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Abstract 

 
How are transient memories transformed into lasting ones? While previous research has 

established the significance of sleep for consolidating memories, the intricate brain 

mechanisms underlying sleep-dependent memory consolidation are yet to be explored. 

This thesis investigates the mechanistic role of two cardinal brain oscillations during 

sleep, sleep spindles and slow oscillations, for consolidating associative memories.  

In a first study, a new memory paradigm operationalising multiple aspects of memories, 

precisely temporal and spatial features, is introduced. The results indicate that the 

paradigm indeed captures memory aspects that are consolidated during sleep. By 

combining this paradigm with electrophysiological brain recordings, a second study 

demonstrates that sleep spindles are most pronounced over learning-related cortical areas. 

The extent to which spindles track these learning-related cortical areas predicts 

behavioural measures of memory consolidation. Thereby, the second study provides 

evidence supporting a mechanistic function of sleep spindles for memory consolidation. 

That is, sleep spindles specifically occur in encoding relevant cortical areas to facilitate 

consolidation, presumably by inducing long-lasting changes (plasticity) in these areas.  

In a third and fourth study, the interplay between the two cardinal sleep oscillations (sleep 

spindles and slow oscillations) and memory reactivation is investigated. Besides inducing 

plasticity, memory reactivation has been suggested as a potential mechanism underlying 

sleep-dependent memory consolidation. In the third study, we tested for a synchronisation 

of sequential memory reactivation by slow oscillations. To this end, we employed a 

sequential memory paradigm together with novel analysis techniques enabling the 

tracking of sequential memory reactivation. Results represent first evidence of sequential 



 

memory reactivation in humans and support the hypothesis that reactivation of sequential 

memories is synchronised by slow oscillations. Applying the same analysis techniques in 

a fourth study together with an associative memory paradigm, the importance of slow 

oscillation and sleep spindle coupling for memory reactivation has been tested. Results 

of study four reveal memory reactivation during slow oscillation-sleep spindle complexes 

and moreover, that the temporal precision of slow oscillation-sleep spindle coupling 

predicts memory reactivation strength. Study three and four corroborate a timing function 

of cardinal sleep oscillations in service of memory consolidation, suggesting the temporal 

coordination of memory reactivation as a potential mechanistic function of slow 

oscillations and slow oscillation-sleep spindle complexes.  

The final chapter provides a contextualised overview of the work and discusses the 

interplay between brain oscillations during sleep and the proposed mechanisms, induction 

of plasticity and memory reactivation. Together, this thesis provides further insights into 

the mechanisms subserving associative memory consolidation during sleep.  
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Chapter 1. General Introduction 
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Past events and previous experiences lie at the core of humans’ personality. They 

influence actions and thoughts in the present and future, making the ability to remember 

them as important as experiencing them in the first place. One process enabling us to 

remember these past events is memory consolidation – a process describing the transition 

of newly made experiences into long-term memories (Müller & Pilzecker, 1900). While 

memory consolidation intermittently occurs during wakefulness (Wamsley, 2019), it is 

the period of sleep in which memory consolidation is significantly facilitated (Born & 

Wilhelm, 2012; Klinzing et al., 2019).  

The first evidence for superior memory performance, i.e. less forgetting, following sleep 

compared to wake was demonstrated at the end of the 19th century (Ebbinghaus, 1885). 

In a series of studies, Ebbinghaus (1885) recorded his own memory performance for non-

sense syllables across different time delays. Based on this, he derived forgetting curves, 

describing a non-linear decrease in memory performance as a function of time. 

Interestingly, forgetting was less pronounced when time was spent asleep rather than 

awake. The finding that forgetting is reduced across a retention interval filled with sleep 

has then been replicated with larger sample sizes many times (Heine, 1914; reviewed in 

Rasch & Born, 2013; Jenkins & Dallenbach, 1924).  

These early findings have ignited a debate about why sleep compared to wake results in 

less forgetting, putting forth three different accounts. First, the decay theory has argued 

that forgetting is the consequence of a decline of neurobiological memory traces over 

time ( Thorndike, 1913; reviewed in Rasch & Born, 2013). To then explain the differences 

in forgetting rates between sleep and wake, it was later argued that the decline happens 

at a slower rate during sleep. As the overall metabolism is slower during sleep, 

assumingly all neurobiological processes, including the decay of neurobiological memory 
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traces, slow down and result in less forgetting over a time interval filled with sleep 

compared to wakefulness (Ekstrand et al., 1977; Wixted, 2004). Second, the interference 

theory has explained forgetting as a consequence of learning new information which then 

retroactively interferes with old information, with negative effects on the ability to 

retrieve them.  While new, interfering information is constantly processed and learned 

during wakefulness, no processing and learning of new, interfering information occurs 

during sleep leading to less forgetting (McGeoch, 1932). Both the decay as well as the 

interference theory have described sleep as a shelter which passively protects and merely 

postpones deterioration of newly formed memories due to decay or interference (Ekstrand 

et al., 1977). The third account (memory consolidation), however, has assigned a more 

active role to sleep. It postulated the occurrence of a physiological process during sleep 

which transforms newly formed memory traces from a labile into a stable, long lasting 

state (Born & Wilhelm, 2012; Ekstrand et al., 1977; Müller & Pilzecker, 1900).  

Throughout the last century, empirical evidence has substantiated the memory 

consolidation account (Antony et al., 2019; Belal et al., 2018; Cairney, Guttesen, et al., 

2018; Ji & Wilson, 2007; Rasch et al., 2007; Rudoy et al., 2009; Schreiner & Rasch, 2015; 

Skaggs & McNaughton, 1996; Wilson & McNaughton, 1994; Zhang et al., 2018), which 

also builds the theoretical framework of this thesis. Although it is widely accepted today 

that physiological processes explain the beneficial effects of sleep for memory, it is still 

elusive which and how memories are actually consolidated during sleep. In this thesis 

both questions are addressed. The first experimental chapter is a behavioural study 

focusing on the quality of memories being consolidated (which). The second, third and 

fourth experimental chapters describe studies in which brain data were recorded during 
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both wake and sleep. Together, these three chapters bundle empirical evidence for two 

main mechanisms underlying sleep-dependent memory consolidation (how).  

This introduction offers an (non-exhaustive) overview of the current state of research 

targeting these two questions. Since the main body of the thesis primarily focuses on the 

mechanisms of sleep-dependent memory consolidation (chapter 3, 4 and 5) and only one 

study addressed the quality of memories being consolidated (chapter 2), the introduction 

is weighted accordingly.  

1. Which memories are consolidated during sleep? 

The first studies demonstrated a beneficial effect of sleep on consolidation of declarative 

memories (Ebbinghaus, 1885; Heine, 1914; Jenkins & Dallenbach, 1924). Declarative 

memory summarises the ability to consciously remember facts (semantic memory) and 

events (episodic memory, Tulving, 1972). Declarative memory further enables different 

facts and events to be associated with and set in relation to each other (Squire, 2004). The 

fundamental finding that sleep consolidates declarative memories has been conceptually 

replicated many times with a variety of different declarative memory tasks including 

wordlist and word pair learning (Abel et al., 2019; Bäuml et al., 2014; Denis, Schapiro, 

Poskanzer, Bursal, Charon, et al., 2020; Drosopoulos, Schulze, et al., 2007; Ellenbogen, 

Payne, et al., 2006; Plihal & Born, 1999; Schönauer et al., 2015), object-location/scene 

associations (Antony & Paller, 2018; Creery et al., 2015; Diekelmann et al., 2011, 2012; 

Noack et al., 2021; Talamini et al., 2008; van Dongen et al., 2012) and vocabulary 
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learning (Batterink et al., 2017; Henderson et al., 2012; Schreiner & Rasch, 2015).1 

However, most of these studies applied tasks operationalising either semantic memories 

(Abel et al., 2019; Bäuml et al., 2014; Henderson et al., 2012; Schreiner & Rasch, 2015) 

or some aspects of episodic memories, i.e. memory for temporal sequences (Drosopoulos, 

Windau, et al., 2007; Griessenberger et al., 2012; Wilhelm, Wagner, et al., 2011) or 

memory for spatial locations (Antony & Paller, 2018; Creery et al., 2015; Diekelmann et 

al., 2011, 2012; Noack et al., 2021; Talamini et al., 2008; van Dongen et al., 2012). 

Episodic memory, though, constitutes both the temporal sequence as well as the spatial 

location of elements (Tulving, 2002). To enable a simultaneous operationalisation of 

memory for temporal sequences and spatial locations, a new memory paradigm was 

developed and tested in chapter 2 and 3 (but see Rauchs et al., 2004; Weber, Wang, Born, 

& Inostroza, 2014 for other memory paradigms operationalising temporal sequences as 

well as spatial locations). Due to methodological reasons, in chapter 4 and 5, a simpler 

declarative memory task was used. Here, associations between stimuli had to be encoded.  

The general benefits of sleep for declarative memories are widely established, yet it is 

still an open discussion whether all declarative memories equally benefit from sleep or 

whether sleep preferentially consolidates some declarative memories over others. This 

discussion has commenced with findings showing that despite memories being stabilised 

across a period of sleep, some are still forgotten (Bäuml et al., 2014; Denis, Schapiro, 

 
1 Sleep-dependent consolidation is not limited to declarative memories and has reported for non-

declarative, e.g. procedural, memories as well (King et al., 2019; Lutz, Wolf, Hübner, Born, & 

Rauss, 2018; Plihal & Born, 1999; Schönauer et al., 2015; for a review on sleep-dependent 

consolidation of motor memories see King, Hoedlmoser, Hirschauer, Dolfen, & Albouy, 2017). 

Nevertheless, as in all experimental chapters of this thesis declarative memory tasks has been 

used, the focus lies on sleep-dependent consolidation of declarative memories.  
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Poskanzer, Bursal, Charon, et al., 2020; Drosopoulos, Schulze, et al., 2007; P. Hu et al., 

2006; Lo et al., 2014; Payne et al., 2012; Rauchs et al., 2011; Saletin et al., 2011; Wilhelm, 

Diekelmann, et al., 2011). According to these findings, not all memories seem to be 

equally consolidated during sleep and a potential selection process determines the fate of 

newly encoded memories. Recent studies argue for a preferred selection of weakly 

encoded memories for sleep-dependent memory consolidation (Denis, Schapiro, 

Poskanzer, Bursal, Charon, et al., 2020; Diekelmann et al., 2010; Drosopoulos, Schulze, 

et al., 2007; Schapiro et al., 2017; Sheth et al., 2012). Specifically, when memories are 

weakly encoded, memory performance after sleep is superior to memory performance 

after wake. When memories are encoded to a stronger extent, though, memory 

performance after sleep and wake are often similar. This observation is interpreted as 

sleep preferentially consolidating weakly encoded memories. The first experimental 

chapter uncovers an often overlooked confound when comparing sleep-dependent 

consolidation between weakly and strongly encoded memories, i.e., retrieval difficulty. 

Here, we first replicate the finding that weakly encoded memories are preferentially 

consolidated during sleep under normal retrieval conditions. Importantly though, we 

further demonstrate that, by manipulating the retrieval difficulty, consolidation is not 

limited to weakly encoded memories and emerges for strongly encoded memories as well. 

These results challenge the notion that primarily weakly encoded memories are 

consolidated and give important insights into the quality of memories being consolidated 

during sleep.  
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2. How are memories consolidated during sleep? 

2.1. The sleeping brain oscillates 

The sleeping brain oscillates on different time scales. First, across a whole night of sleep, 

sleep stages indicating different brain states alternate in a cyclic manner. In humans, four 

different sleep stages can be differentiated based on polysomnography (PSG), the 

simultaneous recordings of the electrophysiological signal of brain 

(electroencephalography, EEG), eyes (electrooculography, EOG) and muscles 

(electromyography, EMG). Sleep stage 1 (N1) constitutes the transition from wake to 

sleep and comprises 3-8% of total sleep time (TST). In that stage, the amplitude of the 

EEG signal becomes lower and the frequency slows down from alpha frequencies (8-13 

Hz), predominant during wake with eyes closed, to theta frequencies (4-7 Hz). Sleep stage 

2 (N2) covers 45-55% of total sleep time and is hallmarked by short oscillatory bursts 

between 9-15 Hz (sleep spindles) and high amplitude slower oscillations (<4 Hz). When 

the amplitude of the EEG signal increases and the overall signal becomes slower (<4 Hz), 

sleep stage 3 (N3) is reached (15-20% of total sleep time). Slow wave activity, the 

combination between delta waves (oscillations between 1-4 Hz) and slow oscillations 

(oscillations of <1 Hz), gives sleep stage 3 its alternative name: slow wave sleep (SWS). 

Even though faster oscillatory bursts (sleep spindles) occur during SWS, slow waves 

dominate. Sleep stage 1 – 3 can be summarised to non-rapid eye movement (NREM) 

sleep due to the lack of rapid eye movements (REM). Rapid eye movements are the 

unique and name-giving characteristic of the 4th sleep stage, REM sleep (20-25% of total 

sleep time). Besides these typical eye movements, REM sleep is characterised by a low 
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amplitude and faster EEG which resembles the wake EEG signal (Iber et al., 2007; Lee-

Chiong, 2005).  

Second, besides cycling through different sleep stages, the sleeping brain oscillates on a 

shorter time scale between excitation and inhibition of neuronal assemblies. During non-

REM sleep, three oscillations are predominant: sleep spindles, slow oscillations (SOs) 

and hippocampal sharp-wave ripples. Sleep spindles are distinct events oscillating at a 

frequency of 9-15 Hz in a waxing and waning shape for 0.5-3 seconds. They are 

subdivided into two different types of spindles: Slow (9-12 Hz) and fast (12-15 Hz) sleep 

spindles. While the functional purpose of slow spindles is still elusive (Rasch & Born, 

2013), fast sleep spindles have been repeatedly associated with memory consolidation 

(Gais et al., 2002; Holz et al., 2012; Mölle et al., 2011; Schabus et al., 2004). Fast sleep 

spindles are generated within a thalamo-cortical loop involving the transmission of bursts 

from the reticular nucleus to thalamo-cortical neurons and their back projection (Steriade 

et al., 1993). Slow oscillations, on the other side, are distributed alternations between 

hyperpolarization (down state) and depolarization (up state) of cortical neurons 

membrane potential. Up and down states fluctuate at a frequency of <1 Hz and lead to 

wide-ranging cortical silence during the down state and elevated cortical firing during the 

up state (Klinzing et al., 2019; Volgushev et al., 2006). While sleep spindles and slow 

oscillations can be recorded with EEG, hippocampal sharp-wave ripples are mainly 

prevalent using intracranial recordings. Hippocampal sharp-wave ripples consist of two 

oscillatory patterns: First, ripples which are high oscillatory bursts at ~80Hz and second, 

slower waves (i.e., sharp waves) below 4 Hz. While sharp-wave ripples comprise both 

oscillatory patterns, they can also occur in isolation (Buzsáki, 2015).  
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Sleep spindles, slow oscillations as well as ripples have each been associated with 

memory consolidation (Gais et al., 2002; Ngo et al., 2013; Schabus et al., 2004; van de 

Ven et al., 2016), yet theories and empirical findings argue for a synchronisation of the 

three oscillations to subserve memory consolidation (Diekelmann & Born, 2010; Helfrich 

et al., 2018; Klinzing et al., 2019; Mikutta et al., 2019; Muehlroth et al., 2019).  

2.2. Synaptic & systems consolidation 

As described earlier, the memory consolidation account postulates the occurrence of 

physiological processes which transform labile memory traces into stable representations 

(Müller & Pilzecker, 1900). These physiological processes take place locally at synapses 

(synaptic consolidation) as well as more globally across different brain areas (systems 

consolidation, Dudai, 2004).  

Synaptic consolidation describes the activity-dependent remodelling of synapses and 

dendritic spines within neural circuits representing a memory trace. The activity-

dependent remodelling of synapses can be differentiated between long-term potentiation 

(LTP) and long-term depression (LTD). LTP defines an increase in the synaptic 

transmission strength as the consequence of increased synaptic activity, whereas LTD 

reflects a decrease in the synaptic transmission strength due to a lack of synaptic activity 

(Bear & Malenka, 1994). Empirical evidence demonstrated a direct relationship between 

sleep spindles and LTP. In vitro, sleep spindle related spike trains have been shown to 

induce LTP in neocortical pyramidal cells (Rosanova & Ulrich, 2005). Sleep spindles 

have been furthermore linked to synaptic plasticity as they coincide with an increase in 

Ca2+ activity (Niethard et al., 2018; Seibt et al., 2017). A postsynaptic increase in Ca2+ 

activity triggers LTP (Neveu & Zucker, 1996) and sets early synaptic consolidation 
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processes in motion (Sejnowski & Destexhe, 2000). While rodent research suggests that 

sleep spindles, in general, induce synaptic plasticity in cortical neurons, it is still unknown 

whether the induction of synaptic plasticity particularly in learning-related areas is one 

mechanism by which sleep spindles reflect memory consolidation. In chapter 3, we tested 

the prediction that memory consolidation can be explained by sleep spindles being 

specifically expressed over learning-related cortical areas.  

Consolidation not only takes place at the synapse, but also at the systems level. Systems 

consolidation entails a redistribution of memory representations from one brain system, 

the hippocampus, which acts as a temporary storage for newly encoded memory traces, 

to another brain system, the neocortex, where memories are stored for the long-term 

(Marr, 1971). A new episode experienced during wakefulness is initially encoded in both 

brain systems. While different areas of the neocortex host different aspects of an episode, 

for instance, a person in a specific location at a specific time, the hippocampus binds these 

aspects together into a unique memory trace (McClelland et al., 1995). During sleep, the 

memory trace is repeatedly reactivated in both systems. Memory reactivation, the re-

occurrence of a neuronal activity pattern present during encoding, is the pre-requisite of 

consolidation (Rasch & Born, 2007). Due to repeated memory reactivation, the memory 

trace is redistributed from hippocampus to neocortex and transformed from a labile into 

a stable representation (active system consolidation hypothesis, Born & Wilhelm, 2012; 

Diekelmann & Born, 2010; Klinzing et al., 2019).  

The communication between brain areas in general and between the hippocampus and 

neocortex in particular is enabled by oscillations and their interplay (Buzsáki, 1996). 

During sleep, neocortical slow oscillations orchestrate the communication between 

hippocampus and neocortex. The up state of slow oscillations drives the generation of 
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thalamic spindles which then propagate to the hippocampus to synchronise ripples in their 

troughs. It has been empirically shown that memory reactivation in the hippocampus is 

linked to sharp-wave ripples (van de Ven et al., 2016). This can be interpreted as spindles 

and slow oscillations signalling the hippocampus when to reactivate (Rothschild et al., 

2017). Simultaneously, thalamic spindles also propagate to the neocortex synchronising 

hippocampal and neocortical reactivation and potentially inducing synaptic consolidation 

in encoding related areas (Klinzing et al., 2019).  

Taken together, theories addressing systems consolidation suggest that memory 

reactivation in hippocampal and cortical sites is a fundamental mechanism of memory 

consolidation and further, that sleep oscillations (slow oscillations, spindles and ripples) 

synchronise memory reactivation within and across brain areas. Empirical evidence 

supporting these theories comes from animal as well as human research.   

Animal research provided the first empirical evidence for memory reactivation in the 

hippocampus and neocortex. In a seminal paper, hippocampal cell activity was recorded 

during encoding and pre- and post-encoding sleep (Wilson & McNaughton, 1994). 

Intriguingly, hippocampal cells that were active while encoded a spatial content were re-

activated during post-encoding sleep. Since the hippocampal activity pattern was absent 

during pre-encoding sleep, it was concluded that the activity pattern during encoding 

modulated the activity pattern during post-encoding sleep. In humans, indirect evidence 

of memory reactivation was firstly provided by findings demonstrating superior memory 

performance for memories which were auditorily or olfactorily cued during sleep (Rasch 

et al., 2007; Rudoy et al., 2009). For example, during encoding, participants associated 

objects with spatial locations. The presentation of objects at spatial locations was 

additionally accompanied by a semantically related sound (e.g., a cat was accompanied 
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by a “meow”) resulting in unique object-location-sound associations. During post-

encoding sleep (N2/N3 sleep stages), some of the sounds were played without waking 

participants up. After sleep, participants were tested on their memory for the location of 

each object. Results revealed that memory performance for object-location pairs was 

higher when the associated sounds were presented (cued) during sleep compared to 

object-location pairs for which the sounds were not presented (non-cued) (Rudoy et al., 

2009). Superior memory performance for cued memories can be explained by cued 

memories being reactivated in response to the sounds and therefore consolidated. The 

protocol of presenting sounds which were incorporated in previously encoded memories 

is referred to as targeted memory reactivation (TMR, Rudoy et al., 2009; Schreiner & 

Rasch, 2015). TMR has been extensively explored and is an established tool to increase 

memory consolidation (Cairney, Lindsay, Sobczak, Paller, & Gaskell, 2016; Creery et 

al., 2015; Rasch et al., 2007; Schreiner, Lehmann, & Rasch, 2015; Schreiner & Rasch, 

2015; Wang et al., 2019; for a review see Oudiette & Paller, 2013; for a meta-analysis 

see Hu, Cheng, Chiu, & Paller, 2020).  

However, direct evidence for memory reactivation in humans that goes beyond 

behavioural TMR findings is still scarce (but see Belal et al., 2018; Schönauer et al., 2017; 

Schreiner, Doeller, Jensen, Rasch, & Staudigl, 2018; Zhang et al., 2018). This can be 

explained, at least partly, by a longstanding lack of suitable methods to measure memory 

reactivation in humans. Now, recent developments of novel analysis techniques including 

multivariate pattern analysis (MVPA) provide the possibility to capture reactivation of 

memory traces in neuroimaging data (Grootswagers et al., 2017; Norman et al., 2006). 

Chapter 4 and 5 exploit these new methods to provide evidence for endogenous as well 

as induced (via TMR) reactivation. Further, in both chapters, reactivation and its interplay 
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with sleep oscillations is investigated. The analyses in both chapters share the same 

general approach: MVPA is applied to EEG data obtained during wakefulness and sleep. 

More precisely, a classification algorithm is trained on EEG wake data measured during 

a perception task to find a model that best differentiates between category-specific neural 

patterns (e.g., neural patterns during object vs. scene perception). Importantly, the 

memory task comprises only one of the categories (e.g., encoding of adjective-object 

pairs) which is hypothesised to be reactivated during post-encoding sleep. The model that 

differentiates between category-specific neural patterns (e.g., neural patterns during 

object vs. scene perception) is then tested on sleep data in such a way that above chance 

classification reflects neural activity during sleep which resembles one category-specific 

neural pattern more than the specific pattern of a different category. Evidence for 

reactivation is assumed if above-chance classification of the stimulus category that was 

encoded before sleep is observed during sleep.   

3. Aims of this thesis 

The aims of this thesis are twofold. First, the thesis investigates which memories are 

consolidated during sleep (chapter 2). According to recent studies, sleep-dependent 

consolidation processes favour different types of memories to a different extent. More 

precisely, weaker memories might benefit more from post-learning sleep than stronger 

memories. In chapter 2 we test the hypothesis that sleep-dependent benefits for weaker 

over stronger memories might be the consequence of how memories are tested in the 

experimental task design (i.e., which testing conditions are applied). That is, under 

standard testing conditions, sleep-dependent consolidation effects for stronger memories 
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might be obscured by ceiling effects. To test this hypothesis, we developed a new memory 

paradigm and systematically manipulated memory strength as well as the testing 

conditions (to push stronger memories away from ceiling). The results of chapter 2 have 

implications for future testing protocols and further the understanding of which memories 

are consolidated during sleep.  

The second aim of this thesis is to investigate the mechanistic role of two cardinal brain 

oscillations during sleep, sleep spindles and slow oscillations, for consolidating 

associative memories. While both sleep oscillations have been associated with memory 

consolidation, the underlying mechanisms are often theoretically outlined but empirical 

evidence is scarce. In chapter 3, the same paradigm of chapter 2 in combination with 

electrophysiological brain recordings is used to investigate the mechanistic function of 

sleep spindles. While rodent research suggests that sleep spindles, in general, correlate 

with synaptic plasticity in cortical neurons (Niethard et al., 2021; Rosanova & Ulrich, 

2005; Seibt et al., 2017), it is still unclear whether the induction of plasticity particularly 

in learning-related areas is one mechanism by which sleep spindles reflect memory 

consolidation. By testing the hypothesis that memory consolidation can be explained by 

an overlap between encoding and sleep spindle topographies (i.e., reflecting the tracking 

of learning-related areas by sleep spindles), chapter 3 provides important insights into 

potential underlying mechanisms of how sleep spindles subserve consolidation.  

In chapter 4 and 5, electrophysiological brain recordings are combined with multivariate 

pattern analysis to test the hypothesis that sleep oscillations orchestrate the reactivation 

of newly encoded memories during post-encoding sleep. While memory reactivation has 

been demonstrated before (Belal et al., 2018; Schönauer et al., 2017; Schreiner et al., 

2018; Zhang et al., 2018), it is still unknown (i) how memory reactivation of sequential 



 15 

memories evolves over time and (ii) how memory reactivation interplays with sleep 

oscillations, specifically with sleep spindles, slow oscillations and sleep spindles that are 

coupled to slow oscillations. Both points are addressed in chapter 4 and 5, respectively 

which makes those chapters to an important building block in identifying memory 

reactivation in humans and in understanding its synchronisation by sleep oscillations.  
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Abstract 

Sleep stabilizes newly acquired memories, a process referred to as memory consolidation. 

According to recent studies, sleep-dependent consolidation processes might be deployed 

to different extents for different types of memories. In particular, weaker memories might 

benefit more from post-learning sleep than stronger memories. However, under standard 

testing conditions, sleep-dependent consolidation effects for stronger memories might be 

obscured by ceiling effects. To test this possibility, we devised a new memory paradigm 

(Memory Arena) in which participants learned temporospatial arrangements of objects. 

Prior to a delay period spent either awake or asleep, training thresholds were controlled 

to yield weak or strong memory opportunities. After the delay period, retrieval difficulty 

was controlled via the presence or absence of a retroactive interference task. Under 

standard testing conditions (no interference), a sleep-dependent consolidation effect was 

indeed observed for weaker memory opportunities only. Critically though, with increased 

retrieval demands, sleep-dependent consolidation effects were seen for both weaker and 

stronger memory opportunities. These results suggest that all memories are consolidated 

during sleep, but that memories of different strengths require different testing conditions 

to unveil their benefit from post-learning sleep. 
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1. Introduction 

How do fleeting experiences become long-term memories? Research has established the 

importance of post-learning sleep for the strengthening of recently acquired memories, a 

process referred to as memory consolidation (Diekelmann & Born, 2010; Jenkins & 

Dallenbach, 1924; Müller & Pilzecker, 1900; Rasch & Born, 2013). However, the 

principles governing sleep-dependent consolidation, i.e., superior memory retention after 

sleep compared to wake, are still poorly understood. Does post-learning sleep benefit all 

memories equally, or are particular types of memories prioritized for consolidation 

processes? Consistent with the latter scenario, evidence has accumulated in recent years 

for a somewhat selective sleep-dependent consolidation process.  

On the one hand, a greater benefit from post-learning sleep has been shown for 

emotionally salient compared to neutral stimuli (P. Hu et al., 2006), for events with high 

compared to low future relevance (Wilhelm et al., 2011) and for items intended to be later 

remembered compared to items intended to be forgotten (Rauchs et al., 2011; Saletin et 

al., 2011). To the extent that emotional salience, high future relevance and the intention 

to remember entail deeper processing during encoding (Craik & Lockhart, 1972), these 

results suggest that sleep-dependent consolidation may prioritise stronger memories. 

Differential post-sleep memory outcomes might then result from a synaptic 

downregulation process during sleep through which weaker memories are pruned but 

stronger memories are preserved (Tononi & Cirelli, 2006).  

On the other hand, there is evidence supporting the notion that sleep-dependent 

consolidation favours weaker memories. For instance, Bäuml, Holterman and Abel 

(2014) compared sleep-dependent consolidation of items that were restudied with items 
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that were retrieved during a practice period. As retrieval practice usually results in 

stronger memories than restudy ('testing effect', Roediger & Butler, 2011), their finding 

of restudied (i.e., weaker) and not retrieved (i.e., stronger) items showing a sleep-

dependent consolidation effect suggests that weaker memories differentially benefit from 

sleep-dependent consolidation. Two other studies, also indirectly manipulating memory 

strength, came to the same conclusion. They have shown greater sleep-dependent 

consolidation effects for word pairs with low compared to high semantic relatedness (Lo 

et al., 2014; Payne et al., 2012), where low semantic relatedness typically yields weaker 

memories. Moreover, experimentally facilitating consolidation during sleep via targeted 

memory reactivation (Rasch, Büchel, Gais, & Born, 2007; Rudoy, Voss, Westerberg, & 

Paller, 2009; Schreiner & Rasch, 2015) has been demonstrated to be more effective for 

items less well remembered prior to sleep (i.e., weaker memories) (Cairney et al., 2016; 

Creery et al., 2015). Finally, one study directly manipulated pre-sleep memory strength, 

either by having participants learn some stimuli to a lower criterion than others, or by 

imposing a retroactive interference task immediately after learning. Again, results 

indicate greater sleep-dependent consolidation benefits for weaker than for stronger 

memories (Drosopoulos, Schulze, et al., 2007).  

How can these different lines of results be reconciled? One possible explanation for the 

result of weaker memories being preferentially consolidated during sleep is a ceiling 

effect for stronger memories. That is, elevating the strength of pre-sleep memory traces 

beyond a certain threshold might conceal the retention benefit typically afforded by sleep. 

In other words, sleep possibly benefits both weaker and stronger memories, but different 

testing protocols (mitigating ceiling effects) are needed to uncover these benefits. One 

effective means to reduce the impact of ceiling effects is to retroactively weaken memory 
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traces through interference, thereby moving them away from ceiling. For instance, one 

study had participants learn word pairs to a 100% accuracy criterion (corresponding to 

rather strong pre-sleep memories) and applied retroactive interference immediately 

before the final (post-sleep) retrieval session (Ellenbogen, Hulbert, et al., 2006). This 

procedure indeed revealed a sleep-dependent consolidation effect, despite the initially 

high learning criterion. Critically though, that study did not vary pre-sleep memory 

strength, such that it is unclear whether sleep protects both weaker and stronger memories 

from retroactive interference. 

In light of the extant findings, we hypothesised that both weaker and stronger memories 

might benefit from post-learning sleep, but that an increase in retrieval difficulty is needed 

to uncover sleep-dependent consolidation of stronger memories. To assess the beneficial 

effect of sleep-dependent consolidation on weaker and stronger memories as a function 

of retrieval difficulty within the same paradigm, we systematically manipulated (i) pre-

sleep memory strength by varying a training threshold (providing weaker vs. stronger 

memory opportunities) and (ii) retrieval difficulty by inducing retroactive interference. 

To this end, we devised a new memory paradigm (‘Memory Arena’), designed to capture 

de-novo learning of temporal and spatial aspects of episodic memory. Specifically, the 

Memory Arena paradigm has participants learn both the temporal and spatial position of 

20 individual object images placed on a circle. Learning is in principle completed when 

all 20 objects are placed in the correct temporal order to their correct position (100% 

performance). Importantly though, memory strength can be experimentally controlled by 

terminating training at different performance levels. Retroactive interference was induced 

by having participants learn a new temporospatial arrangement of the same objects 

directly before the final retrieval.  
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Our first aim was to replicate the greater benefit of sleep-dependent consolidation for 

weaker relative to stronger memory opportunities (using a standard testing protocol 

without retroactive interference). Indeed, we found that weaker memory opportunities 

(training threshold of 1x50% accuracy) showed a sleep-dependent consolidation effect, 

whereas stronger memory opportunities (training threshold of 2x70% accuracy) did not. 

We then tested whether increased retrieval demands, i.e., the need to overcome retroactive 

interference, would yield a sleep-dependent consolidation effect for stronger memory 

opportunities as well. Intriguingly, this manipulation revealed sleep-dependent 

consolidation effects for both types of pre-sleep memories (weaker and stronger). These 

results suggest that post-learning sleep might benefit all memories, but that different 

testing conditions are differentially sensitive to unveiling consolidation of weaker vs. 

stronger memories.  

2. Results 

2.1. General 

To capture both the temporal and spatial components of episodic memory we designed a 

new paradigm, called Memory Arena (see Figure 1 for the task design). 
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Figure 2.1. Task design. During encoding 20 objects were presented in the Memory 
Arena. After clicking on an object, the current object disappeared and the next object was 
shown. The training session started with all 20 objects randomly arranged around the 
arena. Objects had to be dragged and dropped in the correct sequence to the correct spatial 
position. Feedback was given after each trial and any errors were corrected. Interference 
was induced by encoding of the same objects but in a different sequence and at different 
spatial positions. Retrieval (not shown) followed the same procedure as training, but no 
feedback and correction were provided. 

Our study design included the between-subjects factors Delay (sleep vs. wake), Memory 

Strength (weaker vs. stronger) and Retrieval Difficulty (no interference vs. interference) 

resulting in 8 conditions with 15 participants each (Figure 2).  

 

 

 

 

 

 



 23 

Figure 2.2. Study design. 120 participants were randomly assigned to one of 8 conditions 
(groups). All sleep groups performed the encoding, training and pre-delay retrieval in the 
evening and the post-delay retrieval 12 hours later in the morning. The wake groups 
performed the encoding, training and pre-delay retrieval in the morning and the post-
delay retrieval 12 hours later in the evening. Besides the between-subjects factor Delay 
(sleep vs. wake), pre-sleep memory strength was manipulated via the training threshold 
(A and C for weaker memory opportunities and B and D for stronger memory 
opportunities). Additionally, half of the participants were given an interference task 
before the post-delay retrieval to increase retrieval difficulty (between-subjects factor 
Retrieval Difficulty, A and B for no interference, C and D for interference). E = encoding, 
T = training, pvt = Psychomotor Vigilance Task, R1 = pre-delay retrieval, R2 = post-
delay retrieval, i = interference  

First, we assessed whether the encoding strength manipulation (1x50% vs. 2x70% 

training performance) affected the training duration, quantified both in terms of training 

rounds required and total time spent to reach criterion, including the encoding part (see 

Supplemental Information, Table S1 for descriptive data). We conducted a 2x2x2 
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ANOVA with the between-subjects factors Delay, Memory Strength and Retrieval 

Difficulty and the training duration or the total number of training rounds as dependent 

variables. For strong memories (2x70% criterion), participants required significantly 

longer training time (main effect of Memory Strength: F(1, 112) = 8.05, p = .005, ηp
2= 

0.07, mean2x70% = 1128.13 sec, 95%CI2x70% = 92.24 sec, mean1x50% = 909.85 sec, 

95%CI1x50% = 120.61 sec) and more training rounds (main effect of Memory Strength: 

F(1, 112) = 15.58, p < .001, ηp
2= 0.12, mean2x70% = 4.88, 95%CI2x70% = 0.49, mean1x50% = 

3.22, 95%CI1x50% = 0.67). The time of the day for training (evening for all sleep groups 

and morning for all wake groups) neither impacted training duration (main effect of 

Delay: F(1, 112) = 0.03, p = .869, ηp
2< 0.01, BF01 = 5.08) nor the number of training 

rounds needed to reach the criterion (main effect of Delay: F(1, 112) = 1.40, p = .239, 

ηp
2= 0.01, BF01 = 2.89). Likewise, there was no significant difference in training duration 

and number of training rounds between no interference and interference groups (duration: 

main effect of Retrieval Difficulty: F(1, 112) = 0.02, p = .884, ηp
2< 0.01, BF01 = 5.10; 

rounds: main effect of Retrieval Difficulty: F(1, 112) = 0.01, p = .937, ηp
2< 0.01, BF01 = 

5.13). 

Next, we identified one performance metric for all subsequent analyses. The Memory 

Arena paradigm yields two separate measures for memory performance, i.e., sequence 

memory and spatial memory. This allowed us to proceed with the memory measure most 

sensitive to our critical encoding strength manipulation (1x50% vs. 2x70%, pre-delay 

Memory Strength). At the same time, we wanted to ensure that pre-delay memory 

performance did not differ between sleep and wake groups (factor Delay) or between no 

interference and interference groups (factor Retrieval Difficulty). We thus compared 

sequence performance as well as spatial error at pre-delay retrieval in two separate 2x2x2 
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ANOVAs, each including the between-subjects factors Delay, Memory Strength and 

Retrieval Difficulty. As expected, the 2x70% training threshold led to better pre-delay 

retrieval performance than the 1x50% training threshold for both measures (main effect 

of Memory Strength for sequence performance: F(1, 112) = 73.44, p < .001, ηp
2= 0.40; 

main effect of Memory Strength for spatial error: F(1, 112) = 46.80, p < .001, ηp
2= 0.29). 

Critically though, the corresponding effect size was markedly higher for sequence (ηp
2= 

0.40) than for spatial memory performance (ηp
2= 0.29). Consequently, we focused our 

subsequent analyses on sequence performance (but see Supplemental Information, Table 

S2 and Figure S1-S3, for analyses using spatial memory performance and Table S3 and 

Figure S4-S6 for analyses using overall memory performance). Importantly, neither 

Delay (sleep vs. wake) nor Retrieval Difficulty (no interference vs. interference) had a 

significant effect on sequence or spatial memory performance at pre-delay retrieval (all 

F < 1.29, all p > .258, all BF01 > 3.36), ensuring there were no other baseline (pre-delay) 

differences between groups.  

To account for potential differences in attention between pre- and post-delay retrieval, we 

compared the number of attention lapses (reaction times > 500ms, Basner & Dinges, 

2011) during the psychomotor vigilance task (PVT). Results showed that there was no 

significant change in the number of lapses in any of the conditions from pre to post-delay 

retrieval (all t < 1.59, all p > .135), ruling out fatigue as a confounding factor for our 

results. 

Consolidation, i.e., the change in sequence memory performance from pre to post-delay 

retrieval, was calculated as a relative change. In the following, sequence consolidation 

denotes the performance during post-delay retrieval relative to pre-delay retrieval, 

meaning that values > 100% reflect an increase, values < 100% reflect a decrease and 
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values = 100% reflect a stabilization of sequence memory performance. Sleep-dependent 

consolidation is then defined as the differential consolidation effect for the sleep group 

compared to the corresponding wake group (factor Delay).  

As a first analysis we conducted a 2x2x2 ANOVA with sequence consolidation as the 

dependent variable and Delay (sleep vs. wake), Memory Strength (weaker vs. stronger) 

and Retrieval Difficulty (no interference vs. interference) as between-subjects factors. 

Across all groups, post- relative to pre-delay performance was higher in sleep groups than 

in wake groups (main effect for Delay: F(1,112) = 32.69, p < .001, ηp
2= 0.23) and lower 

for high retrieval difficulty in comparison to low retrieval difficulty (main effect for 

Retrieval Difficulty: F(1,112) = 44.07, p < .001, ηp
2= 0.28). Neither the main effect for 

Memory Strength nor any of the two way interactions reached significance (all F < 2.06 

all p > .154, all BF01 > 2.95). Critically though, we found a significant three way 

interaction (F(1, 112) = 6.21, p = .014, ηp
2= 0.05), suggesting that sleep-dependent 

consolidation effects for weaker and stronger memory opportunities might differ as a 

function of retrieval difficulty. We thus conducted two sets of subsidiary ANOVAs: First, 

breaking up the factor Retrieval Difficulty, we conducted separate ANOVAs to test for 

sleep-dependent consolidation effects for weaker vs. stronger memory opportunities 

under standard testing conditions (no interference, see section 2.2.) and with an increase 

in retrieval difficulty (interference, see section 2.3.). Second, breaking up the factor 

Memory Strength, we conducted separate ANOVAs to assess sleep-dependent 

consolidation effects as a function of retrieval difficulty for weaker and stronger memory 

opportunities, respectively (see section 2.4.).  

 



 27 

2.2. No interference: Only weaker memories show a sleep-dependent 

consolidation effect 

To test whether weaker memory opportunities show a greater sleep-dependent 

consolidation effect than stronger memory opportunities under standard testing 

conditions, a 2x2 ANOVA with the between-subjects factors Delay (sleep vs. wake) and 

Memory Strength (weaker vs. stronger) was conducted on sequence consolidation for the 

no interference groups. Overall, sequence consolidation was significantly greater in the 

sleep groups than in the wake groups (main effect of Delay: F(1,56) = 11.59, p = .001, 

ηp
2= 0.17). Interestingly though, this sleep-dependent consolidation effect was modulated 

by the initial memory strength (interaction of Delay x Strength: F(1,56) = 5.78, p = .020, 

ηp
2= 0.09). Post hoc t-tests revealed that sequence consolidation did not significantly 

differ between the sleep and the wake group for stronger memories (t(20.40) = 1.11, p = 

.28, d = 0.41, BF01 = 1.82). However, for weaker memory opportunities, the sleep group 

showed significantly greater sequence consolidation than the wake group (t(26.63) = 

3.25, p = .003, d = 1.19, Figure 3A). These results are consistent with the notion that 

sleep-dependent consolidation selectively benefits weaker memories.  

As mentioned in the introduction, beneficial effects of sleep for weaker and not for 

stronger memories might result from stronger memories being at ceiling. Indeed, the 

distribution of pre-delay sequence performance for stronger memory opportunities 

significantly deviated from a normal distribution (assessed via Shapiro–Wilk tests) for 

the wake (W = 0.56, p < .001) and the sleep group (W = 0.80, p = .004) and was skewed 

towards high performance values (Figure 3B). Conversely, the distribution of pre-delay 

sequence performance for weaker memory opportunities did not significantly differ from 
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a normal distribution (wake group: W = 0.95, p = .513, sleep group: W = 0.92, p = .229). 

Under normal testing conditions (in the absence of retroactive interference), post-delay 

sequence performance for stronger memory opportunities was still at ceiling for both the 

wake (W = 0.78, p = .002) and the sleep group (W = 0.85, p = .018), thus likely to obscure 

any benefit of sleep for the consolidation of stronger memory opportunities (see 

Supplemental Information, Table S5 for Shapiro-Wilk tests of all distributions and Table 

S4 for t-tests of pre- vs. post-delay sequence performance).  

 

 

Figure 2.3. Consolidation effects for no interference groups. A. For weaker memory 
opportunities, sequence consolidation (relative performance change from pre- to post-
delay retrieval) is significantly greater in the sleep group (grey, circle) than in the wake 
group (orange, triangle), whereas there is no statistical difference between the sleep and 
wake group for stronger memory opportunities. B. For stronger memory opportunities 
(right column), pre- as well as post-delay sequence performance was at ceiling, while pre- 
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and post-delay sequence performance for weaker memory opportunities (left column) 
were normally distributed. Only sequence performance for weaker memory opportunities 
in the wake group significantly decreased from pre- to post-delay retrieval. Single 
participant data (grey filled circles for sleep groups and orange filled triangles for wake 
groups), density plots and group means with 95% CIs are shown in A and B. * = p ≤ .05; 
** = p < .01; *** = p < .001; n.s. = not significant, p > .1 

2.3. Interference: Stronger memories also show a sleep-dependent 

consolidation effect 

As mentioned above, stronger memories may require an increase in retrieval difficulty to 

mitigate possible ceiling effects and to unveil the beneficial effect of post-learning sleep 

for consolidation. To test this hypothesis, we again compared sequence consolidation in 

a 2x2 ANOVA with the between-subjects factors Delay (sleep vs. wake) and Memory 

Strength (weaker vs. stronger), this time focusing on the high retrieval difficulty 

(interference) groups.  

Results demonstrated that sequence consolidation in the sleep groups was again 

significantly higher than in the wake groups (main effect of Delay: F(1,56) = 21.22, p < 

.001, ηp
2= 0.28). Importantly though, both weaker and stronger memory opportunities 

showed a significant sleep-dependent consolidation effect (no Delay x Strength 

interaction: F(1,56) = 0.98, p = .327, ηp
2= 0.02, BF01 = 2.80). For weaker memory 

opportunities, sequence consolidation was significantly greater in the sleep group than in 

the wake group (t(27.61) = 2.27, p = .031, d = 0.83), which replicated the pattern observed 

with low retrieval difficulty (see above). Critically though and in contrast to the low 

retrieval difficulty conditions, sequence consolidation was also significantly greater in 

the sleep group than in the wake group for stronger memory opportunities (t(27.93) = 



 30 

4.64, p < .001, d = 1.70, Figure 4A). Indeed, the increase in retrieval difficulty effectively 

eliminated ceiling effects during post-delay retrieval (sleep group: W = 0.96, p = .722, 

wake group: W = 0.98, p = .981, Figure 4B). These findings indicate that both stronger 

and weaker memories benefited from post-learning sleep, but that stronger memories 

required additional retrieval demands to show a benefit from post-learning sleep.  

 

 
Figure 2.4. Consolidation effects for interference groups. A. After inducing retroactive 
interference, sequence consolidation (relative performance change from pre- to post-
delay retrieval) in the sleep group (grey, circle) is significantly greater for both weaker 
and stronger memory opportunities. B. For stronger memory opportunities (right 
column), pre-delay sequence performance was at ceiling, while post-delay sequence 
performance was normally distributed. For weaker memory opportunities (left column), 
pre- as well as post-delay sequence performance were normally distributed. Sequence 
performance of all memories significantly decreased from pre- to post-delay retrieval. 
Single participant data (grey filled circles for sleep groups and orange filled triangles for 
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wake groups), density plots and group means with 95% CIs are shown in A and B. * = p 
≤ .05; ** = p < .01; *** = p < .001; n.s. = not significant, p > .1 

2.4. Sleep-dependent consolidation of stronger memories is modulated by 

retrieval difficulty 

Our previous analyses showed a sleep-dependent consolidation effect for stronger 

memories when retrieval difficulty was increased (interference; see section 2.3.), but not 

under standard testing conditions (no interference; see section 2.2.). To directly test for 

changes in sleep-dependent consolidation effects from low to high retrieval difficulty 

separately for weaker and stronger memory opportunities, two 2x2 ANOVAs with the 

between-subjects factors Delay (sleep vs. wake) and Retrieval Difficulty (no interference 

vs. interference) were performed. For weaker memory opportunities, the increase in 

retrieval difficulty did not affect sleep-dependent consolidation effects (no interaction 

Delay x Retrieval Difficulty: F(1,56) = 0.33, p = .570, ηp
2= 0.01, BF01 = 3.45). For 

stronger memory opportunities, we found a significant increase in sleep-dependent 

consolidation effects from low to high retrieval difficulty (interaction of Delay x Retrieval 

Difficulty: F(1,56) = 11.21, p = .001, ηp
2= 0.17, Figure 5).  



 32 

Figure 2.5. Sleep-dependent consolidation effects. With low retrieval difficulty (no 
interference, left), the difference in sequence consolidation (relative performance change 
from pre- to post-delay retrieval) between sleep and wake is significant for weaker 
memories only. With an increase in retrieval difficulty (interference, right), sleep-
dependent consolidation effects are seen for both weaker and stronger memory 
opportunities. For stronger memory opportunities, the sleep-dependent consolidation 
effect was significantly greater for high retrieval difficulty (retroactive interference) 
compared to low retrieval difficulty (no interference). Shown are differences in means 
between sleep and wake groups and the corresponding 95% CIs. * = p ≤ .05; n.s. = not 
significant, p > .1 
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3. Discussion 

The aim of the present study was to assess whether sleep-dependent memory 

consolidation favours weaker over stronger memories. To this end, we devised a novel 

memory paradigm (Memory Arena, Figure 1) and experimentally controlled delay type 

(sleep or wake), pre-delay memory strength (weaker or stronger) and retrieval difficulty 

(no interference or interference) (Figure 2). Under standard retrieval conditions (no 

retroactive interference), our data indeed suggest that weaker memories benefit from 

sleep while stronger memories seem not to (Figure 3). This finding is in agreement with 

a growing body of evidence for sleep-dependent consolidation processes favouring 

weaker memories. Some of these studies used rather indirect manipulations of memory 

strength, e.g. by comparing retrieval vs. restudy (Bäuml et al., 2014), by varying the 

difficulty of motor sequences from low element sequences (resulting in stronger 

procedural memories) to high element sequences (resulting in weaker procedural 

memories, Kuriyama, Stickgold, & Walker, 2013) or by changing the difficulty of a 

problem solving task (Sio et al., 2013). Other studies directly manipulated memory 

strength either by varying the number of presentations (Denis, Schapiro, Poskanzer, 

Bursal, Charron, et al., 2020; Drosopoulos, Schulze, et al., 2007; Schapiro et al., 2017; 

Sheth et al., 2012), by inducing retroactive interference immediately after encoding to 

weaken memories (Drosopoulos, Schulze, et al., 2007; McDevitt et al., 2015) or by 

comparing participants with high vs. low pre-sleep memory performance (Diekelmann et 

al., 2010; Djonlagic et al., 2009).  

One factor potentially accounting for diminished sleep-dependent consolidation effects 

for stronger memories is that memory strength is often manipulated by repeated encoding 
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and retrieval of the study material (Denis, Schapiro, Poskanzer, Bursal, Charron, et al., 

2020; Drosopoulos, Schulze, et al., 2007; Schapiro et al., 2017; Sheth et al., 2012). That 

is, it has been argued that online retrieval emulates a consolidation process similar to that 

occurring during sleep (Antony et al., 2017). Consequently, stronger memories might 

already be sufficiently consolidated before sleep, yielding less need for further 

consolidation during sleep. Convergent evidence for this notion comes from studies 

examining post-learning sleep spindle activity, with spindles being considered a key 

mechanistic vehicle of memory consolidation (Fernandez & Lüthi, 2020b; Peyrache & 

Seibt, 2020). In particular, an increase in spindle power during a post-learning nap has 

been reported after a high difficulty learning task (producing weaker memories) but not 

after a low difficulty learning task (producing stronger memories) (Schmidt et al., 2006). 

Likewise, spindle density has been linked to consolidation specifically of weaker 

memories (Denis, Mylonas, et al., 2020). Two other nap studies used targeted memory 

reactivation (TMR) to experimentally bolster consolidation. Interestingly, TMR resulted 

in better post-sleep memory performance only for weakly encoded memories (Cairney et 

al., 2016; Creery et al., 2015). Collectively, these findings suggest that sleep-dependent 

consolidation processes are preferentially deployed for weaker compared to stronger 

memories. 

However, one alternative explanation – at least for the behavioural effects described 

above – is that beneficial effects of sleep for stronger memories are obscured by ceiling 

effects. In the present study, we demonstrate that under normal retrieval conditions 

(without interference), ceiling effects for stronger memories during pre-delay retrieval 

still persist during post-delay retrieval and would thereby conceal possible sleep-

dependent consolidation effects. One way to eliminate ceiling effects during post-delay 
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retrieval is to induce retroactive interference directly before retrieval. This approach has 

been taken in a series of studies explicitly testing the protective effect of sleep against 

retroactive interference. Indeed, despite training participants to 100% pre-delay memory 

accuracy, the introduction of retroactive interference after the delay and before the final 

retrieval revealed a beneficial effect of sleep over wake, i.e. a sleep-dependent 

consolidation effect (Ellenbogen, Hulbert, Jiang, & Stickgold, 2009; Ellenbogen et al., 

2006; but see Bailes, Caldwell, Wamsley, & Tucker, 2020; Pöhlchen, Pawlizki, Gais, & 

Schönauer, 2020). In line with these studies, we used retroactive interference to increase 

retrieval difficulty and thereby push memory performance from ceiling. Critically, this 

manipulation revealed sleep-dependent consolidation effects for weaker as well as for 

stronger memories (Figure 4). One interesting question for future research is whether this 

‘rescue’ of sleep-dependent consolidation effects for strong memories relies on 

interference manipulations, or whether other means of increasing retrieval demands, e.g., 

dual task manipulations, produce similar effects. 

Our current results thus suggest that post-learning sleep benefits all memories, but that 

greater levels of initial memory strength call for adjusted testing protocols. It is interesting 

to note that weaker memories benefitted from sleep irrespective of subsequent retrieval 

demands, at least with respect to the presence vs. absence of retroactive interference as 

employed here. That said, an important goal for future research is to establish the lower 

memory strength boundaries for sleep-dependent consolidation effects to occur. In 

particular, if initial memory strength is too low, a floor effect would likely hinder any 

benefit from subsequent sleep. 
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It deserves mention that besides retrieval difficulty, a number of other factors appear to 

impact sleep-dependent consolidation. One such factor is the duration of sleep. While 

some studies used 2h daytime naps as a delay period (Cairney et al., 2016; Creery et al., 

2015; Denis, Mylonas, et al., 2020; Schmidt et al., 2006), others followed a whole-night 

protocol (Bäuml et al., 2014; Diekelmann et al., 2010; Drosopoulos, Schulze, et al., 2007). 

Importantly, Schapiro et al. (2017) demonstrated that a full night of sleep and a nap show 

differential selectivity for weaker or stronger memories. In line with other nap studies 

(Cairney et al., 2016; Creery et al., 2015; Schmidt et al., 2006), they found that a 2h nap 

selectively benefitted weaker memories. However, the selective benefit for weaker 

memories diminished after a full night of sleep. A possible interpretation of these results 

is that weaker memories are reactivated earlier during sleep, i.e., are prioritized as they 

are more prone to forgetting. A full night of sleep, however, provides sufficient time to 

reactivate both weaker and stronger memories. While tempting, this interpretation 

requires additional research systematically controlling nap vs. full night of sleep and 

weaker vs. stronger memories. Another factor to be considered is the particular definition 

of weaker and stronger memories. For example, Tucker and Fishbein (2008) used a 

similar retrieval vs. restudy manipulation as Bäuml et al. (2014) but came to different 

conclusions. They found a sleep-dependent consolidation effect for items subjected to 

retrieval practice (thought to result in stronger memories, see introduction), but not for 

items restudied (thought to result in weaker memories), which is the exact opposite 

pattern as in Bäuml et al. (2014). However, in their retrieval practice condition, Bäuml et 

al. (2014) had participants retrieve fewer items more frequently compared to Tucker and 

Fishbein (2008), likely to result in stronger memories. This illustrates the difficulty of 

categorically designating a particular memory as weak or strong based on behavioural 
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assays alone. Real-time brain imaging might be used as a complementary measure to 

assess post-learning memory strength (Ezzyat et al., 2018).  

4. Methods 

4.1. Participants 

Overall, 128 participants took part in the study. Eight participants were excluded – 6 

participants based on Actigraph recordings (5 participants in a sleep group slept less than 

5 hours between pre- and post-retrieval and 1 participant in a wake group slept during the 

day), 1 participant did not finish the experiment and 1 participant was erroneously 

assigned to the wrong condition. The remaining 120 participants were included in the 

analyses (age = 20.58 ± 2.08 [mean ± SD], female = 83, n = 15 per group). Target sample 

size was based on two relevant studies using between-subjects designs. Drosopoulos et 

al. (2007) used 10 participants per group to demonstrate a greater sleep-dependent 

consolidation effect for weaker than for stronger memories. Ellenbogen et al. (2006) used 

12 participants per group to show that sleep-dependent consolidation effects are impacted 

by retrieval demands. 

Participants had no history of neurological or psychiatric disorders and had a normal 

sleep-wake cycle as assessed with a sleep diary. For taking part in the study, participants 

received either monetary reimbursement or study credits. The study was approved by the 

University of Birmingham Research Ethics and Governance Committee and written 

informed consent was obtained from participants before the start of the experiment.  
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4.2. Task design & procedure 

To capture both the temporal and spatial components of episodic memory we designed a 

new paradigm, called Memory Arena. It consists of a circle divided into four quarters, 

each depicting a different scene background (upper left: arctic landscape, upper right: 

desert, lower right: autumn forest, lower left: sea, Figure 1). On top of these backgrounds, 

individual objects are presented in different spatial positions. Participants have to learn 

the temporal (sequential) and spatial position of each object.  

Twenty target objects were randomly selected from a pool of 50 common animate and 

inanimate objects (Konkle, Brady, Alvarez, & Oliva, 2010, coloured and presented on a 

white 90x90 pixels square). The spatial position of each object was restricted by the 

outline of the Memory Arena and by the position of other objects. Thus, there was no 

overlap between objects but it was possible that an object covered multiple background 

scenes.  

During the encoding part of the Memory Arena, all 20 objects were presented one after 

another and participants confirmed an object’s spatial position by clicking on the object. 

The current object then disappeared and the next object was presented (Figure 1). 

Participants were encouraged to associate the objects with each other and with the 

background scenes into a narrative. 

A training session was introduced directly after the encoding part. The training started 

with all 20 objects randomly arranged around the arena. Participants had to drag and drop 

the objects in the correct sequence to the correct spatial position. If an error was made 

regarding the sequence or spatial position, the arena turned red and the error was 

corrected. If the object was placed at its correct sequential and spatial position, the arena 
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turned green. The sequence position was scored as correct if object i was placed at the ith 

position. The spatial position of an object was scored as correct if the overlap between its 

position and the correct position was higher than 25%.  

After feedback and potential error correction, the object remained at its correct spatial 

position and the next object had to be placed in the arena. When all 20 objects were 

placed, participants received feedback about their overall performance ((n correct objects 

/ n of total objects), where an object was classified as correct when both the sequence and 

spatial position were correct). 

To manipulate pre-sleep memory strength, participants in different groups finished 

training after meeting two different levels of performance. Pre-sleep memory strength 

was defined as ‘weaker’ for participants with a performance criterion of 50%, reached in 

one training round (1x50%) and defined as ‘stronger’ when the performance criterion was 

set to 70%, reached in two consecutive training rounds (2x70%). 

After finishing the training session, participants performed a pre-delay retrieval task. The 

retrieval started, like the training session, with all 20 objects randomly arranged around 

the arena and the objects had to be dragged and dropped in the correct sequence to the 

correct spatial position. Importantly though, no feedback was provided, and errors were 

not corrected meaning that the objects remained at the spatial position where they were 

dropped.  

As we compared memory performance between two retrieval tasks performed at different 

times of day (pre vs. post-delay retrieval, AM vs. PM or PM vs. AM), an alternative 

explanation for a change in memory performance might be a change in attention/level of 

alertness. We thus employed a psychomotor vigilance task (PVT) directly before both 



 40 

retrieval tasks. The PVT started with a white fixation cross presented in the middle of the 

screen. After an average of 6 seconds (with a jitter of ± 4s), the fixation cross was replaced 

by a counter starting at 0 and counting forwards to 2000 in 20ms steps. During that time, 

participants had to press the space bar as fast as possible. Feedback about their reaction 

time was provided after the key press (displayed for 2s).   

In session one encoding, training, PVT and pre-delay retrieval were completed. 12 hours 

later participants returned to the lab for the second session. For half of the participants 

the second session started with an interference task, designed to increase the post-delay 

retrieval difficulty. Participants were not informed about the interference task until the 

beginning of the second session. During the interference task, participants were asked to 

encode the same objects presented in a different sequence and at different spatial positions 

(Figure 1). The new spatial position of every object was more than 5 pixels away from its 

original spatial position (centre to centre distance). Encoding of the interfering 

temporospatial arrangement was implemented in the same way as the original encoding. 

Following encoding, participants performed a retrieval session of the interfering 

arrangement (no training was conducted for the new arrangement). Finally, participants 

performed a second PVT and the retrieval task for the original arrangement (post-delay 

retrieval). All participants in the no-interference condition directly started with the PVT 

and the post-delay retrieval of the original arrangement.  
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4.3. Study design 

We used a 2 (Delay: sleep vs. wake) x 2 (Memory Strength: weaker vs. stronger) x 2 

(Retrieval difficulty: no interference vs. interference) between-subjects design and 

participants were randomly assigned to one of the resulting 8 conditions (Figure 2).  

Participants in the sleep conditions performed the first session including encoding, 

training, PVT and pre-delay retrieval in the evening around 9 pm. After finishing the first 

session they went home to sleep. 12 hours later, at 9 am, they returned to the lab to 

perform the second session. Half of the participants additionally conducted the 

interference at the beginning of the second session while the other half directly started 

with the PVT and post-delay retrieval. Participants in the wake conditions followed the 

same protocol shifted by 12 hours, i.e., performing the first session (encoding, training, 

PVT and pre-delay retrieval) at 9 am and returning to the lab 12 hours later at 9 pm for 

the second session (interference, PVT and post-delay retrieval or PVT and post-delay 

retrieval, respectively).  

4.4. Data collection & analysis 

The Memory Arena was implemented with MATLAB 2016a (MathWorks). Behavioural 

responses were recorded using the mouse. Data were prepared and analysed using 

MATLAB and statistical analyses were conducted with the statistical software R. For data 

visualization raincloud tools in R were used (Allen, Poggiali, Whitaker, Marshall, & 

Kievit, 2019; van Langen, 2020). 
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To capture memory performance, we considered two variables: sequence performance 

and spatial error (placement distance). Sequence performance was based on correct 

transitions within the sequence (3rd object is chosen after the 2nd object) rather than on the 

absolute sequential position (3rd object is chosen at 3rd position), as the absolute sequential 

position is not necessarily the most sensitive measurement for memory performance. For 

example, if the second object in the sequence was erroneously placed first but then the 

order was correctly remembered for all subsequent objects, scoring the absolute positions 

would yield a performance score of 0. However, by scoring the transition between objects, 

all but the last (which now comes after the 19th placement but should have come first) are 

correct. Hence, the sequence performance was calculated based on the difference between 

object xi and object xi-1, where i is the selected sequence position of object x. If the 

transition is correct this difference is 1. The sum of the correct transitions was then 

divided by the total number of possible transitions (n = 19 when nobj = 20) and multiplied 

with 100 to get a percentage score. The spatial error was calculated using the Euclidean 

distance (in pixels) between the centre of the original position and the centre of the placed 

position of every object. 

To test the effects of our experimental factors (Figure 2), parametric ANOVAs were 

applied. Welch’s t-tests were used as post-hoc comparisons as variances between groups 

were not always equal. Note that for Welch’s t-tests, degrees of freedom are adjusted 

according to the Welch–Satterthwaite equation. For effect sizes, we report partial eta 

squared (ηp
2) for ANOVAs and Cohens d for Welch’s t-tests. Shapiro-Wilk tests were 

applied to test for normal distributions of pre- and post-delay performance.  



 43 

As traditional null-hypothesis testing does not allow for conclusions about the absence of 

an effect, we also conducted Bayesian analyses for all non-significant effects using the 

BayesFactor package in R (Morey & Rouder, 2015). According to the BayesFactor 

package, we used a Cauchy distribution (0, 0.707) as a prior. The Bayes factor BF01 (BF01 

= 1/BF10) informs about the likelihood to observe the data if the null hypothesis is true 

(P(D | H0) / P( D| H1)). A Bayes factor (BF01) between 1-3 can be considered as anecdotal 

evidence, 3-10 as moderate, 10-30 as strong, 30-100 as very strong and >100 as extreme 

evidence for H0 (Lee & Wagenmakers, 2013). 
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7. Supplemental Information 

Analogous to sequence consolidation, we conducted a 2x2x2 ANOVA for spatial 

consolidation with Delay (sleep vs. wake), Memory Strength (weaker vs. stronger) and 

Retrieval Difficulty (no interference vs. interference) as between-subjects factors. Spatial 

consolidation reflects the relative change in error rate (placement distance) from pre- to 

post-delay retrieval. Thus, values > 100% show an increase in error rate, < 100% show a 

decrease and values = 100% show a stabilization of error rate. Overall, post-relative to 

pre-delay error rate was significantly higher in wake groups than in sleep groups (main 

effect for Delay: F(1,112) = 9.22, p = .003, ηp
2= 0.08) and higher for high retrieval 

difficulty compared to low retrieval difficulty (main effect for Retrieval Difficulty: 

F(1,112) = 25.71, p < .001, ηp
2= 0.19). In contrast to sequence consolidation, we did not 

find a significant three way interaction (F(1, 112) = 0.34, p = .560, ηp
2< 0.01, BF01 = 4.57). 

Nevertheless, to fully characterise sleep-dependent consolidation effects for spatial 

memory, we conducted the same subsidiary ANOVAs as described in the main text. 

First, a 2x2 ANOVA with the between-subjects factors Delay (sleep vs. wake) and 

Memory Strength (weaker vs. stronger) was used for the no interference groups only. 

Spatial consolidation did not significantly differ between sleep and wake groups (main 

effect Delay: F(1,56) = 2.59, p = .113, ηp
2= 0.04, BF01 = 1.28) and there was no 

modulation by initial memory strength (interaction of Delay x Strength: F(1,56) = 1.49, 

p = .228, ηp
2= 0.03, BF01 = 2.06, Figure S1A). 
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Figure S 2.1. Spatial consolidation effects (error rate) for no interference groups. A. 
Neither for weaker nor for stronger memory opportunities did spatial consolidation 
(relative change in error rate from pre- to post-delay retrieval) significantly differ between 
the sleep (grey, circle) and the wake group (white, triangle). B. Pre- and post-delay error 
rate for weaker (left column) and stronger memory opportunities (right column). Single 
participant data (grey filled circles for sleep groups and orange filled triangles for wake 
groups), density plots and group means with 95% CIs are shown in A and B. + = .1 ≥ p > 
.05; * = p ≤ .05 

Second, a 2x2 ANOVA with the between-subjects factors Delay (sleep vs. wake) and 

Memory Strength (weaker vs. stronger) for the interference groups was conducted. In line 

with our notion that an increase in retrieval difficulty unveils sleep-dependent 

consolidation processes, we found a significant difference between the sleep and the wake 

groups (main effect Delay: F(1,56) = 7.68, p = .008, ηp
2= 0.12). Similar to sequence 
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consolidation (see main text, section 3.3.), the sleep-dependent consolidation effect for 

spatial memory was comparable for weaker and stronger memory opportunities (no Delay 

x Strength interaction: F(1,56) = 0.12, p = .727, ηp
2< 0.01, BF01 = 3.64, Figure S2A), albeit 

only reaching significance for stronger memory opportunities (t(18.14) = -2.31, p = .033, 

d = 0.84) and not for weaker memory opportunities (t(15.33) = -1.64, p = .121, d = 0.60, 

BF01 = 1.07).  

 

Figure S 2.2. Spatial consolidation effects (error rate) for interference groups. A. Overall, 
spatial consolidation is significantly worse (greater relative change in error rate from pre- 
to post-delay retrieval) for the wake group (white, triangle) than for the sleep group (grey, 
circle). Note that results did not qualitatively change when outliers (N = 3) were excluded. 
B. Pre- and post-delay error rate for weaker (left column) and stronger memory 
opportunities (right column). Single participant data (grey filled circles for sleep groups 
and orange filled triangles for wake groups), density plots and group means with 95% CIs 
are shown in A and B. * = p ≤ .05; ** = p < .01; *** = p < .001 
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Lastly, we conducted two 2x2 ANOVAs with the between-subjects factors Delay and 

Retrieval Difficulty for weaker and stronger memory opportunities, respectively. For 

stronger memory opportunities the sleep-dependent consolidation effect significantly 

increased from low to high retrieval difficulty (interaction Delay x Retrieval Difficulty 

for stronger memories: F(1,56) = 4.88, p = .031, ηp
2= 0.08). Note that an increase in sleep-

dependent consolidation is reflected by more negative values as the error rate was used. 

For weaker memory opportunities, there was an overall trend for a sleep-dependent 

consolidation effect (main effect Delay, F(1,56) = 3.95, p = .0518, ηp
2= 0.07), without a 

significant interaction of Delay x Retrieval Difficulty (F(1,56) = 1.51, p = .225, ηp
2= 0.03, 

BF01 = 2.24, Figure S3).  
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Figure S 2.3. Sleep-dependent consolidation effects. For stronger memory opportunities, 
the difference in spatial consolidation (relative change in error rate from pre- to post-
delay retrieval) between sleep and wake significantly increased with higher retrieval 
difficulty (interference).  Shown are differences in means between sleep and wake groups 
and the corresponding 95% CIs. * = p ≤ .05 

In sum, while increased retrieval difficulty also unveiled a sleep-dependent consolidation 

effect for strong spatial memories, effects for weak spatial memories were more subtle 

than for their sequence memory counterparts. One explanation might be that sequence 

memory was more sensitive to our initial memory strength manipulation (see main text, 

section 2.1. and 2.2.). Note also that both variables were operationalized on different 

scales. While sequence performance for an object is a binary outcome (correct or incorrect 

position in the sequence), spatial performance (i.e., spatial error) is a continuous variable 

(Euclidean distance from centre to centre in pixels). Further studies are needed in which 

temporal and spatial measures are more closely matched to adjudicate whether there are 

differential beneficial effects of sleep on temporal and spatial aspects of memory.  

As our memory strength manipulation was defined based on the overall performance 

during training, we also used overall performance as dependent variable and conducted 

the same analyses as with sequence and spatial performance. Overall performance is the 

combined sequence and spatial performance, with higher values denoting better 

performance. Therefore, overall performance consolidation (relative change from pre- to 

post-delay) can be interpreted analogous to sequence consolidation:  > 100% means an 

increase in performance, < 100% means a decrease and values = 100% mean stabilization 

of performance.  
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The results of the 2x2x2 ANOVA with Delay (sleep vs. wake), Memory Strength (weaker 

vs. stronger) and Retrieval Difficulty (no interference vs. interference) as between-

subjects factors matched the results for sequence performance. We found two significant 

main effects for Delay (F(1,112) = 12.72, p < .001, ηp
2= 0.10) and Retrieval Difficulty 

(F(1,112) = 52.50, p < .001, ηp
2= 0.32). The three way interaction - despite only showing 

a trend towards significance (F(1, 112) = 3.09, p = .081, ηp
2= 0.03) - still suggests that 

sleep-dependent consolidation effects for weaker and stronger memory opportunities 

might differ as a function of retrieval difficulty. Therefore, we conducted the same 

subsidiary ANOVAs as described in the main text. 

For the no interference groups, the 2x2 ANOVA with the between-subjects factors Delay 

(sleep vs. wake) and Memory Strength (weaker vs. stronger) showed almost the same 

pattern as in the main text. Overall performance consolidation was significantly greater 

in sleep compared to wake groups (main effect Delay: F(1,56) = 5.00, p = .029, ηp
2= 0.08) 

and this difference was modulated by the initial memory strength (interaction of Delay x 

Strength: F(1,56) = 5.39, p = .024, ηp
2= 0.09). Post hoc t-tests showed no significant 

difference in overall performance consolidation between sleep and wake group for 

stronger memory opportunities (t(28) = -0.08, p = .938, d = 0.03, BF01 = 2.90). However, 

for weaker memory opportunities, the sleep group showed significantly greater overall 

performance consolidation than the wake group (t(27.93) = 2.72, p = .011, d = 0.99, 

Figure S4A).  
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Figure S 2.4. Consolidation effects for no interference groups. A. For weaker memory 
opportunities, overall performance consolidation (relative performance change from pre- 
to post-delay retrieval) is significantly greater in the sleep group (grey, circle) than in the 
wake group (orange, triangle), whereas there is no statistical difference between the sleep 
and wake group for stronger memory opportunities. B. Pre- and post-delay error rate for 
weaker (left column) and stronger memory opportunities (right column). Single 
participant data (grey filled circles for sleep groups and orange filled triangles for wake 
groups), density plots and group means with 95% CIs are shown in A and B. * = p ≤ .05; 
** = p < .01; n.s. = not significant, p > .1 

After increasing retrieval difficulty by inducing retroactive interference, we still found a 

higher overall performance consolidation in the sleep groups than in the wake groups 

(main effect of Delay: F(1,56) = 7.73, p = .007, ηp
2= 0.12). Importantly, both weaker and 

stronger memory opportunities showed a significant sleep-dependent consolidation effect 
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(no Delay x Strength interaction: F(1,56) = 0.17, p = .684, ηp
2= 0.003, BF01 = 3.57), 

indicating that both weaker and stronger memories benefited from post-learning sleep 

(Figure S5A). 

 

 

 

Figure S 2.5. Consolidation effects for interference groups. A. After inducing retroactive 
interference, overall performance consolidation (relative performance change from pre- 
to post-delay retrieval) is significantly greater in the sleep group (grey, circle) than in the 
wake group (orange, triangle) for stronger memory opportunities. B. Pre- and post-delay 
error rate for weaker (left column) and stronger memory opportunities (right column). 
Single participant data (grey filled circles for sleep groups and orange filled triangles for 
wake groups), density plots and group means with 95% CIs are shown in A and B. * = p 
≤ .05; ** = p < .01; n.s. = not significant, p > .1 
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In a last step, we conducted two 2x2 ANOVAs with the between-subjects factors Delay 

and Retrieval Difficulty for weaker as well as for stronger memory opportunities. For 

weaker memory opportunities, the increase in retrieval difficulty had no impact on sleep-

dependent consolidation effects (no interaction Delay x Retrieval Difficulty for weaker 

memories: F(1,56) = 0.38, p = .541, ηp
2= 0.01, BF01 = 3.41). For stronger memory 

opportunities, sleep-dependent consolidation effects significantly increased from low to 

high retrieval difficulty (interaction of Delay x Retrieval Difficulty: F(1,56) = 4.21, p = 

.045, ηp
2= 0.07, Figure S6).  

Taken together, the results using overall performance largely correspond to the results 

using sequence performance as dependent variable.  
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Figure S 2.6. Sleep-dependent consolidation effects, overall performance. With low 
retrieval difficulty (no interference), the difference in overall performance consolidation 
(relative performance change from pre- to post-delay retrieval) between sleep and wake 
is significant for weaker memory opportunities only. With an increase in retrieval 
difficulty (interference), sleep-dependent consolidation effects are seen for both weaker 
and stronger memory opportunities. Shown are differences in means between sleep and 
wake groups and the corresponding 95% CIs. + = .1 ≥ p > .05; * = p ≤ .05; n.s. = not 
significant, p > .1 
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Table S 2.1. Descriptive data of duration (in seconds, encoding + training) and number 
of training rounds needed to reach the criterion. Mean ± 95% CIs 

 Weaker Stronger 

No interference Interference No interference Interference 

Sleep Wake Sleep Wake Sleep Wake Sleep Wake  

Duration 909.06± 

240.27  

866.87± 

177.41 

996.15± 

391.47 

867.31± 

188.68 

1065.82± 

130.52 

1256.70± 

208.00 

1079.53± 

187.81 

1110.46± 

248.21 

 

Rounds 3.07± 

1.65 

3.27± 

1.30 

3.40± 

1.85 

3.13± 

0.98 

4.33± 

0.58 

5.47± 

1.22 

4.40± 

0.95 

5.33± 

1.27 

 

 

 

Table S 2.2. Descriptive data of spatial memory performance (placement distance) pre- 
and post- delay and the corresponding dependent t-tests. Mean ± 95% CIs, t-values, p-
values. Significant effects are highlighted in bold. 

 No interference Interference 

Weaker Stronger Weaker Stronger 

Sleep Wake Sleep Wake Sleep Wake Sleep Wake  

Pre-delay 59.98± 

13.85 

53.58± 

11.28 

33.77± 

7.62 

33.21± 

7.51 

70.34± 

22.60 

62.70± 

14.71 

30.31± 

4.60 

36.02± 

8.94 

 

Post-delay 62.03± 

18.84 

64.68± 

13.34 

38.80± 

10.35 

38.57± 

11.63 

101.29± 

21.79 

123.85± 

24.43 

49.46± 

9.88 

86.73± 

20.52 

 

t-value  

(p-value) 

-0.41 

(.69) 

-2.01 

(.06) 

-2.34 

(.03) 

-1.59 

(.13) 

-3.80 

(<.01) 

-4.84 

(<.01) 

-4.33 

(<.01) 

-5.19 

(<.01) 

 

 

 
Table S 2.3. Descriptive data of overall memory performance pre- and post- delay and 
the corresponding dependent t-tests. Mean ± 95% CIs, t-values, p-values. Significant 
effects are highlighted in bold. 

 No interference Interference 

Weaker Stronger Weaker Stronger 

Sleep Wake Sleep Wake Sleep Wake Sleep Wake  
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Pre-delay 52.33± 

10.14 

45.00± 

12.86   

74.67± 

9.79  

83.33± 

6.59 

51.33± 

11.20 

51.00± 

9.66 

81.33± 

8.21 

77.66± 

10.19 

 

Post-delay 50.33± 

9.15  

33.67± 

13.13  

67.33± 

13.23  

73.67±  

9.33 

30.00± 

12.95 

20.33± 

7.21 

48.33± 

13.35 

26.67± 

8.48 

 

t-value  

(p-value) 

0.57 

(.58) 

3.65 

(<.01) 

2.75 

(.02) 

2.45 

(.03) 

4.16 

(<.01) 

5.65 

(<.01) 

4.33 

(<.01) 

8.56 

(<.01) 

 

 

 

Table S 2.4. Descriptive data of sequence memory performance pre- and post- delay and 
the corresponding dependent t-tests. Mean ± 95% CIs, t-values, p-values. Significant 
effects are highlighted in bold. 

 No interference Interference 

Weaker Stronger Weaker Stronger 

Sleep Wake Sleep Wake Sleep Wake Sleep wake  

Pre-delay 70.52± 

13.53 

62.11± 

12.18 

87.37± 

7.85 

95.78± 

4.00 

61.75± 

14.88 

65.26± 

8.66 

92.63± 

7.29 

95.09± 

4.04 

 

Post-delay 68.42± 

12.41 

45.26± 

14.14 

85.97± 

7.61 

88.77± 

7.54 

45.26± 

14.06 

31.93± 

10.06 

72.63± 

9.30 

42.11± 

11.55 

 

t-value  

(p-value) 

0.58 

(.57) 

4.45 

(<.01) 

0.81 

(.43) 

1.66 

(.12) 

2.94 

(.01) 

5.51 

(<.01) 

3.99 

(<.01) 

10.79 

(<.01) 

 

 

 

Table S 2.5. Test statistic (W) and corresponding p values of the Shapiro-Wilk Test for 
pre- and post-delay sequence performance. Significant effects are highlighted in bold. 

 Weaker Stronger 

No interference Interference No interference Interference 

Sleep Wake Sleep Wake Sleep Wake Sleep Wake 

Pre-delay 0.92 

(.23) 

0.95 

(.51) 

0.90  

(.10) 

0.95 

(.58) 

0.80 

(<.01) 

0.56 

(<.01) 

0.62  

(<.01) 

0.63  

(<.01) 

Post-delay 0.92 

(.23) 

0.94  

(.43) 

0.91  

(.12) 

0.95  

(.55) 

0.85  

(.02) 

0.78  

(<.01) 

0.96 

(.72) 

0.98  

(.98) 
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Table S 2.6. Test statistic (W) and corresponding p values of the Shapiro-Wilk Test for 
pre- and post-delay spatial performance. Significant effects are highlighted in bold. 

 Weaker Stronger 

No interference Interference No interference Interference 

Sleep Wake Sleep Wake Sleep Wake Sleep Wake 

Pre-delay 0.96 

(.62) 

0.95 

(.59) 

0.86  

(.03) 

0.94 

(.36) 

0.97 

(.82) 

0.92 

(.17) 

0.92  

(.22) 

0.96 

(.67) 

Post-delay 0.87 

(.03) 

0.95  

(.51) 

0.97  

(.84) 

0.93  

(.24) 

0.92  

(.18) 

0.68 

(<.01) 

0.97 

(.84) 

0.80 

(<.01) 
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Abstract 

Memory consolidation, the transformation of labile memory traces into stable long-term 

representations, is facilitated by post-learning sleep. Computational and biophysical 

models suggest that sleep spindles may play a key mechanistic role for consolidation, 

igniting structural changes at cortical sites involved in prior learning. Here we tested the 

resulting prediction that spindles are most pronounced over learning-related cortical areas 

and that the extent of this learning-spindle overlap predicts behavioural measures of 

memory consolidation. Using high-density scalp Electroencephalography (EEG) and 

Polysomnography (PSG) in healthy volunteers, we first identified cortical areas engaged 

during a temporospatial associative memory task (power decreases in the alpha/beta 

frequency range, 6-20 Hz). Critically, we found that participant-specific topographies 

(i.e., spatial distributions) of post-learning sleep spindle amplitude correlated with 

participant-specific learning topographies. Importantly, the extent to which spindles 

tracked learning patterns further predicted memory consolidation across participants. Our 

results provide empirical evidence for a role of post-learning sleep spindles in tracking 

learning networks, thereby facilitating memory consolidation.  
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1. Introduction 

Sleep after learning bolsters memory retention, a process referred to as sleep-dependent 

memory consolidation (Diekelmann & Born, 2010; Jenkins & Dallenbach, 1924; Müller 

& Pilzecker, 1900). In recent years, sleep spindles – transient 12-15 Hz oscillations 

generated within thalamo-cortical loops - have emerged as a prime mechanistic vehicle 

to support consolidation (Born & Wilhelm, 2012; Fernandez & Lüthi, 2020b; Klinzing et 

al., 2019; Lüthi, 2014; Mednick et al., 2013; Peyrache & Seibt, 2020). Previous studies 

have linked spindles to consolidation in terms of their density (the number of discrete 

spindle events per minute) (Gais et al., 2002), power (Holz et al., 2012) and activity, a 

combination of duration and amplitude (Schabus et al., 2004). Despite their ubiquity, 

however, the specific role spindles play for memory consolidation remains poorly 

understood.  

Ultimately, effective learning requires structural brain changes, beginning at the synaptic 

level (Bailey & Kandel, 1993; Josselyn et al., 2015). A hallmark 

computational/biophysical framework (Sejnowski & Destexhe, 2000) suggests that 

spindles are particularly well-suited to induce changes in synaptic plasticity. Specifically, 

spindles gate influx of calcium (Ca2+) into pyramidal dendrites, setting early synaptic 

consolidation processes in motion. Empirical support for this model has been provided 

by in-vitro application of spindle-like firing patterns (Rosanova & Ulrich, 2005) as well 

as by showing a direct modulation of Ca2+ activity in cortical pyramidal dendrites as a 

function of spindle power during natural sleep in rodents (Seibt et al., 2017). Moreover, 

cortical microelectrode array recordings in humans have shown that spindles group co-

firing of single units within 25 ms, i.e. within a time window conducive to spike-timing-
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dependent plasticity (Dickey et al., 2021). Critically, however, in order for spindles to 

promote memory consolidation in an adaptive fashion, they need to show some degree of 

regional specificity. That is, not only would global synaptic consolidation be of limited 

use in an ever-changing landscape of tasks, but it would also be at direct odds with extant 

models emphasising the role of sleep in global synaptic downscaling (Tononi & Cirelli, 

2006). Instead, adaptive consolidation has to be selective, specifically strengthening local 

circuits involved in prior learning.  

The current study thus set out to assess (i) whether spindles correspond to specific pre-

sleep learning patterns and (ii) whether this learning-spindle overlap supports memory 

consolidation. To this end, we employed a demanding memory task giving rise to rich 

and idiosyncratic activation patterns during encoding (Memory Arena, Figure 1). After 

learning, participants took a 2-hour nap before their memory retention was tested. This 

protocol allowed us to examine whether spindles recorded during this nap would 

correspond to participant-specific learning patterns and whether the extent of this 

learning-sleep overlap would predict behavioural expressions of consolidation. 

2. Results 

2.1. Behavioural results 

We employed a recently developed memory paradigm called ‘Memory Arena’ (Petzka et 

al., 2021) in which participants learn the temporospatial arrangement of objects in a 

circular enclosure across multiple training rounds (see Figure 1A and Methods for 

details). Memory for the temporospatial arrangement was assessed in a first retrieval 
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block (pre-sleep retrieval) which was followed by a 2-hour nap (see Table S1 for 

descriptive data of sleep stages). Following the nap, participants were instructed to learn 

a new temporospatial arrangement of the same objects (retroactive interference), after 

which they were asked to retrieve the original arrangement (post-sleep retrieval, Figure 

1C). As the dependent measure, we use sequence memory performance as our previous 

work suggested this was the measure most sensitive to capture sleep-dependent 

consolidation. As expected, we found a significant decrease in sequence performance 

from pre- to post-sleep retrieval of the original sequence (t(18) = 4.65, p < .001, Figure 

1D). For further analyses, memory consolidation is defined as memory retention, i.e., the 

relative change in sequence performance from pre- to post-sleep retrieval.  

Figure 3.1. Task, experimental design, behavioural results and group EEG encoding 
pattern. (A) Memory Arena. During encoding 20 objects were presented in a specific 
sequence at different spatial positions. Both sequence and spatial position had to be 
encoded. Training (and retrieval) started with all 20 objects arranged around the arena 
and participants had to drag and drop the objects in the correct sequence to the correct 
spatial position. During training, feedback was given after each trial and errors were 
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corrected. Training was completed after reaching a performance criterion of 70% twice 
in a row. Retroactive interference was induced by encoding the same objects but in a 
different sequence and at different spatial positions. (B) Every trial of the Psychomotor 
Vigilance Task (PVT) started with a fixation cross. After a delay of 8-15 sec a counter 
started (numbers count). Participants had to press a key as fast as possible and received 
feedback about their reaction time (RT). (C) Participants performed the PVT, encoding, 
training and first retrieval before the 2-hour nap. After the nap, an interference session 
was employed (1x encoding and retrieval, no training), followed by the second retrieval 
of the originally learned arena. (D) Sequence memory significantly decreased from pre- 
to post-sleep. Single participant data, density plots and group means with 95% CIs are 
shown. *** = p < .001. (E) Comparison of oscillatory power during Memory Arena vs. 
PVT (thresholded at p < .05 cluster corrected), revealing a significant power decrease 
from 6 – 20 Hz during encoding (grey rectangle), most pronounced over temporo-parietal 
areas (bars shown for electrode CP4 - black circle on topography plot).  

2.2. EEG results: Spindle amplitude tracks encoding patterns 

To assess whether sleep spindles track learning sites, we first derived an ‘encoding 

pattern’ for each participant. To specifically unravel learning-related activity, we 

contrasted oscillatory power (1-20 Hz) during encoding with power during a control 

condition (Psychomotor Vigilance Task, PVT). On the group level, this contrast revealed 

a significant power decrease in the alpha/beta frequency range (6-20 Hz) during encoding 

relative to the PVT, particularly over right temporo-parietal areas (Figure 1E). This result 

is consistent with previous findings linking decreases in alpha/beta power to memory 

processes (Griffiths et al., 2019, 2021; Hanslmayr et al., 2012; Lega et al., 2017; Noh et 

al., 2014). The reliable group effect notwithstanding, there was considerable variability 

in participant-specific effect topographies of the 6-20 Hz power decrease (Figure S1), 

allowing us to explore whether these participant-specific encoding patterns would bias 

particular event characteristics during subsequent sleep. 
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As outlined in the introduction, we hypothesized that the topography (i.e., spatial 

distribution) of sleep spindles might be modulated by engagement during pre-sleep 

learning. We thus algorithmically detected sleep spindles during the post-learning nap 

(see Methods) for every channel and extracted their amplitude as well as duration and 

density. As a control, we performed the same analyses for algorithmically detected slow 

oscillations (SOs), which have also been linked to memory consolidation (Heib et al., 

2013; Holz et al., 2012; Huber et al., 2004). At the group level, spindles and SOs showed 

the established prevalence over centro-parietal and frontal areas, respectively (see Figure 

S2 for amplitude, density and duration topographies of spindles and SOs). Furthermore 

and in line with previous observations (Helfrich et al., 2018; Mölle et al., 2002; Muehlroth 

et al., 2019; Schreiner et al., 2021), detected spindle events were on average temporally 

coupled to the up-state of the SO signal (0.3-1.25 Hz, see Figure S3). 

We next turned to the question whether inter-individual differences in the topography of 

sleep events relate to inter-individual differences in learning topographies. For each 

participant, the encoding topography (6-20 Hz power relative to the PVT across 58 

channels) was correlated (Spearman’s rho) with the corresponding topography of 6 

different sleep patterns (amplitude, duration and density for spindles and SOs across 58 

channels). Note that all sleep measures are positively scaled except the SO amplitude. For 

simplicity, we unified all scales by taking the absolute value of the SO amplitude. As 

encoding activity is associated with a decrease in power (negatively scaled values), 

encoding-sleep overlap would be signified by negative correlations. 
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Participant-specific correlation values were then evaluated at the group level. First, we 

conducted a 2 (event type:   spindles   vs.   SOs) x 3 (event characteristic: amplitude, 

duration, density) repeated measures ANOVA (Figure 2A), assessing whether particular 

sleep event topographies track idiosyncratic encoding topographies. Results revealed that 

topographies of overall spindle characteristics correlated with encoding patterns to a 

greater extent than SO characteristics (main effect of event type F(1,18) = 13.12, p <.001, 

Figure 2B). This was the case for event amplitudes (t(18) = -3.16, p = .005), durations 

(t(18) = -2.53, p = .021) as well as densities (t(18) = -2.14, p = .046). Furthermore, the 

correlation between all three spindle characteristics with the encoding pattern was 

significantly smaller than 0 (spindle amplitude: meanr = -0.38, t(18) = -3.50, p = .003, 

spindle duration: meanr = -0.27, t(18) = -3.26, p = .004, spindle density: meanr = -0.30, 

t(18) = -3.56, p = .002). There was a trend for the main effect of event characteristic 

(amplitude topographies correlating strongest with encoding patterns, F(2,36) = 2.61, p = 

.078) and no interaction (F(2,36) = 0.63, p = .532). 

Figure 3.2. Sleep spindles track cortical learning sites. (A) Grand average (mean ± 95% 
CI) of spindles and SOs at electrode position Cz. Amplitude, duration and density were 
extracted for each participant and channel. (B) Across participants, encoding 
topographies were significantly more strongly correlated with topographies of spindles 
than SOs (density plots, group means, 95% CIs and single participant data are shown. ** 
= p < .01. * = p < .05).  
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To account for the possibility that spindle amplitude, duration and density topographies 

are correlated amongst each other, we conducted follow-up partial correlations between 

encoding patterns and spindle characteristics. Interestingly, the link between encoding 

and spindle amplitude remained significantly different from 0 when partialling out 

spindle duration or spindle density (for both: meanr < -0.23, t(18) < -2.11, p < .049). When 

partialling out spindle amplitude, however, the overlap between spindle duration/density 

and encoding pattern was not significantly different from 0 (duration: meanr = -0.15, t(18) 

= -1.82, p = .086; density: meanr = -0.01, t(18) = -0.15, p = .885). Together, these results 

suggest that the spindle-encoding overlap is predominantly driven by spindle amplitude.   

To examine whether the overlap with encoding patterns might be restricted to spindles 

that are coupled to SO up-states, we directly compared the encoding-spindle overlap 

(amplitude topographies) for spindle events with higher vs. lower coupling (see 

Methods). We observed no significant difference between the two event types (t(18) = -

0.66, p = .521, see Figure S4). 

Finally, we tested whether the overlap of sleep spindle amplitude and encoding activation 

is linked to behavioural expressions of memory consolidation. To this end, we correlated 

the encoding-spindle amplitude overlap with the relative change in sequence performance 

from pre- to post-sleep retrieval (memory retention) across participants. Indeed, a 

significant negative correlation was observed (r = -0.58, p = .010), indicating that 

participants who showed greater retention of sequence memory also had a greater overlap 

(signified by a more negative value) between encoding and sleep spindle topography 

(Figure 3A). To ensure that the link with behaviour was driven by participant-specific 

encoding-spindle overlap, we first shuffled the encoding topographies between 

participants while retaining participant-specific sleep spindle topography and behavioural 
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performance. Likewise, we shuffled the sleep spindle topographies between participants 

while retaining participant-specific encoding topography and behavioural performance 

(see Figure 3B for visualization). That way we generated a distribution under the null 

hypothesis that (a) the encoding topography or (b) sleep spindle topography is irrelevant 

for the observed correlation with behaviour. As shown in Figure 3C, the empirical 

correlation between encoding-spindle overlap and behaviour significantly exceeded the 

null distributions in both cases (p = .011 for (a) and p = .018 for (b) based on 1000 

permutations). 

 
Figure 3.3. Extent of encoding-spindle overlap predicts memory consolidation. (A) The 
correlation between encoding and spindle amplitude topographies is predictive for 
sequence retention. The more negative the correlation between spindle amplitude and 
encoding topographies (i.e., the greater the overlap), the greater the levels of sequence 
retention across sleep. (B) Schematic for generating the null distributions in C. Encoding 
or sleep spindle topographies were shuffled across participants while the respective other 
topography (spindle amplitude or encoding power) and behavioural performance were 
retained. (C) The observed correlation between encoding-spindle amplitude overlap and 
sequence retention exceeds both null distributions of encoding or spindle pattern 
exchangeability.  

 



 67 

3. Discussion 

Despite accumulating evidence linking sleep spindles to memory consolidation (Born & 

Wilhelm, 2012; Fernandez & Lüthi, 2020b; Gais et al., 2002; Holz et al., 2012; Klinzing 

et al., 2016; Lüthi, 2014; Mednick et al., 2013; Schabus et al., 2004), their specific 

function has remained elusive. Here we tested predictions derived from 

biophysical/computational models, i.e., that spindles are preferentially expressed over 

learning-related sites where they might induce early stages of synaptic plasticity 

(Sejnowski & Destexhe, 2000). Using a recently developed paradigm sensitive to sleep-

dependent memory consolidation (Petzka et al., 2021) and geared towards eliciting rich 

idiosyncratic encoding patterns (Figure 1), we first demonstrate that sleep spindles – in 

particular the topography of spindle amplitudes – track cortical patterns of memory 

encoding (Figure 2). This overlap of encoding patterns with spindles was significantly 

stronger than that with slow oscillations (SOs), ruling out spurious correlations driven by 

generic signal properties across EEG channels. Importantly, we additionally reveal a 

functional link between the observed encoding-spindle overlap and memory 

consolidation, expressed in greater overlap associated with greater levels of memory 

retention (Figure 3).  

Previous work has revealed a number of spindle characteristics that render them well-

suited for inducing local plasticity in task-dependent/learning-related brain regions. For 

instance, intracranial recordings in humans have shown that sleep spindles are local rather 

than global (Nir et al., 2011; Piantoni et al., 2017) and scalp EEG/MEG has demonstrated 

high levels of inter-subject variability of spindle topographies (Cox et al., 2017; Klinzing 

et al., 2016). Moreover, spindle topographies vary as a function of prior learning tasks at 
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the group level – spindles over left frontal areas are related to consolidation of verbal 

material (Clemens et al., 2005), whereas spindles over parietal areas are related to 

consolidation of visuospatial memories (Clemens et al., 2006). However, as brain activity 

was not measured during learning in these studies, the link between learning activation 

and post-learning spindle topography remained conjectural. Another study employed 

simultaneous EEG-fMRI recordings and found a BOLD increase in learning-related 

ventro-temporal regions time-locked to sleep spindles at electrode position Cz (Bergmann 

et al., 2012), but whether spindles per se would be preferentially expressed at learning-

related sites remained unclear due to limited EEG coverage. Finally, we recently showed 

that learning content can be decoded in the presence of centrally recorded sleep spindles 

(Cairney, Guttesen, et al., 2018; Schreiner et al., 2021), but decoding was based on raw 

EEG data rather than on spindle topographies. In short, despite converging evidence that 

spindle expression can be local, idiosyncratic and flexible, we here provide first evidence 

that they track participant-specific learning patterns in service of memory consolidation. 

These results dovetail with a recent computational study showing that spindles promote 

independent reactivation of multiple memories at network locations corresponding to 

awake training (Wei et al., 2018).  

It deserves mention that the spatial resolution afforded by scalp EEG is relatively coarse, 

only capturing macro-scale topographies of brain networks. Intracranial 

recordings/Electrocorticography (ECoG) would provide much finer resolution, albeit at 

the expense of comprehensive whole-brain coverage and consistency across participants. 

That said, a recent study used cortical microelectrode array recordings (Utah Arrays) in 

four pre-surgical epilepsy patients and demonstrated different spindle- and unit firing 

dynamics across a 10 x 10 electrode grid covering < 15 mm2 (Dickey et al., 2021). This 
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suggests that spindle deployment might be sufficiently fine-tuned in space to selectively 

strengthen local microcircuits of learning networks. 

A key open question is how exactly the deployment of spindles to learning-related cortical 

sites is governed. One speculative possibility is that circuit-specific encoding activation 

establishes transient synaptic tags. Spindles are initially broadcast widely and 

stochastically during sleep but resonate more strongly when coinciding with those 

synaptically primed circuits. This leads to higher spindle amplitudes and a concomitant 

increase in Ca2+ influx, completing the tag-and-capture cycle suggested to underlie long-

term-potentiation (Redondo & Morris, 2011). Increased spindle amplitude, as observed 

here and in other studies (Bergmann et al., 2012; Cox et al., 2014; Yordanova et al., 2017), 

would thus reflect elevated local neural co-activation as a vestige of prior task 

engagement. 

Another possibility is that the same thalamic circuits control deployment of attentional 

resources during wake task performance and spindles during sleep. For instance, a recent 

study capitalised on the orientation-specific response potentiation (OSRP) in mouse 

primary visual cortex (V1), which reflects enhanced firing to a visual grating of particular 

orientation several hours after initial exposure/training. Importantly, neurons in the lateral 

geniculate nucleus (LGN) of the thalamus already showed orientation-selective tuning 

during and immediately after training. During post-training sleep, thalamocortical 

coherence mediated by sleep spindles drove post-sleep orientation-selective tuning in V1 

(Durkin et al., 2017). Additional work is needed to elucidate whether similar mechanisms 

apply to more complex tasks in humans, but accumulating evidence across species has 

linked thalamic microcircuits to a wide range of cognitive tasks (Halassa & Kastner, 

2017). This scenario, in which thalamocortical dynamics during learning bias the path of 
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spindle deployment during sleep, is reminiscent of models of hippocampal functioning. 

Specifically, according to the hippocampal indexing theory (Teyler & Discenna, 1986), 

the hippocampus retains pointers to cortical circuits involved in learning. Upon 

presentation of a partial cue, hippocampus drives reinstatement (pattern completion) in 

cortical target sites. Recent work in rodents (Rothschild et al., 2017) and humans (Ngo et 

al., 2020) points to a cortical-hippocampal-cortical loop around hippocampal ripples, and 

a tentative scenario might be that the initial cortical response in this loop is mediated by 

the aforementioned thalamo-cortical spindle projections.  

Apart from spindles, memory processing during sleep has been linked to slow oscillations 

(SOs) and delta (1-4 Hz) rhythms, together referred to as slow wave activity (SWA) (Born 

& Wilhelm, 2012; Marshall et al., 2006; Rasch & Born, 2013; Tononi & Cirelli, 2006). 

One seminal study showed that SWA was specifically increased over central cortical 

areas thought to be involved in prior motor learning (Huber et al., 2004). Likewise, wake 

immobilisation of a participant’s arm led to a decrease in SWA over corresponding motor 

areas (Huber et al., 2006). Interestingly though, analogous effects were seen in the 

spindle/sigma band in both studies, raising the possibility that both SOs/SWA and 

spindles contribute to sleep-dependent consolidation. One pressing question is whether 

consolidation relies on concomitant or on sequential occurrence of these two sleep events. 

Speaking to the importance of concomitant SWA-spindles, a recent rodent study showed 

that Ca2+ activity was increased threefold when spindles were coupled to slow oscillations 

(Niethard et al., 2018). The importance of coupled SO-spindle complexes has been further 

corroborated by a series of recent findings linking the precision of SO-spindle coupling 

to memory function in ageing (Helfrich et al., 2018; Muehlroth et al., 2019) and to 

reinstatement of prior learning experiences during sleep (Schreiner et al., 2021). 
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However, we did not observe greater overlap of encoding patterns with spindles coupled 

vs. not coupled to SOs in the current study (Figure S4). Interestingly, a recent EEG/MEG 

study showed that the topography of spindles was unaffected by the topography of 

concurrent SOs (Klinzing et al., 2016). This raises the possibility that consolidation of 

learning patterns relies, at least in part, on the sequential occurrence of spindles and SOs. 

Indeed, in the original framework (Sejnowski & Destexhe, 2000) as well as in a recent 

computational model (Wei et al., 2018), it is proposed that SOs, which show enhanced 

prevalence during later sleep stages, further potentiate strong synapses, incidentally 

leading to downscaling of weak synapses (Tononi & Cirelli, 2003). In other words, sleep-

dependent consolidation might rely on a multi-stage tagging and capture sequence, 

initiated by wake task performance, potentiated by thalamocortical sleep spindles in 

conjunction with hippocampal ripples, and completed by SOs. Whole-night recordings 

would be better-suited to test this notion than the current nap design. 

Apart from the nap design, there are additional limitations in the present study. First, 

conclusions remain correlative rather than causal. A previous study (Lustenberger et al., 

2016) used transcranial alternating current stimulation (tACS) to enhance sleep spindles, 

leading to improved post-sleep motor memory performance. It would be intriguing to test 

whether ‘playing back’ participant-specific learning patterns in the form of exogenously 

induced spindle topographies enhances consolidation in our current paradigm. However, 

the spatio-temporal precision required for this endeavor (simultaneously inducing 

different spindle amplitudes at different locations across cortex) would exceed capacities 

of current human non-invasive brain stimulation (NIBS) tools. Second, the nature of our 

paradigm precludes a direct link between encoding patterns and behavioural performance 

during pre-sleep retrieval as well as requires an external baseline (PVT). Specifically, 
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unlike in one-shot event-related memory paradigms, retrieval performance here is the 

product of encoding and multiple rounds of training including feedback. Further, the 

absence of clear events (i.e., trials) entails the absence of a baseline for the EEG analysis. 

Consequently, an external baseline had to be used. As the PVT resembles the nature of a 

pre-stimulus baseline in event-related memory paradigms (fixation of a fixation cross in 

the center of the screen), we utilized it as the external baseline. It is worth considering 

that the observed encoding pattern was calculated relative the external baseline and 

cannot be interpreted independently of the activity PVT. Nevertheless, the encoding 

pattern observed here (alpha/beta power decreases over temporo-parietal areas) is 

consistent with previous studies of memory formation (Fellner et al., 2013; Griffiths et 

al., 2016; Hanslmayr et al., 2009; Klimesch et al., 1996).  

To conclude, the present study demonstrates that sleep spindles track cortical areas 

engaged during prior learning and that the extent of learning-spindle overlap predicts 

levels of memory consolidation. An exciting avenue for future work will be to elucidate 

the spatiotemporal dynamics between spindles, ripples and slow oscillations across the 

hippocampus and neocortical sites, both in close temporal proximity and across a whole 

night of sleep.  
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4. Methods  

4.1. Participants 

22 participants were tested. Due to technical issues during data collection, 3 participants 

had to be excluded resulting in 19 participants for the final sample (meanage = 20.7, 

rangeage = 18-31, female = 15).  

Pre-screening ensured that participants had no history of neurological or psychiatric 

disorders and a normal sleep-wake cycle. Participants were instructed to get up one hour 

earlier than normal and avoid caffeine the day of the experiment. After participating in 

the study, participants received monetary reimbursement. The study was approved by the 

University of Birmingham Research Ethics and Governance Committee and written 

informed consent was obtained from all participants before the start of the study.  

4.2. Paradigm and procedure 

Memory Arena and PVT were implemented via custom scripts in MATLAB 2016a 

(MathWorks, Natick, USA). For the PVT, functions of the Psychophysics Toolbox 

Version 3.0.14 (Brainard, 1997) were used.  

Memory Arena 

The Memory Arena consists of a circle divided into coloured quarters (upper left: blue, 

upper right: green, lower right: yellow, lower left: red). Within the circle, objects are 

sequentially presented in different spatial positions. Participants have to learn both the 

sequence in which the objects were presented as well as the spatial position of each object.  
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20 target objects (images of 5 faces, 5 natural objects, 5 animals and 5 manmade objects) 

were randomly selected from a stimulus pool of 40 objects (coloured and presented on a 

grey 90x90 pixels square) (Kriegeskorte et al., 2008; Mehrer et al., 2021). The spatial 

position of each object was restricted by the position of other objects. Consequently, there 

was no overlap between objects, but objects possibly covered more than one colour 

wedge.  

Psychomotor Vigilance Task (PVT) 

A white fixation cross was presented in the middle of the screen. After on average 6 

seconds (jitter ± 4s), a counter replaced the fixation cross. The counter started at 0 and 

counted forward in 20 ms steps to 2000. Upon start of the counter, participants had to 

press the space bar as fast as possible. After the key press, feedback about their reaction 

time was displayed for 2s (Figure 1B). Overall, the PVT lasted 2 minutes.  

Procedure 

The experimental session started at 10 am with the application of electroencephalography 

(EEG), electromyography (EMG) and electrooculography (EOG).  

Approximately one hour later at 11 am, participants started with a short practice session 

(~20 sec) of the PVT which was followed by the actual task. Before they continued with 

the Memory Arena, participants received written instructions and performed a practice 

session (with 3 objects) of each Memory Arena part (encoding, training and retrieval). 

Participants were instructed to associate and combine the objects into a coherent story.  

During the encoding part of the Memory Arena, all 20 objects were sequentially presented 

within the circle. Participants confirm processing of each object by clicking on it. The 

current object then disappeared, and the next object was presented.  
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Directly after the encoding part, a training session was conducted. The training session 

started with all 20 objects arranged around the arena. The objects had to be dragged and 

dropped in the correct sequence to their correct spatial position. If an error was made 

regarding the sequence or spatial position, the arena turned red and the error was 

corrected. Sequence errors were defined as object i not being placed at the ith position.  

Spatial errors were defined as the overlap between correct and chosen position of an 

object being less than 25%. After potential error corrections, the object remained at its 

correct spatial position and the next object had to be selected and placed in the arena. 

When all 20 objects were placed, feedback about the overall performance was presented. 

The overall performance was defined as the number of correct objects divided by the total 

number of objects, where an object was classified as correct when sequence as well as 

spatial position were correct. Participants finished training after reaching 70% overall 

performance in two consecutive runs.  

A second PVT then followed the training session. After the PVT, the pre-sleep retrieval 

was completed. Like the training, the retrieval started with all 20 objects arranged around 

the arena which had to be dragged and dropped in the correct sequence to their correct 

spatial position. Importantly though, errors were not corrected and no feedback was 

provided.    

Participants started the 2-hour nap between 1pm - 2.30pm (see Table S1 for descriptive 

sleep data). Following the nap, participants continued with an interference task. We were 

particularly interested in using an experimental design that is suitable to capture sleep-

dependent memory consolidation. In a previous study, we used the same task (Memory 

Arena) and found sleep-dependent consolidation effects with a combination of a 2x70% 

training threshold (70% overall performance in two consecutive runs) and the induction 
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of retroactive interference directly after sleep (Petzka et al., 2021). Therefore, in this 

study, we applied the same methods.  

During the interference task, participants had to encode the same 20 objects but in a 

different sequence and at different spatial positions (Figure 1A). The difference between 

the old and the new, interfering, spatial position of every object was at least 5 pixels 

(Euclidean distance). Encoding of the interfering positions was conducted in the same 

way as the original encoding. Subsequently, participants had to retrieve the interfering 

sequence and spatial positions (without prior training). Lastly, another PVT and the post-

sleep retrieval (of the original sequence and spatial positions) were performed. Until the 

start of the post-sleep retrieval, participants were unaware of the final test.  

4.3. EEG data recording 

EEG data were recorded using a Brain Products 64-channel EEG system and were 

sampled at a rate of 1000 Hz. Electrodes were arranged according to the 10-20 system 

(including FCz as reference, AFz as ground and left and right mastoids). Two electrodes 

were placed on the chin to record muscle activity (electromyography, EMG) and two 

electrodes recorded eye movements (electrooculography, EOG).  

4.4. Behavioural analysis 

In a previous study using the same paradigm, we found that  sequence performance was 

most sensitive measure to capture sleep-dependent memory consolidation (Petzka et al., 

2021). Consequently, all following analyses focus on sequence performance.  

To calculate sequence performance, the selected order of all 20 object was correlated with 

a vector ranging, in ascending order, from 1 to 20. This correlation approach is preferable 
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to simply counting the correct sequence position of every object, as it reflects both the 

correct sequence position of every object as well as correct transitions between objects. 

Correlation values were Fisher z-transformed for further statistical analyses. To test for a 

significant sequence performance change from pre- to post-sleep retrieval, a paired t-test 

was computed.   

For correlating the change in sequence performance with the EEG data, a sequence 

retention score was calculated as the relative change from pre- to post- sleep sequence 

retrieval: 100*(post/pre). 

4.5. EEG analysis  

EEG analyses were performed using the FieldTrip toolbox (Oostenveld et al., 2011) and 

custom written scripts in MATLAB.  

Encoding pattern 

To remove eye movements from the data, an independent component analysis (ICA) was 

used. Data were down-sampled to 200 Hz, re-referenced to linked mastoids, filtered 

(high-pass: 1 Hz, low-pass: 100 Hz, band-stop filter: 48-52 Hz), demeaned and segmented 

in 2 second epochs for a first visual artifact rejection. All phases of the Memory Arena 

and the PVT were concatenated, coarse artifacts were removed based on outliers 

regarding amplitude, kurtosis and variance (implemented in ft_rejectvisual) and bad 

channels were rejected. Based on those data, the unmixing matrix was obtained and bad 

components were identified. The raw data were then preprocessed again, as the first 

preprocessing was optimized for ICA. The data were down-sampled to 200 Hz, re-

referenced to linked mastoids, filtered (high-pass: 0.3 Hz, low-pass: 40 Hz) and 
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demeaned. The unmixing matrix was applied to the new preprocessed data and bad 

channels were interpolated.  

To derive encoding patterns, the encoding part of the Memory Arena was contrasted 

against the PVT. Note that the PVT was conducted in temporal proximity to the Memory 

Arena and requires sustained attention but no memory-related processes. The data 

recorded during the encoding part of the Memory Arena and the PVT were segmented 

into 1 second epochs (50% overlap), tapered with a Hanning window and transformed 

from time to frequency domain using Fast Fourier Transformation. To facilitate 

reproducibility of results, artifacts were defined based on the 95th percentile uniquely for 

each frequency bin distribution (across epochs). All 1 second epochs above the 95th 

percentile were labelled as artifacts and excluded. Note that results did not qualitatively 

change as a function of the chosen percentile (applying the 90th or 85th percentile as a 

threshold revealed similar results). Power spectra obtained from encoding and PVT were 

contrasted (encoding - PVT), yielding absolute power changes during encoding relative 

to the PVT.  

Significant frequency bins were defined based on the group statistics by applying a two-

sided cluster-based permutation test with 1000 randomisations (Maris & Oostenveld, 

2007). The topography for each participant was then derived by collapsing power values 

across the significant frequency bins for each channel separately resulting in a 1 x channel 

(=58) vector. 

Event Detection 

Sleep spindles and SOs were detected for each participant, based on established detection 

algorithms (Ngo et al., 2013; Staresina et al., 2015). Like wake data, sleep data were 
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down-sampled to 200 Hz, re-referenced to linked mastoids and filtered (high-pass: 0.3 

Hz, low-pass: 40 Hz). Bad channels were matched between wake and sleep data, excluded 

and interpolated. Finally, to identify and mark coarse artifacts, data were visually 

inspected. Channelwise event detection of both sleep spindles and slow oscillations were 

conducted on data from non-rapid eye movement (NREM) sleep stages 2 and 3. Events 

were only included if free of artifacts between 1s before and 1s after the event.  

To detect fast sleep spindles, data were band-pass filtered between 12-15 Hz (4th order 

two-pass Butterworth filter). The envelope of the signal was calculated with a moving 

average of 200ms. An amplitude criterion (mean + 1.25*SD) was applied to the signal. 

Sleep spindles were detected when the signal exceeded the amplitude criterion for more 

than 0.5 but less than 3 seconds (duration criterion).  

The maximum of the envelope of each detected spindle was used as the amplitude 

measure. Duration was the time from beginning to end of each event and density was 

calculated as the number of detected events / total (artifact free) time spent in NREM 

sleep stage 2 and 3.  

To detect slow oscillations, data were band-pass filtered between 0.3-1.25 Hz (4th order 

two-pass Butterworth filter). Zero crossings were identified, and three criteria (duration 

criterion, trough to peak criterion and amplitude criterion) had to be fulfilled. The length 

criterion was met if one positive to negative crossing was followed by a second positive 

to negative crossing within a time window of 0.8 to 2 seconds. Based on all sufficiently 

long events, mean and standard deviation were calculated for trough to peak amplitudes 

as well as for absolute values of trough amplitudes. All events exceeding both means + 

1.25*SDs were considered slow oscillations.  
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The amplitude of SOs was defined as the most negative trough (downstate). To facilitate 

comparability between sleep measures, the absolute value of SO amplitudes was used. 

Thus, the downstate became positively scaled to match all other sleep measures. Duration 

was defined as the time between the first positive to negative and the following positive 

to negative crossing. Slow oscillation density was calculated by dividing the number of 

detected events by the total (artifact free) time spent in NREM sleep stages 2 and 3.  

Amplitude, duration and density of detected spindles and SOs were extracted per channel 

and averaged across events (amplitude, duration) resulting in 6 different 1 x channel (=58) 

vectors.  

Coupling of sleep spindles 

For each spindle event, the phase of the EEG trace filtered in the SO frequency band was 

extracted. To this end, the data around each spindle event were filtered from 0.3 – 1.25 

Hz. After applying a Hilbert transform, the instantaneous phase angle at the maximum of 

the envelope of each detected spindle was extracted.  

To compare spindles with higher vs. lower coupling, all spindle events per channel were 

classified based on their phase value. The 50% of spindle events with a phase value 

closest to 0 degrees were classified as spindles with a higher coupling. The remaining 

50% of spindle events were classified as spindles with a lower coupling.  

Comparison between encoding and sleep pattern 

For each participant, the 1x58 vector obtained from encoding was correlated (Spearman’s 

rho) with every 1x58 vector of the sleep characteristics (amplitude, duration and density 

for spindles and SOs). Correlations were then Fisher z-transformed for group statistics.  
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4.6. Statistics 

Correlation distributions between encoding and sleep topographies were tested with a 2 

(event type:   spindles   vs.   SOs) x 3 (event characteristic: amplitude, duration, density) 

repeated measures ANOVA. Paired sampled t-tests and one-sample t-tests were used for 

post-hoc comparisons.  

Partial correlations were conducted to test for mediating effects of spindle characteristics 

(e.g., spindle density) on the correlation between encoding and another spindle 

characteristic (e.g., spindle amplitude).   

To test for an association between sequence retention and the encoding-spindle overlap, 

the Spearman’s rho correlation was conducted. To rule out that the correlation with 

behaviour is solely driven by either sleep spindles or by encoding power, we applied a 

permutation approach and shuffled topographies between participants (1000 

permutations).  To obtain the observed correlation, we derived, for each participant, (i) 

behavioural performance, (ii) encoding topography and (iii) sleep spindle topography. By 

shuffling only one topography (encoding or sleep spindles) between participants while 

retaining the other participant-specific topography and behavioural performance, two null 

distributions were generated: First, a distribution under the null hypothesis that the 

participant-specific encoding topography is irrelevant for the correlation with behaviour 

(shuffling the encoding topographies). Second, a distribution under the null hypothesis 

that the participant-specific sleep spindle topography is irrelevant for the correlation with 

behaviour (shuffling the spindle topographies). The observed correlation was then tested 

against both null distributions.  
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7. Supplemental Information 

Table S 3.1. Descriptive sleep data in minutes (mean ± SEM). n = 19. TST = total sleep 
time.  

N1 N2 N3 REM TST 

18.39 52.53 10.42 16.24 103.58 

±2.46 ±3.66 ±2.56 ±2.85 ±2.28 
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Figure S 3.1. Participant-specific topographies of the 6-20 Hz power changes during 
encoding relative to the PVT. Power changes were standardized between 1 and -1 for 
comparability across participants.  
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Figure S 3.2. Group-level topographies of amplitude, duration and density of sleep 
spindles and slow oscillations. 

 

 
Figure S 3.3. Coupling of spindles and surrogate events to the phase of the signal filtered 
in the SO frequency range (0.3 -1.25). (A) Mean (+/- 95% confidence intervals) 
percentage of channels on which sleep spindles and surrogate events are significantly 
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coupled (defined by a significant deviation from a uniform distribution, Rayleigh test: p 
< .05). Spindles are coupled to SOs on significantly more channels than surrogates. 
Surrogates were matched control events - for each detected spindle, a spindle-free epoch 
within 15 seconds before or after the actual spindle event was identified (Ngo et al., 2020). 
The instantaneous phase angle of the SO filtered and Hilbert transformed signal was then 
extracted at the centre of the spindle-free epoch. (B) The corresponding phase (in degrees) 
of spindle maxima (left) and surrogate centres (right) plotted across all detected events 
on channels with significant spindle coupling (including all participants, fixed-effects). 
While spindles significantly cluster at a phase of 37 degrees (Rayleigh test: z = 158.86, p 
< .001, resultant vector length = 0.59), surrogates do not deviate from a uniform 
distribution (Rayleigh test: z = 0.94, p = 0.392).  

 

Figure S 3.4. No differential encoding-spindle amplitude overlap for spindles with higher 
(left) vs. lower (right) coupling to the SO up-state. 
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Abstract 

Consolidation of memories relies on their reactivation during post-learning sleep. While 

most memories incorporate a sequential order of events, the timescale on which 

sequential events are reactivated during sleep in humans is still elusive. To identify and 

characterise reactivation of sequential memories, we here employed a sequential memory 

task and recorded high-density scalp electroencephalography (EEG) during a post-

learning nap. During the post-learning nap, we presented sounds associated with the 

encoded sequences (targeted memory reactivation, TMR) to induce sequential memory 

reactivation and applied multivariate pattern analysis (MVPA) to then capture 

reactivation. In response to the sequence-related sounds, we found reactivation of the first 

but not the second sequence element. Critically, when realigning the data to sound evoked 

slow oscillations, reactivation of the second sequence element was nested in their up-

states. Our results provide first evidence of sequential memory reactivation during sleep 

in humans and moreover, attribute the timing of sequential memory reactivation to slow 

oscillations.  
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1. Introduction 

How are memories consolidated during sleep? Memory reactivation, the re-occurrence of 

a neural pattern representing a memory trace, has been proposed as the mechanism for 

systems consolidation. Due to repeated reactivation, memory traces are redistributed from 

hippocampus to neocortex and hence, transformed from labile into stable representations 

(Born & Wilhelm, 2012; Diekelmann & Born, 2010; Klinzing et al., 2019). Evidence for 

reactivation during sleep as a mechanism for memory consolidation was provided by 

recent studies exploiting the development of new methods (e.g. representation similarity 

analysis, RSA and multivariate pattern analysis, MVPA, Grootswagers, Wardle, & 

Carlson, 2017; Kriegeskorte, 2008; Norman, Polyn, Detre, & Haxby, 2006) allowing to 

measure reactivation. That is, by applying RSA or MVPA to pre-sleep wake as well as 

sleep data, it was demonstrated that memory traces are reactivated during post-learning 

sleep and further, that the strength of reactivation predicted memory consolidation 

(Schreiner et al., 2018, 2021; Zhang et al., 2018). However, while these studies focused 

on paired associations, more naturalistic memories tend to incorporate a cascade of 

sequentially ordered events. The time scale on which sequentially ordered events are 

reactivated during sleep has yet to be explored.  

In rodents, sequential reactivation (replay) has been proposed to occur in a temporally 

compressed manner in both hippocampal and cortical areas (Ji & Wilson, 2007; Nádasdy 

et al., 1999; Skaggs & McNaughton, 1996). In humans, however, empirical evidence for 

sequential memory reactivation during sleep, to the best of our knowledge, is still lacking. 

One study demonstrated a re-occurrence of reactivation patterns in a 1 Hz rhythm 

indicating a timing of multiple reactivation patterns by slow oscillations (Schreiner et al., 
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2018). Slow oscillations are hypothesised to time simultaneous memory reactivation in 

hippocampal and neocortical areas to enable a redistribution of memory traces from 

hippocampus to neocortex (Rasch & Born, 2013). Whether sequential memory 

reactivation follows the rhythm of slow oscillations or whether it happens on a much 

faster time scale is still unknown.   

This study aims to assess the time scale of sequential memory reactivation during post-

learning sleep in humans. To this end, we employed a sequential memory task in which 

participants had to encode (object-)face-scene sequences whereas objects were always 

the cues and faces and scenes were always the targets (faces = first and scenes = second 

sequence element). To induce sequential reactivation of faces and scenes, sounds that 

were semantically related to the objects (sound cues) were played during subsequent sleep 

(targeted memory reactivation, TMR, Rudoy, Voss, Westerberg, & Paller, 2009; 

Schreiner & Rasch, 2015). Multivariate pattern analysis revealed reactivation of the first 

(faces) but not the second (scenes) sequence element in response to sound cues. 

Intriguingly, when realigning the data to slow oscillations evoked by sound cues, 

reactivation patterns of the second sequence element emerged. Our findings identify slow 

oscillations as the pacemaker for sequential memory reactivation during sleep.  
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2. Results 

2.1. Targeted reactivation of sequential memories increases memory 

performance 

We employed a sequential memory task in which participants associated an object 

(presented visually and auditorily) with two sequence elements presented in a fixed 

sequential order: a face and then a scene (Figure 1A). A fixed order was used as we 

wanted to increase the chances to detect sequential reactivation during sleep (see 

discussion). Memory for faces and scenes was assessed via a cued recall directly before 

sleep (retrieval 1, Figure 1A). Based on retrieval 1 performance, half of the correctly 

remembered face-scene sequences were assigned to a cued and the other half to a non-

cued condition. A face-scene sequence was correctly remembered when both the face and 

the scene were correct. Sound cues (semantically related with the objects) of face-scene 

sequences of the cued condition were then played during the following 2-hour nap 

(targeted memory reactivation, TMR, see Table S1 for descriptive data of sleep stages). 

Memory for faces and scenes was assessed again directly after the nap (retrieval 2) and 

the next morning following a full night of sleep at home (retrieval 3, Figure 1B). 
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Figure 4.1. Task and experimental design, behavioural results and localiser task. (A) 
During the localiser task, unfamous faces, scenes and objects (not used for the memory 
part) were presented in a randomised order. During encoding, sequences were presented 
which always started with an object (presented visually and auditorily) followed by one 
of two faces (Angelina Jolie, AJ or Barack Obama, BO) followed by one of two scenes 
(Westminster Abbey, WA or Machu Picchu, MP). A cued recall was used to assess 
memory performance (retrieval). A question mark was presented together with a sound 
cue (presenting an object auditorily). After 5 seconds, a legend asking for the correct face 
was shown which was then followed by a legend asking for the correct scene. (B) 
Participants performed the first localiser (loc1), encoding (E), training (T) and first 
retrieval (R1) before taking a 2-hour nap. While participants slept, sound cues were 
presented (targeted memory reactivation, TMR). Following the nap, a second retrieval 
(R2) and a second localiser (loc2) were conducted. Participants did a third retrieval (R3) 
the next morning. (C) During training (T), the probability to forget a face (fa) given that 
the scene (sc) was correctly remembered is significantly lower than the probability to 
forget a scene given that the face is correctly remembered. Density plots, group means 
with 95% CIs and single participant data are shown. ** = p < .01. (D) Memory 
performance of retrieval 3 (R3, proportion of R2 memory) is significantly higher for the 
cued compared to the non-cued condition. Density plots, group means with 95% CIs and 
single participant data are shown. * = p < .05. (E) Stimulus categories (faces vs. scenes) 
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could be classified based on the EEG localiser data from ~150ms post stimulus onset 
(dotted line, time = 0). The red line indicates significantly higher classification accuracies 
for the actual class labels (blue) compared to a distribution where class labels were 
shuffled (black).    

To test whether participants encoded faces and scenes in the correct sequential order, we 

calculated conditional probabilities for two different outcomes: First, we calculated the 

probability to forget a face given that the scene is correctly remembered (p(~face|scene)) 

and second, we calculated the probability that a scene is forgotten given that the face is 

correctly remembered (p(~scene|face)). We hypothesized that the first outcome 

(p(~face|scene)) is less likely if memories were encoded in the correct sequential order as 

forgetting the face interrupts the sequence and therefore, makes it more difficult to 

remember the scene. Indeed, we found a significantly lower probability for the first 

(p(~face|scene)) compared to the second (p(~scene|face)) outcome (t(18) = -2.99, p = 

.008). Conditional probabilities were calculated based on the training data (retrieval with 

feedback, see Figure 1B and methods). To obtain representative values for conditional 

probabilities of these two outcomes, enough trials of either just remembering the face or 

just remembering the scene are required. During retrieval 1, most trials were either 

completely correct (face and scene remembered) or incorrect (face and scene forgotten). 

Therefore, conditional probabilities were calculated based on the training data. Lower 

conditional probabilities for forgetting faces given that scenes are correctly remembered 

suggest that faces were, on average, encoded first (Figure 1C).  

Next, we turned to the question whether cueing during sleep results in greater memory 

performance. Memory performance was defined as the number of hits (correctly 

remembering both the face and the scene) and compared between cued and non-cued 
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sequences. Memory performance at retrieval 2 (proportion of retrieval 1 hits that were 

also remembered at retrieval 2) did not differ between cued and non-cued sequences 

(t(18) = -0.02, p = .987, see Figure S1). Interestingly and in line with previous findings 

(Cairney, Guttesen, et al., 2018), memory performance at retrieval 3 (proportion of 

retrieval 2 hits that were also remembered at retrieval 3) was superior for cued vs. non-

cued sequences (t(18) = 2.69, p = .015, Figure 1D) suggesting that the detection of TMR 

effects relies, at least partly, on overnight consolidation processes (see discussion).  

2.2. Sequence elements (faces and scenes) can be classified during the localiser 

task 

EEG data of the localiser task were used to extract neural patterns representing face vs. 

scene processing. This was done by training a classifier (linear discriminant analysis, 

LDA) on the EEG localiser data to differentiate between face and scene trials. Later, this 

classifier was applied to the EEG sleep data to search for the re-occurrence of category-

specific neural patterns in response to the sound cues (reactivation).  

During the localiser, faces and scenes, which were not shown during the memory part, 

were presented in a randomised order and participants had to identify the correct category 

(face, scene) of the presented image. As expected, participants performed the task with 

high accuracy (faces: meanacc = 99.5%, 95%CIacc = 0.48%; scenes: meanacc = 98.8%, 

95%CIacc = 1.15%). To extract category-specific neural patterns, a multivariate pattern 

analysis (MVPA) was conducted on the pooled localiser data from -0.2 pre- to 2 sec post-

stimulus. A fivefold cross-validation (train and test the classifier on the same task data, 

see methods) revealed a sustained above-chance classification starting at ~150ms post-

stimulus (p < .001 at each time point, cluster-corrected, Figure 1E). Therefore, based on 
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the localiser data, neural patterns representing the processing of face and scene images 

could be extracted.    

2.3. Targeted memory reactivation elicits reactivation of the 1st sequence 

element (faces) 

We hypothesised that the presentation of sound cues (objects) during sleep induce the 

sequential reactivation of faces and scenes. In other words, we tested whether category-

specific neural patterns, obtained from the localiser data, re-emerged in response to sound 

cues presented during sleep in the same order as they were encoded (faces = first sequence 

element, scenes = second sequence element). For this, we trained a classifier on each time 

point of the localiser data (0 to 2 sec) to extract neural patterns representing faces and 

scenes. We then applied the obtained classifier weights to each time point of the sleep 

data (-0.2 to 2.5 sec after sound cues, see Figure S2 for the time frequency decomposition 

and event-related potential). In the resulting localiser time x sleep time matrix, positive 

values reflect evidence for neural patterns representing face processing and negative 

values indicate evidence for neural patterns representing scene processing. As shown in 

Figure 2A (bottom), we indeed found a positive cluster in response to the sound 

presentation peaking at around 600 ms post-cue (corrected using a cluster-based 

permutation test, p = .016). While the sound presentation elicited a positive cluster 

indicating reactivation of face representations, no negative cluster reflecting reactivation 

of scene representations survived the correction for multiple comparisons (all negative 

clusters p > .253). 
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Figure 4.2. Sequential memory reactivation in response to sound cues and evoked slow 
oscillations. (A) Top: The histogram shows how many down-states of evoked slow 
oscillations (number of events, frequencies) were detected at which time point across all 
participants (fixed-effects). Bottom: Face representations were classified ~600 ms after 
sound cues (dotted line = sound onset; white contour lines indicate the significant cluster 
when comparing the actual data vs. data with shuffled class labels, cluster-corrected, p < 
.05). Top: The histogram shows how many down-states of evoked slow oscillations were 
detected at which time point within a pre-defined detection time window (solid vertical 
lines, 0.2-1.5 sec post-cue, dotted line = sound cue onset) across all participants (fixed-
effects). Most down-states were detected ~800ms after sound cues but the variation across 
the whole detection time window was high. (B) Top: Grand average of detected slow 
oscillations evoked by sound cues (mean ± SEM). Bottom: Scene representations were 
classified ~600 ms after down-states of evoked slow oscillations (dotted line = down-
state, white contour lines indicate the significant cluster when comparing the actual data 
vs. data with shuffled class labels, cluster-corrected, p < .05).  

However, we assumed that slow oscillations might time the reactivation of sequential 

memories. Thus, in a next step, we detected slow oscillations evoked by the sound cues 

and tested for reactivation of category-specific patterns in relation to their down-state.  
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2.4. Evoked slow oscillations synchronise reactivation of the 2nd sequence 

element (scenes) 

Slow oscillations were detected in a pre-defined time window between 0.2 – 1.5 seconds 

after sound presentation (‘evoked slow oscillations’, see Table S2 for the number of 

detected slow oscillations relative to sound cues). We applied such a narrow detection 

window to ensure that detected slow oscillations were induced by the sound cues and 

thus, were related to the cued sequences. Nonetheless, extending the detection window to 

2 sec did not qualitatively change the results.  

To directly test whether reactivation of scene representations is indeed paced by evoked 

slow oscillations, we realigned the data according to the down-state of evoked slow 

oscillations and re-run the previously described classification analysis. In short, we again 

trained a classifier on each time point of the localiser data, but this time applied the 

classifier weights to each time point of the sleep data around the downstate of evoked 

slow oscillations (-1.5 to 1.5 sec with 0 being the down-state of evoked slow oscillations). 

The resulting localiser time x sleep time matrix revealed a significant negative cluster 

peaking at around 600 ms after the down-state (corrected using a cluster-based 

permutation test, p = .042), whereas no positive cluster reached significance after 

correction (all positive clusters p > .848). The significant negative cluster indicates 

reactivation of scene representations which is nested in the up-state of evoked slow 

oscillations.  

Even though slow oscillations were detected in such a narrow time window (0.2 to 1.5 

sec), the timing of evoked slow oscillations varied on a trial-by trial basis. More precisely, 

down-states were, on average, detected after 0.84 sec after sound onset but varied across 
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the whole detection window (std = 0.32, see Figure 2A top). The findings that no scene 

reactivation can be found in response to sound cues, but that scene evidence is then timed 

by evoked slow oscillations can be reconciled by such a variation of evoked slow 

oscillations. That is, if reactivation of scene representations is paced by slow oscillations 

and moreover, slow oscillations vary in response to sound cues, reactivation patterns of 

scene representations would be concealed in averaging the sound-locked data and this is 

what we see in Figure 2A.  

Together, our results suggest that slow oscillations evoked by sound cues time 

reactivation of sequential memories.  

3. Discussion 

In our study, TMR combined with MVPA were used to assess reactivation of sequential 

memories during post-learning sleep. After confirming that participants encoded 

sequences in a sequential order (Figure 1C), we found superior memory performance for 

cued compared to non-cued sequences (Figure 1D). When applying MVPA to the sound 

cues presented during sleep, reactivation of the first but not the second sequence element 

was revealed (Figure 2A). Critically, when realigning the sleep data to sound evoked slow 

oscillations, reactivation of the second sequence element emerged during the up-state of 

slow oscillations (Figure 2B).  

It has been assumed that reactivation of memories is induced by presenting associated 

sound cues during sleep (TMR). This assumption is based on behavioural as well as 

physiological findings. Behavioural findings demonstrating superior memory 
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performance for cued compared to non-cued items, as we do in our study as well, suggest 

memory reactivation in response to sound cues. Accordingly, superior memory 

performance for cued items can be explained, in theory, by cued items being constantly 

reactivated and therefore consolidated (Rudoy et al., 2009; Schreiner & Rasch, 2015; for 

a review see Oudiette & Paller, 2013 ; for a meta-analysis see Hu, Cheng, Chiu, & Paller, 

2020).  

Besides behavioural findings, recent studies also demonstrate physiological changes in 

response to sound cues. In response to sound cues (previously associated with learning 

content) evoked slow oscillations show a higher amplitude and spindle power compared 

to sound cues without any previously learned association (Laventure et al., 2018; 

Schreiner et al., 2015; Schreiner & Rasch, 2015). Moreover, learning content previously 

associated with the sound cues could be decoded when a classifier was trained and tested 

on sleep data locked to sound cues (Cairney, Guttesen, et al., 2018; Wang et al., 2019). 

Based on these physiological findings, we were interested in directly testing for 

reactivation in response to sound cues. As reactivation of memories entails the re-

emergence of neural patterns during post-learning sleep which were activated during 

wakefulness, we trained a classifier on wake data to extracted category-specific neural 

patterns. When testing the classifier on sleep data, we found direct evidence for memory 

reactivation in response to sound cues after ~600ms. This finding aligns nicely with 

another study demonstrating evidence for memory reactivation in response to sound cues 

after ~400ms (Schreiner et al., 2018). Interestingly, Schreiner and colleagues (2018) 

found a re-occurrence of memory reactivation ~1 sec after the first reactivation pattern, 

indicating a timing by slow oscillatory activity. Corresponding to their interpretation, we 

found in our study that the reactivation pattern of the second sequence element was nested 
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in the up-state of evoked slow oscillations, arguing for a timing of reactivation by slow 

oscillations. 

It is worth considering that evidence for face reactivation was not observed when 

realigning the data to evoked SOs (Figure 2B). This suggests that reactivation of the first 

element in a sequence (i.e., the face) was directly induced by the sound cue, whereas 

reactivation of the second item in a sequence (i.e., the scene) was then timed by slow 

oscillations after the sound cue. A recent rodent study proposed that information 

processing in response to sound cues during sleep follows a cortical-hippocampal-cortical 

loop (Rothschild et al., 2017). More precisely, the presentation of sound cues during sleep 

biased auditory cortical activity which then predicted hippocampal reactivation during 

sharp-wave ripples. Hippocampal activity, in return, drove reactivation in the auditory 

cortex and hence, closed the information processing loop. Applying this loop to our 

results, one could speculate that sound cues reactivate cortical areas representing the first 

sequence element which then drives hippocampal reactivation of the second sequence 

element during sharp-wave ripples. Hippocampal together with cortical reactivation is 

synchronised by evoked slow oscillations and nested in their up-states. Thus, variations 

in the temporal coordination of the cortico-hippocampal-cortical loop might have 

obscured the decoding of the second sequence item when locking the data to the sound 

cues and the decoding of the first sequence item when realigning the data to the evoked 

slow oscillations. However, due to the limited spatial resolution of scalp EEG, the 

involvement of hippocampal activity and sharp wave-ripples for reactivating sequential 

memories in our study remains elusive. Future research may unify methods suitable to 

record and detect hippocampal sharp-wave ripples with sequential memory paradigms to 

gain insights into the interplay between hippocampal and cortical reactivation. Similarly, 
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we cannot draw any conclusions about the meaning of sleep spindles in our paradigm. It 

has been shown that TMR cues elicit evoked slow oscillations which are accompanied by 

an increase in spindle power during their up-states (Cairney, Guttesen, et al., 2018; Göldi 

et al., 2019; Oyarzún et al., 2017; Schreiner & Rasch, 2015). A precise nesting of sleep 

spindles in slow oscillations up-states is predictive for memory consolidation (Helfrich et 

al., 2018; Muehlroth et al., 2019) and memory reactivation (Schreiner et al., 2021). 

Consequently, the reactivation of scene evidence which is reported in our study might be 

also modulated by a coupling of slow oscillations and spindles rather than slow 

oscillations alone. Owing to a low number of spindles evoked by the sound cues, we 

cannot address this question here, and it remains open for future research.  

A low number of evoked spindles, however, may explain that a full night of sleep in this 

study was required to unfold the benefits of cueing on memory consolidation (Figure 1D). 

Sleep spindles induce synaptic plasticity (Niethard et al., 2018; Rosanova & Ulrich, 2005; 

Seibt et al., 2017; Sejnowski & Destexhe, 2000) and hence, lead to long-lasting changes 

presumably in cortical networks representing memory traces. A low number of spindles 

evoked by the sound cues may not be sufficient to induce synaptic plasticity to such an 

extent that it is expressed in behavioural findings directly after the nap. It might be enough 

though to preserve the cued memories so that they can be further consolidated during a 

following night. Whether and how sleep spindles can preserve memories for a later 

consolidation is yet unknown and requires further investigation.  

Apart from a low number of evoked spindles, there are additional limitations in the 

present study. To increase the chances to detect sequential reactivation during post-

learning sleep, we presented the sequence elements in a fixed order (the face was always 

the first and the scene was always the second sequence element). Randomising the 
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sequence order within or across participants might result in a mental restructure of the 

sequence order by participants to make the task easier. That is, learning a face followed 

by a scene is potentially easier than learning a scene followed by a face as the former 

aligns with our sentence structure and grammar (a person does something somewhere). 

As mentally restructuring the sequence order obscure the decoding of the actual sequence 

order, a fixed sequence (face-scene) was presented.  

To rule out that the decoding results (increased classifier accuracy for the face category 

which is followed by increased classifier accuracy for the scene category) accidentally 

emerge whenever a sound is presented (independently of whether the sound was 

previously associated with a face-scene sequence), we incorporated control sounds in our 

task design. Control sounds seem not to elicit such an order in classifier accuracies 

(increased face and then scene classifier accuracies, results are not shown).   

It is worth noting that the first sequence element (face) is remembered more frequently 

than the second sequence element (scene). As previous studies argue that weakly memory 

traces tend to be more consolidated, i.e., more reactivated, than stronger one (Denis, 

Mylonas, et al., 2020; Denis, Schapiro, Poskanzer, Bursal, Charon, et al., 2020; but see 

Petzka et al., 2021, chapter 2), an imbalance in memory performance between both 

sequence elements might be reflected in a difference between classifier accuracies of both 

sequence elements. However, as we are specifically interested in the order rather than in 

the magnitude of classifier accuracies, potential differences can be neglected.  

In sum, our results demonstrate reactivation of sequential memories in response to sound 

cues which are moreover synchronised by slow oscillations. Our results not only provide 

mechanistic evidence for behavioural TMR findings but also shed light on the role of 

slow oscillations for sequential memory reactivation.  
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4. Methods 

The presented data in this paper are a subset of a larger data set. This larger data set also 

include a wake group (between-subjects). The data of the wake group were collected in 

parallel to the presented data of the sleep group. However, as the results of the paper 

exclusively focuses on the sleep group, information about the wake group is not reported.   

4.1. Participants 

37 participants were tested. 18 participants had to be excluded due to the following 

reasons: less than one round of cueing (n = 9), technical issues (n = 4), did not reach the 

training threshold (n = 3), cancelled due to other issues (participant had a headache n = 

1, fire alarm went off during nap n = 1). 19 participants were included in the final sample 

(meanage = 20.3, rangeage = 19-23, female = 12). For the final analysis (Figure 2B), another 

participant had to be excluded as the number of evoked slow oscillations was too low (n 

evoked slow oscillations = 3). The sample size aligns with previous human sleep and 

memory studies (Helfrich et al., 2018; Ngo et al., 2015).  

Pre-screening ensured that participants had no history of neurological or psychiatric 

disorders and a normal sleep-wake cycle throughout the experiment. On the day of the 

experiment, participants were instructed to get up one hour earlier than normal and avoid 

caffeine. Moreover, they had to abstain from alcohol the night before. Participants 

received a monetary reimbursement after participating in the study. Written informed 

consent was obtained from all participants before the start of the study. The study was 

approved by the University of Birmingham Research Ethics and Governance Committee.  

 



 103 

4.2. Paradigm and procedure 

All tasks were implemented via custom written scripts in MATLAB 2016a (MathWorks, 

Munich, Germany) using functions of the PsychoPhysics Toolbox Version 3.0.14 

(Brainard, 1997). The description of the tasks follows the order in which they were 

conducted in the experimental sessions.  

Localiser  

150 objects, unfamiliar faces and scenes were presented in a randomised order. The 

localiser was conducted to later classify brain activity according to these categories. Each 

trial started with a fixation cross presented for 2 ± 0.1 sec in the centre of the screen. One 

of 150 stimuli (either an object, face or scene) was then shown for 2 sec. After 2 sec, a 

legend appeared below the stimulus prompting participants to indicate with a key press 

which category the stimulus belongs to.  

The localiser was conducted twice, at the beginning and end of the first experimental 

session. While the structure of the task was identical, different objects, faces and scenes 

were used.  

Familiarisation 

During the familiarisation, 90 objects accompanied by a semantically related sound were 

presented twice, e.g., a cat together with a “meow”. The same 90 objects acted as cues 

for the 90 sequences that had to be associated during the following encoding. The purpose 

was to strengthen the connection between the object and sound. Each trial started with a 

centred fixation cross presented for 2 ± 0.1 sec. Afterwards, an object was presented for 

2 sec. The semantically related sound was played twice for 500ms, at the beginning (0 – 

500ms) and end (1500 – 2000 ms) of the object presentation. After 2 sec, a legend 
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appeared below the object inviting participants to listen to the sound again or to continue 

with the next trial. Participants were free to listen to the sounds as often as they wanted 

to.  

Encoding 

Participants had to encode 90 sequences comprising an object as a cue and a face and a 

scene as a target. Each trial started with a centred fixation cross presented for 3 ± 0.1 sec. 

A trial unique object was then presented for 2 sec which was accompanied by a 

semantically related sound (0.5 sec). For example, the image of a guitar was accompanied 

by the sound of a playing guitar. These were the same objects presented during the 

familiarisation. To signify the continuity of the sequence, a centred fixation cross together 

with three dots was shown for 2 ± 0.1 sec, followed by the first target of the sequence, 

the face. The face was either Angelina Jolie or Barack Obama and was on the screen for 

2 sec. After the face, the fixation cross together with three dots were again presented for 

2 ± 0.1 sec, followed by the second target of the sequence, the scene. The scene was either 

Machu Picchu or the inside of the Westminster Abbey. Angelina Jolie/Barack Obama and 

Machu Picchu/Westminster Abbey respectively were used as targets as they were familiar 

to all participants and consequently, facilitate the feasibility of the cued recall.  

During encoding, participants had to create a short story connecting the object with the 

face and scene. Importantly, they had to stick to the order in which the sequence was 

presented. After the scene was shown on the screen for 2 sec, a legend additionally 

occurred below the scene requesting participants to indicate via button press whether they 

were successful in creating a mental story. On button press the next trial started.    
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Training 

A training session was introduced to ensure an appropriate number of hits for a later 

allocation to a cued vs. not-cued condition (see section Nap & Targeted memory 

reactivation). Each training trial started with a centred fixation cross for 3 ± 0.1 sec, 

followed by the visual and auditorily presentation of the object for 0.5 sec. A question 

mark then appeared on the screen indicating the retrieval of the face and scene. After 4.5 

sec, a legend was shown and participants had to indicate first, the face and second, the 

scene the object was presented with. They always had the choice to respond with “don’t 

know”. Whenever participants did a mistake or chose the “don’t know” response for at 

least one of the two targets, the whole sequence was presented again.      

Participants finished the training when they correctly remembered 75 out of the 90 

encoded sequences. Memory performance was assessed in respect to the training 

threshold when all 90 sequences were tested. If the training threshold was not reached, 

not remembered sequences were tested again. After each trial, memory performance was 

assessed again and the training finished as soon as the training threshold was reached.     

Psychomotor Vigilance Task (PVT) 

To assess the vigilance of participants, a PVT was used. A centred fixation cross was 

presented for 6 ± 4 sec. Whenever a counter replaced the fixation cross, participants had 

to press the space bar as fast as possible to stop the counter. Following the key press, 

feedback about the reaction time was provided. Overall, the PVT lasted 2 minutes.  

Retrieval  

Each retrieval trial started with a centred fixation cross presented for 2 ± 0.1 sec. After 

the fixation cross, the object related sound was presented for 0.5 sec, followed by a 
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question mark (4.5 sec) which prompted participants to retrieve the associated face and 

scene. Then, a legend appeared and participants had to indicate first, which face and 

second, which scene the object was presented with. In both cases, participants could also 

choose a “don’t know” or “don’t recognise the sound” option. A trial was counted as a 

hit when both face as well as scene were correct.   

Nap & Targeted memory reactivation 

Between retrieval and nap, participants had a light lunch (sandwich).  At ~2 p.m. they 

went to the laboratory bedroom for 120 min. They had the opportunity to sleep while their 

brain, muscle and eye activity was recorded with polysomnography (PSG).  

During late sleep stage 2 and early sleep stage 3, the presentation of object sounds was 

initiated (targeted memory reactivation, TMR). Based on memory performance at 

retrieval 1, correctly remembered sequences were divided into a cued and non-cued 

condition. This way, baseline memory performance was equal between cued and non-

cued sequences. For example, if 30 sequences were correctly remembered (face as well 

as scene had to be correct), 15 sequences were assigned to the cued and the other 15 were 

assigned to the non-cued condition. Whenever an odd number of sequences was correctly 

remembered, the remaining sequence was randomly assigned to one of the two 

conditions. In addition to the object sounds, the same amount of control sounds was 

presented. Referring to our example, in addition to the 15 object sounds from the cued 

condition, 15 control sounds were presented. Control sounds were generated by shuffling 

the power spectrum of the real sounds in the frequency domain and thus, resembled noise. 

Object and control sounds were presented (~30dB) in a randomised order with an inter-

stimulus interval of 5 sec. After one round of cueing, the presentation order was shuffled 

and the cueing continued.  
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Procedure 

The experiment consisted of two experimental sessions. The first session started at 11 am 

with the application of electroencephalography (EEG), electrooculography (EOG) and 

electromyography (EMG). Approximately one hour later, participants were given written 

instructions and the opportunity to practice each task. Following the practice, the actual 

tasks including localiser, familiarisation, encoding, training, PVT and retrieval 1 were 

conducted.  

Participants then went to bed at ~ 2 pm to take a 2-hour nap (see Table S1 for descriptive 

sleep data). 30 min after waking up, participants continued with a second PVT, retrieval 

2 and the second localiser. The following day at 11 am, participants returned to the lab 

for the second experimental session comprising a third retrieval (without EEG).  

4.3. EEG data recording 

EEG data were recorded using a Brain Products 64-channel EEG system and sampled at 

1000 Hz. Electrodes were arranged according to the 10-20 system (including FCz as 

reference, AFz as ground and left and right mastoids). To record muscle activity 

(electromyography, EMG) and eye movements (electrooculography, EOG), two 

electrodes were placed on the chin and two electrodes around the eye.  

4.4. Behavioural analysis 

Conditional probabilities for two different outcomes were calculated based on the training 

data: First, we calculated the probability of forgetting a face given that the scene is 

correctly remembered (p(~face|scene) = p(~faceÇscene) / p(scene)) and second, we 

calculated the probability of forgetting a scene given that the face is correctly remembered 
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(p(~scene|face) = p(~sceneÇface) / p(face)). To obtain representative values for 

conditional probabilities of these two outcomes, enough trials of either just remembering 

the face or just remembering the scene are required. During retrieval 1, most trials were 

either completely correct (face and scene remembered) or incorrect (face and scene 

forgotten). Therefore, conditional probabilities were calculated based on the training data.  

Memory performance at retrieval 2 was calculated as the proportion of hits at retrieval 1 

which were correctly remembered at retrieval 2. Memory performance at retrieval 3 was 

calculated as the proportion of hits at retrieval 2 that were correctly remembered at 

retrieval 3. A trial counted as a hit trial when face and scene were correctly remembered.   

For all behavioural analyses paired-sample t-tests were used to test for statistical 

differences between conditions.  

4.5. EEG analysis 

Preprocessing 

Preprocessing of EEG data was performed using the FieldTrip toolbox (Oostenveld et al., 

2011). To remove eye movements from the wake data, an independent component 

analysis (ICA) was applied. Data were down-sampled to 200 Hz, filtered (high-pass: 1 

Hz, low-pass: 100 Hz, band-stop: 48-52 Hz), demeaned and inspected for coarse artifacts. 

Bad channels were discharged before applying the ICA to identify bad components and 

obtain the unmixing matrix. The raw data were then preprocessed again because the first 

preprocessing was optimised for applying the ICA. Data were down-sampled to 500 Hz, 

filtered (low-pass: 200 Hz, band-stop: 48-52, 98-102, 148-152 Hz) and demeaned. The 

previously defined bad channels were excluded and the unmixing matrix was applied to 
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the new data. Bad components were removed, bad channels were interpolated, and data 

were re-referenced to common average.      

According to the wake data, sleep data were down-sampled to 500 Hz, filtered (low-pass: 

200 Hz, band-stop: 48-52, 98-102, 148-152 Hz) and demeaned. Bad channels were 

interpolated, and data were re-referenced to common average.    

Multivariate analysis 

Multivariate pattern analysis (MVPA) was conducted using the MVPA-light toolbox 

(Treder, 2020) running in MATLAB. As a classifier a linear discriminant analysis (LDA) 

was used (Lemm et al., 2011).    

Before applying the LDA to the localiser data, data were segmented ([-0.2 – 2 sec post-

stimulus]), smoothed in time with a running average time window of 50ms and baseline 

corrected (-0.2 to 0 sec). Then, a z-transformation across trials was applied to each time 

point. On each time point of the z-transformed data, a classifier was trained with all 58 

channels serving as features and face and scene trials serving as the two classes. To avoid 

overfitting, data (trials) were divided into a training and test set using fivefold cross-

validation (Lemm et al., 2011). Cross-validation was repeated five times and averaged, 

since the assignment of trials into training and test set was random. To operationalise the 

ability of the classifier to differentiate between face and scene classes, the accuracy metric 

was used. Accuracy can be interpreted in such a way that 0.5 reflects random and 1.0 

reflects perfect performance. For example, 0.5 accuracy means that 50% of all tested face 

trials are assigned to the class face and the other 50% of tested face trials are assigned to 

the class scene. Consequently, the classifier cannot distinguish between face and scene 

trials. Accuracy of 1, on the other side, means that all tested face trials are correctly 
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assigned to the class face reflecting a perfect differentiation between trials. For statistical 

comparisons, decoding performance was calculated again but this time with shuffled class 

labels (faces and scenes).   

To investigate evidence for face and scene representations during sleep, the temporal 

generalization method was used (King & Dehaene, 2014). Before, localiser and sleep data 

were segmented, smoothed with a running average time window of 200ms and a z-

transformation on each time point across trials was applied. The classifier was now 

trained on each time point of the localiser data and tested on each time point of the sleep 

data resulting in a time x time matrix. As localiser and sleep data were independent data 

sets, no cross-validation was required. As a metric for classification, we used accuracy 

([0-1]) and subtracted the chance performance (0.5). However, since both classes, faces 

and scenes, were components of all testing trials, we labelled all testing trials as face 

trials. Consequently, the accuracy measurement has to be interpreted differently. That is, 

above chance classification (positive values, [0.01-0.5]) can be interpreted as face 

evidence, whereas below chance classification (negative values, [-0.5- -0.01]) indicates 

scene evidence. For statistical comparisons, the same analysis was conducted 10 times 

with shuffled class labels (faces and scenes) of the localiser data. The 10 resulting time x 

time matrices were averaged and provide values under the null hypothesis.  

Event Detection 

To detect evoked slow oscillations for each participant, established detection algorithms 

were applied (Ngo et al., 2013; Staresina et al., 2015). Data classified as N2 or N3 sleep 

were band-pass filtered between 0.3-1.25 Hz (4th order two-pass Butterworth filter) and 

zero crossings were detected. For slow oscillations, three criteria had to be fulfilled: A 

length criterion, a peak to trough criterion and an amplitude criterion. The length criterion 
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was met, if a positive to negative crossing was followed by a second positive to negative 

crossing within 0.8 to 2 sec. Based on all sufficiently long events, mean and standard 

deviation (std) were calculated for trough to peak amplitudes as well as for absolute 

values of trough amplitudes. The peak to trough criterion and the amplitude criterion were 

fulfilled, if events exceed the mean + 1.25*std. Then, evoked slow oscillations were 

identified on electrode position Fz whenever a sound cue was presented 0.2 to 1.5 seconds 

before the trough (down-state). Sleep data were realigned to the down-state of evoked 

slow oscillations (time = 0).   

Statistics 

Paired sampled t-tests were used to test for behavioural differences between conditions 

(Figure 1 C, D).  

To correct for multiple comparisons, FieldTrip’s cluster-based permutation test (Maris & 

Oostenveld, 2007) was applied (1000 randomisations) to compare classifier accuracies 

between real and shuffled labels across time (Figure 1 E). Furthermore, a permutation test 

was conducted to compare time x time classification matrices (real vs. shuffled labels, 

Figure 2). All cluster-based permutation tests were two-sided.  
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7. Supplemental Information 

 
Table S 4.1. Descriptive sleep data in minutes. n = 19. (mean ± SEM)  

N1 N2 N3 REM TST 

15.64 46.97 12.89 18.69 102.58 

±2.29 ±2.98 ±2.36 ±2.89 ±4.69 

 
 
Table S 4.2. Amount of object (N object cues) and control cues (N control cues) that were 
presented during sleep and the number of detected slow oscillations evoked by object 
sounds (N evoked slow oscillations, object cues) and evoked by control sounds (N evoked 
slow oscillations, control cues).   

N object cues N evoked slow 
oscillations (object 

cues) 

N control cues N evoked slow 
oscillations (control 

cues) 
113.17 18.56 112.72 14.22 

±11.95 ±1.79 ±11.99 ±1.15 
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Figure S 4.1. Memory performance of retrieval 2 did not significantly differ between cued 
and non-cued conditions. Density plots, group means with 95% CIs and single participant 
data are shown. n.s. = not significant.  

 
 
 

 
Figure S 4.2. Time-frequency decomposition and event-related potential to sound cues. 
Time frequency decomposition and event-related potentials were extracted based on re-
referenced data to linked mastoids and analyses were performed using FieldTrip. For 
event-related potentials, data were segmented, baseline corrected (-0.2 to 0 sec), 
detrended and averaged across all object cue trials within participants and then across 
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participants. Time-frequency analysis was conducted using Morlet wavelets with an 
increase in cycles (starting with 5 cycles) for a frequency range of 3-30 Hz in 1 Hz steps. 
Power was then calculated on 50ms long epochs. To get rid of potential artifacts, we 
rejected the most extreme 1% of the trial distribution per time x frequency bin. After 
averaging across the remaining trials, the relative power change from a baseline (-0.3 to 
-0.1) was calculated and contrasted between sound cues and control cues (sound > 
control). 
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Abstract 

Sleep is thought to support memory consolidation via reactivation of prior experiences, 

with particular electrophysiological sleep signatures (slow oscillations (SOs) and sleep 

spindles) gating the information flow between relevant brain areas. However, empirical 

evidence for a role of endogenous memory reactivation (i.e., without experimentally 

delivered memory cues) for consolidation in humans is lacking. Here, we devised a 

paradigm in which participants acquired associative memories before taking a nap. 

Multivariate decoding was then used to capture endogenous memory reactivation during 

non-rapid eye movement (NREM) sleep in surface EEG recordings. Our results reveal 

reactivation of learning material during SO-spindle complexes, with the precision of SO-

spindle coupling predicting reactivation strength. Critically, reactivation strength (i.e. 

classifier evidence in favour of the previously studied stimulus category) in turn predicts 

the level of consolidation across participants. These results elucidate the memory function 

of sleep in humans and emphasize the importance of SOs and spindles in clocking 

endogenous consolidation processes. 
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1. Introduction 

How do we strengthen memories while we sleep? The prime vehicle of systems 

consolidation is thought to be the reactivation of information encoded during prior 

wakefulness (Diekelmann & Born, 2010; Paller et al., 2021; Rasch & Born, 2013; Walker 

& Stickgold, 2004). Through reactivation, memory representations are relayed between 

the hippocampus and neocortical long-term stores, transforming initially labile 

representations into long-lasting memories during sleep (Buzsáki, 1996; Marr, 1971). The 

communication between the hippocampus and neocortical networks is thought to be 

facilitated by an intricate interplay of the cardinal NREM sleep-related oscillations, 

namely cortical slow oscillations (SOs), thalamo-cortical sleep spindles, and hippocampal 

sharp-wave ripples (Latchoumane et al., 2017; Maingret et al., 2016; Oyanedel et al., 

2020; Sirota et al., 2003; Skelin et al., 2019; Staresina et al., 2015). SOs reflect 

fluctuations of the membrane potential and orchestrate transitions from neuronal silence 

(hyperpolarization, i.e., downstate) to neuronal excitation (depolarization, i.e., upstate, 

Amzica & Steriade, 2002; Steriade et al., 1993). Importantly, they initiate time windows 

of excitability and inhibition not only in cortical but also in subcortical areas (Fernandez 

& Lüthi, 2020a; Isomura et al., 2006; Timofeev, 2011). They trigger the emergence of 

sleep spindles in the thalamus (Mak-Mccully et al., 2017), which nest in the excitable up-

states of the SOs. Spindles have been shown to gate Ca2+ influx into dendrites, thereby 

facilitating synaptic plasticity (Rosanova & Ulrich, 2005; Seibt et al., 2017). Importantly, 

recent evidence from two-photon imaging in mice suggests that Ca2+ influx is strongly 

amplified when spindles coincide with SO up-states (Niethard et al., 2018). Lastly, 

hippocampal ripples are transient network oscillations and have been closely linked to 

reactivation/replay of learning experiences (Buzsáki, 2015; Joo & Frank, 2018). They 
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have been shown to occur in the excitable troughs of the spindle, suggesting that spindles 

might facilitate information transfer from the hippocampus to neocortical target sites 

(Helfrich et al., 2019; Ngo et al., 2020). The efficacy of systems consolidation through 

memory reactivation might thus hinge on concurrent SO-spindle coupling, ensuring 

optimal conditions to ignite structural changes in cortical target sites (Clemens et al., 

2007; Jiang, Gonzalez-Martinez, & Halgren, 2019; Oyanedel et al., 2020; Staresina et al., 

2015). 

Indeed, recent work in humans has revealed a key role of SO-spindle coupling during 

NREM sleep for behavioural expressions of consolidation. For instance, the precision of 

SO-spindle coupling, i.e., the exact timing of spindle maxima with respect to the SO 

upstate, has been shown to correlate with retention of declarative learning material 

(Mikutta et al., 2019; Zhang et al., 2018). Moreover, levels of SO-spindle coupling track 

the rise and decline of memory performance across development (Hahn et al., 2020; 

Helfrich et al., 2018; Muehlroth et al., 2019). What is unknown, however, is whether there 

is a link between SO-spindle coupling and physiological expressions of consolidation, 

i.e., memory reactivation. A recent rodent study revealed that precise SO-spindle 

coupling is key for maintaining the reactivation of neural ensembles (Kim et al., 2019), 

but whether and how this relates to episodic memory consolidation in humans is unclear. 

In humans, the study of memory reactivation during sleep has mainly relied on targeted 

memory reactivation (TMR) protocols (Oudiette & Paller, 2013; Schreiner & Staudigl, 

2020). This experimental technique follows the rationale that reminder cues are presented 

during sleep to exogenously trigger memory reactivation. Intriguingly, presenting 

auditory reminder cues during NREM sleep reliably induces SO-spindle complexes 

(Cairney, Guttesen, et al., 2018; Oyarzún et al., 2017; Schreiner et al., 2015). However, 
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to what extent TMR-induced processes reflect natural/endogenous consolidation 

processes remains unknown. 

Building on the work summarized above, we propose that SO-spindle complexes might 

clock endogenous memory reactivation in service of consolidation during human sleep. 

To test this notion, we devised an experimental paradigm in which participants acquired 

associative memories before taking a nap. Multivariate decoding was then used to assess 

endogenous memory reactivation during NREM sleep. In this work, we show that 

memory reactivation is specifically bound to the presence of SO-spindle complexes, with 

the precision of their coupling correlating with reactivation strength. Reactivation 

strength in turn predicts the extent of consolidation across participants. These findings 

elucidate the memory function of sleep in humans and illustrate the importance of SO-

spindle coupling for clocking endogenous consolidation processes. 

2. Results 

Twenty participants (age: 20.75 ± 0.35; 17 female) took part in two experimental 

sessions. In both sessions they performed an episodic learning task, with memory 

performance being assessed before and after taking a 120 min nap (Figure 1A). 

Depending on the experimental session, participants learned to associate verbs with 

images of objects or scenes during the pre-sleep learning phase. These stimulus categories 

were chosen as they recruit distinctive brain networks (e.g., lateral occipital complex for 

objects, parahippocampal place area for scenes (Epstein & Kanwisher, 1998; Malach et 

al., 1995), thus facilitating the analytical readout of endogenous, experience-dependent 

memory reactivation during sleep. Specifically, learning-related memory reactivation 
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during sleep would manifest as enhanced representational evidence for the stimulus 

category learned before sleep (i.e., greater evidence for object representations after word-

object encoding and greater evidence for scene representations after word-scene 

encoding, respectively). 

 

Figure 5.1. Experimental procedure, behavioural results, and localizer task.(a) During 
encoding, participants were presented with 120 verb-object or verb-scene combinations 
(depending on experimental session). Memory performance was tested before and after a 
120 min nap period. At the end of each session, participants performed a localizer task in 
which they processed a new set of object and scene images. (b) Behavioural results for 
both experimental sessions pre- (light gray) and post-sleep (dark gray). Bar graphs show 
mean (±SEM) percentage of recalled image exemplars out of correctly recognized verbs. 
Dots indicate individual memory performance of participants (N = 20). Stars denote 
significant differences as derived from a repeated measures ANOVA 
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(p = 0.001). c Stimulus categories (objects vs. scenes) could be reliably decoded (above 
chance) from the localizer EEG data, starting around 150 ms post stimulus onset (the 
black solid line indicates decoding performance (±SEM)). The horizontal dashed line 
indicates surrogate decoding performance, which was estimated by shuffling the training 
labels 250 times. The vertical solid line indicates stimulus onset (time = 0). The lower 
horizontal gray line shows the temporal extent of significant decoding results as derived 
from a dependent-samples t-test (two-sided, p = 0.002, cluster corrected across time).  

Memory performance was tested both before and after the sleep period in a stepwise 

manner. First, participants made word-recognition judgments (old or new). Then, for 

recognized words only, recall of the associated image exemplar (object or scene, 

depending on experimental session) was assessed. The resulting recall performance was 

then normalized by the amount of correctly recognized items (i.e., “hits”). To avoid any 

impact of pre-sleep testing on our behavioural consolidation measures (Antony et al., 

2017; Roediger & Karpicke, 2006), only half of the learned material was tested before 

sleep, while the remaining half was tested after sleep. Finally, at the end of the 

experimental sessions participants performed an independent “localizer task”, where a 

new set of object and scene images was presented (including both stimulus categories, 

irrespective of experimental session). This localizer served to train a linear classifier to 

distinguish object- vs. scene-related electroencephalographic (EEG) patterns. 

2.1. Behavioural results and category classification during the localizer task 

First, we calculated d-prime (d′, Macmillan & Creelman, 2005) as a general measure of 

recognition memory performance (for a detailed overview of memory measures as well 

as sleep characteristics see Tables S 1 and S 2). Both pre- and post-sleep d′ levels 

confirmed that participants could reliably discriminate between old and new items (i.e., 

d′ > 0; pre-sleep objects: d′ = 2.11 ± 0.14, scenes: d′ = 2.02 ± 0.22; post-sleep objects: 



 122 

d′ = 1.76 ± 0.19, scenes: d′ = 1.69 ± 0.23). Out of hits, participants recalled the correct 

image for 64.31 ± 3.23% before sleep (objects: 64.90 ± 3.99%, scenes: 63.72 ± 5.20%) 

and for 57.61 ± 3.91% after sleep (objects: 59.39 ± 5.71%, scenes: 55.82 ± 5.47%). 

To test for potential differences in memory performance between test times and stimulus 

categories, we conducted ANOVAs for recognition memory (d′) and cued recall, 

including the factors category (object vs. scene) and test-time (pre- vs. post-sleep). 

Results indicated that memory performance (both recognition and recall) declined over 

the course of sleep (main factor test-time: recognition memory: F1,19 = 10.91; p = 0.004; 

cued recall: F1,19 = 15.53; p = 0.001). Importantly though, no difference in memory 

performance between categories was observable (main effect category: recognition 

memory: F1,19 = 0.21; p = 0.65; cued recall: F1,19 = 0.38; p = 0.54) and no interaction 

between test-time and learning category (recognition memory: F1,19 = 0.003; p = 0.95; 

associative memory: F1,19 = 0.69; p = 0.41), ensuring that task difficulty was highly 

comparable between image categories (also see Table S1). 

The localizer task at the end of each session was employed to derive the neural signatures 

of object vs. scene processing, which were then used to track category-specific memory 

reactivation during NREM sleep (see below). Participants were presented with novel sets 

of object and scene images and performed a continuous recognition task on these images. 

Specifically, each image was presented twice (mean distance between successive 

presentations = 8.06, range = 2–33) and participants were instructed to indicate whether a 

given item was “new” (first presentation) or “old” (second presentation). As expected, 

participants showed high accuracy levels on this task (objects: 97.02 ± 0.61 correct 
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decisions; scenes: 92.57 ± 4.44 correct decisions), with performance again matched 

between image categories (t(19) = 1.05, p = 0.31). 

To extract the category-specific (i.e., object and scene) patterns of neuronal activity, we 

pooled the localizer data across experimental sessions and performed multivariate 

classification (linear discriminant analysis; LDA) on these data (Figure 1c). Using 

fivefold cross-validation (see Methods), above-chance classification accuracy emerged 

around 150 ms following image onset, was sustained until 2800 ms and peaked at 600 ms 

(p = 0.002, corrected for multiple comparisons across time). Hence, the localizer data 

allowed us to isolate brain patterns associated with the processing of object and scene 

images, which we then used to guide analysis of category-specific reactivation during 

sleep (for results concerning the stability of the decoding approach see Figure S 1). 

2.2. Endogenous memory reactivation during NREM sleep is clocked by SO-

spindle complexes 

As mentioned above, theoretical models and recent empirical findings point to particular 

role of SO-spindle coupling for memory consolidation. We thus tested the resulting 

prediction that the joint presence of SOs and sleep spindles (henceforth referred to as 

“SO-spindle complexes”) would drive endogenous memory reactivation during human 

sleep. SOs and sleep spindles were detected in the EEG data using established algorithms 

(Ngo et al., 2013; Staresina et al., 2015). To isolate SO-spindle complexes, we identified 

events where SO down-states were followed by sleep spindles within a time window of 

1.5 s (for a time–frequency representation of the SO-spindle complexes see Figure 2a; for 

a peri-event SO-spindle histogram, see Figure S 2). To determine whether learning-

related (i.e., category-specific) neuronal activity would be differentially reactivated 
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during SO-spindle complexes, we first trained a classifier on the concatenated localizer 

data from both experimental sessions [−0.5 to 3 s]. Importantly, the localizer tasks of both 

sessions included object and scene images, to ensure that multivariate measures of 

potential reactivation not merely reflect session-specific EEG properties. The resulting 

training weights were then applied on both sessions’ sleep data, centred around the 

downstate of SO-spindle complexes (for related results where the data were locked to 

different spindle features see Figure S 3). Classifier testing labels reflected the stimulus 

category used in the preceding encoding session (object or scene), such that above-chance 

classification signifies endogenous activation patterns more strongly resembling the just-

learned stimulus category than the alternative stimulus category. 

 

Figure 5.2. SO-spindle locked memory reactivation. (a) Time–frequency representation 
of all SO-spindle segments (z-scored across time; only positive values are displayed, with 
yellow indicating power increases). (b) Learning-related brain patterns (objects vs. 
scenes) were decodable during SO-spindle complexes (contour lines indicate the extent 
of the significant cluster, p = 0.016 corrected; colour range (blue to yellow) 
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represents t values against surrogate decoding performance, which was estimated by 
shuffling the training labels 250 times). The averaged EEG trace (all instances in which 
SO down-states were followed by sleep spindles within 1.5 s at channel Cz in microvolt 
[μV]) illustrates the relationship of the observed reactivation signal with ongoing 
oscillatory activity. The topographical insert illustrates the results of a “searchlight 
decoding procedure”, indicating that bilateral parietal and occipital areas exhibited 
stimulus-category related effects (please note that statistical tests were done for 
illustrative purposes only). (c) Phases of the SO-spindle modulation derived from channel 
Cz, illustrating the clustering of spindle power toward the SO upstate (upstate 
corresponding to 0 and downstate to ± π, with –π/2 reflecting the down- to upstate 
transition; Rayleigh test: p < 0.0001; z = 16.71). The black line illustrates the mean 
coupling direction and vector length (−36.78° ± 5.48°, mean vector length = 0.91). 
Circular-linear correlation analysis between the individual mean SO-spindle coupling 
phase (circles) and the mean reactivation strength (area under the curve [AUC] scores; 
colour coded, with white indicating high classification performance and black low 
classification performance) revealed a positive association 
(r = 0.66; p = 0.011). (d) Reactivation strength correlated positively with behavioural 
levels of associative memory consolidation (Spearman’s Rank 
Correlation, r = 0.45, p = 0.048).  

As shown in Figure 2b, results revealed a cluster of significant above-chance 

classification from 800 to 1200 ms relative to the SO downstate (p = 0.016, corrected for 

multiple comparisons across time, localizer time-window [1000 to 1800 ms]), emerging 

between maximum and offset of coupled sleep spindles (for the corresponding accuracy 

map see Figure S 4; for participant specific classification values see Table S 3). No 

negative cluster survived correction for multiple comparisons (cluster with 

smallest p > 0.6). 

But does endogenous memory reactivation indeed require the joint presence of SOs and 

spindles? To address this question, we performed the same decoding procedure, but 

locking the data to solitary SO or spindle events (thus, SOs without spindles and vice 

versa). For both types of events, when testing accuracy levels against chance at any 
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localizer time × sleep time point, no significant cluster of above-chance classification 

emerged (in both cases cluster with the smallest p > 0.2, see Figure S 5; similarly, testing 

the classifier on Slow spindle—SO-locked data did not yield any significant cluster of 

above-chance classification (cluster with smallest p = 0.67; see Figure S 6)). 

2.3. Precision of SO-spindle coupling correlates with reactivation strength 

If SO-spindle coupling is indeed instrumental for consolidation, its precision should 

impact the extent of endogenous memory reactivation. To quantify the preferred phase of 

SO-spindle modulation, we determined in every participant the SO phases corresponding 

to the spindle peak amplitudes (electrode Cz). In 16/20 participants we found significant 

nonuniform distributions (p < 0.05; Rayleigh test, mean vector length: 0.34 ± 0.03). In 

line with previous findings, we found a significant nonuniform distribution across 

participants (Rayleigh z = 16.71, p < 0.0001), with spindles peaking near the SO upstate 

(corresponding to 0°; mean coupling direction: −36.78° ± 5.48°; see Figure 2c). 

To further test whether the precision of SO-spindle coupling would be relevant for the 

reactivation of memories we computed a circular-linear correlation between each 

participant’s preferred SO-spindle phase (averaged across sessions) and their mean 

reactivation strength (averaged across the significant cluster shown in Figure 2b). The 

individual SO-spindle modulation phase was significantly correlated with decoding 

accuracy (r = 0.66; p = 0.011). The distribution indicated that the closer the spindles were 

nested towards the SO upstate, the higher the fidelity of the associated reactivation signal 

(see Figure 2c, for a scatter plot see Figure S 7; for additional analyses estimating the 

impact of trait-like characteristics in this context, see Supplementary Notes). 
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To ensure that the results described above were not driven by differential wake 

classification characteristics, we conducted a partial circular-linear correlation with the 

mean decoding levels from the localizer tasks (averaged across the significant cluster 

shown in Figure 1c) as a covariate. Again, we observed a positive relationship between 

the individual SO-spindle modulation phase and decoding accuracy (r = 0.65; p = 0.012). 

2.4. Reactivation strength predicts consolidation of associative memories 

If SO-spindle triggered reactivation reflects memory-related processes, one would expect 

a functional link with behavioural expressions of consolidation. To address this question, 

we correlated, across participants, levels of post-sleep memory retention and reactivation 

strength. Specifically, a “retention index” (proportion of post-sleep recalled images (out 

of hits) in relation to pre–sleep memory performance; see Methods section for details) 

was collapsed across sessions and correlated with decoding accuracies averaged across 

the significant cluster reported above. As shown in Figure 2d, we observed a significant 

positive relationship between the two variables (Spearman rho = 0.45, p = 0.048). Of 

note, no association between decoding accuracy and recognition memory performance 

was detectable (r = 0.02, p = 0.93), indicating that reactivation strength was specifically 

linked to the consolidation of hippocampal-dependent associative memories (Davachi, 

2006). However, the correlation between reactivation and consolidation of associative 

memory was not significantly greater than that with recognition memory 

(z = 1.35; p = 0.17). Lastly, we again controlled this analysis for localizer decoding levels 

using a partial correlation, which substantiated the results (Spearman 

rho = 0.45, p = 0.049). 
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3. Discussion 

Our results demonstrate that consolidation relies on endogenous memory reactivation 

clocked by SO-spindle complexes. In particular, we found that during the presence of 

SO-spindle complexes, activation patterns were biased towards the previously encoded 

learning material (Figure 2a, b). Moreover, the precision of SO-spindle coupling 

predicted the fidelity of memory reactivation (Figure 2c). Finally, reactivation strength 

predicted the amount of consolidation across participants, highlighting its functional 

significance for behavior (Figure 2d). 

NREM sleep oscillations (SOs, spindles, and ripples) have long been implicated in the 

memory function of sleep, and recent work has emphasized the importance of their 

temporal synchronization (Klinzing et al., 2019). Specifically, the precise timing of SOs, 

spindles, and ripples is thought to enable the relay of hippocampus-dependent memories 

to cortical networks (Rasch & Born, 2013). Indeed, recent work in rodents has shown that 

their co-occurrence is necessary for effective consolidation as assessed via fear 

conditioning (Latchoumane et al., 2017) or an object-in-place recognition task (Maingret 

et al., 2016). However, how these tasks relate to expressions of episodic memory in 

humans is not entirely clear. Human iEEG work with epilepsy patients has corroborated 

the triple-interaction of these sleep oscillations (Helfrich et al., 2019; X. X. Jiang et al., 

2019; Staresina et al., 2015), but none of these studies has assessed memory reactivation 

or the effects on behaviour. Investigation of healthy participants via scalp EEG has shown 

that brain patterns across sleep differ as a function of prior learning tasks (Schönauer et 

al., 2017), but these activation patterns were not directly related to wake activity or to 

discrete SOs/spindles. Another study employed simultaneous EEG-fMRI and found 
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univariate signal increases in learning-related areas during spindles (Bergmann et al., 

2012), but it remained open whether such reactivation bears relevance for memory 

consolidation. Finally, the advent of TMR protocols (Rasch et al., 2007; Rudoy et al., 

2009) has shown evidence for both SO-spindle complexes and information processing in 

response to external reminders (Bar et al., 2020; Cairney, Guttesen, et al., 2018; Göldi et 

al., 2019; Oyarzún et al., 2017; Schechtman et al., 2021; Schreiner et al., 2018; Wang et 

al., 2019), but it is unclear whether and how such exogenous memory reactivation relates 

to endogenous reactivation in service of memory consolidation. In sum, different lines of 

research across species point to a key role in coupled sleep oscillations, but the dynamics 

of endogenous reactivation in humans and its relevance for memory consolidation has 

remained unclear. 

In the current study, we tackled this question by employing two learning sessions per 

participant, each using different and analytically discriminable learning stimuli (object 

and scene images, Figure 1a). To ensure that multivariate measures of reactivation not 

merely reflect session-specific EEG properties, we included an object/scene localizer task 

in each session and trained a linear classifier on the combined data. This allowed us to 

track the re-emergence of learning categories during the nap periods. It deserves mention 

that decoding levels were modest in general and not every participant reached above-

chance classification (18/20, see Figure 2d and Table S 3). Several reasons might limit 

the effect size when decoding memory reprocessing during sleep. First, the signal of 

interest (i.e., sleep electrophysiology) is inherently noisy. Guided by theoretical 

considerations we limited the search-space for memory reactivation to the presence of 

SO-spindle complexes. Still, it is unlikely that each single SO-spindle complex is 

associated with memory reactivation. Including the presence of ripples as a criterion may 
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increase sensitivity, but even SO-spindle-ripple complexes are unlikely to yield robust 

memory reactivation in every instance (Swanson et al., 2020). Second, our data show that 

SO down-states represent viable reference points for time-locking the analysis of memory 

reactivation. However, there is considerable variability in signal characteristics across 

SOs and spindles (e.g., event durations or peak times), and such across-event variability 

diminishes classification power which relies on spatiotemporal activation patterns 

common across events. That said, decoding levels observed here are in line with previous 

TMR studies examining sleep-related memory reactivation with multivariate 

classification (Belal et al., 2018; Cairney, Guttesen, et al., 2018; Wang et al., 2019). 

Importantly, we found that higher decoding performance correlates with the behavioural 

expression of memory consolidation across participants, further corroborating the 

functional significance of reactivation. 

Another key feature of our paradigm was the assessment of both item- and associative 

memory performance. Interestingly, the strength of memory reactivation during sleep 

predicted consolidation levels for associative memory only. This finding could indicate 

that reactivation particularly benefits hippocampus-dependent memories (Davachi, 

2006). However, it might also reflect the fact that reactivation pertained to the categorical 

features of the learning material, which was also the aspect relevant for associative- and 

not item memory. Moreover, while performance levels were carefully matched between 

object and scene tasks (Figure 1b), performance was lower for associative memory than 

for item recognition. Thus, differential effects of reactivation for associative- vs. item 

memory could also suggest differential benefits of sleep for weaker vs. stronger memories 

(Cairney et al., 2016; Creery et al., 2015; Drosopoulos, Schulze, et al., 2007; Schapiro et 

al., 2017; but see Petzka et al., 2021).   
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Owing to the limited spatial resolution of scalp EEG (especially for transient high-

frequency oscillations), our current data remain agnostic with regard to hippocampal 

ripples. That said, a recent iEEG study has shown that both hippocampal ripples and 

hippocampal–cortical interactions are most eminent when preceded by a cortical SO-

spindle complex (Helfrich et al., 2019). To the extent that reactivation observed here is 

linked to hippocampal engagement, the timing of our effects (Figure 2a, b) is consistent 

with accumulating evidence that the hippocampal–cortical dialog is in fact initiated by 

cortex (Helfrich et al., 2019; Navarrete et al., 2020; Ngo et al., 2020; Rothschild, 2019; 

Rothschild et al., 2017). One tentative interpretation of our results might thus be that 

cortical SO-spindle complexes trigger hippocampal memory reactivation while ensuring 

that the cortical target area is optimally tuned for synaptic plasticity and memory 

reprocessing (Niethard et al., 2018; Rosanova & Ulrich, 2005; Sejnowski & Destexhe, 

2000). Indeed, recent rodent work has shown that optogenetic induction of SO-locked 

spindles enhances SOs-spindle-ripple coupling and the consolidation of hippocampus-

dependent memories (Latchoumane et al., 2017). Our finding that reactivation peaks 

towards the end of spindles (Figure 2b) is consistent with the idea that mnemonic 

reprocessing and integration into neocortical networks continue after sleep spindles, i.e., 

during periods of spindle “refractoriness” (Antony et al., 2018). Likewise, intracranial 

recordings in humans have shown that hippocampal–cortical connectivity (“mutual 

information”) mediated by hippocampal ripples occurred ~500–1500 ms after the SO 

downstate (Helfrich et al., 2019), again matching the time window in which we observed 

memory reactivation. Together, one tentative scenario might be that memory processing 

is most beneficial after SO-spindle complexes, i.e., at time points of elevated cortical 

plasticity. 
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Analytically, our approach relied on (i) matching behavioural performance between 

sessions, (ii) pooling sleep data across both sessions, and (iii) deriving evidence for the 

reactivation of learning material across all aggregated SO-spindle complexes. These 

design features leave some interesting questions open for future work. First, to what 

extent might trait-like participant characteristics drive both reactivation and memory 

processes? Using our sleep questionnaires, we were able to rule out subjective sleep 

quality and circadian rhythm as confounds (see Supplementary Notes), but there may be 

other trait-like factors impacting reactivation and consolidation. An alternative design 

would be to conduct a longitudinal study in which within-participant levels of learning 

and consolidation are experimentally manipulated across multiple sessions (e.g., by 

varying encoding depth or task difficulty). Second, while aggregating all SO-spindle 

events is essential for the classification approach, it leaves open whether reactivation 

occurs during each SO-spindle event. An alternative approach might be to use intracranial 

recordings to identify single neurons that are tuned to stimuli used in a specific learning 

session and then track engagement of these neurons during individual SO-spindle 

complexes. Such more fine-grained methods might provide additional insights into 

reactivation-related characteristics (e.g., accuracy and frequency of reactivation 

processes). In conclusion, our results indicate that endogenous memory reactivation in 

service of sleep-dependent consolidation is clocked by the fine-tuned coupling of SOs 

and spindles. Future work employing simultaneous recordings from the hippocampus will 

further elucidate the intricate dynamics underlying the hippocampal–cortical dialog of 

systems consolidation. 
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4. Methods 

4.1. Participants 

Twenty healthy, right-handed participants (mean age: 20.75 ± 0.35; 17 female) with 

normal or corrected-to-normal vision took part in the experiment. An additional five 

participants had to be excluded due to insufficient sleep (less than 30 min sleep during 

one of the sessions). The sample size was determined in accordance with previous human 

sleep and memory studies (e.g., Helfrich et al., 2018; Ngo et al., 2015). Pre-study 

screening questionnaires (including the Pittsburgh Sleep Quality Index, PSQI, Buysse, 

Reynolds, Monk, Berman, & Kupfer, 1989), the morningness–eveningness questionnaire 

(Horne & Ostberg, 1976), and a self-developed questionnaire querying general health 

status and the use of stimulants) indicated that participants did not take any medication at 

the time of the experimental session and did not suffer from any neurological or 

psychiatric disorders. All participants reported good overall sleep quality. Furthermore, 

they had not been on a night shift for at least 8 weeks before the experiment. All 

participants were instructed to wake up by 7 a.m. and avoid alcohol the evening before 

and caffeine on the day of the experimental sessions. They confirmed at the beginning of 

each experimental session their adherence to the requirements. The study was approved 

by the University of Birmingham Research Ethics Committee and written informed 

consent was obtained from participants. 

 

 

 



 134 

4.2. Stimuli and procedures 

Overview 

The experiment consisted of two experimental sessions (object and scene condition), 

separated by at least 1 week (mean = 8.5 ± 0.85 days). The order of the two sessions was 

counterbalanced across participants. On experimental days participants arrived at the 

sleep laboratory at 11 a.m. The experimental session started with the set-up for 

polysomnographic recordings during which electrodes for electroencephalographic 

(EEG), electromyographic (EMG), and electrocardiographic (ECG) recordings were 

applied. Before the experimental sessions, participants were habituated to the 

environment by spending an adaptation nap in the sleep laboratory. 

At around 12 a.m. the experiment started with a modified version of the psychomotor 

vigilance task (“PVT”, Dinges & Powell, 1985), followed by the memory task (for details 

see Memory Task below). The sleep period began at ~1 p.m. and participants were given 

120 min to nap (mean total sleep time: 101.63 ± 2.23 min; for sleep characteristics see 

Table S 2). Afterwards, the vigilance of all participants was assessed using the PVT and 

memory performance was tested again. At the end of each session a localizer task was 

conducted (see Localizer Task for details). 

Stimuli 

A set of in total 360 verbs and 240 images (half objects and half scenes) served as 

experimental stimuli during both sessions. Objects were images of animals, food, 

clothing, tools, or household items presented on a plain white background (e.g., a 

hammer). Scenes were images of nameable landscapes or places (e.g., a coffee shop). All 

images were taken from (Konkle et al., 2010).   
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Experimental tasks 

For the recording of behavioural responses and the presentation of all experimental tasks, 

Psychophysics Toolbox Version 3 (Brainard, 1997) and MATLAB 2018b (MathWorks, 

Natick, USA) were used. Participants completed a practice run (five trials) of each 

experimental task in advance to ensure they fully understood the instructions. Responses 

were made via keyboard presses on a dedicated PC. Across all experimental phases, 

presentation order of stimuli was randomized across participants. 

Psychomotor vigilance task 

The vigilance of the participants was assessed using a modified version of the “PVT” 

(Dinges & Powell, 1985) before the encoding phase and right after the sleep period. 

Participants were presented with a centred fixation cross on the computer screen. Every 

2–10 s the fixation cross was replaced by a counter counting up from 0 to 2 s in steps of 

20 ms. Participants were instructed to stop the counter as fast as possible by pressing the 

space bar. After each trial participants were provided with feedback about their reaction 

time. The task was administered for 5 min. For PVT related results see Figure S 8. 

Familiarization 

The experiment began with an image familiarization phase. The purpose of this part was 

(i) to facilitate learning of the verb-image pairs in the main encoding session and (ii) to 

provide the proper image names for subsequent cued recall. Each trial started with a 

fixation cross, presented for 1.5 ± 0.1 s. Subsequently, participants saw one of 130 images 

showing objects or scenes (depending on the experimental session). About 120 of these 

images were part of the subsequent learning material and were accompanied by a caption 

naming the exemplar. Ten additional images, which were not further used during the 
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experiment, were accompanied by an erroneous description. Each stimulus combination 

was presented for 2.5 s on the computer screen. The participants’ task was to press a 

button whenever they encountered a wrong image-word combination. 

Encoding 

Participants learned pairwise associations between 120 verbs and images. The images 

comprised either objects or scenes (depending on experimental session). 

Each trial started with a fixation cross, presented for 1.5 ± 0.1 s. Afterwards, a verb (e.g., 

“jump”) was presented for 1 s on the computer screen and immediately followed by the 

to-be-associated image for 4 s. Participants were instructed to form a vivid mental image 

or story linking the verb and the object/scene. After the presentation of the image (4 s), 

they had to indicate whether the image they had formed was realistic or bizarre. In 

addition, participants were informed that their memory performance for verb- image pairs 

would be tested later. The learning block was run twice with varying trial order to reach 

satisfactory levels of pre-sleep memory performance (as determined in a pilot study). 

Pre-sleep memory test 

In order to prevent any testing effect on our behavioural measures of memory 

consolidation (Antony et al., 2017; Roediger & Karpicke, 2006), only half of the learned 

verb-image combinations was tested during the pre-sleep memory test. Thus, the pre-

sleep memory test included 60 randomly chosen verbs intermixed with 30 new verbs, 

which were not seen by the participants before (“foils”). Each trial started with a fixation 

cross, presented for 1.5 ± 0.1 s. After the fixation cross, a verb was presented on the 

computer screen. After 3 s, participants had to indicate whether the verb was “old” (i.e., 

part of the learning material) or “new”’ (i.e., it was not seen during learning) within the 
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next 10 s. In case of “new” responses, participants immediately moved on to the next trial. 

In case of “old” responses, participants were required to type a description of the image 

they had in mind or to type “do not know” in case they could not recall the target image. 

Trials were coded as correct if (i) the participant typed the same caption as shown during 

the familiarization phase or (ii) the description unambiguously matched the content of the 

image 

Sleep period 

The nap period began at ~1 p.m. Participants had the opportunity to sleep in a laboratory 

bedroom for 120 min, while their brain activity was monitored using polysomnography). 

Post-sleep memory test 

Twenty minutes after waking up, participants performed another memory test on the 

remaining 60 study items. This followed the same procedures as the pre-sleep memory 

test with the exception that new foil verbs were used. 

Localizer task 

During the localizer task participants were presented with a new set of images comprising 

objects and scenes (90 objects and 90 scenes, irrespective of session). Each trial started 

with a fixation cross, presented for 1.5 ± 0.1 s. Subsequently, a randomly chosen image 

(object or scene) was presented on the computer screen for a minimum of 2.5 and a 

maximum of 10 s. Each image was presented twice during the task and participants were 

instructed to indicate whether it was shown for the first (“new”) or second (“old”) time 

(mean distance between successive presentations = 8.06, range = 2–33). 

By administering the localizer task at the very end of each session, we assured that 

participants engaged exclusively with a given stimulus category before sleep (objects or 
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scenes, respectively). The rationale of this approach was to keep the category-specific 

representations during learning as pure as possible, in an effort to bias their reactivation 

during the subsequent sleep period. However, presenting both stimulus categories during 

the localizer task ensured that category-specific classifier evidence during sleep would 

not merely reflect general differences between sessions (e.g., electrode impedances, 

electrode positions, etc.). 

4.3. EEG 

A Brain Products 64 channel EEG system was used to record electroencephalography 

(EEG) throughout the experiment. Impedances were kept below 10 kΩ. EEG signals were 

referenced online to electrode FCz and sampled at a rate of 1000 Hz. Furthermore, EMG 

and the ECG was recorded for polysomnography. Sleep architecture was determined 

offline according to standard criteria by two independent raters (Iber et al., 2007).   

4.4. Data analysis 

Behavioural preprocessing 

To assess recognition memory performance, we calculated the sensitivity index d′ [i.e., 

z(Hits)—z(False Alarms)] according to signal detection theory. Proportions of 0 and 1 

were replaced by 1/2 N and 1–1/2 N, respectively, with N representing the number of 

trials in each proportion (i.e., N = 60, see ref. Macmillan & Creelman, 2005). 

For associative memory performance we calculated the proportion of correctly recalled 

images relative to the number of recognized words (i.e., (recalled images/hits) ∗∗ 100). 

To correlate levels of memory retention and reactivation strength we derived a “retention 

index”. We computed the proportion of post-sleep recalled images (out of hits) in relation 
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to pre-sleep memory performance (i.e., (recalled out of hits post-sleep/recalled out of hits 

pre-sleep) ∗ 100) and collapsed these measures across sessions. 

EEG data analysis 

EEG data were preprocessed using the FieldTrip toolbox for EEG/MEG analysis 

(Oostenveld et al., 2011). All data were downsampled to 200 Hz. Subsequently, the 

localizer and sleep data were segmented into epochs. The temporal range of the epochs 

was [–1 to 3] s around stimulus onset for localizer trials. As in other studies concentrating 

on the coordination of SOs and spindles (Demanuele et al., 2017; Hahn et al., 2020; 

Helfrich et al., 2018; Muehlroth et al., 2019; Staresina et al., 2015) we specifically 

focused on electrode Cz due to the spatial distribution of both oscillations. Both 

oscillations show strong presence over central areas, rendering Cz an optimal target zone 

for investigating concomitant activity of SOs and (fast) spindles. Hence, for the sleep 

data, slow oscillation—spindle epochs [−2.5 to +2.5 s] time-locked to SO down-states 

were extracted from channel Cz (for details see Event detection). 

Noisy EEG channels were identified by visual inspection, discarded, and interpolated, 

using a weighted average of the neighbouring channels. The localizer data were 

additionally subjected to an independent component analysis (Jung et al., 1998) and ICA 

components associated with eye blinks and eye movements were identified and rejected. 

Event detection and SO-spindle coupling 

SOs and sleep spindles were identified for each participant, based on established detection 

algorithms (Ngo et al., 2013; Staresina et al., 2015). Following standard procedures, all 

sleep data were re-referenced against linked mastoids for sleep scoring and event 

detection (Cox & Fell, 2020; Iber et al., 2007; Silber et al., 2007); please note that the 
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classification results reported in Figure 2b remained unchanged when using a CAR 

scheme. SOs were detected as follows: Data were filtered between 0.3–1.25 Hz (two-pass 

FIR bandpass filter, order = three cycles of the low frequency cut-off). Only movement-

free data (as determined during sleep scoring) from NREM sleep stages 2 and 3 were 

taken into account. All zero-crossings were determined in the filtered signal at channel 

Cz, and event duration was determined for SO candidates (that is, down-states followed 

by up-states) as time between two successive positive- to-negative zero-crossings. Events 

that met the SO duration criteria (minimum of 0.8 and maximum of 2 s, 0.5–1.25 Hz) 

entered the analysis. 5-s-long segments (±2.5 s centred on the downstate) were extracted 

from the unfiltered raw signal. 

For spindle detection, data were filtered between 12–18 Hz (De Gennaro & Ferrara, 2003; 

Ngo et al., 2020; two-pass FIR bandpass filter, order = three cycles of the low frequency 

cut-off), and again only artifact-free data from NREM sleep stages 2 and 3 were used for 

event detection. The root mean square (RMS) signal was calculated for the filtered signal 

at channel Cz using a moving average of 200 ms, and a spindle amplitude criterion was 

defined as the 75% percentile of RMS values. Whenever the signal exceeded this 

threshold for more than 0.5 s but less than 3 s (duration criteria), a spindle event was 

detected. Epochs time-locked to the minimum spindle trough (−2.5 to +2.5 s) were 

extracted from the unfiltered raw signal for all events. To isolate SO-spindle complexes, 

we determined for all SOs whether a spindle was detected following the SO (SO 

downstate + 1.5 s). Finally, SO-spindle events were extracted (−2.5 to +2.5 s with regards 

to the SO downstate) from the raw signal at channel Cz. 
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For the analysis of SO-spindle coupling (Helfrich et al., 2019; Staresina et al., 2015), we 

filtered the SO-spindle data in the SO range (0.3–1.25 Hz, two-pass Butterworth bandpass 

filter), applied a Hilbert transform and extracted the instantaneous phase angle. Next, we 

filtered the same data segments in the spindle range (12–18 Hz two-pass Butterworth 

bandpass filter), Hilbert transformed the signal and extracted the instantaneous amplitude. 

Only data points within ±1.5 s were considered to avoid filter-related edge artifacts. Then 

we detected the maximal sleep spindle amplitude in channel Cz and isolated the 

corresponding SO phase angle. The preferred phase of SO-spindle coupling was then 

obtained from averaging all individual events’ preferred phases of each participant, and 

the resulting distribution across participants was tested against uniformity (Rayleigh test, 

CircStat toolbox; Berens, 2009). 

Multivariate analysis 

Multivariate classification of single-trial EEG data was performed using MVPA-Light, a 

MATLAB-based toolbox for multivariate pattern analysis (Treder, 2020). For all 

multivariate analyses, a LDA was used as a classifier (Treder, 2020). Prior to 

classification, all data were re-referenced using a common average reference (CAR). 

For classification within the localizer task, the localizer data were z-scored across all trials 

for each time point separately. Next, data from both sessions were collapsed and subjected 

to a principal component analysis (PCA), which transforms the data into linearly 

uncorrelated components, ordered by the amount of variance explained by each 

component (Jackson, 1991). PCA was applied to reduce dimensionality and limit over-

fitting (Jiang & Guo, 2007) and the first 30 principal components were retained for further 

analysis (Grootswagers et al., 2017; Pinheiro-Chagas et al., 2019; Sankaran et al., 2018). 
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To quantify whether object and scene representations can be differentiated in the 

localizer, the classifier was trained and tested to discriminate between object and scene 

trials. Data were smoothed using a running average window of 150 ms. The EEG channels 

served as features and a different classifier was trained and tested on every time point. As 

metric, we used Area Under the ROC Curve (AUC), which indexes the mean accuracy 

with which a randomly chosen pair of Class A and Class B trials could be assigned to 

their correct classes (0.5 = random performance; 1.0 = perfect performance). To avoid 

overfitting, data were split into training and test sets using fivefold cross-validation 

(Lemm et al., 2011). Since cross-validation results are stochastic due to the random 

assignment of trials into folds, the analysis was repeated five times and results were 

averaged. For statistical evaluation, surrogate decoding performance was calculated by 

shuffling the training labels 250 times. Resulting surrogate performance values were then 

averaged, providing baseline values for each participant under the null hypothesis of label 

exchangeability. 

To investigate differential evidence for object vs. scene representations as a function of 

prior learning during SO-spindle complexes (Figure 2b), we used the temporal 

generalization method (King & Dehaene, 2014). Prior to decoding, a baseline correction 

was applied based on the whole trial ([−0.5 to 3 s] for localizer segments; [–1.5 to 1.5 s] 

for SO-spindle segments). Next, localizer and sleep data were z-scored across trials and 

collapsed across sessions. PCA was applied to the pooled wake-sleep data and the first 

30 principal components were retained. Localizer and sleep data were smoothed using a 

running average window of 150 ms. A classifier was then trained for every time point in 

the localizer data (Figure 2b, vertical axis) and applied on every time point during SO-

spindle complexes (horizontal axis). No cross-validation was required since localizer and 
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sleep datasets were independent. As metric, we again used AUC (see above). For 

statistical evaluation, surrogate decoding performance was calculated by shuffling the 

training labels (stemming from the localizer task) 250 times. Again, the resulting 

performance values were averaged, providing baseline values for each participant under 

the null hypothesis of label exchangeability.  

To resolve the topography of diagnostic features, we conducted a “searchlight decoding 

procedure”. In brief, PCA components were projected back to sensor space and the 

classification procedure was repeated across moving kernels of small electrode clusters, 

with neighbouring electrodes being selected as features [feature number range: 5 to 9]. 

Classifiers were trained for every time point in the localizer data and applied on every 

time point during SO-spindle complexes. Finally, classification values were collapsed 

across our time windows of interest [localizer time: 1000 to 2000 ms; SO-spindle time: 

800 to 1200 ms] and tested against chance level (corrected for multiple comparisons 

across space). A broad cluster of above-chance classification comprising bilateral parietal 

and occipital areas emerged (pcluster = 0.004). 

Time–frequency analysis 

Time–frequency analysis of the SO-spindle segments was performed using FieldTrip. 

Frequency decomposition of the data, using Fourier analysis based on sliding time 

windows (moving forward in 50 ms increments). The window length was set to five 

cycles of a given frequency (frequency range: 1–30 Hz in 1 Hz steps). The windowed data 

segments were multiplied with a Hanning taper before Fourier analysis. Afterwards, 

power values were z-scored across time [−4 to 4 s]. The longer time segments were 
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chosen to allow for resolving low frequency activity within the time windows of interest 

[−1.5 to 1.5 s] and avoid edge artifacts. 

4.5. Statistics 

Behavioural retrieval data were subjected to a 2 (Category: Object/Scene) × 2 (Test-Time: 

Pre-sleep/Post-sleep) repeated measures ANOVA. To test for potential differences in 

memory accuracy between sessions in the localizer task, a paired sampled t-test was 

computed. The statistical significance thresholds for all behavioural analyses were set 

at p < .05. Spearman correlation was used to assess the relationship between memory 

retention and reactivation strength. To control for mean decoding levels from the localizer 

tasks (averaged across the significant cluster), a partial Spearman correlation was used. 

SPSS (IBM Corp., Version 26) and Matlab was used for behavioural data analyses. 

FieldTrip’s cluster permutation test (Maris & Oostenveld, 2007) was used to deal with 

the multiple comparisons problem for all classification analyses. A dependent-samples t-

test was used at the sample level to identify clusters of contiguous time points across 

participants and values were thresholded at p = 0.05. Maxsum (sum of all t values in 

cluster) served as cluster statistic and Monte Carlo simulations were used to calculate the 

cluster p value (alpha = 0.05, two-tailed) under the permutation distribution. Analyses 

were performed at the group level. The input data were either classification values across 

time (Figure 1c) or time x time classification values (Figure 2b). In all cases a two-sided 

cluster permutation test with 1000 randomizations was used to contrast classification 

accuracy against chance performance. 
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Non-uniformity of the preferred phase with regard to SO-spindle coupling was assessed 

using the Rayleigh test (CircStat toolbox). The nonlinear relationship between SO-spindle 

coupling and reactivation strength was determined with a circular-linear correlation as 

implemented in the CircStat toolbox. A partial circular-linear correlation modified from 

the CircStat toolbox was used to control for the mean decoding levels from the localizer 

task. In all cases the statistical significance thresholds were set at p < 0.05. 
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7. Supplemental Information 

 

Figure S 5.1. Stability of EEG object vs. scene decoding during the localizer tasks. (a + 
b) To estimate the across-session stability of our decoding approach, we trained a 
classifier on the localizer data of object sessions and tested it on the localizer data of the 
scene sessions. (a) We found robust above- chance classification when training the 
classifier on the localizer of the object session and applying the training weights to the 
corresponding data from the scene session (two-sided dependent-samples t-test; p = 
0.002, cluster corrected across time). (b) The same result pattern emerged when training 
on the scene session data and applying the training weights to the object session data 
(two-sided dependent-samples t-test; p = 0.002, cluster corrected across time). (c + d) 
During the localizer task, each image was presented twice. To estimate the across-
presentation stability of our decoding approach, we trained a classifier on the first image 
presentation tested it on the second presentation. (c) We observed a significant cluster of 
above-chance classification when training the classifier on the first presentation and 
applying it to the second presentation (two-sided dependent-samples t-test; p = 0.0018, 
cluster corrected across time). (d) A highly comparable result pattern emerged when 
training on the second presentation and applying it to the first presentation (two-sided 
dependent-samples t-test; p = 0.002; p =0.019, cluster corrected across time).  
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Figure S 5.2. Perievent histogram of sleep spindles (amplitude maxima) following SO 
down- states (time = zero; normalized by number of spindles). Note that due to our 
definition of SO-spindle complexes (with sleep spindles following SOs), no spindles 
appear prior to  SO  down-states  (time-point  zero).  

 

 

Figure S 5.3. Classification locked to different spindle features. To test for the impact of 
different features of SO-spindle complexes on the synchronisation of reactivation events, 
the classification was computed on SO-spindle data locked to the onset, maximum and 
offset of spindles. Informed by the   main analysis, the utilized time-window of both the 
localizer task and SO-spindle complexes were adjusted accordingly [localizer time: 1000-
2000ms; SO-spindle time: -500 to 1500ms relative to respective feature (spindle onset, 
maximum amplitude and offset)]. Testing accuracy levels against chance at any localizer   
time x sleep time point for data locked to spindle on-and offsets (a + c) did not lead to 
any significant above chance classification (two-sided dependent-samples t-test; cluster 
with the smallest p-value for spindle onset: p = 0.25; spindle offset: p = 0.051, cluster 
corrected across time). However, testing the classifier on SO-spindle data locked to the 
spindle maximum (b) peaks yielded a positive cluster of significant above chance 
classification (two-sided dependent-samples t-test; p = 0.019, SO-spindle time [250 to 
500ms], localizer time-window [1400 to 1800ms], cluster corrected across time). 
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Figure S 5.4. Accuracy map for the classification during SO-spindle complexes. 
Corresponding accuracy map for the main decoding result reported in Fig. 2b. Color range 
(blue to yellow) represents decoding performance (Area Under the Curve). 

 
 

 

Figure S 5.5. Memory reactivation during solitary SO and spindle events. (a + b). To test 
whether endogenous memory reactivation indeed requires the joint presence of SOs and 
spindles, we performed the decoding procedure on solitary SO or spindle events (thus, 
SOs without spindles and vice versa). Time-windows of both the localizer task and SO-
spindle complexes were restricted according to the main results [localizer time: 1000-
2000ms; SO-spindle time: -500 to 1500ms relative to respective event (SO down-state, 
spindle maximum)]. For both types of events, when testing accuracy levels against chance 
at any localizer time x sleep time point, no significant cluster of above chance 
classification emerged (two- sided dependent-samples t-test: in both cases cluster with 
the smallest p > 0.2; cluster corrected across time). The black contour lines in (a) illustrate 
the extent of the significant cluster derived from the main analysis (classification during 
the presence of SO-spindle complexes). (c) Summed t-values of the significant 
classification cluster (as derived from the main analysis, corresponding to the black 
contour lines in Figure 2b and Figure S 5a) for SO-spindle complexes, solitary SOs and 
solitary spindles.  
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Figure S 5.6. SO-slow spindle locked memory reactivation. (a) Time frequency 
representation of all slow spindle-SO segments (z-scored across time; only positive 
values are displayed). (b) When testing accuracy levels against chance at any localizer 
time x sleep time point, no significant cluster of above- chance classification emerged 
(two-sided dependent-samples t-test; cluster with smallest p value: 0.67, cluster corrected 
across time). The black line illustrates the averaged EEG trace of all slow spindle-SO 
segments (electrode Fz).  

 
Figure S 5.7. Precision of SO-spindle coupling correlates with reactivation strength. 
Circular- linear correlation analysis between the individual mean SO-spindle coupling 
phase (circles) and the mean reactivation strength revealed a positive association (r = 
0.66; p = 0.011).  
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Figure S 5.8. PVT results. Before encoding and after the sleep period participants’ 
vigilance state was assessed using a modified version of the psychomotor vigilance task 
(PVT). During the pre- encoding task the mean reaction time was 350.6 ± 3.6 ms, while 
the average response time during the post-sleep PVT was 355.2 ± 3.6 ms. Reaction times 
did not differ between testing times (pre-encoding vs. post-sleep; t = -1.29, p = 0.20).  

Table S 5.1. Overview of memory performance. Associative memory % refers to the 
percentage of correctly recalled images (relative to the total number of stimuli), while 
associative memory [out of hits] refers to the percentage of recalled image exemplars out 
of correctly recognized verbs. Statistical differences between conditions (objects vs. 
scenes) were assessed using dependent samples t-tests (two-sided).  
  

Objects 
 

Scenes 
 
t 

 
P 

Recognition [Hits] %     
pre-sleep 72.16 ± 4.16 70.91 ± 4.26 0.47 0.64 
post-sleep 63.16 ± 4.19 63.58 ± 4.76 -0.79 0.86 
post relative to pre 87.41 ± 2.82 87.97 ± 2.88 -0.16 0.85 

 
Recognition [Correct Rejections] % 

pre-sleep 90.00 ± 2.14 85.33 ± 4.48 1.13 0.27 
post-sleep 88.00 ± 2.89 83.33 ± 5.22 0.98 0.33 
post relative to pre 97.49 ± 1.75 97.33 ± 3.60 0.04 0.96 

 
Recognition [d’] 

    

pre-sleep 2.11 ± 0.14 2.02 ± 0.22 0.47 0.64 
post-sleep 1.76 ± 0.19 1.69 ± 0.23 0.37 0.71 

 
Associative Memory % 

    

pre-sleep 49.16 ± 4.87 46.75 ± 3.08 1.13 0.41 
post-sleep 40.08 ± 4.94 36.50 ± 4.46 1.11 0.28 
post relative to pre 76.52 ± 5.27 72.61 ± 4.51 0.71 0.48 
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Associative Memory [out of hits] % 

pre-sleep 64.90 ± 3.99 63.72 ± 5.20 0.33 0.73 
post-sleep 59.39 ± 5.71 55.82 ± 5.47 -1.03 0.31 
post relative to pre 86.95 ± 5.52 82.55 ± 4.84 0.50 0.55 

     

 

 

 
Table S 5.2. Sleep characteristics. Data are means ± s.e.m. N1, N2: NREM sleep stages 
N1 & N2, SWS: slow-wave sleep, REM: rapid eye movement sleep, WASO: wake after 
sleep onset. Statistical differences between conditions (objects vs. scenes) were assessed 
using dependent samples t-tests  (two-sided).   

Sleep stage [%] Objects Scenes t P 

N1 2.9 ± 1.6 13.5 ± 2.1 -0.6 0.53 
N2 39.5 ± 2.6 48.1 ± 3.1 -1.7 0.09 
SWS 22.9 ± 3.3 19.4 ± 2.6 -1.2 0.25 
REM 21.9 ± 3.4 16.7 ± 2.8 1.4 0.15 
WASO 2.3 ± 0.9 1.4 ± 0.7 0.7 0.49 
Total Sleep Time [min] 102.6 ± 3.4 100.6 ± 2.9 0.6 0.53 

# spindles 184.8 ± 12.9 188.9 ± 17.9 -0.1 0.85 
Spindle density 2.9 ± 0.1 2.82 ± 0.1 0.3 0.74 
Spindle duration 0.81 ± 0.01 0.78 ± 0.01 1.3 0.19 
Spindle frequency 14.02 ± 0.1 14.06 ± 0.1 -0.2 0.81 
# SOs 445.5 ± 31.2 474.1 ± 43.8 -0.5 0.59 
SO density 6.9 ± 0.25 7.1 ± 0.32 -0.4 0.68 
SO duration 1.38 ± 0.01 1.38 ± 0.01 0.5 0.61 
#SO – spindle comp. 
range 

49.4 ± 3.6 
[25-88] 

50.7 ± 4.9 
[12-89] 

-0.3 0.79 
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Table S 5.3. Participant-specific decoding performance averaged across the significant 
cluster of localizer – SO-spindle classification. 

 
P1 0.501 

P2 0.497 
P3 0.517 
P4 0.547 
P5 0.510 

P6 0.504 

P7 0.507 

P8 0.534 

P9 0.515 

P10 0.504 
P11 0.508 
P12 0.499 

P13 0.520 

P14 0.511 
P15 0.515 

P16 0.526 

P17 0.512 

P18 0.511 

P19 0.524 

P20 0.516 
 

 

7.1. Supplemental Notes  

Assessing the impact of trait-like characteristics on the interplay of memory reactivation 
with the preferred SO-spindle phase and the behavioural expressions of consolidation. 

Our results suggest that memory reactivation is linked to the preferred SO-spindle phase 

as well as to behavioural expressions of consolidation. However, SO-spindle coupling 

and consolidation might also be governed by other, trait-like participant characteristics. 

We thus examined - using hierarchical regressions - whether subjective sleep quality (as 
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determined the Pittsburgh Sleep Quality Index (PSQI)) or circadian rhythm (derived from 

the Morningness-Eveningness Questionnaire (MEQ)) would account for memory 

performance or the preferred phase of SO-spindle coupling above and beyond 

reactivation strength during sleep.  

In Step 1, reactivation strength explained 29.5% of the variance in memory performance 

(R2 = 0.295, F1,18= 7.51, P = 0.013). In Steps 2 and 3, neither subjective sleep quality 

(PSQI global score collapsed across the two sessions, range = 2-5 across participants), 

nor circadian rhythm (MEQ score collapsed across the two sessions, range = 31-66 across 

participants) explained significant amounts of additional variance (Step 2: ΔR2 = 0.001, 

ΔF2,16= 0.014, P = 0.91; Step 3: ΔR2 < 0.01, ΔF3,13< 0.01, P = 0.98). Similarly, using 

the preferred phase of SO-spindle coupling as the dependent variable, in Step 1 

reactivation strength explained 37.2% of the variance (R2 = 0.372, F1,18= 10.65, P = 

0.004). In Step 2 and 3, neither subjective sleep quality nor circadian rhythm explained 

significant amounts of additional variance (Step 2: ΔR2 = 0.07, ΔF2,16= 0.18, P = 0.67; 

Step 3: ΔR2 = 0.01, ΔF3,13= 0,30 P = 0.59). Please note that the distribution of the 

preferred phase values (all clustering between –π / 2 and 0 degrees) enabled us to add 

these circular data to the linear regression analysis. Nevertheless, to further test for 

potential associations between subjective sleep quality, circadian rhythm and the 

preferred phase of SO-spindle coupling, we administered additional circular- linear 

correlations. Neither sleep quality (rho = 0.04, p = 0.98) nor circadian rhythm (rho = 0.24, 

p = 0.47) correlated significantly with the preferred phase.  
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Together, although other trait-like characteristics not captured in the present analysis 

might have an influence, these results rule out that the link between memory reactivation 

and consolidation or the phase of SO-spindle coupling is driven by participants’ 

subjective sleep quality or circadian rhythm.  
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Chapter 6. General Discussion 
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In this chapter, the main findings of all experimental chapters will be summarised, relate 

to each other and limitations will be highlighted. It will be discussed to which extent 

answers to the two questions raised in chapter 1 (i.e., Which and how are memories 

consolidated during sleep?) are advanced by the main findings of this thesis. Consistent 

and inconsistent findings within the thesis will then be addressed and embedded in the 

existing literature. Future research directions and ideas emerging from findings of this 

thesis and related findings in the field will be outlined.  

1. Main findings 

1.1. Which memories are consolidated during sleep? – Weaker as well as stronger 

memories are consolidated during sleep 

It is well established that sleep benefits declarative memory consolidation (Diekelmann 

& Born, 2010; Jenkins & Dallenbach, 1924; Müller & Pilzecker, 1900; Rasch & Born, 

2013). Yet, it is still unknown whether all declarative memories benefit equally from 

sleep or whether a selection process determines a preferred consolidation of some 

memories over others.  

Recent findings suggest a preferred consolidation of weakly over strongly encoded 

memories during post-encoding sleep (Cairney et al., 2016; Creery et al., 2015; Denis, 

Schapiro, Poskanzer, Bursal, Charon, et al., 2020; Denis, Mylonas, et al., 2021; 

Drosopoulos, Schulze, et al., 2007; Lo et al., 2014; Payne et al., 2012; Schapiro et al., 

2017, 2018). However, performance for weakly and strongly encoded memories is often 

tested under the same retrieval conditions which, in some instances, result in ceiling 
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effects for stronger memories and hence, complicate the detection of sleep-dependent 

consolidation effects.  

In chapter 2, we tested the hypothesis that both weakly and strongly encoded memories 

may benefit from post-learning sleep, but that an adjustment of retrieval conditions is 

required. We hypothesised that, for strongly encoded memories, retrieval difficulty has 

to be increased to mitigate ceiling effects as ceiling effects may obscure potential sleep-

dependent consolidation effects. To this end, we developed a new memory paradigm 

(Memory Arena, Chapter 2, Figure 1 and Chapter 3, Figure 1) and manipulated in a 

between-subjects design (a) the retention interval which was either experienced asleep or 

awake, (b) memory strength that was either weak or strong (applying a training threshold 

of 1x50% for weakly encoded memories vs. 2x70% for strongly encoded memories) and 

(c) retrieval difficulty that was either normal or difficult (standard retrieval condition vs. 

inducing retroactive interference to increase retrieval difficulty). Under standard retrieval 

conditions (without retroactive interference), we replicated the finding that weakly 

compared to strongly encoded memories are preferentially consolidated during sleep. 

Intriguingly, and in line with our hypothesis, an increase in retrieval difficulty (by 

inducing retroactive interference) revealed sleep-dependent consolidation effects for 

weakly as well as for strongly encoded memories. It is worth noting that the results of 

chapter 3 further substantiate this conclusion. In both chapters, the Memory Arena 

paradigm was used to capture memory consolidation. This offered the possibility to apply 

the most suitable thresholds (for memory strength and retrieval difficulty) to measure 

sleep-dependent consolidation in chapter 3. Thus, in chapter 3, the same thresholds for 

memory strength and retrieval difficulty were applied as for the sleep group with high 

memory strength and high retrieval difficulty in chapter 2: Memories were strongly 
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encoded by applying a training threshold of 2x70% and following sleep, retrieval 

difficulty was increased by inducing retroactive interference. In chapter 3, we then 

showed that consolidation of memories can be predicted by an overlap between encoding 

and spindle topographies, even though the memories were strongly encoded. Therefore, 

in chapter 3, we demonstrate complementary results substantiating and furthering our 

conclusions from chapter 2 such that strongly encoded memories are consolidated during 

post-encoding sleep and that sleep spindles are a vehicle to provide their consolidation.  

Diverging from our conclusions, a recent study argues for sleep spindles specifically 

predicting memory consolidation of weakly encoded memories (Denis, Mylonas, et al., 

2021). While Denis et al. (2021) did not take encoding topographies into account, it is 

still worth considering that memory strength in this study, like in others (Creery et al., 

2015; Denis, Schapiro, Poskanzer, Bursal, Charron, et al., 2020; Schapiro et al., 2017), 

was manipulated within rather than across participants. Precisely, memory strength was 

manipulated within participants and across word pairs in such a way that for each 

participant, some word pairs were presented more frequently during encoding than others. 

Results revealed that weakly encoded word pairs are preferentially consolidated during 

sleep (Creery et al., 2015; Denis, Schapiro, Poskanzer, Bursal, Charron, et al., 2020; 

Denis, Mylonas, et al., 2021; Schapiro et al., 2017).  

However, while these studies did not vary retrieval demands in dependence of weakly 

and strongly encoded word pairs, we did not manipulate memory strength on the 

individual item level. One might speculate that, independently of our memory strength 

manipulation, some items were more strongly encoded than others. For example, within 

the stronger memory condition (training threshold of 2x70%) memory strength might still 

vary on the individual item level. Consequently, based on our findings, we cannot argue 
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for the absence of a selection process within each memory strength condition. If a 

selection process according to memory strength is assumed, however, our results imply 

that a possible selection is based, at least partly, on the memory strength of an item 

relative to the memory strength of other items rather than on an absolute memory strength 

threshold. This is because we found a sleep-dependent consolidation effect also in the 

strongly encoded condition.   

To further characterise such a selection process, a future study has to incorporate (a) a 

memory strength manipulation on an individual item level (relative memory strength as 

Denis et al., 2021,  did), (b) a memory strength manipulation of multiple items (between-

subjects factor to manipulate the absolute memory strength threshold as we did in chapter 

2) and (c) a variation of retrieval difficulty depending on an item’s memory strength (e.g., 

by manipulating the target-lure similarity in an item recognition task). This study can test 

three different predictions of how a selection process might look like: First, the selection 

process can be based on an absolute memory strength criterion that is independent of the 

number of items that are competing for consolidation (e.g., items with memory strength 

> xthres are not consolidated at all, independently of the memory strength of other 

competing items). Second, the selection process can be based on a relative memory 

strength criterion that is independent of the absolute memory strength (e.g., item1 is 

always consolidated if memory strength of item1 < memory strength of item2; xthres in this 

case does not matter). Third, the selection process can rely on both, on an absolute as well 

as relative memory strength criterion.  

Together, a follow-up study described here would address the existence as well as the 

characteristic of a potential selection process for sleep-dependent memory consolidation 

and provide important information about which memories are consolidated during sleep.  
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1.2. How are memories consolidated during sleep? Sleep spindles and slow 

oscillations orchestrate memory reactivation  

Sleep-dependent memory consolidation happens on a synaptic as well as on a systems 

level. While synaptic consolidation includes the remodelling of synapses and dendritic 

spines representing a memory trace, systems consolidation incorporates changes in 

memory representations across different brain areas (Dudai, 2004; Klinzing et al., 2019). 

The two mechanisms underlying consolidation which are discussed in this thesis 

(induction of plasticity and reactivation) might be attributed, at least partly, to the synaptic 

and systems level, respectively. The induction of plasticity as a mechanism subserving 

consolidation is often addressed by synaptic consolidation approaches, whereas memory 

reactivation is often defined as a mechanism by systems consolidation approaches.  

However, in chapter 3 we deviated from a strict categorisation into a synaptic and systems 

level by deriving a hypothesis from findings mainly addressing synaptic consolidation 

and testing this hypothesis on the systems level. Biophysical models and rodent research 

suggest that sleep spindles are a prime candidate to induce changes in synaptic plasticity 

in cortical neurons (Dickey et al., 2021; Niethard et al., 2018; Rosanova & Ulrich, 2005; 

Seibt et al., 2017; Sejnowski & Destexhe, 2000). Consequently, memory consolidation 

might rely on sleep spindles inducing synaptic plasticity specifically in cortical areas 

representing encoded memory traces. To test the hypothesis that memory consolidation 

can be explained by an overlap between encoding and spindle topographies, the memory 

paradigm of chapter 2 was applied in combination with EEG. We first demonstrated that 

the amplitude of sleep spindles correlated with encoding patterns and further, that the 

overlap between encoding and spindle amplitude pattern was associated with memory 

consolidation. Chapter 3 suggests that the induction of synaptic plasticity in encoding 
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related areas might be a mechanism of how sleep spindles subserve memory 

consolidation. While this is a tempting interpretation, it is worth noting that the evidence 

presented is chapter 3 is indirect (due to calcium activity as a proxy of synaptic plasticity 

not being measured), correlative and based on a small sample size (n = 19). Moreover, 

the Memory Arena Task, despite being a useful task for capturing temporal and spatial 

memory components, it has its downsides. That is, the lack of clearly bounded events 

makes it challenging to analyse the EEG signal due to missing event onsets and a pre-

event baseline. To counteract this limitation, in chapter 3 an external baseline was used 

that closely resembles a pre-event baseline in an event-related memory paradigm. 

Nevertheless, replicating the finding from chapter 3 with an event-related memory 

paradigm would provide important substantiation of the presented results.      

Future research is yet required to replicate the findings and also provide direct evidence 

(on the synaptic level) for our interpretation, e.g., by simultaneously measuring calcium 

and spindle activity during post-learning sleep in rodents and comparing calcium and 

spindle activity between cortical areas engaged and not engaged in pre-sleep learning.   

In chapter 4 and 5, evidence for another mechanism, i.e., memory reactivation, is 

provided. Theories state that memory consolidation is acquired by a simultaneous 

reactivation of memory representations in hippocampal and cortical areas (Rasch & Born, 

2007). Consequently, memory representations are redistributed from hippocampal to 

cortical areas and hence, transformed from labile into stable representations (Marr, 1971). 

The simultaneous reactivation across brain areas (i.e., hippocampus and neocortex) is 

thought to be synchronised by sleep oscillations, including slow oscillations, sleep 

spindles and hippocampal sharp-wave ripples (Buzsáki, 1996; Diekelmann & Born, 2010; 

Paller et al., 2021; Walker & Stickgold, 2004). In humans, empirical evidence for 
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reactivation of information encoded during wakefulness is rare (but see Belal et al., 2018; 

Schönauer et al., 2017; Schreiner, Doeller, Jensen, Rasch, & Staudigl, 2018; Zhang, Fell, 

& Axmacher, 2018), leaving the interplay between memory reactivation and sleep 

oscillations mostly unaddressed. Exploiting new developed methods including MVPA 

(Grootswagers et al., 2017; Norman et al., 2006), we provide evidence for a temporal 

coupling of reactivation and sleep oscillations (slow oscillations and sleep spindles). In 

chapter 4, we investigated the timescale on which sequential memories are reactivated by 

applying MVPA and tested for a potential synchronisation by slow oscillations. To induce 

memory reactivation in this study, we applied a TMR protocol. In chapter 5, we used 

MVPA again to then investigate the interplay between endogenous memory reactivation 

and slow oscillation and sleep spindles. In chapter 4 and 5 slow oscillations up-state were 

identified as the critical time window of memory reactivation. However, while in chapter 

4, memory reactivation (of the second sequence element) was nested in the slow 

oscillations up-state, in chapter 5, memory reactivation was nested in the slow oscillations 

up-state when spindles co-occurred. Solitary slow oscillations, without an accompanied 

sleep spindle, did not synchronise reactivation of previously encoded memories. Directly 

comparing both studies and drawing conclusions about slow oscillation-sleep spindle 

coupling in respect to sequential memory reactivation is difficult. Analysing slow 

oscillation-sleep spindle coupling in chapter 4 was limited due to a low number of 

spindles evoked by sound cues. A full night study design potentially results in a higher 

number of spindles evoked by sound cues and is more suitable to address the importance 

of slow oscillation-sleep spindle coupling for sequential memory reactivation.   

Owing to the limited spatial resolution of scalp EEG, we cannot draw reliable conclusions 

about hippocampal activity and hippocampal ripples. fMRI and/or iEEG are more 



 163 

suitable to capture hippocampal activity/ripples and should be leveraged to elaborate the 

interplay between the cortex and hippocampus as well as the interplay between slow 

oscillations, sleep spindles and ripples during sleep-dependent memory consolidation.   

2. (In)consistency across studies 

2.1. Sequence memories benefit from post-encoding sleep 

Naturalistic, episodic memories incorporate both spatial locations and also the temporal 

sequence of events. Yet, declarative memory tasks often measure memory for spatial 

locations (Kunz et al., 2021; Rudoy et al., 2009; Shrager et al., 2007; Talamini et al., 

2008; Wang et al., 2019) or for temporal sequences of events (DuBrow & Davachi, 2013, 

2016; Ezzyat & Davachi, 2014; Faber & Gennari, 2015; Michelmann et al., 2019; Tubridy 

& Davachi, 2011) rather than a combination of both (but see Herweg et al., 2020; Rauchs 

et al., 2004; Weber, Wang, Born, & Inostroza, 2014). Moreover, research addressing 

consolidation of declarative memories during sleep has mainly focused on memory for 

spatial locations, e.g., associations between objects and spatial locations, and tends to 

neglect memory for temporal sequences or even temporal durations of events. 

Specifically, memory for spatial locations has been repeatedly shown to be consolidated 

during sleep (Cairney, Lindsay, et al., 2018; Noack et al., 2021; Talamini et al., 2008; van 

Dongen et al., 2012), has been associated with sleep spindles (Antony et al., 2018; Creery 

et al., 2015; Wang et al., 2019) and can be strengthened by TMR (Cairney et al., 2016; 

Oudiette et al., 2013; Rudoy et al., 2009). Consolidation of memory for temporal 

sequences, on the other side, has mainly been investigated as a component of procedural 

memories. For example, the finger tapping task or the serial reaction time task require 
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participants to (explicitly or implicitly) encode a motor sequence by continuously 

pressing the same progression of keys (Povel & Collard, 1982; Robertson, 2007). Both 

tasks have been demonstrated to be sleep-dependent (Brown & Robertson, 2007; B. R. 

King et al., 2017; Walker et al., 2003).  

So far, only a few studies explored to which extent temporal sequences as a component 

of declarative memories are consolidated during sleep (Drosopoulos, Windau, et al., 

2007; Griessenberger et al., 2012). Here, participants had to encode the sequential order 

of images or nouns. Sleep directly following encoding led to superior memory 

performance for the sequential order compared to wake (Drosopoulos, Windau, et al., 

2007; Griessenberger et al., 2012). Building on these findings, we demonstrate in chapter 

2 that temporal sequences of objects were consolidated during post-learning sleep and 

further, in chapter 3, that memory consolidation of temporal sequences was associated 

with an overlap between encoding and spindle topographies. Our results, together with 

the previous findings, suggest that the temporal sequence of events is consolidated during 

sleep.  

The memory paradigm that we developed offers the opportunity, besides measuring 

memory performance for temporal sequences, to also compare sequence and spatial 

memory consolidation or to investigate possible interactions between them. As recent 

literature suggests that both temporal and spatial aspects of memories are represented in 

the hippocampal signal (Herweg et al., 2020) and hippocampus-dependent memories are 

consolidated during sleep (Diekelmann & Born, 2010), one could speculate that both 

temporal and spatial aspects of memories are equally well consolidated during sleep.    
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In chapter 2 and 3, however, we did not follow up on this research idea as our primary 

interest was to identify one measure which was most sensitive to our memory strength 

manipulation (for a comparison between weakly and strongly encoded memories), which 

appeared to be sequence memory.    

2.2. Sleep actively consolidates memories 

As outlined in the general introduction, within the last century, three different accounts 

for explaining superior memory performance after sleep compared to wake were put 

forward (decay, interference, consolidation account). Both the decay and interference 

account have described sleep as a passive protector of memories against decay or 

interference which merely postpones the deterioration of newly formed memories 

(Ekstrand et al., 1977). The memory consolidation account, on the other side, has 

attributed a more active role to sleep in such a way that physiological processes during 

sleep actively transform newly formed memory traces into stable representations (Born 

& Wilhelm, 2012; Ekstrand et al., 1977; Müller & Pilzecker, 1900). Empirical evidence 

supporting the consolidation account was provided by elegantly designed behavioural 

studies (Gais et al., 2006; Schönauer et al., 2014; Talamini et al., 2008) as well as by 

studies recording brain activity to directly measure these physiological processes during 

sleep (Ji & Wilson, 2007; Niethard et al., 2018; Seibt et al., 2017; Wilson & McNaughton, 

1994). In line with the latter, chapter 3, 4 and 5 recorded brain activity during post-

encoding sleep to further characterise physiological processes underlying sleep-

dependent memory consolidation, i.e., the induction of plasticity by sleep spindles (which 

was tested indirectly) and memory reactivation.  
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However, the memory consolidation account as the only explanation of superior memory 

performance after sleep has been recently challenged, as memory consolidation and their 

underlying physiological processes have been shown during wake as well. For example, 

memory consolidation not just depends on sleep following learning but also varies as a 

function of retrieval conditions. Actively retrieving memories result in superior memory 

performance and thus, in greater memory consolidation, compared to passively 

restudying them. Furthermore, actively retrieving memories protects them against 

interference (Potts & Shanks, 2012) similar as sleep does (Ellenbogen, Hulbert, et al., 

2006) and a direct comparison between memory performance after a period of sleep, a 

period of wake and a period of wake with retrieval practice revealed a similar large benefit 

of sleep and retrieval practice on memory consolidation (Denis, DiPietro, et al., 2021). 

Based on these findings, it has been argued that active retrieval emulates a consolidation 

process similar to that occurring during sleep (Antony et al., 2017).  

Besides behavioural findings and theories arguing for sleep-like consolidation processes 

during retrieval, physiological processes underlying memory consolidation (induction of 

plasticity and memory reactivation) are not exclusive to sleep and have also been 

observed during wake. According to the active systems consolidation hypothesis, 

memory representations in hippocampus and neocortex are simultaneously reactivated 

during sleep and thus, are redistributed from the hippocampus, a temporary storage of 

memories, to the neocortex, where memories are long-lastingly stored (Born & Wilhelm, 

2012; Diekelmann & Born, 2010). Repeated memory reactivation results in structural 

changes in cortical areas and stabilises the memory trace in the long-term (Klinzing et al., 

2019). Yet, memory reactivation and its relevance for consolidation has been repeatedly 

demonstrated during wake rest and retrieval. More concrete, the re-exposure of encoding-
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related cues which assumingly triggers reactivation (targeted memory reactivation, TMR) 

also has a stabilizing effect on memory performance when presented during wake 

(Tambini et al., 2017) and resembles TMR effects during sleep (Oudiette & Paller, 2013; 

Rudoy et al., 2009; Schreiner & Rasch, 2015). In the same vein, applying RSA or MVPA 

to brain data revealed memory reactivation of neural patterns activated during encoding 

in subsequent wake rest periods which was further predictive for memory consolidation 

(Schapiro et al., 2018; Schlichtinga & Prestona, 2014). Similarly, neural patterns 

activated during retrieval resembles neural patterns activated during sleep (Schreiner & 

Staudigl, 2020) which further highlights the similarities between memory reactivation 

during retrieval and sleep. Intriguingly, a recent study presented a newly developed 

method to operationalise plastic changes in cortical areas in humans and revealed an 

induction of structural plasticity in cortical areas representing a memory trace already 1 

hour after learning which was free of any sleep (Brodt et al., 2018). Together, these 

findings strongly suggest active memory consolidation during wake.  

If active memory consolidation occurs during both sleep and wakefulness, then how can 

the superior memory performance after sleep compared to wakefulness be explained? 

Memory consolidation starts already during wakefulness and can be triggered by 

rehearsal or retrieval (Himmer et al., 2019). Nevertheless, subsequent sleep is required to 

ensure a further stabilisation of memories. Consequently, it is reasonable to assume that 

either the quality of physiological processes underlying memory consolidation or the 

quantity in which they occur differ between wake and sleep states.  

It is yet still unknown to which extent physiological processes underlying sleep and wake-

dependent consolidation are different or alike, whether they are hard-wired and always 

follow the same pattern or whether they flexibly change across the wake-sleep cycle. 
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Further, the amount of induced plasticity or the number of reactivation events has never 

been compared between sleep and wakefulness leaving it open for future research to 

investigate whether the quantity in which physiological processes occur differ between 

sleep and wakefulness. 

2.3. Sleep spindles & slow oscillations: sometimes coupled and sometimes not 

Sleep-dependent memory consolidation relies on the communication between the 

hippocampus and neocortex that synchronises memory reactivation in both areas and 

thus, enables a redistribution and stabilisation of memory traces (Diekelmann & Born, 

2010; Rasch & Born, 2013). During sleep, the communication between the hippocampus 

and neocortex is thought to be facilitated by an interplay of slow oscillations, sleep 

spindles and hippocampal sharp-wave ripples (Helfrich et al., 2019; Klinzing et al., 2019; 

Staresina et al., 2015). Slow oscillations are changes between neuronal excitation and 

inhibition in cortical as well as subcortical areas (Isomura et al., 2006; Timofeev, 2011). 

They initiate the generation of thalamic spindles that propagate to the neocortex where 

they are nested in the up-state of slow oscillations and to the hippocampus where they 

synchronise hippocampal ripples in their troughs (Ngo et al., 2020; Staresina et al., 2015). 

Thus, the simultaneous occurrence of all three cardinal sleep oscillations enables 

synchronised memory reactivation in hippocampal and cortical sites (Helfrich et al., 

2019; Ngo et al., 2020) and subserve memory consolidation (Hahn et al., 2020; Helfrich 

et al., 2018; Muehlroth et al., 2019).  

In chapter 3 and 5, coupling between slow oscillations and sleep spindles was investigated 

and the results are somewhat inconsistent. In chapter 3, our main finding revealed that 

sleep spindles track encoding patterns in favour of memory consolidation, assumingly by 
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an induction of plasticity in these encoding-related areas. While recent evidence (Hahn et 

al., 2020; Helfrich et al., 2018; Muehlroth et al., 2019) and our results of chapter 5 

highlight the importance of slow oscillation-sleep spindle coupling for memory 

consolidation and reactivation, in chapter 3 we found that sleep spindles track encoding 

patterns independently of whether they are coupled or not.  

Interestingly, a recent study demonstrated that spindle topographies were unaffected by 

concurrent SO topographies (Klinzing et al., 2016) and theoretical and computational 

models (Sejnowski & Destexhe, 2000; Wei et al., 2018) propose a sequential 

consolidation process with sleep spindles and slow oscillations acting at different stages 

in the process. Together, this evidence raises the possibility that (synaptic) consolidation 

of encoding patterns relies, at least partly, on sleep spindles independently of slow 

oscillations.  

It is reasonable to assume that sleep spindles fulfil different mechanistic functions which 

are potentially influenced by their co-occurrence with slow oscillations and hippocampal 

sharp-wave ripples. First, sleep spindles offer an optional time window for the induction 

of synaptic plasticity (Peyrache & Seibt, 2020). To ensure an efficient induction of 

synaptic plasticity in neuronal networks, no new input should be simultaneously 

processed as it results in interference and disrupts the consolidation process. Interestingly, 

presenting sound cues during sleep spindles results in a diminished brain response (Dang-

Vu et al., 2011) and high gamma power is accompanied by a higher arousal threshold to 

sound cues (Lecci et al., 2017), suggesting that the brain is less responsive to external 

cues during sleep spindles. In the same vein, theoretical approaches argue for less 

information processing during oscillations such as alpha oscillations (Hanslmayr et al., 

2012, 2016) or sleep spindles (Helfrich et al., 2021). Oscillations reflect highly 
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synchronised neuronal activity across brain regions, but information processing requires 

variance in neuronal activity to code information. Variance in neuronal activity is present 

during desynchronised brain states which then enables the (re-) processing of old and new 

information (Hanslmayr et al., 2012, 2016; Helfrich et al., 2021). Sleep spindles as a 

synchronised brain state offer perfect conditions for the induction of plasticity due to 

reduced information processing of new information. To which extent a coupling of sleep 

spindles with slow oscillations or hippocampal sharp-wave ripples, however, is relevant 

for the induction of plasticity is still elusive. While a recent rodent study demonstrated 

that Ca2+ activity is increased threefold when spindles were coupled to slow oscillations 

(Niethard et al., 2018), other studies linked sleep spindles in general to plastic changes 

(Rosanova & Ulrich, 2005; Seibt et al., 2017). Sleep spindles are prime vehicles for 

plastic changes. It is yet to be explored how the coupling of sleep spindles to other 

cardinal sleep oscillations influences the amount of induced plasticity.  

Besides offering a time window for the induction of plasticity, sleep spindles are also 

involved in triggering and synchronising memory reactivation across brain areas 

(Helfrich et al., 2019; Ngo et al., 2020). Plastic changes can occur during solitary sleep 

spindles (Rosanova & Ulrich, 2005; Seibt et al., 2017). Yet, memory reactivation requires 

the co-occurrence of sleep spindles with slow oscillations and sharp-wave ripples 

(Latchoumane et al., 2017; Maingret et al., 2016). According to the previously described 

theoretical approaches  (Hanslmayr et al., 2012, 2016; Helfrich et al., 2021) which argue 

for increased information processing during desynchronised brain activity, memory 

reactivation should ideally occur before or after sleep spindles. Indeed, recent evidence 

suggest an increased information processing after sleep spindles by demonstrating that 

the presentation of a sound cue directly following a sleep spindle (< 1sec) disrupts the 
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information process and leads to more forgetting (Antony et al., 2018). Similarly, the 

benefits of presenting sound cues during sleep (and the induction of slow oscillations and 

sleep spindles) was blocked when a second sound was presented shortly after (Schreiner 

et al., 2015). In line with this findings, in chapter 5 we found that memory reactivation, 

in the grand average, peaked shortly after coupled sleep spindles pointing to an increase 

in information processing after, not during sleep spindles (but see Cairney, Guttesen, El 

Marj, & Staresina, 2018).  

Together, these two mechanistic functions that can be ascribed to sleep spindles explain 

the discrepancies between results of chapter 3 and 5. One could speculate that solitary as 

well as coupled sleep spindles induce plasticity in encoding-related areas (chapter 3) but 

that sleep spindles coupled to slow oscillations are required to trigger memory 

reactivation (chapter 5).  

A key open question for future research is how memory reactivation and the induction of 

plasticity interact with each other. Is memory reactivation directly followed by plastic 

changes? If not, how long can it take for plastic changes to be induced without disrupting 

the consolidation of the reactivated memory trace? Is there a sequential consolidation 

process during which memory reactivation always happens first and the induction of 

plasticity always follows? To date, direct relations between memory reactivation and 

plastic changes are rare due to different methods required to measure both. For example, 

while plastic changes have been measured using two-photon calcium imaging in rodents 

(Niethard et al., 2018), memory reactivation has been investigated using recently 

developed methods like MVPA and RSA (Cairney, Guttesen, et al., 2018; Schreiner et 

al., 2018; Zhang et al., 2018). Building on a very recently developed method enabling to 

measure plastic changes in humans (Brodt et al., 2018), the simultaneous investigation of 
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memory reactivation and plastic changes throughout a period of sleep might soon be 

possible.   

3. Concluding remarks 

During the last century, the significance of sleep for memory consolidation has been 

established. While the intricate brain mechanisms underlying sleep-dependent memory 

consolidation remained theoretical for a long time, the recent development of new 

methods has enabled their empirical investigation. By exploiting these methods together 

with the development of a new memory paradigm, this thesis further the understanding 

of mechanisms underlying sleep-dependent memory consolidation and relate them to 

cardinal brain oscillations during sleep, i.e., slow oscillations and sleep spindles.  

Sleep spindles have been previously identified as a vehicle to induce plasticity. In the first 

part of the thesis (chapter 2 and 3), it is demonstrated that memory consolidation can be 

explained by sleep spindles tracking cortical patterns active during learning ascribing a 

mechanistic function to sleep spindles for memory consolidation. That is, sleep spindles 

specifically occur in encoding relevant cortical areas to facilitate consolidation, 

assumingly by inducing long-lasting changes (plasticity) in these areas.  

In the second part of the thesis (chapter 4 and 5), slow oscillations and sleep spindles have 

been linked to another mechanism underlying sleep-dependent memory consolidation, 

memory reactivation. In both chapters, slow oscillations up-states were identified as the 

critical time window for memory reactivation, whereas the last chapter additionally 
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demonstrate that the precise coupling between slow oscillations and sleep spindles 

predicts memory reactivation strength.    

Together, this thesis provides important insights into the mechanisms subserving 

associative memory consolidation during sleep, raises new interesting research questions 

and hopefully stimulates future work to further investigate both mechanisms 

independently but also in relation to each other.  
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