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Abstract

Optical coherence tomography angiogra-

phy (OCTA) has successfully demon-

strated its viability for clinical applications

in dermatology. Due to the high optical

scattering property of skin, extracting

high-quality OCTA images from skin tissues requires at least six-repeated scans.

While the motion artifacts from the patient and the free hand-held probe can lead

to a low-quality OCTA image. Our deep-learning-based scan pipeline enables fast

and high-quality OCTA imaging with 0.3-s data acquisition. We utilize a fast scan-

ning protocol with a 60 μm/pixel spatial interval rate and introduce angiography-

reconstruction-transformer (ART) for 4� super-resolution of low transverse reso-

lution OCTA images. The ART outperforms state-of-the-art networks in OCTA

image super-resolution and provides a lighter network size. ART can restore

microvessels while reducing the processing time by 85%, and maintaining

improvements in structural similarity and peak-signal-to-noise ratio. This study

represents that ART can achieve fast and flexible skin OCTA imaging while main-

taining image quality.
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1 | INTRODUCTION

THE skin microvasculature stores a large quantity of
information on both cutaneous and systemic disorders [1].
Optical coherence tomography angiography (OCTA) is a
noninvasive imaging modality, which is capable of pro-
viding vascular images at capillary-level resolution and
can assist to identify disease by assessing the distribution

of the vasculature rather than based on structural
images [2]. In recent years, microvascular images pro-
vided by OCTA have proven to be of clinical important
evidence in various skin diseases, such as acne [3],
inflammatory disease (e.g., papule) [4], basal cell carci-
noma, [5] actinic keratosis [6], and wound healing [7].
The lessons learned in the clinic are currently spurring a
new set of advances in the laboratory that will expand
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the clinical use of OCTA by improving image quality and
increasing acquisition speeds.

A commonly used method of generating OCTA scan
is to acquire immediate succession changes of intensity
over times of optical coherence tomography B-scans at
the same location. The traditional OCTA extraction algo-
rithms are based on the difference in phase-signal [8],
intensity-signal [9], and complex-signal [10]. Since the
connectivity of the microvasculature and the signal-
to-noise ratio (SNR) of the OCTA images were directly
proportional to the repeated number of OCT scans. Inad-
equate repeated time will deliver a high-level speckle
noise [11]. In ophthalmology, a two-repeated scan is typi-
cally sufficient to produce high-quality retina OCTA
images. However, in the case of skin OCTA scans, due to
the intricate structure of the skin, a six-repeated scan
strategy is necessary to strike a good compromise
between the SNR and data acquisition time [12]. Never-
theless, with a 200 kHz A-scan rate swept-source-OCT
scan device, the data acquisition time for a six-repeated
OCT scan with 6 mm2 FOV and 15 μm/pixel transverse
resolution is �7 s. Within those 7 s, the unexpected
motion artifacts from the patient's movement are highly
increased and lead to a low-quality OCTA image when
applying an in vivo hand-held based OCTA scan in der-
matology [13]. It is not effective if only increasing the
swept rate of the light source at the data acquisition
stage. Since the speckle noise will be increased with a
shorter exposure time. Reducing the spatial sampling rate
of the OCTA scan and recovering the high transverse res-
olution OCTA images from the low transverse resolution
images by the neural network-based method can achieve
a fast OCTA scan and maintain the six-repeated scan for
skin application.

Alternatively, sparse representation matrix can
recover the high-transverse resolution OCT structural
image based on the low transverse images, but those
methods require a complicated design of the regularizes
for specific OCT data and are not suitable for OCTA
applications because the capillaries flow signals are
extracted from the reflected scattered signal of the red
blood cells [14, 15]. Although prediction based algo-
rithms (e.g., bicubic) are the extensive and fast methods
to upsample the transverse resolution of the OCTA
images, which had high applicability [16, 17], the quality
of the upsample OCTA image from the prediction-based
algorithms is unsatisfactory and the texture details
(i.e., high-frequency signals) were lost.

A series of deep-learning-based methods were pro-
posed to reconstruct the high-quality OCTA images based
on the two-repeated OCT signals [18–20]. Those methods
have achieved good results in OCTA image reconstruc-
tion while reducing the data acquisition time, but the

data was acquired from the mice, which has a different
domain from the skin OCT data. Furthermore, it is still
challenging to extract the skin microvascular images
from a two-repeated in vivo OCT signal. Regarding the
single-image super-resolution (SISR) in the OCT data, a
series of convolution neural network (CNN) models have
proposed to super-resolve the OCT structural image reso-
lution acquired by a low-spatial sampling rate, such as
the U-Net [21] and SRResNet [22, 23]. However, these
methods were specifically designed for super-resolving
OCT structural images and thus, are not optimally suited
for OCTA images. On the other hand, Kim et al. [24]
demonstrated fast (�1.3 s) OCTA imaging by employing
a CNN-based DenseReconstGAN to super-resolve low-
resolution OCTA images. While CNN-based methods
have shown competitive results in SISR for OCT, they
inherently rely on the convolution operation, which
restricts the receptive field (e.g., 3 � 3) and presents chal-
lenges in learning long-term information [25].

To facilitate the speed of in vivo skin OCTA scan and
reduce the motion artifact, and maintain the six-repeated
OCT scan, we propose an angiography reconstruction
transformer (ART) to recover the high transverse resolu-
tion OCTA images from the low transverse resolution
counterparts. The ART is based on the self-attention
mechanism [25], which can provide long-term informa-
tion and a large receptive field for feature extraction. In
terms of the scan protocol, the FOV was maintained at
6 mm2, and the transverse resolution was 15 and 60 μm/
pixel for the high- and low-quality scan, separately. To
maximize the quality of the resultant vascular image, the
eigen-decomposition (ED)-OCTA method was used for
data preprocessing, following an approach based on gen-
erative adversarial training to provide the adversarial loss
and improve the performance of ART [26].

This paper's main contributions are (1) a new ART
backbone network is proposed to form a deep-learning
pipeline for a fast OCTA scan pipeline with high trans-
verse resolution OCTA image reconstruction solutions.
(2) To provide systematic quantity comparison for OCTA
image reconstruction based on other CNN, transformer
based neural networks. (3) To provide a better explain
the ability of how a transformer block works, the visuali-
zation of the reconstruction convolutional transformer
block in OCTA image reconstruction is reconstructed.

1.1 | Related work

1.1.1 | Convolution neural network (CNN)

In SISR, CNN-based methods were proven to have well
performance and robustness, which achieve better super-
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resolved images than conventional interpolation methods
[27–32]. Following the first proposed lightweight SRCNN
to use trainable weights for image super-resolution [27],
based on the residual learning strategy [33], the SRRes-
Net [30], EDSR [28], and DRRN [31] increased the net-
work depth and enhanced the performance of image
super-resolution. To enhance the quality of the super-
resolved images, ESRGAN [29] used the residual dense
block and adversarial training in SISR for the natural
images.

1.1.2 | Vision transformer

By flattening the two-dimension (2D) images into a one-
dimension (1D) sequence of elements, Vision Trans-
former (ViT) has achieved a good competitive result in
the Imagenet2K classification task [25]. Based on a pre-
trained ViT model, IPT [34] proved that the transformer
framework had the potential for image super-resolution.
However, the sequences were generated by the nonover-
lapping patch extraction layer, which reduced the posi-
tion relation between the neighbor pixels. SwinIR [35]

improved the SISR performance by using a hierarchical
shift-window transformer [36], which introduce a local
receptive field to the transformer block. However, the
computing cost will be increased when using a larger size
window in SwinIR for performance improvement.
Although those methods achieved the prospective SISR
results, the flattened projection for 1D sequences was
done by a fully connected neural layer, which brings a
high computing cost. Moreover, the training of the IPT
and SwinIR required a lot of datasets (e.g., ImageNet2K,
JFT300), which is impractical for the skin OCTA SISR
because of the limited volume of datasets.

2 | METHOD

2.1 | Angiography reconstruction
transformer (ART)

The architecture of ART model (as shown in Figure 1)
consists of three parts: shallow feature extraction layer,
reconstruction convolutional transformer block (RCTB),
and upsample blocks.

FIGURE 1 The network architecture of the angiography reconstruction transformer (ART). The fs is the filter size. The β is the
parameter to control the residual scaling in the reconstruction convolutional transformer (RCT) block, and the n is the number of RCT

layers inside the RCT block. All the convolution layers in ART have the same numerical value of fs with the hidden size used in the RCT

block. All convolution layers in ART have a filter size of 64 with strides 1. The blue block is upsample block, which is combined by a 3 � 3

convolution layer (fs = 256) with strides 1, a pixel shuffle layer for tensor shape upsampling, and a ReLU activation layer. The output

convolution layer (fs = 1) is set as strides 1 and activated by a Tanh activation layer to enhance contrast. (A) is the modified convolutional

transformer layer [37]. Before the layer normalization operation, a 3 � 3 convolution layer with strides 2 was used to downscale the size of

feature maps. The Q, K, and V are then obtained by the convolutional projection (B) and then split with multi heads before being sent into

the attention operation (C). The feed-forward network was combined with two groups of fully connected layers and the GELU activation

layer. After processing by feed-forward network and add operation, a transpose convolution layer with 3 � 3 kernel size and strides 2 is used

to upscale the shape of the feature map.
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2.1.1 | Shallow feature extraction layer (f s)

Shallow feature extraction layer (f s) consists of a 3� 3
convolution layer and a ReLU activation layer, which
aims to extract the shallow feature (FS) of low transverse
resolution OCTA images (ILR). The convolution layer has
a stride of 1 and 64 filter sizes. Assumed the input is ILR,
the operation is:

Fs ¼ReLU f s ILRð Þð Þ ð1Þ

FS was then used as an input of the RCT block, which
consists of n RCT layers, and the output of each RCT
layer was residual connected by multiple with a residual
scaling parameter β [29]. A forward propagation for an
RCT layer (f ϕ) can be written as f ϕ Fð Þ¼ ϕ Fð Þ �βþFð Þ,
and F is the input of the RCT. And hence the processing
of the RCT block is shown as (2):

Fn ¼ f c f ϕn
…f ϕ1

Fsð Þ
� �� �

ð2Þ

where Fn is the output of the RCT block, f c is Conv-
block, and n is the number of RCT layers in RCTB.
Finally, Fn and Fs were simultaneously fed into the
upsample blocks (f u) to obtain the upscaled features (FuÞ.
After being processed by a final layer and a Tanh activa-
tion layer, the predicted super-resolution OCTA images
(ISR) are obtained from ART.

ISR ¼Tanh f concat f u Fsð Þ, f u Fnð Þð Þð Þð Þ ð3Þ

2.1.2 | Reconstruction convolutional
transformer (RCT)

The function of RCT is to extract the vascular texture
feature, which is essential to OCTA image super-
resolution. We modified the architecture proposed by
Wu et al [37], as Figure 1(A) depicts, a 3 � 3 convolution
layer with strides 2 is first applied to input features to
reduce the tensor size, for computing cost reduction and
improvement of the computing efficiency. Different from
the transformer layer used in SwinIR [35] and ViT [25], the
fully connected layer is not used to project the feature maps
into 1D sequences in the RCT. As shown in Figure 1(B),
the convolutional projection is then used to flatten the 2D
feature maps to 1D sequences, which is aimed at increasing
the related position information between the neighboring
pixels. The output (i.e., Q, K, and V sequences) of convolu-
tional projection is then split into multiheads and fed into
the self-attention layer (Figure 1(C)) and processed by a

feed-forward network. Finally, a deconvolution layer was
used to expand the shape.

Figure 2 shows the heatmaps from the different RCT
layers of the trained ART model with six RCT layers. In
Figure 2(B,C) show that the first and third RCT blocks
aim to extract the main backbone of the vascular texture
details; (C) and (E) focus on the high-frequency details,
which are concentrated to reconstruct a sharp OCTA
image; the distribution of the weights in (F) and (G) is
mainly on the micro-vessel, which benefit to the vessel
connectivity reconstruction.

2.1.3 | Upsampling blocks

Pixel-shuffle layer and deconvolution layer were the two
most used trainable upsample layers in SISR task, accord-
ing to [38]. The deconvolution layer was widely used in
the U-shape model for image reconstruction and denoiz-
ing [20], but the checkboard artifact was easy to appear if
using the deconvolution layer for upsampling in
SISR [39]. Hence, the pixel shuffle was introduced to
ART as upsampling layers to reduce the checkboard arti-
facts and provide trainable weights for the mapping rela-
tionship between the ILR and IHR.

2.2 | OCTA pipelines

The overall pipeline consists of training and testing
stages, as illustrated in Figure 3. In the training stage, a
pre-processing strategy (blue zone) and a GAN-based
training pipeline (green zone) for ART were performed.
In this stage, the ground-truth OCTA images (IHR) were
acquired with a 15μm/pixel spatial sample rate (with
6mm2 FOV and 6 repeated scans). The counterpart input
OCTA images for ART training were then obtained by
using a bilinear interpolation method to simulate the low
transverse resolution images (i.e., 60μm/pixel with 6mm2

FOV). An ED-OCTA algorithm is then used to separate the
OCT signal into static structure signal, movement vessel
signal, and noise signal [40], which shows less sensitivity
to tissue motion and could suppress clutter efficiently [41].
The formulation of ED-OCTA is shown as follows:

E^EH ¼
XN

i¼1
λB ið ÞeB ið ÞeHB ið Þ ð4Þ

where E¼ eB 1ð Þ,eB 2ð Þ,…,eB Nð Þ½ � is the N�N unitary
matrix of eigenvectors, ^ ¼ λB 1ð Þ,λB 2ð Þ,…,λB Nð Þ½ � is the
N�N diagonal matrix of eigenvalues, and H is the Her-
mitian transpose. The eigenvalues ^ are sorted in des-
cending order. The structural signals are mainly at the
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first kth eigenvectors. The extraction of blood vessel sig-
nals can be written as (5):

Xv ¼ I�
XK

i¼1
eB ið ÞeHB ið Þ

h i
X ð5Þ

where I is the identity matrix. The value of K is deter-
mined by the number of repeat scans (k= 3 in this study).
eB ið Þ is the 1�N unitary matrix of eigenvectors. Xv are
the vessel signals from the OCT signals after subtracting
the static signals.

FIGURE 2 Heatmap of the different reconstruction convolutional transformer blocks from block 1 (B) to block 6 (G) in trained ART.

(A) is the input low transverse resolution OCTA en face image. The range of the color bar is from 0 to 1, representing the weights of

extracted features in the heatmap.

FIGURE 3 Stage-I: the data collection and preprocessing pipeline. Stage II: the GAN-based training pipeline for ART. Test Stage: In the

proposed hyper-fast OCTA scan pipeline with trained neural networks, the OCTA acquisition time is 0.3 s in this scanning protocol.
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An adversarial training pipeline for the proposed
ART to super-resolve OCTA images by learning the fea-
ture of high transverse resolution vascular from the
ground truth. It consists of two networks with opposite
goals: a generator (ART) that extracts the features of the
ILR and generates the corresponding ISR; and a discrimi-
nator (i.e., VGG16 [42]) for binary classification, and
tends to judge whether the synthetic image (ISR) is from
ART or not while taking the ground-truth image (IHR)
into account.

In the testing stage, the input of neural networks is the
natural low transverse resolution OCT signal acquired
under 60 μm/pixel spatial sampling rate with a 6 mm2

FOV. After applying the volume registration and ED-
OCTA algorithm mentioned in the last paragraph, a series
of low-transverse resolution OCTA images are obtained.
The high-quality and high transverse resolution OCTA
images were then predicted by a trained ART model.

2.3 | Loss function

Although L2 loss can provide a better peak-signal-to-
noise ratio (PSNR) in SISR results, the L1 loss was used
in this study because L1 loss results are less blurring than
L2 loss due to its force low-frequency correctness [43,
44]. And the L1 loss is defined as Equation (6):

L1 IHR, ISRð Þ¼ 1
n

Xn
i¼1

IHR� ISRj j ð6Þ

where IHR is the high-resolution ground-truth image, and
ISR is the output super-resolved OCTA image from the
ART model. n is the total number of pixels in the image,
and i means the No:i pixel of the image. To better per-
form the high-frequency details of the super-resolved
OCTA image, the VGG19-based perceptual loss was used
[29, 35], and defined as follows:

Lp ¼ 1
w
� 1
h

Xh,w

i¼1
φ IHRð Þ�φ ISRð Þð Þ2 ð7Þ

where φ represents the block5 layer4 of the ImageNet
pretrained VGG19 model. w and h are the weight and
height of the feature maps generated by the φ, and i is
the pixel number of the feature map. Besides the pixel-
based and perceptual-based loss functions, an adversarial
loss is introduced to improve the performance of ART. In
the GAN, the calculation of adversarial loss is based on
the properties of the input image is IHR (real) or ISR
(fake), and the loss for the discriminator (LD) and genera-
tor (LG) were shown as follows:

LD IHR, ISRð Þ¼ΕIHR�Pdata IHRð Þ log D IHRð Þð Þð Þ
þΕISR�Pdata ISRð Þ log 1�D ISRð Þð Þð Þ ð8Þ

LG IHR,ISRð Þ¼ΕISR�Pdata ISRð Þ 1�D ISRð Þð Þ ð9Þ

G represents the ART model; and D represents the
VGG16 discriminator model, which has the same back-
bone as [42] for binary classification. D IHRð Þ and D ISRð Þ
are the outputs of the discriminator. ΕIHR and ΕISR are the
expected value over the real data distributions Pdata IHRð Þ
and Pdata ISRð Þ. Finally, the combined loss function for the
ART model can be written as:

LC IHR,ISRð Þ¼ η�LG IHR,ISRð Þþ λ�L1 IHR,ISRð Þþ γ
�Lp IHR, ISRð Þ ð10Þ

where η, λ, and γ are hyper-parameter coefficients intro-
duced to find the trade-off between the separated losses.

3 | EXPERIMENT SETUP

3.1 | Swept-Source (SS)-OCT and data
acquisition

Human skin data were collected in-vivo using a lab-built
SS-OCT 1310 nm system to test the performance of the
proposed algorithm. The details of the SS-OCT (Figure 4)
setup as well as its performance parameters were
described elsewhere [45]. The study was approved by the
School of Science and Engineering Research Ethics Com-
mittee of the University of Dundee (No. UOD_SS-
REC_PGR_2022_003), which also conformed to the tenets
of the Declaration of Helsinki. In the skin OCT data, arm
and hand back (representative “thin” skin), palm (represen-
tative “thick” skin), and face and neck (representative
difficult-to-reach regions) were taken from 10 subjects (four
females and six males) aged between 20 and 35 years old,
none of whom had any skin conditions. A free hand-held
scan probe was used to collect the data from normal skin.
To prevent the influence of the motion artifacts and
increase the sample size of the OCTA images, the repetition
of each position of participants is three.

Table 1 demonstrates the scan protocol of the SSOCT
device during the OCT data acquisition. In Table 1, the
data stage was related to the stages in Figure 3 for neural
network training and testing, respectively. As for the
imaging protocol in Table 1, both train and test data cov-
ered a volume of 6 � 6 � 1.5 mm3 (x � y � z). In train
data, one OCT data scanned from the participants con-
sists of 6 � 400 � 400 � 300 (n, x, y, z) voxels. In test
data, one OCT data consists of 6 � 100 � 100 � 300
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(n, x, y, z). Where n is the repeated time of scans, x and
y are the transverse axis, and z is the axial axis. Theoreti-
cally, depending on the laser used in this SSOCT system,
the axial resolution is �7.8 μm.

After the image processing (Figure 3 blue area) and
abandoning the nonsignal enface images, a total of 5840
pairs of the enface OCTA images were selected as train-
ing datasets; among 4700 pairs of images were used as a
training ILR and IHR, and the remaining 1140 pairs of
images for validation datasets. In terms of the test data,
to investigate the feasibility of the hand-held fast OCTA
scan pipeline, OCTA images were captured and pro-
cessed by the pipeline mentioned in Figure 3 red zone.
After the maximum intensity projection, a volume of
200 low-transverse resolution enface OCTA images was
selected as the test data to visually evaluate the perfor-
mance of the pipeline.

3.2 | Implementation details

3.2.1 | Data argument

A series of data enhancement methods were used in the
train datasets to improve the robustness of a trained
model, including image flipping up/down and right/left,

and image contrast changing with a random factor
between 0.8 and 1.2. The data-augmented methods are
not applied to the validation set and are only deployed
during the training.

3.2.2 | Comparative studies

To better evaluate the performance of the proposed ART,
a series of state-of-the-art SISR models were employed to
conduct comparative studies in the field of OCTA image
super-resolution, and those models are SRResNet [30],
SRDenseNet [29], DenseReconstGAN [24], EDSR [28],
DRRN [31], ESRT [46], and SwinIR [35].

3.2.3 | ART architecture

To investigate the performance of the proposed ART
under different architectures, four versions of ART were
proposed under different sizes: tiny, base, large and huge,
and the details were in Table 2. Three parameters were
configured: the number of heads to control the number
of heads used in multihead attention to split the 1D
sequences; the RCT layer number to control the numeri-
cal value of the RCT layer used in RCT block; the hidden

FIGURE 4 The system schematic of the lab-built swept-source optical coherence tomography (SSOCT) system. The laser engine used in

this system is Thorlab SL1310, which has a 200 kHz swept rate, and a wavelength of 1310 nm with a 100 nm bandwidth. The axial

resolution given by this system is �8 μm in human skin tissue. The reference arm is consisting of a motorized linear stage to adjust the

reference length to ensure the coherence signal is moderate for OCT scanning. The sample arm is consisting of a charge-coupled device

(CCD) and a small screen to assist in the localization of the interested scanning area, a pair of 2D galvo-scanners, and an LSM03 lens.

Moreover, the sample arm is made as a flexible hand-held scan probe (shown in the right figure), to image difficult-to-reach regions

(e.g., face).

TABLE 1 Parameter setup of SSOCT system for OCT data acquisition.

Data (stage) FOV (enface) Repeated scan Transverse resolution Scan time

Train 6 mm2 6 15 μm/pixel �7 s

Test 6 mm2 6 60 μm/pixel �0.3 s

LIAO ET AL. 7 of 17
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size to control the filter size (fs) used in convolutional
projection and the hidden size for the Q, K, V sequences
before being split into multihead attention.

3.2.4 | Implementation details

In ART model, the kernel size of all convolution layers
was set as 3 � 3. The filter sizes of the convolution layers
before upsample block were the same as the hidden size
(in Table 2) used in the RCT block. The filter sizes of the
convolution layers used in upsample block were set as
256 and the output layer was set as 64. Besides the down-
sample and deconvolution layers used in RCT layers,
which had strides 2, the convolution layers used in ART
were set as stride 1. The residual scaling parameter β was
set as 0.4, and the n to control the number of RCT layers
was different in the four types of ART. In a feed-forward
network (FFN), the numerical value of units used in the
first fully connected layer was 4 � hidden size, and
1 � hidden size in the second layer. The architecture of
FFN is the same as the vision transformer pro-
posed [25]. An Adam optimizer with a learning rate of
0.0001 was used [47]. The training epochs were set as
800, and the early stopping was used when the value of
the metrics did not improve in 50 epochs. The batch
size was set as 16 for ARTTiny, ARTBase, and ARTLarge,
and was set as 8 for ARTHuge. The coefficients in the
loss function (10) were η¼ 0:001, λ¼ 1, and γ¼ 0:01.
The training was deployed under an NVIDIA RTX 3090
graphics card with 24GB memory, and an Intel
i9-10980xe with 64GB RAM. The version of CUDA was
11.3, with TensorFlow 2.6.0.

3.2.5 | Ablation study

The ablation study was based on the ARTBase model
because of the moderated network parameters (i.e., close
to SwinIR) and limited GPU memory. Table 3 depicted
the four parameters and relevant setups in the ablation
study. In Table 3, the setups with the underline were the
control group, which has the same implementation
details as the ARTBase.

3.3 | Evaluation metrics

To quantitatively compare the performance of different
neural networks, two performance metrics are used in
the experiments: PSNR and structural similarity index
measure (SSIM) [48].

PSNR¼ 20log10
Imaxffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

ð11Þ

The mean-square-error, also called MSE, is defined as
below:

MSE¼ 1
M�N

XM�1

m¼0

XN�1

n¼0
IGT m,nð Þ� ISR m,nð Þð Þ2

ð12Þ

where IGT and ISR are the ground truth and the super-
resolved OCTA images, respectively. The term Imax is set
as 1 in this evaluation, which refers to the maximum pos-
sible value in the image data. The SSIM evaluates image
quality in terms of structural similarity. A higher SSIM
shows a better structural similarity of model outputs to
ground-based real-world data.

SSIM¼ 2μGTμSRþk1ð Þ 2σcovþk2ð Þ
μ2GT þμ2SRþk1ð Þ σ2GT þσ2SRþk2ð Þ ð13Þ

Here, μGT and σGTð Þ and μSR and σSRð Þ are the mean
(variance) of the underlying truth and the output image
using a different strategy, respectively; σcov shows the
covariance between these two data. k1 and k2 are used to
stabilize the division with a weak denominator.

4 | RESULTS

4.1 | Comparison with state-of-the-art
networks

Table 4 is the comparative results between the state-of-
the-art networks and the proposed ART model. Figure 5

TABLE 2 Implementation details of different ART models.

ART type Tiny Base Large Huge

Heads 2 4 8 8

RCT layer (n) 2 4 6 12

Hidden size 32 64 128 192

TABLE 3 Experiment setup for the ablation study in ARTBase

model.

Study Parameters setup

RCT layer 2 4 6 8 16

Heads 2 4 8 16 32

Hidden size 32 64 96 128 192

Data usage 20% 40% 60% 80% 100%

8 of 17 LIAO ET AL.
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is the visual results of the networks (full size images are
available in Figure A1). Based on the experiment obser-
vation, the bicubic interpolation method is the fastest
(0.0004 s/image), but the results are worst (PSNR: 18.82).
In the CNN-type models, the inference time of the
SRResNet, SRDenseNet, and EDSR is lower than 0.01 s/
image, but the mean PSNR is lower than 21.8, and the
mean SSIM is lower than 0.37. DRRN and DenseReconst-
GAN that used a densely connected architecture have a
high inference time (i.e., 0.0485 and 0.0421 s/image,
respectively), while the performances of the PSNR are
lower than 22, and the SSIM are lower than 0.35. In the
transformer-type models, the proposed ARTTiny had fewer

parameters (0.639 M) than SRResNet, SRDenseNet, and
EDSR and the best SSIM result (SSIM: 0.3693). Compared
with the SwinIR, the proposed ARTBase can provide better
quantitative results (PSNR: 22.15 > 22.08; SSIM:
0.3930 > 0.3826) of the OCTA image super-resolution,
while the parameters are similar and had a faster infer-
ence time (0.0092 s/image). In terms of the ARTLarge and
ARTHuge, those two models provide the best competitive
results in this study (PSNR: 22.42/SSIM: 0.4189 and
PSNR: 22.80/SSIM:0.4633); however, the parameters are
larger than 6 million and required more inference time
than 0.01 s for an image. Based on the visual observation
in Figure 5, the bicubic interpolation result is burly and

TABLE 4 Quantitative comparison (average ± standard deviation of PSNR/SSIM) with state-of-the-art methods for OCTA image super-

resolution.

Method Scale Type #Params (m) Inference time PSNR SSIM

Bicubic �4 Interpolation / 0.0004 s/image 18.82 ± 1.01 0.3175 ± 0.0602

SRResNet [30] �4 CNN 0.714 0.0038 s/image 21.29 ± 1.03 0.3550 ± 0.0636

SRDenseNet [29] �4 CNN 6.976 0.0091 s/image 21.79 ± 1.04 0.3577 ± 0.0722

EDSR [28] �4 CNN 8.423 0.0072 s/image 21.56 ± 1.09 0.3681 ± 0.0770

DRRN [31] �4 CNN 2.154 0.0485 s/image 21.77 ± 1.00 0.3452 ± 0.0574

DenseReconstGAN [24] �4 CNN 5.984 0.0421 s/image 21.44 ± 1.01 0.3460 ± 0.0623

ESRT [46] �4 Transformer 14.429 0.0702 s/image 21.86 ± 1.03 0.3517 ± 0.0575

SwinIR [35] �4 Transformer 1.473 0.0208 s/image 22.08 ± 1.04 0.3826 ± 0.0700

ARTTiny �4 Transformer 0.639 0.0056 s/image 21.74 ± 1.02 0.3693 ± 0.0595

ARTBase �4 Transformer 1.591 0.0092 s/image 22.15 ± 1.04 0.3930 ± 0.0727

ARTLarge �4 Transformer 6.430 0.0188 s/image 22.42 ± 1.03 0.4189 ± 0.0929

ARTHuge �4 Transformer 25.514 0.0379 s/image 22.80 ± 1.05 0.4633 ± 0.1086

FIGURE 5 Visual comparison of OCTA image super-resolution based on the test datasets. (A) ground-truth image; (B) Bicubic

interpolation method; (C) SRResNet; (D) SRDenseNet; (E) DenseReconstGAN; (F) ESRT; (G) SwinIR; (H) DRRN; (I) EDSR; (J) ARTTiny;

(K) ARTBase; (L) ARTLarge; (M) ARTHuge. The scale bar is 750 μm. The red result is the best, and the blue result is the second-best result. The

scale bar is shown as a white label in the figure.
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the vascular texture details are hard to classify (PSNR:
19.43; SSIM: 0.4062). The results from CNN and trans-
former models can provide a high-quality texture detail
for super-resolved large vessels; however, only the results
in (I), (K), (L), and (M) had a better quantitative result
(PSNR >22.8; SSIM >0.52) and can provide good vessel
connectivity and high-quality texture details for small
vessels. The ARTTiny had the fewest network parameters,
but the super-resolved image in Figure 5 (J) is with obvi-
ous artifacts (PSNR: 22.4; SSIM: 0.4703). Compared with
the ground-truth image (A), based on the visual observa-
tion, the results from (C) to (M) have a lower noise level
and we hypothesize that this is because of the utilization
of L1 and L2 losses for network training.

4.2 | Ablation study

Figure 8 is the quantitative results of the ablation study
based on the ARTBase. In Table 4, compared with the
SwinIR result, the ARTBase has a faster inference time
(0.0092 s < 0.0208 s) and better competitive results
(PSNR: 22.15 > 22.08; SSIM: 0.393 > 0.3826). Therefore,
compared with the ARTLarge and ARTHuge models, the
ARTBase with moderated network parameters (1.591 M)
was used for the ablation study.

Figure 8 shows that the more hidden size used in the
ARTBase model, the higher performance of the ART
model in OCTA image super-resolution (PSNR from
21.97 to 22.69; SSIM from 0.3706 to 0.4481). Furthermore,
the performance of the ARTBase is proportional to the
number of RCT layers (PSNR from 21.95 to 22.41; SSIM
from 0.3746 to 0.4185). However, compared with the con-
trol group (the head number is 4), the smaller or higher
the numerical value of the head will decrease the perfor-
mance of ARTBase (best scores when the number of the
head is 4, PSNR: 22.15; SSIM: 0.3931). In terms of the
influence of the data size, the performance of ARTBase is
decreased seriously (SSIM from 0.3931 to 0.3504; PSNR
from 22.15 to 21.72) when 20% of train datasets (1086
pairs of images) are used for network training. Neverthe-
less, the performance of ARTBase is degraded slightly
(PSNR from 21.95 to 22.15) when the data size is from
40% to 100% of datasets.

4.3 | Proposed fast OCTA scan pipeline

The system setup was mentioned in the last paragraph,
and the scanning protocol for the fast OCTA scan was in
Figure 3 (red zone). With the proposed pipeline, the data
acquisition time was reduced from 7 s to 0.3 s (reduced

FIGURE 6 Visual comparison of OCTA image super-resolution based on the real low-spatial sampling rate OCTA imaging (palm area);

the scanning protocol is the same as the test stage in Figure 3. (A) is the reference image acquired under 15 μm/pixel spatial sampling rate,

in this stage, (A) is only used as a reference image for visual comparison. (B): Bicubic interpolation method; (C) SRResNet; (D) SRDenseNet;

(E) ARTHuge; (F) ARTLarge; (G) DRRN; (H) EDSR; (I) ARTBase; (J) SwinIR; (K) ARTTiny; (L) ESRT; (M) DenseReconsGAN. The scanning area

was palm with a 6 mm2 field of view. The scale bar is shown as a white label in the figure.
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by 95%), while the FOV and the number of repeated
scans are maintained at 6 mm2 and 6, and efficiency pre-
vents the motion artifacts from participants and hand-
held (Figure 4) scan probe. Moreover, with the reduction
of data size acquired by the fast OCTA scan pipeline, the
data processing time was reduced from 2 min to 15 s
(Platform: Intel i7-8700 with 32G RAM). The overall time

required for the proposed pipeline is less than 20 s, which
is 6.5 times faster than the normal pipeline (�130 s).

Figures 6 and 7 depict the real-world super-resolved
OCTA images (B–M) with a reference high-resolution
(A) OCTA image (Figure A2 is the full size of Figure 6,
and Figure A3 is the full size of Figure 7). In this stage,
the quantitative comparison is unavailable because the
low transverse resolution OCTA images were not
degraded from the counterpart high transverse resolution
images, but from the hand-held scan probe with a low
transverse resolution scanning protocol, as mentioned in
Table-1 Test.

To simulate the OCTA scan in the clinical environ-
ment, the data acquisition area was defined as an easily
obtained area (less motion palm area in Figure 6) and a
hard obtained area (more motion face area in Figure 7)
with the hand-held scan probe. The high-definition
(15 μm/pixel) and low-spatial sampling rate (60 μm/
pixel) OCT enface images were scanned under the close
area with slight movement. The red and blue areas of the
reference image (A) in Figures 6 and 7 were selected
manually, which can be used as high-definition refer-
ences but not ground truth, and the OCT structure image
was also available.

In Figure 6, the reconstruction of the microvessel tex-
ture details was hard because those vessels were unavail-
able to be resolved under the low-spatial sampling rate
scanning protocol. Based on the experiment observation,

32 2 2 20 64 4 4 40 96 8 6 60 12816 8 80 19232 16 100

FIGURE 8 Ablation Study based on the proposed ARTBase

Model. The quantitative evaluation metrics are demonstrated as

PSNR in mean ± standard deviation. Details of the setup of the

ablation study are in Table 3..

FIGURE 7 Visual comparison of OCTA image super-resolution based on the real low-spatial sampling rate OCTA imaging (face area);

the scanning protocol is the same as the test stage in Figure 3. (A) is the reference image acquired under 15 μm/pixel spatial sampling rate,

in this stage, (A) is only used as a reference image for visual comparison. (B): Bicubic interpolation method; (C) SRResNet; (D) SRDenseNet;

(E) ARTHuge; (F) ARTLarge; (G) DRRN; (H) EDSR; (I) ARTBase; (J) SwinIR; (K) ARTTiny; (L) ESRT. (M) DenseReconsGAN. The scanning area

was palm with a 6 mm2 field of view. The scale bar is shown as a white label in the figure.
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compared with the reference (A), the super-resolved
image (E) from ARTHuge contains the micro-vessel
(yellow arrow) while the super-resolved results in
(B)–(D) and (F)–(M) do have not any vessel signal in
yellow arrow. In terms of the connectivity of the vessel
(represented in green arrow), the results in (E), (F), (I),
and (J) show good connectivity between the micro-vessel;
however, the results in (B)–(D), (G), and (L)–(M) have a
bad vessel connection in green arrow area. Although
(H) represents a good super-resolved result in the visual
aspect, compared with the reference image (A), the mor-
phology and connection between the vessel are incorrect,
and that might because of the overfitting of the trained
EDSR network. Compared with SwinIR (J), the results
from ARTBase (I), ARTLarge (F), and ARTHuge (E) can rep-
resent a sharper image, which is close to the reference
image (A).

In Figure 7, the quality of reference image (A) is rela-
tively low, and the motion artifacts (i.e., the vertical
white line) are obvious. While those artifacts are disap-
peared in the super-resolved images because the scanning
time is 0.3 s in the hyper-fast OCTA scanning pipeline.
The blue and green arrows in Figure 7 are marks to find
the correlated position of the vessel. Compared with ref-
erence (A), the results from ARTBase (I), ARTTiny (K), and
SwinIR (J) are less noise and higher contrast; further-
more, the result (I) has better vessel connectivity (blue
and green arrow) than (J). In terms of the blue zoom-in
area, the results from the CNN-based models ((C), (D),
(G), (H), and (M)) have less contrast than the results from
the transformer-based models ((E), (F), (I), (J), (K), and
(L)). Although the result from EDSR (H) contains rich
blood flow signals, those signals are mismatched with ref-
erence (A) in the aspect of morphology. In the visual
aspects, the results from ARTLarge (F) and ARTHuge

(F) are performances worse than ARTBase (I) and ARTTiny

(K) in face OCTA super-resolution, we suppose that is
because of the network overfitting. With the benefit of
the faster OCTA scanning (0.3 s), the super-resolved
results ((E), (F), (H), (I)-(M)) from neural networks repre-
sent a better vessel connection and contrast than the
high-definition OCTA scan, which need the participants
to keep still under 7 s.

5 | DISCUSSION

In this work, we proposed a novel ART model to achieve
a fast OCTA imaging pipeline, which includes a free
hand-held scan probe to scan the interesting area of skin,
a trained ART model for the image super-resolution, and
a pre-processing workflow to generate a low-spatial sam-
pling rate enface OCTA images. With the proposed ART-

based OCTA scan pipeline, the data processing time was
reduced from �300 s to �20s, and the data acquisition
time was reduced from 7 s to 0.3 s. Furthermore, the pro-
posed pipeline is efficient to reduce the motion artifacts
during the OCTA scan. This study has opened up a num-
ber of directions for future possible studies. In the current
study, OCTA clinical workflow focused on ophthalmol-
ogy tasks which are the main primary structures assess-
ment with fixed position. We observed that few operators
looked at soft tissue such as the skin. It would be interest-
ing to acquire free-hand OCTA scans covering a wider
range of scans and use the methodology reported in this
paper to assist in understanding the standardization of
the first free-hand skin OCTA scanner. The second direc-
tion of study might utilize the current knowledge
obtained from this study to provide the justification for,
and subsequent evaluation of assistive tools for GAN
network-based image reconstruction for other domains
such as photoacoustic, and 3D ultrasound.

Regarding the proposed ART model, with the convo-
lutional transformer architecture, the neighboring infor-
mation in low-spatial sampling OCTA images (i.e., input)
is utilized well for feature extraction. Furthermore, the
parameters are reduced by the downsample and
upsample layers in the RCT layer (Figure 1(A)). The
ablation study on data size (Figure 8 blue bar) shows
that the ARTBase model has good competitive results
under the 1880 pairs of images (40% of the training
dataset). In Table 4 and Figure 5, the ARTHuge can
achieve the best competitive results but has large net-
work parameters, and the visual result is worse than
ARTLarge in Figure 7. We suppose that this is because of
limited training data size (<5 k image) and a large net-
work (>25 M parameters). In ARTBase and ARTLarge,
both two networks can achieve better competitive
results than SwinIR in inference time and results
(Table 4). Although the ARTTiny can achieve a fast
inference time (0.0056 s/image), the results (Figure 5
(I)) include artifacts and perform worse than SwinIR
(F) in quantitative results (PSNR: 22.4 < 22.79; SSIM:
0.4703 < 0.4970).

Based on the visual comparison in Figure 5, the
results from neural networks (Figure 5 C-M) are well
based on the validation dataset from the downsampling
operation. Still, the results (Figures 6 and 7C–M) have a
gap in the microvessel reconstruction with the reference
(Figure 6A) when the input image is acquired under real-
world low-spatial sampling rate scanning protocol. We
hypothesize that might be because the microvessel can-
not be resolved under the low-spatial sampling rate
(60 μm/pixel), and the trained neural networks are una-
vailable to super-resolve the micro-vessel from the nonex-
istent blood flow signal.
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Our study has limitations. First, the input shape was
fixed for the transformer-type neural network, which
means the change of the OCTA image acquisition proto-
col will require the re-train of the model. Although the
reshaping of the input image can solve this limitation,
the vessel signal might be lost during the reshaping oper-
ation. Secondly, the GPU in this study has only 24G
memory, which limits the batch size of the model train-
ing. Hence, we will further develop a lightweight
transformer-based model with scalable input, which can
achieve a shorter time of processing and higher super-
resolved image quality. Thirdly, high-quality OCTA data
acquisition is hard with a hand-held scan probe, and the
quality of OCTA images will influence the performance
of trained neural networks; we will investigate a higher
efficient method to acquire high-quality OCTA images.

6 | CONCLUSION

Our proposed method has achieved a good competitive
result in enfaces OCTA images super-resolution. In the
future, we will inform the hyper-fast OCTA scan pipeline
into the field of the oral OCT/OCTA scan, face and head
OCT/OCTA scan, and the wide-field retinal OCT/OCTA
scan. Moreover, with the trained ART models, the wide
field (15 � 15 mm2 FOV) OCTA scan for the skin appli-
cation is available while the scan time is not changed
(i.e., use low-spatial sampling rate for wide FOV scan)
and the image quality is not degraded seriously.
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APPENDIX A

FIGURE A1 The full-size images of Figure 5 results for visual comparison of OCTA image super-resolution based on the test dataset.

(A) ground-truth image; (B) Bicubic interpolation method; (C) SRResNet; (D) SRDenseNet; (E) DenseReconstGAN; (F) ESRT; (G) SwinIR;

(H) DRRN; (I) EDSR; (J) ARTTiny; (K) ARTBase; (L) ARTLarge; (M) ARTHuge. The scale bar is shown as a white label in the figure.
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FIGURE A2 The full-size images of Figure 6 result for visual comparison of OCTA image super-resolution based on the real low-spatial

sampling rate OCTA imaging (palm area). The scanning protocol is the same as the test stage in Figure 3. (A) is the reference image acquired

under 15 μm/pixel spatial sampling rate, in this stage, (A) is only used as a reference image for visual comparison. (B): Bicubic interpolation

method; (C) SRResNet; (D) SRDenseNet; (E) ARTHuge; (F) ARTLarge; (G) DRRN; (H) EDSR; (I) ARTBase; (J) SwinIR; (K) ARTTiny;

(L) ESRT; (M) DenseReconsGAN. The field of view is set as 6 mm � 6 mm. The scale bar is shown as a white label in the figure.
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FIGURE A3 The full-size images of Figure 7 result for visual comparison of OCTA image super-resolution based on the real low-spatial

sampling rate OCTA imaging (face area). The scanning protocol is the same as the test stage in Figure 3. (A) is the reference image acquired

under 15 μm/pixel spatial sampling rate, in this stage, (A) is only used as a reference image for visual comparison. (B): Bicubic interpolation

method; (C) SRResNet; (D) SRDenseNet; (E) ARTHuge; (F) ARTLarge; (G) DRRN; (H) EDSR; (I) ARTBase; (J) SwinIR; (K) ARTTiny;

(L) ESRT. (M) DenseReconsGAN. The field of view is set as 6 mm � 6 mm. The scale bar is shown as a white label in the figure.
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