

Citation for published version:
Emek, Y, Lavi, R, Niazadeh, R & Shi, Y 2023, 'Stateful Posted Pricing with Vanishing Regret via Dynamic
Deterministic Markov Decision Processes', Mathematics of Operations Research.
https://doi.org/10.1287/moor.2023.1375

DOI:
10.1287/moor.2023.1375

Publication date:
2023

Document Version
Peer reviewed version

Link to publication

Publisher Rights
Unspecified
https://doi.org/10.1287/moor.2023.1375

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 27. Jun. 2023

https://doi.org/10.1287/moor.2023.1375
https://doi.org/10.1287/moor.2023.1375
https://researchportal.bath.ac.uk/en/publications/cb3163b0-2c98-40bf-afdf-bc58c50a1dbb

Stateful Posted Pricing with Vanishing Regret via Dynamic

Deterministic Markov Decision Processes∗

Yuval Emek † Ron Lavi ‡ Rad Niazadeh § Yangguang Shi ¶

Abstract

An online problem called dynamic resource allocation with capacity constraints (DRACC) is introduced
and studied in the realm of posted price mechanisms. This problem subsumes several applications of
stateful pricing, including but not limited to posted prices for online job scheduling and matching over a
dynamic bipartite graph. Since existing online learning techniques do not yield vanishing-regret for this
problem, we develop a novel online learning framework over deterministic Markov decision processes with
dynamic state transition and reward functions. Following that, we prove, based on a reduction to the
well-studied problem of online learning with switching costs, that if the Markov decision process admits
a chasing oracle — i.e., an oracle that simulates any given policy from any initial state with bounded
loss — then the online learning problem can be solved with vanishing regret. Our results for the DRACC
problem and its applications are then obtained by devising (randomized and deterministic) chasing oracles
that exploit the particular structure of these problems.

1 Introduction

Price posting is a common selling mechanism across various corners of electronic commerce. Its applications
span from more traditional domains such as selling flight tickets on Delta’s website or selling products on
Amazon, to more emerging domains such as selling cloud services on Amazon Web Services (AWS) or pricing
ride-shares in Uber. The prevalence of price posting comes from its several important advantages: it is
incentive compatible (at least in a one-shot setting or against myopic users), simple to grasp, and can easily
fit in an online (or dynamic) environment where buyers arrive sequentially over time. Therefore, online posted
pricing mechanisms, also known as dynamic pricing, have been studied quite extensively in computer science,
operations research, and economics (for a comprehensive survey, see den Boer [41]).

Among the successful approaches to devise dynamic pricing algorithms, one approach — that is particularly
effective when the environment is changing in a non-stationary fashion and price experimentation can be done
— is that of non-parametric dynamic pricing. The queen of killer methods for devising online non-parametric
posted prices is via adversarial online learning, where the goal is to design online learning algorithms in an
adversarial environment with vanishing regret (Bubeck et al. [27, 26], Leme and Schneider [65], Feldman et al.
[50], Blum and Hartline [22], Blum et al. [23], Kleinberg and Leighton [61]). Here, a sequence of buyers arrive,
each associated with her own valuation function that is assumed to be devised by a malicious adversary,
and the goal is to post a sequence of price vectors that performs almost as good as the best fixed pricing
policy in hindsight. Despite its success, a technical limitation of this method (shared by the aforementioned
papers) forces the often less natural assumption of unlimited item supply to ensure that the selling platform is
stateless. However, in many applications of online posted pricing, the platform is stateful ; indeed, prices can
depend on previous sales that determine the platform’s state. Examples for such stateful platforms include

∗Accepted for publication at Mathematics of Operations Research
†Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Haifa, Israel, yemek@technion.ac.il
‡University of Bath, UK, and Technion - Israel Institute of Technology, Israel, ron.lavi.ac@gmail.com
§University of Chicago Booth School of Business, Chicago, IL, United States, rad.niazadeh@chicagobooth.edu
¶School of Computer Science and Technology, Shandong University, Qingdao, Shandong, China, shiyangguang@sdu.edu.cn

1

selling resources of limited supply, in which the state encodes the number of remaining inventories of different
products, and selling resources in cloud computing to schedule online jobs, in which the state encodes the
currently scheduled jobs.

The above mentioned limitation is in sharp contrast to the posted prices literature that considers (the
more parametric) stochastic settings where the buyers’ valuations or demands are drawn independently
and identically from unknown distributions (Besbes and Zeevi [20], Araman and Caldentey [10], Broder
and Rusmevichientong [25], Babaioff et al. [17], Badanidiyuru et al. [19], Zhang et al. [77], Agrawal and
Devanur [5]), or independently from known distributions (Chawla et al. [33], Harrison et al. [55], Feldman
et al. [49], Chawla et al. [31]). By exploiting the randomness (and distributional knowledge) of the input and
employing other algorithmic techniques, these papers cope with limited supply and occasionally, with more
complicated stateful pricing scenarios. However, the stochastic approach does not encompass the (realistic)
scenarios in which the buyers’ valuations are correlated in various complex ways, scenarios that are typically
handled using adversarial models. The only exception that we are aware of in this regard is the work of
Chawla et al. [32] that takes a different approach: they consider the online job scheduling problem, and
given access to a collection of (truthful) posted price scheduling mechanisms, show how to design a (truthful)
online scheduling mechanism in an adversarial environment whose regret with respect to the given mechanism
collection is vanishing.

Motivated by the abundance of stateful posted pricing platforms and the lack of an appropriate algorithmic
theory for such settings as discussed above, and inspired by Chawla et al. [32], we study the design of adversarial
online learning algorithms with vanishing regret for a rather general online resource allocation framework. In
this framework, termed dynamic resource allocation with capacity constraints (DRACC), dynamic resources
of limited inventories arrive and depart over time, and an online mechanism sequentially posts price vectors
to (myopically) strategic buyers with adversarially chosen combinatorial valuations (refer to Section 2 for the
formal model). The goal is to post a sequence of price vectors with the objective of maximizing revenue,
while respecting the inventory restrictions of dynamic resources for the periods of time in which they are
active. We consider a full-information setting, in which the buyers’ valuations are elicited by the platform
after posting prices in each round of the online execution.

Given a collection of pricing policies for the DRACC framework, we aim to construct a sequence of price
vectors that is guaranteed to admit a vanishing regret with respect to the best fixed pricing policy in hindsight.
Interestingly, our abstract framework is general enough to admit, as special cases, two important applications
of stateful posted pricing, namely, online job-scheduling and matching over a dynamic bipartite graph; these
applications, for which existing online learning techniques fail to obtain vanishing regret, are discussed in
detail in Section 4.

1.1 Our contributions and techniques

Our main result is a vanishing-regret posted price mechanism for the DRACC problem (refer to Section 3 for
a formal exposition).

For any DRACC instance with T users and for any collection Γ of pricing policies, the regret of
our proposed posted price mechanism (in terms of expected revenue) with respect to the in-hindsight
best policy in Γ is sublinear in T .

We prove this result by abstracting away the details of the pricing problem and considering a more
general stateful decision making problem. To this end, we introduce a new framework, termed dynamic
deterministic Markov decision process (Dd-MDP), which generalizes the classic deterministic MDP problem
to an adversarial online learning dynamic setting. In this framework, a decision maker picks a feasible action
for the current state of the MDP, not knowing the state transitions and the rewards associated with each
transition; the state transition function and rewards are then revealed. The goal of the decision maker is
to pick a sequence of actions with the objective of maximizing her total reward. In particular, we look at
vanishing-regret online learning, where the decision maker is aiming at minimizing her regret, defined with

2

respect to the in-hindsight best fixed policy (i.e., a mapping from states to actions) among the policies in a
given collection Γ.

Not surprisingly, vanishing-regret online learning is impossible for this general problem (see Proposition 1).
To circumvent this difficulty, we introduce a structural condition on Dd-MDPs that enables online learning
with vanishing regret. This structural condition ensures the existence of an ongoing chasing oracle that
allows one to simulate a given fixed policy from any initial state, irrespective of the actual current state,
while ensuring a small (vanishing) chasing regret. The crux of our technical contribution is cast in proving
that the Dd-MDPs induced by DRACC instances satisfy this chasability condition.

Subject to the chasability condition, we establish a reduction from designing vanishing-regret online
algorithms for Dd-MDP to the extensively studied (classic stateless) setting of online learning with switching
cost (Kalai and Vempala [57]). At high level, we have one arm for each policy in the given collection Γ and
employ the switching cost online algorithm to determine the next policy to pick. Each time this algorithm
suggests a switch to a new policy γ ∈ Γ, we invoke the chasing oracle that attempts to simulate γ, starting
from the current state of the algorithm which may differ from γ’s current state. In summary, we obtain the
following result (see Theorem 4 for a formal exposition).

For any T -round Dd-MDP instance that satisfies the chasability condition and for any collection
Γ of policies, the regret of our online learning algorithm with respect to the in-hindsight best policy
in Γ is sublinear (and optimal) in T .

We further study the bandit version of the above problem, where the state transition function is revealed
at the end of each round, but the learner only observes the current realized reward instead of the complete
reward function. By adapting the chasability condition to this setting, we obtain near optimal regret bounds.
See Theorem 11 and Corollary 5 in Section 6 for a formal statement.

Our abstract frameworks, both for stateful decision making and stateful pricing, are rather general and we
believe that they will turn out to capture many natural problems as special cases (on top of the applications
discussed in Section 4).

1.2 Additional related work and discussion

In the DRACC problem, the class of feasible prices at each time t is determined by the remaining inventories,
which in turn depend on the prices picked at previous times t′ < t. This kind of dependency cannot be handled
by the conventional online learning algorithms, such as follow-the-perturbed-leader (Kalai and Vempala [57])
and EXP3 (Auer et al. [14]). That is why we aim for the stateful model of online learning, which allows a
certain degree of dependence on the past actions.

Several attempts have been made to formalize and study stateful online learning models. The authors of
Arora et al. [11], Feldman et al. [50] consider an online learning framework where the reward (or cost) at
each time depends on the k recent actions for some fixed k > 0. This framework can be viewed as a reward
function that depends on the system’s state that, in this case, encodes the last k − 1 actions.

A reward function that depends on the k recent actions is also considered in Feige et al. [47], where online
learning algorithms are developed to compete against stateful policies. The states considered in Feige et al.
[47] are owned by the policies, rather than specified by the environment. Their algorithms and the contending
policies are allowed to make switches between arbitrary states with no costs. This setting is very different
from the multi-state model in the current paper, where the state transition functions are specified by the
(adversarial) environment.

There is an extensive line of work on online learning models that address general multi-state systems,
typically formalized by means of stochastic (Even-Dar et al. [46], Guan et al. [53], Yu et al. [76], Abbasi-
Yadkori et al. [1], Neu et al. [70]) or deterministic (Dekel and Hazan [40]) MDPs. The disadvantage of these
models from our perspective is that they all have at least one of the following two restrictions: (a) all actions
are always feasible regardless of the current state (see Abbasi-Yadkori et al. [1], Even-Dar et al. [46], Guan

3

et al. [53], Yu et al. [76]); or (b) the state transition function is fixed (static) and known in advance (see
Dekel and Hazan [40], Even-Dar et al. [46], Guan et al. [53], Neu et al. [70], Yu et al. [76]).

In the DRACC problem, however, not all actions (price vectors) are feasible for every state and the
state transition function at time t is revealed only after the decision maker has committed to its action.
Moreover, the aforementioned MDP-based models require a certain type of state connectivity in the sense
that the Markov chain induced by each action should be irreducible (Abbasi-Yadkori et al. [1], Even-Dar et al.
[46], Guan et al. [53], Neu et al. [70], Yu et al. [76]) or at least the union of all induced Markov chains should
form a strongly connected graph (Dekel and Hazan [40]). In contrast, in the DRACC problem, depending
on the inventories of the resources, it may be the case that certain inventory vectors can never be reached
(regardless of the decision maker’s actions).

On the algorithmic side, a common feature of all aforementioned online learning models is that for every
instance, there exists some k > 0 that can be computed in a preprocessing stage (and does not depend on
T) such that the online learning can “catch” the state (or distribution over states) of any given sequence of
actions in exactly k time units. While this feature serves as a corner stone for the existing online learning
algorithms, it is not present in our model, hence our online learning algorithm has to employ different ideas.

In terms of applications, our work resembles some aspects of the literature on online two-sided allocation
problems (and online convex programming) with stochastic input. In Devanur et al. [42], Kesselheim et al.
[59], Agrawal and Devanur [4], a family of online resource allocation problems is investigated under a different
setting from ours. The resources in their problem models are static, which means that every resource is
revealed at the beginning, and remains active from the first user to the last one. Different from our adversarial
model, these papers take different stochastic settings on the users, such as the random permutation setting
where a fixed set of users arrive in a random order (Kesselheim et al. [59], Agrawal and Devanur [4]), and the
random generation setting where the parameters of each user are drawn i.i.d. from some unknown distribution
(Devanur et al. [42], Agrawal and Devanur [4]). In these papers, the assignment of the resources to the
requests are fully determined by a single decision maker, and the decision for each request depends on the
revealed parameters of the current request and previous ones. By contrast, we study the scenario where each
strategic user makes her own decision of choosing the resources, and the price posted to each user should be
specified independently of the valuation of the current user.

Our allocation problem resembles some aspect of the adversarial multi-armed bandit problems with
knapsacks. For example, in Immorlica et al. [56], the online resource allocation problem with static resources
is studied under the adversarial setting, where the rewards and the consumption of resources incurred by the
chosen prices are specified by the adversary. The algorithms in Immorlica et al. [56] are designed to compete
with the best fixed distribution over the prices, while the benchmarks used in our paper are pricing policies
that can specify different price vectors over the active resources depending on the time and inventory vectors.
The main results in Immorlica et al. [56] are presented in the form of competitive ratios, rather than regrets.

Static resources with limited supply are also investigated in Brantley et al. [24] under the topic of episodic
reinforcement learning (episodic RL) with a stochastic setting. In particular, the state transitions and the
consumption of resources in Brantley et al. [24] are separated from each other and are decided by a static
stochastic MDP. The episodic RL is studied under the adversarial setting in Lykouris et al. [68]. In comparison
to our setting, the decision maker in episodic RL always moves back to the initial state when making a choice
at the beginning of each episode. Under such a setting, the cumulative reward in a whole episode can be
viewed as a stateless function (specified by the adversary) over the choices, and the decision maker can always
easily “catch” the state of any fixed benchmark policy.

There is also a rich and recent literature on dynamic pricing and auctions for long-lived (i.e., non-myopic)
buyers, e.g., Amin et al. [7, 8], Kanoria and Nazerzadeh [58], Mohri and Munoz [69], Agrawal et al. [3]. The
setup and the techniques in these work diverge from us, mostly because our buyers are making a simpler
one-shot decision (and hence the sellers is reacting accordingly).

Beyond online learning models and obtaining vanishing regret, there is a rich literature on dynamic pricing
under known valuation distributions using techniques from prophet inequality, originated from the seminal
work of Samuel-Cahn [73]. In the standard prophet inequality for selling one item, a static posted pricing
obtains 1

2 of the expected value of the maximum value, which can be easily translated into a sequential pricing

4

algorithm that obtains 1
2 of the revenue obtained by the optimal revenue mechanism. There are several

work to extend this idea to various settings, e.g., Correa et al. [35, 38], Niazadeh et al. [71]. See also Correa
et al. [36] for some of the recent developments. These developments include many variations such as prophet
inequalities with limited samples form the distributions (Azar et al. [15]), i.i.d. and random order (Esfandiari
et al. [45], Abolhassani et al. [2]), and finally ordered prophets (a.k.a. the free-order sequential posted pricing
problem, see Yan [74], Azar et al. [16], Beyhaghi et al. [21], Correa et al. [37]) have been explored, and
discovering connections to the price of anarchy (Düetting et al. [43]), online contention resolution schemes
(Feldman et al. [50], Lee and Singla [62]), and online combinatorial optimization (Göbel et al. [52]) have
been of particular interest in this literature. Generalizations of the simple prophet inequality problem to
combinatorial settings have also been studied, where the examples are matroids (Kleinberg and Weinberg
[60]), knapsack (Feldman et al. [50]), k-uniform matroids (for better bounds, see Hajiaghayi et al. [54], Alaei
[6], Anari et al. [9]), or even general downward-closed (Rubinstein [72]). Finally, techniques and results in
this literature had an immense impact on mechanism design (Chawla et al. [33], Cai et al. [28], Feldman et al.
[48], Babaioff et al. [18], Cai et al. [29], Chawla and Miller [34], Dütting et al. [44], Correa et al. [35]). For a
full list of recent and old related results, refer to Lucier [67]. Our work diverges from this literature in that
we do not have distributional knowledge or assumption about future users, and instead of competitive ratio
we consider vanishing regret with respect to the best fixed pricing policy.

2 Model and Definitions

The DRACC problem. Consider N dynamic resources and T strategic myopic users arriving sequentially
over rounds t = 1, . . . , T , where round t lasts over the time interval [t, t+ 1). Resource i ∈ [N] arrives at the
beginning of round ta(i) and departs at the end of round te(i), where 1 ≤ ta(i) ≤ te(i) ≤ T ; upon arrival, it
includes c(i) ∈ Z>0 units. We say that resource i is active at time t if ta(i) ≤ t ≤ te(i) and denote the set of
resources active at time t by At ⊆ [N]. Let C and W be upper bounds on maxi∈[N] c(i) and maxt∈[T] |At|,
respectively.

The arriving user at time t has a valuation function vt : 2
At → [0, 1) that determines her value vt(A)

for each subset A ⊆ At of resources active at time t. We assume that vt(∅) = 0 and that the users are
quasi-linear, namely, if a subset A of resources is allocated to user t and she pays a total payment of q in
return, then her utility is vt(A) − q. A family of valuation functions that receives a special attention in
this paper is that of kt-demand valuation functions, where user t is associated with an integer parameter
1 ≤ kt ≤ |At| and with a value wit ∈ [0, 1) for each active resource i ∈ At so that her value for a subset A ⊆ At
is maxA′⊆A:|A′|≤kt

∑
i∈A′ wit.

Stateful posted price mechanisms. We restrict our attention to dynamic posted price mechanisms that
work based on the following protocol. In each round t ∈ [T], the mechanism first observes which resources
i ∈ [N] arrive at the beginning of round t, together with their initial capacity c(i), and which resources
departed at the end of round t−1, thus updating its knowledge of At. It then posts a price vector pt ∈ (0, 1]At

that determines the price pt(i) of each resource i ∈ At at time t. Following that, the mechanism elicits the
valuation function vt of the current user t and allocates (or in other words sells) one unit of each resource in
the demand set Dpt

t to user t at a total price of q̂pt

t , where

Dp
t = argmaxA⊆At

{
vt(A)−

∑
i∈A p(i)

}
and q̂pt =

∑
i∈Dp

t
p(i) (1)

for any price vector p ∈ (0, 1]At , consistently breaking argmax ties according to the lexicographic order on
At. A virtue of posted price mechanisms is that if the choice of pt does not depend on vt, then it is dominant
strategy for (myopic) user t to report her valuation vt truthfully.

Let λt ∈ {0, 1, . . . , C}At be the inventory vector that encodes the number λt(i) of units remaining from
resource i ∈ At at time t = 1, . . . , T . Formally, if ta(i) = t, then λt(i) = c(i); and if (a unit of) i is allocated
to user t and i is still active at time t+ 1, then λt+1(i) = λt(i)− 1. We say that a price vector p is feasible
for the inventory vector λt if p(i) = 1 for every i ∈ At such that λt(i) = 0, that is, for every (active) resource

5

i exhausted by round t. To ensure that the resource inventory is not exceeded, we require that the posted
price vector pt is feasible for λt for every 1 ≤ t ≤ T ; indeed, since vt is always strictly smaller than 1, this
requirement ensures that the utility of user t from any resource subset A ⊆ At that includes an exhausted
resource is negative, thus preventing A from becoming the selected demand set (recall that the utility obtained
by user t from the empty set is 0).

In this paper, we aim for posted price mechanisms whose objective is to maximize the extracted revenue
defined to be the total expected payment E[

∑T
t=1 q̂

pt

t] received from all users, where the expectation is over
the mechanism’s internal randomness.1

Adversarial online learning over pricing policies. To measure the quality of the aforementioned posted
price mechanisms, we consider an adversarial online learning framework, where at each time t ∈ [T], the
decision maker picks the price vector pt and an adaptive adversary simultaneously picks the valuation function
vt. The resource arrival times ta(i), departure times te(i), and initial capacities c(i) are also determined by
the adversary. We consider the full information setting, where the valuation function vt of user t is reported
to the decision maker at the end of each round t. It is also assumed that the decision maker knows the
parameters C and W upfront and that these parameters are independent of the instance length T .

A pricing policy γ is a function that maps each inventory vector λ ∈ {0, 1, . . . , C}At , t ∈ [T], to a price
vector p = γ(λ), subject to the constraint that p is feasible for λ.2 The pricing policies are used as the
benchmarks of our online learning framework: Given a pricing policy γ, consider a decision maker that
repeatedly plays according to γ; namely, she posts the price vector pγt = γ(λγt) at time t = 1, . . . , T , where
λγt is the inventory vector at time t obtained by applying γ recursively on previous inventory vectors λγt′

and posting prices γ(λγt′) at times t′ = 1, . . . , t− 1. Denoting q̂γt = q̂
pγ
t

t , the revenue of this decision maker is

given by
∑T
t=1 q̂

γ
t .

Now, consider a collection Γ of pricing policies. The quality of a posted price mechanism {pt}Tt=1 is
measured by means of the decision maker’s regret that compares her own revenue to the revenue generated
by the in-hindsight best pricing policy in Γ. Formally, the regret (with respect to Γ) is defined to be

max
γ∈Γ

T∑
t=1

q̂γt − E

[
T∑
t=1

q̂pt

t

]
,

where the expectation is taken over the decision maker’s randomness. The mechanism is said to have vanishing
regret if it is guaranteed that the decision maker’s regret is sublinear in T , which means that the average
regret per time unit vanishes as T →∞.

3 Dynamic Posted Pricing via Dd-MDP with Chasability

The online learning framework underlying the DRACC problem as defined in Section 2 is stateful with the
inventory vector λ playing the role of the framework’s state. In the current section, we first introduce a
generalization of this online learning framework in the form of a stateful online decision making, formalized
by means of dynamic deterministic Markov decision processes (Dd-MDPs). Following that, we propose a
structural condition called chasability and show that under this condition, the Dd-MDP problem is amenable
to vanishing-regret online learning algorithms. This last result is obtained through a reduction to the
extensively studied problem of “experts with switching cost” (Kalai and Vempala [57]). Finally, we prove
that the Dd-MDP instances that correspond to the DRACC problem indeed satisfy the chasability condition.

1The techniques we use in this paper are applicable also to the objective of maximizing the social welfare.
2The seemingly more general setup, where the time t is passed as an argument to γ on top of λ, can be easily reduced to our

setup (e.g., by introducing a dummy resource it active only in round t).

6

3.1 Viewing DRACC as a Dd-MDP

A (static) deterministic Markov decision process (d-MDP) is defined over a set S of states and a set X of
actions. Each state s ∈ S is associated with a subset Xs ⊆ X of actions called the feasible actions of s. A
state transition function g maps each state s ∈ S and action x ∈ Xs to a state g(s, x) ∈ S. This induces a
directed graph over S, termed the state transition graph, where an edge labeled by ⟨s, x⟩ leads from node s to
node s′ if and only if g(s, x) = s′. The d-MDP also includes a reward function f that maps each state-action
pair ⟨s, x⟩ with s ∈ S and x ∈ Xs to a real value in [0, 1].

Dynamic deterministic MDPs. Notably, static d-MDPs are not rich enough to capture the dynamic
aspects of the DRACC problem. We therefore introduce a more general object where the state transition and
reward functions are allowed to develop in an (adversarial) dynamic fashion.

Consider a sequential game played between an online decision maker and an adversary. As in static
d-MDPs, the game is defined over a set S of states, a set X of actions, and a feasible action set Xs for
each s ∈ S. We further assume that the state and action sets are finite. The game is played in T ∈ N
rounds as follows. The decision maker starts from an initial state s1 ∈ S. In each round t = 1, . . . , T ,
she plays a (randomized) feasible action xt ∈ Xst , where st ∈ S is the state at the beginning of round t.
Simultaneously, the adversary selects the state transition function gt and the reward function ft. The decision
maker then moves to a new state st+1 = gt(st, xt) (which is viewed as a movement along edge ⟨st, xt⟩ in
the state transition graph induced by gt), obtains a reward ft(st, xt), and finally, observes gt and ft as the
current round’s (full information) feedback.3 The game then advances to the next round t+ 1. The goal is to
maximize the expected total reward E[

∑
t∈[T] ft(st, xt)].

Policies, simulation, & regret. A policy γ : S 7→ X is a function that maps each state s ∈ S to a feasible
action γ(s) ∈ Xs. A simulation of policy γ over the round interval [1, T] is given by the state sequence
{sγ(t)}Tt=1 and the action sequence {xγ(t)}Tt=1 defined by setting

sγ(t) ≜

{
s1 if t = 1

gt−1 (s
γ(t− 1), xγ(t− 1)) if t > 1

and xγ(t) ≜

{
γ(s1) if t = 1

γ (sγ(t)) if t > 1
. (2)

The cumulative reward obtained by this simulation of γ is given by
∑
t∈[T] ft (s

γ(t), xγ(t)).

Consider a decision maker that plays the sequential game by following the (randomized) state sequence
{st}Tt=1 and action sequence {xt}Tt=1, where xt ∈ Xst for every 1 ≤ t ≤ T . For a (finite) set Γ of policies, the
decision maker’s regret with respect to Γ is defined to be

maxγ∈Γ

∑
t∈[T] ft (s

γ(t), xγ(t)) −
∑
t∈[T] E [ft(st, xt)] . (3)

Relation to the DRACC Problem:

Dynamic posted pricing for the DRACC problem can be modeled as a Dd-MDP. To this end, we identify
the state set S with the set of possible inventory vectors λt, t = 1, . . . , T . If state s ∈ S is identified with
inventory vector λt, then we identify Xs with the set of price vectors feasible for λt. The reward function ft
is defined by setting

ft(s, x) = q̂ xt , (4)

where q̂ xt is defined as in Eq. (1), recalling that the valuation function vt, required for the computation of
q̂ xt , is available to the decision maker at the end of round t. As for the state transition function gt, the new
state s′ = gt(s, x) is the inventory vector obtained by posting the price vector x to user t given the inventory
vector s, namely,

s′(i) =

{
s(i)− 1i∈Dx

t
if i ∈ At+1 ∩At

c
(
i
)

if i ∈ At+1 \At
.

3No (time-wise) connectivity assumptions are made for the dynamic transition graph induced by {gt}Tt=1, hence it may not
be possible to devise a path between two given states as is done in Dekel and Hazan [40] for static d-MDPs.

7

Given the aforementioned definitions, the notion of (pricing) policies and their recursive simulations and the
notion of regret translate directly from the DRACC setting to that of Dd-MDPs.

3.2 The Chasability Condition

As the Dd-MDP framework is very inclusive, it is not surprising that in general, it does not allow for vanishing
regret.

Proposition 1. For every online learning algorithm, there exists a T -round Dd-MDP instance for which the
algorithm’s regret is Ω(T).

Proof. Consider a simple scenario where there are only two states {s, s′} with s being the initial state and
two actions {x, x′} that are feasible for both states. Without loss of generality, let x be the action that the
decision maker’s algorithm chooses with probability at least 1/2 at time t = 1. Now, consider an adversary
that works in the following manner: It sets ft(s, ·) = 1 and ft(s

′, ·) = 0 for every t ∈ [T]. Regarding the state
transition, the adversary sets g1(s, x) = s′ and g1(s, x

′) = s; and for every t ∈ [2, T], it sets gt(s, ·) = s and
gt(s

′, ·) = s′. In such case, the expected cumulative reward of the decision maker is at most 1 + T/2, while
the policy that always plays action x′ obtains a cumulative reward of T .

As a remedy to the impossibility result established in Proposition 1, we introduce a structural condition
for Dd-MDPs that makes them amenable to online learning with vanishing regret.

Definition 1 (Chasability condition for Dd-MDPs). A Dd-MDP instance is called σ-chasable for some σ > 0
if it admits an ongoing chasing oracle OChasing that works as follows for any given target policy γ ∈ Γ. The
chasing oracle is invoked at the beginning of some round tinit and provided with an initial state sinit ∈ S; this
invocation is halted at the end of some round tfinal ≥ tinit. The halt time tfinal is specified by an oblivious
adversary, while OChasing is unaware of tfinal before it is terminated. In each round tinit ≤ t ≤ tfinal, the
chasing oracle generates a (random) action x̂(t) that is feasible for state

ŝ(t) =

{
sinit if t = tinit

gt−1 (ŝ(t− 1), x̂(t− 1)) if tinit < t ≤ tfinal
; (5)

following that, the chasing oracle is provided with the Dd-MDP’s reward function ft(·, ·) and state transition
function gt(·, ·). The main guarantee of OChasing is that its chasing regret (CR) satisfies

CR ≜
tfinal∑
t=tinit

ft (s
γ(t), xγ(t))−

tfinal∑
t=tinit

E
[
ft

(
ŝ(t), x̂(t)

)]
≤ σ .

We emphasize that the initial state sinit provided to the chasing oracle may differ from sγ(tinit). The subscript
σ of the notation OChasing may be omitted when it can be inferred from the context.

Relation to the DRACC Problem (continued):

In terms of the DRACC problem, chasability means that the online algorithm can simulate a given pricing
policy, while incurring a small revenue loss, even if the online algorithm starts from a (coordinate-wise)
smaller inventory vector. Interestingly, the Dd-MDPs corresponding to DRACC instances are σ-chasable
for σ = o(T), where the exact bound on σ depends on whether we consider general or kt-demand valuation
functions. Before establishing these bounds, we show that the chasing oracle must be randomized.

Proposition 2. There exists a family of T -round DRACC instances whose corresponding Dd-MDPs do not
admit a deterministic chasing oracle with o(T) chasing regret CR.

8

Proof. Consider an ongoing chasing oracle that is implemented in a deterministic manner for a DRACC
instance with C = 1, W = 2. The adversary chooses initial step tinit and initial state sinit so that tinit = o(T),
|Atinit

| = 2, and λtinit
= ⟨0, 1⟩. Note that throughout this proof, the inventory vectors and price vectors

containing two elements are presented in an ordered way, which means that the first element corresponds to
the resource with the smaller index.

The target policy γ is chosen to have λγtinit = ⟨1, 1⟩. Moreover, it maps every inventory vector to a price
vector of ⟨ 23 ,

1
3 ⟩. The adversary ensures the feasibility of such a policy by setting te(i) = t for each resource

that is sold out at t with the price vector generated by γ, and setting ta(i
′) = t+ 1 for a new resource. With

this setting, it holds for every t ≥ tinit that λγt = ⟨1, 1⟩.
The adversary configures the valuation functions vt for each t ≥ tinit in an adaptive way, and ensures that

for all such t
λ̂t = ⟨0, 1⟩ . (6)

With the initial state sinit chosen by the adversary, Eq. (6) holds for tinit. Suppose it holds for some t ≥ tinit.
Then the price vector p̂ generated by the oracle must be in the form of ⟨1, p⟩ for some p ∈ (0, 1]. Let i and i′

be the two resources in At with i < i′. If p ≤ 1
3 , the adversary sets vt(i) =

2
3 and vt(i

′) = 1
3 . Then with the

price vector generated by γ, payment 2
3 is obtained from the user for resource i, while the oracle obtains

payment 1
3 from the user for i′. The difference in rewards is

ft(λ
γ
t ,p

γ
t)− ft(λ̂t, p̂t) =

1

3
. (7)

Moreover, since i is sold out with pγt , the adversary sets te(i) = t and ta(i
′′) = t+1 for a new resource i′′ > i′.

In such case, it is guaranteed that Eq. (6) holds for t+ 1.
For the case where p > 1

3 , it can be verified that Eq. (7) still holds for t and Eq. (6) holds for t+ 1 when
the adversary sets vt(i) = vt(i

′) = 1
3 . Since Eq. (7) is established for every t ≥ tinit, CR = 1

3 (tfinal − tinit).
With tinit = o(T), taking tfinal = T gives the desired bound.

We now turn to study chasing oracles for DRACC instances implemented by randomized procedures.

Theorem 1. The Dd-MDPs corresponding to T -round DRACC instances with kt-demand valuation functions
are O(

√
CW · T)-chasable.

Proof. Consider some DRACC instance and fix the target pricing policy γ ∈ Γ; in what follows, we identify γ
with a decision maker that repeatedly plays according to γ. Given an initial round tinit and an initial inventory
vector λ̂tinit

, we construct a randomized chasing oracle OChasing that works as follows until it is halted at the
end of round tfinal ≥ tinit. For each round tinit ≤ t ≤ tfinal, recall that λ

γ
t is the inventory vector at time t

obtained by running γ from round 1 to t, and let λ̂t be the inventory vector at time t obtained by OChasing as
defined in Eq. (5). We partition the set At of resources active at time t into Goodt = {i ∈ At | λγt (i) ≤ λ̂t(i)}
and Badt = At \ Goodt. In each round tinit ≤ t ≤ tfinal, the chasing oracle posts the (|At|-dimensional) all-1
price vector with probability ϵ, where ϵ ∈ (0, 1) is a parameter to be determined later on; and it posts the
price vector

p̂t =

{
pγt (i) if i ∈ Goodt

1 if i ∈ Badt

with probability 1− ϵ, observing that this price vector is feasible for λ̂t by the definition of Goodt and Badt.
Notice that OChasing never sells a resource i ∈ Badt and that p̂t(i) ≥ pγt (i) for all i ∈ At. Moreover, if resource
i arrives at time ta(i) = t > tinit, then i ∈ Goodt.

To analyze the CR, we classify the rounds in [tinit, tfinal] into two classes called Following and Missing:
round t is said to be Missing if at least one (unit of a) resource in Badt is sold by γ in this round; otherwise,
round t is said to be Following. For each Following round t, if OChasing posts p̂t in round t, then OChasing

sells exactly the same resources as γ for the exact same prices; otherwise (OChasing posts the all-1 price
vector in round t), OChasing does not sell any resource. Hence, the CR increases in round t by at most ϵ in
expectation. For each Missing round t, the CR increases in round t by at most 1. Therefore the total CR

9

over the interval [tinit, tfinal] is upper bounded by ϵ ·E[#F] +E[#M] ≤ ϵ · T +E[#M], where #F and #M denote
the number of Following and Missing rounds, respectively.

To bound E[#M], we introduce a potential function ϕ(t), tinit ≤ t ≤ tfinal, defined by setting

ϕ(t) =
∑
i∈Badt

λγt (i)− λ̂t(i)

By definition, ϕ(tinit) ≤ CW and ϕ(tfinal) ≥ 0. We argue that ϕ(t) is non-increasing in t. To this end, notice
that if t is a Following round, then γ and OChasing sell exactly the same set of resources in Goodt with the
same prices. This implies that the inventory of every resource i ∈ At+1 ∩ At satisfies λγt+1(i) = λγt (i) and

λ̂t+1(i) = λ̂t(i). Since for every resource i ∈ At+1 \ At, we have i ∈ Goodt+1, it holds that Badt+1 ⊆ Badt.
Then by definition, for a Following round t, we have

ϕ(t+ 1) =
∑

i∈Badt+1

λγt+1(i)− λ̂t+1(i) =
∑

i∈Badt+1

λγt (i)− λ̂t(i) ≤
∑
i∈Badt

λγt (i)− λ̂t(i) = ϕ(t) ,

where the third transition holds because every resource i ∈ Badt satisfies λ
γ
t (i) > λ̂t(i). If t is a Missing

round and OChasing posts the all-1 price vector, then ϕ(t+ 1) < ϕ(t) as OChasing sells no resource whereas
γ sells at least one (unit of a) resource in Badt. So, it remains to consider a Missing round t in which
OChasing posts the price vector p̂t. Let Sγ and Ŝ be the sets of (active) resources sold by γ and OChasing,
respectively, in round t and notice that a resource i ∈ Ŝ \ Sγ may move from i ∈ Goodt to i ∈ Badt+1. The
key observation now is that since vt is a kt-demand valuation function, it follows that Sγ ∩ Goodt ⊆ Ŝ ∩ Goodt,
thus |Sγ ∩ Badt| ≥ |Ŝ \ Sγ |. As both γ and OChasing sell exactly one unit of each resource in Sγ and Ŝ,
respectively, we conclude that ϕ(t+ 1) ≤ ϕ(t).

Therefore, E[#M] is upper bounded by CW plus the expected number of Missing rounds in which ϕ(t) does
not decrease. Since ϕ(t) strictly decreases in each Missing round t in which OChasing posts the all-1 price vector,
it follows that the number of Missing rounds in which ϕ(t) does not decrease is stochastically dominated by
a negative binomial random variable Z with parameters CW and ϵ. Recalling that E[Z] = (1− ϵ) ·CW/ϵ, we
conclude that E[#M] ≤ CW + E[Z] = CW/ϵ. The assertion is now established by setting ϵ =

√
CW/T .

Remark 1. Theorem 1 can be in fact extended – using the exact same line of arguments – to a more general
family of valuation functions vt defined as follows. Let p be a price vector, B ⊆ At be a subset of the active
resources, and p′ be the price vector obtained from p by setting p′(i) = 1 if i ∈ B; and p′(i) = p(i) otherwise.

Then, |Dp
t ∩B| ≥ |D

p′

t \D
p
t |. Besides kt-demand valuations, this class of valuation functions includes OXS

valuations (Lehmann et al. [63]) and single-minded valuations (Lehmann et al. [64]).

Theorem 2. The Dd-MDPs corresponding to T -round DRACC instances with arbitrary valuation functions

are O

(
T

CW
CW+1

)
-chasable.

Proof. The proof follows the same line of arguments as that of Theorem 1, only that now, it no longer holds
that the potential function ϕ(t) is non-increasing in t. However, it is still true that (I) 0 ≤ ϕ(t) ≤ CW for
every tinit ≤ t ≤ tfinal; (II) if tinit ≤ t < tfinal is a Missing round and OChasing posts the all-1 price vector in
round t, then ϕ(t+1) < ϕ(t); and (III) if ϕ(t) = 0 for some tinit ≤ t ≤ tfinal, then ϕ(t′) = 0 for all t < t′ ≤ tfinal.
We conclude that if OChasing posts the all-1 price vector in CW contiguous Missing rounds, then ϕ(·) must
reach zero and following that, there are no more Missing rounds. Therefore the total number #M of Missing
rounds is stochastically dominated by CW times a geometric random variable Z with parameter ϵCW . Since
E[Z] = ϵ−CW , it follows that E[#M] ≤ CW/ϵCW . Combined with the Following rounds, the CR is upper
bounded by ϵ · T + CW/ϵCW . The assertion is established by setting ϵ = (T/(CW))−1/(CW+1).

3.3 Putting the Pieces Together: Reduction to Online Learning with Switching
Cost

Having an ongoing chasing oracle with vanishing chasing regret in hand, our remaining key technical idea is
to reduce online decision making for the Dd-MDP problem to the well-studied problem of online learning

10

ALGORITHM 1: Online Dd-MDP algorithm C&S

Input: Policy set Γ, OLSC algorithm A, chasing oracle OChasing, initial state s1;
Output: Sequence x1, . . . , xT of actions, (implicit) sequence s2, . . . , sT of states;

Start from initial state s1;
for each round t ∈ [T] do

Invoke A to pick a policy γt at the beginning of round t;

if t > 1 and γt ̸= γt−1 then
Invoke OChasing from scratch with target policy γt, initialized with round t and state st;
Select the action xt ← x̂(t) returned by OChasing;

else
Continue the existing run of OChasing and select the action xt ← x̂(t) it returns;

Feed OChasing with gt(·, ·) and ft(·, ·) as the state transition and reward functions of round t;

for each γ ∈ Γ do
Compute Ft(γ)← ft(s

γ(t), xγ(t)) by simulating policy γ up to time t (see Eq. (2));

Feed A with Ft(·) as the reward function of round t;

with switching cost (OLSC) (Kalai and Vempala [57]). The problem’s setup under full-information is exactly
the same as the classic problem of learning from experts’ advice, but the learner incurs an extra cost ∆ > 0,
a parameter referred to as the switching cost, whenever it switches from one expert to another. Here, we
have a finite set Γ of experts (often called actions or arms) and T ∈ Z>0 rounds. The expert reward function
Ft : Γ 7→ [0, 1) is revealed as feedback at the end of round t = 1, . . . , T . The goal of an algorithm for this
problem is to pick a sequence γ1, . . . , γT of experts in an online fashion with the objective of minimizing the
regret, now defined to be

max
γ∈Γ

∑
t∈[T]

Ft(γ)−

∑
t∈[T]

E [Ft(γt)]−∆ ·
T∑
t=2

1γt ̸=γt−1

 .

Theorem 3 (Kalai and Vempala [57]). The OLSC problem with switching cost ∆ admits an online algorithm

A whose regret is O
(√

∆ · T log |Γ|
)
.

Note that the same theorem also holds for independent stochastic switching costs with ∆ as the upper
bound on the expected switching cost, simply because of linearity of expectation and the fact that in
algorithms for OLSC, such as the Following-The-Perturbed-Leader (Kalai and Vempala [57]), switching at
each time is independent of the realized cost of switching.

We now present our full-information online learning algorithm for σ-chasable Dd-MDP instances; the
reader is referred to Section 6 for the bandit version of this algorithm. Our (full-information) algorithm,
called chasing and switching (C&S), requires a black box access to an algorithm A for the OLSC problem
with the following configuration: (1) the expert set of A is identified with the policy collection Γ of the
Dd-MDP instance; (2) the number of rounds of A is equal to the number of rounds of the Dd-MDP instance
(T); and (3) the switching cost of A is set to ∆ = σ.

The operation of C&S is described in Algorithm 1. This algorithm maintains, in parallel, the OLSC
algorithm A and an ongoing chasing oracle OChasing; A produces a sequence {γt}Tt=1 of policies and OChasing

produces a sequence {xt}Tt=1 of actions based on that. Specifically, OChasing is restarted, i.e., invoked from
scratch with a fresh policy γ, whenever A switches to γ from some policy γ′ ̸= γ. Note that algorithm A
and the chasing oracle OChasing do not share the same source of random bits. Therefore, it is appropriate to
assume that the halt time tfinal of the chasing oracle is generated by an oblivious adversary.

Theorem 4. The regret of C&S for T -round σ-chasable Dd-MDP instances is O
(√

σ · T log |Γ|
)
.

11

Proof. Partition the T rounds into episodes {1, 2, . . . } so that each episode θ is a maximal contiguous sequence
of rounds in which the policy γθ chosen by A does not change. Let tθ and t′θ be the first and last rounds of
episode θ, respectively. Consider some episode θ with corresponding policy γθ. Since C&S follows an action
sequence generated by OChasing during the round interval [tθ, t

′
θ] and since the chasing regret of OChasing is

upper bounded by σ = ∆, it follows that

t′θ∑
t=tθ

Ft(γθ)−
t′θ∑
t=tθ

E [ft(st, xt)] =

t′θ∑
t=tθ

ft (s
γθ (t), xγθ (t))−

t′θ∑
t=tθ

E [ft(st, xt)] ≤ ∆ .

Therefore, for each policy γ ∈ Γ, we have

∑
t∈[T]

ft (s
γ(t), xγ(t))−

∑
t∈[T]

E [ft(st, xt)] ≤
∑
t∈[T]

ft (s
γ(t), xγ(t))−

∑
θ

 t′θ∑
t=tθ

E [Ft(γθ)]−∆

=

∑
t∈[T]

Ft(γ)−

∑
t∈[T]

E [Ft(γt)]−∆ ·
T∑
t=2

1γt ̸=γt−1

 .

By Theorem 3, the last expression is at most O
(√

∆ · T log |Γ|
)
= O

(√
σ · T log |Γ|

)
.

So far, we have only considered the notion of policy regret as defined in Eq. (3). An extension of our
results to the notion of external regret (Arora et al. [12]) is discussed in Section 5. Furthermore, we investigate
the bandit version of the problem in Section 6. In a nutshell, by introducing a stateless version of our
full-information chasing oracle and reducing to the adversarial multi-armed-bandit problem (Audibert and
Bubeck [13]), we obtain O(T 2/3) regret bound for Dd-MDP under bandit feedback. Finally, we obtain
near-matching lower bounds for both the full-information and bandit feedback versions of the Dd-MDP
problem under the chasability condition in Section 7.

Relation to the DRACC Problem (continued):

We can now use C&S (Algorithm 1) for Dd-MDPs that correspond to DRACC instances. This final mechanism
is called learning based posted pricing (LBPP). It first provides the input parameters of C&S, including the
collection Γ of pricing policies, the OLSC algorithm A, the ongoing chasing oracle OChasing and the initial
state s1. It then runs C&S by posting its price vectors (actions) and updating the resulting inventory vectors
(states). For OChasing, we employ the (randomized) chasing oracles promised in Theorem 1 and Theorem 2.
The following theorems can now be inferred from Theorem 4, Theorem 1, and Theorem 2.

Theorem 5. The regret of LBPP for T -round DRACC instances with kt-demand valuation functions (or

more generally, with the valuation functions defined in Remark 1) is O
(
(CW)

1
4T

3
4

√
log |Γ|

)
.

Theorem 6. The regret of LBPP for T -round DRACC instances with with arbitrary valuation functions is

O
(
T

1
2 (1+

CW
CW+1)

√
log |Γ|

)
.

Note that the regret bounds in Theorem 5 and Theorem 6 depend on the parameters C and W of the
DRACC problem; as shown in the following theorem, such a dependence is unavoidable.

Theorem 7. If C ·W = Ω(T), then the regret of any posted price mechanism is Ω(T).

Proof. Here we construct two instances of DRACC. The following settings are the same between these two
instances.

• The parameters C and W are chosen so that C ·W = T/2. Set N =W .

12

• For each resource i, ta(i) = 1 and te(i) = T . This setting implies that for every user t, At = [N], which
is consistent with W = N . Every i ∈ [N] has the same capacity c(i) = C.

• For each user t ∈
[
1, T/2

]
, the valuation function vt is set as follows.

vt(A
′) =

{
1
2 if |A′| = 1

0 otherwise
∀A′ ⊆ At .

For the users t ∈
[
T
2 +1, T

]
, their valuation functions are different between the two instances. In particular,

in the first instance, vt(A
′) = 0 for any A′ ⊆ At, while in the second instance

vt(A
′) =

{
1− ϵ if |A′| = 1

0 otherwise
∀A′ ⊆ At .

where ϵ is some small enough constant in (0, 12).
Now consider an arbitrary deterministic mechanismM. Such a mechanism will output the same sequence

of price vectors for the first half of the users in these two instances. Therefore, the total number of resources

that are allocated byM to the first half of users must be the same k in the two instances for some k ∈
[
0, T2

]
.

Then, the revenue ofM is at most k2 in the former instance, while at most k2+
(
T
2 −k

)
·(1−ϵ) = 1−ϵ

2 T−(12−ϵ)k
in the latter one. Now consider a pricing policy γ that maps every inventory vector except

〈
0
〉
to a price

vector that only contains 1
2 . The revenue of γ in the first instance is T

4 . Similarly, there exists a policy γ′

with revenue T
2 · (1− ϵ) in the second instance. Therefore, the regret ofM is at least

max

{
T

4
− k

2
,
T

2
(1− ϵ)−

[1− ϵ
2

T − (
1

2
− ϵ)k

]}
≥ 1− 2ϵ

8(1− ϵ)
T .

To generalize the result above to the mechanisms that can utilize the random bits, here we adopt Yao’s
principle (Yao [75]). In particular, we construct a distribution over the inputs which assigns probabilities
1−2ϵ
2−2ϵ and 1

2−2ϵ to the two instances constructed above, respectively. It can be verified that against such a

distribution, the expectation of any random mechanism’s regret is at least 1−2ϵ
8(1−ϵ)T . By Yao’s principle, the

lower bound on the regret of any mechanism that can utilizes the random bits is also 1−2ϵ
8(1−ϵ)T . Therefore,

this proposition is established.

Theorem 8. There is no posted price mechanism has a regret that is better than O(
√
CW · T) for DRACC

when each user t has a kt-demand valuation function with kt = 1.

Proof. Consider the case where the T rounds are partitioned into T ′ episodes by the adversary such that the
length of each episode ψ contains exactly 2CW rounds. At the beginning of the first round in each episode ψ,
a set of W new resources with a uniform capacity C arrive, and these resources depart at the end of the last
round in the same episode. For each user t arrive in the first CW rounds of each episode, the parameter
wit of her valuation function is set to 1−ϵ

2 for every active resource i ∈ At, where ϵ > 0 is a small enough
positive number. The adversary flips a coin at the beginning of each episode. If the result of the toss is
Head, then for every user t arriving in the last CW rounds of the current episode and every active resource
i ∈ At, vt

(
{i}

)
is set to 1− ϵ. Otherwise, vt

(
{i}

)
is set to 0. It is easy to see that the expected revenue of

any online algorithm is at most 1−ϵ
2 T .

Now assume that there are two different benchmark policies γ1, γ2 ∈ Γ. For each non-exhausted resource
i, policy γ1 sets a price of 1−ϵ

2 , while policy γ2 specifies a price of 1 − ϵ. For each episode ψ, let Xψ be a
random variable that takes 1 with probability 1

2 and takes −1 with probability 1
2 . Then the expected reward

13

obtained by the in-hindsight best pricing policy is

E
[
max

{ ∑
t∈[T]

ft(s
γ1(t), xγ1(t)),

∑
t∈[T]

ft(s
γ2(t), xγ2(t))

}]
=E

[
max

{1− ϵ
2

T,
1− ϵ
2

CW ·
∑
ψ∈T ′

(1 +Xψ)
}]

=
1− ϵ
2

T +
1− ϵ
2

CW · E
[
max

{
0,

∑
ψ∈T ′

Xψ

}]
=
1− ϵ
2

T +
1− ϵ
2

Ω
(
CW ·

√
T ′

)
=
1− ϵ
2

T +
1− ϵ
2

Ω
(√

CW · T
)
.

Above, the second transition and the fourth transition hold because T ′ · CW = T . The third transition
above holds because

∑
ψ∈[T ′]Xψ tends to a normal distribution N (0,

√
T ′) by using central limit theorem,

which means that max{0,
∑
ψ∈T ′ Xψ}, a zero-mean normal distribution (in the limit) truncated from below

at 0, coincides with a
√
T ′-mean half-normal distribution. Therefore, we can conclude that compared to the

revenue generated by the in-hindsight best pricing policy, any algorithm suffers a loss of Ω
(√

CW · T
)
.

The following corollary can be directly obtained by combining Theorem 4 with Theorem 8.

Corollary 1. The CR of any chasing oracle is at least χ ·CW on DRACC instances with kt-demand valuation
functions, where χ is some constant larger than 0.

4 Applications of the DRACC Problem

The mechanism LBPP proposed for the DRACC problem can be directly applied to a large family of online
pricing problems arising in practice. Two examples are presented in this section: the online job scheduling
(OJS) problem and the problem of matching over dynamic bipartite graphs (MDBG).

4.1 Online Job Scheduling.

The OJS problem described in this section is motivated by the application of assigning jobs that arrive online
to limited bandwidth slots for maximizing the total payments collected from the jobs. Formally, in the OJS
problem, there are T strategic myopic jobs, arriving sequentially over N time slots. Each slot i ∈ [N] lasts
over the time interval [i, i+ 1) and is associated with a bandwidth c(i), which means that this slot can be
allocated to at most c(i) jobs. For each job t ∈ T , the adversary specifies an arrival slot 1 ≤ at ≤ N , a
departure slot at ≤ dt ≤ N , a length 1 ≤ lt ≤ dt − at + 1, and a value vt ∈ [0, 1). We emphasize that any
number (including zero) of jobs may have slot i as their arrival (or departure) slot. The goal of job t is to get
an allocation of lt contiguous slots within [at, dt], namely, a slot interval in

It = {[i, i+ lt − 1] | at ≤ i ≤ dt − lt + 1} ,

with vt being the job’s value for each such allocation. Let C and W be upper bounds on maxi∈[N] c(i) and
maxt∈[T] dt − at + 1, respectively.

Job t ∈ [T] is reported to the OJS mechanism at the beginning of slot at; if several jobs share the same
arrival slot, then they are reported to the mechanism sequentially in an arbitrary order. At the beginning of
slot at, the mechanism is also informed of the bandwidth parameter c(i) of every slot i ∈ At, where At is
defined to be the slot interval

At = [at, at +W − 1] ;

note that the mechanism may have been informed of the bandwidth parameters of some slots in At beforehand
(if they belong to At′ for t

′ < t). In response, the mechanism posts a price vector pt ∈ (0, 1]At and elicits

14

the parameters dt, lt, and vt. Subsequently, (one bandwidth unit of) the slots in the demand set Dpt

t are
allocated to job t at a total price of q̂pt

t , where

Dp
t =

{
∅ if vt < minI∈It

∑
i∈I p(i)

argminI∈It

∑
i∈I p(i) otherwise

and q̂pt =
∑
i∈Dp

t

p(i)

for any price vector p ∈ (0, 1]At , consistently breaking argmin ties according to the lexicographic order on At.
Let λt ∈ {0, 1, . . . , C}At be the (remaining) bandwidth vector that encodes the number λt(i) of units

remaining from the bandwidth of slot i ∈ At before processing job t = 1, . . . , T . Formally, if slot i has not
been allocated to any of the jobs in {1, . . . , t− 1}, then λt(i) = c(i); and if (a bandwidth unit of) slot i is
allocated to job t and i ∈ At+1, then λt+1(i) = λt(i) − 1. We say that a price vector p is feasible for the
bandwidth vector λt if p(i) = 1 for every i ∈ At such that λt(i) = 0, that is, for every slot i that has already
been exhausted before job t is processed. To ensure that the slots’ bandwidth is not exceeded, we require that
the posted price vector pt is feasible for λt for every 1 ≤ t ≤ T . We aim for posted price OJS mechanisms
whose objective is to maximize the total expected payment E[

∑T
t=1 q̂

pt

t] received from all jobs, where the
expectation is over the mechanism’s internal randomness.

A pricing policy γ is a function that maps each bandwidth vector λ ∈ {0, 1, . . . , C}At , t ∈ [T], to a price
vector p = γ(λ), subject to the constraint that p is feasible for λ. Given a pricing policy γ, consider a
decision maker that repeatedly plays according to γ; namely, she posts the price vector pγt = γ(λγt) for job
t = 1, . . . , T , where λγt is the bandwidth vector obtained by applying γ recursively on previous bandwidth

vectors λγt′ and posting prices γ(λγt′) for jobs t′ = 1, . . . , t − 1. Denoting q̂γt = q̂
pγ
t

t , the revenue of this

decision maker is given by
∑T
t=1 q̂

γ
t . Given a collection Γ of pricing policies, the quality of a posted price

OJS mechanism {pt}Tt=1 is measured by means of the decision maker’s regret with respect to Γ, namely

max
γ∈Γ

T∑
t=1

q̂γt − E

[
T∑
t=1

q̂pt

t

]
,

where the expectation is taken over the decision maker’s randomness.

Reduction to DRACC. Given the aforementioned choice of notation, the transformation of an OJS
instance to a DRACC instance should now be straightforward. Specifically: job t is mapped to user t; slot i is
mapped to resource i; slot i’s bandwidth parameter c(i) is mapped to the capacity of resource i; job t’s arrival
slot at determines the set At of active resources at time t, and through these sets, the arrival and departure
times of the resources; and job t’s length lt and value vt parameters determine the valuation function of user
t, assigning a value of vt to each I ∈ It; and a zero value to any other subset of At. The following corollary is
now inferred directly from Theorem 6.

Corollary 2. The OJS problem admits a mechanism whose regret for T -round instances is:

O
(
T (1+(CW)/(CW+1))/2

√
log |Γ|

)
.

Corollary 2 is derived from the regret bound of LBPP for the DRACC problem with arbitrary valuation
functions, based on the (randomized) chasing oracle implementation developed in Theorem 2. It turns out
though that one can exploit the structural properties of the OJS problem to design a chasing oracle with
dramatically improved chasing regret, thus improving the regret bound for the OJS problem (see Corollary 3).

Lemma 1. The OJS problem admits a (deterministic) ongoing chasing oracle whose chasing regret is at
most 2 · CW .

Proof. One property of OJS is that for any two slots i and i′,

ta(i) ≤ ta(i′) ⇒ te(i) ≤ te(i′) . (8)

15

We prove the claim by constructing a chasing ongoing oracle OChasing with the desired CR using this property.
Given a target policy γ, an initial step tinit, and an initial state sinit, oracle OChasing posts a price vector p̂t
for each t ≥ tinit as follows

p̂t =

{
⟨1⟩i∈At if t ≤ min{T,maxi∈Atinit

te(i)}
pγt otherwise

.

Let t′ = min{T,maxi∈Atinit
te(i)}. The price vector p̂t is trivially feasible for every t ∈ [tinit, t

′]. If t′ < T ,

then for every slot i in At′+1, we have i /∈ Atinit , which gives ta(i) > tinit. Since OChasing does not sell any slot

to users from tinit to t
′, it holds that λ̂t′+1(i) = c(i) ≥ λγt′+1(i). Therefore, Goodt′+1 = At′+1 and Badt′+1 = ∅.

Then it can be proved inductively that for any t ≥ t′ + 1, Badt = ∅, which ensures the feasibility of p̂t.
Moreover, for each t ≥ t′ + 1, since p̂t = pγt , we have ft

(
λ̂t, p̂t

)
= ft

(
λγt ,p

γ
t

)
.

It remains to bound
∑t′

t=tinit
ft
(
λγt ,p

γ
t

)
−
∑t′

t=tinit
ft
(
λ̂t, p̂t

)
. Let S be the set of slots i with ta(i) ∈ (tinit, t

′].
By Eq. (8), it holds for every i ∈ S that te(i) ≥ t′, because for every i′ ∈ Atinit , ta(i

′) ≤ tinit. By definition,
S ⊆ At′ , which gives |S| ≤W . Since the slots that can be sold by any policy to users in [tinit, t

′] belong to
Atinit

∪ S, we have
t′∑

t=tinit

ft
(
λγt ,p

γ
t

)
≤ C · |Atinit ∪ S| ≤ C · 2W .

Since
∑t′

t=tinit
ft
(
λ̂t, p̂t

)
is non-negative, this theorem is established.

By plugging Lemma 1 into Theorem 4, we obtain the following improvement to Corollary 2; this bound is
near-optimal due to Blum and Hartline [22].

Corollary 3. The OJS problem admits a mechanism whose regret for T -round instances isO
(√

CW · T log |Γ|
)
.

4.2 Matching Over Dynamic Bipartite Graphs.

The MDBG problem is a dynamic variation of the conventional bipartite matching problem with the goal
of maximizing the revenue. Formally, in the MDBG problem, there are two sets of nodes, the left-side
node set Left = {i}i∈[N] and the right-side node set Right = {t}t∈[T]. The nodes in each of these two sets
arrive sequentially and dynamically. For each node i ∈ Left, an adversary specifies a pair of parameters

ta(i) ∈ [T] and te(i) ∈
[
ta(i), [T]

]
. It means that the node i arrives just before the arrival of the node

t = ta(i) ∈ Right, and expires immediately after the node t′ = te(i) ∈ Right is given. For each node
t ∈ Right, define At = {i ∈ Left : t ∈ [ta(i), te(i)]}. The adversary also specifies a weight wt(i) ∈ [0, 1) for
each t ∈ Right and i ∈ At.

A posted price mechanism is required to present a price vector pt ∈ (0, 1]|At| independently of wt(·) upon
the arrival of each node t ∈ Right. For any price vector p presented to t, define Dp

t = argmaxi∈At
wt(i)−p(i)

with breaking ties in a fixed way. The mechanism matches the left-side node Dp
t to the right-side node t

and charges t the payment p
(
Dp
t

)
if wt

(
Dp
t

)
≥ p

(
Dp
t

)
. Otherwise, no left node is matched to t, and no

payment is obtained. After that, wt(·) is revealed to the mechanism.
In the MDBG problem, every left-side node i can only be matched to at most one right-side node t. We

express this constraint as a feasibility requirement on the price vector that for each right-side node t, if
a left-side node i ∈ At has already been matched before the arrival of t, then the price of i should be set
to 1. The states of whether the left-side nodes in At have been matched can be described with a Boolean
vector of length |At|, and a pricing policy γ ∈ Γ is a mapping from each possible Boolean vector to a feasible
price vector. The objective of the MDBG problem is to find a feasible price vector pt for every t ∈ Right to
maximize the total payments, and the regret is defined to be the difference between the revenue obtained by
the best fixed in-hindsight pricing policy in a given collection Γ and the expected revenue of the mechanism.

16

Reduction to DRACC. This problem can be transformed to a special case of the DRACC problem by
taking the nodes in Left (resp. Right) as the resources (resp. users). The capacity of every resource is exactly
one. The valuation function of each user t maps each subset A ⊆ At to vt(A) = maxi∈A wt(i). Such a setting
is consistent because the price posted for each resource i is strictly larger than 0, which ensures that at most
one resource is allocated to each user. Moreover, vt is a kt-demand valuation function with kt = 1 for every t.
Using Theorem 5, we get the following result.

Corollary 4. For the MDBG problem, the regret of the mechanism LBPP is bounded byO
(
W 1/4T 3/4

√
log |Γ|

)
.

Remark 2. While the two applications we studied in Section 4.1 Section 4.2 could be reduced to the DRACC,
our more general Dd-MDP model can have applications beyond the DRACC problem. In fact, one can tweak
their models a bit so that rather than pricing policies we have arbitrary set of scheduling/matching polices
with limited cost as they switch their states. Still under these variant models, our applications are instances of
the Dd-MDP problem. For example, Chawla et al. [32] have considered a variant of our online job scheduling
problem where we have an arbitrary set of online scheduling policies, and a decision maker’s task is to learn
how to switch between these policies to minimize the regret versus the best in-hindsight policy in this given
set of policies. This problem is indeed an example of σ-chasable Dd-MDP, but not an instance of DRACC, as
shown in Chawla et al. [32].

5 External Regret

To complement our result, in this part we consider another natural alternative definition for regret, known as
external regret, defined as follows (see Arora et al. [12] for more details).

max
γ∈Γ

∑
t∈[T]

ft

(
st, γ(st)

)
−

∑
t∈[T]

E
[
ft(st, xt)

]
. (9)

In words, while policy regret is the difference between the simulated reward of the optimal fixed policy and
the actual reward of the algorithm, in external regret the reward that is being accredited to the optimal fixed
policy in each round t is the reward that policy would have obtained when being in the actual state of the
algorithm (versus being in its simulated current state). In Arora et al. [12], it is shown that for the online
learning problems where the reward functions depend on the m-recent actions, the policy regret and the
external regret are incomparable, which means that any algorithm with a sublinear policy regret has a linear
external regret, and vice visa. Based on the techniques proposed in Arora et al. [12], we prove that such a
statement also holds for the online learning problem on the Dd-MDP with chasability. This is the reason why
we focus on obtaining vanishing policy regret in the main part of this paper.

Theorem 9. There exists a σ-chasable instance of the Dd-MDP so that for any online learning algorithm
having a sublinear policy regret on this instance, it cannot guarantee a sublinear external regret on the same
instance, and vice visa.

Proof. We start by constructing a deterministic MDP instance and proving that it is a feasible Dd-MDP
instance with a constant σ.

1
0 //0

%%
2

0 //
0

hh 3
0 //

0

xx · · ·
0 // m

1

ff 0.5gg (10)

Consider the deterministic MDP instance with m > 2 states in Eq. (10), where m is a constant independent
of T . Each state in this instance is labeled with a distinct integer in [m]. The action set contains two actions,

17

which are denoted by Forward and Backward, respectively. These two actions are feasible for every state.
The state transition functions gt and reward functions ft are fixed for all t ∈ [T] as follows.

gt(s, x) =

s+ 1 if s < m

∧
x = Forward

m if s = m
∧
x = Forward

1 if x = Backward

,

ft(s, x) =

0.5 if s = m

∧
x = Forward

1 if s = m
∧
x = Backward

0 otherwise

.

For any target policy γ ∈ Γ, initial time tinit and any initial state sinit, let k = m− sinit, and {x̂t}t≥tinit be a
sequence of actions so that

x̂t =

{
Forward if t ≤ tinit + k − 1

Backward otherwise
.

This sequence of actions are trivially feasible. For any τ ≤ tinit + k − 1, it is easy to see that

τ∑
t=tinit

ft(s
γ(t), xγ(t))− ft(ŝt, x̂t) ≤ m− 1 ,

where {ŝt}t≥tinit
is a sequence of states defined in a similar with with Eq. (5). By the setting of the state

transition function, we have ŝtinit+k = m. Let t′ = argmin
t≥tinit+k

xγ(t) = Backward. Then

t′∑
t=tinit+k

ft(s
γ(t), xγ(t))− ft(ŝt, x̂t) ≤ 0 ,

and for every t > t′,
ft(s

γ(t), xγ(t)) = ft(ŝt, x̂t)

because in such a case sγ(t) = ŝt and x
γ(t) = x̂t always hold. Putting the three formulas above together, it is

proved that this Dd-MDP instance is σ-chasable with σ = m− 1.
Let the number of rounds that an arbitrary algorithm performs the actions Forward and Backward at

the state m be k and k′, respectively. Note that each time an algorithm performs Backward at the state m,
then it needs to take at least m− 1 rounds to go back to the state m. It implies that k +m · k′ ≤ T . The
total reward obtained by this algorithm is

1

2
k + k′ ≤ 1

2
k +

1

m
(T − k) . (11)

Since the total reward by repeating a fixed policy γF that maps every state to Forward is at least 1
2 (T −m),

the policy regret is at least (12 −
1
m)(T − k)− m

2 . Therefore, if the policy regret is sublinear in T , we have
k = T − o(T). Now, consider another policy γB that maps every state to the action Backward. We have

T∑
t=1

ft(st, γ
′(st))−

T∑
t=1

ft(st, xt) ≥
(
1− 1

2

)
· k ,

which implies that the external regret is linear in T .
Now consider an arbirary algorithm whose external regret is sublinear in T . Then, the total reward of this

algorithm is at most T
m + o(T), because otherwise it can still be inferred from Eq. (11) that k is linear in T ,

which leads to a linear external regret. Recall that the total reward of repeating the policy γF is (T −m)/2.
Therefore, the policy regret is linear in T .

18

6 Bandit Setting

In Section 3, we investigate the online learning problem on Dd-MDPs under the full information setting,
which means that for each round t, both the state transition function gt(s, x) and reward function ft(s, x)
selected by the adversary are completely revealed to the decision maker after the decision maker chooses a
(randomized) action xt. In this part, we consider the bandit setting, where at each round t, the decision maker
only knows the actual reward she receives, ft(st, xt), with the state transition function gt(·, ·). Obtaining
vanishing regret for Dd-MDPs under the bandit setting requires a stronger condition than σ-chasability,
which is defined in the following subsection.

6.1 Stateless Chasability

We say that an instance of Dd-MDP satisfies the stateless chasability condition for some parameter σ > 0 if
there exists a chasing ongoing oracle OChasing which not only guarantees that CR ≤ σ, but also ensures that for
any target policy γ and any initial state tinit, the cumulative reward obtained by taking the generated actions
{x̂t}t≥tinit does not depend on the initial state sinit. More formally, let sinit, s

′
init be two arbitrary initial

states, and {x̂t}t≥tinit
, {x̂′t}t≥tinit

be two sequence of actions generated by the chasing ongoing oracle with
starting from sinit and s

′
init, respectively. The stateless chasability condition requires that for any tfinal ≥ tinit∑

t∈[tinit,tfinal]

E
[
ft(ŝt, x̂t)

]
=

∑
t∈[tinit,tfinal]

E
[
ft(ŝ

′
t, x̂

′
t)
]
,

where ŝt and ŝ
′
t are defined in a similar way with Eq. (5). A chasing ongoing oracle is said to be applicable to

the bandit setting if its decision on each action x̂t for t ≥ tinit only depends on sinit, {ft′(ŝt′ , x̂t′)}t′∈[tinit,t−1]

and {gt′(·, ·)}t′∈[tinit,t−1].

6.2 Multiarmed Bandit Problem

To develop vanishing-regret algorithms for σ-chasable Dd-MDPs under the bandit setting, we utilize technical
tools that are related to the Multiarmed Bandit Problem (MBP) (Auer et al. [14]). Using a blackbox algorithm
for this problem, Section 6.3 shows how to obtain vanishing regret for our problem.

In MBP, there is a set of arms Γ, and Ψ ∈ N rounds. At each round ψ ∈ [Ψ], an adversary specifies a
reward function Fψ : Γ 7→ [0, 1], which is unknown to the online algorithm at the beginning of this round.
Simultaneously, the algorithm chooses an action γψ ∈ Γ. Then the reward Fψ(γψ) obtained by the algorithm
is revealed. The goal of the algorithm is to pick a sequence of actions γ1, . . . , γΨ in an online fashion to

maximize E
[∑

ψ∈[Ψ] Ft(γψ)
]
. The regret is defined to be

max
γ∈Γ

∑
ψ∈[Ψ]

Fψ(γ)−
∑
ψ∈[Ψ]

E
[
Fψ(γψ)

]
.

Theorem 10 (Audibert and Bubeck [13]). There exists an algorithm Implicitly Normalized Forecaster (INF)

for MBP whose regret is bounded by O
(√
|Γ| ·Ψ

)
.

6.3 Decision Making Algorithm: Chasing & Switching in Fixed-Length Periods

We now present our decision making (DM) algorithm for the σ-chasable Dd-MDP problems under the bandit
setting. Our DM algorithm Chasing and Switching in Fixed-Length Periods (C&S-FLP) requires blackbox
accesses to a chasing ongoing oracle that is applicable to the bandit setting and Algorithm INF for MBP,
where the action set of MBP is set to be the collections of policies Γ in Dd-MDP. Algorithm INF runs over
consecutive periods of τ rounds for some τ > σ, while the last period is allowed to have less than τ rounds. At
the beginning of each period ψ, C&S-FLP invokes Algorithm INF to choose a policy γψ from Γ. Then it starts
a new run of the chasing ongoing oracle OChasing with γψ as the target policy, s(ψ−1)τ+1 as the initial state

19

sinit and (ψ − 1)τ + 1 as the initial time tinit. Then C&S-FLP takes the sequence {x̂t}t∈[(ψ−1)τ+1,min{ψ·τ,T}]
of actions generated by OChasing throughout the current period ψ, and send the reward ft(st, xt) and state
transition function gt(·, ·) to OChasing after performing each x̂t as the feedback. After the reward of the last

step t = min{T, ψτ} of the current period is received, C&S-FLP computes Fψ(γψ) =
1
τ

t∑
t′=(ψ−1)τ+1

ft′(st′ , xt′)

and feeds it to Algorithm INF as the reward of γ at t.

Theorem 11. The regret of C&S-FLP is bounded by O
(
σ·T
τ +

√
|Γ|Tτ

)
.

Proof. Let Ψ =
⌈
T
τ

⌉
, and R(Ψ, |Γ|) be the regret of Algorithm INF. With the stateless condition of the chasing

ongoing oracle, {Fψ}ψ∈[Ψ] is a sequence of stateless reward functions that satisfy the condition of Theorem
11. Therefore, we have

max
γ∈Γ

∑
ψ∈[Ψ]

Fψ(γ)−
∑
ψ∈[Ψ]

E
[
Fψ(γψ)

]
≤ R(Ψ, |Γ|) ,

which gives that

τ ·max
γ∈Γ

∑
ψ∈[Ψ]

Fψ(γ)−
∑
t∈[T]

E
[
ft(st, xt)

]
≤ τ ·R(Ψ, |Γ|) .

By the definition of CR, for each period ψ we have

ψ·τ∑
t=(ψ−1)τ+1

ft(s
γ(t), xγ(t))− τ ·max

γ∈Γ

∑
ψ∈[Ψ]

Fψ(γ) ≤ σ .

Therefore, the regret of Algorithm C&S-FLP is bounded by∑
t∈[T]

ft(s
γ(t), xγ(t))−

∑
t∈[T]

E
[
ft(st, xt)

]
≤ σ ·Ψ+ τ ·R(Ψ, |Γ|) .

This proposition is proved by plugging Theorem 10 into the formula above.

Corollary 5. By taking τ = T
1
3 , the regret of Algorithm C&S-FLP is bounded by O

(
σT

2
3

√
|Γ|

)
.

7 Lower Bounds for Online Learning over Dd-MDPs with Chasabil-
ity

In this part, we will prove lower bounds on the regret of online learning algorithms for σ-chasable Dd-MDP
instances under the full-information setting and bandit setting, respectively.

Theorem 12. The regret of any online learning algorithm for 1-chasable Dd-MDP under full-information
(resp., bandit) feedback is lower bounded by Ω(

√
T log |Γ|) (resp., Ω(|Γ|1/3T 2/3)).

Proof. We first prove the full information lower bound, and the proof of the bandit version follows the same
lines. Suppose the statement of the theorem does not hold. Then, there exists an online learning algorithm
with regret of o(

√
T log |Γ|) for any 1-chasable instance of the Dd-MDP problem. We show how to use this

algorithm to design an OLSC algorithm with a unit switching cost whose regret is o(
√
T log |X |), where

X is the action set of the OLSC instance. This is in contradiction to the known information theoretic
Ω(

√
T log |X |) lower bound on the regret of OLSC under the full-information setting, see Cesa-Bianchi and

Lugosi [30], Freund and Schapire [51], Littlestone and Warmuth [66]. (For the bandit version of this proof we
use the lower bound of Dekel et al. [39]).

Here is how the reduction works: Given an OLSC instance with a set X of actions and a unit switching
cost, we construct a Dd-MDP instance with a state sx for each action x ∈ X . An arbitrary state s ∈ S is

20

selected to be the initial state s1. Moreover, we set Xs = X for every state s. For every x ∈ X , we introduce
a policy γx in the policy collection Γ of the Dd-MDP, defined so that it maps all states to action x ∈ X . For
each round t, when the adversary in OLSC specifies a reward function Ft(·), we construct the state transition
function and reward function in the Dd-MDP by setting

gt(s, x) = sx and ft(s, x) =
1

2
Ft(x) +

1

2
· 1s=sx .

Obviously, this is a 1-chasable Dd-MDP instance. Moreover,

max
γx∈Γ

∑
t∈[T]

ft(s
γx

(t), xγ
x

(t))−
∑
t∈[T]

E
[
ft(st, xt)

]
≤ o(

√
T log |Γ|) = o(

√
T log |X |) ,

where the inequality is due to the assumed regret bound. The construction of the Dd-MDP instance ensures
that for every γ ∈ Γ, ∑

t∈[T]

ft(s
γx

(t), xγ
x

(t)) ≥ 1

2
·
∑
t∈[T]

Ft(x) +
1

2
(T − 1) ,

∑
t∈[T]

ft(st, xt) ≤
1

2

∑
t∈[T]

Ft(xt) +
1

2
T − 1

2

∑
t∈[2,T]

1xt ̸=xt−1

Putting these pieces together, we get

1

2

(
max
x∈X

∑
t∈[T]

Ft(x)−
∑
t∈[T]

E
[
Ft(xt)

]
+

∑
t∈[2,T]

1xt ̸=xt−1

)
− 1 ≤ o

(√
T log |X |

)
,

and therefore the regret of the OLSC instance is bounded by o(
√
T log|X |), a contradiction.

Theorem 13. For an Dd-MDP instance I, let σ ≥ 1 be the minimum value such that I is σ-chasable. The
regret of any online learning algorithm over I under full-information (resp. bandit) feedback is bounded from

below by Ω
(√
σT

)
(resp. Ω

(
σ

1
3T

2
3

)
).

Proof. For the full information setting, recall the problem instance of DRACC that we construct in the proof
of Theorem 8. An observation here is that there exists a trivial chasing oracle for this instance which just
waits for the W new resources arriving at the beginning of the next episode. The chasing regret of such
a chasing oracle is bounded by 2CW , which means that Dd-MDP instance corresponding to this DRACC
problem instance is σ-chasable with σ ≤ 2CW . Suppose that the current theorem does not hold, then there
exists an online algothm with an o(

√
CW · T)-regret for the DRACC problem instance constructed in the

proof of Theorem 8, a contradiction.
For the bandit setting, we make a reduction from the problem of Online Pricing for Patient Buyers

(OPPB) investigated in Feldman et al. [50]. In OPPB, the algorithm is required to decide a price pt ∈ [0, 1]
for every round t ∈ [W] for some time window W ∈ Z≥1 at the beginning of the first round t = 1, and
specifies a price pt′ ∈ [0, 1] for t′ = t+W at the beginning of every round t > 1. The user arriving at each
round t pays for the lowest price in [t,Wt] if it does not exceed her own value vt ∈ [0, 1]. Here Wt ∈ [1,W] is
a parameter associated with each user t. The algorithm for OPBB is only allowed to observe the payment of
each user, but cannot obtain the valuation vt of the users. By taking the price vectors over W rounds as
states, one can easily transform an instance of OPPB to a Dd-MDP instance I with bandit feedback. Since
there exists a chasing oracle for I whose chasing regret is bounded by W , we know that I is σ-chasable with
σ ≤W . If the current theorem is not true, then there exists an online learning algorithm for OPPB with an
o(W

1
3T

2
3)-regret, which conflicts with the known lower bound (Feldman et al. [50, Theorem 2]).

21

8 Conclusion and Open Problems

We study the problem of stateful dynamic pricing in the context of resource allocation problems such as
scheduling. Aiming towards obtaining vanishing regret with respect to the best fixed pricing policy in
hindsight, we reduced this problem to the problem of obtaining vanishing regret in the setting of Dd-MDPs,
where access to a chasing oracle is granted. By exploiting the power of chasability, we have managed to
reduce the latter problem to the stateless problem of online learning with switching cost, thus obtaining an
optimal O(

√
T) regret bound for this latter problem under chasability. For the bandit feedback version of

the same problem, by introducing a stateless version of the chasability condition and reducing the problem
to multi-armed bandits with switching cost, we were able to obtain an O(T 2/3) regret bound. We also
established nearly matching lower-bounds for the Dd-MDP regret with chasability under both full information
and bandit feedback. We complemented our results by designing chasing oracles for the DRACC problem
under both general and kt-demand valuations, resulting in dynamic pricing algorithms for these valuation
classes with regret bounds of O(T

1
2 (1+CW/(CW+1))) and O(T 3/4), respectively.

An immediate research question arising from our work concerns the design of low-regret chasing oracles
for other valuation classes beyond those studied in the current paper. Also, while our regret bounds for the
Dd-MDP problem with chasability are nearly optimal, one may hope to improve our regret bounds for the
DRACC problem, a task that we leave for future work. Finally, the two frameworks introduced in this paper,
namely, the Dd-MDP with chasability and DRACC, are rather general; exploring other applications that fit
into either of these frameworks is yet another interesting research question.

Acknowledgments

An extended abstract of this paper appeared in the Proceedings of the 34th Conference on Neural Information
Processing Systems.

The work of Yuval Emek was supported in part by an Israel Science Foundation grant number 1016/17.
The work of Ron Lavi was partially supported by the Israel Science Foundation - Natural Science Foundation
of China joint research program (grant No. 2560/17). The work of Rad Niazadeh was supported by the
Chicago Booth School of Business. The work of Yangguang Shi was partially supported at the Technion by
a fellowship of the Israel Council for Higher Education, and at Shandong University by the Science Fund
Program of Shandong Province for Distinguished Oversea Young Scholars (grant 2023HWYQ-006).

References

[1] Abbasi-Yadkori Y, Bartlett PL, Kanade V, Seldin Y, Szepesvári C (2013) Online learning in markov decision
processes with adversarially chosen transition probability distributions. Proceedings of the 27th Annual Conference
on Neural Information Processing Systems, 2508–2516 (Lake Tahoe, Nevada, United States).

[2] Abolhassani M, Ehsani S, Esfandiari H, HajiAghayi M, Kleinberg R, Lucier B (2017) Beating 1-1/e for ordered
prophets. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, 61–71 (ACM).

[3] Agrawal S, Daskalakis C, Mirrokni V, Sivan B (2018) Robust repeated auctions under heterogeneous buyer
behavior. 19th ACM conference on Economics and Computation.

[4] Agrawal S, Devanur NR (2015) Fast algorithms for online stochastic convex programming. Proceedings of the
Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, 1405–1424 (San Diego, CA,
USA: SIAM).

[5] Agrawal S, Devanur NR (2019) Bandits with global convex constraints and objective. Operations Research
67(5):1486–1502.

[6] Alaei S (2014) Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buyers. SIAM
Journal on Computing 43(2):930–972.

[7] Amin K, Rostamizadeh A, Syed U (2013) Learning prices for repeated auctions with strategic buyers. Advances
in Neural Information Processing Systems, 1169–1177.

22

[8] Amin K, Rostamizadeh A, Syed U (2014) Repeated contextual auctions with strategic buyers. Advances in Neural
Information Processing Systems, 622–630.

[9] Anari N, Niazadeh R, Saberi A, Shameli A (2019) Nearly optimal pricing algorithms for production constrained
and laminar bayesian selection. Proceedings of the 2019 ACM Conference on Economics and Computation, 91–92.

[10] Araman VF, Caldentey R (2009) Dynamic pricing for nonperishable products with demand learning. Operations
research 57(5):1169–1188.

[11] Arora R, Dekel O, Tewari A (2012) Online bandit learning against an adaptive adversary: from regret to policy
regret. Proceedings of the 29th International Conference on Machine Learning, ICML ’12 (Edinburgh, Scotland,
UK: icml.cc / Omnipress).

[12] Arora R, Dinitz M, Marinov TV, Mohri M (2018) Policy regret in repeated games. Annual Conference on Neural
Information Processing Systems 2018, NeurIPS ’18, 6733–6742 (Montréal, Canada).

[13] Audibert J, Bubeck S (2009) Minimax policies for adversarial and stochastic bandits. COLT ’09 - The 22nd
Conference on Learning Theory (Montreal, Quebec, Canada).

[14] Auer P, Cesa-Bianchi N, Freund Y, Schapire RE (2002) The nonstochastic multiarmed bandit problem. SIAM
Journal on Computing 32(1):48–77.

[15] Azar PD, Kleinberg R, Weinberg SM (2014) Prophet inequalities with limited information. Proceedings of the
twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, 1358–1377 (Society for Industrial and Applied
Mathematics).

[16] Azar Y, Chiplunkar A, Kaplan H (2018) Prophet secretary: Surpassing the 1-1/e barrier. Proceedings of the 2018
ACM Conference on Economics and Computation, 303–318 (ACM).

[17] Babaioff M, Dughmi S, Kleinberg RD, Slivkins A (2015) Dynamic pricing with limited supply. ACM Transactions
on Economics and Computation 3(1):4:1–4:26.

[18] Babaioff M, Immorlica N, Lucier B, Weinberg SM (2015) A simple and approximately optimal mechanism for an
additive buyer. ACM SIGecom Exchanges 13(2):31–35.

[19] Badanidiyuru A, Kleinberg R, Slivkins A (2018) Bandits with knapsacks. Journal of the ACM 65(3):13:1–13:55.

[20] Besbes O, Zeevi A (2009) Dynamic pricing without knowing the demand function: Risk bounds and near-optimal
algorithms. Operations Research 57(6):1407–1420.

[21] Beyhaghi H, Golrezaei N, Leme RP, Pal M, Siva B (2018) Improved approximations for free-order prophets and
second-price auctions. arXiv preprint arXiv:1807.03435 .

[22] Blum A, Hartline JD (2005) Near-optimal online auctions. Proceedings of the Sixteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’05, 1156–1163 (Vancouver, British Columbia, Canada: SIAM).

[23] Blum A, Kumar V, Rudra A, Wu F (2004) Online learning in online auctions. Theoretical Computer Science
324(2-3):137–146.

[24] Brantley K, Dud́ık M, Lykouris T, Miryoosefi S, Simchowitz M, Slivkins A, Sun W (2020) Constrained episodic
reinforcement learning in concave-convex and knapsack settings. CoRR abs/2006.05051, accepted by NeurIPS ’20.

[25] Broder J, Rusmevichientong P (2012) Dynamic pricing under a general parametric choice model. Operations
Research 60(4):965–980.

[26] Bubeck S, Devanur NR, Huang Z, Niazadeh R (2017) Online auctions and multi-scale online learning. Proceedings
of the 2017 ACM Conference on Economics and Computation, EC ’17, 497–514 (Cambridge, MA, USA: ACM).

[27] Bubeck S, Devanur NR, Huang Z, Niazadeh R (2019) Multi-scale online learning: Theory and applications to
online auctions and pricing. Journal of Machine Learning Research 20:62:1–62:37.

[28] Cai Y, Daskalakis C, Weinberg SM (2012) Optimal multi-dimensional mechanism design: Reducing revenue
to welfare maximization. Foundations of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on,
130–139 (IEEE).

[29] Cai Y, Devanur NR, Weinberg SM (2016) A duality based unified approach to bayesian mechanism design.
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, 926–939 (ACM).

[30] Cesa-Bianchi N, Lugosi G (2006) Prediction, learning, and games (Cambridge University Press), ISBN 978-0-521-
84108-5.

[31] Chawla S, Devanur NR, Holroyd AE, Karlin AR, Martin JB, Sivan B (2017) Stability of service under time-of-use
pricing. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC ’17, 184–197
(Montreal, QC, Canada: ACM).

23

[32] Chawla S, Devanur NR, Kulkarni J, Niazadeh R (2017) Truth and regret in online scheduling. Proceedings of the
2017 ACM Conference on Economics and Computation, EC ’17, 423–440 (Cambridge, MA, USA: ACM).

[33] Chawla S, Hartline JD, Malec DL, Sivan B (2010) Multi-parameter mechanism design and sequential posted
pricing. Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC ’10, 311–320 (Cambridge,
Massachusetts, USA: ACM).

[34] Chawla S, Miller JB (2016) Mechanism design for subadditive agents via an ex ante relaxation. Proceedings of
the 2016 ACM Conference on Economics and Computation, 579–596 (ACM).

[35] Correa J, Foncea P, Hoeksma R, Oosterwijk T, Vredeveld T (2017) Posted price mechanisms for a random stream
of customers. Proceedings of the 2017 ACM Conference on Economics and Computation, 169–186 (ACM).

[36] Correa J, Foncea P, Hoeksma R, Oosterwijk T, Vredeveld T (2019) Recent developments in prophet inequalities.
ACM SIGecom Exchanges 17(1):61–70.

[37] Correa J, Saona R, Ziliotto B (2018) Prophet secretary through blind strategies. arXiv preprint arXiv:1807.07483
.

[38] Correa J, Saona R, Ziliotto B (2020) Prophet secretary through blind strategies. Mathematical Programming
1–39.

[39] Dekel O, Ding J, Koren T, Peres Y (2014) Bandits with switching costs: T2/3 regret. Symposium on Theory of
Computing, STOC ’14, 459–467 (New York, NY, USA: ACM).

[40] Dekel O, Hazan E (2013) Better rates for any adversarial deterministic MDP. Proceedings of the 30th International
Conference on Machine Learning, ICML ’13, volume 28 of JMLR Workshop and Conference Proceedings, 675–683
(Atlanta, GA, USA: JMLR.org).

[41] den Boer AV (2015) Dynamic pricing and learning: historical origins, current research, and new directions.
Surveys in operations research and management science 20(1):1–18.

[42] Devanur NR, Jain K, Sivan B, Wilkens CA (2019) Near optimal online algorithms and fast approximation
algorithms for resource allocation problems. Journal of the ACM 66(1):7:1–7:41.

[43] Düetting P, Feldman M, Kesselheim T, Lucier B (2017) Prophet inequalities made easy: Stochastic optimization
by pricing non-stochastic inputs. Foundations of Computer Science (FOCS), 2017 IEEE 58th Annual Symposium
on, 540–551 (IEEE).

[44] Dütting P, Fischer F, Klimm M (2016) Revenue gaps for discriminatory and anonymous sequential posted pricing.
arXiv preprint arXiv:1607.07105 .

[45] Esfandiari H, Hajiaghayi M, Liaghat V, Monemizadeh M (2017) Prophet secretary. SIAM Journal on Discrete
Mathematics 31(3):1685–1701.

[46] Even-Dar E, Kakade SM, Mansour Y (2004) Experts in a markov decision process. Advances in Neural Information
Processing Systems 17, NIPS ’04, 401–408 (Vancouver, British Columbia, Canada).

[47] Feige U, Koren T, Tennenholtz M (2017) Chasing ghosts: Competing with stateful policies. SIAM Journal on
Computing 46(1):190–223.

[48] Feldman M, Fu H, Gravin N, Lucier B (2013) Simultaneous auctions are (almost) efficient. Proceedings of the
forty-fifth annual ACM symposium on Theory of computing, 201–210 (ACM).

[49] Feldman M, Gravin N, Lucier B (2015) Combinatorial auctions via posted prices. Proceedings of the Twenty-Sixth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, 123–135 (San Diego, CA, USA: SIAM).

[50] Feldman M, Koren T, Livni R, Mansour Y, Zohar A (2016) Online pricing with strategic and patient buyers.
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing
Systems, NIPS ’16, 3864–3872 (Barcelona, Spain).

[51] Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and an application to
boosting. Computational Learning Theory, Second European Conference, EuroCOLT ’95, volume 904 of Lecture
Notes in Computer Science, 23–37 (Barcelona, Spain: Springer).

[52] Göbel O, Hoefer M, Kesselheim T, Schleiden T, Vöcking B (2014) Online independent set beyond the worst-case:
Secretaries, prophets, and periods. International Colloquium on Automata, Languages, and Programming, 508–519
(Springer).

[53] Guan P, Raginsky M, Willett R (2014) From minimax value to low-regret algorithms for online markov decision
processes. American Control Conference, ACC ’14, 471–476 (Portland, OR, USA: IEEE).

24

[54] Hajiaghayi MT, Kleinberg R, Sandholm T (2007) Automated online mechanism design and prophet inequalities.
AAAI, volume 7, 58–65.

[55] Harrison JM, Keskin NB, Zeevi A (2012) Bayesian dynamic pricing policies: Learning and earning under a binary
prior distribution. Management Science 58(3):570–586.

[56] Immorlica N, Sankararaman KA, Schapire RE, Slivkins A (2019) Adversarial bandits with knapsacks. 60th IEEE
Annual Symposium on Foundations of Computer Science, 202–219, FOCS ’19 (Baltimore, Maryland, USA: IEEE
Computer Society).

[57] Kalai AT, Vempala SS (2005) Efficient algorithms for online decision problems. Journal of Computer and System
Sciences 71(3):291–307.

[58] Kanoria Y, Nazerzadeh H (2014) Dynamic reserve prices for repeated auctions: Learning from bids. International
Conference on Web and Internet Economics, 232–232 (Springer).

[59] Kesselheim T, Radke K, Tönnis A, Vöcking B (2014) Primal beats dual on online packing lps in the random-order
model. Symposium on Theory of Computing, STOC ’14, 303–312 (New York, NY, USA: ACM).

[60] Kleinberg R, Weinberg SM (2012) Matroid prophet inequalities. Proceedings of the forty-fourth annual ACM
symposium on Theory of computing, 123–136 (ACM).

[61] Kleinberg RD, Leighton FT (2003) The value of knowing a demand curve: Bounds on regret for online posted-price
auctions. Symposium on Foundations of Computer Science, FOCS ’03, 594–605 (Cambridge, MA, USA: IEEE
Computer Society).

[62] Lee E, Singla S (2018) Optimal online contention resolution schemes via ex-ante prophet inequalities. arXiv
preprint arXiv:1806.09251 .

[63] Lehmann B, Lehmann D, Nisan N (2006) Combinatorial auctions with decreasing marginal utilities. Games and
Economic Behavior 55(2):270–296.

[64] Lehmann D, O’Callaghan L, Shoham Y (2002) Truth revelation in approximately efficient combinatorial auctions.
Journal of the ACM 49(5):577–602.

[65] Leme RP, Schneider J (2018) Contextual search via intrinsic volumes. 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), 268–282 (IEEE).

[66] Littlestone N, Warmuth MK (1989) The weighted majority algorithm. 30th Annual Symposium on Foundations of
Computer Science, FOCS ’89, 256–261 (Research Triangle Park, North Carolina, USA: IEEE Computer Society).

[67] Lucier B (2017) An economic view of prophet inequalities. ACM SIGecom Exchanges 16(1):24–47.

[68] Lykouris T, Simchowitz M, Slivkins A, Sun W (2019) Corruption robust exploration in episodic reinforcement
learning. CoRR abs/1911.08689.

[69] Mohri M, Munoz A (2014) Optimal regret minimization in posted-price auctions with strategic buyers. Advances
in Neural Information Processing Systems, 1871–1879.

[70] Neu G, György A, Szepesvári C, Antos A (2014) Online markov decision processes under bandit feedback. IEEE
Transactions on Automatic Control 59(3):676–691.

[71] Niazadeh R, Saberi A, Shameli A (2018) Prophet inequalities vs. approximating optimum online. International
Conference on Web and Internet Economics, 356–374 (Springer).

[72] Rubinstein A (2016) Beyond matroids: Secretary problem and prophet inequality with general constraints.
Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, 324–332 (ACM).

[73] Samuel-Cahn E (1984) Comparison of threshold stop rules and maximum for independent nonnegative random
variables. the Annals of Probability 12(4):1213–1216.

[74] Yan Q (2011) Mechanism design via correlation gap. Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, 710–719 (Society for Industrial and Applied Mathematics).

[75] Yao AC (1977) Probabilistic computations: Toward a unified measure of complexity. 18th Annual Symposium
on Foundations of Computer Science, FOCS ’77, 222–227 (Providence, Rhode Island, USA: IEEE Computer
Society).

[76] Yu JY, Mannor S, Shimkin N (2009) Markov decision processes with arbitrary reward processes. Mathematics of
Operations Research 34(3):737–757.

[77] Zhang X, Wu C, Huang Z, Li Z (2018) Occupation-oblivious pricing of cloud jobs via online learning. 2018 IEEE
Conference on Computer Communications, INFOCOM ’18, 2456–2464 (Honolulu, HI, USA: IEEE).

25

	Introduction
	Our contributions and techniques
	Additional related work and discussion

	Model and Definitions
	Dynamic Posted Pricing via Dd-MDP with Chasability
	Viewing DRACC as a Dd-MDP
	The Chasability Condition
	Putting the Pieces Together: Reduction to Online Learning with Switching Cost

	Applications of the DRACC Problem
	Online Job Scheduling.
	Matching Over Dynamic Bipartite Graphs.

	External Regret
	Bandit Setting
	Stateless Chasability
	Multiarmed Bandit Problem
	Decision Making Algorithm: Chasing & Switching in Fixed-Length Periods

	Lower Bounds for Online Learning over Dd-MDPs with Chasability
	Conclusion and Open Problems

