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Abstract: Software-defined networking (SDN) has gained tremendous growth and can be exploited
in different network scenarios, from data centers to wide-area 5G networks. It shifts control logic
from the devices to a centralized entity (programmable controller) for efficient traffic monitoring and
flow management. A software-based controller enforces rules and policies on the requests sent by
forwarding elements; however, it cannot detect anomalous patterns in the network traffic. Due to
this, the controller may install the flow rules against the anomalies, reducing the overall network
performance. These anomalies may indicate threats to the network and decrease its performance
and security. Machine learning (ML) approaches can identify such traffic flow patterns and predict
the systems’ impending threats. We propose an ML-based service to predict traffic anomalies for
software-defined networks in this work. We first create a large dataset for network traffic by modeling
a programmable data center with a signature-based intrusion-detection system. The feature vectors
are pre-processed and are constructed against each flow request by the forwarding element. Then,
we input the feature vector of each request to a machine learning classifier for training to predict
anomalies. Finally, we use the holdout cross-validation technique to evaluate the proposed approach.
The evaluation results specify that the proposed approach is highly accurate. In contrast to baseline
approaches (random prediction and zero rule), the performance improvement of the proposed
approach in average accuracy, precision, recall, and f-measure is (54.14%, 65.30%, 81.63%, and 73.70%)
and (4.61%, 11.13%, 9.45%, and 10.29%), respectively.

Keywords: software-defined networking (SDN); anomaly prediction; OpenFlow; machine learning (ML)

1. Introduction

The global Internet comprises users that are usually connected through thousands
of autonomous systems from different geographical regions. Managing such vast and
intricate systems requires a broad range of services and management applications. How-
ever, implementing versatile applications is time-consuming and introduces complexity in
traditional networking. Moreover, extracting important features for the analysis to detect
traffic anomalies is complicated in traditional networks. In contrast, software-defined
networking (SDN) is a paradigm that provides a clean separation between the control plane
(central plane) and data plane (bottom plane) [1,2]. This separation transforms the physical
network devices into simple forwarding elements. At the same time, the software-based
controller becomes a decision-making entity for the underlying data plane, whereas the
management plane (top plane) enforces different policies. A set of well-defined protocols
or application programmable interfaces (APIs) [3] enable communication within these
planes and among different software-defined networks. The routing decision is shifted to
a centralized controller in SDN [4]; therefore, only programmable switches are used for
routing. Although there are multiple protocols available in the literature (and industry),
OpenFlow [5] is the most widely adopted protocol for SDN to enable communication
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between the control plane and the data plane. A programmable switch makes decisions
based on the guided rules provided by the controller. For example, the switch matches the
packet header with flow entries in the flow table when a new packet arrives and forwards
the packet to the particular port if a rule is satisfied. Alternatively, the packet is either
dropped or forwarded to the controller as a request to install a flow entry on the switch
to transfer the packet [6]. Programmable networks have become an indispensable feature
of most modern-day networks, including the Internet of things (IoT) and 5G networks [7].
The anomaly detection problem requires attention not only in computer networks but
also in energy and power industries. Moreover, cyberattacks on the IoT [8], which is
complex system of wireless sensors networks and traditional networks [9], require learning-
based solutions.

The architectural constraints of SDN limit the forwarding elements to completely
follow the control plane decisions [10]. Although this is the intended purpose, the localized
network traffic analysis and decision making for anomalous behavior are ignored in the
current controllers. Hence, the controller may install the flow rules against anomalous
traffic. Anomalies can be analyzed and removed manually; however, this becomes imprac-
tical for dynamic environments. To this end, offline analysis implemented as flow rules
for future traffic classification can be used, but these do not offer protection against new
anomalies or automated run-time analysis and implementation.

Traffic anomalies may be categorized into different severity levels by using various
tools, e.g., Snort. Anomalies of any severity levels should be identified before the controller
installs flow entries. To avoid the installation against irregularities, a machine learning-
based traffic anomaly prediction can improve the controller’s and SDN’s performance in
general. Several approaches have been proposed for traffic-related activities, e.g., normal
activities identification [11], intrusion detection [12], and anomaly detection [13], based
on global network view, centralized control, dynamic flow installation, programmability,
and software-based traffic analysis. Global network view and programmability help
to analyze network traffic to find anomalies and react against the identified anomalies.
Although different approaches perform traffic anomaly detection by using the network
history data, to the best of our knowledge, none of them performs automatic traffic anomaly
prediction to avoid anomalies from the live flow of traffic by using machine learning
techniques to make the network secure.

In this work, we propose a machine learning-based approach for predicting traffic
anomalies in SDN where a machine learning classifier is attached to the SDN controller.
This classifier helps the SDN controller to provide information about the anomalies in
the network traffic. In response, the SDN controller installs the flow rules against normal
traffic, whereas it does not install flow rules for abnormal traffic. For this purpose, we
first use Mininet [14] and a signature-based intrusion-detection system (i.e., Snort) [15] to
build a large dataset with OpenFlow traffic, containing normal and abnormal requests. We
preprocess the attributes (features) of requests, and then feature vectors are constructed
against each flow request. Subsequently, we input the feature vector of each anomaly into a
machine learning classifier for training. Finally, the holdout cross-validation technique is
adopted to evaluate the proposed approach. The major abbreviations used in this paper
are presented in Table 1.
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Table 1. Major acronyms used in the paper.

Acronym Description

API Application Programmable Interface

BN BayesNet

DDoS Distributed Denial of Service

DT Decision Tree

GNN Graph Neural Network

GRU-RNN Gated Recurrent Unit Recurrent Neural Network

GRU-LSTM Gated Recurrent Unit Long Short Term Memory

HAA Hierarchical Adversarial Attack

HMM Hidden Markov Model

ICMP Internet Control Message Protocol

IP Internet Protocol

KNN K-Nearest Neighbor

LR Linear Regression

MAP-SDN Machine Learning-Based Anomaly Prediction in SDN

MNB Multinomial Naive Bayes

NB Naive Bayes

NIDS Network Intrusion Detection Systems

PCAP Packet Capture

RF Random Forest

RPA Random Prediction Algorithm

SDN Software Defined Networking

SVM Support Vector Machine

TCP Transmission Control Protocol

UDP User Datagram Protocol

ZRA Zero Rule Algorithm

The main contributions of this work are as follows.

• The machine learning-based approach is proposed for an automatic anomaly predic-
tion for SDN (annotated as MAP-SDN).

• MAP-SDN helps the SDN controller to identify the network anomalies.
• It helps the SDN controller to install the flow rules for normal traffic; however, no flow

rules are installed for abnormal traffic.
• The evaluation results specify that MAP-SDN is accurate and its average accuracy,

precision, recall, and f-measure are 95.27%, 98.70%, 98.45%, and 98.57%, respectively.

The rest of the paper is organized as follows: The background information and related
works in machine learning anomaly detection are presented in Section 2. The proposed
approach of MAP-SDN is introduced in Section 3. The procedure to evaluate and discussion
on results is given in Section 4. Section 5 concludes the paper and suggests future directions.

2. Background and Related Works

In this section, we first briefly introduce the baseline technologies and architectures,
followed by the existing research works in anomaly detection for programmable networks.
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2.1. Intrusion and Anomaly Detection in SDN

SDN paradigm provides a centralized and unified control by breaking the network
into the control plane and data plane, as illustrated in Figure 1. In the multi-layered
architecture of SDN, devices are managed and programmed by the controller in the control
plane. Notably, southbound interfaces (protocols) enable communication between the
control and data planes. A management plane enforces various network policies and
programs. Some of the base functions of an SDN controller are also shown in Figure 1.
The topology manager maintains the topology information based on the devices’ link
information. The device manager keeps the information of underlying elements with the
help of Packet_IN requests and identifies the uniqueness of devices by using MAC address
and VLAN. The routing and forwarding function is responsible for installing flow rules
on forwarding elements. The proposed module integrated with base network functions to
mitigate anomalous flow installation from abnormal traffic requests is that MAP-SDN is
the proposed module integrated with base network functions.
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SDN Controller
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Figure 1. Layered view of SDN Architecture.

Network intrusion-detection systems (NIDS) are usually adopted to detect anomalies
in traffic to determine if unwanted (malicious) packets are flowing into the network [16].
NIDS can be classified into two types; anomaly-based detection (e.g., PHAD [17]) and
signature-based detection systems (e.g., Snort [15]). Anomaly-based detection systems
look at network traffic to detect incorrect or abnormal activities. The major drawback of
anomaly-based detection systems is that these systems cannot analyze custom protocols.
In contrast, signature-based detection systems follow a proactive approach, use pattern-
matching techniques, and analyze custom protocols. Signature-based detection systems are
very simple to implement and have high accuracy and low false-positive rates compared to
anomaly-based detection systems.

Anomaly detection in SDN has been mostly done through additional modules at the
controller or specialized applications in the management plane. RAD [18] is an external
application that runs in a management plane and provides an agile system for anomaly
detection in SDN. It has several modules for traffic capturing and rule generation; how-
ever, the anomalies are detected by using Snort. Similar to RAD, Luiz et al. [19] proposed
an ecosystem that tries to detect and mitigate anomalies in real time. It uses a traffic
statistic collection module to monitor network traffic and extract information which in-
cludes source and destination IPs, source and destination ports, packets, and bits. In the
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anomaly-detection module, it uses two monitoring phases. In the first phase, it observes
and compares traffic behavior to expected or normal behavior. If it finds any deviation,
ostensible monitoring is launched in the second phase to identify the anomalies. In the case
of anomalies, a mitigation module may perform several actions, including drop packet,
change packet routing, and exclude anomalous flow entries. Both solutions are based on
comparing the traffic to an existing traffic profile. Hence, for high-diversity traffic, the ef-
ficiency of such systems drops. Moreover, there is no earning process, so new anomalies
cannot be detected.

2.2. Anomaly Detection in SDN by Using Machine and Deep Learning

The use of machine learning in SDN has been studied by Xie et al. [20] for various
purposes. Nanda et al. [21] present a comparison between four machine learning algorithms
(i.e., C4.5, Decision Table (DT), BayesNet (BN), and naive Bayes (NB)) for detecting network
attacks. Their results indicate that BN performs better than the rest of the algorithms.
Wang et al. [11] proposed a behavior-based SVM to categorize normal and intrusion traffic.
In [22], the authors present a model that uses signature-based Snort IDS to detect anomalies
in the SDN environment. A threat-aware system for intrusion detection is proposed
in [23], which has three major subsystems: data preprocessing, predictive data modeling,
and a decision-making and response subsystem. The data preprocessing subsystem is
used to extract and select appropriate features. The predictive data modeling subsystem
implements decision tree and random forest algorithms to predict intrusions. In contrast,
the decision-making and response subsystem is used to install flow rules for different types
of flows.

Hurley et al. [24] proposed another NIDS by using hidden Markov models [25]. HMM
are trained by using the Baum–Welch algorithm and use source and destination IP and
port and length of the packet as selected features. ATLANTIC [26] is another approach
for detecting, classifying, and mitigating some anomalies. It uses information theory to
calculate deviations in the entropy of flow tables and a machine learning algorithm based
on SVM to analyze and classify flows according to their abnormal behavior.

Aleroud et al. [27] categorized anomalous events into three groups: attacks on the
SDN control plane, compromising data and control plane communication, and threats for
data plane elements. To detect distributed denial of service (DDoS) attacks, Barki et al. [28]
proposed a new IDS in an SDN controller which uses the signature-based IDS that uses
various algorithms (e.g., naive Bayes, KNN, K-means, and K-medoids) to classify normal
and abnormal traffic. Similarly, work in [12] discusses various machine learning techniques
for DDoS and intrusion prevention in SDN and provides a comparison between these
techniques. Similar attacks are detected with the help of machine learning techniques
in [29] where authors use SVM, NB, KNN, RF, and LR.

Although the works mentioned above use machine learning algorithms for anomaly
detection, most of them only detect the attack pattern. Moreover, few approaches use IDS
as part of the system. The proposed work differs from them as it avoids third-party tools
and suggests an automatic approach by which to detect abnormal traffic to secure SDN.

Deep learning techniques have also been applied to SDN recently for feature learn-
ing [30]. Tang et al. [31] propose an IDS based on a gated recurrent unit recurrent neural
network (GRU-RNN) with 89% accuracy with six raw features of flow statistics. In [32],
authors exploit an autoencoder and LSTM-based deep learning approach to handling
flow-based DDoS attacks in SDN. Dey et al. [33] used gated recurrent unit long short-term
memory (GRU-LSTM) for the flow-based anomaly detection and implemented ANOVA
F-test, recursive feature elimination, and feature selection methods. The results show an
accuracy of 87% with the NSL KDD dataset with a very low false alarm rate which is 0.76%.
Dawoud et al. [34] performed anomaly detection by adding an IDS module in the SDN
controller and using TensorFlow as a deep learning library. Tang et al. [35] proposed a
network intrusion-detection system implemented in the controller by using network status
information. It shows that by reducing the learning rate, the loss reduces and accuracy
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increases. These deep learning solutions also incorporate IDS at different levels and require
significant improvement to work efficiently in real time. The proposed approach differs
from them as it does not require an IDS as part of the running system. Graph-based deep
learning is another emerging technology that is applied in wired and wireless commu-
nication networks [36]. In [37], authors propose a new hierarchical adversarial attack
(HAA) mechanism by using the graph neural network (GNN). The proposed approach
can examine the generality and robustness of NIDS for IoT applications. Similarly, authors
in [38] propose E-GraphSAGE, which is also a GNN-based approach. It can capture the
edge features of the graph and topological information for NIDS in IoT networks.

3. Proposed Approach (MAP-SDN)

This section presents the details of the machine learning-based anomaly prediction for
the SDN (MAP-SDN) scheme. The proposed scheme identifies the traffic anomalies for SDN
and classifies them into two fundamental categories: normal or abnormal. It allows the
SDN controller to install flow entries for normal traffic, whereas it avoids abnormal traffic.
It is important to note here that abnormal traffic can be further classified into different
severity levels, and accordingly, different policy actions can be taken. For simplicity, we
only use two classification levels in the following mathematical representations.

Let a packet p from a set of network packets P be represented as

p =< r, s >, (1)

where r represents the set of attributes of p, and s is an assigned priority to p. In SDN,
the first packet of a new flow trims a Packet_In message against which a flow is in-
stalled [6]. Here, p is such a packet that will trigger a Packet_In message from the switch to
the controller.

Here, MAP-SDN performs anomaly classification of a new packet p either as normal or
abnormal. This classification into category c can be represented as a function f , such that,

c = f (p) (2)

c ∈ {normal, abnormal}, p ∈ P, (3)

where c is the classification result (i.e., normal or abnormal), f is a categorizing function,
p is an input packet of the function, and P is a set of packets.

For anomaly prediction, we generate traffic on an edge-core network to collect the
(PCAP) files generated by each network element. Although the overview of MAP-SDN
workflow is shown in Figure 2. Algorithm 1 presents the process of anomaly prediction
that takes PCAP as an input and returns a machine learning-based classifier for network
traffic anomaly prediction.

Algorithm 1 Network Traffic Anomaly Prediction

1: procedure ANOMALY_PREDICTION(PCAP)
2: Read PCAP files
3: Pass PCAP files to Snort for their structural information as an output (alert_full) for

each PCAP file
4: for each alert_full i in PCAP do
5: Preprocess i to extract packets’ information, i.e., source & destination IPs, source &

destination ports, and protocol type
6: Consturct vector for each PCAP file against its preprocessed information
7: end for
8: Given the constucted vectors, train a Machine Learning-based Classifier (MLC)
9: Return MLC

10: end procedure
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Figure 2. Overview of the proposed approach where dashed lines represent data to/from processes,
and solid lines represent process-to-process communication.

The following sections explain each of the key steps of MAP-SDN.

3.1. Data Acquisition

To construct the dataset of traffic anomalies, we design an edge-core-based topology
as shown in Figure 3. It is important to note that the available dataset is not enough to train
the classifier. We have used the datasets from [39]; however, most datasets have an uneven
distribution of normal and abnormal traffic. Therefore, we have augmented this dataset
with a synthetic dataset by using the following process. The topology (shown in Figure 3)
consists of backbone (core) part and edge part, where switches S1–S4 act as backbone and
S5–S12 act as edge switches which provide connection to hosts H1–H16.
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Figure 3. Topology used to generate an extensive synthetic dataset for training of classifier. Core:
S1–S4, Edge: S5–S12, and Hosts: H1–H16.

In order to generate a variety of traffic patterns, we use Iperf [40] and hping3 [41] and
obtain the PCAP files from each of the edge elements. Then, we use Snort to extract data
from these files based on a pre-defined rule database for data extraction. The major reason
to use Snort is to obtain the severity of the abnormal traffic. We input PCAP to Snort to
generate full packet headers by using the alert_full configuration plugin. Although Snort
has many pre-defined rules, it also supports user-defined rules. We define our own rule to
extract data from our network topology. An example defined rule is given as

alert P_type Sip Sport → Dip Dport

(Mtext; ID; Ctype; R; ),

where alert is a rule action which generates an alert when the set condition is met, Ptype is a
required protocol (TCP, UDP, or ICMP) on which Snort generates alerts, Sip is a source IP
of ith host, Sport is a source port, arrow (→) is a representation of direction from source to
destination, Dip is a destination IP of ith host, Dport is a destination port, Mtext represents a
message with Snort alert, ID represents Snort rule ID, Ctype is a predefined Snort category
which helps with rule organization, and R is the default priority of the classification that
can be modified by using a priority keyword inside the rule options. Notably, the use of
any keyword for Sip, Dip, Sport and Dport generates alerts from any IP or port. The output
of Snort is a structured text file against the given rule. This output is shown in Figure 4. It is
worth mentioning that the main objective of this paper is to enable the SDN controller to
classify normal and abnormal traffic. In addition, it helps the SDN controller not to install
flow rules against abnormal traffic.
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Figure 4. The output of Snort as a structured file.

3.2. Preprocessing

The Snort output contains some repetitive parameters, e.g., message_text, class_type, etc.
as shown in Figure 4. Such repetitive parameters of the output are overhead for feature
modeling. Therefore, we pre-process the structured file to extract the useful attributes
only. This is achieved by using a custom Python script that separates each attribute of
each output file. It extracts the required parameters, i.e., (class_type, priority, time, source
IP, and destination IP, source port, destination port, protocol_type, datagram length, time
to live (TTL), IP length, and datagram length), avoids the repetitive parametric values,
and stores them.

After preprocessing, a packet p is represented as

p =< r′, s > (4)

r′ =< a1, a2, a3, . . . , al >, (5)

where r′ and l is a set of preprocessed selected attributes a1, a2, a3, . . . , al of each packet from
the Snort output, and length of attributes, respectively. Note that ai is an 〈attribute, value〉 pair.

3.3. Feature Modeling

We create a high-dimensional feature matrix where each packet represents a row and
a1, a2, a3, . . . , an represent the columns of the matrix, respectively. A feature vector of a
packet p can be formalized as

p =< f1, f2, f3, . . . . . . , fl) >, (6)

where f1, f2, f3, . . . . . . , fl and l represent the feature set of each packet and length of features,
respectively.

To populate the feature matrix, we define a rule to assign the feature values to fi.
The rule assigns the vi value (extracted from ai) to fi if found, otherwise marked 0. The con-
ditions used to mark the values to the feature can be represented as

fi(p) =

{

0, i f vi 6∈ r′

v, i f vi ∈ r′,

where fi represents the feature set of each p.

3.4. Training of the Model

MAP-SDN uses the random forest (RF) classification algorithm (which is a tree-based
algorithm) for the prediction of traffic anomalies. In this model, several (decision) trees are
built, and the output of the trees is aggregated to increase the generalizability. This process
is an ensemble method that combines weak learners (i.e., individual trees) to produce
a strong learner [42]. Here, the RF classifier is defined as a collection of tree-structured
classifiers g(x, θk), k = 1, . . . , where θk represents independent, identically distributed
random vectors (i.i.d) and every tree outputs a single vote for the most popular class at
input. Initially, n packets are randomly picked from the dataset, and decision trees are
constrained accordingly. Following this, every tree individually predicts traffic anomaly.
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Finally, a c is suggested to each new packet p considering the majority votes of c collected
from the decision trees.

Let P = pi, p2, . . . , pn represents the training dataset having n training samples. Af-
ter the preprocessing and feature modeling of P, each pi has a list of attributes ( f1, f2, . . . , fm),
where m is the length of the features. A decision is constructed for each training sample.
The model selects the most significant attributes to build the decision trees. Note that RF
randomly selects the attributes where the selected attributes should be less than m. To this
end, it uses gini index that can be presented as,

gini( f j) = 1 − ∑[Fj]
2 (7)

ginisplit =
m

∑
f=1

np

n
gini( f j), (8)

where, Fj and np are the relative frequency of jth attribute f j and randomly selected training
samples among total training samples n. ginisplit constructs the decision trees and leads all
of them as the tree’s root node.

4. Evaluation and Analysis

In this section, we first develop the research questions needed to be evaluated to
establish the efficiency of MAP-SDN. Following this, we describe the evaluation criteria
and the collected results with their analysis. Finally, we present the threat to validation for
the proposed scheme to ensure the repeatability of the proposed approach.

4.1. Research Questions

The evaluation investigates the following research questions:

• RQ1: How accurate is MAP-SDN in anomaly prediction for SDN?
• RQ2: Does RF surpass other off-the-shelf algorithms?
• RQ3: Does pre-processing influence the performance of MAP-SDN? If yes, to what extent?

The RQ1 is constructed to investigate the accuracy of MAP-SDN. It compares MAP-
SDN with two baseline prediction algorithms, i.e., the random prediction algorithm (RPA)
and the zero rule algorithm (ZRA). These algorithms are considered a baseline approach in
the literature when working on a unique problem. We also set up an environment by using
a simulation tool to evaluate the performance of MAP-SDN.

The RQ2 compares the performances of different machine learning algorithms. This
comparison reveals whether RF outclasses the off-the-shelf algorithms in predicting traf-
fic anomalies.

The RQ3 investigates the impact of preprocessing by comparing the performance of
MAP-SDN with and without preprocessing of the dataset.

4.2. Dataset and Metrics

Using the topology and data generation steps described earlier, different hosts of
Figure 2 use Iperf and hping3 to generate realistic traffic patterns. The generated dataset
contains 101,336 samples in which 70.28% are normal activities and 27.71% are abnormal
activates. Note that we use the realistic traffic only to create the dataset instead of passing
realistic traffic to the proposed approach. Because we used the proposed approach on
sample data, which is not very extensive, we did not find any significant overhead of
time consumption or time complexity. However, we can explore the time complexity in
the future.

The evaluation metrics used to evaluate MAP-SDN in this work are accuracy, precision,
recall, and f-measure. These matrices have been extensively used in the literature and are
recommended for machine learning classification problems [43–45]. The formulas used to
calculate each one are given below:
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accuracy =
TP + TN

TP + TN + FP + FN
,

precision =
TP

TP + FP
,

recall =
TP

TP + FN
, and

f−measure =
2 × precision × recall

pecision + recall
.

Here, TP are the truly predicted samples as normal from Ptr, TN are the truly predicted
samples as abnormal from Ptr, FP are the incorrectly predicted samples as normal from Ptr,
and FN are the incorrectly predicted samples as abnormal from Ptr.

4.3. Evaluation Process

To evaluate MAP-SDN, we first exploit the PCAP file by using edge-core-based topol-
ogy and Snort to extract the data from network. Then, we pre-process the extracted data
to extract the required attribute mentioned in Section 3.2. Next, hold-out validation is
performed on P that splits P into 80–20%. We use 80% of all packets as training set Ptr,
whereas 20% of remaining packets are used as testing set Pte. Notably, we split Pte into ith
combinations notated as mi(i = 1, . . . , 4) where m1, m2, m3, and m4 contain 5%, 10%, 15%,
and 20% packets out of total pte, respectively.

For each pi, the following process is applied.

1. We select the training set Ptr and train the naive Bayes (NB), multinomial naive Bayes
(MNB), linear regression classifier (LR), random forest classifier (RF), support vector
machine (SVM), and decision tree (DT) classifiers on Ptr.

2. Then, for each ith sample from testing set Pte, we predict the traffic anomalies by using
trained classifiers (NB, MNB, LR, RF, SVM, and DT, respectively).

3. Finally, we calculate and compare the performances of all classifiers by using the
evaluation metrics, i.e., accuracy, precision, recall, and f-measure.

4.4. Analysis of Results

4.4.1. RQ1—Accuracy of MAP-SDN

We compare the proposed MAP-SDN with two baseline algorithms (RPA and ZRA)
to investigate RQ1. Notably, these are the baseline approaches to verify the accuracy of
MAP-SDN. The reason for choosing these algorithms as benchmarks has already been
discussed in Section 4.1.

The evaluation results of MAP-SDN, RPA, and ZRA are presented in Table 2. The test-
ing iterations i are presented in the first column, followed by the accuracy, precision, recall,
and f-measure of each classifier individually. The last row of Table 2 presents the average
results of the classifiers. We present the f-measure distribution of hold-out cross-validation
of MAP-SDN, RPA, and ZRA in Figure 5. It contains a bean of each approach for f-measure
results, where each bean contains small horizontal lines against i cross-validations and a
long horizontal line against the average of cross-validations.

Table 2. Comparison against baseline approaches.

Proposed Approach RPA ZRA

Testing Samples Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure Accuracy Precision Recall F-Measure

Latest 5% 95.29% 99.26% 98.46% 98.86% 60.00% 57.49% 51.65% 54.42% 88.58% 84.92% 85.84% 85.37%
Latest 10% 95.34% 98.83% 98.39% 98.61% 61.00% 67.89% 56.62% 61.74% 91.82% 82.58% 85.84% 84.18%
Latest 15% 95.21% 98.55% 98.57% 98.56% 61.97% 53.29% 54.32% 53.80% 93.44% 95.93% 95.73% 95.83%
Latest 20% 95.25% 98.16% 98.36% 98.26% 64.25% 60.18% 54.22% 57.04% 90.46% 91.84% 92.38% 92.11%

Average 95.27% 98.70% 98.45% 98.57% 61.81% 59.71% 54.20% 56.75% 91.07% 88.82% 89.95% 89.37%
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Figure 5. Accuracy distribution of MAP-SDN compared to RPA and ZRA.

From the Table 2 and Figure 5, we notice the following:

• The MAP-SDN performs better than the RPA and ZRA in accuracy, precision, recall,
and f-measure.

• In contrast to RPA, the performance improvement of MAP-SDN in accuracy, precision,
recall, and f-measure is 54.14% = (95.27% − 61.81%)/61.81%, 65.30% = (98.70% −
59.71%)/59.71%, 81.63% = (98.45% − 54.20%)/54.20%, and 73.70% = (98.57% −
56.75%)/56.75%, respectively.

• In contrast to ZRA, the performance improvement of MAP-SDN in accuracy, preci-
sion, recall, and f-measure is 4.61% = (95.27% − 91.07%)/91.07%, 11.13% = (98.70% −
88.82%)/88.82%, 9.45% = (98.45%− 89.95%)/89.95%, and 10.29% = (98.57%− 89.37%)/89.37%,
respectively.

• The average performance of MAP-SDN is better than the highest performances of RPA
and ZRA as shown in Figure 5.

Moreover, we notice that MAP-SDN computes a few false positives and false neg-
atives. The reason for this misclassification could be the use of Snort to construct the
dataset. However, in the future, we will investigate the details to figure out the measures to
reduce misclassification.

In order to further analyze the performance of MAP-SDN, we determine the sig-
nificant differences between MAP-SDN, RPA, and ZRA. To this end, we first perform a
one-way analysis of variance (ANOVA) and then confirm the result of ANOVA by ap-
plying the Wilcoxon test. Notably, we perform ANOVA and Wilcoxon tests with default
settings in Excel and Stata, respectively. The f-ratio value and p-value of ANOVA are
45.16 and 1.79 × 10−5, whereas the p-value of Wilcoxon test is 1.57 × 10−3. Both ANOVA
and Wilcoxon test confirms that the factor (using different approaches) has a significant
difference at p < 0.05.
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Real-time Accuracy of MAP-SDN: We perform an experiment to check the real-time
accuracy of MAP-SDN. We exploit the Mininet simulation tool to setup our topology
(shown in Figure 3). In the topology, H1 forward anomaly traffic to victim host H5 and at
the same time, host H2 sends normal traffic to host H9. To compare the results of MAP-SDN,
we use Floodlight [46] in control plane as SDN controller and alternatively include Snort
and MAP-SDN as anomaly detection tool. The MAP-SDN is working as an application
of Floodlight controller. The Floodlight controller interacts with the MAP-SDN before
installing the flow rules.

We develop an external application to extract the controller’s device-level information,
build a global view of the whole network, and mark all possible paths from source to
destination. Several pre-defined rules are placed in Snort database as a signature to
detect anomalies. Based on these rules, Snort decides whether traffic is suspicious or not.
To mitigate the suspicious traffic from the network, Snort matches source IP, destination
IP, source port, and destination port with pre-defined rules. This matching results in a
priority-based output which is further used by the application. In the case of anomalies,
the application installs a flow on the source switch to drop all the packets from the attacker
host. On the other hand, we replace the application and Snort with MAP-SDN to check the
accuracy of the proposed approach. The results of both scenarios are shown in Figure 6.
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Figure 6. Real-time Performance Comparison of MAP-SDN. (a) Bandwidth with/without anomaly
traffic. (b) Data transfer with/wihtout anomaly traffic.

From the Figure 6a,b, we notice the following:

• MAP-SDN has a significant difference in performance against application using Snort
in bandwidth and data transfer scenarios.

• The detection and mitigation time in both (bandwidth and data transfer) is very
high. Figure 6b represents data transferred that increases from 20 GB to 35 GB after
mitigating anomalies. Similarly, Figure 6a represents bandwidth that significantly
increases from 2.5 Gbps to more than 4 Gbps. The jump in both figures at the 40-s
mark is due to the normal flow rules.

• MAP-SDN detects the anomalies early and significantly improves the bandwidth uti-
lization and data transfer rate by avoiding flow installation against anomalous traffic.

The initial analysis concludes that MAP-SDN accurately predicts SDN traffic anomalies.

4.4.2. RQ2—Performance Comparison of Off-the-Shelf Algorithms

We leverage widely adopted classification algorithms (MNB, LR, RF, and SVM) due to
their competitive performance [43–45,47] to investigate RQ2.

The evaluation results of MNB, LR, RF, and SVM are presented in Table 3. The accu-
racy, precision, recall, and f-measure of each classifier are presented in the columns 2–5,
respectively. From Table 3, we notice the following:

• RF yields the most accurate results. RF outperforms MNB, LR, and SVM in accuracy,
precision, recall, and f-measure, respectively. The reason is that RF achieves better
results due to its degree of freedom.
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• MNB surpasses LR and SVM and its performance is very close to the proposed
classifier RF.

The preceding analysis concludes that the results of MAP-SDN are significantly better
with RF classifier.

Table 3. Comparison against off-the-shelf classifiers.

Approach Accuracy Precision Recall F-Measure

RF 95.27% 98.70% 98.45% 98.57%
MNB 94.49% 94.53% 99.30% 96.85%
LR 93.12% 93.96% 98.27% 96.06%
SVM 90.27% 91.75% 84.46% 87.94%

4.4.3. RQ3—Influence of Preprocessing

To investigate RQ3, we compare the results of MAP-SDN by enabling and disabling
preprocessing. The evaluation results of MAP-SDN on different settings for preprocessing
are presented in Table 4. The accuracy, precision, recall, and f-measure of MAP-SDN are
presented in the columns 2–5 of table, respectively. The performance of MAP-SDN on
different settings for preprocessing is presented in the rows of Table 4, respectively. The last
row presents the improvement percentage in performance with preprocessing.

From Table 4, we make the following observations:

• MAP-SDN performs significantly better when preprocessing is used. The results show
that the performance improvement in accuracy, precision, recall, and f-measure is
2.07% = (95.27% − 93.34%)/93.34%, 3.20% = (98.70% − 95.64%)/95.64%, 3.95% =
(98.45% − 94.70%)/94.70%, and 3.57% = (98.57% − 95.17%)/95.17%, respectively.

• Without preprocessing, the performance of MAP-SDN is significantly impacted.
One possible reason for the decrease in performance is that, without preprocessing,
the model may include unwanted features.

The preceding analysis concludes that the preprocessing of the SDN traffic packets is
an essential step for MAP-SDN.

Table 4. Influence of preprocessing.

Preprocessing Accuracy Precision Recall F-Measure

Enabled 95.27% 98.70% 98.45% 98.57%
Disabled 93.34% 95.64% 94.70% 95.17%

Improvement 2.07% 3.20% 3.95% 3.57%

4.5. Threats to Validity

The chosen metrics (accuracy, precision, recall, and f-measure) for evaluating MAP-
SDN could be a threat to construct validity. The reason to choose these metrics is their
popularity and performance for the machine learning classification problems [43–45].

The leverage of Snort to identify the anomalies in SDN traffic could be another threat
to validity. To the best of our knowledge, Snort is the only tool that semi-automatically
identifies traffic anomalies. The usage of other tools could affect the performance of
MAP-SDN.

Another threat to construct validity is related to the generated dataset. The dataset
with additional parameters (generated by other IDS tools) or the usage of other available
datasets could improve the performance of MAP-SDN.

The abstraction of MAP-SDN could be a threat to external validity. We designed our
topology and generated the dataset by using different tools. The generalized dataset for
SDN traffic may affect the performance of MAP-SDN.

Another threat to external validity is a small dataset. Therefore, we use traditional
machine learning algorithms to evaluate the proposed approach. Another reason for
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selecting a machine learning classifier is that deep learning algorithms mostly require
significant training data.

5. Conclusions

The anomalies in SDN traffic are critical for the efficiency and security of programmable
networks. Automatic identification of traffic anomalies in SDN could improve the perfor-
mance and protect the network, the control plane, and the end hosts. To this end, in this
paper, we proposed a machine learning-based approach for predicting traffic anomalies in
SDN. The proposed approach preprocesses the data samples from a specially generated
dataset and a signature-based intrusion-detection system. A feature vector is constructed
against each sample, and subsequently, based on these feature vectors, a machine learning
classifier is trained to predict traffic anomalies. Finally, the hold-out validation technique
is utilized to evaluate the proposed approach. The evaluation results indicate that the
proposed approach (PCAP) does not accurate against the baseline approaches (zero rule
algorithm and random prediction algorithm), but also outperforms the other well-known
machine learning algorithms (linear regression, support vector machine, and multinomial
naive Bayes) for classification.

In the future, we will extend this work to identify the minor false positive, and false
negative results observed, as well as improve the dataset along with the classification pro-
cess. It will also be interesting to expand the anomaly classification to a higher granularity
and allow more control policies accordingly. It would be interesting to find the impact
of higher granularity and allow more control policies for network traffic anomaly predic-
tion. Exploring such features from an average dataset length would help deep learning
approaches improve performance.
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