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Abstract 

Two Machine Learning (ML) methods are considered for reconstruction of turbulent signals corresponding to 
the Large Eddy Simulation database obtained by application of the high-resolution CABARET method 
accelerated on GPU cards for flow solutions of NASA Small Hot Jet Acoustic Rig (SHJAR) jets. The first 
method is the Feedforward Neural Networks technique, which was successfully implemented for a turbulent 
flow over a plunging aerofoil in (Lui and Wolf, 2019). The second method is based on the application of 
Genetic Programming, which is well-known in optimisation research, but has not been applied for turbulent 
flow reconstruction before. The reconstruction of local flow velocity and pressure signals as well as time-
dependent principal coefficients of the Spectral Proper Orthogonal Decomposition of turbulent pressure 
fluctuations are considered. Stability and dependency of the ML algorithms on the smoothness property and 
the sampling rate of the underlying turbulent flow signals are discussed. 
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1. Introduction 

Large-scale turbulent jet flows occur in many aerodynamic and aeroacoustic problems. Because of 
the nature of high-Reynolds number turbulence, these flows possess a rich dynamic behavior, 
which continues attracting research interest of the fluid dynamics community. Recent progress in 
novel computer architectures and high-resolution algorithms made it possible to extend Large Eddy 
Simulations (LES) to billions of degrees of freedom. In addition to having high spatial resolution, 
such simulations need to capture small temporal scales and evolve over long times to generate 
meaningful statistical data series. Hence, one of the topical problems in the field is the analysis of 
the large data sets, which emerge from these calculations, thereby allowing to develop fast 
reduced-order data-driven models in the context of design optimization and flow control [1]. In 
many data analysis methods, the starting point is flow modal decomposition such as proper 
orthogonal decomposition (POD) [2-4] and dynamic mode decomposition (DMD) [5-7], After the 
flow decomposition step, the dominant modes serve to reproduce the most important dynamics of 
the physical system in question. Several methods to approximate this dynamics exist including 
Galerkin projection and its variants [8] and sparse regression of nonlinear dynamics [9]. Notably, 
[10] reported that reduced-order models developed using some of these techniques exhibit 
unstable behavior when trying to reproduce the complex dynamics of the governing Navier-Stokes 
solution. Despite the progress in the development of more stable reduced-order models [11-12], 
application of these techniques to reconstruct dynamics of complex turbulent flows such as high-
speed turbulent jets remains a challenge. Machine learning methods are a promising technique for 
the development of reduced-order models of high-Reynolds number flows. Neural networks are 
one popular technique for reconstructing the dynamics of high-dimensional systems [13-14]. 
Furthermore, a special sub-class of neural network methods called feedforward neural networks 
(FNN) was found particularly effective for modelling of a range of dynamical systems [15]. More 
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recently, [16] used FNN to develop a numerical methodology which combines flow modal 
decomposition and regression analysis. Furthermore, to improve the regression step they used a 
spectral proper orthogonal decomposition (SPOD) [3]. For the problem of a plunging aerofoil with 
large areas of turbulent separated flows, the method was demonstrated to predict the flowfield 
beyond the training window and with larger time increments than those used by the full order 
model, thereby demonstrating the robustness of the reduced-order model based on FNN. In this 
work, performance of the reduced order technique based on FNN developed in [16] will be tested 
for reconstruction of velocity and pressure fluctuations extracted from the Large Eddy Simulations 
database of high-speed jets [17]. The jets correspond to the two isolated static jet cases from the 
NASA SHJAR experiment. These are the so-called Set Point 3 and 7 jets, which correspond to 
isothermal conditions, Reynolds number of around one million, and acoustic Mach numbers of 0.5 
and 0.9, respectively. The simulations were performed using the high-resolution CABARET method 
[18-22], which is characterized by low dispersion and dissipation. The CABARET LES solver was 
extensively validated for high-speed jet flows [22-24]. The solver was implemented on the Graphics 
Processing Units (GPUs) to reduce the time to solution to two days on a few GPU cards with LES 
grids of around 100 million cells [25-27]. In addition to the FNN method, Genetic Programming 
(GP) is applied for the same task. GP is a method that originates from the class of genetic 
algorithms (GA) with the goal of addressing symbolic regression problems. Although it is well 
known in the optimisation literature [28-30], GP has not been widely used in application to low-
order modelling of complex fluid dynamics flows so far. In particular, to the best knowledge of the 
authors, in the current work GP will be applied for the reconstruction of temporal dynamics of high-
Reynold number jet flows for the first time.  

2. Jet Flow Cases and Methodology 

In this section we are presenting the results of the Large Eddy Simulations (LES) and extract the 
time signals and time coefficients of the SPOD modes which will be used as an input for FNN and 
GP methods. The jet cases considered in the present study correspond to the conditions of the 
NASA Small Hot Jet Acoustic Rig (SHJAR) experiment. SHJAR jet is isothermal single-stream 
static jet, which issues from profiled axi-symmetric convergent nozzles of a small area ratio. Two 
Set Points (SP) 3 and 7 with acoustic Mach number Ma = 0.5 and 0.9, respectively, are 
considered. The LES data whose implementation details can be found in [17] are first interpolated 
onto a 𝑛௫ ൈ 𝑛௥ ൈ 𝑛ఏ structured cylindrical grid spanning 𝑥/𝐷௝, 𝑟/𝐷௝, 𝜃 ∈  ሾ0, 10ሿ ൈ ሾ0, 3ሿ ൈ ሾ0, 2𝜋ሿ, 
where 𝐷௝ is the jet diameter. Temporal, spatial separation and simulation parameters are 
summarised in Table 1.  
 

Table 1 – The operating conditions of NASA SHJAR jet and the parameters of interpolated 
cylindrical volume. 

Set Point (SP) 3 7 

Acoustic Mach number 𝑀௔ 0.5 0.9 

Jet Mach Number 𝑀௝ 
0.51 0.98 

Nozzle Temperature Ratio 0.950 0.835 

Reynolds Number based on jet diameter 0.56 ⋅ 10଺ 1 ⋅ 10଺ 

Sampling rate 𝑑𝑥/𝐷௝ ൌ 𝑑𝑟/𝐷௝ 0.1 

𝑑𝑡 (s) 2 ⋅ 10ିହ 

Number of time samples 5348 
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For the reconstruction of the temporal dynamics two flow quantities will be considered, which 
correspond to fluctuating pressure 𝑝′ and fluctuating velocity 𝑢′,  

 
𝑝ᇱሺ𝑥, 𝑟, 𝜃, 𝑡ሻ ൌ 𝑝ሺ𝑥, 𝑟, 𝜃, 𝑡ሻ െ 𝑝̅ሺ𝑥, 𝑟, 𝜃, 𝑡ሻ,     𝑢ᇱሺ𝑥, 𝑟, 𝜃, 𝑡ሻ ൌ  𝑢ሺ𝑥, 𝑟, 𝜃, 𝑡ሻ െ 𝑢തሺ𝑥, 𝑟, 𝜃, 𝑡ሻ,                (1) 

where ሺ⋅ሻതതതത denotes the mean quantity and ሺ⋅ሻ′  the fluctuating part.  
A snapshot of the flow field in the streamwise cross section along jet axis and transverse planes at 
different streamwise locations 𝑥/𝐷௝ which correspond to the fluctuating pressure 𝑝′ of the SP7 jet is 

shown in Figure 1. 

 

 

Figure 1 – Instantaneous snapshot of fluctuating pressure in streamwise cross section along the jet 
axis (top) and transverse planes at streamwise locations 𝑥/𝐷௝ ൌ 1,2,4,5 (bottom) 

The next step is to decompose the 4D flow solutions (3D in space and 1D in time) into a series of 
time signals which capture the dynamic behavior of dominant SPOD modes. The procedure 
consists of several step. First, due to the periodicity of the jet flow in azimuthal direction, it can be 
then decomposed into azimuthal Fourier modes, 

 
𝑝′ሺ𝑥, 𝑟, 𝜃, 𝑡ሻ  ൌ ∑  𝑝′෡

௠ሺ𝑥, 𝑟, 𝑡ሻ 𝑒𝑥𝑝 ሾ𝑖𝑚𝜃ሿ௠                                         (2) 
 

and the result of azimuthal decomposition for mode 𝑚 ൌ 0 is shown in Figure 2. 

 
Figure 2 – Instantaneous flow field of fluctuating pressure for azimuthal mode 𝑚 ൌ 0. 
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Next, we are going to apply SPOD decomposition to split the flow into dominant modes for each 
frequency band of interest. The Details of SPOD implementation can be found in [31, 32]. The 
spatial distributions of the SPOD modes of the NASA SP7 jet at azimuthal mode number m = 0 
and four typical frequencies are shown in Fig.3. Each SPOD mode corresponds to a time-
dependent coefficient and can be extracted for the particular frequency of interest. In this work the 
frequencies will be reported in terms of the Strouhal number St = 𝑓𝐷௝/𝑈௝ , where 𝑓 is a frequency in 
Hz and 𝑈௝ is the jet exit velocity. 

 

Figure 3 – First SPOD mode of the pressure fluctuations of Ma = 0.9 jet for St = 0.2, 0.5, 1, 2 at 
azimuthal mode m = 0. 

Having identified the extraction and decomposition procedure we present the local time signals of 
the fluctuating pressure (Fig.4a,b) and velocity (Fig.4c,d) at two spatial locations on the jet lipline 
𝑟/𝐷௝ ൌ 0.5 and one azimuthal angle and time coefficients of the first SPOD mode for two 
representative frequencies.. As the jet flow spreads downstream the time signal shows significantly 
higher correlation, especially for fluctuating velocity (Fig.4d).  In comparison with pressure and 
velocity time signals, the SPOD time coefficients are smoother and resemble harmonic behavior at 
low frequencies (Fig4.e) 

 

Figure 4 – Local time signals 𝑝′ሺ𝑡, 𝜃ଵሻ at different streamwise locations 

2.1 Artificial Neural Networks  

Artificial Neural Networks (ANNs) is a popular class of machine learning algorithms that has the 
properties of a universal function approximator [33,34]. In the simplest of perspectives, ANN is a 
network of interconnected nodes, connected by the numerical operations whereby information is 
transferred from one node to the next (Fig.5). Each node numerically represents a set of weights 
and biases by which that node processes information from its predecessors and the output is made 
non-linear using a suitable activation function. Hence, from input to output layers, the network as a 
whole represents a highly nonlinear differentiable function parameterised by its weights and biases 
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[35]. 
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Figure 5 – A neural network of interconnected nodes (red) representing the weights and biases and 
the connections (blue vectors) representing the flow of information in a forward propagation. The 
ANN shown has 4 hidden layers of random widths and 8 neurons in the input and output layers. 

The forward computations of these interconnected nodes can be recorded in the form of a 
computational graph and thus can be differentiated using the Automatic Differentiation technique. 
This enables the network to be optimizable by gradient descent. Here the optimization process 
whereby the parameters of the network are optimized to fit a function map is called ‘training’ and 
the process by which interpolation or extrapolation is done on a data-point which was not 
presented to the network during training is the ‘prediction’. While training, the gradients of a 
suitable measure of the prediction error is computed with respect to each of the weights and 
biases, and are optimized iteratively until the error converges. For predicting, the computation from 
input layer to output layer via intermediate or hidden layers is called the forward propagation. The 
computational advantage of ANNs lies in the fact that once a network is iteratively trained by 
making predictions and optimizing for its errors iteratively, the network’s prediction error converges 
to a minimum possible value when the network parameters and structure can be frozen for 
permanent reuse. Thus, after training, the computation required for prediction over a new data 
point is that required for a single forward propagation only and prediction cost scales linearly with 
the number of predictions to be made. This is significantly cheaper than the iterative training 
process. Given that they are highly non-linear differentiable functions optimizable by gradient 
descent and with expressivity scalable with the depth and width of the network, ANNs can 
effectively replace complex computational pipelines.  
That being the numerical property of a Neural Network, they are the first choice for any 
interpolation tasks that involves high dimensional or non-linear maps. In this work, we chose to test 
the efficacy of an ANN based framework proposed by Lui and Wolf. [16] in regeneration of the time 
accurate turbulence signals. This choice is motivated by the fact that the framework has favorable 
numerical properties because it was tailored to the Proper Orthogonal Decomposition (POD) 
method with additional spectral smoothing [3]. However, our end goal is to work with turbulent 
signals, which may not necessarily come from the specific filtered POD version but, for example, 
from the SPOD framework which allows decoupling the signal into well-defined physical space-
time modes [31]. In this case, we may be outside the confidence region for the ANN algorithm 
unlike in the original application. Nevertheless, we share the insights from our parametric study of 
the method and critical evaluation of its performance. 
As explained in detail by Lui and Wolf. [16] an ANN based Reduced Order Model (ROM) employs 
ANN as a function approximator for the temporal oscillations of dominant POD modes of the flow. 
But rather than making predictions of the signal via extrapolating in the time domain using an ANN, 
the prediction made by ANN is for the time gradient and input is the signal amplitudes. The process 
then is then equivalent to solving the ODE  
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𝜕௉ሺ௧ሻ

డ௧
ൌ 𝑁𝑁൫𝑝ሺ𝑡ሻ൯                                                         (3) 

where, 𝑝ሺ𝑡ሻ is the time-varying pressure signal and 𝑁𝑁ሺ⋅ሻ is the neural network prediction. The 
signal is then reconstructed by time marching using a fourth order explicit Runge-Kutta scheme.  
The advantage of such a framework is two-fold. First, if the input signal is sufficiently smooth, the 
time gradient will be bounded. Hence both input and output domains for the network are bounded 
and the network always operates over the same range of values irrespective of the time 
coordinate. This means that, if the time stepping process is stable, the network always is 
interpolating from the dataset even while predicting the gradient outside the training window. The 
second advantage is due to the properties of SPOD/POD modes in strongly periodic flows. They 
can be identified to have two main characteristics. The first is that the SPOD modes in the simple 
case of a cylinder flow occurs in pairs [3], thereby having correlation in the input to the ANN. This 
effectively means that when multiple signals are inputted to the ANN simultaneously, the gradients 
calculated during backpropagation have comparatively lower competition between optimization for 
individual signals than a case with completely uncorrelated signals. The second property is that 
SPOD modes generated by the filtering technique have nearly tonal Fourier structure and 
resembles an amplitude modulated signal. This is a crucial factor for ANNs since they are known to 
learn frequency contents progressively with training iterations and the number of iterations required 
for the ANN to learn higher frequencies grows quadratically [35]. Hence with nearly tonal input 
signals, the probability that the training error converges in practical number of iterations are higher 
than in the case of a broadband signal.  Given these characteristics of input signals, the ANNs 
chosen by a random hyper-parameter search were shown to be able to extrapolate the temporal 
coefficients of SPOD and POD modes by Lui and Wolf. [16]. 
For testing the efficacy of Artificial Neural Networks in recreating the turbulent signals, we reuse 
the code provided by the original authors. Here we strip the framework of the Proper Orthogonal 
Decomposition module which uses a smoothing of the correlation matrix and input time-series 
signals directly to the high order differentiation module where the time gradients are computed 
using a 10th order compact scheme. The result is then inputted to the ANN based regression 
module where a Random search algorithm explores the possible network configurations to find a 
suitable set of hyperparameters for the ANN. Here, for each of the random configurations 
generated, the Mean Absolute Training Error at the last training iteration is used as the 
performance metric. Once the network structure is finalized by the search algorithm by minimizing 
Mean Absolute Training Error, the chosen network is employed by a fourth order explicit Runge-
Kutta method to extrapolate the signal from the initial time step. Hence, in practice, the random 
search algorithm attempts to find an optimal network structure which best overfit the training 
dataset. Here the degrees of freedom for the Random Search algorithm are chosen so as to limit 
the total computational time when compared to the Genetic Programming approach. 
Now, since multiple signals are substituted to an ANN simultaneously, 6 to 10 for stable 
performance in our attempts, the trajectory of the signal in this multi-dimensional space is the 
effective input. The coordinates of this trajectory being represented by the signal values, the 
corresponding target at each point of the trajectory are the time gradients. Since these gradients 
are already known from the future time-step at any given signal location, they can be numerically 
calculated for the purpose of training the network. Once the network accurately captures the 
gradients along the trajectory with sufficient resolution, a time marching algorithm can be initialized 
at the starting point of the original trajectory to reconstruct the signal. If in the high dimensional 
space, the trajectory in the dataset had already formed a closed loop, this means that the time 
marching algorithm will be able to capture the limit-cycle of the signal leading to a stable 
extrapolation with significant statistical similarity with the original signal. However, if the trajectory 
in the dataset is open ended, or more precariously, ending in the vicinity of a previous point of the 
trajectory with incongruent gradient direction, this can lead to unstable extrapolation even without 
any numerical issues. 
In the view of the optimization process, a randomly initialized neural network will have random 
predictions of the above said gradient field. They are expected to be smooth and continuous from 
the properties of ANNs. If trained using a stochastic gradient descent approach, the optimizer 
traverses along the signal trajectory and optimizes the neural network at each location to reduce 
the squared error between the true and predicted gradients. Again, since the neural network is a 
smooth differentiable function, this optimization results in the optimization of the network’s gradient 
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prediction in the vicinity of the trajectory. Assuming an approximately uniform radius of influence of 
optimization on the distribution of predicted gradients close to the trajectory locations – an 
assumption logically valid only after a successful pretraining where the sensitivity of the network 
parameters to new input data is minimal – the stability of this process requires sufficient sparsity of 
the trajectory in its domain. If instead the signals are confined to a closed space, the optimization 
process revisits the same vicinity of the signal trajectory at multiple instances to reinforce multiple 
target gradients. This difference of target gradients for the same datapoint will destabilize the 
training process with a non-convergent training error. In case of a batch gradient descent process, 
the effective optimization may suffer the same way as in the case of multi-objective optimization 
with competing objectives. This issue will be aggravated in the case of high frequency signals, 
since the probability of the trajectory colliding with itself increases in a lower dimensional space. 
On the other hand, a largely sparse domain will also leave the network untrained with random 
gradient distribution in the regions where the optimizer did not operate. Both these effects can lead 
the time stepping algorithm to predict trajectories to either stray far outside of the intended domain, 
or to a region of negligible gradient leading to a constant value output, or to a wrong limit cycle. 
These modes of failures were a characteristic of instability with the ANN based extrapolation 
process for high frequency turbulence signals.  
To understand the stability of ANN based method and compare its performance with Genetic 
Programming, the former has been first tested on local signals corresponding to velocity and 
pressure fluctuations of the SP7 jet case. We find that preprocessing of the turbulent signal by 
smoothing is of paramount importance for keeping the ANN algorithm stable. The best practices 
are then used to reconstruct the time-dependent coefficients of the SPOD decomposition of the 
azimuthal pressure mode of the same jet as discussed in the results section. 
 

2.2 Genetic Programming 

Genetic programming (GP) [28,29,30,40] is a method that originates from the class of genetic 
algorithms (GA) with the goal of addressing symbolic regression problems. While GA typically uses 
a string of numbers to represent the solution, GP creates a population of computer programs, 
usually in the shape of graphs or trees, which are iteratively evolved through the application of so-
called genetic operators and evaluated to develop a solution or metamodel. In approximation 
problems, a program represents an empirical model used to approximate a response function. For 
instance, Figure 6a shows a program representing the expression ሺ𝑧ଵ/𝑧ଶ ൅ 𝑧ଷሻଶ. 

 

Figure 6 – HyGP tree structures for the expression  ሺ𝑧ଵ/𝑧ଶ ൅ 𝑧ଷሻଶ. 
In a) the tree is in a “parameterless” state, as no numerical parameters are present, 

In b) numerical parameters ai are inserted for full expressivity. 

These programs can be created in a generic and hierarchical manner while varying in size and 
shape. The ultimate goal of GP is to solve a problem by searching highly fit computer programs in 
the space of all possible programs that can be a solution to the problem. This aspect is key to 
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finding near global solutions by fostering many solutions that may potentially be close to minima 
(local or global). In GP, the creation of the initial population is performed randomly in an attempt to 
extensively explore the space of models defined by the building blocks provided by the user. 
Subsequently, the evolution of a highly fit model proceeds autonomously through the iterative 
action of genetic operators and model evaluation by a fitness function, which determines the 
quality of the evolved model. The fitness function has a dominant role in steering the evolution 
towards plausible solutions. 
The genetic programming code used in this paper is the HyGP implementation developed by 
Armani [30,40]. Despite being founded on the basic principles and guidelines provided by Koza 
[28], HyGP implementation can be classified in the subcategory of “hybrid GP” or “memetic GP” 
[36,37] as a result of its additional features such as the exploitation of Baldwinian learning. Hence, 
the common GP building blocks can be found despite being slightly modified to embrace the hybrid 
approach. The genetic operators used are the classic operators: reproduction, mutation and 
crossover. However, they are performed on mathematical expressions stripped of their numerical 
parameters (referred to as “structures” or “parameterless individuals” in the following), which are 
optimized in two steps, using first a population-based optimization algorithm (Particle Swarm 
Optimisation [38]) and subsequently a deterministic method (Sequential Quadratic Programming or 
SQP [39]) to finely refine the values of the parameters. A schematic description of the logical steps 
featuring in the HyGP algorithm is sketched in Fig. 7. 

 

Figure 7 – Flowchart of HyGP algorithm. 

More details about genetic programming can be found in [40, 41]. Below are given the main 
highlights of the HyGP code used per process involved: 

● Input normalization 
Training data set is provided by the user linearly scaled so that independent (points in the 
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design space) and dependent variable values (target values) once normalized span the 
range [1.0,11.0] 
 

● Genetic operators 
○ Reproduction: a user-defined percentage of the sorted population (best scoring 

individuals) is copied into the new generation. Copies are eliminated, and to preserve 
population constant size the void is filled with individuals generated from scratch using the 
same procedure used for population initialization. Numerical coefficients of the best 
individual are retained and used as additional starting guess for the tuning process in the 
following generation. 

○ Crossover: it is used to generate a user-defined percentage of the new population. 
Tournament selection (size 3) is used to select the individuals that undergo crossover 
(uniform probability distribution). Parent 1 selection is performed on individuals selected 
from the reproduction pool, whereas Parent 2 selection considers the whole population to 
preserve genetic variability. Crossover points are selected randomly, first selecting a 
random depth (uniform probability distribution) then randomly selecting one node among 
the ones sharing the same depth (uniform probability distribution). If the new potential 
offspring have depths larger than the maximum allowed, new crossover points are 
selected. 

○ Mutation: consists of point mutation for even generations and subtree mutation for odd 
generations. Tournament selection (size 3) is used to choose the individual undergoing 
mutation. Nodes are selected randomly using the same approach adopted for crossover. 

 
● Editing 

The editing operation aims at turning all GP models into bounded models. Prior to 
parameters insertion and fitness evaluation, each parameterless individual is scanned for the 
presence of diverging subtrees (for example a polynomial). To avoid unbounded growth 
during HyGP model extrapolation analysis, these diverging subtrees are edited (modified): 
when a variable is found to be the argument of addition, subtraction, multiplication, 
exponential, square and cube, the variable node is replaced by a sinusoidal function of the 
very same variable (for example x is replaced by sin(x)). 
 

● Tuning (hybrid approach) 
Numerical coefficients are inserted in the parameterless individuals using the procedure 
detailed in [39, p. 131]. The aim is to maximize the expressivity of the individuals keeping to 
a minimum the number of numerical parameters, which in turn is linked to the tuning 
computational cost (using the tree in Fig. 6 as an example, the division between two 
variables z1 / z2 requires a single parameter not two). Initially, a vector of random values is 
used as a first guess (the user may opt to use more than one set of random values to 
increase the robustness of the search), except for the best individual which, replicated to the 
new generation, inherits the same numerical coefficients it had in the previous generation. As 
a second step, the set of random/inherited values are used as starting points for a Particle 
Swarm Optimisation algorithm (PSO), whose function is to improve the initial guesses. As a 
third and final step, the set of numerical coefficients improved by PSO is further refined by a 
deterministic algorithm, Sequential Quadratic programming (SQP). The cost function that 
drives the optimization of the numerical coefficients is root mean square error (RMSE) for 
PSO and sum of the square errors for SQP. Specifically for the SQP cost function, to reduce 
the risk of overfitting for sinusoidal functions, angular frequencies of sin() and cos() nodes 
which are not themselves arguments of other functions except addition, subtraction and 
multiplication by -1 are detected and they are tuned imposing increasing penalization for 
angular frequencies higher than 𝜔max i = 0.5 𝜋/Δzi , which comes from assuming that 
frequency of sin() and cos() terms may reach as a maximum a quarter of the sampling 
frequency used to generate the building data set. So in case sin() and cos() nodes are found, 
the minimization problem addressed by SQP is recast as follows: 

find x 

   minimize 𝐹ௌொ௉ሺ𝑥ሻ ൌ
ଵ

ଶ
∑ ൫𝑓መ௝ሺ𝑥ሻ െ 𝑓௝൯

ଶ௠
௝ୀଵ ൅ ∑ ∑ 𝑔௜,௞൫𝑎௜,௞, 𝜔௠௔௫,௜൯

௡ೌ೑ೝ ೔

௞ୀଵ
௡ೡೌೝ
௜ୀଵ           (4) 
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where x is the set of unknown parameters’ values of the HyGP individual 𝑓መ being tuned, 𝑓௝ is the 
observed output for training point j, 𝑓መ௝ is the output produced by the GP individual in training point j, 
m is the number of training points (size of the training data set), 𝑛௩௔௥ is the number of independent 
variables and 𝑛௔௙௥ ௜ is the number of parameters recognized as angular frequencies found for 
variable i in the individual undergoing tuning. The penalisation terms 𝑔௜,௞ that direct the search for x 
away from high angular frequencies are defined as functions of the particular numerical coefficients 
in x recognised as angular frequencies 𝑎௜,௞: 
 

𝑔௜,௞൫𝑎௜,௞, 𝜔௠௔௫ ௜൯ ൌ ቄ 0 𝑖𝑓 𝑎௜,௞  ∈  ൣെ𝜔௠௔௫,௜, 𝜔௠௔௫,௜ ൧ ;   𝑒൫ห௔೔,ೖหିఠ೘ೌೣ,೔൯
మ

െ 1 𝑖𝑓 𝑎௜,௞  ∉  ൣെ𝜔௠௔௫,௜, 𝜔௠௔௫,௜ ൧ ቅ             

(5) 

No overfitting countermeasures for sinusoidal terms are implemented in PSO, whose search for 
optimal numerical coefficients can span the interval [1.0, 11.0]. 

● Selection and Fitness function 
It is different from classic GP fitness function which works merely based on an error-based 
metrics defined as a function of provided data and GP model response. In order to 
encourage the evolution of smooth mathematical expressions, to avoid ‘bloating’ [41] and to 
curb computational cost linked to tuning the fitness values 𝐹ሺ𝑖, 𝑡ሻ of HyGP model or 
“individual” 𝑖 at generation 𝑡 is defined as a weighted sum of different terms or objectives, 
following an approach used for multi-objective optimization in evolution-based algorithms: 

 
 

 𝐹ሺ𝑖, 𝑡ሻ ൌ 𝑎ଵ𝐹ଵሺ𝑖, 𝑡ሻ ൅𝑎ଶ𝐹ଶሺ𝑖, 𝑡ሻ ൅𝑎ଷ𝐹ଷሺ𝑖, 𝑡ሻ ൅𝑎ସ𝐹ସሺ𝑖, 𝑡ሻ ൅𝑎଼𝐹 ሺ𝑖, 𝑡ሻ                       (6) 
   𝑎ଵ ൅ 𝑎ଶ ൅𝑎ଷ ൅ 𝑎ସ ൅ 𝑎଼ ൌ 1                         (7) 

 
where: 
𝐹ଵሺ𝑖, 𝑡ሻ ൌ 𝑅𝑀𝑆𝐸ሺ𝑖, 𝑡ሻ is the root mean square error of individual i at generation t evaluated on 
the given training data set 

𝐹ଶሺ𝑖, 𝑡ሻ ൌ  𝑁௧௨௡௜௚ ௣௔௥௔௠௘௧௘௥௦ is the number of numerical coefficients (parameters) in the 
individual 

𝐹ଷሺ𝑖, 𝑡ሻ ൌ 10଺𝑁௖௢௥௥௘௖௧௜௢௡௦ where 𝑁௖௢௥௥௘௖௧௜௢௡௦ is the number of operations (nodes) of the 
individual not defined on the training data set (i.e. division by zero) 

𝐹ସሺ𝑖, 𝑡ሻ ൌ  𝑁௡௢ௗ௘௦  is the number of nodes that the individual is made of (model size) 

𝐹 ሺ𝑖, 𝑡ሻ ൌ 𝑒𝑥𝑝 ቆ
ห𝑓௠௔௫ െ 𝑓መ൫𝑥௙ ௠௔௫൯ห

|𝑓௠௔௫| ൅ 1
ቇ ൅ 𝑒𝑥𝑝 ቆ

ห𝑓௠௜௡ െ 𝑓መ൫𝑥௙ ௠௜௡൯ห
|𝑓௠௜௡| ൅ 1

ቇ

൅ 𝑒𝑥𝑝 ቆ10
ห𝑚𝑒𝑎𝑛ሺ𝑓ሻ െ 𝑚𝑒𝑎𝑛ሺ𝑓መሻห

|𝑚𝑒𝑎𝑛ሺ𝑓ሻ| ൅ 1
ቇ ൅ 𝑒𝑥𝑝 ቆ10

ห𝑣𝑎𝑟ሺ𝑓ሻ െ 𝑣𝑎𝑟ሺ𝑓መሻห
|𝑣𝑎𝑟ሺ𝑓ሻ|

ቇ  

 

where 𝑓௠௔௫ and 𝑓௠௜௡ are the maximum and minimum values of the target function in the 
training data set observed in points 𝑥௙ ௠௔௫ and 𝑥௙ ௠௜௡, and 𝑓መ൫𝑥௙ ௠௔௫൯ and 𝑓መ൫𝑥௙ ௠௜௡൯ are the 
corresponding values of the i-th GP individual in such points. The terms var and mean stand 
for variance and mean of the given training data (𝑓) and of the GP individual output on the 
training data (𝑓መ).    
The last term in the fitness function in Eq.6 is an additional objective introduced to better 
capture training data extremes, mean and variance on top of the local accuracy given by the 
RMSE-based fitness function. This additional objective is introduced with the aim of steering 
GP evolution towards models that better match the statistical properties of the original signal 
provided as input, as it will be detailed in the results section. 

To ease model interpretation and analysis, all the GP models generated for the current study have 
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been reported in the Appendix together with the corresponding computing time. 

3. Results 

3.1 Artificial Neural Networks  

A. Reconstruction of local time-series signals from turbulent pressure fluctuations 

The local time series of pressure signals from various locations of the jet were used as an input to 
the ANN based extrapolator. The signals first tested were the raw signals which yielded no stable 
extrapolation. Band-passed version of the original signal was then generated by choosing a mean 
frequency of 2000 Hz and bandwidth of 500 Hz as shown in Fig. 8 Here the objective was to test 
the ANN performance at nearly tonal signal at sufficiently lower frequency mimicking the properties 
of SPOD signals in the original framework. Nevertheless, the ANNs are unable to obtain a stable 
reconstruction as shown in Fig. 9, and hence are to be considered unsuitable for the purpose. 

 

Figure 8 – The set of four signals from the axial location of the jet shear layer corresponding to 
locations 𝑥/𝐷𝑗 ൌ ሾ1,2,4,5ሿ  after applying the bandpass filter with mean frequency at 2000 Hz and 

bandwidth of 500 Hz are shown above. The bandpass signal and its FT are shown in blue(𑁋) and 
the FT of original signal is shown in red(𑁋). Dotted lines indicate truncation of the signal in time 

domain (left) before training and bandwidth of filter used in frequency domain (right). 

 
Figure 9 – The signal is reconstructed using ANN based extrapolation for the case of bandpass filter 

with mean frequency at 2000 Hz and bandwidth of 500 Hz showing the mode of failure where the 
gradient prediction attenuates to zero. The same behavior is obtained for all four signal inputs and 

are hence omitted. 
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B. Reconstruction of time-dependent principle coefficients for the space-frequency modes 

The SPOD signals of the axisymmetric mode of the fluctuating pressure were inputted to the ANN 
based extrapolation routine to study its efficacy at various spectral compositions of the input. Here 
the signals are obtained by using SPOD following Towne et al. [31] of the flow solution utilizing the 
entire flow domain. Thus time-series signals are the temporal coefficients of spatial modes 
obtained at a particular Strouhal number. Our tests indicate that ANN method is sensitive to both 
the mean frequency and the bandwidth, with stability increasing as both parameters decrease. 
Since the time-series data of an unfiltered SPOD signal also contains a broader bandwidth, we 
perform further filtering of signals where peak frequency and bandwidth are used for a grid search 
with stability as objective. The spectral contents of inputted data before and after filtering are 
shown in Fig. 10 and the result for ANN based reconstruction in Fig. 11.  

 

 
Figure 10 – Input data of SPOD temporal coefficient for St=0.5, showing the original and filtered 
Fourier Transforms for bandpassing at 9000 Hz and bandwidth of 4000 Hz. The bandpass signal 

and its FT magnitude are shown in blue(𑁋) and the FT of original signal is shown in red(𑁋). Dotted 
lines indicate truncation of the signal in time domain (left) before training and bandwidth of filter used 

in frequency domain (right). 

From the result of extrapolation for varying filter parameters, it can be inferred that the ANN method 
is unable to handle the bandwidth for the SPOD signals where SPOD refers to the algorithm by 
Towne et al. [31] With a reduced bandwidth of 4000 Hz, the extrapolation is only stable for a few 
initial time steps and then the signal develops low frequency contents with large amplitude values. A 
further reduction of the mean frequency to 2000 Hz and bandwidth to 500 Hz results in a more 
stable process as shown in Fig. 12 and 13, thus demonstrating that the frequency content is the 
primary factor affecting stability. An extreme case of lower mean frequency of 1000 Hz and narrow 
bandwidth of 100 Hz are also attempted and the inputs and results are as shown in Fig. 14 and 15 
respectively. Here the bandpassing results in a sufficiently smooth signal with a tonal structure and 
the ANN based extrapolator follows the same trajectory as the input signals. Nevertheless, at the 
prescribed mean frequency and bandwidth, the method does not hold promise to help in stable 
extrapolation of signals for relevant applications and therefore further statistical analysis of the 
predicted signals are omitted. 
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Figure 11 – The signal is reconstructed using ANN based extrapolation for SPOD mode 1 showing 
the mode of failure where the signal strays to the exterior of the signal amplitude boundaries. The 

same behavior is obtained for all eight signals. 

 
Figure 12 – Input data of the SPOD temporal coefficient for St=0.5, showing the original and filtered 
Fourier Transforms for bandpassing at 2000 Hz and bandwidth of 500 Hz. The bandpass signal and 

its FT magnitude are shown in blue(𑁋) and the FT of original signal is shown in red(𑁋). Dotted 
lines indicate truncation of the signal in time domain (left) before training and bandwidth of filter used 

in frequency domain (right). 

  

         (a)                                                                                     (b) 
Figure 13 – ANN based reconstruction of the SPOD mode, a) mode 1 and b) mode 2, time signals 
band passed at mean frequency 2000 Hz and bandwidth 500 Hz. Top: ANN based reconstruction 

(𑁋) of a bandpassed SPOD signal (--) showing improved stability; Bottom: The Fourier transform of 
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the predicted signal (𑁋) and that of original signal (--).  

 
Figure 14 – Input data of SPOD modes 1 to 8, temporal coefficient for St=0.5, showing the original 

and filtered Fourier Transforms for an extreme case of bandpassing at 1000 Hz and a narrow 
bandwidth of 100 Hz. The bandpass signal and its FT magnitude are shown in blue(𑁋) and the FT 
of original signal is shown in red(𑁋). Dotted lines indicate truncation of the signal in time domain 

(left) before training and bandwidth of filter used in frequency domain (right). 

  

        (a)                                                                                     (b) 
Figure 15 – ANN based reconstruction of the SPOD modes, a) mode 1 and b) mode 2, time signals 
band passed at mean frequency 1000 Hz and bandwidth 100 Hz. Top: ANN based reconstruction 
(𑁋) of a bandpassed SPOD signal (--), showing perfect training accuracy due to strong bandpass 

filter; Bottom: The Fourier transform of the predicted signal (𑁋) and that of original signal (--) are in 
good agreement.  

 

3.2 Genetic Programming 

To ease comparison with ANNs extrapolation performance, HyGP was tested on the same SP7 jet 
flow modelling problems, such as local velocity and pressure signals and the SPOD mode 1 as a 
function of time for specific combinations of azimuthal angle, radial position (normalised with 
respect to nozzle diameter 𝐷௝) and longitudinal position (normalised with respect to the nozzle 
diameter 𝐷௝), for a total of 13 test cases as detailed below: 
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● SP7 jet 𝑢′ሺ𝑡ሻ for one azimuthal angle 𝜃ଵ at 𝑟/𝐷௝ ൌ 0.5 and 𝑥/𝐷௝ ൌ 1,2,4,5  
● SP7 𝑝′ሺ𝑡ሻ for one azimuthal angle 𝜃ଵ at 𝑟/𝐷௝ ൌ 0.5 and 𝑥/𝐷௝ ൌ 1,2,4,5  
● SP7 SPOD mode 1 of the pressure for different Strouhal numbers (St=01, 0.2, 0.5, 1, 2) 

For all the test cases the HyGP experiments were set up using the same values of all the 
hyperparameters not relating to the definition of the multiobjective fitness function. In Table 2 the 
values of these common hyperparameters are shown. 

Table 2 – HyGP parameters used to evolve SP7 models.  
 

Hyperparameter Value 
Population size M 50

Number of generations 50
Number of independent evolutions 

(runs)
5 

Editing Enabled
Binary primitives +, - , *
Unary primitives sin, cos, shift (translation by a constant)
PSO particles 30
PSO iterations 10

Reproduction rate 20%
Crossover rate 40%
Mutation rate 40%

Coefficient a2  (tuning parameters) 0.001
Coefficient a3  (corrections) 0.01

Coefficient a4 (size) 0.01
Size of training data set (and DoE 

type)
3000 (full factorial) 

Size of testing data set (and DoE 
type)

5348 (full factorial) - first 3000 identical to training 
data set

Sampling frequency (Hz) (normalised 
space)

300 

 
The parameters and values reported in the table were selected based on previous experience with 
HyGP, so no specific optimisation other than trial and error was adopted.  
A different approach was used to define the coefficient a8 that defines the relative contribution or 
weight of the difference in variance and mean trend of the evolved models on the overall fitness of 
the model, balancing therefore model local accuracy (RMSE) with statistical properties like 
variance and mean over the design space. The optimal value of the coefficient was selected 
through preliminary GP experiments on the 𝑢′ሺ𝑡ሻ and 𝑝′ሺ𝑡ሻ SP7 test cases using coefficient values 
ranging a spectrum of 4 orders of magnitude (from 0.5 to 0.0001). A Pareto front was used to 
understand the balance between the two objectives, local accuracy and variance of the evolved 
models, for each experiment set up with a specific value of the coefficient a8. The selected 
coefficient value was taken from the Pareto subset closest to the origin of the objectives’ axes after  
analysis of the behavior of the corresponding models (a posteriori selection).   
To give a more practical idea of the optimisation procedure adopted based on Pareto front, Fig.16 
shows the bidimensional Pareto front on the Variance-RMSE space of the GP experiments on SP7 
velocity 𝑢′ሺ𝑡ሻ signal run for coefficient a8 values of 0.5, 0.1, 0.01, 0.001, 0.0001. Five different 
clusters corresponding to the independent evolutions (runs) of each experiment are clearly visible.  
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Figure 16 – Pareto front of five HyGP experiments for SP7 jet 𝑢′ሺ𝑡ሻ set up with different values of a8. 

The selected value was a8 = 0.01: the corresponding HyGP model superimposed to the original 
𝑢′ሺ𝑡ሻ signal is shown in Fig. 17. The vertical line at Z1=11 represents the end of the training data 
sets, so all the data beyond the line is extrapolated and compared with the test data set.  

 

Figure 17 – SP7 jet 𝑢′ሺ𝑡ሻ signal superimposed to selected HyGP model 

Similar behaviour was shown for all cases of SP7 velocity and pressure signals, so no further 
details are provided on GP capability on these test cases.  
The same approach used to model SP7 velocity and pressure signals was used to generate SPOD 
models, with the only difference that coefficient a8 was not directly optimised for all these cases, 
preferring to rely on the range of best values already identified during the preliminary analyses 
performed on SP7 velocity 𝑢′ሺ𝑡ሻ and pressure 𝑝′ሺ𝑡ሻ. In the following figures the best results 
returned by HyGP for the first SPOD mode of SP7 jet are presented whereas the corresponding 
expression of the model is reported in the Appendix.   
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 SP7 SPOD mode 1, St=0.1 (coefficient a8=0.1) 

 

 

Figure 18 –  Plots of SP7 jet first SPOD mode at St = 0.1 original signal superimposed to best 
HyGP model: training (top)  and test data sets (bottom, after vertical line) in the normalised space. 

In Fig. 18 the curves of the first SPOD mode at St=0.1 original signal and the best HyGP model are 
shown, whereas in Fig. 19 the corresponding spectrum in the normalised space is presented. 
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Figure 19 – Plots of frequency spectra of the first SPOD mode at St=0.1 original signal and HyGP 
model on training and test data sets (normalised space) 

 SP7 SPOD mode 0 St=0.2 (coefficient a8=0.1) 

The curves of the first SPOD mode at St=0.2 original signal and the best HyGP model are shown 
in Fig. 20, whereas in Fig. 21 the corresponding spectra in the normalised space are shown. 
Similarly to St=0.1, the frequency spectra of the original signal and the model exhibit a good 
match. 

 

 
Figure 20 – Plots of the first SPOD mode at St=0.2 original signal superimposed to HyGP model: 

training (top)  and test data sets (bottom, after vertical line) in the normalised space. 
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Figure 21 –Plots of frequency spectra of the first SPOD mode at St=0.2 original signal and HyGP 

model on training and test data sets (normalised space). 

 SP7 SPOD mode 0 St=0.5 (coefficient a8=0.1) 

The curves of the first SPOD mode at St=0.5 original signal and the best HyGP model are shown 
in Fig. 22, in Fig. 23 the corresponding spectra in the normalised space are plotted. Differently from 
the previous cases, the ability of HyGP to reproduce a frequency spectrum similar to the original 
signal is reduced. 
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Figure 22 – Plots of the first SPOD mode at St=05 original signal superimposed to HyGP model: 

training (top) and test data sets (bottom, after vertical line) in the normalised space. 

 

 

 
Figure 23 – Plots of frequency spectra of the first SPOD mode at St=05 original signal and HyGP 

model on training and test data sets (normalised space) 

 SP7 SPOD mode 0 St=1.0 (coefficient a8=0.1) 

The curves of the first SPOD mode at St=1.0 original signal and the best HyGP model are shown 
in Fig. 24, in Fig. 25 the corresponding spectra in the normalised space are plotted. The trend of 
decaying HyGP capability in reproducing the original frequency spectrum is confirmed. 
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Figure 24 – Plots of the first SPOD mode at St=1 original signal superimposed to HyGP model: 

training (top) and test data sets (bottom, after vertical line) in the normalised space. 
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Figure 25 – Plots of frequency spectra of the first SPOD mode at St=1 original signal and HyGP 
model on training and test data sets (normalised space) 

 

SP7 SPOD mode 0 St=2.0 (coefficient a8=0.1) 

The curves of the first SPOD mode at St=2.0 original signal and the best HyGP model are shown 
in Fig. 26, in Fig. 27 the corresponding spectra in the normalised space are plotted. HyGP capability 
in reproducing the original frequency spectrum dramatically worsened for this further increase in 
Strouhal number. 

 

 

Figure 26 – Plots of the first SPOD mode at St=2 original signal superimposed to HyGP model: 
training (top)  and test data sets (bottom, after vertical line) in the normalised space. 
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Figure 27 – Plots of frequency spectra of the first SPOD mode at St=2 original signal and HyGP 

model on training and test data sets (normalised space) 

 

4. Conclusions 

To test the Artificial Neural Network (ANN) method for reconstruction of turbulent jet flow signals, 
we chose the feedforward neural networks framework previously implemented for a turbulent flow 
around a plunging aerofoil in [16]. In this framework, ANN acts as a differential operator in time on 
the signal extracted from the Large Eddy Simulation solution, thereby considering just the signal 
amplitude as input. The framework was previously shown to have various good properties enabling 
the ANN algorithm to extrapolate periodic time series signals. However, in application to high-
speed jet flow, the method is found to be inadequate to handle the resulting high bandwidth 
signals. This raises a question of why the ANN based framework could successfully learn the 
signals from a spectrally filtered POD of the datum flow dataset in the original publication. We 
suggest that the answer to this question is in the properties of the specific POD method, which 
involves a smoothing of the correlation matrix and subsequent pairing of signals and their tonal 
nature. This was evident from the fact that a spectral bandpassing of the broadband turbulent 
signal, rather than applying filtering to the correlation matrix which would consistently affect all 
trajectories, did not result in a successful extrapolation by the ANN. For the next step, the ANN 
method was tested on bandpass filtered signals from the Spectral POD (SPOD) method. In 
comparison with the original POD method of Seiber et al. [3], the selected SPOD method based on 
the algorithm developed in [31] enables accurate decoupling of the individual frequency modes of 
the LES dataset. Nevertheless, by applying a bandlimited filter of mean frequency 1000 Hz with 
bandwidth of 100 Hz it was possible to obtain a stable ANN reconstruction of the original signal. 
For stability, it was required to include 8 signals corresponding to the time coefficients of different 
SPOD modes. 
It should be emphasized that the capability of ANN to extrapolate the signal was tested within the 
competition space in terms of compute time. In this activity, the random search algorithm was 
limited to test 100 random models. The range of values allowed for the number of hidden layers 
were from 6 to 10, layer widths in the range of 10 to 64 and regularization parameters in the range 
10-2 to 10-6. A total of 800 times steps were used for training all models and cases. The total 
compute time was thus kept limited to 11 hours on average for serial random search algorithm, 
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which is larger than that committed to the GP algorithm for the same task. 
A further analysis of the preprocessing method that computes signal trajectories for ANN suggests 
that multiple signal input to the ANN is equivalent to training the network along a high dimensional 
trajectory formed by the signal amplitude values. A closed loop trajectory of the signal is thus 
equivalent to a limit cycle in the dynamical system perspective. For example, it may be suggested 
that compared to the Spectral POD method in [31] the method of filter-based POD [3] preserves 
the requited symmetries in the high dimensional trajectory space, thereby producing signals with 
inherently smoother properties, which makes them better suitable for the ANN algorithm. The 
smoothing of the correlation matrix is not equivalent to filtering of the individual principle time 
coefficients, hence, the use of individually filtered SPOD signals did not significantly improve 
stability of the ANN method for the jet application. Future work will include utilizing the filter-based 
POD algorithm for the LES solution of high Reynolds number jet case followed by the ANN 
algorithm. 
On the Genetic Programming (GP) front, the lack of signal smoothness that proved critical for 
ANNs does not impair the GP capability to return an approximation model. So GP proves to be a 
robust modeling technique provided that primitives are selected properly. In this case addition, 
subtraction, multiplication, sine and cosine allowed for a bounded model to be extrapolated. In 
case of random generation of diverging polynomials, the editing operation was able to ensure 
robustness of the GP search. Moreover, there are no constraints in terms of the number of input 
signals that have to be provided to GP for it to be effective, as it occurs for ANNs.  
Despite the robustness, quality of the generated models appeared to be critically dependent on the 
definition of the fitness function objectives. specifically the balance between model local accuracy 
(RMSE) and statistical properties (variance and mean). In previous experiments, not shown in the 
paper, also the first root and decaying speed of the autocorrelation function were used as 
objectives, but the additional computational cost did not bring any additional advantage so the 
approach was eventually abandoned. The optimal definition of the fitness function objective 
coefficients (weights) as well as the optimal set up of the many hyperparameters are the weak 
point of GP as a modeling tool, which leaves its effective use critically dependent on the user’s 
experience. 
Automatic strategies for hyperparameters optimization are viable, and Random Search as used for 
ANNs could represent a possible approach. Similar to ANN, GP is affected by a resolution 
problem. For example, the SPOD signals were generated for increasing Strouhal numbers, 
meaning that the peak of the spectrum of the principle shifts towards higher frequencies for higher 
Strouhal numbers. At the same time, the number of sampling points in the training data set was 
kept the same (3000), so as a result the number of sampled points per period on average 
decreased for higher frequencies. In other words, the higher the frequency, the fewer the points 
used to reconstruct it for the fixed sampling rate. Hence, the drop in GP quality model from SPOD 
St=0.5 to St=2 may be ascribed to this reduction in resolution, and this behavior is also observed in 
ANNs experiments. Therefore, the key to enable GP to reconstruct high frequency signals is the 
increase of sampling points per period. It is suggested that to correctly reconstruct a signal GP 
needs from 20 to 50 points per period of the time frequency which needs to be captured. Notably, 
previous experiments with band filtering did not show improved results, neither on velocity and 
pressure signals nor SPOD components, Hence, the under performance of GP for high 
frequencies of the SPOD signal cannot be related to the broadband nature of the signal. Therefore, 
the next step in this direction will be to analyze the SPOD signals at a refined sampling rate for 
which an appropriate LES dataset will need to be generated. 
While the GP stochastic nature brings increased robustness to the model in comparison with ANN, 
the same also determines an increase of the quality assessment effort. Evolution implies variability 
of final models, and so the selection of the best model has to be necessarily done manually or 
automatically. If the final application of the model is known, specific and quantifiable  requirements 
and their hierarchy of importance are known, specific objectives can be incorporated in the fitness 
function in order to promote the generation of fit-for-purpose models, as done in this study. 
Alternatively, the final selection might rely on the creation of a Pareto front corresponding to all the 
models generated by GP. Last but not least, it is worth noting that GP provides an explicit 
expression for the reconstructed signal at the end of the GP process, regardless of the empirical 
adjustments used for its generation, which expression can be used as a surrogate model of the 
original turbulent signal. 
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Appendix 

The models generated by HyGP for SP7 mode 0 St=0.1, 0.2, 0.5, 1.0 and 2.0 are reported in the 
following. The computing time requested to evolve the model is also indicated (all experiments were 
run on a laptop computer with linux OS, processor Intel(R) Core(TM) i7-4710HQ 2.50GHz, 2501 
Mhz in sequential mode, so the indicated time is the wall clock time) 

SP7 SPOD mode 0, St=0.1: Run 1, Generation 50 (time = 1284 s)  

Y(Z1) = (6.2132813177e+00 + ((1.5816113444e+00 * (cos(((((1.3521723310e+00 * Z1) - 
(5.8317634022e+00 * Z1)) + (9.8650043832e+00 * (sin((5.8087979615e+00 * Z1))))) + 
(((5.5662596779e+00 * Z1) - (3.2698471150e+00 * Z1)) + (8.4864471317e+00 * 
(cos((1.3284981389e+00 * Z1))))))))) + ((1.1410925588e+00 * (sin(((6.9281489991e+00 * 
(cos((((1.0535105789e+00 * Z1) - (2.9200839133e+00 * Z1)) + ((3.9347628306e+00 * Z1) + 
(7.6717547294e+00 * Z1)))))) * (8.6970827737e+00 * Z1))))) + (1.0000000000e+00 * 
(cos(((((9.8248552517e+00 * Z1) - (3.2263526136e+00 * Z1)) + ((5.1265043393e+00 * Z1) + 
(3.5640234755e+00 * Z1))) + ((((9.2992381900e+00 + (6.2156951133e+00 * Z1)))^1) - 
(6.4269411591e+00 * (sin((3.8683018621e+00 * Z1)))))))))))) 

SP7 SPOD mode 0, St=0.2: Run 4, Generation 50 (time = 1608 s)  

Y(Z1) = (6.3489902274e+00 + (((9.7831494828e-01 * (sin((8.6496650843e+00 * Z1)))) * 
(2.4117795259e+00 * (sin((((9.9552547286e+00 * (sin((5.3926160646e+00 * Z1)))) * 
(1.0001328845e+00 * (sin((1.0990716252e+01 * Z1))))) + (9.2249751253e+00 * 
(sin((1.0071058518e+00 * Z1))))))))) + ((9.7186564817e-01 * (sin(((((1.0156430829e+01 * 
(sin((1.6470705803e+00 * Z1)))) - (((4.8645036779e+00 + (3.2365409302e+00 * Z1)))^1)) + 
(((6.6436008721e+00 + (4.2657790931e+00 * (sin((9.2479876782e+00 * Z1))))))^1)) + 
((((4.6894846547e+00 * Z1) + (2.5877947705e+00 * Z1)) + (2.1958686276e+00 * Z1)) * 
(1.2220579641e+00 * (sin((3.6646869468e+00 * Z1))))))))) - (1.1406041372e+00 * 
(sin((3.3343808250e+00 * Z1)))))))" 

SP7 SPOD mode 0, St=0.5: Run 3, Generation 50 (time = 1632 s)  

Y(Z1) = (5.4773568325e+00 + ((1.1886089006e+00 * (cos((6.5730036615e+00 * 
(cos((((3.7551455443e+00 * (sin((3.6590388299e+00 * (Z1 * Z1))))) + ((((2.4829021118e+00 * Z1) - 
(8.6056615309e+00 * Z1)) - (((2.5819287949e+00 + (1.0999264473e+01 * Z1)))^1)) * 
(((7.7305648311e+00 + (((1.0000000000e+00 + (5.6919515213e+00 * Z1)))^1)))^1))) - 
(((9.3247888150e+00 + (5.7084314549e+00 * Z1)))^1)))))))) - ((1.0000000000e+00 * 
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(sin(((1.0165013835e+01 * (sin((1.0000000000e+00 * Z1)))) * (2.6890803179e+00 * Z1))))) - 
(1.0000000000e+00 * (cos(((7.8306693236e+00 * Z1) + (8.9796782181e+00 * 
(sin((7.2855177977e+00 * Z1)))))))))))" 

SP7 SPOD mode 0, St=1.0: Run 4, Generation 50 (time = 1406 s)  

Y(Z1) = (6.1315496780e+00 + (((1.0000000000e+00 * (sin((7.9577247137e+00 * Z1)))) + 
(1.0000000000e+00 * (sin(((((1.0999975788e+01 + ((9.2976921411e+00 * Z1) - 
(1.1001000000e+01 * Z1))))^1) * ((2.3102626909e+00 * (sin((5.9864785922e+00 * Z1)))) * 
(((1.6233382948e+00 + (1.0000000000e+00 * Z1)))^1))))))) + (1.0000000000e+00 * 
(cos((4.0094577122e+00 * (sin((1.0581024175e+01 * Z1)))))))))" 

SP7 SPOD mode 0, St=2.0: Run 4, Generation 50 (time = 1380 s)  

Y(Z1) = (5.8102261719e+00 + (((2.0965308200e+00 * (cos(((6.8116255137e+00 * 
(sin((2.4128073693e+00 * Z1)))) * (4.1703040938e+00 * (sin((3.6685165274e+00 * 
(sin((1.6094374972e+00 * Z1))))))))))) - (1.4904010879e+00 * (cos((((5.6656835462e+00 + 
(5.7143657353e+00 * Z1)))^1))))) * (1.1264370241e+00 * (cos((8.1142724845e+00 * 
(cos((7.7000794209e+00 * (sin((5.2847809570e+00 * Z1))))))))))))" 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 


