics, if branching crossover occurs very late in the reaction, then the effect of 

the branching reaction may be too small to have any impact. Indeed, the effect quickly 

diminishes for values of TB > 2 (see figure 2.13(b)). Blythe et al. [14] consider the entire 

time history of the reactants and temperature, albeit in a different way, and hence we shall 

move on to compare our asymptotic results with our numerical work from section 2.4.1. 

Importantly, we have the asymptotic ignition time for this case.

2.4.3 Comparing the asymptotic and numerical solutions

As in section 2.3.3, we can construct a composite asymptotic solution for our two regions 

by adding the individual solutions for each region and subtracting the matched parts. 

Table 2.2 contains all the expressions required to set up such a solution.

A crucial point to make in this TB > 1 case is that none of our asymptotic solutions 

involve the TB parameter. This was noticed too in the asymptotic expression for the time 

to ignition, tign, in (2.74). This absence implies that our asymptotic solutions for the 

Tb > 1 case are only really valid for values of TB that do not produce a large variance in 

resulting values of the governing equations (2.10)-(2.13). A logical conclusion from this is 

that our asymptotics are valid for values of TB > 1 that are not close to unity, i.e. where

Tb-1 = 0(1),

since it is only then that the branching factors in the governing equations (2.10)-(2.13) 

become negligible. Our asymptotic solutions thus get better if we apply the double limiting 

process:

ei —> 0 and TB —> exo.7 (2.103)

7The conditions on TB, namely that TB < Tj and Tb < Tm, must still be satisfied. Hence, the limiting
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Table 2.2: The asymptotic solution for each region, together with the behaviour of the Region II solution 
in Region I (i.e. the matched part, M.P.). All with respect to the original variables.

R. I

R. II

x In

M.P.
P T

Employing this double limiting process removes the effect of branching, and our governing 

equations would thus effectively be modelling one-step thermal reactions as opposed to 

chain-branching reactions.

Figure 2.15 shows the asymptotic solution8 plotted against the numerical solution for 

TB = 1.5 and for four decreasing values of Sj. We notice in all four sub-figures that 

although the asymptotic solution is qualitatively accurate (especially in the latter three 

where 6/ is very small), the thermal explosion time is delayed. The relative error in the 

asymptotic time to ignition does not improve from the figure with the largest value of £/ 

to the figure with the smallest value of £/. This is because the value of TB used is not 

process, TB -> oo, is only meant to signify the tending of TB away from unity.
8The asymptotic solutions (-----) in figures 2.15 and 2.16 have only been plotted for the two regions

that have been resolved (Region I: Induction, and Region II: Thermal Explosion). We thus notice that at 
the end of the thermal explosion, the asymptotic solutions veer away from the profiles of the numerical 
solutions.

56



sufficiently distant from unity.

Figure 2.15: Comparing the composite asymptotic solution (----- ) with the numerical solution (—) for
Tb = 1.5 using four decreasing values of £/.

(c) si = 1/25 (d) e/ = 1/30

Figure 2.16 shows the same comparison but for Tb — 2.5 (which is just below the 

maximum possible temperature for the set of parameters used), and hence we should 

be more in conformity with our double limiting process (2.103). We immediately notice 
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that the asymptotic time to ignition is now improving with decreasing Ej. Decreasing Ei 

further should produce an even better agreement between our solutions, although doing 

so would become increasingly difficult computationally.

Figure 2.16: Comparing the composite asymptotic solution (----- ) with the numerical solution (—) for
Tb =2.5 using four decreasing values of E/.

(c) Ei = 1/25 (d) si = 1/30
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Figure 2.17: Comparing the asymptotic expressions for tign with the numerical tign for various Tb while 
keeping Ej = 1/15 and Eb = 1/5.

2.5 Validity of the asymptotics around Tb = 1

We have produced asymptotic solutions to our governing equations (2.10)-(2.13) for the 

two cases Tb < 1 and Tb > 1. Naturally, we have seen that these solutions agree more and 

more with the numerical solution the closer we get to the limiting values of the asymptotic 

parameters. For Tb < 1, we saw that the closer was to zero and the further away Tb was 

from unity, then the better the agreement was between the asymptotics and the numerics. 

In other words, the more these parameters reflected a higher degree of chain-branching 

then the better the agreement was. For Tb > 1, the absence of the Tb parameter in the 

asymptotics means that the asymptotic solutions do not accommodate or permit any level 

of chain-branching as they are actually representing thermal explosions. The agreement 

between the asymptotics and numerics was thus better for smaller £7 and larger Tb-

Figure 2.17 shows the two asymptotic tign expressions9, (2.47) and (2.74), plotted 

9 The logarithm of tign is plotted for clarity.
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against the numerical tign for various TB.10 A clear discrepancy exists in the region 

around TB = 1, where the asymptotic tignS from both regions quickly diverge from the 

numerical tign as they move out of their domain of validity. The asymptotic tign for 

Tb < 1 shows excellent agreement for TB less than about 0.6 (for our particular choice 

of parameter values). The TB > 1 asymptotic tign agrees reasonably well for TB greater 

than about 1.5, although the two plots do not coalesce exactly owing to our constant and 

not so small value of £/ = 1/15. If we plot similar figures, decreasing £/ from one to the 

next and hence employing the double limiting process (2.103), then the two plots should 

eventually converge (as observed earlier in figure 2.16). One-step studies [22, 30] show 

that the time to ignition is actually

10Asymptotic tign for TB > 1 is a straight line since it does not vary with Tb- The dotted line is the 
numerical tign for the one-step case and is plotted here for discussion in section 2.6.1.

tign = tign^ + O(£l))>

where t^n is our leading order asymptotic tign (2.74).

The general conclusion is that all the asymptotic expressions generated in both the 

Tb < 1 and Tb > 1 cases are only valid when TB — 1 = 0(1). In order to improve 

the accuracy of our asymptotic solutions around the critical point TB = 1, we can either 

use more asymptotically effective values of our parameters (ei, eb, TB) in which case we 

risk rendering the problem inapplicable to the physical world and probably making it 

computationally too expensive, or we can determine higher order terms. It could be more 

fruitful to examine new cases in which we would consider values of TB that are a small 

but fixed distance from 1 (such as TB = 1 ± eb or TB = 1 ± eb In^#)). This is similar to 

what Blythe et al. [14] have done, though their work is still in review.
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2.6 Parameter matching our three-step model with 
other models

As we have seen, the three-step model used here allows one to model scenarios ranging 

from the nearly purely thermal to the nearly purely chain-branching. Purely thermal 

reactions are typically modelled using the standard one-step scheme (1.9) such as that 

used in [29], whose dimensional equations can be written as

df Q~ / 1 \ z
(2105)

where k is the rate constant, e is the inverse activation energy of the reaction, cv is the 

specific heat at constant volume, and all other parameters are as in the three-step model.

Purely chain-branching reactions can be modelled using a two-step scheme such as 

that used in [21], the homogeneous version of which can be written in dimensional form 

as

(2.106)

= H(e)fc2(l - A) and (2.107)

c^^QH^k^-A), 
dt

(2.108)

where k^ is the rate constant for the first step that represents an isothermal initiation and 

branching stage (the induction zone), e is the inverse activation energy, and k2 is the rate 

constant for the second step that represents the exothermic termination stage. Instead of 

fuel mass fractions, this model uses two reaction progress variables: f for the induction 

zone and A for the termination zone. The start of the induction zone is given by £ = 0 

and the end is signalled by £ = 1, at which point the second step begins with A = 0 and 

ends with A = 1 when all the fuel has been burnt into products. The Heaviside function
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is defined as

(0 if £ < 1,
(2.109)

1 if£>l, 

and hence allows the second step to be switched on for a particle as soon as the induction 

time elapses for it.

This two-step scheme, as opposed to a three-step scheme, is possible since it assumes 

that the induction zone ends (at £ = 1) with a complete and instantaneous transformation 

from an all-fuel state to an all-chain carrier state. The downside is that this simplification 

does not allow for fuel or chain carrier mass fraction profiles to be determined.

The purpose of this section is to make parameter identifications, where possible, be­

tween our three-step model and the one-step and two-step models described above, by 

comparing the asymptotic and/or analytical expressions, where they exist.

2.6.1 One-step model parameter matching

Having already seen that for TB > 1 (where TB — 1 = 0(1)) our three-step model is actually 

modelling thermal reactions, we shall in this case attempt to match the parameters from 

our three-step model to those from the one-step model.

Time to ignition

From Kapila’s one-step analysis [29], the asymptotic time to ignition for the one-step 

model (2.104)-(2.105) can be written in dimensional form as

Tlstep 
^ign

eT^cv
—exp 
Qk

(2.110)
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Rewriting our (Tb > 1) three-step asymptotic time to ignition (2.74) in terms of Q 

and 7, we get

= Q(7 - 1)^ eXP ’ (2-in)

Dimensionalizing and then using the definition cv = gives

= (2.112)
Qkj \SiloJ

Comparing t^eP we see that we have equivalence between the three-step

model (when TB > 1) and the one-step model, if we make the following parameter matches:

~3step _ -Istep
C T --  C-

Q^step __ Qlstep ^3step __ j^lstep (2.113)

This simple and straightforward match is further confirmation that our three-step model is 

capable of modelling thermal reactions, and also shows that the one-step reaction actually 

represents the three-step initiation reaction.

Region I: Fuel and temperature

Given our parameter identifications (2.113), we can now check if our three-step asymptotic 

solutions for f and T are the same as those of the one-step model (the three-step y solution 

- which is nearly zero in the TB > 1 case - cannot be compared because the one-step model, 

by definition, does not involve chain carriers).

In Region I, the (TB > 1) three-step fuel solution (2.71) can be written in dimensional

form as

f3step = X + 1 0 V In n A
1-------— exp-------- — t

£iTqCv \ SjTJ
(2.114)

and the (TB > 1) three-step temperature (2.73) can be written in dimensional form as

= J X _ ln x - Qki / 1 V
—— exp------ — t
iTfa \

(2.115)
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Writing Kapila’s one-step temperature profile [29] for Region I in dimensional form

gives

= To < 1 — eT0 In 1 —
Qk / 1

—— exp-----—
eT^cv \ eT0

(2.116)

while using his relation,

/ = l-^(T-f0), (2.117)

between fuel and temperature, gives the one-step fuel profile as

fistep = x + ln Qk / 1 V
1----- — exp------- — t

eTqCv \ eT0J (2.118)

t ,

Comparing f3steP with f18^^ and T3step with T18^, we can see that these solutions 

are exactly equivalent given our parameter matches (2.113).

Region II: Fuel and temperature

In this thermal explosion zone, the (Tp > 1) three-step temperature (2.102) can be written 

in dimensional form as

rpSstep _  rp < 1
1 + J (t)

£iTq , - 1) + RT0 
vQh -1)

where

J(t) = E/To In 1 - t (2.120)

Kapila’s one-step temperature profile [29] can be written dimensionally as

Tlstep = f0 < 1
1 + K(t)

eTo , 
-------------- 5- In
[1 + Wl]

[1 + W)]
— i) + tTq 

vQh -1)

where

K(t) = sT0 In —— exp 
eT^cv

(2.122)1 -
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Hence, we have equivalence between and Tlstep given our parameter matches (2.113).

Using (2.117), the one-step fuel solution can be written in terms of Tlstep as

(2.123)

Writing our three-step relation between fuel and temperature (2.16) in dimensional form

gives

/ = l-7/-|(f-To), (2.124)

and hence if y = o(/, T) in this region, then at leading order our three-step fuel solution

would be

fistep _  । _ (2.125)

which is equivalent to flsteP assuming our parameter matches (2.113). Now, in this region, 

y = e/e ei (2.126)

and we have already seen that exp is exponentially small throughout

this region. Hence, since r, f and T are all 0(1) in this region, then we can safely ignore 

y here, and so f3steP is indeed equivalent to flsteP given our parameter matches (2.113).

Verifying the one-step to three-step parameter matches

Having identified which parameters in the one-step model correspond to which parameters 

in our three-step model, and consequently verified the equivalence of the asymptotic 

solutions, it would be beneficial to compare the numerical solutions of the full equations 

of both models for the same set of matched parameters. Figure 2.18 does this for two 

values of ,T^'ep (= where for each one we plot the solution for three increasing 

values of Tb- As expected, for both values of ep, we see that larger Tb leads to a better 

agreement between the one-step and three-step models. Indeed, figure 2.17 shows that, 
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for finite Ej, the three-step numerical tign asymptotes to the one-step numerical tign as 

Tb —> oo. The smaller value of Ej should, in accordance with our double limit (2.103), 

produce a faster convergence of the solutions. Figure 2.18(b) shows that although the 

solutions are relatively better, they are not drastically improved. Nevertheless, the figures 

do illustrate the qualitative equivalence of the one-step and three-step models via our 

parameter matches.

Figure 2.18: Comparing the one-step numerical solution (—) with the three-step numerical solution for 
Tb = 1.5 (- - -), Tb = 2.0 (------- ) and TB = 2.5 (•••).

2.6.2 Two-step model parameter matching

The two-step scheme models purely chain-branching scenarios, and hence we can seek to 

match its parameters with those of our TB < 1 three-step model (where TB — 1 = 0(1)).
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Time to ignition

In the two-step model, the induction zone is completely isothermal (with T = To), and so 

the reciprocal of (2.106) becomes

dt 1
— = y- exp (2.127)

Integrating through the induction zone gives

(2.128)

and so the exact analytical expression for the two-step ignition time is

EEstep 1
han = — exP l9n kY

(2.129)

If we now dimensionalize the (Tb < 1) three-step asymptotic ignition time (2.47) we 

get
Xstep 1 / 1 1 V 1 1 1 1

= — exp —=---------— —=-----------=---------- — -I----- —
kc \EbTq £bTb/ \£bTb ebTq EiTi eiT0

(2.130)

Dimensionalizing (2.6) gives & = exp i 
ebTb

, and hence

^step = J_ ( 1 A (L___ L_ 
l9n kB \sbTJ\ebTb EbT.

1 1
EiTi EiTq

(2.131)

Comparing 1^gnP with tfg^p we see that they are equivalent if we apply the following

parameter matches

~3step _ -Estep instep _ 72step [ 1
KB — C \ ~ rf, 

\EB J B

1
EbTq

1 1
EiTi EjTo

(2.132)

So although the inverse activation temperatures of the first step in the two-step model is 

shown to be equivalent to the inverse activation energy of the branching step in the three- 
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step model, the rate constants involve a factor (which is a function of other parameters) 

in their relation. Indeed, this result shows that the two-step induction step actually 

represents a combination of initiation and branching effects.

Termination zone temperature

Owing to the simplifications made in the two-step model, we cannot identify f or y with 

anything from it. Nor can we compare the three-step branching region solutions with 

two-step equivalents since the branching step has been replaced with a discontinuity in 

the two-step model. We can however compare the temperatures in the termination region 

since the termination step is explicitly defined in both models.

The simplicity of the two-step model already allowed us to determine the exact an­

alytical ignition time, but we can also determine the exact analytical solution for the 

temperature in this region. We first note that = 1 since £ > 1 here. Hence, (2.108) 

becomes
dt = Qk2
dt cv

with boundary condition T(t = t^t) = To since no heat is released up until ignition. To 

determine the required A, we can write (2.107) as

^ = £2(1-A), 
dt V h

(2.134)

with boundary condition A(t = tf^'t — 0 since the termination reaction begins at ignition.

Integrating gives

A = 1 — exp
k2— exp 
k.

- k2t (2.135)

and hence (2.133) becomes

dt 
dt

Qk2 
= —— exp - k2t (2.136)
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which after integration gives

f = + £ x _ exp *2 x

&1 \ STn /L J 7

(2.137)

The (TB < 1) three-step asymptotic temperature (2.60) can be written in dimensional 

form as

T3step = To + ~ 1 - exp f 
k \^bTb

1
ZbTq

1 1 Vc / 1 \ 7 -
—— -I-----— — exp —— — kct .
eiTi SiTqJ kB \EbTq) ,

(2.138)

Hence, T3step is the same as T2step if we apply both the parameter identifications already 

made in (2.132) and the following remaining parameter match

instep _  r2step (2.139)

This is as expected since the two-step termination reaction (which has rate constant k^) 

corresponds exactly to the three-step termination reaction (which has rate constant kc)-

Verifying the two-step to three-step parameter matches

We can now attempt a verification of our matched parameters by comparing (in the 

termination zone) the numerical temperature solution of the three-step model with the 

exact analytical temperature solution of the two-step model (2.137). Figure 2.19 shows 

such a comparison for e3̂ tep (= £^step^ _ and for three decreasing values of Tb, 

and figure 2.20 shows a similar comparison but for a slightly smaller eB value of 1/6. We 

notice that the temperature solutions converge very well with decreasing TB, but that they 

converge much quicker for smaller eb, as expected. The exponential factors involving eb 

(= s) that appear in the asymptotic (2.138) and analytical (2.137) temperature solutions 

for this termination zone do suggest a rapid convergence of the two models.
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Figure 2.19: Comparing the two-step exact analytical temperature (—) with the three-step numerical 
temperature (---- ) for eg = 1/5.

(a) Tb = 0.8 (b) Tb = 0.7 (c) Tb = 0.6

Figure 2.20: Comparing the two-step exact analytical temperature (—) with the three-step numerical 
temperature (---- ) for £b — 1/6.

(a) Tb = 0.8 (b) Tb = 0.7 (c) Tb = 0.6
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Chapter 3

PISTON-DRIVEN 
SHOCK-INDUCED INITIATION 
OF DETONATION WAVES

3.1 The mathematical model

Consider a solid piston moving at a constant velocity up through a long channel full of 

reactive gas that is initially motionless and homogeneous. In a conventional shock tube 

system as used in experiments, the tube is a round or rectangular rigid pipe and the 

piston is substituted with a rapidly expanding driver gas which is initially separated from 

the reactive gas by a diaphragm. The sudden rupture of this diaphragm causes the high 

pressure in the driver gas to expand rapidly into the reactive gas forming a weak shock 

wave [15]. This weak shock wave eventually reflects off the end wall of the tube to produce 

a stronger shock capable of igniting the gas in its wake1. Assuming diaphragm rupture is 

instantaneous and does not disturb the subsequent flow, this shock reflection from a wall 

setup would be equivalent to our solid piston system.

The shock is formed immediately at the piston and travels into the gas at an initial 

velocity us relative to the tube. Ahead of the shock we have the upstream “undisturbed” 

gas (whose state is denoted by the subscript ‘0’), and behind the shock we have the

Tf diaphragm rupture results in a sufficiently strong shock wave and a driving contact surface, then 
this can lead to ignition without the need for reflection off a wall. This is the subject of chapter 4.
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PISTON SHOCK

Downstream "shocked" gas Upstream "undisturbed" gas

Figure 3.1: Piston-tube system.

downstream “shocked” gas (whose state is denoted by the subscript ‘1’) (figure 3.1). The 

dependent variables involved are those of the homogeneous case (f, y, z and T), as well 

as gas velocity u, pressure p, density p and internal energy e, whereas the independent 

variables are those of time t and distance x from the piston’s starting position.

Piston-tube systems usually entail one-dimensional modelling, and this assumption is 

nearly always made in this kind of work. However, careful observations in the late 1950s 

and early 1960s revealed that detonations typically have an unsteady three-dimensional 

cellular structure [28]. The cell boundaries are transverse waves which collide with one 

another and with the leading shock wave making it wrinkled. However, one-dimensional 

modelling of the detonation front is still a very good approximation and is commonly 

used today, and needless to say it is important to theoretical development because it can 

provide a firm platform for understanding and tackling the problem in higher dimensions. 

Also, tube experiments of shock ignition [38] have shown that the evolution before a full 

detonation is achieved is actually highly one-dimensional.

Transport effects (such as heat conduction and diffusion) were bypassed in the ho­

mogeneous study by assuming a well-stirred chemical mixture. In detonation studies, 

transport effects can be ignored because velocities and changes of velocities in detona­

tions are typically of the order of the sound speed or greater. Any role played by transport 

effects is thus negligibly small.
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3.1.1 Governing equations

The gas dynamics in our system are described by the one-dimensional Euler equations

dp , dp du
dt + U^- + P^~ = °> dx dx (3-1)

du du 1 dp
~dt + + -x- = 0, dx p dx (3-2)

de de p (dp dp\—p u-—
dt dx p2 \ dt dx J

which represent the conservation of mass, momentum and energy, respectively. Using a 

polytropic equation of state, we can write the internal energy e of the gas as

e = 7—----- Q (1 - f -y), (7- i)p
(3-3)

where the second term represents the internal energy liberated as a result of the exothermic 

termination reaction (note that, as in the homogeneous case, chemical heat release is 

proportional to the buildup of products). The ideal thermal equation of state,

P
p

(3-4)

then allows us to write e as

e = —- f - v} ■ 
(7-1)

(3-5)

Hence, we can replace the conservation of energy equation with the following temperature

equation: 
Pi py 
Dt + Dt

P Dp 
p1 Dt

(3-6)= 0,

where is shorthand for the total (particle following) derivative ®

These are coupled to equations representing the conservation of chemical species that
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are derived by considering the conserved quantities (pf and py), their fluxes (puf and 

puy) and their reaction rates:

1 Df [1/1 1 \1 [ 1 / i 1\1
= ~fexp (,7} - T fl - ^exp U - f)] ■

1 Dy [1/1
—= / exp — — 
tign L£/ \ I

+ pfyexp
1

(3.7)

(3.8)

Equations (3.1), (3.2), (3.4), (3.6), (3.7) and (3.8) form a closed system of six equations 

in six unknowns (u, p, p, T, f, y). Variables and constants have been non-dimensionalized 

with respect to the initial shocked state as follows:

~ 11
p Rp*r i p* V ~ / p* V ~
p* p^ pp* \p<J \p„J

~ i ~
. _ 7 _ / P* A 2 ~ _ P* _ m ~ m ~% I ~ I . 5 & I I, & B B )

tign \P* / ^ign P*

(3.9)

where symbols with a tilde denote dimensional quantities, a ‘V subscript denotes values in 

the initial shocked state, R is the universal gas constant, p is the mean molecular weight 

and c is the sound speed as given by

c2 = ^ 
P

(3.10)

The value tign denotes the non-dimensional time-to-ignition as calculated in our homoge­

neous study. Here, it is determined numerically and defined as the half-reaction time, i.e. 

the time it takes to reach / = 0.5 for the corresponding homogeneous case.

Non-dimensionalizing in this way gives the initial shocked state as

p = 1, p = 1, T = 1, u = up, (3-11)

which, apart from u, is precisely the initial state of the gas in our homogeneous vessel 

study. Although we now consider the gas dynamics of our system, the fact that for TB < 1 
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we expect a virtually isothermal induction zone means that our conservation of chemical 

species PDEs (3.7) and (3.8) reduce to our homogeneous chemical species ODEs (2.10) 

and (2.11). Therefore, we should expect to see the shocked gas at the piston ignite after 

an induction time that is the same as in the homogeneous case (and hence at t = 1 owing 

to our scaling of time in (3.9)). This is not so for TB > 1 though, since now the induction 

zone is thermal and hence gas dynamics is important from the outset. The result is that 

the shocked gas ignites at a time that is not exactly the same as in the homogeneous 

case [19]. This is a trivial matter however, since the reason why we scale time with tign is 

so to cut short the otherwise very long evolution time-scale for the TB > 1 cases, and we 

do not require an accurate induction time for this purpose.

3.1.2 Shock jump conditions

Our variable and parameter scalings (3.9) give us the initial shocked state (3.11), and 

hence we need to be able to determine the state of the upstream unshocked gas, given the 

shock velocity.

If we look at the inert case (i.e. with a non-reactive gas) then the first thing to note 

is that the shock velocity us remains constant, and hence the downstream gas (i.e. the 

gas between the piston and the shock) also remains at its constant shocked state. The 

downstream gas travels at the piston velocity up. For convenience we shall be using 

different inertial frames of reference appropriate to the task at hand, namely the tube 

frame (where the tube is stationary), the piston frame and the shock frame. Shock, 

piston and gas velocities in this inert case are shown in figure 3.2.

By considering the gas flow in the shock rest frame, we can arrive at shock jump 

conditions from the basic conservation equations. Conservation of mass requires that

Pifi = Pofo d- m, (3-12)
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Figure 3.2: Shock, piston and gas velocities in the inert case in three frames of reference.

Tube frame

Piston frame

Shock frame

that is the mass flux m is the same on both sides of the shock. Conservation of momentum 

is expressed by

Pi + mvi = p0 +

hence,

Pi + pi«? = Po + Po^o, (3-13)

that is the forces exerted on each other by the gases on the two sides of the shock must 

be equal. Finally, conservation of energy tells us that the change in total energy per unit 

time per unit area of the shock surface must be equal to the work done by the gas per 

unit time per unit area, i.e.

|m(^ - v2) + m(e0 - ei) = Pi^i - Po^o,
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which by (3.12) can be expressed as

f Pi 1 2 A f Po 1 9
ml-----h + ei = m-----H 7X + e0

\Pi 2 / \Po 2

2Any surface where the quantities concerned (such as velocity, pressure, density, etc.) change discon­
tinuously as we cross such a surface.

3 Tangential discontinuities are so called because although the velocity normal to the shock is contin­
uous, the tangential velocities may be discontinuous.

But for perfect gases, another of our assumptions,

P
(?- 1)P

and so we arrive at

_ ^Pi 
m 7------------ \—

\(7- l)Pi
1

+ 2^
7Po = m I -------- -—

\(7- l)^o
(3-14)

Strictly speaking, the above equations do not apply to shocks only, but for any type of 

surface of discontinuity2. Equations (3.12)-(3.14) form a complete system of boundary 

conditions at a surface of discontinuity, and from them we can immediately deduce two 

types of surface of discontinuity. The first type is where there is no mass flux through 

the surface, i.e. m = 0. In which case, since p0 and p\ are not zero, it follows that 

Vo = Ui = 0. Condition (3.13) gives that po = pi- Thus the velocity and the gas pressure 

are continuous at the surface of discontinuity, while the density (and other thermodynamic 

quantities except the pressure) may be discontinuous. In multidimensional situations, such 

a surface discontinuity is called a tangential discontinuity3 [16], and a particular case of 

it - relevant to our one-dimensional study - is that of a contact discontinuity (or just 

contact), where the velocity and pressure are continuous, but not the density. We will 

see such contacts appearing in some of our piston-driven shock simulations, and they will 

also be the driving force in our simulations in chapter 4.

In the second type of surface discontinuity, the mass flux is not zero, and hence vq and
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Vi are not zero. Energy condition (3.14) then becomes

(7- l)pi 2 1
7Po

(7 - l)Po
1 2

+ 2^o- (3.15)

Pressure, density, energy and fluid velocity are all discontinuous across the surface, and 

it this type of surface that is called a shock wave, or just a shock. The discontinuities in 

these variables are related by the conditions (3.12), (3.13) and (3.15).

The Mach number of the shock wave Mo is defined as

Mo =
co

Vo

Co’
(3.16)

and so we can rewrite (3.12), (3.13) and (3.15) as the following shock jump conditions

Pi _ (7 + 1) Mq

Po (7—1)Mq+2’
(3-17)

^ = 1 + 4-W-l), (3.18)
Po 7 + I

^1 Po (7 - 1) Mq + 2
Vo “ Pi (7 +1) Mq ’ )

11 = EH. (3.20)
To popi

So, given 7 and Mo, we can determine the state of p, p, v and T on one side of the 

shock from the state on the other side of the shock.
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3.2 Numerical method

We shall solve equations (3.1), (3.2), (3.4), (3.6), (3.7) and (3.8) using the hierarchical 

adaptive code Cobra, which was developed by Mantis Numerics Ltd and is described 

fully by Sharpe and Faile [32]. Although Cobra is designed to solve a wide variety of 

fluid dynamics problems, its user module allows us to incorporate chemical kinetics and 

physical aspects peculiar to our model. Cobra allows us to use an arbitrary number of 

hierarchical Cartesian grids G°,..., GN, with grid Gn having mesh spacing h/2n, where h 

is the mesh spacing on the base grid G°. Grids G° and G1 cover the whole domain and the 

finer grids only cover regions where higher resolution is required, which is determined by 

an estimate of the truncation error calculated between the solutions on consecutive grids, 

hence explaining why G1 also needs to cover the entire domain. If, from grid Gn-1 to grid 

Gn, we get a truncation error in the values of the conserved quantities (e.g. density, fuel) 

or in the rate of change of the conserved quantities that is greater than given tolerances, 

then we refine to grid Gn+1.

Such an adaptive hierarchical grid ensures that areas of rapid change (e.g. shocks) 

are well refined. However, to guarantee maximum resolution around other areas of rapid 

change, we will always refine to the highest given grid level when any of the following 

conditions are satisfied:

1. |^| > 0.01, i.e. during reaction.

2. / > 0.1 AND p > po, i.e. whenever there is a significant amount of fuel behind the 

shock.

3. y > 0.1, i.e. whenever there is a significant concentration of chain carriers (which 

can only occur behind the shock).

Cobra uses an explicit Godunov scheme, designed for transient, compressible problems 

involving shocks, and is second order in both space and time.
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For convenience, we shall transform to the piston frame by defining two new variables

X — x — upt, w = u — up (3.21)

so that the piston is stationary at X = 0 and the post-shock gas speed is initially at 

rest, i.e. w = 0 initially. The boundary condition at the piston is w(0, i) = 0, i.e. the 

gas immediately in front of the stationary piston is also stationary. To express the solid 

and reflective nature of the piston, we designate the boundary type at the piston as a 

symmetry condition.

Although there are many parameters involved in this problem, we have already seen in 

the homogeneous problem that it is the value of Tb which mainly determines the nature 

of the reaction (between purely chain-branching and purely thermal). Hence we shall only 

consider varying values of Tb, while fixing the shock Mach number Mo, and keeping all 

other parameters as they were in the homogeneous study:

M = 77, £b = Q = 4, 7 = 1-4, Tj = 3, Mo = 1.5.
15 5

3.2.1 Grid resolution analysis

I have chosen the value h = 0.001 to be the base grid mesh spacing, i.e. 1000 points 

per unit X, which is sufficient to ensure a well-resolved induction zone behind the shock. 

However, to ensure that the whole numerical solution we obtain is independent of the grid 

spacing, we must choose the number of grid levels N such that the calculations are fully 

resolved. This will, of course, depend on the parameter set considered, but since we are 

only considering varying values of Tb, we need only analyse how this parameter would 

affect the value of N required. As described briefly in the introduction, a reaction wave 

can develop into a strong CJ detonation for both one-step and two-step kinetics before the 
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reaction wave collides with the leading shock. This CJ detonation, if it forms, is stronger 

than the CJ detonation that develops after collision with the leading shock, resulting in 

a much shorter reaction length and hence requiring the finest resolution. By determining 

the pre-collision CJ detonation reaction length we can get a good approximation of the 

highest resolution that will be required to ensure fully resolved calculations across the 

entire domain. We can thus determine a suitable value of N for that particular parameter 

set. For scenarios where no CJ detonation occurs before the reaction wave collides with 

leading shock, we shall still apply the same analysis, even though the value of N that 

results will be an overestimate of what is really required.

3.3 Numerical Solutions

Five values of Th are considered: 0.5, 0.6, 0.8, 1.0 and 1.2. The value Tb = 0.5 represents 

a highly chain-branching reaction in the homogeneous constant volume scenario, whereas 

Tb = 1.2 represents a very weakly chain-branching reaction (and thus one resembling 

thermal reactions). The value of tign used in the variable scalings (3.9) is given with each 

figure to provide an idea of the time and distance scales for the value of TB used.

3.3.1 Tb = Q.5

Figures 3.3 and 3.4 show the early evolution for the case TB = 0.5. They show profiles 

of pressure, temperature and chemical mass fractions all against the distance X from the 

piston. The black profiles represent the first time step, and the chronological order of 

the remaining profiles should be self-evident. The pressure-specific volume phase plane 

diagrams (pV diagrams, where V = is the specific volume) are used to classify the 

evolution to detonation. Clarke et al. [5, 33, 35] have shown that straight lines with a 

negative slope in the pV diagrams represent quasi-steady wave phenomena, where the 

slope is proportional to the speed of the wave. We shall use this to identify shocks, fast
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Figure 3.3: Piston-driven shock profiles for TB = 0.5 at times 1.0, 1.8, 2.6, 3.4 and 4.2. Scaled with
tign = 0.1.

(a) Pressure profiles. (b) Temperature profiles.

(c) Fuel profiles. (d) Chain carrier and product profiles.

(e) pV diagrams.
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flames and detonations, if and when they occur.

At t = 1.0 we see that the shock has just left the piston and that, as expected from 

our scalings in (3.9), the post-shock pressure and temperature are both unity. Also as 

expected from our scalings, the fuel f has just ignited at the piston (since it is here that 

the gas is shocked first) and chain carriers y are building up rapidly. In accordance with 

chain-branching kinetics, no products z, and hence no heat, have yet been produced. By 

the next time step, products are beginning to build up at the piston, and consequently, 

heat and pressure disturbances begin to propagate away from the piston (along positive 

characteristics) towards the shock at the sound speed of the undisturbed post-shock state. 

In contrast with one-step shock systems where the ignition point travels supersonically 

and with an initially infinite speed [20], here the ignition point (taken to be the point 

where / = 0.5) travels subsonically, and hence the disturbances quickly overtake the chain­

branching explosion ignition point. At t = 3.4, the head of the compression wave catches 

up with the shock, leaving the chain-branching ignition point quite far behind. The fact 

that this compression wave reaches the shock before a secondary shock develops, makes 

this situation completely unlike what happens with one-step schemes where secondary 

shocks are always formed, unless the activation energy is rather low (i.e. the shock wave 

is sufficiently strong) [22].

Up to this point, the shock remains at the same strength, and this is represented in 

the pV plane by straight lines stretching from the bottom right corner (the unshocked 

gas) to a single point at p = V = 1. The steady nature of the shock is by virtue of an 

induction zone that is thermally neutral together with the fact that disturbances have 

not (up until now) had the chance to affect the shock. The induction zone lies along a 

curve with negative slope in the pV plane. Although these curves appear to lie on roughly 

straight lines, as do quasi-steady weak detonations [5], the induction zone is thermally 

neutral and so cannot be associated with reaction waves in the pV plane. Indeed, in 

section 3.5 we show that for chain-branching cases like this, the induction zone portions
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Figure 3.4: Piston-driven shock profiles for Tb = 0.5 at times 5.0, 11.0, 17.0, 23.0 and 29.0. Scaled with
^ign — 0.1.

(e) pV diagrams.
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of the pV curves are in fact parts of isentropes.

We see at t = 4.2 that the pressure disturbances have amplified the shock, and this 

is represented in the pV diagram by an upwards shift in the end point of the shock 

and a steepening of the slope. The pressure and pV profiles show the induction zone to 

be increasingly compressive, and the heat release zone gradually becoming increasingly 

expansive.

Figure 3.4 shows the shock rapidly increasing in strength, heating the gas in its wake 

to higher temperatures and thus shortening the induction zone until it becomes virtually 

no more than a single point in our pV diagrams from the third time step onwards. The 

closing in of the reaction wave on the shock is depicted in the pV plane by a gradual 

coalescing of the corresponding lines. Although not shown, eventually the two lines will 

be completely coupled in a single straight line, representing the birth of a quasi-steady 

strong CJ detonation.

This entire evolution of a highly chain-branching C J detonation can be seen in Sharpe’s 

simulations of the two-step (purely) chain-branching system [21], The relevant case is 

that in which he considers slow heat release in the termination reaction zone (i.e. a small 

value of his k parameter). Although he uses larger Mach number and activation energy, 

we can still easily see that his pressure, temperature and pV profiles for this case compare 

qualitatively very well with the corresponding profiles in figures 3.3 and 3.4. A difference 

is that, since in the two-step model the branching zone is replaced by a discontinuity, the 

gradients in Sharpe’s case are discontinuous at the pressure maximum, which separates 

the induction zone from the termination zone. In our case, the profiles remain smooth at 

the pressure maximum due to a finite, but thin, branching zone.

3.3.2 Tb = 0.6

Slightly increasing the branching crossover temperature Tb to 0.6, we begin to witness a 

qualitative change in the nature of the solution. The first three time steps in figure 3.5
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Figure 3.5: Piston-driven shock profiles for TB = 0.6 at times 1.0, 1.5, 2.0, 2.5 and 3.0. Scaled with
tign = 0.48.

(c) Fuel profiles. (d) Chain carrier and product profiles.

(e) pV diagrams.
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Figure 3.6: Piston-driven shock profiles for TB = 0.6 at times 3.05, 3.08, 3.11, 3.14 and 3.17. Profiles are
zoomed in at wave collision except in pV figure. Scaled with tign = 0.48.

1.2

0.8

0.6

0.4

(a) Pressure profiles. (b) Temperature profiles.

(d) Chain carrier and product profiles.(c) Fuel profiles.

(e) pV diagrams.
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are very similar to the early evolution in our Tb — 0.5 case, however the front of the 

compression wave steepens heavily, and eventually at t = 3.0 it becomes a very weak 

secondary shock located just behind the leading shock. It is so weak however, that it 

barely registers in the pV diagram as a straight line (stretching from p = 1.1 to p = 1.2 

approximately), and hence it may be better described as a very strong compression wave 

at this point.

Figure 3.6 shows the very strong compression wave colliding with the leading shock, 

to form a new, much stronger, leading shock at t — 3.11. A structure similar to a contact 

forms at collision, and this is shown by a small and sudden rise in our temperature 

profiles at about X = 2.6 and a nearly horizontal line in our pV plane near to V = 0.8. A 

genuine contact would appear as a temperature discontinuity in the temperature profile 

and as a horizontal line in the pV diagram (which indicates a discontinuity in density and 

temperature but not in pressure).

3.3.3 Tb = 0.8

For Tb = 0.8, we notice in figure 3.7 that the pressure and temperature disturbances 

steepen more rapidly than for the previous case, so much so that a secondary shock 

(which is more powerful than the leading shock and which appears between the third and 

fourth times shown) forms much closer to the piston and further away from the leading 

shock than in the previous Tb = 0.6 case. A similar observation was noted in Sharpe’s 

analysis of the two-step model [21] where, for the rapid heat release case (in which his k 

parameter is large), the secondary shock forms much nearer the piston and further away 

from the leading shock than for the moderate heat release case (in which k = 0(1))-

It is worth noting here that, although the induction zone remains thermally neutral and 

void of products, we begin to witness a significant amount of product formulating in the 

branching zone at least initially (see the first three time steps in figure 3.7(d)), and hence 

we also get a significant amount of heat release according to equation (3.3). This heat
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release results in a rapid steepening of the pressure and temperature disturbances so that 

a powerful secondary shock eventually forms. The pV plane clearly shows this secondary 

shock as a straight line in the last two plots, and the steepening slope indicates that it 

is accelerating, due to the heat release from the expansive exothermic termination zone 

(the branching zone is now very thin). Before secondary shock formation, the compressive 

induction and branching zones are highly unsteady (apparent in the pV profiles as a highly 

curved section stretching from the leading shock wave to the pressure maximum, beyond 

which is the highly exothermic termination zone). After the secondary shock forms, these 

zones become thinner because of the secondary shock heating the gas to much higher 

temperatures, hence shortening the ignition times and increasing the peak value of the 

chain carrier concentrations.

The second time step in figure 3.8 shows that the secondary shock has just collided 

with the leading shock. The two straight lines of the first profile in the pV plane, repre­

senting the two shocks, merge in the second profile into one straight line which depicts a 

single transmitted shock that is much stronger than the pre-collision leading shock. We 

notice from comparing the shock profiles with the reactant profiles that the shock colli­

sion takes place inside the induction zone. A contact quickly develops, which is slower 

than the transmitted shock, and is clearly visible in the next time steps as a discontinuity 

downstream of the transmitted shock in the temperature profiles and as a horizontal line 

in the pV plane. Also at collision, a rarefaction or expansive wave forms and is shown 

moving slowly towards the piston in the pressure profiles. As is visible in the temper­

ature profiles, the gas between the transmitted shock and the contact is now hotter in 

comparison to the trailing flow. As a result, a second ignition point starts to form in the 

last time step, and is manifested in the fuel profiles as a blip inside the original induction 

zone. The fuel just in front of the contact will soon ignite, giving a new reaction zone 

between the shock and contact. This new reaction zone however is interrupted by the 

passing contact, which drops the temperature suddenly back to pre-shock collision tem-
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Figure 3.8: Piston-driven shock profiles for TB = 0.8 at times 2.145, 2.155, 2.165, 2.175 and 2.185. Profiles
are zoomed in at shock collision except in first pV figure. Scaled with tign = 3.801.

(e) pV diagrams. (f) pV diagrams zoomed in at contacts.
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peratures. For this reason, this new reaction zone appears only as a blip in the chemical 

mass profiles. Downstream of the contact is the remainder of the original induction zone 

which was behind the secondary shock before collision.

3.3.4 Tb = 1-0

Increasing TB further to 1.0, we expect to see both thermal and chain-branching effects 

to be present, at least initially (see figure 2.17).

Figure 3.9 shows that the secondary shock forms even closer to the piston and further 

away from the leading shock than in the previous TB = 0.8 case. Pressure-mass fraction 

phase planes are used to show the location of events inside the reaction zone. For example, 

figure 3.9(f) shows the leading shock to exist where f — 1 and y = z = 0. The secondary 

shock forms at the start of the induction zone and certainly before the chain-branching 

explosion. This means that the secondary shock, which raises the temperature from near 

TB to well above it, passes through a high concentration of fuel /, and hence is able to 

significantly affect the magnitude of the chain-branching reaction. We notice, for instance, 

that the rate of change of fuel and chain carriers increases significantly, and hence the 

value of the peak chain carrier mass fraction also increases significantly.

Initially, the pV diagrams have positive slope everywhere downstream of the leading 

shock, indicating that the induction zone is free of wave-like behaviour (the slope of a 

reaction wave in the pV plane is proportional to the negative square of the mass flux 

through the wave, and hence must be negative [33]), but also that it is now significantly 

thermal. Eventually, at t = 1.21, we begin to see the tell-tale signs of a weak detonation, a 

supersonic quasi-steady (shockless) reaction wave always witnessed during the evolution 

to a strong ZND detonation in one-step models. The straight line at the start of the 

induction zone extending to a short distance from the pressure maximum indicates the 

wave is quasi-steady, whereas the fact that / decreases as V decreases on the wave shows 

that the flow through the wave must be supersonic [5]. This, together with the fact
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Figure 3.9: Piston-driven shock profiles for TB = 1.0 at times 1.00, 1.07, 1.14, 1.21 and 1.28. Scaled with
tign = 34.64.
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that both pressure and density increase through the wave, means that it must be a weak 

detonation [5].

An important point to make here about this and other types of reaction waves (such as 

strong detonations and fast flames), is that heat must be released through the wave [33], 

otherwise the evolution is along an isentrope (cf. discussion on isentropes in sections 3.3.1 

and 3.5). Heat release in our three-step model is proportional to the product mass fraction 

z (equation (3.3)), and we notice in figure 3.9(d) that there is a very substantial buildup 

of z very early on that is even greater than the buildup of chain carriers y (although 

both are building up substantially). This is unsurprising since T TB early on, and 

hence RB ~ Rc. Even in the last time step, we can see significant z ahead and within 

the growing branching explosion. This induction zone buildup of z and associated heat 

release is the main difference between this TB = 1 case and the previous (highly chain­

branching) Tb < 1 cases, and so the weak detonation is associated with the growth in z 

ahead, through which it is moving (see the last two p-z profiles in figure 3.9(f)).

In the last time step, this weak detonation is followed by the newly formed secondary 

shock, which in turn is followed by a highly unsteady, chemically active flow around 

the pressure maximum in which most of the fuel is consumed and in which the chain­

branching explosion occurs (see the last profile in figure 3.9(f)). This is then followed 

by an expansive quasi-steady reaction wave, indicated by a straight line in the pV plane 

that heads down to about p = 2.7, which in turn is followed by an unsteady rarefaction 

wave that makes corrections to the gas velocity in order that the boundary condition 

at the piston, w(0,i) = 0, is met [5]. The quasi-steady reaction wave is actually a fast 

flame by virtue of it it being both expansive and subsonic (that it is subsonic is evident 

from the fact that, within it, / decreases as V increases [5]). The combination of the 

(secondary) shock wave, the unsteady region and the quasi-steady fast flame is known 

as the wave ‘triplet’, which has been shown to precede the formation of a strong ZND 

detonation [5, 34, 35, 36].
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Figure 3.10: Piston-driven shock profiles for Tb = 1.0 at times 1.67, 1.68, 1.69, 1.70, 1.71 and 1.72.
Profiles are zoomed in at shock collision except in first pV figure. Scaled with tign = 34.64.
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Figure 3.10 shows the evolution of the flow both just before and just after collision 

of the two shocks. Before collision, the pV diagrams in figure 3.10(f) reveal that the 

unsteady region around the pressure maximum is now very small and that the secondary 

shock is close to being fully coupled with the following fast flame (which, for t = 1.67, 

stretches from the top left corner down to about p = 5.6). Shock collision takes place just 

after t = 1.69, before the secondary shock can fully couple with the fast flame. Hence, 

the secondary shock has not reached the full CJ strength of a strong ZND detonation 

(note too that steady state calculations for this piston speed give the shock pressure in 

the steady CJ detonation to be 8.41, whereas our secondary shock pressure here is under 

7). The transmitted shock is much stronger than in the previous Tb = 0.8 case, and 

hence a second ignition point develops very quickly close to the shock. The fourth time 

step shows this second ignition point and its associated branching zone as a large blip 

in fuel and chain carrier concentration. Eventually though, only one ignition point and 

branching zone remains owing to the complete consumption of fuel f at the contact and 

the disappearance of the induction and branching zones that were behind the contact 

initially. Therefore, the contact now lies in the temperature insensitive termination zone 

and hence the blip there virtually disappears.

In this Tb = 1 case, we have seen the appearance of weak detonations, a feature always 

existent in one-step systems but that does not appear in purely chain-branching mod­

els [21] and which did not appear also in our small Tb cases wherein chain-branching fea­

tures prominently from the outset of the evolution (viz. the cases Tb = 0.5, 0.6 and 0.8). 

Based on our homogeneous study, a possible implication is that if we increase Tb further 

still, to values beyond the temperature of the initially shocked gas (unity here), then we 

might see the evolution proceed in a fashion that is even more accordant with one-step 

thermal kinetics than chain-branching kinetics.
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3.3.5 Tb = 1.2

Figure 3.11 shows the evolution for TB = 1.2 up to the development of a very strong 

secondary shock very close to the piston.

The pV profiles reveal that the flow downstream of the leading shock begins with an 

unsteady induction zone that, as expected from our homogeneous study and observed 

in one-step shock initiation models [5, 22], raises the pressure and temperature slightly 

(shown in the pV plane as a curved segment immediately following the leading shock). 

This is followed by a quasi-steady portion of a weak detonation4, which lies on an almost 

straight line that starts at the end of the unsteady induction zone. The fact that the 

(magnitude of the) slope of this weak detonation is decreasing with time shows that it 

is decelerating. As in the previous TB = 1.0 case, the weak detonation is followed by a 

highly unsteady domain around the pressure maximum.

4 The quasi-steady weak detonation is only a portion of the complete weak detonation since not all 
the ambient reactant is consumed in the quasi-steady portion [5]. We see from figures 3.11(e) and 3.11(f) 
that a substantial amount of fuel is consumed in the induction zone adjacently ahead of the quasi-steady 
detonation and also in the region behind it.

We notice from the chain carrier profiles that, in this early evolution, only small chain­

branching explosions take place, and these only occur well after the temperature exceeds 

Tb. We also note the very significant buildup of products z ahead of the weak detonation, 

through which the weak detonation is moving, as what occurs in one-step systems [22], 

This buildup of z, which is greater than the buildup of chain carriers y, is expected since 

initially T < TB and hence Rc » Rb- The pressure-chain carrier plane shows that the 

secondary shock forms more or less where chain carriers reach their peak concentration, 

i.e. downstream of the (small) chain-branching explosion. The pV profile for t = 1.302 

shows the spontaneous emergence of the secondary shock at the rear of the quasi-steady 

weak detonation and inside the head of the unsteady domain. This secondary shock 

grows in strength, resulting in the shrinking of the unsteady domain. In the last two time 

steps, we see from the expansive straight line regions of the pV profiles that the unsteady 

domain is followed by a quasi-steady fast flame. The expansive region of the pressure-fuel
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Figure 3.11: Piston-driven shock profiles for TB = 1.2 at times 1.290, 1.294, 1.298, 1.302 and 1.306. 
Profiles are zoomed in at secondary shock formation except in last two sub-figures. Scaled with tiqn = 
457.763.



profiles tells us that the fast flame consumes the last remnants of fuel, and that, finally, 

it is followed by a rarefaction wave which, as in the previous TB = 1.0 case, is required 

to satisfy the piston boundary condition. Before these last two time steps (i.e. before 

the quasi-steady fast flame emerges), the pressure-fuel profiles show that all the fuel is 

consumed in the induction zone, in the quasi-steady weak detonation and in the unsteady 

domain.

At this stage, the flow consists of a leading shock wave, followed by an unsteady 

induction zone, which in turn is followed by a quasi-steady weak detonation. This is then 

followed by a wave triplet that was also seen in the previous TB = 1.0 case, consisting 

of a powerful secondary shock, then an unsteady domain, followed by a quasi-steady fast 

flame. Finally, the flow is ended with a rarefaction wave. The wave triplet signals the 

beginnings of the appearance of a strong ZND detonation.

Figure 3.12 shows the secondary shock continuing to build up strength. The pressure­

mass fraction diagrams clearly show that the secondary shock is accelerating towards the 

leading shock and so further towards the start of the induction zone, engulfing the weak 

detonation in the process (as predicted from one-step asymptotic theory [37]). Since the 

secondary shock now lies in gas that is predominantly made up of fuel, and since it raises 

the temperature to well above TB and thus making Rc Rb, it is able to magnify the 

rate of the chain-branching explosion and hence yield higher chain carrier peak values. 

The explosion structure behind the shock is thus no longer similar to that observed in 

one-step systems, but involves a very considerable amount of chain-branching instead.

The pV profiles show that the unsteady domain that existed between the secondary 

shock and the quasi-steady fast flame has become minutely small. The pV profiles to­

gether with the pressure-mass fraction profiles reveal that the reaction zone behind the 

secondary shock is now composed entirely of a quasi-steady fast flame. Also, while both 

the secondary shock and the fast flame are accelerating (the magnitude of their slopes is 

increasing in the pV plane), the fast flame is accelerating more rapidly and hence their
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Figure 3.12: Piston-driven shock profiles for TB = 1.2 at times 1.31, 1.33, 1.35, 1.37 and 1.39. Profiles
are zoomed in at CJ detonation formation except in last two sub-figures. Scaled with tign = 457.763.

v f y z

(e) pV diagrams. (f) Pressure against mass fractions.
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sections of the pV profiles merge into a single line. This shows that the secondary shock 

is now fully coupled with the quasi-steady fast flame, indicating that a quasi-steady CJ 

detonation is born. The sharp maximum in the pressure profiles, known as the von Neu­

mann spike, further attests to the coupling of the secondary shock with the fast flame and 

the creation of a strong ZND detonation [3]. Zooming into the spike reveals a three-stage 

structure, as observed by Short and Quirk [7], consisting of a very short but definite ther­

mally neutral induction zone behind the shock, followed by a branching explosion zone, 

followed finally by an exothermic termination zone. In contrast, the detonation structure 

in one-step models can only have two stages at most, a definite induction zone and a 

reaction zone [22].

Apart from the detonation flow becoming chain-branching after the temperature ex­

ceeds Tb, the entire evolution of this Tb = 1-2 case is qualitatively identical to that 

observed in one of the one-step simulations undertaken by Sharpe [22] (viz. the case 

where his parameter values are: Q = 4, 7 = 1.4, Mo = 1.5 and 6 = 1/15).

3.4 Comparing our piston-driven shock simulations 
with those of other models

Using the parameter matches made in section 2.6, we can directly compare our (three- 

step) piston-driven shock simulations with those of the one-step and two-step models 

where it is appropriate to do so.

3.4.1 A comparison with the one-step model

Figures 3.13 and 3.14 show the results of the piston-driven shock simulations for the one- 

step model. The time-scale, tjgn, is the numerical time to ignition specific to the one-step 

model, i.e. the time it takes for half the fuel to be consumed in the one-step model. If 

we compare these one-step figures with figures from our three-step model that resemble 

thermal reactions the closest (i.e. figures 3.11 and 3.12 in which Tb = 1-2) then we notice 
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that they are virtually identical in the qualitative sense.

The development of the secondary shock in figure 3.13 involves the same phenomena as 

those of the three-step model, viz. the unsteady induction zone, the weak detonation and 

the wave triplet. Quantitatively, although the results from both models involve virtually 

the same values of pressure and temperature, we notice that they have very different time 

and distance scales, but this can be explained by the fact that TB = 1.2 is not too far 

from unity, and hence from figure 2.17 we can expect this large discrepancy. Indeed, this 

discrepancy would disappear as we take TB —> oo since then the three-step model would 

essentially become a one-step model owing to the virtual absence of the chain-branching 

reaction (cf. end of section 2.6.1). Also, we notice that the induction zone in the one- 

step model simulations has a noticeably higher fuel fraction than in the three-step model. 

Again, this can be explained by the absence of the chain-branching reaction in the one- 

step model, in the sense that chain-branching accelerates the consumption of fuel in the 

three-step model.

Figure 3.14 shows a qualitatively similar development of a CJ detonation using the 

one-step model to that of the three-step model in figure 3.12. Just as with the earlier 

evolution, the pV diagrams for both models in this latter phase are essentially the same, 

with the weak detonation becoming engulfed by the secondary shock, the unsteady do­

main at the pressure maximum becoming minutely small and the quasi-steady fast flame 

becoming fully coupled with the secondary shock, indicating the birth of the quasi-steady 

CJ detonation. The main qualitative difference between the two models is the detonation 

structure in the von Neumann detonation spike. Whereas in the three-step model we 

have seen that it consists of three stages, the absence of chain-branching in the one-step 

model means that the detonation structure only has two stages, a thermal induction zone 

followed by a thermal explosion.
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Figure 3.13: One-step model: Piston-driven shock profiles at times 1.246, 1.249, 1.252, 1.255 and 1.259.
Profiles are zoomed in at secondary shock formation except in last two sub-figures. Scaled with tign =
1142.45.

(e) Pressure against fuel.
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Figure 3.14: One-step model: Piston-driven shock profiles at times 1.262, 1.277, 1.291, 1.304 and 1.318.
Profiles are zoomed in at CJ detonation formation except in last two sub-figures. Scaled with tlgn =
1142.45.

(a) Pressure profiles. (b) Temperature profiles.

(e) Pressure against fuel.
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3.4.2 A comparison with the two-step model

The two-step model, as we have already described for the homogeneous case in section 2.6, 

uses reaction progress variables as opposed to mass fractions. It is a simple method, in 

that the induction zone ends with a complete and instantaneous transformation from an 

all-fuel state to all-chain carrier state. This implies that the induction zone is completely 

thermally neutral and that the chain-branching explosion is infinitely thin, i.e. the model 

is purely chain-branching. Figure 3.15 compares the pressure, temperature and product 

profiles of the two-step case with those of the three-step case (where the two-step data was 

produced by Sharpe by applying the parameter matches in section 2.6 to the numerical 

code used in his two-step paper [21]) . The two-step A progress variable for the termination 

reaction (see section 2.6) is considered equivalent to the three-step product fraction z, and 

so these are compared in the third sub-figure. Owing to the simplicity of this model, we 

cannot compare fuel or chain carrier profiles.

One immediate but expected difference is that the pressure profiles of the two-step 

model have discontinuous gradients owing to the Heaviside nature of the termination 

reaction. Generally, the two models compare well, especially during early time. We do 

however notice a slightly earlier emergence of a secondary shock in the two-step case, 

which appears at t = 2.5, whereas a similar profile for the three-step case appears at 

t = 3.0. Just before shock collision in the three-step case, a small contact appears in a 

spike in the last temperature profile of the two-step case, indicating shock collision has 

already (but only just) occurred for the two-step case. The product profiles show that 

the ignition point in the two-step moves well ahead of its three-step counterpart after the 

third time step (i.e. once the two-step secondary shock is formed). Profiles of all three 

sub-figures for the two models then begin to deviate quite noticeably, though the general 

form of the profiles is preserved.
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Figure 3.15: Two step model (-----) against three-step model (—): Piston-driven shock profiles at times
1.0, 1.5, 2.0, 2.5 and 3.0. Scaled with tign = 0.48.

(a) Pressure profiles. (b) Temperature profiles.

(c) Product profiles (A treated as z).

3.5 Isentropicity of the induction zone in chain­
branching reactions

In contrast with one-step thermal schemes, there is no heat release in the induction zone 

of chain-branching systems. This has been verified in our homogeneous and shock ignition 

cases for TB < 1 when TB — 1 = 0(1) (i.e. chain-branching values).

In the induction zone of our shock ignition case, and for chain-branching values of TB, 
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we can therefore replace our energy equation (3.6) with the following adiabatic condition5

5This condition can only be valid between shocks, as s jumps across shocks.

Ds n
Dt “ ’ (3.22)

where s is the entropy, which upon integration through our thermally neutral induction 

zone gives

s = constant, (3.23)

which is known as the isentropic condition [16]. This then allows us to integrate the

definition of the sound speed c,

= c2 
dPJ s

TP

P
(3.24)

to give

p = Cp^ (3.25)

where C is some constant. Before disturbances catch up with the shock, p = p = 1 at the 

shock front, and so we end up with the following isentrope:

p = p7 = 1/V^. (3.26)

If we plot this isentrope in the pV plane against pV data from chain-branching shock 

initiation cases, then, according to the above discussion, we should see the induction zone 

lying along the isentrope at least until the pressure disturbances have reached the shock. 

Figures 3.16 and 3.17 show two such plots, one for TB = 0.5 and the other for TB = 0.6, 

both of which are chain-branching values. We notice in figure 3.16(b) that the induction 

zones lie exactly on the isentrope for all the time steps except the last one where the shock 

and the induction zone have veered off slightly due to the amplification of the shock by 

pressure disturbances (which we saw in figure 3.3).
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Similarly for TB — 0.6 in figure 3.17, we can clearly see that the isentrope is superim­

posed on the induction zones for all the time steps except the last one in which a very 

strong compression wave has collided with the shock (witnessed earlier in figure 3.6).

Figure 3.16: pV diagrams plotted against the isentrope for TB = 0.5 at times 1.0, 1.8, 2.6, 3.4 and 4.2.

Figure 3.17: pV diagrams plotted against the isentrope for TB = 0.6 at times 1.0, 1.5, 2.0, 2.5 3.0 and
3.17

V

(b) Zoomed in at the induction zone.
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Chapter 4

CONTACT-DRIVEN
SHOCK-INDUCED INITIATION 
OF DETONATION WAVES

4.1 The mathematical model

In chapter 3, the mechanism driving the shock was a solid piston (or equivalent). Here, the 

solid piston is replaced with a contact surface - an acoustically permeable interface across 

which pressure and velocity remain continuous but a discontinuous drop in temperature 

and a corresponding discontinuous rise in density occur immediately behind it. As already 

mentioned in the introduction (chapter 1), the difference now is that acoustic disturbances 

emanating form the reaction zone ahead can be transmitted through the contact surface, 

whereas they were always reflected back into the reactive mixture in the piston case. Also 

mentioned, was the importance of this scenario to the problem of DDT, where an accel­

erated flame produces two weak shocks that eventually collide. The result is a Riemann 

problem whose solution involves a strong transmitted shock and a driving contact surface. 

Urtiew and Oppenheim [23] studied this shock merging problem experimentally, and were 

able to show that a detonation could be induced by the resulting contact-driven shock 

wave. Figure 4.1 shows schematics of the shock tube system both before and after the 

two shocks merge, together with representative profiles of the temperature, pressure and 

density. It is assumed that the leading shock, with known Mach number My, travels into

109



Figure 4.1: A schematic of the inert shock merging process in the shock tube, together with corresponding 
temperature, pressure and density profiles.

trailing leading
shock shock

REGION 4 REGIONS REGION 1

->m2 -►Mi
u4 = 0
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P4

(a) Before merging.

r . contact transmitted
rarefaction surface shock
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a region of stationary gas (region 1), whose known state is denoted by a ‘1’ subscript, and 

hence = 0. This leading shock is followed by the trailing shock which has known Mach 

number M2 and which leaves behind region 4 whose state can be determined from Mi, 

M2 and the known state in region 1 by applying the shock jump conditions (3.17)—(3.20) 

twice. At some time t = tM, the two shocks merge, subsequently resulting in the struc­

ture depicted in figure 4.1(b). This figure is in fact the schematic self-similar solution for 

an inert material, but since here we are investigating a reactive gas, this structure will 

evolve over time away from being self-similar. The figure shows that we now have a much 

stronger transmitted shock with Mach number Mi running into region 1. This transmit­

ted shock leaves behind a new uniform region (region 2) of relatively high temperature 

that terminates at the contact surface (travelling at speed uc, which is constant in the 

inert case). Behind the contact surface is a backward moving rarefaction that matches 

a new uniform region (region 3), which it leaves behind, to region 4. Once again we use 

the shock jump conditions (3.17)—(3.20) but this time to determine the region 2 state in 

terms of the unknown Mach number Mi and the known state in region 1. Pressure and 

velocity are continuous across a contact surface, i.e.

P3=P2, u3 = u2 = uc, (4.1)

and so the region 3 state can be determined from the known state in region 4 using the 

isentropic relations across the rarefaction wave [24],

We can now form a nonlinear algebraic expression relating Mi with the known states in

regions 1 and 4, 

2(m} i) /2n = 0i (43) 
(7 + 1)M v pi
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which we solve for Mi using the Newton-Raphson iteration method. Once Mi is known, 

actual values for the states in regions 2 and 3 can be determined as described above.

This shock merging formulation was previously used by Short and Dold [24] and then 

by Parkins [25] to study the evolution of the induction zone between a contact surface 

and a shock for the one-step thermal model, in the high activation energy asymptotic 

limit. Here, we will study this shock merging setup under the three-step and two-step 

chain-branching chemistry models.

We note from figure 4.1(b) that the temperature maximum occurs in region 2, i.e. 

between the transmitted shock and the contact surface. Short and Dold [24] show for the 

one-step model that this leads to a homogeneous constant volume ignition time which is 

very much smaller than ignition times in regions 3 and 4. It is therefore reasonable to 

consider all regions, apart from region 2, as chemically inert on the time scale of reaction 

in region 2. Disturbances resulting from chemical activity in region 2 will affect the shock 

Mach number Mi and can also travel through the contact surface into region 3 along 

negative characteristics. These disturbances cannot however affect the rarefaction wave 

(and consequently region 4 too) because the rear of the rarefaction travels at the local 

sound speed relative to the gas. In our asymptotic study therefore (where we solve for 

early time in the region ahead of the contact), although consideration needs to be given 

to changes in region 3, we can apply a radiation condition there [24], Such a boundary 

condition need not be applied in our numerical simulations, where the entire flow domain 

is explicitly solved for.

Just as in the piston-driven case of chapter 3, transport effects are negligible, and so 

we shall continue to use the reactive Euler equations to model the gas dynamics, coupled 

to a set of chemical reaction rate equations. Unlike the piston case however, there is no 

symmetric rear boundary condition here.

Similarly to what we did in the piston case, where we transformed to the frame of the 
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driving piston, we shall transform to a frame moving at the initial speed uc of the contact 

surface by defining a new velocity variable, v, and a new distance variable, X:

X = x — uct, v = u — uc. (4.4)

In the inert case, the contact and the gas in regions 2 and 3 would remain stationary 

relative to this frame. In the reactive case, they are only stationary before disturbances 

from the chemical activity can affect them.

The distance between the two weak precursor shocks can be chosen arbitrarily (since 

there is no reaction before they merge) and the position of the leading shock is then 

chosen such that the shocks merge (and therefore the contact is created) at X = 0 for 

convenience. In this case, the rear numerical boundary is placed sufficiently far behind 

X = 0 that it does not influence the computations for the time the simulation is run for.

4.2 Two-step asymptotic analysis of the ignition path

As discussed already on page 15 of the introduction, Short and Dold [24] and Parkins [25] 

have investigated the contact-driven shock case for the one-step model. Their high ac­

tivation energy early time asymptotics have shown that the fuel is initially ignited (i.e. 

thermal runaway occurs) some distance d ahead of the contact surface, in contrast with 

piston-driven shock cases where the fuel is first ignited at the piston. To understand this 

phenomenon they explain that acoustic leakage takes place at the contact surface during 

the thermal induction phase. They also demonstrate that the distance d is larger with a 

weaker contact (i.e. with a contact of low acoustic impedance) and explain that this is so 

because more acoustic energy is leaked though the contact.

Here, we shall perform a similar asymptotic investigation of the contact-driven shock 

case but for a chain-branching model. However, a simpler two-step model will be used 

rather than the three-step model for a number of reasons. Firstly, we have seen that for 
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Tb - 1 = 0(1) < 0, the three-step model is well represented by the two-step model in 

the homogeneous scenario and also, more relevantly, in the piston-driven shock scenario 

for early time. Secondly, it has already been shown by Sharpe [21] for the piston scenario 

that the two-step model is amenable to an early time asymptotic analysis, and hence we 

can perform a direct comparison between the asymptotic ignition paths of the piston and 

contact cases (here, “ignition path” refers to the locus in (X, t) space of the thin chain­

branching explosion region). Finally, we do not require expressions for chemical species 

concentrations (which are possible through a three-step analysis) in order to determine 

the ignition path.

The analysis will be for the early time period immediately following the point in time 

when ignition first takes place. However, note that the analysis is early time on the time 

scale of the exothermic termination zone, but is 0(1) on the initial induction time scale, 

since, for TB < 1, the homogeneous induction time is short.

Our aim in this section is therefore to extend the two-step analysis of Sharpe [21] in 

order to obtain insight into how the ignition path evolves initially, when compared with 

the piston scenario.

4.2.1 Governing equations for the two-step model

The two-step model is described fully in [21] (the homogeneous version was discussed in 

section 2.6). The equations governing the gas-dynamics are the Euler equations,

(4-5)

du du 1 dp
— F U — 1  dt----- dx-----p dx 

(4-6)

DT
Dt

DX 
~Dt

^ = 0, 
p2 Dt

(4-7)
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where the polytropic equation of state e = T/(y - 1) - QA is used to write the internal 

energy e in terms of temperature T. These are coupled to two chemical reaction rate

equations,
’1 M _ 1
a ~ t

— = exp (4.8)

(4-9)

where Ts is the initial post-shock temperature (which is unity according to the non- 

dimensionalization in [21]), and all other parameters are as described in section 2.6. It 

is assumed that the activation temperature is high, i.e. e < 1. Highly chain-branching 

reactions in our three-step model are achieved with TB — 1 = 0(1) < 0, which then 

forces a small induction-zone to termination zone ratio. Such ratios are achieved in the 

two-step model using a small ratio, k, of k2 to ki [21], and as the non-dimensionalization 

in [21] gives k^ = 1, then we may express this ratio by assuming k = eK where K = 0(1). 

Since Sharpe [21] non-dimensionalizes the variables with respect to the dimensional initial 

shocked state (as we do in all our shock related work in this thesis) then the initial shocked 

state is

p = 1, p=l, T = 1, u = uc. (4-10)

If we now apply the translations given in (4.4) then the contact is initially stationary and 

is formed at X = 0, and the gas velocity of the initially shocked state is given by v = 0.

As we are considering only early time behaviour to O(s), the O(s) early time contact 

surface boundary condition (to be discussed in section 4.2.2) can be applied to the fixed 

0(1) contact surface position (i.e. X = 0) throughout this early time. If we were to apply 

this O(s) early time contact surface boundary condition to an 0(e) corrected contact 

surface position, then the result would only be an O(e2) correction.

Because the induction zone is thermally neutral for highly chain-branching values of 

Tb, acoustic leakage at the contact surface cannot take place until the induction time 

there has elapsed, since there are no pressure disturbances up to that point. Hence, just 
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like in piston-driven cases where ignition first takes place at the piston, here, ignition first 

takes place at the contact surface. Assuming that the two weak precursor shocks collide 

at t - 0, then with Sharpe’s non-dimensionalization [21], the induction zone parameter £ 

first reaches unity at time t = 1. It is therefore convenient to shift time by defining

r = t-l (4.11)

so that ignition at the contact surface occurs at t = 0.

Since pressure and velocity must be continuous across the contact surface, the absolute 

boundary condition there can be written as

ub’c = ua'c, (4.12)

where the superscript denotes the state behind the contact surface, the superscript ‘a’ 

denotes the state ahead of the contact surface and the auxiliary superscript ‘c’ denotes 

the state either immediately before or immediately after the contact surface.

4.2.2 The early time contact surface boundary condition

Since acoustic leakage occurs at the contact surface, we need to establish a boundary 

condition relating gas velocity and pressure at the contact to the level of acoustic leakage 

taking place.

The inert gas behind the contact surface will be perturbed by volumetric expansion 

caused by heat release in front of the contact surface. All dependant variables will there­

fore deviate from their initial state by an 0(e) amount in this early time analysis. We 

may then define asymptotic expansions as follows:

pb = l+£pb, pb = pb + £pb, Tb = Tb + sTb, vb = (4.13)
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Pi, Pi, P, = 0(1),

where the subscript ‘i’ denotes initial values and the subscript ‘1’ denotes perturbation 

variables. Since the evolution is entirely gas-dynamical and not chemical behind the 

contact, then A = 0 there.

Substituting these expansions into the Euler equations (4.5)-(4.7) gives the following

By the ideal thermal equation of state (3.4), we can write p? ~ (Pi ~ PiTb)/Tb, and

leading order equations:
dp1! h dv, 

Pi^x=Q' (4-14)

dv\ 1 dp1! .
dr^dX^ (4'15)

did (7-l)dp? z x■7r- + kHw7r = 0- O.io
dr \Pi) vT

Substituting (4.18) into (4.17) gives

hence (4.14) becomes
±=0 (417)
p dr P' dr ) A dX ' [ ’

and (4.16) becomes
’’LtlW {41g)
dr ypb dr

^ + 7^=0. (4.19)
OT OX

we can write (4.15) and (4.19) in characteristic form as

Hence, after defining
X=4. 7 = hp^Vi, (4.20)

y 2

I (rf ± 7‘) = °- (4.21)
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When we come to actually solving the equations (which we do so in the region ahead of 

the contact), we will have to make use of a new scaling of gas velocity

171=72^. (4.22)

Applying this scaling now to the characteristic equations (4.21) gives

± a/zw) ± ^^0 = °’ (4‘23)

Therefore, at leading order, the positive characteristics in the (x, r) plane are straight 

lines with gradient dx/dr = 1/%/pf, representing waves travelling to the right at the 

initial sound speed (which is l/\/pf in (x>T) coordinates), on which

(rf + ^f) = 0. (4.24)

Similarly, the negative characteristics are straight lines with gradient dx/dr = — l/y^, 

representing waves travelling to the left at the same initial sound speed, on which

(rf - yfe) = 0. (4.25)

Hence, the quantity gives a measure of the rate of propagation of acoustic distur­

bances behind the contact surface.

The acoustic characteristic equations (4.23) are two linear advection equations and 

hence have solutions of the form

(p[ +a0U^ = C(x~ r/ao), (4.26)

(p? - a0U^ = ^(x + ^/^o), (4.27) 
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where a0 is the (constant leading order) rate of propagation of acoustic disturbances (i.e. 

the acoustic impedance), given by

Qo = (4.28)

and which appears in Short and Dold’s [24] analysis of the one-step contact-driven system. 

As already mentioned on page 15, a0 is the (constant leading order) ratio of densities across 

the contact surface and controls the amount of acoustic leakage there. From (4.28), it 

can be seen that the piston-driven system can be recovered by taking the limit a0 ~> oo, 

which gives an infinite gas density behind the contact. As discussed on page 112, and also 

by Short and Dold [24], a radiation condition can be applied behind the contact surface 

since the rear of the rarefaction wave moves at the local sound speed of region 3. In other 

words, there will be no right travelling gas-dynamic waves behind the contact, and hence 

the function C in (4.26) can be set to zero. If we then apply the boundary condition (4.12) 

to (4.26) we finally arrive at the induction zone contact-surface boundary condition,

pi = -a0Uf, (4.29)

where and pi and are the induction pressure and velocity perturbations at the contact 

surface.

4.2.3 The early time asymptotic ignition path

Having determined the early time boundary condition at the contact surface, we can now 

move on to an asymptotic analysis ahead of the contact surface, conducted in the same 

way as Sharpe’s two-step asymptotic study for a piston-driven system [21].

The variables are expanded as

p=l+ep1, p — l+Epi, T=l + s7i, v = evi, A = sAi, (4.30)
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Pi, Pi, Tu Vi, Ai = 0(1).

Applying the scalings

X TT 1X = —, ^i=7^i, (4.31)

and also the ideal thermal equation of state (3.4), the governing Euler equations (4.5)­

(4.7) can be written in characteristic form as

(d d \^±^(pl±UI)=l3KH(a (4.32)

371 = (7-1) Bp, ,, ,,,
dr y dr x ’ ’

where was defined earlier in (2.15). Here, at leading order, the positive characteristics in 

the (x, r) plane are straight lines with gradient dx/dr = 1, representing waves travelling 

to the right at the initial sound speed (which is unity in (x, t) coordinates), on which

A(Pi + [/i)=/3^(€). (4.34)
dr

Similarly, the negative characteristics are straight lines with gradient dx/dr = — 1, rep­

resenting waves travelling to the left at the same initial sound speed, on which

~{Pr-U^=^KH^. (4.35)
dr

Since the initial post-shock gas is stationary (as is the contact) in this frame of reference, 

the leading order particle paths are lines of constant x, on which

— (j\ - = ^KH^- (4.36)
dr \ x J 7

by equation (4.33). Along these particle paths, equation (4.8) gives the leading order rate
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of change of the induction time parameter as

d^ 
dr

= eT1 (4-37)

If we suppose that the ignition point (i.e. the point where £(x, r) = 1) moves along 

the path r = F(x) in (%, t) space, then F(x) can be determined by integrating (4.37),

rFx)1 = I eT1dr, 
J ts (x)

(4.38)

where rs is the time when the particle at position x was shocked, and so F must first 

be determined. Now, the first disturbance caused by the heat release in the termination 

zone will emanate from the contact surface at (% = 0, r = 0) and will travel to the 

right at the unit sound speed, i.e. along the path r = x- An undisturbed part of the 

induction zone, region U, therefore exists between this first characteristic and the shock 

ahead. Since, from Sharpe’s analysis [21], the shock initially propagates along the path 

t = rs = x/^s ~ 1, where Ms is the post-shock flow Mach number with respect to the 

shock, then region U is given by

^--1 
Ms <T <X, (4.39)

and since F = 0 in region U then (4.38) gives

(1 ~ MS)X 
Ms

eT1 dr. (4.40)

Following region W, lies a disturbed part of the induction zone, region A, between the 

first positive characteristic and the ignition point, given by

% < r < F(x), (4.41)
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which in turn is followed by the exothermic termination zone, region B, given by

(4.42)

As Sharpe [21] explains, since Ac 1 at early times, equation (4.40) gives the ignition 

path as F(x) = x/Ms initially, i.e. it propagates at the initial shock speed and therefore 

subsonically with respect to the post-shock flow (as Ms < 1 by definition). Hence, the 

disturbances due to heat release in the exothermic region B will continually overtake the 

ignition path, thus increasing the temperature in region A of the induction zone and so 

accelerating the ignition path via equation (4.40). See figure 4.2 for a schematic diagram 

of the ignition path and the location of regions W, A and B.

Figure 4.2: Schematic diagram of the (x, r) plane showing the location of regions W, A and B in relation to 
the ignition path (—), the initial shock path (------ ), the first positive characteristic from the exothermic
termination zone (• • •, positive gradient) and the first negative characteristic from the disturbed shock 
(■ • •, negative gradient).

Once the first disturbance reaches the shock, the shock will accelerate, and informa­

tion form the disturbed shock will therefore propagate backwards towards the contact at 

unit speed along the negative characteristic r = 2MS/(1 — Ms) — x- Since we are only 

considering early time (r 1) however, we need only construct the flow field in the region
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unaffected by disturbances to the shock speed, i.e. t < 2MS/(1 — — x-

Consider the negative and positive characteristics that respectively enter or leave a 

point on the contact path (% = 0) at some time tc (with 0 < rc < 2MS/(1 - Ms)). The 

negative characteristic, r = rc-x, starts at the shock path in region W where pt = Ur = 0, 

and so integrating (4.35) gives - IF = 0 everywhere in regions Z7 and A. The negative 

characteristic intersects the ignition path at (%_,r_), where

X- + F(X-) = rc, = F(x-\ (4.43)

In region B, equation (4.35) can be integrated to give

Pi — U\ = ^K(r — tA (4.44)

after matching with the solution in region A. At the contact, r — rc and gas velocity is 

given by the contact boundary condition (4.29), so that equation (4.44) then gives

Pi(0Ac)---------------- = pK(rc -tA,
O!o

and so

(4.45) 
ao

is the pressure boundary condition at the contact.1

The positive characteristic which originates at the point (0, A) on the contact path, is 

given by r = rc + x and intersects the ignition path at (x+, rA, where

F(x+) ~X+ = A, r+ = F(x+Y (4-46)

xAs expected, the pressure at the piston in Sharpe’s study [21] is recovered by taking Oq ->
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In region B, equation (4.34) can then be integrated to give

Pl + Ur = BK It +------ -------------- c-
\ 1+^0 /

(4.47)

after employing the contact boundary condition (4.45). In region A, equation (4.34) can

be integrated to give

Pi+ U1 =
t - a?0T - 2rc

1 + o?o
(4.48)

after matching with the solution in region B. But since px — Ur = 0 everywhere in region 

A, then
/ t_ - aor~ - 2tc\

Pi = Ur = — t+ +------ —----------- . 4.49
2 \ 1 + a0 )

Since Tx = px = 0 at the shock, integrating equation (4.36) along the particle paths gives 

the temperature in region A as

F = (4.50)
7

Hence, given F(x), we can construct the solution at any point (x, t) in region A from 

equations (4.49) and (4.50) by determining the appropriate value of rc for the positive 

characteristic that passes through that point.

In order to determine the solution at any point (x, t) in region B, we also need to con­

sider the negative characteristic which passes through the point. The positive character­

istic through (%, t) leaves the contact at time rc = r — x, while the negative characteristic 

through (x, t) intersects the ignition path at (x1-^-)^ where

X-+^(x'-) = X + T <=F(x'_). (4.51)

Integrating equation (4.35) along this negative characteristic gives

Pr - Ur = - <) (4.52) 
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after matching with the solution in region A. Adding equations (4.47) and (4.52) gives 

the pressure solution as

„ /3K ( T- — aor_ — 2rc ,\
Pi = ^Kt + ------------c- - < , 4.53)

2 \ 1 + a0 J ’

while subtracting gives the gas velocity solution as

fiK (T— - a0T_ - 2tc , \
t/i = — ------ ——-------- + t_ . (4.54)

2 \ 1 + Qo /

Integrating equation (4.36) then gives the temperature solution in region B as

+ (4.55)

after matching with the solution in region A.

So, given the ignition path F(x), the flow field can now be determined everywhere in 

the region unaffected by disturbances to the shock speed, i.e. r < 2MS/(1 — Ms) — x- 

As Sharpe [21] explains, a simple iterative method can be used to determine F(x)- The 

initial ignition path, F(x) = x/Ms, is used as a first guess. Equations (4.43), (4.46) and 

(4.51) then respectively give

(t - x)Ms = (T ~ X)MS , = (t + x)Ms
1 + Ms ’ X+~ 1 - M ’ X~ 1 + Ms (4.56)

and so equations (4.49) and (4.50) give 

Pi = U1 =
^KMS(MS + ^
(l-O(l + a0)

M<(7-1)(M + «o) 
7(1 - Af2)(l + a0)

(4-57)
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in region A, and equations (4.53), (4.54) and (4.55) give

Pi =
f>KM- , y) „ =

(1 + Ms)(l + a0) ’ 1 (1 + Ms)(l + a0)
T = BKM _

1 7(1 - ms2)(i + q0) 7 \ mJ
(4.58)

in region B. Although in Sharpe’s region B solution, px is independent of 7 and Uy. is 

independent of r [21], we note in (4.58) that this is no longer true for the contact-driven 

case, where the solutions are dependent on both distance and time.

The following improved estimate of F(x) is achieved by substituting (4.57) into (4.40):

. 1 , L A(1-Ms) 1 q 4 ^KMS^~ 1)(MS + aA , .FW = X + 7ln [1 + ^^x] , ^re A = —(1 _ M?)(1 + ao) ■ 0.59)

As expected, allowing a0 —> oo leads us to Sharpe’s expression for the asymptotic ignition 

path for the piston-driven shock case [21], Further iterations to improve F(x) are possible, 

but they will require equations (4.43), (4.46) and (4.51) to be solved numerically. Anyhow, 

Sharpe [21] finds that this first iteration is sufficient for a quantitatively converged solution 

at early times.

Figure 4.3 shows the asymptotic ignition path (4.59) plotted for two sets of the heat re­

lease parameters Q and K. For comparative purposes, both sub-figures also show Sharpe’s 

ignition path expression for the piston case. Even though in figure 4.3(a) we have set 

O'o = 1 (the smallest possible value, meaning that all backward-moving acoustic distur­

bances pass through the contact), the ignition path does not diverge much at all from 

Sharpe’s ignition path for the piston case (where all backward-moving acoustic distur­

bances are reflected back into the reactive gas). Figure 4.3(b) shows the ignition paths for 

a relatively higher rate of heat release. We immediately notice that, although the ignition 

path initially travels at the same velocity as the shock, it quickly accelerates due to the 

overtaking disturbances originating from the now more intense exothermic termination 

zone. There is also a larger deviation from the piston case’s ignition path than with the
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Figure 4.3: Asymptotic ignition paths, F(x), for the 2-step contact-driven shock case (—) for two sets of 
heat release parameters. Also shown are Sharpe’s asymptotic ignition path for the 2-step piston-driven 
shock case [21] (---- ), the initial shock path (------- ), the first positive characteristic from the exothermic
termination zone (■ ■ ■, positive gradient) and the first negative characteristic from the disturbed shock 
(“ ■, negative gradient). The value used for the initial transmitted shock Mach number is the same as 
the value which shall be used in the three-step numerical simulations, i.e. Mi = 2.89. It is then deduced 
that Ms = 0.48.

1.5 ... 1.5r .

Direction of 
increasing aQ

lower heat release values used in figure 4.3(a), and as such we are able to plot the ignition 

paths clearly for three increasing values of cto starting from the smallest value of unity. 

As can be seen, when we increase cto, the resulting ignition path tends to the ignition 

path of the piston case. This is as expected, since a larger a0 means a higher density of 

material behind the contact surface and so a more reflective boundary condition. What 

may seem surprising is that even with these higher heat release parameter values and for 

a0 = 1, the deviation from the piston case’s ignition path is still not very large. This can 

be explained by the fact that, regardless of the rate of heat release, the induction zone will 

always remain thermally neutral in chain-branching reactions, and hence acoustic leakage 

at the contact surface cannot take effect until only after the elapse of the ignition time of 

the particle at the contact surface. Also, the fact that we have only considered the early 

time evolution, and certainly the period of time before the first positive characteristic 
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can affect the shock velocity (i.e. below the line of the first negative characteristic in 

figure 4.3), then there is not much available time for acoustic leakage to affect the ignition 

path considerably. Therefore, the implication for our three-step numerical simulations is 

that, for chain-branching values of TB (e.g. TB = 0.8 in our chosen list of values), there 

should be little difference in the early time behaviour of the ignition path between the 

piston and contact cases, although the ignition path in the contact case will lag slightly 

behind.

4.3 Numerical Solutions

We shall produce numerical solutions for the three-step contact-driven case using the same 

method as that used for the piston-driven case (outlined in section 3.2). As in the piston 

case, we shall vary TB, while keeping the rest of the parameters constant as follows:

M = Q = 7=1-4, 7} = 3, M1 = M = 1.7. (4.60)15 5

Solving equation (4.3) using the above values of Afi and M2 gives the initial transmitted 

shock Mach number as Mi = 2.89.

We shall use the same reactive Euler equations, (3.1), (3.2), (3.4) and (3.6), to model 

the gas dynamics, coupled to the same conservation of chemical species equations, (3.7) 

and (3.8) as those used in the piston-driven case. All variables and constants are non- 

dimensionalized with respect to the initial shocked state (i.e. with respect to region 2 

of the inert case), so that we may apply the same scalings as those of the piston-driven 

case, (3.9), by replacing the subscript with a ‘2’ subscript. Hence, the initial shocked 

state is

p = 1, p = 1, T = 1, u = uc. (4.61)

The scalings (3.9) also give that time, t, is scaled with respect to the homogeneous, 
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constant volume (numerical) ignition time appropriate to region 2. We shall further 

rescale the origin of the time variable, t, but keeping the same name, such that the two 

weak precursor shocks merge at the reference time t = tM = 0. Therefore, just as in the 

piston case, the homogeneous, constant volume ignition time appropriate to the initial 

post-shock or region 2 state is given by t = 1.

4.3.1 Tb = 0.8

Figure 4.4 shows the complete profiles for the initial stages of evolution of the chain­

branching Tb = 0.8 case after the merging of the two weak precursor shocks. The tem­

perature profiles show a strong transmitted shock travelling into region 1, which leaves 

behind a relatively hot and rapidly evolving region 2 that terminates at the contact sur­

face (visible as a temperature discontinuity and as a horizontal line in the pV profiles). 

The contact surface (which initially lies at X = 0 and remains extremely close to it for the 

first two times shown) leaves behind region 3, which is evolving quite noticeably though 

not as significantly as region 2. The pressure profiles confirm pressure to be continuous 

at the contact surface, and show the rarefaction wave separating region 3 from region 4.

At t = 1.0 (the ignition time for the homogeneous, constant volume problem), the tem­

perature and pressure profiles do not look qualitatively very different from the schematic 

diagrams of the inert case in figure 4.1(b), apart from the appearance of pressure and tem­

perature disturbances near the contact surface. We notice that the fuel has just ignited 

at the contact surface owing to the onset of a chain-branching explosion there, and that, 

consequently, temperature and pressure disturbances begin to emerge from this region, 

as they did in the piston-induced case of chapter 3. A crucial difference though, is that 

here, some of these disturbances travel backwards along negative characteristics owing to 

the acoustic permeability of the contact surface. This can clearly be seen in the pressure 

profiles as a compression wave, and also in the temperature profiles as a weak thermal 

wave, travelling into region 3 at the same (sound) speed as the rarefaction wave. Both
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Figure 4.4: Contact-driven shock profiles for TB = 0.8 at times 1.0, 1.2, 1.4, 1.6 and 1.8. Scaled with
tign = 3.801.

(b) Temperature profiles.

(c) Fuel profiles.

0 05 I

(d) Chain carrier and product profiles.

(e) pV diagrams. (f) pV diagrams zoomed in behind shock.
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Figure 4.5: Contact-driven shock profiles for Tb = 0.8 at times 1.79, 1.83, 1.87, 1.91 and 1.95. Profiles 
are zoomed in between the contact and the shock except in pV figure. Scaled with tign =3.801.

(e) pV diagrams.
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the left and right moving waves become stronger as more heat is released in the reaction 

zone ahead of the contact. Due to the action of thermal expansion in the induction zone, 

the contact can be seen moving slowly backwards as it increases in strength, meaning it 

is decelerating in the shock tube frame (it would remain at the constant speed uc if the 

gas was inert). Decelerating contacts (or decelerating impact interfaces) are observed in 

shock experiments with solid explosives, and can be used as an indicator for the occur­

rence of reaction [26]. The disturbances travelling along positive characteristics to the 

right are rapidly increasing in strength, and are manifested in a strong compression wave 

that overtakes the subsonic chain-branching explosion ignition point (where the pressure 

is a maximum) and is about to collide with the shock in the last time step (the weakly 

compressive head of the compression wave has actually already reached the leading shock 

and amplified it a little - see the last pV profile). The reaction is shown clearly to proceed 

in a chain-branching fashion from the outset, with a well-defined, thermally neutral and 

product-free induction zone followed by a strong and short branching explosion.

Figure 4.5 shows that before the strong compression wave can develop into a secondary 

shock, it collides with the shock wave ahead, producing a much stronger shock that can 

be seen accelerating in the pV diagrams. Eventually, although not shown, the expansive 

heat releasing reaction zone will couple with the shock wave, resulting in a quasi-steady 

CJ detonation.

4.3.2 Tb = 1.0

For Tb = 1-0, figure 4.6 shows a very strong secondary shock that begins to develop 

between the second and third time steps. In contrast with the previous, highly chain­

branching Tb = 0.8 case, the induction zone here is not void of products z, but in fact has 

a higher proportion of products than chain carriers y initially. This induction zone buildup 

of z and associated heat release means that the reaction bears some resemblance to thermal 

reactions, which is unsurprising as Rb ~ Rc in the early part of the evolution. The pV
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= 1.0 at times 1.212, 1.312, 1.412, 1.512 and 1.612. 
the leading shock except in pV figure. Scaled with

Figure 4.6: Contact-driven shock profiles for Tb 
Profiles are zoomed in between the contact and 
tign = 34.64.

(b) Temperature profiles.

(d) Chain carrier and product profiles.

(e) Complete pV diagrams. (f) pV diagrams zoomed in behind main 
shock.
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Figure 4.7: Contact-driven shock profiles for TB = 1.0 at times 1.64, 1.67, 1.70, 1.73 and 1.76. Profiles
are zoomed in at shock collision except for pV figure. Scaled with tian = 34.64.

(e) pV diagrams.
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diagrams indicate that a quasi-steady weak detonation is travelling through this growth in 

2, and subsequently, a secondary shock can be seen forming and growing in strength and 

velocity. Eventually, there is no reaction taking place ahead of the accelerating secondary 

shock, with all reaction taking place behind it in a highly chain-branching fashion (as 

the temperature increasingly becomes greater than TB at the secondary shock). The pV 

diagrams shows the reaction wave coming close to coupling with the secondary shock, 

although a CJ detonation does not form before the two shocks collide.

Figure 4.7 gives a close-up view of the shock collision process, where the collision can 

be see to take place just before the second time step. As expected, the temperature 

profiles shows that a second contact forms at collision. However, the high temperature 

region generated ahead of the contact cannot influence the reaction rates significantly 

because the contact was formed downstream of the induction zone where most of the fuel 

has already been depleted (only a small blip in fuel and chain carrier fractions can be 

seen in the second time step).

4.3.3 Tb = 1.2

As we have already observed in our homogeneous and piston studies, the value TB = 1.2 

leads to initial behaviour that is more synonymous with thermal reactions than chain­

branching reactions. Figure 4.8 shows the evolution of the flow around the contact surface 

during ignition and the associated thermal runaway. We immediately notice one major 

qualitative difference that sets this TB = 1.2 case apart from all previous cases, that 

is the spatially non-monotonic structure of the fuel fraction f. Rather than the usual 

monotonic decrease of f as we approach the contact surface from the reacting gas on 

the right, the f minimum moves away from the contact surface into this reacting gas 

(figure 4.8(c) shows this to begin between the fifth and sixth time steps). Numerical 

results by Short and Dold [24] and analytical results by Parkins [25] (in the limit of high 

activation energy) show thermal runaway for the thermal one-step model to take place
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Figure 4.8: Contact-driven shock profiles for TB = 1.2 at times 1.440, 1.445, 1.450, 1.455, 1.460, 1.465,
1.470 and 1.475. Profiles are zoomed in at thermal runaway. Scaled with tign = 457.763.

(a) Pressure profiles. (b) Temperature profiles.

(c) Fuel profiles.

x

(d) Chain carrier and product profiles.

(e) pV diagrams zoomed in behind 
shock.
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upstream of the contact surface owing to acoustic leakage at the contact surface. In our 

finite activation energy three-step temperature profiles, we notice that although thermal 

runaway begins at the contact surface, the temperature maximum moves away from it and 

thus thermal runaway is completed away from the contact surface. Short and Dold [24] 

explain that the acoustic leakage allows a rate of expansion of material that is largest 

at the contact surface (which can be seen in our pressure profiles). This causes a faster 

deceleration of the contact surface as thermal runaway is approached, allowing a faster 

rise in temperature away from the contact surface. The fact that this movement of the 

temperature maximum occurs whilst there is still ample fuel at the contact explains why 

the fuel minimum also moves ahead of the contact.

4.4 A comparison with piston-driven shocks

In order to see directly how using a contact surface to drive a shock differs from using a 

piston, we can compare profiles from both simulations using the same parameter set and 

for the same set of times. We shall use the parameter set (4.60) used in the above contact 

simulations. Hence, for a valid comparison, the initial Mach number of the shock wave 

in the piston case is set at the value of the initial Mach number of the transmitted shock 

wave in the contact case (Mi = 2.89), and so the contact surface initially travels at the 

same speed as the steady piston. The term “rear boundary” refers to the piston face in 

the piston case and to the contact in the contact case.

4.4.1 Tb = 0.8

Figure 4.9 shows the piston profiles and the contact profiles for the chain-branching TB = 

0.8 case superimposed on the same axes. The vertical dotted line at X = 0 shows the 

position of the piston and also of the contact when it is initially formed (at t = 0). The 

four time steps chosen where taken from the contact profiles in figures 4.4 and 4.5. The
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Figure 4.9: Comparing contact-driven shock profiles (----- ) with piston-driven shock profiles (—) for
Tb = 0.8 at times 1.19 (black), 1.79 (blue), 1.87 (green) and 1.95 (red). Profiles are zoomed in between 
the contact and the leading shock. Scaled with tign = 3.801.

(c) Fuel profiles. (d) Chain carrier profiles.

first time step gives a snapshot from the early evolution. From it we notice that, as 

expected, the contact surface remains virtually at the same position where it originated, 

i.e. at X = 0. More importantly, although the chain-branching ignition point is lagging 

behind that of the piston-driven case, the deviation is not very significant in this early 

time since acoustic leakage cannot occur in a chain-branching induction zone (which 

is thermally neutral by nature). This was predicted by the two-step chain-branching 

asymptotic ignition paths (e.g. figure 4.3).
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In the second time shown, although a strong compression wave exists in the contact- 

driven case (as we have already seen), a small but noticeable secondary shock is observed 

in the piston-driven case. The acoustic leakage (which is now very noticeable) at the 

driving contact means that less energy can travel to the right than in the piston case 

where all disturbances are forced along positive characteristics. Hence, the compression 

wave in the contact case cannot steepen quickly enough to develop into a secondary shock 

before it reaches the leading shock. The acoustic leakage also means that the pressure and 

temperature are significantly lower for the contact case than for the piston case at their 

respective rear boundaries. The overall temperature in the piston case is thus higher than 

in the contact case, and so its induction zone is significantly shorter (the fuel is igniting 

upstream of where it is igniting for the contact case). The third time step shows that, in 

the piston case, the secondary shock has already collided with the leading shock, creating 

a stronger and faster transmitted shock and a small contact. In the contact case, the 

strong compression has yet to merge with the leading shock and so the leading shock 

lags behind the stronger transmitted shock of the piston case. In the last time step, the 

compression wave has finally merged with the leading shock to create a stronger shock, 

while in the piston case, the strong shock has triggered a second ignition point that will 

soon consume all the fuel at the newly formed contact.

4.4.2 Tb = 1.0

Figure 4.10 shows two time-steps for Tb = 1.0, where as before, the piston profiles and 

the contact profiles are superimposed on the same axes and the dotted line at X = 0 

shows the piston and initial contact point. We can expect a greater discrepancy between 

the piston profiles and the contact profiles than in the previous Tb = 0.8 case since now 

thermal effects are present early on and so acoustic leakage at the contact is significant 

even in the induction zone. The first time step shows that while a strong secondary shock 

has already formed in the piston case, there is only a compression wave in the contact
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Figure 4.10: Comparing contact-driven shock profiles ( ) with piston-driven shock profiles (—) for 
Tb — 1-0 at times 1.312 (black) and 1.612 (blue). Profiles are zoomed in between the contact and the 
leading shock. Scaled with tign = 34.64.

(c) Fuel profiles. (d) Chain carrier and product profiles.

case. The temperature and pressure at the rear boundary are much lower for the contact 

case than for the piston case, and the two fuel ignition points are thus considerably far 

apart (much more so than with the previous value of TB = 0.8). The chain-branching 

explosion is also much thinner in the piston case, and yields a far higher chain carrier 

maximum, since the temperatures are higher and thus further above TB. The second of 

the two time steps shows that the secondary shock in the piston case has already collided 
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with its leading shock and created a strong contact in the process. Meanwhile, although 

the compression wave in the contact case has developed into a secondary shock, it is still 

some distance away from reaching its leading shock. The undisturbed leading shock can 

be seen lagging quite far behind the amplified and accelerated transmitted shock of the 

piston case.

4.4.3 Tb = 1.2

In this weakly chain-branching case, thermal effects are quite prominent, especially those 

concerning heat release in the induction zone. With a contact-driven shock, we have 

already seen a large amount of acoustic leakage during the evolution to thermal runaway 

in figure 4.8. This led to the T maximum, and consequently the / minimum, moving away 

from the contact into the interior of the gas, just as what occurs with one-step thermal 

models. Figure 4.11 shows the evolution to thermal runaway for the piston-driven case, 

using the same value Tb — 1.2 as in figure 4.8. The first thing to note is that an earlier 

set of times is used in the piston case because thermal runaway, or ignition, at the rear 

boundary takes place earlier. Although not shown, by t = 1.440 (the first time step in 

the contact case) a strong CJ detonation will have already developed in the piston case 

due to the faster evolution. Qualitatively, we notice that, in contrast with the contact 

case, the T maximum never leaves the piston face except only after virtually all the fuel 

is depleted there. Consequently, the / minimum also does not leave the piston face and 

hence / cannot develop non-monotonically. These differences are due to the completely 

reflective nature of the piston face, which prevents any leakage of disturbances and so 

serves to enhance reaction in the gas ahead.

In contact-driven cases where TB < 1, i.e. highly chain-branching values (such as 

Tb = 0.8 considered in section 4.3.1), there is no heat release in the induction zone and 

hence no acoustic leakage there. Therefore, the induction zone remains void of any gas- 

dynamical evolution, and so the T maximum remains at the contact surface at least until
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Figure 4.11: Piston-driven shock profiles for TB = 1.2 at times 1.304, 1.308, 1.312, 1.316, 1.320, 1.324, 
1.328 and 1.322, to be compared with the contact-driven profiles in figure 4.8. Profiles are zoomed in at 
thermal runaway. Scaled with tign = 457.763.

the fuel is depleted there, completely unlike what occurs with one-step thermal models.
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Chapter 5

CONCLUSIONS AND FURTHER
WORK

5.1 Conclusions

The main aim of this work is to show that a three-step chain-branching scheme can be 

used to not only model chain-branching reactions but also thermal reactions that are 

normally modelled by a one-step scheme, as well as intermediate thermal-chain-branching 

effects. We have seen that the crucial parameter is the chain-branching crossover temper­

ature TB. If for a period of time the ambient temperature is above TB then the reaction 

can potentially proceed in a chain-branching fashion, assuming there is ample fuel left. If 

the temperature is below TB then chain-branching cannot occur rapidly.

For the homogeneous, closed vessel scenario, complete numerical solutions were given 

for various values of TB. For TB < 1 = T(0), we achieved the three distinct temporal 

zones characteristic of chain-branching explosions. The smaller the value of TB, the more 

well-defined the zones became, in the sense that the induction zone released less heat and 

witnessed virtually no change from the initial state. Also, the chain-branching explosion 

was faster, occurred earlier, resulted in a higher peak chain carrier concentration and 

hence produced less heat and fewer products for smaller TB. The products are then 

formed and the heat is released in the final chain-termination stage. Our leading order 
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asymptotic study revealed that the fuel ignites (i.e. the chain-branching explosion occurs)

at

tign — exp
1

^B \Tb

with the exponential factor confirming that smaller TB or results in a shorter ignition 

time. In terms of the accuracy of our asymptotic solutions, the crucial parameter is e5, 

an exponential encompassing both TB and eb. Smaller TB or gave a better match 

between our numerics and asymptotics, as expected.

For TB > 1, the temperature must first exceed TB before any chain-branching, if at 

all, can take place. Our numerical calculations showed that the larger TB is, the more 

the reaction looks like a thermal explosion since the branching rate RB becomes more 

suppressed and branching crossover occurs much later when little fuel remains. For the 

larger values of TB, RB is so small that the only reactions which take place are the 

initiation reaction which converts fuel into chain carriers and the exothermic termination 

reaction which quickly converts any chain carriers produced into stable products, and 

hence no build-up of chain carriers is possible. Increasing TB to higher values yields little 

or no change in the solutions. The asymptotic study uncovered the following leading order 

expression for the fuel ignition time (i.e. the time the thermal explosion occurs): 

t tjgn exp
1

which confirms the exponential dependency of the ignition time on E[. The absence of 

Tb in this expression implies that branching plays no part in determining the leading 

order ignition time, and hence the TB > 1 case mimics the one-step thermal model in this 

regard.

Further analysis of the asymptotic solutions for both the Tb < 1 and Tb > 1 cases 

revealed that these solutions are only valid when Tb — 1 = 0(1) (see figure 2.17). Pa­

rameter matching between the leading order asymptotic solutions of this and two other 
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commonly used models later verified that, assuming TB - 1 = 0(1), the solutions of the 

three-step model are indeed well described by the one-step thermal system for TB > 1 

and the two-step chain-branching system for TB < 1.

With piston-driven shock-induced ignition in a tube, gas dynamics (through the Euler 

equations) coupled with the same chemical equations as used in the homogeneous study 

now govern the evolution of the solution. Again, the crucial parameter is TB as com­

pared to the initial shock temperature (unity in our scalings), which, for chain-branching 

values, is analogous to the parameter k used by Sharpe [21] that controls the ratio of 

the length of the induction zone to that of the chain-termination zone. For the chosen 

set of parameters, high resolution numerical simulations show that the TB = 0.5 case 

(a strongly chain-branching value) results in a compression wave, formed from the pres­

sure disturbances originating in the exothermic reaction zone, which travels towards the 

shock at the local sound speed, overtakes the subsonic chain-branching ignition point and 

eventually reaches the shock before it is able to develop into a secondary shock. This sit­

uation is therefore very much like the small k case in Sharpe’s two-step chain-branching 

study [21], but is completely unlike what usually occurs with a one-step scheme, where 

a locally-supersonic weak detonation always forms and then a secondary shock develops 

soon after (unless the activation energy is rather low). Slightly increasing TB results in the 

formation of a secondary shock, but such a shock collides with the leading shock before 

it can develop into a strong detonation. Larger values of TB mean that the secondary 

shock forms much earlier and much closer to the piston (a similar effect is observed when 

increasing Sharpe’s k parameter [21]). For TB = 1.0, we begin to observe characteristics 

typical of one-step thermal models, in particular the appearance of a supersonic weak 

detonation and also the induction zone buildup of products and associated heat release. 

Although a secondary shock subsequently forms, it cannot develop into a strong detona­

tion before colliding with the leading shock. For TB = 1.2 however, the induction zone is 
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more thermal, and a strong CJ detonation is born before shock collision, as is typicallv 

witnessed with one-step thermal schemes.

When using a contact surface, as opposed to a piston, to drive the shock, acoustic 

leakage at the contact surface means that the reaction ahead cannot be as vigorous as it 

would with a piston-driven system. A two-step early time asymptotic analysis confirms 

that, in a chain-branching system, the early time ignition point moves at a slightly slower 

speed with the contact-driven shock. Numerical solutions of the three-step model show 

that, with the contact-driven case, the overall temperatures and pressures are lower at 

the various stages of the evolution, and that the evolution therefore takes place on a 

longer time scale, e.g. the development of a secondary shock will be delayed or may not 

even have enough time to develop at all. This leakage of energy, however, has its great­

est effect on systems that are thermal rather than chain-branching in nature. Since the 

induction zone releases heat in thermal regimes, acoustic leakage at the contact surface 

takes place very early on while there is still ample fuel there (in contrast, acoustic leakage 

in chain-branching systems can only occur after induction zone, which is thermally neu­

tral). Therefore, we noticed in our Tb = 1.2 case that the temperature maximum, and 

consequently the fuel fraction minimum, moved away from the contact into the interior of 

the reactive gas, similarly to what occurs with one-step thermal models, and that thermal 

runaway was delayed as compared to the piston-driven case.

5.2 Further work

Our three-step model assumes that the initiation and branching reactions are thermally 

neutral, with all the heat release occurring in the termination reaction. This is a rea­

sonable assumption since, for example, only 5% of the overall heat release in Hydrogen­

Oxygen systems occurs in the branching reactions. In actual fact, the overall initiation 

and branching reactions in Hydrogen-Oxygen systems are slightly endothermic, and so a 
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more accurate model can be devised by accommodating this fact. One would intuitively 

expect that, due to the consequent drop in temperature in the induction zone, the time 

to ignition would be slightly delayed and the maximum achievable temperature would 

slightly decrease. Also due to this endothermicity, we would expect a slight evolution in 

the induction zone even when using chain-branching values of TB. It would be especially 

interesting to see the outcome of the contact-driven shock case to see what effect this 

would have on the gas-dynamical evolution that results from acoustic leakage.

Possibilities for related work include looking into the direct initiation of detonations 

using the three-step model, as opposed to shock-induced detonations. The source of 

ignition would be a blast wave propagating into the surrounding reactive gas to generate 

a spherical CJ detonation if the source energy is sufficiently high. Such work would extend 

the work by Short and Sharpe [39]. Using our parameter matches, we could also perform 

a comparison of results from the three-step model with results from the one-step purely 

thermal model and the two-step purely chain-branching model.

Another scenario worth investigating is ignition due to an initial small spatial non­

uniformity in temperature or fuel/chain carriers, and the role of TB in such scenarios.
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Appendix A

Extra details on working out for
Tb<1

A.l Determining leading order gauge functions for 
section 2.3.2

Let

f = 1 d- gF, y = 0 + hY, T = 1 + kO, t = jr,

F, Y, 0, r = 0(1),

where the gauge functions g, h, k and j must be chosen for a leading order balance. The 

exponential factors in (2.10) and (2.11) become 
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Hence, to leading order

9dF kv ei 9
= —6/ — flY 6b h = —, - = 6/

J dr eB j

(we cannot neglect the first term on the right-hand side, since it represents the vital

initiation reaction),

—— = ej + hY eB — hY 
J dr

ei 
eB ’

ei
c2 ’

= OhY 
J dr

=> k = hj

A.2 Non-uniformity “initiation=branching” for sec­
tion 2.3.2

exp
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1 - \
----- 1 eB = XeB (A is the 0(1) bracketed factor)

57 “ /

but (2.45) then gives that r = O(eB)-
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