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In this paper, we investigate mode-2 solitary waves in a three-layer stratified flow model.
Localised travelling wave solutions to both the fully nonlinear problem (Euler equa-
tions), and the three-layer Miyata-Choi-Camassa equations are found numerically and
compared. Mode-2 solitary waves with speeds slower than the linear mode-1 long-wave
speed are typically generalised solitary waves with infinite tails consisting of a resonant
mode-one periodic wave train. Herein we evidence the existence of mode-2 embedded
solitary waves, that is, we show that for specific values of the parameters, the amplitude
of the oscillations in the tail are zero. For sufficiently thick middle layers, we also find
branches of mode-2 solitary waves with speeds that extend beyond the mode-1 linear
waves and are no longer embedded. In addition, we show how large amplitude embedded
solitary waves are intimately linked to the conjugate states of the problem.

1. Introduction

Waves propagating in density stratified fluids are responsible for mass, momentum,
temperature, and biomass transfer in the world’s oceans. The ocean is a continuously
stratified fluid, for which linear theory predicts infinitely many modes of propagation.
Most previous literature, both observational and theoretical, concerns waves of the first
baroclinic mode (mode-1), which have the simplest vertical structure. Recent observations
suggest that mode-2 waves are more common than previously thought (Duda et al. 2004;
Yang et al. 2009; Shroyer et al. 2010; Ramp et al. 2012; Khimchenko & Serebryany
2016). Although observations by Shroyer et al. (2010) found mode-2 waves off the coast
of New Jersey were 10 to 100 times less energetic than their mode-1 counterparts, they
are capable of travelling large distances with so-called ‘trapped-cores’, inducing mass
transport (Brandt & Shipley 2014; Deepwell & Stastna 2016). Furthermore, Shroyer
et al. (2010) shows that mode-2 waves induce similar measures of localised turbulent
kinetic energy dissipation as mode-1 waves; as such they have considerable influence on
vertical mixing, vertical transport of heat and nutrients and ultimately are important in
climate models. Mode-2 waves have also been the subject of experimental studies (for
example, Kao & Pao 1980; Stamp & Jacka 1995; Honji et al. 1995; Carr et al. 2015).

Herein, we explore strongly nonlinear effects on mode-2 waves in a three-layer rigid-
lid configuration. The rigid-lid approximation is commonly used when studying weakly
stratified fluids such as the ocean, and replaces the free-surface with a solid wall (Evans &
Ford 1996). Layered models with layers of constant density are a common approximation
in settings where the physical stratification profile is composed of one or more regions
of almost constant density separated by regions of rapid density change (pycnoclines).

† Email address for correspondence: add49@bath.ac.uk
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For example Grue et al. (1999) compared steady travelling mode-1 ISWs of the two-layer
Euler equations against experiments conducted using salted water with one pycnocline.
It was found that the layered model yielded good approximations for wave profiles and
the velocity field in the water column across the whole amplitude range.

Various model equations are often used to describe internal waves, most notably the
Korteweg-de Vries (KdV) equation which is meant to capture well weakly nonlinear
shallow water phenomena (Benney 1966; Grimshaw 2003). Miyata (1988) and Choi &
Camassa (1999) independently derived a model system for a two-layered fluid (henceforth
denoted MCC2) which makes no assumption on the nonlinearity but assumes shallow
water. Camassa et al. (2006) compared steady travelling waves of the MCC2 system
against those of KdV, of the two-layered Euler equations, and the experiments of Grue
et al. (1999) and Sveen et al. (2002). They found the MCC2 system to be in superb
agreement with the Euler equations and experiments in both wave profiles and velocity
fields, except in regions where the shallow water approximation is invalidated. The model
was later generalised for an arbitrary number of layers (Choi 2000). We shall refer to the
two- and three-layer Miyata-Choi-Camassa equations as MCC2 and MCC3 respectively.

Linear and weakly nonlinear theories predict that both interface displacements have
the same polarity for mode-1, while mode-2 waves have interfaces with opposite polarities.
If the lower interface is of depression (and hence the upper interface is of elevation), then
the wave is called convex. The opposite case, that is of a lower interface of elevation, is
known as concave. Whether mode-2 solitary waves are convex or concave can be predicted
by the weakly nonlinear KdV equation, where it is found that thicker middle layers result
in concave waves.

Typically, mode-2 nonlinear waves have speeds coinciding with that of shorter mode-1
waves, thus mode-2 solitary wave speeds lie within the linear spectrum of the system.
Hence, due to resonance with a mode-1 short wave travelling with the same speed, they
are expected to have non-decaying oscillatory mode-1 tails. Such solutions are called
generalised solitary waves (GSW) and have infinite energy. However, it could happen that
solitary wave solutions within the linear spectrum have a flat far-field (i.e. no resonant
tail) and are “true” solitary waves. In other contexts, these were coined embedded solitary
waves (ESW) by Yang et al. (1999) as their speed is embedded within the linear spectrum.
One may find these solutions as particular cases of GSW, for which the amplitude of the
oscillatory tail goes to zero, such as the ESWs discovered for the modified fifth-order
KdV equation by Champneys et al. (2002).

While mode-2 ESWs have been found before in the context of the stratified Euler
equations, all examples so far are restricted to the highly specific construction of reflecting
a mode-1 ISW across an imaginary wall at the mid-channel (Davis & Acrivos 1967; Tung
et al. 1982; King et al. 2011). This construction prevents a mode-1 tail and applies only if
the density stratification is symmetric about the mid-channel, and under the Boussinesq
approximation (these conditions are referred to as a symmetric fluid below). Mode-2
ESWs of this type are henceforth denoted symmetric embedded solitary waves (S-ESWs).
Mode-2 ISW Euler computations without these symmetries have thus far yielded only
GSWs (Vanden-Broeck & Turner 1992; Rus̊as & Grue 2002). Hence numerical evidence
for generic mode-2 “true” solitary waves was lacking, but recent laboratory observations
point to their existence (Gavrilov et al. 2013; Liapidevskii & Gavrilov 2018).

In a recent paper, Barros et al. (2020) found mode-2 ESW solutions to the MCC3
equations for ‘non-symmetric’ fluids. In addition they found that these waves could have
intricate ‘multi-hump’ structures. The goal of this paper is to present numerical evidence
that mode-2 ESWs exist for the full Euler system beyond the idealised symmetric three-
layer fluid, together with elucidating the parameters for which they occur, their limiting
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configurations, and how they compare to those of MCC3. The bifurcation structure and
wave profiles we find cannot be described by weakly nonlinear theories describing mode-2
ISWs such as the KdV equation. We will find throughout that MCC3 acts as a useful
guide to finding solutions to the full Euler equations.

Conjugate states of the system are central to understanding some of the limiting con-
figurations we find. In both layered and continuously stratified fluid systems, mode-1
ISWs are oftentimes found to broaden as their amplitude increases, resulting in tabletop
solitary waves, the limit of which being a wavefront connecting conjugate states (for ex-
ample, this was rigorously demonstrated for a two-layer flow by Amick & Turner (1986)).
Conjugate states for a three-layer fluid system has been explored by Lamb (2000) and
Rus̊as & Grue (2002). Lamb (2000) also compared three-layer conjugate states against
those of a fluid with finite thickness pycnoclines, and found that the three-layer model is
consistent with the continuously stratified model as the pycnocline thickness is decreased.

A favourable feature of the MCC3 equations is that they share the same conjugate
states as the full Euler system, and we exploit this extensively. We find that the MCC3
equations are an extremely powerful tool in qualitatively describing large amplitude
solutions to the Euler equations, even in parameter regimes where the shallow water
assumptions of the model are invalidated.

For concave mode-2 solitary waves, it was found recently for the MCC3 equations that
the speed of the wave could exceed the mode-1 long wave speed (Barros et al. 2020). This
is predicted by the observation that mode-2 conjugate states can have speeds greater than
the linear long wave speed of mode-1. We show herein that concave mode-2 solitary wave
branches outside the linear spectrum are also a feature of the full Euler system.

The paper is organised as follows. In section two, we formulate the problem to be solved,
and introduce the steady MCC3 equations for comparison. In section three, we explore
the conjugate state equations. In section four, we present and describe the numerical
results. Concluding remarks are given in section five. In the Appendix, we present the
numerical scheme used to compute fully nonlinear solutions.

2. Formulation

Consider three immiscible fluids stably stratified in a two-dimensional channel of height
H. The fluids are assumed to be incompressible and of constant density, and we assume
that the resulting flow is irrotational. The density of each fluid is taken to be ρi, i = 1, 2, 3
(from top to bottom), and we require ρ3 > ρ2 > ρ1 for a stable stratification. Subscripts
will be used in this way for other quantities throughout the paper. We consider a periodic
domain of length λ. Although this paper concerns ESWs with a flat far-field, the ESWs
found in this paper are particular cases of GSWs, which we approximate with long
periodic waves. The period is verified to be sufficiently long to not have appreciable
effects on the ESWs. We take Cartesian coordinates (x, y), where y is perpendicular to
the solid boundaries. The wave is assumed to be symmetric about x = 0, and we choose
y = 0 at the bottom wall. We denote by Hi the depth of fluid layer i at the end of the
wavelength, such that H = H1 +H2 +H3. Throughout the paper, we choose H and ρ2
as the characteristic length and density respectively. We scale velocities such that the
acceleration due to gravity g is also taken to be unity. We restrict our attention to weak
density stratifications in which the density jumps across the three layers are comparable,
that is ∆1 ≈ ∆2 � 1 where ∆i = ρi+1 − ρi. The flow configuration is shown in figure 1.
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H3

H2

H1

y = η2(x)

y = η1(x)

ρ1 = 1−∆1

ρ3 = 1 + ∆2

ρ2 = 1

y = 1

y = 0
x

y

O

g = 1

λ

Figure 1. A sketch of the flow configuration. Three layers of constant density fluid are
bounded between walls at y = 0 and y = 1. The layers are separated by interfaces y = ηi.

2.1. Euler equations

Let the velocity field in each layer be given by ui = (ui, vi). There exists a velocity
potential φi and streamfunction ψi in each layer, such that

ui =
∂φi
∂x

=
∂ψi
∂y

, vi =
∂φi
∂y

= −∂ψi
∂x

. (2.1)

Hence in each layer, the flow is governed by

∇2φi = 0. (2.2)

We consider travelling wave solutions moving to the right with constant speed c. We
take a frame of reference travelling with the wave, such that the quiescent flow far from a
solitary wave has a horizontal velocity of c in each layer. We parameterise the lower and
upper interfaces as y = η2(x) and y = η1(x) respectively. We also denote the interface
displacements as ζi, which reads

ζ2 = η2 −H3, ζ1 = η1 −H2 −H3. (2.3)

As well as kinematic boundary conditions, that is

u · n̂ = 0, for


y = 0,

y = η2(x),

y = η1(x),

y = 1,

(2.4)

we enforce continuity of pressure on the interfaces, which (making use of Bernoulli’s
equation) gives

1

2

(
ρi+1|∇φi+1|2 − ρi|∇φi|2

)
+ ∆iηi = Bi, for y = ηi(x) (i = 1, 2). (2.5)

In the above, n̂ refers to the unit normal of the curve and Bi are unknown constants
to be found as part of the solution. The Boussinesq approximation, where differences
in density only affect the buoyancy term, is commonly applied to scenarios where the
density stratification is weak ((ρ3 − ρ1)/ρ2 � 1). This modifies the above boundary
condition to give

1

2

(
|∇φi+1|2 − |∇φi|2

)
+ ∆iηi = Bi, for y = ηi(x) (i = 1, 2). (2.6)
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All the solutions we seek are assumed to be symmetric about x = 0. Furthermore, we
enforce

u3 = u2 = −c, at x = ±λ
2
, y = η2, (2.7)

u2 = u1 = −c, at x = ±λ
2
, y = η1. (2.8)

These boundary conditions ensure that (assuming the solution has no oscillatory tail)
the wave propagates with constant speed c to the right, in a frame of reference to which
the wave is steady.

For the numerical code, which is designed to compute periodic solutions, we introduce
the variable c̃, which is the wavelength averaged horizontal velocity in the bottom fluid
for a fixed value of y:

c̃ = − 1

λ

λ/2∫
−λ/2

u3(x, y) dx, y = constant. (2.9)

The irrotationality of the flow ensures that the above value is independent of the value
of ŷ chosen. We will approximate solitary waves with long periodic waves. It is the case
that, given the solitary waves are not generalised (i.e. the solution is flat in the far-field),
as λ→∞, one finds c̃→ c.

Before describing model equations which approximate the above system, we first note
that the above system has a linear dispersion relation (Rus̊as & Grue 2002) given by

a4c
4k2 − a2c2k + a0 = 0, (2.10)

where k is the wavenumber, and

a4 = 1 + ρ3C2C3 + ρ3ρ1C3C1 + ρ1C1C2, (2.11)

a2 = ∆2 (C2 + ρ1C1) + ∆1 (ρ3C3 + C2) , (2.12)

a0 = ∆1∆2, (2.13)

and Ci = coth(Hik). There exists two baroclinic modes: a faster mode (mode-1), denoted
c+, and a slower mode (mode-2), denoted by c−. Both modes monotonically decrease from
their maximum at k = 0, denoted c±0 . Furthermore, it can be shown in the long-wave
limit that the two interface displacements in the second (first) baroclinic mode have the
opposite (same) polarities. A typical dispersion relation is shown in figure 2. The resonant
tail of a mode-2 GSW is associated with a mode-1 periodic wave which propagates at the
same speed. Indeed, it can be seen in the figure that for mode-2 solitary waves bifurcating
at c−0 , there exists a finite value of k = k∗ such that c−0 = c+(k∗).

We note that, under the Boussinesq approximation, the above system is invariant
under the transformation g → −g, and ∆i → −∆i. Furthermore, when the stratification
and channel heights are symmetric (H1 = H3 and ∆1 = ∆2), we recover the symmetric
three-layer fluid. A feature of this parameter choice is the existence of families of mode-2
solutions with the property that ζ1 = −ζ2. We refer to these as symmetric ESWs (S-
ESWs). The curve y = 0.5 is a streamline, and the flow can be viewed as a two-layer flow
with layer heights H3 and H2/2. Surprisingly, not all mode-2 solutions for the symmetric
three-layer fluid have this additional symmetry, such as the large amplitude concave
waves shown in section 4.2 (see figures 20-21).

Fully nonlinear waves in the Euler equations are computed using the numerical method
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c−(k)

c+(k)

k

c(k)

k∗

c+0

c−0

Figure 2. A typical dispersion relation, showing the fast mode (c+) and slow mode (c−) as
functions of k. The value k∗ is such that c−(0) = c+(k∗).

given in Appendix A. Below, we discuss the MCC3 model which approximates the three-
layered full Euler system.

2.2. Travelling waves for the MCC3 equations

We consider the three-layer Miyata-Choi-Camassa equations (MCC3). We denote the
shallow water parameter in each layer as εi = Hi/λ, and the amplitude parameter as
δi = ||ζ1||∞/Hi. The MCC3 model assumes O(εi) = O(εj), has errors of O(ε4i ), and has
no smallness assumption on the parameter δi. Hence, it is possible that the model can
remain asymptotically valid for large amplitude solutions, provided the shallow water
parameters in each layer are comparable and small. In a frame of reference travelling
with a wave of constant speed c, and under the assumption that the flow in the far-field
is unperturbed, one finds the Euler-Lagrange equations (see Barros et al. 2020)

∂L

∂ζi
− d

dx

[
∂L

∂ζ ′i

]
= 0, i = 1, 2, (2.14)

where the Lagrangian is given by

L =
1

6
c2
[(
ρ1
H2

1

h1
+
H2

2

h2

)
ζ ′21 +

H2
2

h2
ζ ′1ζ
′
2 +

(
H2

2

h2
+ ρ3

H2
3

h3

)
ζ ′22

]
− V, (2.15)

with a potential V (ζ1, ζ2)

V =
1

2

{(
∆1ζ

2
1 + ∆2ζ

2
2

)
− c2

[(
∆1 + ρ1

H1

h1
− H2

h2

)
ζ1 +

(
∆2 − ρ3

H3

h3
+
H2

h2

)
ζ2

]}
(2.16)

In the above, ζ ′i = dζi/dx. The system is reduced, under the Boussinesq approximation,
by removing every instance of ρ1 and ρ3, except where they appear in ∆1 and ∆2.

Travelling wave solutions to (2.14) were the object of study in Barros et al. (2020).
Although GSWs were found to be prevalent, ESWs were numerically computed for special
values of parameters. Due to the additional condition imposed that the tails have no
oscillations, the ESWs exist in a parameter space with one less dimension than that of
GSWs. The asymptotic limit H2 → 0 was used to find ‘compacton’ multi-hump solutions.
These solutions, characterised by p humps on the upper interface and q on the lower,
can be numerically extended into finite values of H2 via the method of continuation.
By doing so, mode-2 multi-hump GSWs were also exhibited, and ESWs were found
along these GSW branches. Interestingly, it was suggested that not all truly localised
mode-2 solitary waves are embedded, since concave solitary waves may be found outside
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Ĥ3

Ĥ2

Ĥ1

ζ̂1

ζ̂2

H3

H2

H1

−c

−c

−c

û1

û2

û3

Figure 3. Steady flow in a frame moving with a right-moving front.

the linear spectrum. These features will be further explored in the following sections.
Here, computations of MCC3 solutions are performed with a pseudospectral collocation
method.

3. Conjugate states and limiting solitary waves of the MCC3 model

We assume the set-up illustrated in figure 3 for an internal wavefront moving from left
to right at constant speed c > 0 into a three-layer stratified fluid at rest at x = +∞.
In a frame moving with speed c, the velocity at x = +∞ is −c in the three fluids. The
depth of each layer at x→ +∞ is given by Hi. The flow at x→ −∞ has the lower and
upper interface perturbed by ζ̂2 and ζ̂1 respectively. We denote the new layer depths as
Ĥi and the corresponding velocities as ûi. The two horizontally uniform flows are said to
be conjugate if all three basic physical conservation laws of mass, momentum and energy
(for Euler equations) hold.

Mass conservation in each fluid implies

ûi = −cHi

Ĥi

, i = 1, 2, 3, (3.1)

where Ĥ3 = H3 + ζ̂2, Ĥ2 = H2 − ζ̂2 + ζ̂1, and Ĥ1 = H1 − ζ̂1. There are three unknowns:
ζ̂1, ζ̂2, and c. One equation comes from enforcing conservation of momentum, given by∫

x→−∞
P + ρu2 dy =

∫
x→+∞

P + ρu2 dy. (3.2)

Making use of Bernoulli’s equation to find the pressure P , Lamb (2000) showed this
condition is equivalent to

c2

{
(1 + ∆2)

ζ̂32

Ĥ3
2 +

(ζ̂1 − ζ̂2)3

Ĥ2
2 − (1−∆1)

ζ̂31

Ĥ1
2

}
= 0. (3.3)

The two equations which close the system are continuity of pressure across both inter-
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faces. This is found to be

c2

2

[
(1 + ∆2)

(
1− H2

3

Ĥ3
2

)
−

(
1− H2

2

Ĥ2
2

)]
−∆2ζ̂2 = 0, (3.4)

c2

2

[(
1− H2

2

Ĥ2
2

)
− (1−∆1)

(
1− H2

1

Ĥ1
2

)]
−∆1ζ̂1 = 0. (3.5)

These equations are explored by Lamb (2000) and Rus̊as & Grue (2002). Lamb (2000)
finds solutions by combining a Newton-Ralphson iteration procedure with a a geometrical
approach in which the conjugate states are found as intersection points of two plane
algebraic curves.

The conjugate state equations described above are recovered using the full Euler sys-
tem. However, it can be seen immediately that equations (3.4) and (3.5) are equivalent
to Vζ1 = 0 and Vζ2 = 0 respectively. Furthermore, it can be shown that equation (3.3) is
equivalent to

2V − Vζ1 − Vζ2 = 0. (3.6)

Therefore, conjugate states in Euler equations can be viewed as non-trivial critical points
of the potential of the MCC3 equations for which V = 0. We remark that the ability of
the strongly nonlinear theory to capture the same conjugate states for the fully nonlinear
(Euler) theory has previosuly been shown for two-layer fluids with, or without, a top rigid
lid by Choi & Camassa (1999) and Barros (2016), respectively.

At the origin (ζ̂1, ζ̂2) = (0, 0), the potential V is equal to zero, and is a local minimum
when c ∈ (0, c−0 ), a saddle when c ∈ (c−0 , c

+
0 ), and a local maximum for c > c+0 . For

fixed Hi and ρi, one can plot the critical points of V for a given c, and observe how the
critical points evolve as c varies. As an illustration, consider figure 4, where we choose
parameters ∆1 = ∆2 = 0.01, H2 = 0.03, and H1 = 1.2H3. We restrict our attention to
mode-2 conjugate states by considering the lower-right quadrant (ζ̂1 > 0, ζ̂2 < 0). For
the given parameter values, c−0 = 0.012 and c+0 = 0.069. Therefore, c ∈ (c−0 , c

+
0 ) for all

the contour plots in the figure, and hence the origin is a saddle of V . The black curves
are level sets of V , where the bold curve corresponds to V = 0. The blue curves, which
are independent of c, are found by rearranging equations (3.4)-(3.5) to eliminate c, and
are given by

∆1ζ1

[
ρ3

(
1− H2

3

Ĥ3
2

)
−

(
1− H2

2

Ĥ2
2

)]
−∆2ζ2

[(
1− H2

2

Ĥ2
2

)
− ρ1

(
1− H2

1

Ĥ1
2

)]
= 0.

(3.7)

The crosses correspond to critical points which must lie on the blue curves, and it can be
seen there are four non-trivial such critical points in the lower-right quadrant. The critical
points are a local minimum, two saddles, and a local maximum. These correspond with
green, blue, and black crosses respectively. There are two further maxima, but these are
outside the domain window. In panel (b), the V = 0 curve intersects one of the saddles,

and the other saddle in panel (c). Hence, the speeds c, and the values of ζ̂i at these
saddles are conjugate states of the system. In panel (d), the small contour enclosing the
maximum will eventually (as c increases) collapse to that point, yielding a third mode-2
conjugate state in the lower-right quadrant.

In the spirit of Dias & Il’ichev (2001) we plot in figure 5 branches of conjugate states
for the parameter regime ∆1 = ∆2 = 0.01 and H1 = 1.2H3. The figure shows how the
number and speed of conjugate state solutions vary with increasing values of H2. The
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(a)

(c)

(b)

(d)

Figure 4. Contour plot of the potential V in the lower-right quadrant for given values of the
speed c ∈ (c−0 , c

+
0 ). The thick black curve is the contour V = 0. The critical points are given by

the crosses, which are restricted to moving along the blue curves. The parameters are H2 = 0.03,
H1 = 1.2H3, and ∆1 = ∆2 = 0.01. Excluding the origin, there are four critical points in the
lower right quadrant: a local minimum, a local maximum, and two saddles, given by green, black,
and blue crosses respectively. The same colour scheme will be used throughout this section.

black dotted curves are c−0 and c+0 . Blue curves are mode-1 conjugate states (sought in
the first and third quadrants of the (ζ1, ζ2)-plane), while red curves are mode-2 (sought in
the second and fourth quadrants of the (ζ1, ζ2)-plane). If the curve is solid, the conjugate
state is a maximum of V , while dashed curves denote a saddle.

Let us first discuss mode-1 conjugate states. It can be seen that for smaller values of H2

there is one maximum conjugate state with speeds c > c+0 , while for larger values of H2

there are two. In both cases, our numerical tests show that heteroclinic orbits from the
maximum origin (c > c+0 ) to a maximum conjugate state can be found. Hence, when H2

is sufficiently large, two heteroclinic orbits are found. Furthermore, they exhibit different
polarities. There is also a saddle mode-1 conjugate state with speeds slightly below c+0 .
However, no heteroclinic orbits or large amplitude solutions related to this critical point
were found numerically, in full agreement with the results by Lamb (2000).

For mode-2, there are either three or one mode-2 conjugate states. While precise for-
mulae separating the regions of parameter space for which three or one occur were not
provided, Lamb (2000) demonstrated that two of the conjugate states seize to exist for
H2 above a critical value. This critical value decreases and ultimately becomes zero as
one deviates further from a symmetric three-layer fluid, either by breaking the depth or
stratification symmetry, or in Lamb’s case by increasing the strength of the stratification
while removing the Boussinesq approximation. The parameters for figure 5 have three
mode-2 conjugate states for H2 < 0.051: one maximum and two saddles. For H2 larger
than this value, only a saddle remains. Therefore, the maximum is restricted to small
values of H2, and it lies within the linear spectrum of the system. There is a special value
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(a) (b)

(c)

Figure 5. Solutions to the conjugate state equations for ∆1 = ∆2 = 0.01, H1 = 1.2H3 with
varying H2. The black dotted curves are the linear long wave speeds. Red and blue curves are
mode-2 and mode-1 conjugate states respectively. If the curve is dashed, then the conjugate
state is a saddle of V , while solid curves are local maximums. Panels (b) and (c) are blow ups
of different regions of the figure in panel (a).

(a)

c
∆1/2

H2

(b)

H1
H3

H2

(c)
c

∆1/2

H1/H3

Figure 6. All the panels concern conjugate states with the Boussinesq assumption and ∆1 = ∆2.
Panel (a) shows conjugate states for the symmetric three-layer fluid (H1 = H3) with varying H2,
using the same colour and line scheme as in figure 5. In panel (b), the parameter region where
mode-2 conjugate states have speeds exceeding c+0 is shaded. In panel (c), we plot the mode-2
conjugate states, with infinitesimal H2, as a function of H1/H3. Dashed curves are saddles of
the MCC3 potential V , while the solid curve is a maximum.

of H2 = H∗2 at which the curve for the mode-2 conjugate state is tangent to the curve
c = c−0 . It can be shown that this corresponds to the criticality condition for the KdV
equation for which the quadratic nonlinearity coefficient vanishes. For the symmetric
three-layer fluid, this is given precisely by H∗2 = 0.5. The KdV theory predicts convex
(concave) mode-2 waves for values of H2 less (greater) than H∗2 . This characterisation
for the polarity of solutions seems to be in agreement with numerical solutions found in
this paper.

We note that when the Boussinesq approximation is considered, similar considerations
apply. However, for a symmetric three-layer fluid, the criticality condition of the KdV
equation for mode-1 is always met regardless of the value of H2. As a consequence, the
mode-1 KdV equation has no solitary wave solutions. When higher order nonlinearities
are accounted for, mode-1 solutions are expected to exist provided H2 is sufficiently large.
This is confirmed for the MCC3 model, and it can be shown that the curve for the mode-
1 conjugate state starts precisely at H2 = 4/13, in complete agreement with Gardner
theory (Talipova et al. 1999; Lamb 2005). Figure 6(a) shows the conjugate states for this
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configuration. While the figure appears to only show one mode-1 conjugate state, the
blue curve corresponds to two different conjugate states, under the symmetry ∆i → −∆i,
g → −g.

We would like to emphasise a novel aspect of mode-2 conjugate state solutions. As
the value of H2 increases beyond H∗2 , it may be that a mode-2 saddle conjugate state
exceeds c+0 , in which case mode-2 solitary wave solutions are no longer embedded. To
unveil the regions in parameter space for which the mode-2 conjugate state exits the
linear spectrum, we include the Boussinesq assumption and set ∆1 = ∆2. The results are
shown in figure 6(b) and, as expected, such a feature only occurs for thick intermediate
layers. When H1 = H3, the value of H2 for which this occurs is H2 = 6H1 (resulting
in H2 = 0.75) in agreement with figure 6(a). In the case when H2 is small, we can use
asymptotics to predict for which parameters there is one (or three) mode-2 conjugate
states, as shown in figure 6(c). In agreement with Lamb (2000), the three conjugate states
exist when H1/H3 is close to unity.

3.1. Limiting solitary waves for MCC3

The existence of a solution to the conjugate state equations does not imply the existence
of a connection between conjugate states within the fluid equations. Below, we explore
whether or not connecting orbits to equilibrium exist for the conjugate states in the
context of the MCC3 system. This is done by seeking large amplitude solitary waves,
where a broad tabletop solitary wave is numerical evidence that heteroclinic connections
exist. The Hamiltonian structure of the MCC3 equations allows deeper insight in to the
solution behaviour. We note beforehand that much of this behaviour persists for the Euler
system, even in parameter regimes where the MCC3 system performs poor quantitatively,
as seen in section 4. Retaining the same conjugate states as the full Euler system is a
key strength of the MCC3 model.

First, we seek heteroclinic orbits from the origin to a mode-2 conjugate state which is
a maximum of the MCC3 potential V . As seen in the previous section, these conjugate
states are restricted to small H2 and must lie within c−0 < c < c+0 , and hence the origin
is a saddle. Numerical results show we are able to find heteroclinic orbits a subset of
these conjugate states. Since the speeds are within the linear spectrum, solitary waves
typically have oscillatory tails (GSWs), and parameter values must be chosen carefully
to ensure the oscillations are of zero amplitude (how to find such parameters is discussed
in section 4). As an example, figure 7 shows a mode-2 tabletop ESW for ∆1 = ∆2 = 0.01
and H2 = 0.03, and H1 = 0.9891H3. Clearly, this large-amplitude solution is close to a
flat wavefront connecting the origin to a maximum of V .

Next, consider saddle mode-2 conjugate states. These were found to exist for all values
of H2 6= H∗2 , and for sufficiently large H2 they have speeds c > c+0 . When the conjugate
state has a speed c−0 < c < c+0 , we were unable to find any tabletop solitary waves
(except for the special S-ESW solution branch). However, interesting multi-hump solitary
waves were found. They are characterised by oscillations along the broadened section of
the wave and with speeds exceeding that of the conjugate state, as in figure 8. This
result is surprising as it demonstrates that the speeds of mode-2 saddle conjugate states
may not be limiting speeds for mode-2 solitary waves. Parameters must again be chosen
carefully to avoid oscillatory tails. For saddle mode-2 conjugate states with speeds c > c+0 ,
large amplitude solitary waves are again typically characterised by oscillations on the
broadened section, as in figure 9. These solutions differ from those with speeds c−0 < c <
c+0 since they form a family of continuous solutions in speed-amplitude bifurcation space
for fixed Hi and ∆i. Furthermore, special parameter values can be found such that the
oscillations on the broadened section vanish, resulting in a tabletop solitary wave.
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(a) (b)

Figure 7. A mode-2 MCC3 convex ESW with ∆1 = ∆2 = 0.01, H2 = 0.03, H1 = 0.9891H3,
and c = 0.0354 (c−0 < c < c+0 ). In panel (a), we show the projection of the solution (in red) over
the (ζ1, ζ2)-plane. Panel (b) shows the solutions in the physical space. This ESW is close to a
heteroclinic orbit from the origin to a maximum of the potential V .

(a) (b)

Figure 8. A mode-2 MCC3 convex ESW wave with ∆1 = ∆2 = 0.01, H2 = 0.03, H1 = 1.2H3,
and c = 0.03372 (c−0 < c < c+0 ). In panel (a), we show the projection of the solution (in red)
over the (ζ1, ζ2)-plane. Panel (b) shows the solutions in the physical space. Solutions of this type
necessarily require speeds greater than the speed such that the saddle is a conjugate state of
the system, since we require the value of V at the saddle to be less than zero.

(a) (b)

Figure 9. A mode-2 MCC3 concave solitary wave with ∆1 = ∆2 = 0.01, H2 = 0.85,
H1 = 1.2H3, and c = 0.0359 (c > c+0 ). In panel (a), we show the projection of the solution
(in red) over the (ζ1, ζ2)-plane. Panel (b) shows the solutions in the physical space. Solutions of
this type necessarily require speeds greater than the speed of the saddle conjugate state of the
system, since we require the value of V at the saddle about which the solution oscillates to be
less than zero.
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To summarise, large amplitude mode-2 solitary waves for the MCC3 system are related
to the conjugate states of the Euler equations. If the conjugate state has a speed c−0 <
c < c+0 , the origin is a saddle and careful selection of parameters must be chosen to find
ESWs. For weak stratifications, if the conjugate state is a maximum, limiting solutions
(if they exist) are tabletop solitary waves. Meanwhile, if the conjugate state is a saddle,
multi-hump solitary waves are found with speeds faster than that of the conjugate state.
Except for the symmetric Boussinesq solutions, we were only able to find tabletop solitons
predicted by a saddle conjugate state when c > c+0 . This does not mean such solutions
do not exist, but the parameter space in which they exist is very restricted, requiring the
suppression of oscillations at both the origin and the conjugate state.

Large amplitude solutions to the full Euler system are explored further in section 4,
where solutions with the characteristics seen in figure 7–9 are found.

4. Results for the Euler equations and comparison with MCC3

In this section, we discuss numerically computed mode-2 solitary waves for the three-
layer configuration. Comparisons between the fully nonlinear (Euler) and strongly non-
linear (MCC3) theories are made, and the conjugate states discussed in section 3 are
referred to when describing large amplitude solutions.

4.1. Convex waves

We first consider the case where parameters are chosen such that the waves are convex.
From section 3, this occurs for values of H2 below a value H∗2 given by the criticality
condition. As such, the conjugate states are attained at speeds c < c+0 . Hence, we expect
mode-2 solitary waves to be within the linear spectrum, typically characterised by oscil-
latory tails. Along these branches of GSWs, special values of the parameters are found
such that the tails have zero amplitude.

4.1.1. Symmetric embedded solitary waves (S-ESWs)

Along branches of GSWs, the parameters for which the solutions have no oscillations
in the far-field are typically not known a priori, and must be found as part of the solution.
This is not the case, however, for a symmetric three-layer fluid. With this configuration,
there exists for all H2 6= H∗2 = 0.5 a branch of mode-2 solitary waves bifurcating from
zero amplitude at c−0 and ending in a heteroclinic connection between the origin and a
conjugate state. The interface displacements of these solutions are related via ζ1 = −ζ2,
and can be constructed by reflecting a two-layer mode-1 solution across an imaginary
bounding wall.

An extensive comparison of KdV, MCC2, and Euler solitary waves in a two-fluid system
can be found in Camassa et al. (2006). They found that the MCC2 model performs well
up to the limiting tabletop solitary wave, given the shallow water assumptions hold.
Interestingly, they observe the largest deviation between the Euler and MCC2 model are
for waves of moderate amplitude, rather than the largest limiting waves. We demonstrate
this in figure 11(a), which shows symmetric Boussinesq solitary wave branches in the
(c/c−0 , ζ1(0))-plane for H2 = 0.06 and H2 = 0.2. We have set ∆1 = ∆2, where the value
chosen does not matter, since for the Boussinesq system, any change can be expressed as
a rescaling of c. In the figure, we plot the branches for the KdV model (dotted curves), the
MCC2 model (dashed curves), and full Euler (solid curves). The black curves correspond
to H2 = 0.06, while the blue curves are for H2 = 0.2, and the agreement can be seen to
be better for the blue curves. This is due to a more severe invalidation of the shallow
water assumption (i.e. that ε3 ∼ ε2 � 1) for H2 = 0.06. For example, using the ‘effective
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(a) (b)

Figure 10. Panel (a) shows S-ESW solution branches. The black and blue curves correspond
to H2 = 0.06 and H2 = 0.2 respectively. The dashed, dotted, and solid curves correspond to the
KdV, MCC2, and full Euler branches respectively. Each cross in panel (a) is a solution which
intersect the red dotted-dashed curve ζ1(0) = 0.075. These are shown in panel (b) using the
same line-styles, where only the lower interface is shown. The upper interface is a reflection of
this profile about y = 0.5

wavelength’ as the horizontal length scale (see Koop & Butler (1981)) one finds that the
Euler solutions with ζ1(0) = 0.075 from figure 11(a) have ε3 = 2.0369 for H2 = 0.06
and ε3 = 0.73542 for H2 = 0.2. The lower interface of this solution with H2 = 0.06 is
shown in panel (b) of figure 11, and it can be seen that the MCC2 model is not a great
approximation of the Euler equations here. Despite this, the solution branches of the
MCC2 system has the same behaviour as that of the Euler branch (as opposed to say the
KdV branches), and in particular limits to a heteroclinic orbit to the same conjugate state
as the Euler system. This implies that the MCC2 model retains the correct information
for describing (at least qualitatively) large amplitude solutions in regions of parameter
space one may expect it to perform poorly.

Below, we discuss the solution space for convex mode-2 solitary waves to the MCC3
and full Euler models when this symmetry is broken.

4.1.2. Non-symmetric configuration

It is known that the oscillations in the tail of a GSW can arise from exponentially
small terms (Sun & Shen 1993; Grimshaw & Joshi 1995; Sun 1999). Therefore, one must
take care in ensuring the solution computed is truly localised, as opposed to the resonant
tail being of an order smaller than the capabilities of the numerical scheme. Champneys
et al. (2002) proposed a criterion based on the continuity of curvature as a function
of bifurcation parameters which we adopt here. Denoting the curvature of the lower
interface at the last meshpoint in the tail as K, where K is counted positive if the radius
of curvature lies inside the bottom fluid, we state that an ESW is found along branches of
GSW when the branch passes through K = 0. The justification is as follows: the domain
is periodic, and hence the solution ends on a wave trough if K > 0, and a wave crest if
K < 0. The solution which occurs at K = 0 must have waves with zero amplitude in the
tail. This technique has been used to explore the existence of ESW for fully nonlinear
gravity-capillary waves (Champneys et al. 2002) and gravity-flexural waves (Gao 2016).
In all the cases above, no ESWs were found. In fact, except for symmetric Boussinesq
mode-2 waves, positive results for the existence of ESWs are only available for reduced
long wave models (see e.g. Champneys et al. (2002) for ESWs in a fifth-order modified



Large mode-2 internal solitary waves in three-layer flows 15

(a) (b)

ζ2 − ζ̄2K

H3 x

Figure 11. Panel (a) shows a branch of GSW with ∆1 = ∆2 = 0.01, H2 = 0.06, and
ζ2(0) − ζ̄2 = −0.03 (where ζ̄2 is the mean of ζ2 over a wavelength) with varying values of
H3 (and H1). The dotted curve is K = 0. The red and blue profiles in panel (b) correspond to
the red and blue crosses in panel (a), while the black profile is the K = 0 solution (given by the
diamond).

KdV equation; Barros et al. (2020) for ESWs in the MCC3 model). The results to follow
are the first positive result in the context of the full Euler equations.

Using an S-ESW with H3 = 0.47, H2 = 0.06, and ∆1 = ∆2 = 0.01 as an initial
guess, we break the symmetry by removing the Boussinesq approximation. The numerical
scheme described in Appendix A then converges to a GSW. We fix the perturbation of
the lower interface ζ2(0) and vary the value of H3 to obtain a branch of GSW, shown in
figure 11(a). We plot the solution branch with K on the vertical axis, and it is observed
that the solution branch passes through K = 0 at the black diamond. Figure 11(b) shows
ζ2 for the three solutions along the branch. It demonstrates how K going from positive
to negative transitions through a localised solution.

We now modify the procedure to enforce the condition that K = 0. As suggested by
figure 11(a), this requires removing a degree of freedom from the problem: for example,
instead of fixing the amplitude and varying the speed (or vice versa), we must allow both
to vary. Alternatively, one can allow an additional parameter to vary (for example, fix
the amplitude and allow c and H1 to vary). The above procedure allows the computation
of branches of ESWs. In the discussion that follows, we compute branches of ESWs by
fixing H2, ∆1, and ∆2, and varying the value of H3. All the solutions in this subsection
retain the bulge profile of S-ESWs. Much richer solutions will be presented in following
sections.

Let A be defined by

A = max (|ζ1(0)|, |ζ2(0)|) . (4.1)

Figure 12(a) shows the three branches of Boussinesq ESWs plotted in the (H3, A)-plane
with H2 = 0.25, and ∆2 = 1.1∆1 (red curves), ∆1 = 1.1∆2 (blue curves), and ∆1 = ∆2

(black curves). The dashed curves are MCC3 solutions, while the solid curves are Euler
solutions. The black curves correspond to an S-ESW branch (i.e. H1 = H3 and ∆1 = ∆2).
A break in the stratification symmetry results in a solution branch either side of the
∆1 = ∆2 branch. As A increases along the branch, the waves get broader, becoming a
tabletop solitary wave, and limiting to a wavefront. A tabletop solitary wave for the blue
branch is shown in panel (b), where a solution of the conjugate state equations (which is
a maximum of the MCC3 potential V ) is given by the dotted curves. It is not clear from
the numerical scheme how the solution branches terminate at the other end. The Euler
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(b)(a)

Figure 12. Panel (a) shows Boussinesq ESW branches for the MCC3 (dashed curves) and
Euler (solid curves), with fixed H2 = 0.25. We vary the stratification, where the red curves
have ∆1 = 0.01, ∆2 = 0.011 while the blue curves have ∆1 = 0.011, ∆2 = 0.01 . The MCC3
and Euler S-ESW branches (∆1 = ∆2) overlap, given by the black curve. Panel (b) shows the
solution given by the diamond in panel (a) for both the MCC3 (dotted curve) and Euler branch
(dashed curve). The profiles are almost indistinguishable. The dashed line shows a solution to
the conjugate state equations given the incoming flow from the left. To four significant figures,
both the Euler and MCC3 solution have the parameter values H3 = 0.3561, H1 = 0.3939, and
c = 0.03618.

(a) (b)

Figure 13. Both panels show MCC3 ESW branches with fixed H2 = 0.06 and ∆1 = 0.01. Panel
(a) is with the Boussinesq approximation, and panel (b) is without. For both panels, the value of
∆2 is ∆2 = 0.0098, ∆2 = 0.01 and ∆2 = 0.0102 for the blue, black, and red curves respectively.
The dashed black curve in (b) has ∆2 = 0.0101575.

and MCC3 numerical solvers failed to converge beyond the points plotted in the figure.
The amplitude of the waves by this point is very small.

The behaviour described above differs greatly from weakly nonlinear KdV or Gardner
theory, which predicts full branches of mode-2 localised solitary waves for given Hi and
∆i. Meanwhile, the MCC3 system captures the reduction of dimension of the parameter
space for these ESWs: given Hi and ∆i, localised solitary waves of mode-2 are found as
isolated points on branches of GSWs (except for the heavily idealised S-ESW solutions).

Keeping other parameters the same, but removing the Boussinesq approximation, one
finds a similar solution space. The key difference is that, unlike the Boussinesq case, the
branch with symmetric density stratification does not lie on the curve H1 = H3, and the
solutions are not symmetric about y = 0.5.

As H2 is decreased, features seen for the H2 = 0.25 solution space persist in the
full Euler equations. However, we found that the code failed to converge for very large
amplitudes when H2 was too small (H2 < 0.06), and hence we were not able to approach
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a limiting wavefront solution. While reasonable agreement is found between the Euler
and MCC3 ESW branches when H2 = 0.25, for smaller H2 stark differences appear. We
suspect the cause of the increased discrepancy is the invalidation of the shallow water
approximation, which resulted in worse agreement for the symmetric Boussinsq solutions
in section 4.1.1. While the agreement for small H2 is poor with the Euler system, we
describe below the behaviour of the MCC3 solution branches.

Figure 13 shows branches of ESWs for the MCC3 equation with and without the
Boussinesq approximation in panel (a) and (b). We fix ∆1 = 0.01, H2 = 0.06, and vary
∆2. For the Boussinesq case, when ∆2 = ∆1, the ESW branch with H1 = H3 is recovered,
as above. However, along this branch there is a bifurcation point occurring about A ≈ 0.1.
The bifurcating branch no longer satisfies H1 = H3. Numerical computations show that
this bifurcation point occurs for smaller values ofA asH2 is increased, and no longer exists
for H2 ≈ 0.22. Breaking the density symmetry results in the red and blue curves, which
lie in domains bounded by the ∆1 = ∆2 curves. The branches for large A ultimately end
in a wavefront, while again it is unclear from the numerical results how the branches ends
with small values of A terminate. For the non-Boussinesq model, we no longer have the
symmetric Boussinesq solution branch. Panel (b) shows branches for four choices of ∆2.
The ∆2 = ∆1 branch without the Boussinesq approximation no longer lies on H3 = H1.
However, for a nonsymmetric stratification (∆2 = 0.0101575, given by the dotted curve),
a solution branch with a bifurcation point is found. Note that, in agreement with the
results of Camassa et al. (2006) for two-layer systems, the deviation from the Euler
system is most pertinent at moderate amplitude. For large amplitude, limiting wavefront
solutions are found for both the Euler and MCC3 system, and the interfaces and wave
parameters are comparable.

4.1.3. Multi-hump solitary waves

Thus far, the ESWs we have seen are the typical ‘bulge-shaped waves’ observed in
laboratory experiments (for example, Carr et al. 2015). Barros et al. (2020) found com-
pacton solutions for the MCC3 system comprised of p and q humps on the lower and
upper interface respectively (referred to as a (p, q) compacton). They were recovered in
the asymptotic limit H2 → 0, but were found numerically to persist for finite values
of H2. Such solutions were coined multi-hump solitary waves, and appear to have been
observed in the laboratory by Liapidevskii & Gavrilov (2018) and Gavrilov et al. (2013).
In this section we show evidence of their existence in the context of the Euler equations.

One multi-hump ESW branch is shown in figure 14 with H2 = 0.15 and ∆1 = ∆2 =
0.01 for both the full Euler and MCC3 equations, where the parameter Q on the y-axis
measures the volume of the perturbation, given by

Q =

∫ 0

−∞
|ζ1|+ |ζ2|dx. (4.2)

We use Q as a bifurcation parameter rather than A since the maximum displacement of
a multi-hump solution is not necessarily at x = 0. The solutions (1)–(4) from figure 14
are shown in physical space in figure 15. It can be seen that at with increasing values
of Q the waves broaden. However, unlike the single-humped ESWs seen in section 4.1.2,
the broadened section is not flat. To better understand this, we consider the projection
of the MCC3 solutions onto the (ζ1, ζ2)-plane, as shown in figure 16. As the amplitude
of the solution increases, the trajectory gets closer to the maximum critical point, shown
by the black cross. The single-humped ESW branch with the same values of H2 and
∆i has a limiting solution which is a heteroclinic orbit from the origin to the maximum
critical point. Remarkably, the multi-hump branch from figure 14 appears to approach
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Figure 14. A multi-hump ESW branch with ∆1 = ∆2 = 0.01 and H2 = 0.15 for the MCC3
model (red) and Euler model (black). The solutions (1)–(4) along the MCC3 branch are shown
in figure 15 by the red curves, while the Euler solution with the same H3 is shown in black.

(1) (2)

(3) (4)

y y

y y
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Figure 15. Solutions (1)–(4) from figure 14. The red curves are the MCC3 solutions, while the
black curves are the corresponding Euler solution with the same value of H3. The speeds of the
solutions (1)–(4) are c = 0.02396, c = 0.02772, c = 0.03498, and c = 0.03536 for the MCC3
system and c = 0.02374, c = 0.02764, c = 0.03507, and c = 0.03536 for the Euler equations.

a solution (see solution (4)) which consists of a quasi-heteroclinic orbit to the maximum
critical point combined with a quasi-homoclinic orbit originating at the maximum critical
point: in other words a solitary wave riding on a conjugate state.

One can smoothly, via continuation, get from an MCC3 solution along this branch to
a (1, 2) compacton by decreasing the value of H2. One can also reduce the value of H2

for the Euler solutions, but we found computing solutions with H2 < 0.05 difficult due
to stiffness in the numerical method.

More multi-hump ESW branches with H2 = 0.15 and ∆1 = ∆2 can be found, such as
the MCC3 branches shown in figure 13. All the branches shown have a vertical asymptote
at H3 ≈ 0.4276. As indicated by the arrow in the figure, solutions on branches with larger
Q are characterised by a broadened wave with additional oscillations on the broadened
profile. For example, fixing H3 = 0.55, we plot the solutions indicated with the diamonds
in panel (b). The green single-humped profile is akin to those seen in section 4.1.2.
Meanwhile, the blue and red solutions are multi-humped ESWs. The oscillations on the
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(2) (3) (4)

Figure 16. MCC3 solutions (2)–(4) from figure 15, projected onto the (ζ1, ζ2)-plane. Black
curves are level sets of V , where the bold black curve is V = 0. The red curve is the trajectory
of the solution, originating at the origin and bounded by V = 0. The green, blue, and black
crosses are minimum, saddle, and maximum critical points of V respectively.

(a) (b)More
humps

Figure 17. Panel (a) shows branches of MCC3 ESWs with H2 = 0.15 and ∆1 = ∆2 = 0.01.
The green, blue, and red diamonds lie on H3 = 0.55, and these solutions are shown in panel
(b). The green solution has a speed c = 0.02916, while the blue and red solutions have almost
the same speed c = 0.03126. Solutions on branches with larger Q are broader, with additional
oscillations on the broadened section.

broadened section are seen clearly on the lower interface, while the oscillations on the
upper interface are less visible. Only when H2 = 0 do the oscillations on the top interface
disappear, resulting in an (n, 1) compacton. As H2 → 0, the blue and red solutions
approach (4,1) and (8,1) compactons. Our numerical results suggest there are solutions
with an arbitrary number of such oscillations, and can be found by continuation of a
compacton solution. We find this same behaviour for the Euler system, although the
limiting configuration cannot be reached for solutions with many humps due to the large
computational domains required.

As with the single-humped ESWs, we found that the MCC3 system becomes a poorer
approximation for the Euler equations as H2 decreases. For example, in figure 18, we
compare MCC3 and Euler multi-hump profiles for H2 = 0.15 and H2 = 0.06 in panel (a)
and (b) respectively. It can be seen that the wavelength and amplitude of oscillations at
the center of the wave have worse agreement for the solutions in panel (b).

We now relate these solutions back to the discussion from section 3. The multi-hump
solutions observed here have the same characteristics as the solution seen in figure 8.
The origin is a saddle of V , and hence oscillations in the tail will be observed except
for special values of the parameters. These solutions are a homoclinic orbit starting at
the origin which approach a periodic mode-1 wave. This mode-1 wave, for the MCC3
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Figure 18. ESWs for the MCC3 (red) and Euler (black) equations with H3 = 0.3 and
∆1 = ∆2 = 0.01. The solutions in panel (a) have H2 = 0.15, where the MCC3 and Euler
speeds are c = 0.03112 and c = 0.03109 respectively. Meanwhile, panel (b) has H2 = 0.06 with
MCC3 and Euler speeds of c = 0.02895 and c = 0.02888 respectively
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Figure 19. Panel (a) shows an Euler ESW with H2 = 0.1, H3 = 0.202306, ∆1 = ∆2 = 0.01,
and c = 0.0256299. The red curves are a saddle conjugate state of the far-field, with values

ζ̂2 = −0.0752539, ζ̂1 = 0.0276113, and c = 0.0256230. Panel (b) shows the linear dispersion
relation of a wave travelling to the right with speed U on the conjugate state. Linear modes in
which the interface displacements are the same sign are in blue, while those with opposite signed
interface displacements are in red. It can be seen there is a standing linear wave (U = 0) with
wavenumber k = 11.54, in excellent agreement with the humps on the ESW with k = 11.53.

system, is in the vicinity of a saddle critical point. These solutions have speeds slightly
larger than that of a saddle mode-2 conjugate state. Noting that saddle mode-2 conjugate
states exist for all parameters except at criticality (e.g. figure 5), multi-hump solutions
appear to be extremely common. The limiting single humped solutions seen in section
4.1.2, such as figure 12(b), are akin to the solution in figure 7. The origin is still a saddle,
and hence oscillations in the tail must be avoided by careful choice of parameters, but
now the conjugate state is a maximum, and so limiting solutions are wavefronts.

Information regarding critical points of a potential only applies to the MCC3 equations,
yet the solution behaviour is remarkably similar to the Euler system. Therefore, we
provide another interpretation of large amplitude multi-hump waves. The humps are
can be seen as mode-1 periodic standing waves which lie on a solution branch which
bifurcates with zero amplitude from the conjugate state! The wave properties of these
oscillations can be predicted by linear theory when they are of small amplitude. This
is demonstrated in figure 19, where panel (a) shows an Euler multi-hump ESW (only
the x > 0 portion of the profile is shown). In red, we plot the mode-2 saddle conjugate
state corresponding to the values of Hi and ρi. The wavenumber of one of the mode-1
oscillations on the broadened section is k = 11.5288. Taking values of Ĥi and ûi (see
figure 3) for the conjugate state, one can linearise the system by seeking wave forms
travelling at a constant speed U . The dispersion relation is omitted here, but can be
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Figure 20. Boussinesq solution branches with H2 = 0.8, H1 = H3 = 0.1, and ∆1 = ∆2 = 0.01.
The top panel is for the Euler system, while the bottom is for MCC3. The two blue curves are
mode-1 solitary wave branches. The red curve is the symmetric Boussinesq mode-2 branch, while
the black curves are mode-2 branches which bifurcate from the symmetry branch. The triangles
are bifurcation points. Only the first five bifurcating branches are shown. The solutions (5)–(8)
corresponding to the crosses are plotted in figures 21.

found in Baines (1997) and has four branches. The leftward and rightward travelling
waves are no longer equivalent due to the different values of ûi across each layer. It can
be seen that a linear standing wave (U = 0) exists for k = 11.5430, in strong agreement
with the mode-1 oscillations on the ESW. The discrepancy arises due to the nonlinearity
of the mode-1 oscillations, and that the speed of the ESW is slightly larger than that of
the conjugate state. Another way of stating the above is that the mode-1 periodic wave
on the conjugate state travels at the same speed as the ESW.

4.2. Concave waves outside the linear spectrum

All of the mode-2 solitary waves considered so far have speeds less than c+0 , and are
hence ESWs. However, it is not always the case that mode-2 waves must be within the
linear spectrum. This is predicted by the fact that mode-2 conjugate states may have
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Figure 21. Solutions (5)–(8) from figures 20. The black curves are the Euler solution, while the
red curves are MCC3. The solutions all have the same speed c = 0.03552, which is greater than
c−0 = 0.0316.
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Figure 22. A single MCC3 branch from figure 20 showing the bifurcation point, and solutions
along the branch.

speeds exceeding c+0 , provided that the value of H2 is sufficiently large (see figure 6(c)).
The mode-2 conjugate state with c > c+0 is a saddle of the MCC3 potential. We have
seen already in the previous section how large amplitude ESWs can have a broadened
section with periodic-like orbits in the vicinity of a non-trivial saddle point, resulting in
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∫∞
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Figure 23. Boussinesq MCC3 mode-2 solitary wave solution branches with parameter values
∆1 = 0.011, ∆2 = 0.01, H2 = 0.8, and H1 = H3 = 0.1. Different colours are used to distinguish
separate branches. Panel (b) shows a blow-up of the red, blue, and green branch from panel (a).

multi-hump solitary waves. Such solutions are also found outside the linear spectrum, as
discussed below. For simplicity, we will restrict our attention to the Boussinesq system.

We begin by exploring solutions with H2 = 0.8, H1 = H3, and ∆1 = ∆2. A bifurca-
tion diagram is shown in figures 20 for the Euler and MCC3 systems in the upper and
lower panels. The horizontal axis is the volume of the perturbation of the lower interface
over half the domain. The agreement, like for convex waves, is qualitatively good but
can be quantitatively poor. The two blue curves correspond to two mode-1 solitary wave
branches which bifurcate from c = c+0 . Since this is the symmetric Boussinesq configu-
ration, one branch can be recovered from the other by the mapping g → −g, ζ1 → −ζ2,
ζ2 → −ζ1. The red branch is mode-2 solitary waves with ζ1 = −ζ2, which bifurcate from
c = c−0 and approach a tabletop solitary wave. As expected, the limiting solution is a
heteroclinic orbit from the origin to the mode-2 conjugate state of the system. Along the
branch there are bifurcation points represented by triangles. The ζ1 = −ζ2 symmetry is
broken along the bifurcating branches, which are shown by the black curves. In fact, two
new branches bifurcate from each bifurcation point, but they are related to each other
by the aforementioned mapping for the two mode-1 branches.

Solutions along the bifurcating branches are multi-humped solitary waves. Figure 21
shows the solutions (5)–(8) from figures 17, where the Euler and MCC3 profiles are shown
in black and red respectively. For comparison, the speeds are kept the same across all the
solutions. It can be seen that the interfaces have additional oscillations as one considers
the sequence of bifurcating branches. Our numerical exploration suggests infinitely many
of these bifurcating branches exist. We plot a single bifurcating branch for the MCC3
system in figure 22. At the bifurcation point, the solution is a tabletop solitary wave,
as shown by panel (a). As the speed of the wave increases, oscillations appear on both
interfaces, as seen by solution (b). Finally, at the end of the branch, the solution is again
a tabletop solitary wave, but with a mode-1 solitary wave either side of the broad mode-2
solution. The mode-1 solitary wave is the solution from the mode-1 branch with the same
speed. Moving along the branch beyond the solution (c), one finds the mode-1 waves can
be made to be arbitrarily far from the mode-2 wave, but the speed of the wave (and the
profiles of the mode-1 and mode-2 waves) remain unchanged.

Next, we consider a solution branch with non-symmetric stratification, by setting H2 =
0.8, H1 = H3, ∆1 = 0.01 and ∆2 = 0.011. For simplicity, we shall consider the MCC3
system only. The solution space for mode-2 solitary waves is shown in figure 23, where
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we plot each branch in a different colour. There are two key differences with the solution
space for the symmetric Boussinesq configuration. First, there is no longer a branch
satisfying ζ1 = −ζ2, and hence none of the branches with c > c+0 smoothly enter the linear
spectrum while remaining truly localised. In the linear spectrum, one may still find ESWs,
but they are isolated points along branches of GSW, as seen for convex waves in section
4.1.2. The second difference is that there is no sequence of bifurcation points. Instead, the
branches of solutions are isolated: where they cross no longer corresponds to a bifurcation
point. This being said, numerics still suggest there is an infinite sequence of multi-humped
solution branches with an increasing number of oscillations on the broadened section.

5. Concluding remarks

In this paper, we present a variety of steady three-layer mode-2 internal solitary waves.
Using the criterion proposed by Champneys et al. (2001), we establish numerically that
truly localised mode-2 solitary waves can be embedded in the linear spectrum. In addition
to single-humped profiles, we find branches of exotic multi-hump solutions for both the
fully nonlinear Euler equations and the MCC3 equations. For MCC3, this extends the
work of Liapidevskii & Gavrilov (2018) and Barros et al. (2020), who previously computed
multi-humped waves within the strongly nonlinear regime, but limited to small depths
of the intermediate layer. In fact, such solutions are revealed to be prolific throughout
the parameter space.

The MCC3, being a long-wave strongly nonlinear model, is found to be in good agree-
ment with the Euler system as long as the shallow water assumption is not invalidated.
We have found that, even in cases where the the long wave approximation is not ap-
plicable, qualitative agreement still holds for large amplitude solutions, but significant
quantitative differences can be found. It should be noted that the MCC3 travelling wave
solutions are governed by a coupled system of second order ordinary differential equa-
tions, whose solutions are relatively simple to compute.

All mode-2 solutions found in this paper tend to broaden with increasing values of
amplitude. In some cases, the broadened section is flat (i.e. tabletop solitary waves),
while in others, numerous oscillations occur on the broadened section (i.e. multi-hump
solitary waves). We have seen that this relates entirely to the nature of the conjugate
states of the system and their nature as critical points of MCC3. It is fascinating to note
that the while this critical point analysis follows from the MCC3 system, the consequence
it has on the solution space appears to hold for the full Euler system. Our work also
suggests that, except at mode-2 criticality, multi-hump waves occur across parameter
space. Furthermore, mode-2 solitary waves were found with speeds greater than the
linear long-wave speed of mode-1, predicted by the existence of a mode-2 conjugate state
outside the linear spectrum.

The work in this paper is restricted to a three-layer model, which idealises a continu-
ously stratified fluid with two sharp pyncoclines. The existence of ESWs in a continuous
stratification is the subject of an ongoing investigation. We present here preliminary
results, which demonstrate that the localised coherent structures found for the layered
model in this paper still exist in the more realistic context of continuous stratification.
As an example, we take a two-pycnocline tanh stratification profile given in Lamb (2000)
to find ESW solutions to the Euler equations in continuous stratification that, in steady
form, are known as the Dubriel-Jacotin-Long (DJL) equation (Dubreil-Jacotin 1932; Long
1953). This is shown in figure 24, where we plot a multihump ESW with comparable pa-
rameters for the MCC3, three-layer Euler and DJL system. Streamlines are included
to demonstrate the similar vertical structure, where the streamlines for the MCC3 are
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Figure 24. Mode-2 ESW in a continuously stratified fluid with two pycnoclines. Boussi-
nesq multi-hump solutions with internal streamlines are shown for the continuously strati-
fied DJL system and the layered MCC3 and Euler systems. Internal streamlines are plot-
ted in blue, while the streamlines corresponding to the interface of the three-layer model
are in black. The continuous density stratification used in the DJL equation is given by
ρ(y) = ρ3 + ∆2 (1 + tanh ((y −H3)/d)) /2 + ∆1 (1 + tanh ((y −H3 −H2)/d)) /2 with d = 80
and ∆1 = ∆2 = 0.01 and is shown by the solid curve in the right-most panel, while the dashed
curve shows the discontinuous density profile of the three-layer models (with the same values of
∆i). All solutions are for H3 = 0.35, H2 = 0.15, and H1 = 0.5. The speeds of the DJL, three-
-layer Euler, and MCC3 solutions are c = 0.03191, c = 0.03298, c = 0.03301, respectively. It
was found that increasing the value of d has little effect on the streamlines for the DJL solution,
but the speed of the wave increases, improving agreement with the discontinuously stratified
three-layer solution.

recovered using the leading order solution of the model. The DJL equation is solved
using a finite difference scheme with second-order central-difference approximations of
derivatives.

The most pertinent question about these solutions regards their stability and genera-
tion. While layered models will suffer from Kelvin-Helmholtz instability due to a jump
in densities, it may be possible that ESWs in continuously stratified fluids are stable.
Indeed, a multi-hump mode-2 solitary wave was found experimentally by Liapidevskii
& Gavrilov (2018) with two humps on the lower interface and one on the upper inter-
face. The wave was generated with a lock-release mechanism, and propagated keeping
its permanent form. They noted that non-symmetric mode-2 solitary waves waves would
radiate energy via a mode-1 tail except ‘for special choice of stratification’, in-line with
the results of this paper which found that localised mode-2 solitary waves have deli-
cate dependence on parameters. The solutions may also be attractors, arising after wave
collision or wave interaction with topography. These are topics of future research.

We have demonstrated the rich bifurcation structure of higher-mode solitary waves
and presented the first example of non-trivial ESWs within fully nonlinear theory. Our
numerical solutions should also spawn interesting analytic conjectures regarding their
existence. This paper has focused primarily on solutions in which the stratification is
weak (∆1 ≈ ∆2 � 1). Owing to the large number of parameters in the problem, a
complete description of the solution space for steady waves is still to be found. Previous
computations by Rus̊as & Grue (2002) for stronger stratification have found existence
of overhanging solutions for three-layer mode-1 waves. Whether such behaviour could be
found for mode-2 waves is unknown.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Numerical method for Euler equations

To solve the system of equations described in section 2, we reformulate the problem
such that x and y are functions of the independent variables φ3 and ψ3. The desire to
solve this system of equations in the potential space is motivated by the fact that the
unknown interfaces are isolines of the streamfunctions ψi. The unknowns are expressed
in terms of integrals concerning boundary values via Cauchy’s integral formula. This
method has been adopted by many authors for the two-layer model (for example, Turner
& Vanden-Broeck (1986)). We note that this method is very similar to that used by
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Rus̊as & Grue (2002) for the three-layer model. However, they remain in the physical
space and resolve boundary integrals seeking the unknown velocities in terms of x and
y. The advantage of working in the potential space is the reduction in the number of
unknowns, as demonstrated below.

Consider first the bottom fluid layer. Denoting φ = φ3, we can write the complex
potential f3 in the lower fluid layer as f3 = φ + iψ3. Without loss of generality, choose
ψ3 = 0 on the bottom wall, and φ = 0 at x = 0. The potential space of the bottom fluid
layer, and it’s reflection across the wall ψ3 = 0, is given by

Ωf3 = {(φ, ψ3) : φ ∈ [−c̃λ/2, c̃λ/2], ψ3 ∈ (−2Q3, 0)}, (A 1)

where we denote the flux of fluid in the bottom fluid layer as Q3. We conformally map
Ωf3 to an annulus in the t-plane via the mapping

t = exp

(
−kif3

c̃

)
. (A 2)

We parameterise the perturbation to the uniform stream of the lower interface as (X(φ), Y (φ))
and the upper interface as (X̃(φ), Ỹ (φ)), where

cλ/2∫
0

Y (φ) dφ = 0,

cλ/2∫
0

Ỹ (φ) dφ = 0. (A 3)

The function F = xφ + 1/c̃ + iyφ, where subscripts denote partial differentiation, is an
analytic function of f3, and hence an analytic function of t. Applying Cauchy’s integral
formula to the function F over the annulus in the t-plane, where we denote the boundary
of the annulus traversed counterclockwise as C, one finds that

F (t0) =
1

πi

∮
C

F (t)

t− t0
dt, (A 4)

where t0 is taken on the boundary of the annulus. Making use of (A 2), and taking real
parts, the above integral gives

c̃λ

2

(
Xφ(φ0) +

1

c̃

)
=

1

2

c̃λ/2∫
−c̃λ/2

Yφ cot

(
Θ−
2

)
dφ

−
c̃λ/2∫
−c̃λ/2

(
Xφ + 1

c̃

)
(1−R3 cos Θ−)

1 +R2
3 − 2R3 cos Θ−

dφ

+

c̃λ/2∫
−c̃λ/2

Yφ sin Θ−
1 +R2

3 − 2R3 cos Θ−
dφ. (A 5)

Here, Θ± = k(φ0±φ)/c and R3 = e2Q3k/c̃. The above integral expresses Xφ(φ0) at some
point φ0 on the interface in terms of integrals concerning boundary values of Xφ and Yφ.

Next, we consider the intermediate fluid layer. We write φ2 = h(φ), and denote the flux
in the layer as Q2. Without loss of generality, let ψ2 = 0 on the lower interface y = η2.
Hence, the potential space of the intermediate layer f2 = h(φ) + ψ2 is given by

Ωf2 = {(h(φ), ψ2) : φ ∈ [−c̃λ/2, c̃λ/2], ψ2 ∈ (0, Q2)}. (A 6)
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The far-field condition (2.7) requires that h satisfies

hφ

(
±c̃λ

2

)
= 1. (A 7)

One can map the above space to an annulus in the s-plane via the mapping

s = exp

(
kif2
c̃h0

)
. (A 8)

where

h0 =
h(c̃λ/2)− h(0)

c̃λ/2
. (A 9)

The parameter h0 is a measure of the wavelength averaged shear between the bottom
and intermediate layer. When h0 = 1, then φ3 and φ2 vary the same over one wavelength,
and hence the average shear is zero. Typically, h0 is different from unity. Again solving
Cauchy’s integral formula on the region bounded by the annulus in the s-plane, one can
derive two boundary integral equations. First we find that

c̃h0λ

2

(
Xφ(φ0)

hφ(φ0)
+

1

c̃h0

)
= −1

2

c̃λ/2∫
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Yφ cot
(α−

2

)
dφ

−
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hφ
c̃h0
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(1−R2 cosα−)

1 +R2
2 − 2R2 cosα−

dφ

+

c̃λ/2∫
−c̃λ/2

Ỹφ sinα−
1 +R2

2 − 2R2 cosα−
dφ. (A 10)

Here, R2 = eQ2k/c̃ and α± = k(h(φ0)± h(φ))/(c̃h0). Second, we get

c̃h0λ

2

(
X̃φ(φ0)

hφ(φ0)
+

1

c̃h0

)
= −1

2
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Ỹφ cot
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−
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(1−R2 cosα−)

1 +R2
2 − 2R2 cosα−

dφ

−
c̃λ/2∫
−c̃λ/2

Yφ sinα−
1 +R2

2 − 2R2 cosα−
dφ. (A 11)

Finally, denoting φ1 = g(φ) and the flux in the upper layer as Q1, we map the upper
interface and it’s reflection across the top boundary in the (g, ψ1)-space to an annulus.
Following the same methodology as above, and upon assuming ψ3 = 0 on the upper
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interface y = η1, we get

c̃g0λ

2

(
X̃φ(φ0)

gφ(φ0)
+

1

c̃g0

)
= −1

2

c̃λ/2∫
−c̃λ/2

Ỹφ cot

(
β−
2

)
dφ

−
c̃λ/2∫
−c̃λ/2

(
X̃φ +

gφ
c̃g0

)
(1−R1 cosβ−)

1 +R2
1 − 2R1 cosβ−

dφ

−
c̃λ/2∫
−c̃λ/2

Ỹφ sinβ−
1 +R2

1 − 2R1 cosβ−
dφ. (A 12)

Here, R1 = exp(2kQ1/(c̃g0)), β± = k(g(φ0)± g(φ))/(c̃g0), and

g0 =
g(c̃λ/2)− g(0)

c̃λ/2
. (A 13)

The far-field condition (2.8) requires that

gφ

(
±c̃λ

2

)
= 1. (A 14)

It is left to satisfy the continuity of pressure condition (2.5). We can rewrite these equa-
tions as

hφ(φ) =

[
ρ3 +

2

q2
(∆2Y −B2)

]1/2
, (A 15)

gφ(φ) =

[
1

ρ1
h2φ +

2

ρ1q̃2

(
∆1Ỹ −B1

)]1/2
, (A 16)

where

q = (X2
φ + Y 2

φ )−1/2, q̃ = (X̃2
φ + Ỹ 2

φ )−1/2. (A 17)

Similar expressions are found when using the Boussinesq approximation.

We wish to solve the reformulated problem numerically. We use the assumed symmetry
about x = 0 such that we only have to solve the problem over half a wavelength. We
discretise φ ∈ [−c̃λ/2, 0] into N + 1 mesh points φI as follows

φI = − c̃λ
2

[
N + 1− I

N

]
, I = 1, · · · , N + 1. (A 18)

The midpoints are give by φMI = (φI + φI+1)/2. We express some of the unknowns as a
Fourier series in φ,

Y (φ) =

N−1∑
n=1

an cos

(
kn

c̃
φ

)
, (A 19)

Xφ(φ) = −1

c̃
+

N−1∑
n=1

bn cos

(
kn

c̃
φ

)
, (A 20)

Ỹ (φ) =

N−1∑
n=1

cn cos

(
kn

c̃
φ

)
. (A 21)
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We take an, cn, B1, B2, Q1, Q2, Q3, h0, g0, and c̃ as unknowns. This results in 2N + 6
unknowns. We differentiate (A 19) and (A 21) with respect to φ to find Yφ and Ỹφ. We
then find bn by numerically satisfying the boundary integral equation (A 5). The integrals
are evaluated at midpoints, and approximated using the trapezoidal rule. The discretised
system is then solved via Newton’s method. Given Xφ, Yφ, and Y , one can recover hφ
explicitly using equation (A 15). Expressing hφ explicitly in other unknown variables (and
hence reducing the number of unknowns in the nonlinear solver) was inspired by the work
of Wang et al. (2014), who deployed such a trick for two-layer hydroelastic interfacial
waves with a free-surface. We integrate hφ numerically to find h, and then compute X̃φ at
midpoints explicitly by re-arranging equation (A 11). A four-point interpolation formula
is used to approximate values of X̃φ at the meshpoints φI . One can then compute gφ
explicitly using (A 16), and then integrate for values of g at each meshpoint. It is left then
to solve the integral equations (A 10) and (A 12). Satisfying these equations at midpoints
results in 2N equations. Another two equations are obtained by satisfying the far-field
equations (A 7) and (A 14). These equations ensure that any ESW computed with this
numerical scheme had a far-field given by a uniform stream with speeds −c in each
layer. Another three equations are obtained by fixing Hi for each layer. We do this by
discretising ψi in each layer, and then evaluating values of xφ at the first midpoint φM1 .
We then compute Hi using the identities

H3 =

Q3∫
0

xφ(φM1 , ψ3) dψ3, H2 =

Q2∫
0

xφ(φM1 , ψ2)

hφ(φM1 )
dψ2, H1 =

Q1∫
0

xφ(φM1 , ψ1)

gφ(φM1 )
dψ1.

(A 22)
Here, values of xφ inside the flow domains (rather than on the boundaries) needs to be
recovered using Cauchy’s integral equation, resulting in equations similar to (A 5). For
an ESW, the far-field corresponds to a uniform stream with layers of depth Hi. A final
equation is obtained by fixing something about the solution, such as some measure of
the amplitude (for example, Y (0)), or the speed of the wave c̃ (2.9). The system is solved
via Newton’s method, and we say a solution has converged when the L∞ norm of the
residuals are of the order O(10−10).

As mentioned before, the above method results in a 2N + 6 system of unknowns and
equations, which we solve via Newton’s method. This is a much smaller system than the
8N + 1 unknowns found in the numerical scheme used by Rus̊as & Grue (2002), and
hence justifies our decision to solve the integrals in the potential space.

We briefly mention here that when evaluating the integrals on the boundary, the sin-
gularity occurring in the integrals are handled by evaluating the integrals at midpoints.
However, when seeking values inside the domains, such as in the evaluation of Hi, it is
found that the singular nature of the integrals becomes problematic for points close to
the boundary. To solve this, we rewrite the integrals with the singularity removed. For
example, consider the integral of some analytic function F on the annulus in the t-plane,
given by (A 2). Denoting the boundary of the annulus traversed counterclockwise as C,

and let t0 be some point inside the annulus which maps to (φ0,ψ0) in Ωf3 . Then we write

F (t0) =
1

2πi

∮
C

F (t)− F (t1)

t− t0
+

1

2πi

∮
C

F (t1)

t− t0
, (A 23)

where t1 = e−kiφ0/c̃. The first integral is evaluated numerically, where the singularity as
t0 → t1 is removed by the new numerator. The second integral is evaluated analytically,
which using Cauchy’s integral formula gives simply F (t1). Hence, the computation is the
same as in (A 4), except with a new correction term, given by the term in the square



32 A. Doak and R. Barros and P. A. Milewski

brackets below

F (t0) =
1

2πi

∮
C

F (t)

t− t0
+

[
F (t1)− F (t1)

2πi

∮
C

1

t− t0

]
. (A 24)

The correction term measures inaccuracies in evaluating the integral of a simple pole
numerically when using the trapezoidal rule. The errors only become large near the
boundary (that is, t0 near t1). It is found the above method improves the convergence of
the evaluation of the integral as the number of meshpoints N is increased.


